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ABSTRACT

A comparative analysis of two inflationary models, semi-classical inflation and cor-

puscular inflation, is crucial in furthering the field of inflationary cosmology. The

semi-classical model of inflation is a topic of scientific debate due to its failure to

account for the quantum nature of the background or the back-reaction of pertur-

bations on it. Corpuscular cosmology, first put forth by Dvali and Gomez, describes

maximally symmetric cosmological spaces as a Bose-Einstein condensate near a point

of quantum criticality. The application of this purely quantum picture to the infla-

tionary universe allows one to recover details about this epoch that the semi-classical

model leaves unaddressed. According to this model, the primordial perturbations

evidenced by CMB fluctuations result from the depletion of the condensate back-

ground. The objective of this project is to derive the occupation number of depleted

quanta. The significance of this value lies in its comparative potential to cosmo-

logical observables such as the CMB. The derivation of the number of primordial

perturbations resulting from each inflationary de Sitter patch is reported in this

paper.

Keywords: Inflation, Corpuscular Cosmology, Primordial Perturbations, Quantum

Depletion
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Chapter 1

Introduction

The inflationary epoch is a significant topic of open research in the field of cos-

mology because of the lack of observational constraints and theoretical limitations.

This paper aims to comparatively explore the topic of inflationary perturbations

as predicted by two distinct theoretical frameworks: the corpuscular cosmological

model and the standard semi-classical model. These two models ascribe different

physical explanations to the phenomenon of inflationary perturbations. This the-

sis will compare each model’s predicted number of inflationary perturbations. The

corpuscular model describes the inflationary phase of the universe by assuming that

the background can be described as a composite of quanta akin to a Bose-Einstein

condensate (Dvali and Gomez 2014). In contrast, the standard semi-classical model

describes the driver of inflation as a classical field subject to quantum fluctuations.

Inflationary perturbations, which go on to seed large-scale structures, are evidenced

by anisotropies in the Cosmic Microwave Background (CMB). The mechanism be-

hind the generation of these perturbations, as well as the imprint they left in the

CMB, will be explored in this paper.

Corpuscular cosmology is a relatively recent theory, first put forth by Dvali and

Gomez in 2011, that utilizes a fully quantum description of cosmological spaces.

Therefore, its application to inflationary theory has not yet been fully realized. Fur-

ther computations are needed to quantify inflationary perturbations under a corpus-

cular framework. This thesis aims to compute the predicted number of primordial

perturbations in the universe at the end of inflation. One significant aspect of this

computation is its connection to the CMB. This project will allow for a comparison

between the corpuscular model and cosmological observations and will, therefore,

corroborate the viability of the corpuscular model observationally.

This paper will briefly explain the Cosmic Microwave Background, a relic radia-

tion from the last scattering surface. The CMB is a key inflationary observable; thus,

it is important to discuss its origin and features. The anisotropies of the CMB tem-

perature spectrum are perhaps its most informative feature, as they can be traced
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to density fluctuation in the early universe. As such, this paper will discuss their

formation and the statistical tools used to analyze them. This will be followed by

an introduction to cosmological models and the necessity of an inflationary epoch.

Subsequently, this paper will explain the standard semi-classical inflationary theory,

which posits that the universe underwent a rapid exponential expansion in the first

fraction of a second after the Big Bang. Inflation can be described by a Slow-Roll

model. This model posits that inflation is driven by a scalar field known as the in-

flaton, whose potential determines the rate of expansion. The governing equations

of this model and the conditions required for the inflaton will be discussed.

The following chapter will discuss inflationary perturbations under a semi-classical

model. The inflaton exhibits quantum fluctuations that are stretched to classical

scales by the universe’s rapid expansion. These quantum fluctuations become the

density perturbations and seed the large-scale structures in the universe today. An

important concept in understanding inflationary perturbations is the evolution of

the Hubble horizon during this period. The Hubble horizon marks the distance

objects can be observed or the extent of causal contact. The universe’s rapid expan-

sion causes the co-moving Hubble horizon to shrink during inflation. As a result,

quantum fluctuations are stretched to scales much larger than the Hubble horizon.

These fluctuations become ’frozen’ when they exit the horizon, i.e., they cannot

propagate, as they are no longer subject to causal processes. After inflation has

ended, the universe transitions to a decelerating expansion, causing the horizon to

grow. Therefore, the quantum fluctuations re-enter the horizon at a later epoch as

classical perturbations, seeding CMB anisotropies and forming large-scale structures

(Baumann 2012).

Special attention will then be given to the statistical analysis and quantification

of these perturbations. Perturbation theory assesses the impact of small perturba-

tions in the early universe on cosmological observables. The most significant sta-

tistical tool in analyzing these perturbations is their power spectrum. Additionally,

as these perturbations originate as quantum fluctuations, a quantum framework is

needed to conduct an accurate statistical analysis. A possible particularly significant

inflationary phase in the generation of perturbations is the ultra-slow roll phase in

which the number of perturbations grows exponentially (Ballesteros et al. 2020b).

The dynamics of the phase will be outlined, and this semi-classical ultra-slow roll

model will be used to compute the expected number of inflationary perturbations.

The semi-classical model of inflation is limited by its inability to account for

the quantum nature of the background and the back-reaction of perturbations on

it. The corpuscular picture aims to utilize a purely quantum description to ex-

plain inflationary dynamics and the production of primordial perturbations. This

theory was first put forth to describe black holes as a Bose-Einstein condensate of
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gravitons at a critical point with gapless degenerate Bogoliubov modes (Dvali and

Gomez 2011). A crucial property of Bose-Einstein condensates is that they undergo

a process known as depletion in which quanta are emitted, and the background

loses energy. This picture can be extended beyond black holes and applied to all

maximally symmetric spaces, such as the universe during inflation. In this scenario,

inflationary dynamics, given by the Friedmann equations or the expansion rate given

by the Hubble parameter, can be recovered from the energy density of gravitons.

During inflation, graviton interaction causes the quanta to deplete or get ’squeezed

out’ of the ground state and become propagating perturbations (Dvali and Gomez

2014). Therefore, according to this theory, the primordial perturbations evidenced

by the CMB should correspond to the amount of quanta depleted by the condensate.

However, it is important to note that this picture holds inside each individual de

Sitter patch. The perturbations imprinted on the CMB spectra can be recovered

by multiplying the predicted number of depleted quanta by the number of Hubble

patches present in the universe during inflation.

This thesis aims to compute the occupation number of depleted quanta during

inflation according to a corpuscular cosmological model. It will begin by explaining

the current understanding of the inflationary epoch, its observational tracers, and

how it fits into modern cosmological models. An in-depth discussion of inflationary

models and the statistical properties of inflationary perturbations will be analyzed

under a semi-classical framework. A derivation of the occupation number of primor-

dial perturbations using quantum field theory will be provided. Subsequently, the

corpuscular model will be explored, briefly explaining its initial application to black

holes, followed by its assessment of inflationary cosmology. Lastly, the derivation of

the occupation number of depleted quanta, a discussion of its physical interpretation,

and a comparison to the quantum field theory result will be provided.
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Chapter 2

Inflationary Cosmology

This chapter will explore the period of inflation under a semi-classical cosmological

model. The chapter begins by discussing a key inflationary observable, the CMB,

explaining its formation and the information it carries. The Hot Big Bang model

and its limitations will be introduced, including the horizon, flatness, and monopole

problems. The solution to these limitations will also be addressed: a period of rapid

accelerated expansion known as inflation. Subsequently, the dynamics of inflation

and the conditions it must meet will be explored, specifically the theory of slow-roll

inflation.

2.1 The Cosmic Microwave Background

This section will discuss the formation of the Cosmic Microwave Background (CMB)

and the cosmological information it holds. Recombination, the last scattering sur-

face, and the formation of the CMB will be explained. The temperature map of the

CMB reveals a homogeneous isotropic universe with several small anisotropies. The

progenitors of these anisotropies are multifaceted, but they can be traced back to

primordial density fluctuations. Therefore, these temperature fluctuations can be

analyzed to study the primordial universe. The greatest tool in this analysis is the

power spectrum of temperature anisotropies.

2.1.1 Recombination and the Last Scattering Surface

The Cosmic Microwave Background (CMB) is the earliest piece of observational evi-

dence present in the universe, and it is one of the few tools available for cosmologists

to learn about the inflationary era. The CMB is a nearly uniform background radia-

tion that permeates the entire universe and is observable in the microwave spectrum.

It is a relic radiation from the early universe, providing a snapshot of the universe

at the redshift of last scattering, zls ≈ 1100. Not long before this, 380,000 years

after the Big Bang, a phenomenon known as recombination occurred at a redshift
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Figure 2.1: 2018 Planck findings report the CMB temperature map generated by
the Commander component separation algorithm. The map is smoothed to a 60◦

FWHM resolution, with the grey areas indicating the masked regions used in the
analysis, retaining 86% of the sky. The dipole moment, ℓ = 1, is masked to avoid
Milky Way contamination (Akrami et al. 2020).

of zrec ≈ 1500. Before this event, the universe was a hot, dense, opaque plasma,

as photons were subject to frequent Thompson scatters. As the universe cools over

time, recombination marks when it is cold enough for protons and electrons to com-

bine into neutral hydrogen atoms. At this moment, photons decoupled from matter

as they could freely travel without being scattered by free electrons. This transition

marks the moment when the universe became transparent to radiation. Naturally,

this is a gradual process; not every photon could travel freely at the exact moment

when the first neutral hydrogen atom formed, hence the discrepancy between the

last scattering event at zls and zrec. The photons that escaped at the last scattering

constitute the CMB. Therefore, the temperature map provided by CMB radiation

reflects a snapshot of the universe at zls and any fluctuations reflected in this tem-

perature map can be related to perturbations in the universe resulting from inflation

(Coles and Lucchin 2002).

2.1.2 CMB Anisotropies

The average temperature of the black-body spectrum of the CMB has been measured

as (Fixsen 2009),

TCMB = 2.72548± 0.00057K. (2.1)

The temperature map of the CMB illustrated by Figure 2.1 depicts a broadly ho-

mogeneous and isotropic universe containing small fluctuations that differ from the

average value by approximately 10−5 (Aghanim et al. 2020). The progenitors of the
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anisotropies are multifaceted and can be broken down into two categories: primary

anisotropies, which reflect the conditions of the cosmic fluid at the moment of last

scattering, and secondary anisotropies, which reflect processes the CMB photons un-

dergo as they travel towards Earth. There are three sources of primary anisotropies:

effects relating to gravity, density, and velocity. The gravitational effects can be

summarized as follows: if a CMB photon is located in a potential well at zls, it

will expend energy to escape the potential well and thus be redshifted; likewise, the

CMB photon would be blueshifted if it were to enter a potential well. Addition-

ally, given adiabaticity, overdense regions lead to particle heating, and underdense

regions lead to particle cooling; therefore, density fluctuations result in temperature

fluctuations. These two phenomena work simultaneously and have opposing effects.

The combined effect, the Sachs-Wolfe effect, indicates that overdensities correspond

to temperature fluctuations below TCMB, while underdensities correspond to tem-

perature fluctuations above TCMB. CMB photons are also subject to the Doppler

effect and will be red or blueshifted depending on their velocity relative to us. There

are also several different types of secondary anisotropies. CMB photons are also sub-

ject to falling into or escaping potential wells on their path to Earth; the Integrated

Sachs Wolfe effect accounts for this. CMB photons can also be deflected when trav-

eling near massive objects, or they could gain or lose energy when passing through

ionized mediums. However, these anisotropies can be considered white noise for

cosmological studies or, more specifically, studying the inflationary epoch.

While the Sachs-Wolfe effect dominates CMB anisotropies on large angular scales,

CMB anisotropies are dominated by acoustic oscillations on small angular scales.

These acoustic oscillations resulted from density perturbations that ’froze’ outside

the cosmological horizon during inflation. After inflation, these density perturba-

tions re-entered the horizon during the radiation-dominated era when matter and

radiation were coupled. These fluctuations led to the production of sound waves that

filled the early universe. In overdense regions, gravitational forces led to the com-

pression of the cosmic fluid, and radiative pressure acted as a restoring force, causing

the fluid to rebound, thus generating acoustic oscillations. These sound waves were

imprinted in the CMB as a pattern of temperature and density fluctuations ob-

served as a series of acoustic peaks. In summation, CMB anisotropies are explained

mainly by the Sachs-Wolfe effect on large angular scales and acoustic oscillations on

small angular scales. Both progenitors result from primordial density perturbations.

Therefore, CMB anisotropies can be used to probe such perturbations.

2.1.3 Power Spectrum

The power spectrum of CMB fluctuations is the most significant statistical tool

used to analyze and quantify these perturbations. The power spectrum is a plot of

6



Figure 2.2: Temperature power spectrum of the CMB as observed by Planck 2018.
The high-multipole range (ℓ ≥ 30) shows the combined frequency temperature spec-
trum. The low-multipole range (2 ≤ ℓ ≤ 29) presents the power spectrum from the
Commander component-separation algorithm, covering 86% of the sky. The light
blue curve represents the best-fit base-ΛCDM theoretical spectrum. The lower panel
displays residuals relative to this model. Error bars indicate ±1 σ uncertainties, in-
cluding cosmic variance, but excluding foreground model uncertainties at ℓ ≥ 30.
Note the shift from logarithmic to linear scaling at ℓ = 30 (Aghanim et al. 2020).

temperature anisotropies as a function of angular scale, or equivalently, multipole

moment, ℓ, which is inversely proportional to angular scale. This spectrum can be

visualized by Figure 2.2, which presents the findings from Aghanim et al. 2020. This

power spectrum holds much information about the early universe and is a crucial

probe of inflationary models. For example, at large scales, low ℓ, the power spectrum

can indicate the amplitude and distribution of large-scale density fluctuations. At

smaller scales, larger ℓ, the height and spacing of acoustic peaks indicate baryonic

and dark matter densities at that time, and the position of the first acoustic peak

indicates the scale of last scattering. These findings have a profound impact on early

universe models. The observed size of the last scattering is smaller than the extent

of homogeneity indicated by the CMB temperature map, Figure 2.1. Additionally,

the CMB findings indicate a flat universe, corresponding to Ωtot ≈ 1, which requires

fine-tuning initial conditions. The discovery of the CMB revealed multiple problems

with early universe models that an inflationary epoch can solve (Coles and Lucchin

2002). These problems and their solutions will be discussed in the next sections.

Lastly, the scale dependence of the power spectrum, given by its spectral index,

ns, is an important probe of inflationary models. Inflation predicts a nearly scale-

invariant power spectrum; CMB data indicates ns ≈ 0.96 (Aghanim et al. 2020).

7



This value indicates a slight red tilt; larger scale perturbations have slightly greater

amplitudes. Therefore, any inflationary model must be able to produce nearly scale-

independent perturbations whose amplitudes corroborate the amplitude of the power

spectrum.

2.2 The Hot Big Bang Model

This section introduces the standard cosmological model used to describe the uni-

verse’s evolution, the Hot Big Bang model. The equations governing the dynamics

and geometry of the universe will be explored. This model has three significant

problems that require an inflationary epoch to solve. Firstly, the observed flatness

of the universe requires a fine-tuning of initial conditions. Additionally, the homo-

geneity observed by the CMB is greater than the extent of causal contact. Lastly,

GUT theories indicate the presence of magnetic monopoles that have never been

observed.

2.2.1 Cosmological Models

One of the most widely studied cosmological models is the Hot Big Bang model,

which describes a universe that originates from an initial singularity and expands

over time. A core tenet of this model is the cosmological principle, which theo-

rizes that the universe is homogeneous and isotropic. This theory describes the

universe’s entire history, including inflation, cooling, nucleosynthesis, and the for-

mation of large-scale structures; however, this paper focuses on its description of

inflation. It assumes that all matter in the universe can be broken down into three

components. Baryonic matter makes up 4% of all matter; dark matter makes up

26%, and dark energy, which is accounted for by the cosmological constant and ex-

plains the universe’s accelerated expansion, makes up the remaining 70%. According

to this model, the geometry of the universe can be described by the FLRW metric,

ds2 = −c2dt2 + a2
(

dr2

1− kr2
+ r2(dθ2 + sin2 θ dϕ2)

)
. (2.2)

In this equation, ds2 represents the spacetime interval, a = a(t) is the scale factor,

a dimensionless quantity that describes how distances between two points in the

universe change as a function of time, k represents the curvature parameter: a

hyperbolic or open universe is given by k = −1, a flat universe is given by k = 0,

and a spherical or closed universe is given by k = 1, r, θ and ϕ are comoving

coordinates, and c is the speed of light, which is often set to 1.
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Using the FLRW metric and Einstein’s field equations, one can derive the Fried-

mann equations, describing the dynamics of the universe,

H2 =
8πG

3
ρ− kc2

a2
+

Λc2

3
, (2.3)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
. (2.4)

H is the Hubble parameter, which accounts for the rate of expansion in the universe

and is defined as,

H(t) ≡ ȧ

a
. (2.5)

In the above equations, ρ defines the universe’s energy density, p is the pressure, Λ

is the cosmological constant, and G is the gravitational constant. The dots indicate

derivatives with respect to time (Coles and Lucchin 2002).

The first Friedmann equation describes the time evolution of the scale factor

given the energy density and curvature of the universe; the second equation probes

whether the universe’s expansion is accelerated or decelerated. These equations

can be solved for different epochs or different types of universes. For example,

suppose one considers a matter, or dust, dominated universe, a radiation-dominated

universe, or a dark-energy-dominated universe. In each case, findings can be made

concerning how various cosmological parameters relate to one another or depend on

time. Solutions to the Friedmann equations for three different cosmological epochs,

matter-dominated, radiation-dominated, and dark-energy-dominated, are detailed

below.

a =


adust ∼ t2/3 for H2

dust ∼ ρdust ∼ a−3
dust ∼ t−2

arad ∼ t1/2 for H2
rad ∼ ρrad ∼ a−4

rad ∼ t−2

aΛ ∼ eHΛt for H2
Λ ∼ ρΛ ∼ Λ/3

, (2.6)

p =


adust ∼ 0

aradiation ∼ ρ/3

aΛ ∼ −ρ
. (2.7)

Another cosmological parameter crucial to the Friedmann models is the density

parameter,

Ω =
ρ

ρc
, (2.8)

where ρc is the critical density, the energy density at which the universe would be

flat; it is defined as,

ρc =
3H2

8πG
. (2.9)

If the universe’s density exceeds the critical density, the universe is closed. Con-

versely, the universe is open if the universe’s density is less than the critical density.
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One can rewrite the Friedman equations to relate the curvature parameter to the

density parameter,

Ω− 1 =
kc2

a2H2
. (2.10)

Thus, the different scenarios of universe geometries can be summarized as follows:

• Open Universe: 0 < Ω < 1, k < 0, ρ < ρc.

• Flat Universe: Ω = 1, k = 0, ρ = ρc.

• Closed Universe: Ω > 1, k > 0, ρ > ρc.

Current cosmological findings indicate that the density parameter today has a value

of,

Ω0 = 1.0007± 0.0037, (2.11)

indicating a nearly flat universe. This leads one to the first shortcoming of the Hot

Big Bang model (Vazquez Gonzalez, Padilla, and Matos 2020).

2.2.2 Flatness Problem

The flatness problem arises from the observation that the universe appears to be

exceedingly close to flat on large scales; precise measurements of the CMB and the

distribution of galaxies corroborate this. Guth first formulated this problem in his

1981 paper, ’Inflationary Universe: A Possible Solution to the Horizon and Flatness

Problems.’ Today’s flatness indicates that the universe’s density is extremely close

to the critical value. In a closed universe, gravitational forces exerted by the matter

and energy contents of the universe cause the expansion to eventually reverse, leading

to a cosmic collapse known as the ’Big Crunch.’ This collapse would have occurred

on the order of Planck time. Conversely, in an open universe, expansion continues

indefinitely as the density dwindles to a value below ρc until the universe becomes a

cold, dark, inert place known as the ’Big Freeze’ or ’Heat death.’ For a universe to

stably evolve until the present day, it must be consistently flat; in other words, its

density must be approximately equal to the critical density throughout its evolution.

However, this condition raises complications: curvature conservation dictates that

if the universe at any point deviated from flatness, this deviation would compound

in time and lead to a universe with curvature. Therefore, this flatness condition can

only be maintained by an extreme fine-tuning of ρ andH. Assuming the temperature

after the Plank era was 1015GeV, the Hubble parameter must not be adjusted by

one part in 1060. In other words, the density of the universe must be fine-tuned such

that it satisfies the following condition:

ρ− ρc
ρ

< 10−60. (2.12)
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Any deviation from this would result in an open or closed universe. Such an extreme

fine-tuning of initial conditions seems unnatural and led Guth to conclude that an

additional cosmological phenomenon, known as inflation, is needed to explain the

observed flatness in the universe (Guth 1981).

2.2.3 Horizon Problem

The flatness problem was not the only issue Guth took with the Hot Big Bang

model that required an inflationary solution. Guth also found that this model

required the early universe to violate causality. CMB observations have indicated

that the universe is homogeneous and isotropic. This thermal equilibrium condition

indicates that the thermalized regions are in, or have been in, causal contact with

one another. However, Guth found that there are 1083 casually disconnected regions

that satisfy this homogeneity condition, thus violating causality. Guth found this

finding by comparing the particle horizon, l(t), to the radius that will evolve into

the observable universe, L(t). The particle horizon is the maximum distance from

which light could have traveled since the beginning of the universe, and it can be

defined as,

l(t) = a(t)

∫ t

0

dt′

a(t′)
= 2t. (2.13)

L(t) can be found by the conservation of entropy,

L(t) =

[
sp
s(t)

]1/3
Lp, (2.14)

where sp is the current entropy density of the universe, and Lp is the radius of the

currently observable universe. The ratio of the two volumes is,

l3(t)

L3(t)
= 4 · 10−89 · R−1/2

(
MPl

T

)3

, (2.15)

where, R is the number of effective degrees of freedom, T is the temperature of the

universe, and MPl is the Planck mass. These values can be defined in the early

universe where R ≈ 100 and T0 = 1017Gev. Therefore, the ratio between the scale

of the particle horizon at this time, l0, and the scale of the universe that would need

to be causally connected to produce a homogeneous universe, L0, can be written as,

l30
L3
0

= 10−83. (2.16)

The scale of the observable universe was 1083 times larger than the scale of the

particle horizon at this time, indicating 1083 causally disconnected patches in the

universe today (Guth 1981). The corpuscular interpretation of l0 will be discussed

in Chapter 5. In short, the Horizon problem is the issue of not having enough time

for the universe to thermalize on the scales indicated by the CMB.
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2.2.4 Magnetic Monopole Problem

In 1974, Georgi and Glashow developed Grand Unified Theories (GUT), which unify

three of the four fundamental forces described by the Standard Model of particle

physics: strong, weak, and electromagnetic. These theories assert that a unified

or symmetric phase existed at temperatures of TGUT ≈ 1032 K in the early uni-

verse. As the universe evolved and its temperature decreased, it underwent various

phase transitions until reaching the symmetries described by the Standard Model of

particles, recovering the matter observed in the universe today. These phase tran-

sitions generate topological defects depending on the type of symmetry-breaking

and the dimension the transition is characterized by. Magnetic monopoles are ex-

pected to emerge as a consequence of zero-dimensional symmetry breaking. The

non-relativistic characteristic of monopoles predicts an extremely high number den-

sity of magnetic monopoles at the time of symmetry breaking. In other words, the

universe should be dominated by magnetic monopoles. Furthermore, this abun-

dance of magnetic monopole indicates a density parameter greater than 1, leading

to a closed universe. However, this has been refuted by observations. Addition-

ally, no monopoles have ever been observed, hence the Magnetic Monopole Problem

(Vazquez Gonzalez, Padilla, and Matos 2020).

2.3 Inflation

This section will introduce the inflationary epoch, a period of rapid expansion that

solves the issues with the Hot Big Bang model. In order to solve the flatness, horizon,

and monopole problems, inflation must last sufficiently long. The inflationary field,

known as the inflaton, must slowly roll down an almost flat potential to satisfy

this condition. The slow-roll parameters ϵ and η can account for these conditions,

which must be less than one throughout inflation. The explicit formulation of these

conditions and their impact on inflationary dynamics will be discussed.

2.3.1 The Inflationary Solution

These issues with the Hot Big Bang model can be accounted for by including a

period in which the universe underwent accelerated expansion in a mere fraction of

a second, known as inflation. During this period the scale factor and the Hubble

parameter can be described by:

ä > 0, (2.17)

and,
d

dt

(
1

aH

)
< 0. (2.18)
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The first equation indicates the accelerated expansion of the universe. The second

equation indicates that the observable universe shrinks during inflation, as (1/aH)

corresponds to the comoving Hubble length. These conditions, in conjunction with

the Friedmann equations, implies,

(ρ+ 3p) < 0. (2.19)

As ρ is always considered to be a positive quantity, the inflationary universe is

characterized by a negative pressure,

p < −ρ
3
. (2.20)

One can now explore how an inflationary period can solve the problems with the

Hot Big Bang model. To begin this analysis, assume a universe with a cosmological

constant, Λ, is a perfect fluid with the following state equation,

p = −ρ. (2.21)

A de Sitter model most commonly describes the inflationary epoch. The de Sitter

universe is a single-component universe that contains only vacuum energy, without

matter or radiation. It is characterized by a positive cosmological constant, the

following scale factor, and constant Hubble parameter,

a(t) ∝ eHt, (2.22)

H =

√
Λ

3
. (2.23)

The issue of the observed flatness of the universe can be explained by analyzing the

behavior of the density parameter during this inflationary period. An accelerated

expansion indicates that 1/(aH) decreases with time; therefore, by equation (2.10),

the density parameter approaches unity rather than diverging from it. Now, the

question is to quantify the required magnitude of this expansion. Assuming inflation

begins at t = ti and ends at t = tf one finds,

|Ω− 1|t=tf ≈ 10−60. (2.24)

The effect of inflation on the density parameter is given by quantifying the ratio of

the density parameters at the beginning and end of inflation,

|Ω− 1|t=tf

|Ω− 1|t=ti

=

(
ai
af

)2

≡ e−2N . (2.25)

Thus, introducing the number of e-folding, N , quantifying the number of times the

scale factor grows by a factor of e during inflation. It can be more formally defined

as,

N = ln

(
af
ai

)
. (2.26)
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Therefore, the number of e-folds, N , must be greater than 60 to reproduce the

value of the density parameter measured today and solve the flatness problem. In

summation, the universe’s rapid expansion magnified the curvature radius such that,

locally, the universe appears spatially flat.

The horizon problem can be solved by this inflationary period as well. The uni-

verse rapidly expands during this period, and the comoving Hubble horizon shrinks,

according to (2.18). As a result, a region of size l0, given by (2.16), was stretched to

constitute the observable universe today. Within the Hubble horizon initially, this

region was stretched to superhorizon scales, making it appear causally disconnected.

Therefore, according to CMB observations, the causally disconnected regions in ther-

mal equilibrium were in causal contact before inflation. Thus, homogeneity can be

recovered without violating causality, and the horizon problem is solved.

The monopole problem can also be solved by this period of rapid expansion.

The drastic inflationary expansion diluted the universe’s contents at the beginning of

inflation, ensuring that these monopoles were insignificant in the observable universe.

Therefore, the inflationary epoch can explain why no magnetic monopoles have

ever been detected despite the universe being once dominated by them (Vazquez

Gonzalez, Padilla, and Matos 2020).

2.3.2 Slow-Roll Inflation

Inflation is a very crucial yet peculiar cosmological phenomenon. This section will

explore the dynamics of inflation and the conditions it must satisfy. The most widely

accepted inflationary models describe the driver of inflation as a single scalar field,

ϕ, known as the inflaton, which parametrizes the evolution of the inflationary energy

density. The following action can describe the dynamics of this field,

S =

∫
d4x

√
−g
(
1

2
R +

1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
= SEH + Sϕ, (2.27)

where R is the Ricci scalar, V (ϕ) is the inflaton potential, SEH is the Einstein-

Hilbert action, and Sϕ is the matter action. The corresponding energy-momentum

tensor can be defined as,

Tµν(ϕ) ≡ − 2√
−g

δSϕ

δgµν
= ∂µϕ∂νϕ− gµν

(
1

2
∂σϕ∂σϕ+ V (ϕ)

)
. (2.28)

The equation of motion of the inflaton is found by varying the action,

δSϕ

δϕ
=

1√
−g

∂µ
(√

−g∂µϕ
)
+ V,ϕ = 0, (2.29)

where V,ϕ ≡ dV/dϕ. Considering the FLRW metric for a homogeneous scalar field,

one can assume the scalar energy-momentum tensor is that of a perfect fluid with,

pϕ =
1

2
ϕ̇2 − V, (2.30)
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and,

ρϕ =
1

2
ϕ̇2 + V, (2.31)

where the state equation is defined as,

wϕ ≡ pϕ
ρϕ
. (2.32)

Therefore, the inflationary conditions of negative pressure, i.e., wϕ < 0, and accel-

erated expansion, wϕ < −1/3, can be given by a scalar field if its potential energy

dominates over its kinetic energy,

V ≫ 1

2
ϕ̇. (2.33)

This is known as the slow-roll condition because it indicates that the inflaton must

slowly roll down an almost flat potential (Baumann 2012).

The following equations of motion give the dynamics of the inflaton and its

geometry,

ϕ̈+ 3Hϕ̇ = −V,ϕ (2.34)

where,

H2 =
1

3

(
1

2
ϕ̇2 + V (ϕ)

)
. (2.35)

It is useful to introduce the two slow-roll parameters, ϵ, and η, to describe the

inflationary dynamics. The second Friedmann equation can be written as,

ä

a
= −1

6
(ρϕ + 3pϕ) = H2(1− ϵ), (2.36)

where,

ϵ ≡ 3

2
(wϕ + 1) =

1

2

ϕ̇2

H2
. (2.37)

ϵ can be related to the evolution of the Hubble parameter by,

ϵ = − Ḣ

H2
= −d lnH

dN
, (2.38)

where dN = Hdt. The slow-roll parameter ϵ describes the rate at which the in-

flaton’s potential energy dominates over its kinetic energy. Accelerated expansion

occurs when ϵ is much less than 1 and ends when ϵ = 1. In fact, pϕ → −ρϕ, as
ϵ→ 0. These conditions for epsilon are met when (2.33) is satisfied.

Furthermore, this accelerated expansion must hold for a sufficiently long time,

requiring the second time derivative of the inflaton to satisfy,

|ϕ̈| ≪ |3Hϕ̇|, (2.39)

and

|ϕ̈| ≪ |V,ϕ|. (2.40)
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This leads one to the second slow-roll parameter, η, which also must be much less

than one to satisfy the above condition. It describes the curvature of the inflaton

potential along the inflaton field direction and is given by,

η = − ϕ̈

Hϕ̇
= ϵ− 1

2ϵ

dϵ

dN
. (2.41)

The slow-roll parameters can also be written in terms of the inflaton potential,

known as the potential slow-roll parameters,

ϵv(ϕ) ≡
M2

Pl

2

(
V,ϕ
V

)2

, (2.42)

ηv(ϕ) ≡M2
Pl

V,ϕϕ
V

. (2.43)

The Planck mass is included here to ensure that the slow-roll parameters are dimen-

sionless; however, it can be set to 1 for simplicity. The potential slow-roll parameters,

ϵv and ηv, are related the Hubble slow-roll parameters, ϵ and η, by

ϵ ≈ ϵv, η ≈ ηv − ϵv. (2.44)

Furthermore, the equations of motion, (2.34) and (2.35), can be reformulated as,

3Hϕ̇ ≈ −V,ϕ, (2.45)

and,

H2 ≈ 1

3
V (ϕ) ≈ const. (2.46)

Under the slow-roll regime, where ϵv and ηv are much less than 1 and spacetime is

approximately de Sitter, a(t) = eHΛt, inflation ends when the slow-roll conditions

are violated,

ϵ(ϕend) = 1, ϵv(ϕend) ≈ 1. (2.47)

The number of e-folds that take place during inflation can be calculated as follows:

N(ϕ) ≡ ln
af
ai

=

∫ tend

t

H dt

=

∫ ϕend

ϕ

H

ϕ̇
dϕ

≈
∫ ϕ

ϕend

V

V,ϕ
dϕ

=

∫ ϕ

ϕend

dϕ√
2ϵ

≈
∫ ϕ

ϕend

dϕ√
2ϵv

. (2.48)
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To solve the aforementioned horizon, flatness, and monopole problems, the total

number of e-folds that occur during this period must exceed approximately 60,

Ntot ≡ ln
af
ai

≳ 60. (2.49)

CMB observations indicate the following constraint (Baumann 2012),∫ ϕend

ϕcmb

dϕ√
2ϵv

= Ncmb ≈ 40− 60. (2.50)
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Chapter 3

Semi-Classical Perturbations

This chapter explores the quantization of scalar perturbations during inflation. It

will discuss the formation and evolution of these perturbations. Furthermore, the

relevant statistical properties of these fluctuations will be derived. A crucial theo-

retical tool used to analyze quantum fluctuations is the analogous description of a

quantum harmonic oscillator. This allows for the computation of the power spectrum

of primordial perturbations. This chapter’s final section will explore the ultra-slow

roll theory of inflation. This possible intermediary phase during inflation would lead

to a rapid increase in the generation of primordial perturbations. This framework

will be used to derive the power spectrum of primordial perturbations and the oc-

cupation number of inflationary perturbations. This result will later be compared

with its corpuscular counterpart.

3.1 Inflaton Perturbations

This section serves to introduce quantum fluctuations in the inflationary field. The

features and evolution of these perturbations will be explored. More specifically, the

phenomena of horizon exit and reentry and its impact on the growth of fluctuations

will be discussed. This will be followed by a brief overview of the statistical prop-

erties used to analyze primordial perturbations, such as the power spectrum and

spectral index. The connection between these values and inflationary dynamics will

also be reported.

3.1.1 Primordial Perturbations

Zero-point fluctuations in the inflaton field arise due to the Heisenberg uncertainty

principle and induce fluctuations in all light fields, giving way to inflaton and metric

perturbations. These perturbations can also be interpreted as thermal fluctuation

in de Sitter space, analogous to Hawking Radiation for a black hole. The amplitude
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Figure 3.1: This figure depicts the time evolution of primordial density perturbations
in blue and the comoving horizon in red. The scale of density fluctuations, k, is
constant while the comoving horizon, (aH)−1, shrinks during inflation and grows
after inflation. Therefore, the initially subhorizon fluctuation becomes superhorizon
during inflation and reenters the horizon at some point after inflation. Outside
the horizon, causality is lost, and the perturbations freeze until reentry (Baumann
2012).

of these fluctuations scale with the Hubble parameter, H, which is inversely propor-

tional to the de Sitter horizon. Quantum mechanics dictates that these fluctuations

are created on all length scales and thus can be characterized by a spectrum of

wavenumbers, k. The scale of these perturbations can be broken down into two cos-

mologically distinct categories: subhorizon scales, k ≫ aH, and superhorizon scale,

k < aH. While k is constant for any given perturbation, the comoving Hubble radius

shrinks during inflation; thus, all perturbations eventually become superhorizon.

The inhomogeneity induced by these fluctuations can be characterized by the

intrinsic curvature of spatial hypersurfaces, which has the key feature of remaining

constant outside the horizon. In other words, the amplitude of primordial perturba-

tions is constant outside the horizon shortly after inflation. This is a very convenient

property, as very little is known about the universe shortly after inflation. Following

inflation, the comoving horizon will grow and eventually encompass all previously su-

perhorizon wavemodes. The comoving curvature perturbations, R, will then resume

their evolution and seed the large-scale structures and CMB anisotropies observed in

the universe today. Figure 3.1 depicts this phenomenon of horizon exit and reentry.

Inflationary perturbations can be analyzed through cosmological perturbation

theory. One can begin to asses these perturbations by decomposing all quantities
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into a homogeneous background plus a spatially dependent perturbation,

X(t, x⃗) ≡ X(t) + δX(t, x⃗). (3.1)

In the early universe, these perturbations are assumed to be small, δX ≪ X. Thus,

the inflaton and the metric tensor can be written as,

ϕ(t, x⃗) = ϕ(t) + δϕ(t, x⃗), (3.2)

gµν(t, x⃗) ≡ gµν(t) + δgµν(t, x⃗). (3.3)

As inflationary energy dominates the stress-energy of the universe during inflation,

inflaton perturbations backreact on spacetime geometry. The coupling of metric and

matter perturbations is given by the perturbed Einstein equation (Baumann 2012),

δGµν = 8πG δTµν . (3.4)

3.1.2 Statistics

To avoid ambiguities due to gauge choice, cosmologists utilize gauge-invariant for-

mulations of inflationary perturbations. For example, the gauge-invariant scalar

comoving curvature perturbation can be written as,

R ≡ Ψ− H

ρ+ p
δq, (3.5)

where, Ψ is a spatially flat hypersurface and δq is the momentum density, which can

be defined as (δq),i ≡ (ρ+ p)vi. R is a measure of the spatial curvature of comoving

hypersurfaces, and it can be used to calculate the primordial power spectrum of

scalar perturbations,

⟨Rk⃗Rk⃗′⟩ = (2π)3δ(k⃗ + k⃗′)PR(k). (3.6)

The brackets denote an ensemble average of fluctuations, and PR(k) is the power

spectrum of perturbations. The dimensionless total variance of scalar perturbations

can be written as,

∆2
s ≡ ∆2

R =
k3

2π2
PR(k). (3.7)

One can now define the scalar spectral index as,

ns − 1 ≡ d ln∆2
s

d ln k
, (3.8)

and the running of the spectral index as,

αs ≡
dns

d ln k
. (3.9)
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These quantities can be utilized to define a power law approximation for the power

spectrum,

∆2
s(k) = As(k∗)

(
k

k∗

)ns(k∗)−1+ 1
2
αs(k∗) ln(k/k∗)

, (3.10)

where k∗ denotes an arbitrary reference scale. An analogous analysis can be made

for tensor perturbations, ∆2
t (k). The amplitude of scalar perturbations, measured

as ∆2
s(k) ≈ 10−9, is often used to normalize the value of tensor fluctuations. A key

observational probe of inflationary dynamics is the tensor-to-scalar ratio,

r ≡ ∆2
t (k)

∆2
s(k)

. (3.11)

This ratio can be related to the evolution of the inflaton with respect to the number

of e-folds by,

r =
8

M2
pl

(
dϕ

dN

)2

, (3.12)

and since the tensor fluctuations are proportional to the inflaton potential, this ratio

is a direct measure of the inflationary energy scale (Baumann 2012),

V 1/4 ∼
( r

0.01

)1/4
1016GeV. (3.13)

3.2 Quantizing Primordial Perturbations

According to the semi-classical inflationary theory, inflaton perturbations must be

consistent with the Heisenberg picture in order to be analyzed. Thus, they must

be quantized. In curved spacetime, a harmonic oscillator can describe the inflaton

field. Therefore, this section will begin by illustrating the quantum mechanics of a

harmonic oscillator. This description will then be applied to inflationary dynamics

to compute the power spectrum of primordial perturbations.

3.2.1 Quantum Harmonic Oscillator

Harmonic oscillators with time-dependent frequencies can describe free fields in

curved spacetime. This description can be used to gather the dynamics of primor-

dial perturbations. Therefore, understanding the quantum mechanics of a harmonic

oscillator is crucial to quantifying the number of inflationary perturbations. One

can begin this analysis with the classical action of a harmonic oscillator with a

time-dependent frequency,

S =

∫
dt

(
1

2
ẋ2 − 1

2
ω2(t)x2

)
≡
∫
dtL, (3.14)
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where ω is the time-dependent frequency of the harmonic oscillator, x is the deviation

of the particle’s position from equilibrium, x = 0, and L is the Lagrangian. The

variation of this action leads one to the following classical equation of motion,

ẍ+ ω2(t)x = 0. (3.15)

The system can be canonically quantized by promoting the classical variables x and

p to quantum operators x̂ and p̂ which satisfy,

[x̂, p̂] = iℏ, (3.16)

where p, the conjugate momentum, is defined as,

p =
∂L
∂ẋ

= ẋ. (3.17)

and the canonical commutator can be defined as,

[x̂, p̂] ≡ x̂p̂− p̂x̂. (3.18)

The equation of motion implies that canonical commutation relation holds at all

times if it is imposed at some initial time,

[x(t), ẋ(t)] = iℏ. (3.19)

Furthermore, x̂ can be written in terms of the creation, â†, and annihilation opera-

tors, â,

x̂ = v(t)â+ v∗(t)â†, (3.20)

where the mode function, v(t), satisfies the classical equation of motion,

v̈ + ω2(t)v = 0, (3.21)

and the commutator becomes,

⟨v, v⟩
[
â, â†

]
= 1. (3.22)

The scalar product for solutions v(t) and ω(t) can be defined by,

⟨v, w⟩ ≡ i

ℏ
(v∗∂tw − (∂tv

∗)w) . (3.23)

This scalar product is conserved in time; it ensures that the mode functions are

orthonormal and that the Wronskian condition, indicating the linear independence

of solutions, is satisfied. Both of these conditions are needed to quantize the field.

A properly normalized mode function satisfies ⟨v, v⟩ ≡ 1. One can now recover the

standard equation for raising and lowering operators of a harmonic oscillator,[
â, â†

]
= 1. (3.24)
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Thus, the creation and annihilation operators can be written as,

â = ⟨v, x̂⟩, (165)

â† = −⟨v∗, x̂⟩, (3.25)

and the vacuum state can be defined as,

â|0⟩ = 0. (3.26)

Excitations of the system are produced by application of the creation operator,

|n⟩ ≡ 1√
n!

(
â†
)n |0⟩. (3.27)

It is evident that any change in v(t) that leaves x(t) unchanged will lead to a

change in the creation operator and, thus, a change in the definition of the vacuum.

Therefore, there is no unique choice of the mode function for a simple harmonic

oscillator with a time-dependent frequency. It is convenient to consider a harmonic

oscillator of constant frequency in which the preferred mode function is such that

the vacuum state is the ground state of the Hamiltonian. The Hamiltonian can be

written as,

Ĥ =
1

2
p̂2 +

1

2
ω2x̂2

=
1

2

[(
v̇2 + ω2v2

)
ââ+

(
v̇2 + ω2v2

)∗
â†â†

+
(
|v̇|2 + ω2|v|2

) (
ââ† + â†â

)]
. (3.28)

Therefore, the action of the Hamiltonian operator on the vacuum state is,

Ĥ|0⟩ = 1

2

(
v̇2 + ω2v2

)∗
â†â†|0⟩+ 1

2

(
|v̇|2 + ω2|v|2

)
|0⟩. (3.29)

The first term vanishes as |0⟩ must be an eigenstate of the Hamiltonian. Thus, the

mode function must satisfy the two following conditions,

v̇ = ±iωv, (3.30)

⟨v, v⟩ = ∓2ω

ℏ
|v|2. (3.31)

The positive-frequency solution for a normalized mode function, i.e. ⟨v, v⟩ = 1, is,

v(t) =

√
ℏ
2ω
e−iωt. (3.32)

Thus, the Hamiltonian becomes,

Ĥ = ℏω
(
N̂ +

1

2

)
, (3.33)

23



where N̂ = â†â is the number operator, and the vacuum is the minimum energy

state of ℏω/2.
The mean square expectation value of the position operator x̂ in the ground state

is given by,

⟨|x̂|2⟩ ≡ ⟨0|x̂†x̂|0⟩

= ⟨0|(v∗â† + vâ)(vâ+ v∗â†)|0⟩

= |v(ω, t)|2⟨0|ââ†|0⟩

= |v(ω, t)|2⟨0|[â, â†]|0⟩

= |v(ω, t)|2. (3.34)

Therefore, the zero-point fluctuations of the position in the vacuum state are given

by the square of the mode function and thus can be written as,

⟨|x̂|2⟩ = |v(ω, t)|2 = ℏ
2ω
. (3.35)

The fluctuation spectrum from inflation can now be computed if the mode equation

for the scalar mode of cosmological perturbations is known (Baumann 2012).

3.2.2 Primordial Power Spectrum

Now that the dynamics of a quantum harmonic oscillator have been established,

this formalism can be applied to inflationary perturbations. One can begin by

considering the action of a single-field slow-roll inflationary model,

S =
1

2

∫
d4x

√
−g
[
R− (∇ϕ)2 − 2V (ϕ)

]
, (3.36)

where ϕ is the inflation field, V (ϕ) is the inflationary potential and g is the metric

tensor. The above action is defined in units where M−2
pl ≡ 8πG = 1. The action can

be expanded to the second order in terms of R,

S(2) =
1

2

∫
d4x a3

ϕ̇2

H2

[
Ṙ2 − a−2(∂iR)

2
]
. (3.37)

For a canonically normalized scalar, the action is found by transitioning to a con-

formal time, τ , and defining the Mukhanov variables, u ≡ zR, with z2 ≡ a2ϕ̇2/H2,

S(2) =
1

2

∫
dτd3x

[
(u′)2 + (∂iu)

2 +
z′′

z
u2
]
, (3.38)

where commas denote derivatives with respect to conformal time. The field, u, can

be Fourier expanded,

u(τ, x⃗) =

∫
d3k

(2π)3
vk⃗(τ)e

ik⃗·x⃗, (3.39)
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where the mode functions are the Fourier components of the Mukhanov variable for

a classical u(τ, x⃗). The Mukhanov equation can be written as,

v′′k +

(
k2 − z′′

z

)
vk = 0, (3.40)

where the vector notation on the subscript of k was dropped as this equation depends

only on the magnitude of k. Additionally, it is difficult to find a general solution

to (3.40) as z depends on the background dynamics; a given inflationary solution

can be solved numerically. To quantize this system the field, u, and its conjugate

momentum, u′, can be promoted to quantum operators,

u→ û =

∫
d3k⃗

(2π)3

(
vk(τ)âk⃗e

ik⃗·x⃗ + v∗k(τ)â
†
k⃗
e−ik⃗·x⃗

)
. (3.41)

Furthermore, the Fourier components, uk⃗, can be quantized as,

uk⃗ → ûk⃗ = vk(τ)âk⃗ + v∗−k(τ)â
†
−k⃗
. (3.42)

The creation and annihilation operators satisfy the canonical commutation relation,

[âk⃗, â
†
k⃗
] = (2π)3δ(k⃗ − k⃗′), (3.43)

if and only if the mode functions can be normalized as,

⟨vk, vk⟩ ≡
i

ℏ
(
v∗kv

′
k − v∗k

′vk
)
. (3.44)

This is the Klein-Gordon scalar product for the modes, which is conserved in confor-

mal time, τ . It ensures orthonormality and that the Wronskian condition is satisfied.

The proper normalization condition for the mode functions is given by ⟨vk, vk⟩ = 1.

One can now define a vacuum state for the fluctuations, âk⃗|0⟩ = 0, and impose

boundary conditions on the mode function. A common choice is the Minkowski vac-

uum of a comoving observer in the far past, thus τ → −∞, or equivalently, k ≫ aH.

The Mukhanov equation then becomes the equation for a simple harmonic oscillator

with a time-independent frequency,

v′′k + k2vk = 0. (3.45)

If the vacuum is the minimum energy state, a unique solution for the mode function

can be found; thus, the following initial condition should be imposed,

lim
τ→−∞

vk =
e−ikτ

√
2k
. (3.46)

In de Sitter space, ϵ⇒ 0, and,

z′′

z
=
a′′

a
=

2

τ 2
. (3.47)
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Therefore, the Mukhanov equation becomes,

v′′k +

(
k2 − 2

τ 2

)
vk = 0, (3.48)

and is solved by,

vk = α
e−ikτ

√
2k

(
1− i

kτ

)
+ β

eikτ√
2k

(
1 +

i

kτ

)
, (3.49)

where α and β account for the nonuniqueness of the mode functions. Considering

the normalization of the mode function and the subhorizon limit, α and β can be

fixed to 1 and 0, respectively. This defines the Bunch-Davies mode functions,

vk =
e−ikτ

√
2k

(
1− i

kτ

)
. (3.50)

The power spectrum of curvature perturbations in a quasi-de Sitter universe can

now be computed. One can begin by considering the field, ψ̂k⃗ ≡ ûk⃗/a; its power

spectrum is,

⟨ψ̂k⃗(τ)ψ̂k⃗′(τ)⟩ = (2π)3δ(k⃗ + k⃗′)
|uk(τ)|2

a2

= (2π)3δ(k⃗ + k⃗′)
H2

2k3
(
1 + k2τ 2

)
. (3.51)

On super horizon scales, |kτ | ≪ 1, the k2τ 2 term is negligible. The power spectrum

of curvature perturbations at horizon crossing, a(t∗)H(t∗) = k, can be computed

considering, R = ψH/ϕ̇.

⟨Rk⃗(t)Rk⃗′(t)⟩ = (2π)3δ(k⃗ + k⃗′)
H2

∗
2k3

H2
∗

ϕ̇2
∗

(3.52)

where the astrix indicates that the quantity should be evaluated at horizon crossing.

The dimensionless power spectrum, ∆2
R(k) is defined by,

⟨Rk⃗Rk⃗′⟩ = (2π)3δ(k⃗ + k⃗′)PR(k), (3.53)

∆2
R(k) ≡

k3

2π2
PR(k) (3.54)

Thus,

∆2
R(k) =

H2
∗

(2π)2
H2

∗

ϕ̇2
∗

(3.55)

As R approaches a constant on superhorizon scales, computing its value at hori-

zon crossing is sufficient to determine the spectrum of a given fluctuation until it

reenters the horizon. However, it should be noted that the above result holds dur-

ing slow-roll inflation; for non-slow-roll inflation, the background evolution must be

more carefully tracked; this can be done by numerically integrating the Mukhanov

equation (Baumann 2012).
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3.3 Ultra-Slow Roll Inflation

This section will focus on a theorized period of inflation known as ultra-slow roll

inflation, in which the power spectrum experiences exponential growth. The govern-

ing dynamics of this phase will be described, and the power spectrum of curvature

perturbations generated during this phase will be reported. Subsequently, the oc-

cupation number of inflationary perturbations will be derived, and its exponential

dependence on the number of e-foldings will be discussed.

3.3.1 Ultra-Slow Roll Phase

Some semi-classical inflationary models predict a possible intermediary phase dur-

ing inflation known as the ultra-slow roll (USR) phase. This phase has gained favor

in inflationary theory because it would increase the production of primordial black

holes; however, it is not universally accepted. Inflationary theory predicts that the

inflaton starts at large field values and inflation ends when the field reaches an ab-

solute minimum. USR theory predicts that before the end of inflation, the potential

approaches a stationary inflection point with a local minimum followed by a local

maximum. As the inflaton approaches this point, its velocity approaches zero. How-

ever, it has just enough inertia to overcome this barrier; this is the USR phase. It

lasts approximately 2.45 e-folds and is characterized by a slow roll parameter η > 3.

Wave modes that exit the horizon during this phase are subject to an exponen-

tial enhancement of the power spectrum. During the USR phase, the evolution of

the perturbations, as described by a harmonic oscillator, is driven by the friction

term, which changes signs during this phase and leads to the enhancement of the

power spectrum. This exponential enhancement can be gathered from the following

equation of motion,

d2h

dN 2
+ 3

dh

dN
− 1

2

(
dh

dN

)3

+

(
3− 1

2

(
dh

dN

)2
)
d logU

dh
= 0, (3.56)

where h is the canonically normalized inflaton field, ϕ, satisfying h(ϕ = 0) = 0, U is

the potential of the canonically normalized field, and N is the number of e-folding.

Furthermore, the power spectrum is approximated by,

PR(k) =
H2

8π2ϵ

(
k

aH

)−4ϵ+2η

= As

(
k

aH

)ns−1

. (3.57)

When the inflaton approaches the inflection point, and its velocity suddenly de-

creases, the power spectrum increases by PR(k) ∝ 1/ϵ, where ϵ ∝ (dh/dN )2. How-

ever, the above approximation is not sufficient to account for the power spectrum
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Figure 3.2: This figure reports the power spectrum of comoving curvature pertur-
bations as a function of the comoving scale k. The result obtained by numerically
solving the Mukhanov-Sasaki equation is shown by the solid black curve, while the
approximate power spectrum given by (3.57) is represented by the dashed red curve.
The dotted green line marks the value of k at which the spectrum has a pronounced
dip (Ballesteros et al. 2020a).

at small scales during the USR phase; for this, one needs the Mukhanov-Sasaki

equation in Fourier space,

d2uk⃗
dN 2

+ (1− ϵ)
duk⃗
dN

+

[
k2

a2H2
+ (1 + ϵ− η)(η − 2)− d

dN
(ϵ− η)

]
uk⃗ = 0, (3.58)

where the perturbation of the inflation field in Fourier space, uk⃗, is related to the

comoving curvature perturbation, R, by R = −u/z, with z = a(dh/dN ). Imposing

Bunch-Davies initial condition, the power spectrum becomes,

PR(k) =
k3

2π2

∣∣∣uk⃗
z

∣∣∣2
k≪aH

, (3.59)

where the contribution of each mode, k, is constant as it is evaluated on superhori-

zon scales. The Mukhanov-Saski equation, (3.58), can be numerically evaluated and

compared to the slow-roll approximation of the power spectrum given by (3.57) as

depicted in Figure 3.2. At small k, the approximate solution sufficiently reproduces

the value of the power spectrum. However, at large k, the power spectrum experi-

ences a sudden dip followed by rapid power-law growth. The power spectrum peaks

at k ≈ 1014Mpc−1 with an amplitude of As ≈ 10−1. The difference between the ap-

proximate and numerical solution in this region is a couple of orders of magnitude

and, therefore, is relevant in quantifying the number of primordial perturbations.
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Additionally, from the inflaton’s equation of motion, (3.56), one can find,

η = 3 + (3− ϵ)
d logU

dh

(
dh

dN

)−1

(3.60)

which must be greater than three during the USR phase. In other words, the second

term in this equation becomes positive. The impact of this condition on the power

spectrum is evident by the equation for the comoving curvature perturbation in

Fourier space,
d2Rk⃗

dN 2
+ (3 + ϵ− 2η)

dRk⃗

dN
+

k2

a2H2
Rk⃗ = 0. (3.61)

This is analogous to the equation for a damped harmonic oscillator. After a wave

mode crosses the horizon, it freezes exponentially fast to a constant value. This

is because if 2η − ϵ > 3 holds during the subsequent evolution of the inflaton, the

friction term in the above equation will become negative, leading to an exponential

growth of the wave mode. This can be shown by finding a solution to the above

equation considering,

Θ ≡ 3 + ϵ− 2η, ϵ2k ≡
k2

a2H2
. (3.62)

Additionally, one can define Nin and Nend as the e-folds at the start and end of the

negative friction phase and consider the following boundary conditions,

Rk⃗(Nin) = R0,
dRk⃗

dN
(Nin) = 0. (3.63)

This indicates that the mode froze before the negative friction phase. One can now

find a solution for (3.61),

R̃k⃗(Ne) =
R0e

−Θ(Ne−Nin)/2√
Θ2 − 4ϵ2k

{√
Θ2 − 4ϵ2k cosh

(
N −Nin

2

√
Θ2 − 4ϵ2k

)
+ Θsinh

(
N −Nin

2

√
Θ2 − 4ϵ2k

)}
.

(3.64)

The first term is, ≈ e−ΘN/2 and leads to exponential growth if Θ is negative. The

term within the brackets represents a non-oscillating super-position of e±
√

Θ2−4ϵ2kN/2

if Θ2 − 4ϵ2k > 0. It is now evident that the USR phase can exponentially enhance

the power spectrum (Ballesteros et al. 2020a).

3.3.2 Occupation Number of Perturbations

One can find that the number of inflationary perturbations also grows exponen-

tially. To explicitly define the exponential growth of the occupation number in the

semi-classical inflationary model, one needs to write the time-dependent occupation
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number in terms of the expectation value of the time-dependent particle number op-

erator, a†
k⃗
(τ)ak⃗(τ), in its original vacuum state. One can begin this computation by

considering a perturbation, u(τ, x⃗), that satisfies the following equation of motion,(
d2

dτ 2
−∆− 1

z

d2z

dτ 2

)
u(τ, x⃗) = 0. (3.65)

The following notation ′ ≡ d/dτ and (∂u)2 = (∂iu)(∂iu) will be used for simplicity.

This equation of motion can be derived from the following action,

S2 =
1

2

∫
dτd3x⃗

[(
u′ − z′

z
u

)2

− (∂u)2

]
. (3.66)

The relation between the above two equations is made more explicit with the identity,

(u′)2 +
z′′

z
u2 =

(
u′ − z′

z
u

)2

+

(
z′

z
u2
)′

. (3.67)

The corresponding Hamiltonian can be written as,

H(τ) =
1

2

∫
d3x⃗

(
p2 + (∂u)2 +

2z′

z
pu

)
, (3.68)

where, the conjugate momentum can be defined as p = δS2/δu
′ = u′−u(z′/z). One

can now promote u(τ, x⃗) and p(τ, x⃗) to quantum operators, û(τ, x⃗) and p̂(τ, x⃗) that

in real space satisfy the following commutation relation,

[û(τ, x⃗), p̂(τ, x⃗′)] = iδ(3)(x⃗− x⃗′). (3.69)

Moving to Fourier space, the quantized Hamiltonian can be written as

Ĥ(τ) =
1

2

∫
d3k⃗
[
p̂(τ, k⃗)p̂†(τ, k⃗) + k2û(τ, k⃗)û†(τ, k⃗)

+
z′

z

[
p̂(τ, k⃗)û†(τ, k⃗) + û(τ, k⃗)p̂†(τ, k⃗)

]]
,

(3.70)

where û(τ, k⃗) and p̂(τ, k⃗) satisfy the following commutation relations,

[û(τ, k⃗), p̂(τ, k⃗′)] = iδ(3)(k⃗ + k⃗′), (3.71)

[û(τ, k⃗), p̂†(τ, k⃗′)] = iδ(3)(k⃗ − k⃗′). (3.72)

To evaluate the evolution of this quantum system, it is useful to define the creation

and annihilation operators,

a†
k⃗
(τ) =

√
k

2
û†(τ, k⃗)− i√

2k
p̂†(τ, k⃗) =

√
k

2
û(τ,−k⃗)− i√

2k
p̂(τ,−k⃗), (3.73)

ak⃗(τ) =

√
k

2
û(τ, k⃗) +

i√
2k
p̂(τ, k⃗). (3.74)
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The evolution of û(τ, x⃗) and p̂(τ, x⃗) can be written in terms of these ladder operators,

û(τ, k⃗) =
1√
2k

[
ak⃗(τ) + a†

−k⃗
(τ)
]
, (3.75)

p̂(τ, k⃗) = −i
√
k

2

[
ak⃗(τ)− a†

−k⃗
(τ)
]
, (3.76)

where the ladder operators satisfy the following commutation relation,

[ak⃗(τ), a
†
k⃗′
(τ)] = δ(3)(k⃗ − k⃗′). (3.77)

The Hamiltonian can now be written as,

Ĥ(τ) =
1

2

∫
d3k⃗
[
k
(
ak⃗(τ)a

†
k⃗
(τ) + a†

−k⃗
(τ)a−k⃗(τ)

)
+
i

z

dz

dτ

(
a†
−k⃗
(τ)a†

k⃗
(τ)− ak⃗(τ)a−k⃗(τ)

)]
.

(3.78)

Additionally, the Heisenberg equations of motion take a matrix form,

d

dτ

(
ak⃗(τ)

a†
−k⃗
(τ)

)
=

(
−ik z′/z
z′/z ik

)(
ak⃗(τ)

a†
−k⃗
(τ)

)
. (3.79)

It can be noted from this equation that in curved spacetime, the off-diagonal terms in

this matrix are responsible for particle creation. Next, one can utilize the following

Bogoliubov transformation,

ak⃗(τ) = yk⃗(τ)ak⃗(τ∗) + wk⃗(τ)a
†
−k⃗
(τ∗), (3.80)

a†
−k⃗
(τ) = y∗

k⃗
(τ)a†

−k⃗
(τ∗) + w∗

k⃗
(τ)ak⃗(τ∗), (3.81)

where τ∗ is some initial conformal time. The commutation relations of these opera-

tors indicate the following condition: |yk⃗(τ)|2 − |wk⃗(τ)|2 = 1. Equations (3.75) and

(3.76) now take the form of,

û(τ, k⃗) = uk⃗(τ)ak⃗(τ∗) + u∗
k⃗
(τ)a†

−k⃗
(τ∗), (3.82)

p̂(τ, k⃗) = −i
(
pk⃗(τ)ak⃗(τ∗)− p∗

k⃗
(τ)a†

−k⃗
(τ∗)

)
, (3.83)

where uk⃗(τ) and pk⃗(τ) are defined as,

uk(τ) ≡
1√
2k

(
yk⃗(τ) + w∗

k(τ)
)
, (3.84)

pk(τ) ≡
√
k

2

(
yk⃗(τ)− w∗

k(τ)
)
. (3.85)

It is now evident that û(τ, x⃗) and p̂(τ, x⃗) satisfy the equation of motion, (3.65),

d2uk
dτ 2

+

(
k2 − 1

z

d2z

dτ 2

)
uk = 0, with uk(τ∗) =

1√
2k
, (3.86)
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pk(τ) = i

(
duk
dτ

− 1

z

dz

dτ
uk

)
, with pk(τ∗) =

√
k

2
. (3.87)

Furthermore, the Wronskian condition, indicating the linear independence of solu-

tions, can be realized from the condition, |yk⃗(τ)|2−|wk⃗(τ)|2 = 1, as well as, equations

(3.84) and (3.85),

pk(τ)u
∗
k(τ) + p∗k(τ)uk(τ) = 1 ⇒ i

(
duk(τ)

dτ
u∗k(τ)−

du∗k(τ)

dτ
uk(τ)

)
= 1. (3.88)

One can now proceed with computing the occupation number of inflaton per-

turbations. The first step is to solve the system of equations given by (3.86) and

(3.87). Then the evolution of the ladder operators defined in equations (3.80) and

(3.81) can be calculated by inverting equations (3.84) and (3.85). Note that in this

computation, the vector notation of k is dropped as the mode functions depend

only on the modulus of k. The initial conditions of uk and pk can be gathered from

the ladder operators, (3.80) and (3.81). The initial condition of τ∗ follows from the

standard inflationary assumption that the system starts in the vacuum state, |0⟩,
defined as, ak⃗(τ∗)|0⟩ = 0. Lastly, the time-dependent particle number operator can

be defined as a†k(τ)ak(τ). The time-dependent occupation number, Nk(τ), defined

for each mode k, is given by the expectation value in the original vacuum state of

the time-dependent particle number operator. Therefore,

n̄k⃗(τ) = ⟨0|a†
k⃗
(τ)ak⃗(τ)|0⟩

= ⟨0|
(
y∗k(τ)a

†
k⃗
(τ∗) + w∗

k(τ)a−k⃗(τ∗)
)

(
yk(τ)ak⃗(τ∗) + wk(τ)a

†
−k⃗
(τ∗)

)
|0⟩

= |wk(τ)|2 δ(3)(0) ≡ nk(τ)δ
(3)(0).

(3.89)

The delta function, δ(3), can be interpreted as the spatial volume in momentum

space. This arises because the total number of particles is calculated rather than

the particle number density, nk(τ) = |wk(τ)|2. The final step is to solve equations

(3.84) and (3.85) for wk
∗. This, in conjunction with the Wronskian condition, can

be used to recover the occupation number density,

nk(τ) =
k

2
|uk(τ)|2 +

1

2k
|pk(τ)|2 −

1

2
. (3.90)

Using this formula Ballesteros et al. 2020b computes the occupation number of

perturbations during the USR phase. The equation of motion, (3.65), can be solved

by,

uk(τ) = αkvk(τ) + βkv
∗
k(τ), (3.91)

where,

vk(τ) =

√
π

2
ei(ν+1/2)π/2

√
−τH(1)

ν (−kτ), (3.92)
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where, H
(1)
ν is the Hankel function of the first kind which should be computed at

the horizon crossing time for the mode k, ν =
√
9/4− η(3− η), and the complex

coefficients satisfy the Wronskian condition, |αk|2 − |βk|2 = 1. One can now find

that the occupation number takes the form of,

nk(τ) =
π

8
(−kτ)

(
|α̃k|2 + |β̃k|2 +

[
α̃k(β̃k)

∗eiπ(ν+1/2)
]
+ c.c.

)
, (3.93)

where,

|α̃k|2 + |β̃k|2 = − 4

π(−kτ)

(
|α̃k|2 + |β̃k|2

)
(3.94)

×
[(
1 + κ2

)
H(1)

ν H(2)
ν +H

(1)
ν−1H

(2)
ν−1 + κ

(
H(1)

ν H
(2)
ν−1 +H(2)

ν H
(1)
ν−1

)]
,

(3.95)

and,

α̃k(β̃k)
∗ = αk(βk)

∗
(
(1 + κ2)H(1)

ν H(1)
ν +H

(1)
ν−1H

(1)
ν−1 + 2κH(1)

ν H
(1)
ν−1

)
, (3.96)

where κ ≡ (3/2− ν − η) / (−kτ). Furthermore, to evaluate this, one can use,

−kτ = xeNin−N , x ≡ k

kin
(3.97)

where Nin marks the number of e-foldings beginning of the USR phase. It should be

noted that these equations can be evaluated for various inflationary phases, but for

this paper, they need only be evaluated at the USR phase. The USR phase, which

spans from Nin to Nend, is such that x≪ eN−Nin , thus the occupation number takes

the form of,

nx≪eN−Nin ∝ e(2ν+1)N . (3.98)

In summation, the occupation number of inflationary perturbation grows exponen-

tially with the number of e-folding under a semi-classical inflationary model (Balles-

teros et al. 2020b).
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Chapter 4

Corpuscular Cosmology

This chapter will focus on a corpuscular theory of cosmology. This model was first

utilized to describe black hole dynamics, and a brief explanation of this prescription

will be given. This model will then be generalized to all maximally symmetric cos-

mological spaces. The efficacy of this generalization, its effect on the interpretation

of cosmological phenomena, and its benefits over the semi-classical model will be

discussed. The focus of the chapter will then turn to a corpuscular model of inflation

and the generation of primordial perturbations. Under the corpuscular model, per-

turbations arise due to the depletion of the condensate background. The dynamics

of corpuscular inflation will be explored, and the depletion rate of the background

universe will be derived.

4.1 Corpuscular Theory

This section introduces corpuscular theory, in which a gravitational system can be

described by a quantum condensate of gravitons characterized by a wavelength, λ,

and an occupation number, N . This theory was first used to describe a black hole as

a condensate at a critical point of a quantum phase transition. In this description,

Hawking radiation manifests as the depletion of the condensate. Furthermore, this

theory can be extended to any maximally symmetric space, setting the stage for a

fully quantum cosmological model.

4.1.1 Quantum Picture of a Black Hole

Dvali and Gomez first posited the corpuscular picture to describe black holes in

their 2011 paper ’Black Hole’s Quantum N-Portrait.’ While black holes are not the

subject of this paper, it is useful to understand their original hypothesis. Dvali and

Gomez aim to provide a quantum theory of gravity with a weakly coupled quantum

particle with zero mass and spin-2. The self-coupling of these gravitons can be

34



defined as,

α ≡ ℏGλ−2 or
ℓ2p
λ2
, (4.1)

where λ is the wavelength of the constituent gravitons and ℓp is the Planck length.

Einstein’s gravity is hypothesized as a quantum theory in which gravitons can ac-

count for all the properties of a black hole. Along these lines, any classical object

can be described as a quantum state with an occupation number greater than 1,

characterized by a wavelength and a frequency. A black hole can then be described

as a bose-condensate of N weakly interacting soft-gravitons. The occupation number

of this condensate is given by,

N =
Mrg
ℏ

, (4.2)

where rg is the gravitational radius of the black hole and M is the mass. The

wavelength of the constituent quanta is given by,

λ =
√
Nℓp, (4.3)

and the binding potential of the condensate is given by,

V =
ℏ√
Nℓp

. (4.4)

Note that this equation also serves as the thermal spectrum of Hawking radiation.

A key finding of this picture is its explanation of Hawking radiation as the quantum

depletion of the condensate. Depletion occurs if a constituent graviton gains energy

above ℏ/λ, causing it to ’leak out’ of the condensate. An evaporation rate can

characterize the depletion of a black hole,

dN

dt
= − 1√

Nℓp
, (4.5)

with a half-life of,

τ = N
3
2 ℓp. (4.6)

Moreover, every property of the condensate can be described in terms of its occu-

pation number. The wavelength scales with
√
N , the coupling strength scales with

1/N , and the mass of the condensate also scales with
√
N (Dvali and Gomez 2011).

In 2012, Dvali and Gomez reformulated their theory with an addendum specifying

that the condensate exists at a critical point of a quantum phase transition between

a graviton-Bose-gas and a graviton-Bose-liquid. In this manner, the Bogoliubov

modes that become degenerate and nearly gapless are the holographic degrees of

freedom responsible for the entropy and information storage of the black hole. They

explain how such a condensate adheres to a maximal packing condition. This condi-

tion ensures that the occupation number is related to the size of the condensate. It

is impossible to increase the occupation number without increasing the condensate

size (Dvali and Gomez 2012).
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4.1.2 Generalization to Cosmological Spaces

In their 2014 paper, ”Quantum compositeness of gravity: black holes, AdS, and in-

flation,” Dvali and Gomez claimed this composite theory could be extended to other

gravitational systems, such as any maximally symmetric space. This claim was fur-

ther supported by discovering that the corpuscular picture recovers the AdS/CFT

correspondence. This correspondence describes the phenomenon in which a Confor-

mal Field Theory (CFT), which lacks gravity, can be defined on the boundary of an

Anti-de Sitter (AdS) spacetime. In other words, a gravitational theory defined on

an (n+1)-dimensional AdS space can be equivalently defined by an n-dimensional

CFT. Remarkably, when the corpuscular picture is ascribed to AdS space, the occu-

pation number of gravitons correlates to the central charge of a CFT. This implies

that a quantum composite description could explain holography, hence the impor-

tance of extrapolating this black hole picture to any gravitational system. Dvali and

Gomez defined their hypothesis as follows: “Gravitational systems, such as black

holes, AdS, de Sitter or other cosmological spaces represent composite entities of

microscopic quantum constituent gravitons of wavelength set by the characteristic

classical size R (i.e., the curvature radius) of the system” (Dvali and Gomez 2014).

It was subsequently demonstrated that in the corpuscular description, the stan-

dard curved metric description of gravity can be realized in the limit where the

occupation number of gravitons goes to infinity. As such, the dynamics of a point

source in a classical background can be described as a quantum scattering of the

point source off the constituent off-shell gravitons. This motion is recovered from

the following matrix elements,

⟨N + 1|a†|N⟩ ∼
√
ℏ
R

√
(N + 1), ⟨N |a†a|N⟩ ∼ ℏ

R2
N . . . (4.7)

where |N⟩ is the quantum state of the background, R is the wavelength of the

gravitons, and a and a† are ladder operators. If all composite gravitons remain off-

shell, one can recover the classical metric, which lacks particle creation. However,

if the condensate undergoes some process in which some amount of the composite

gravitons is left on-shell, i.e., some gravitons can propagate, this would lead to

particle creation. Thus, particle creation is no longer a vacuum process but is

intrinsically tied to the scattering of the constituent gravitons that make up the

background. The background becomes effectively classical only in the limit where

N → ∞ and particle creation appears to be a vacuum process. As the background

can be assumed to be classical in this limit and has an infinite particle creation

capacity, it is thus eternal. However, the issue with this argument lies in the eternal

condition of the background, as in an eternal background, entanglement can not

be measured at some finite time and is thus arbitrary. Outside this limit, i.e., for
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a background with a finite occupation number, achieving maximum entanglement

would require a number of steps of order N and could not be achieved from a

single emission. In the corpuscular description, particle creation can only occur in

spacetimes without a globally defined time. This is because, in such spacetimes, the

composite system is in a state of quantum criticality, meaning that its gravitons have

non-zero frequencies. This frequency condition allows the gravitons to scatter and

produce on-shell particles. However, in static spacetimes, characterized by globally

defined time, the condensate does not meet a quantum criticality condition, the

gravitons have null frequencies, and the production of on-shell particles does not

occur (Dvali and Gomez 2014).

4.2 Inflation and Depletion

In this section, the corpuscular description is applied to the inflationary epoch. In

this description, each inflationary Hubble patch can be considered a condensate

composed of inflatons and gravitons. By the nature of this condensate, the compos-

ite quanta scatter and deplete. This depletion is the driver of inflation under this

purely quantum model, in contrast to the scalar field of the semi-classical model.

Inflation ends once depletion is no longer energetically favorable. Therefore, the

depletion rate can constrain the duration of inflation. The depleted quanta that are

’squeezed out’ of the condensate during inflation constitute the primordial perturba-

tions evidenced by the CMB. This section will explore inflationary dynamics under

a corpuscular model and the depletion mechanism. Additionally, the depletion rate

of the inflationary background will be derived.

4.2.1 Corpuscular Inflation

A corpuscular interpretation of inflationary cosmology can provide theorists with an

alternative explanation of the driving forces behind inflation and bring forth new

information about that era that is not recoverable in a semi-classical picture. The

general idea put forth by Dvali and Gomez is to apply the compositeness descrip-

tion, particularly with a large-N approximation, to de Sitter spacetime or other

inflationary universes to recover well-known predictions of inflation, such as pri-

mordial perturbations. According to this description, inflation would end when the

composite background stops depleting. A unique benefit of the corpuscular picture

is that the time evolution of the universe during the inflationary epoch is easier to

map as the background acts as a quantum clock. Due to the process of depletion,

the composite background imprints measurable effects onto observables such as the

CMB. These effects accumulate throughout the entire inflationary duration. There-

fore, applying this methodology can recover information about the entire history
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of inflation, which would be inaccessible with a semi-classical approach (Dvali and

Gomez 2014).

Under the corpuscular picture, each inflationary Hubble patch, with radius RH ,

is treated as a reservoir with a finite number of quanta, a Bose-Einstein condensate.

The occupation number of gravitons in each patch is given by,

N =

(
RH

ℓp

)2

, (4.8)

where ℓp is Planck length and can be related to Newton’s constant by ℓ2p = ℏG.
Similar to the aforementioned black hole description, the condensate is near a point

of quantum criticality and thus undergoes depletion. Throughout the inflationary

era, the occupation number of the background condensate decreased, and the in-

flationary mechanism was the emptying of this reservoir. However, the inflationary

condensate background differs from the black hole case as it consists of two species

of quanta: inflatons and gravitons. This difference is crucial as the inflaton back-

ground, a Bose gas with occupation number Nϕ ≫ N , assists in the depletion. This

assistance is simply because if the number of different species of quanta increases,

the number of channels by which quanta can scatter and deplete increases as well.

A key finding is that the occupation numbers of each species can be related to

inflationary dynamics through the slow-roll parameter, ϵ

N

Nϕ

=
√
ϵ, (4.9)

where,

ϵ ≡
(
V ′

V ℓp

)2

ℏ, (4.10)

again, the comma denotes a derivative with respect to ϕ. This indicates that the

speed at which the inflaton rolls down its nearly flat potential is inversely propor-

tional to Nϕ/N . In other words, the greater the duration of inflation, the larger the

inflaton to graviton ratio is, and thus, gravitons have a greater number of inflatons

from which they could scatter and deplete. Therefore, compared to the black hole

description, the depletion in a corpuscular inflationary universe would be enhanced

by a factor of Nϕ/N . Since the slow-roll parameter can be related to the depletion

rate of the condensate, an upper bound must be placed on the duration of infla-

tion and, thus, on the number of e-foldings. This key result of corpuscular inflation

indicates that the semi-classical approach cannot recover.

Additionally, this picture can shed light on the suitability of a de Sitter spacetime

in describing inflationary cosmology. The exact de Sitter spacetime exists in the limit

where ϵ = 0. In this limit, the depletion rate of the background would diverge, and

the condensate would decay instantly. Thus, the de Sitter description is inconsistent
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with a slow-roll inflationary theory. Furthermore, the condition ϵ ̸= 0 places an

upper bound on the duration of inflation and the number of e-folding. However,

caution should be taken with this statement, as it does not apply to the efficacy of

de Sitter as a descriptor of any cosmological scenario; the conclusion is solely that

de Sitter spacetime does not hold in the slow-roll limit of inflation.

The following equation can describe corpuscular inflationary dynamics,

Ṅ

N
= H

(
ϵ− 1√

ϵ

1

N

)
, (4.11)

where the Hubble parameter is defined as, H ≡ R−1
H . This equation encapsulates

the background state’s purely classical and corpuscular time evolution. The first

term on the right-hand side of the equation, which survives the classical limit where

ℏ = 0, describes the classical time evolution of the occupation number of gravitons

due to the purely classical increase of the Hubble radius. The second term describes

the quantum evolution of the condensate, i.e., its depletion; it asserts the upper

bound on the duration of this epoch and excludes the de Sitter limit where ϵ = 0.

To explore this limit, one can consider the case where ϵ is arbitrarily small. While

this is not necessarily a physically reasonable assumption, it serves to further define

this upper bound. In this case, the first term of the above equation is negligible,

and the evolution of N is purely quantum,

Ṅquantum = − H√
ϵ
= − 1√

Nℓp

Nϕ

N
. (4.12)

This is the equation for a black hole’s depletion rate, given by equation (4.5), multi-

plied by an enhancement factor due to the presence of inflatons. The Hubble patch is

analogous to a black hole with an enhanced depletion rate in a quantum-dominated

regime. In this case, the number of e-folding cannot be computed solely from the

slow-roll parameter, ϵ. Rather, the inflationary duration is given by the time it takes

to deplete a number of quanta on the order of 1/N . Taking H and ϵ as constant,

the number of depleted quanta per Hubble time can be computed as,

∆N ≡ Ni −Nf =
1√
ϵ
, (4.13)

where Ni is the occupation number of the condensate at the beginning of inflation

andNf is the occupation number of the condensate at the end of inflation. Therefore,

in this picture, the inflationary duration is given by Nquantum = N
√
ϵ. This is the

time needed to deplete the entire reservoir, and it must be consistent with the

classically evaluated number of e-foldings, leading one to the following consistency

bound,

ϵ > N− 2
3 . (4.14)
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In the commonly assumed case of V = m2ϕ2 inflation, where Nquantum = 1/ϵ, this

condition can be written as,

Nϵ < N
2
3 . (4.15)

This bound restricts how slow the potential could decrease, i.e., its concavity, and

excludes any potential that leads to a positive cosmological constant. It can also be

formulated in terms of the classical potential,(
MPlV

′

V

)2

<
1

ℏ

(
M4

Pl

V

) 2
3

. (4.16)

Evidently, the smaller the potential energy, the slower it is permitted to evolve (Dvali

and Gomez 2014).

The remainder of this chapter will discuss an alternative theory of inflation that

differs from the inflaton-driven model discussed previously. Inflation can also be

modeled by a modified gravity theory, in which the action takes the form of,

S =
1

16πG

∫
d4x

√
−gf(R), (4.17)

where f(R) = γℓ2pR
2 and R is the Ricci scalar. This contribution of R2 allows for an

effective scalar degree of freedom or a scalar graviton that can drive the exponential

inflationary expansion without an explicit inflaton field. In the corpuscular model,

these scalar gravitons are a part of the composite background, and their interactions

lead to the depletion of the condensate, which generates primordial perturbations.

4.2.2 Depletion

The remainder of this chapter will be spent computing the depletion rate of an

inflationary patch. Before examining this computation, there are a few important

remarks to keep in mind. Firstly, the corpuscular picture is valid within each Hub-

ble patch of size L. To determine the total number of depleted gravitons in the

universe after inflation, one must multiply the number in a single patch by the total

number of such patches. Secondly, the number of gravitons, N, would remain con-

stant only in an exact de Sitter space. Lastly, due to self-interaction, gravitons can

be ’squeezed’ out of their coherent ground state and become propagating perturba-

tions. This process must satisfy the Wheeler-DeWitt constraint, which determines

the occupation number of gravitons in a Hubble patch. Consequently, depletion is

assumed to reduce N, and the final occupation number of propagating modes cannot

exceed the initial number of background gravitons.

One can now begin by considering the classical background as a spatially flat

FLRW metric,

ds2 = −dt2 + a2(t)(dr2 + r2dΩ2). (4.18)
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The Friedmann equation can be gathered from the Hamiltonian constraint,

0 = HM +HG = 3H2 − 8πGρ, (4.19)

where HM ≈ ρ is the matter-energy density and HG is the analog for the graviton

state given by the Einstein-Hilbert action,

S =
1

16πG

∫
d4x

√
−gR. (4.20)

The Friedmann equation can be integrated over the volume contained within Hubble

radius, L,

L3H2 ∼ GL3ρ ≡ GML. (4.21)

The corpuscular description is recovered by quantizing ML in units of Planck mass,

MPl.

NL ∼
(
ML

MPl

)2

, (4.22)

where NL is the number of composite quanta in each Hubble patch. Considering a

de Sitter universe and equation (2.6), the Hubble radii can be defined as,

L = a

∫
dt

a
= LΛ ∼ H−1

Λ . (4.23)

Consequently,

GML ∼ L3H2 = LΛ ∼ H−1
Λ . (4.24)

These expressions are similar to that of a spherically symmetric black hole, just as

Dvali and Gomez proposed.

The corpuscular model can be ascribed to a de Sitter spacetime by assuming the

condensate can be characterized by a typical Compton length, λ ≈ LΛ, and thus,

MΛ = NΛℓpMPl/LΛ. Equation (4.24) then leads to the consistency condition for the

graviton condensate,

ℓpMΛ ∼ LΛMPl ∼
√
NΛ, (4.25)

which implies that for a macroscopic universe NΛ ≫ 1. The de Sitter metric is

recovered from a f(R) theory of modified gravity where,

S =
1

16πG

∫
d4x

√
−gf(R), (4.26)

and,

f(R) = γℓ2pR
2, (4.27)

where γ is a positive parameter. By varying the action, one can obtain the equation

of motion,

6f ′(R)H2 = Rf ′(R)− f(R)− 6HṘf ′′(R). (4.28)
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Given equation (4.27), this becomes,

12RH2 = R2 − 12HṘ. (4.29)

For de Sitter spacetime,

Ṙ = 24HḢ = 0, (4.30)

R

6
= Ḣ + 2H2 = 2H2 =

2Λ

3
. (4.31)

The left-hand side of this equation can be integrated over the Hubble radius, given

by equation (4.24),

L3
ΛH

2
Λ ≈ LΛ ≡ −GUN . (4.32)

Likewise, integrating the right-hand side of this equation leads to,

L3
Λ

(
Λ

3

)
≈ LΛ ≡ GUPN . (4.33)

The Newtonian and post-Newtonian potential, UN and UPN , can now be introduced.

Since there is no matter present in the universe under this model, the Hamiltonian

becomes,

HG ≈ UN + UPN = 0. (4.34)

In the corpuscular description, the negative Newtonian energy of the condensate is

explained by assuming each graviton has a negative binding energy, ϵΛ, given by the

Compton relation. Thus, it takes the form of,

UN ≈MΛϕN = NΛϵΛ = −NΛ
ℓpMPl

LΛ

. (4.35)

The graviton self-interaction term gives the positive post-Newtonian energy,

UPN ≈ NΛϵΛϕN = N
3/2
Λ

ℓ2pMPl

L2
Λ

, (4.36)

where the Newtonian potential is given by,

ϕN = −NΛ
ℓpMPl

MΛLΛ

= −
√
NΛ

ℓp
LΛ

. (4.37)

The gravitational Hamiltonian equation (4.34) can be expanded into two terms; one

keeps track of its contribution to the Einstein-Hilbert action (4.20), while the other

keeps track of its contribution to the effective action, (4.26). The latter takes the

form of,

H(2)
G ≈ β(UN + UPN) ≈ 0, (4.38)

where β > 0 to satisfy the consistency condition. The former takes the form of,

H(1)
G ≈ αUN , (4.39)
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where α > 0. Altogether, one finds,

HG = H(1)
G +H(2)

G ≈ (α + β)UN + βUPN = 0. (4.40)

The term proportional to α indicates that an ideal de sitter condensate, described

by (4.32) and (4.33), is not an adequate solution. For small departures from an ideal

de Sitter scaling, the potential can take the form of,

GNUN ≈ −L3H2, (4.41)

and,

GNUPN ≈ L3L−2
Λ , (4.42)

where L ≈ LΛ is the new Hubble radius. Equation (4.40) now yields,

L3
[
−(α + β)H2 + βL−2

Λ

]
≈ 0, (4.43)

where,

H2 ≈ β

α + β

1

L2
Λ

. (4.44)

The de Sitter case is accurately reproduced when α = 0; when α > 0, H < HΛ.

If the system begins with H ≈ HΛ, then Ḣ must be negative to ensure that the

constraint, (4.40), is satisfied at all times. This can be explicitly demonstrated by

writing,

H = HΛ + Ḣδt, (4.45)

where the typical time scale is given by, δt ≈ LΛ, since gravitons with a Compton

wavelength LΛ are not sensitive to shorter times. Equation (4.43) ultimately yields,

Ḣ ≈ − α

α + β

HΛ

δt
≈ − α

α + β

1

L2
Λ

. (4.46)

Furthermore, the slow-roll parameter in the corpuscular model is given by,

ϵ ≡ − Ḣ

H2
≈ α

α + β
, (4.47)

and one obtains ϵ = 0, the exact de Sitter limit, when α → 0, neglecting quantum

depletion.

Gravitons within the condensate generate the effective Hubble parameter H ∼
N

−1/2
Λ ∼ L−1

Λ , but they also undergo scattering and depletion. Consequently, their

occupation number changes over time according to

ℓp
ṄΛ√
NΛ

= ℓp
ṄΛ√
NΛ

∣∣∣∣
classical

+ ℓp
ṄΛ√
NΛ

∣∣∣∣
quantum

, (4.48)
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where the classical equation of motion, where α ̸= 0, gives,

ℓp
ṄΛ√
NΛ

∣∣∣∣
classical

≈ − Ḣ

H2
≈ α

α + β
= ϵ, (4.49)

and the purely quantum depletion results in,

− Ḣ

H2
= ℓpṀΛ ≈ −M

2
Pl

M2
Λ

≈ −ℓ2pH2 ≈ − β

α + β

1

NΛ

≈ −1− ϵ

NΛ

. (4.50)

The positive contribution from equation (4.49) corresponds to a slowly growing

Hubble patch, while the negative contribution from equation (4.50) corresponds to

depletion and the generation of perturbations. Combining these two terms, one

recovers a solution for the depletion rate of the condensate background,

− Ḣ

H2
≈ ℓp

ṄΛ√
NΛ

≈ ϵ

(
1− β

αNΛ

)
≈ ϵ− 1− ϵ

NΛ

, (4.51)

leading to a critical value for α,

α ≳ αc ≈
β

NΛ

∼
ℓ2p
L2
Λ

, (4.52)

which can be interpreted as a minimum ’distance’ from de Sitter.

One can consider this as the universe departing from de Sitter at f(R) ≈ R2

and asymptotically approaching a fixed point, f(R) ≈ R − Λ, of general relativity,

characterized by a positive cosmological constant. Assuming R ≈ Λ is constant

(4.28) becomes,

6f ′(R)H2 ≈ Rf ′(R)− f(R). (4.53)

Considering,

f(R) =
n∑

k=1

akℓ
2k−2
p Rk, (4.54)

one can write,

Rf ′(R)− f(R) =
n∑

k=2

(k − 1)akℓ
2k−2
p Rk. (4.55)

Equation (4.53) then becomes,

H2

(
a1 +

n∑
k=2

kakℓ
2k−2
p Rk−1

)
≈

n∑
k=2

(k − 1)akℓ
2k−2
p Rk. (4.56)

Given, R ≈ Λ and j = k − 1 one can find,

a1H
2 ≈

n−1∑
j=1

(
Λ−H2

)
jaj+1ℓ

2j
p Λj. (4.57)
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Considering equations (4.32) and (4.33),

H2 ≈ −GNUN

L3
Λ

≈ − ℓp
MPlL3

Λ

UN , (4.58)

Λ ≈ GNUPN

L3
Λ

≈ ℓp
MPlL3

Λ

UPN , (4.59)

therefore,

a1UN + (UN + UPN)
n−1∑
j=1

jaj+1

(
ℓ3pUPN

L3
ΛMPl

)j

≈ 0. (4.60)

In the case of the Starobinsky potential, where n=2, one can write,

a1UN + a2

(
ℓ3pUPN

L3
ΛMPl

)
(UN + UPN) ≈ αUN + γ

ℓ2p
L2
Λ

(UN + UPN) ≈ 0. (4.61)

A comparison to equation (4.40) reveals,

β = γ
ℓ2p
L2
Λ

, (4.62)

as expected during inflation.

4.2.3 Primordial Perturbations

This thesis focuses on the production of inflationary perturbations as described by

the corpuscular model. Analogous to how Hawking radiation results from quantum

depletion under a corpuscular description of a black hole, inflationary perturbations

result from the quantum depletion of the background condensate under a corpus-

cular theory of inflationary cosmology. A factor of R2 to the gravitational action

gives rise to an effective scalar degree of freedom or a scalar graviton that, in the

corpuscular model, is a part of the composite background. The scattering of these

gravitons leads to their excitation and depletion, which is enhanced by inflatons.

The excited inflatons that escape the condensate result in scalar perturbations that

produce density fluctuations; the excited gravitons that escape result in tensor per-

turbations that produce gravitational waves. This depletion process is also respon-

sible for ’turning off’ inflation; once depletion is no longer energetically favorable,

inflation ends. It is important to note that in contrast to the semi-classical theory,

quanta production is not a vacuum process. Additionally, the excited quanta do

not affect the dynamics of the background. In other words, the back-reaction of

scalar and tensor perturbations is negligible. As previously stated, this model has

two species of quanta at play: gravitons and inflatons. Therefore, there are three

types of interactions to consider: graviton-graviton, (g-g), graviton-inflaton, (g-ϕ),

and inflaton-inflaton, (ϕ-ϕ). ϕ-ϕ processes are negligible as their wavelength is vir-

tually infinite in the slow-roll regime. g-ϕ and g-g scatters differ by a combinatorial
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factor, Nϕ, where Nϕ ≫ N . Therefore, g-ϕ processes dominate, and gravitons and

inflatons deplete at the same rate. Lastly, as shown by (4.48), the rate of change of

the number of composite quanta has both a classical contribution and a quantum

contribution (Casadio, Kühnel, and Orlandi 2015).
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Chapter 5

Perturbations from Depletion

This chapter will report the findings computed throughout this thesis project. The

occupation number of primordial perturbations will be derived within a corpuscular

framework. The computed value will be compared to the quantum field theory

result to analyze its efficacy. This computation will first be conducted assuming

a toy model in which the occupation number of constituent quanta is constant.

Then, a time-dependent occupation number will be considered. Subsequently, a

time-dependent slow-roll parameter, ϵ, will be considered. The number of quanta

depleted by each inflationary de Sitter patch will be derived. A discussion on the

number of de Sitter patches and the impact of the number of species of constituent

quanta will follow this.

5.1 Occupation Number of Depleted Quanta

The occupation number of depleted quanta can be computed by performing a time

integration over the depletion rate derived in the previous chapter. This depletion

rate can be initially computed assuming a toy model in which the occupation number

of constituent quanta, NΛ, is constant in time. Subsequently, a derivation consider-

ing a time-dependent NΛ will be provided. Lastly, the final result for the occupation

number of depleted quanta is computed considering both a time-dependent NΛ and

slow-roll parameter, ϵ. This result shows that the number of depleted quanta can

be explicitly related to the number of e-folding and the Hubble parameter at the

beginning and end of inflation.

5.1.1 Computing Nk using a Toy-Model

To assess the number of primordial perturbations under the corpuscular model,

one can consider perturbations with wave number, k, that exit the Hubble horizon

once their wavelength reaches λ ≈ aout/k ≈ LΛ, and re-enter the Hubble horizon
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when λ ≈ ain/k. Depending on whether the reentry occurred during the radiation-

dominated or matter-dominated era, the wavelength of these perturbations at the

moment of re-entry is approximately Lrad or Ldust. These modes, considered to

be initially empty, become occupied outside the horizon. The occupation number

computed in Chapter 3 under the semi-classical approach is given by,

Nk ≃ eσNk , (5.1)

where,

eNk =
ain
aout

. (5.2)

The parameter σ is a coefficient of the order one. It can be adjusted to ensure

the compatibility of the quantum field theory (QFT) result (5.1) with the corpus-

cular model. Under the corpuscular model, the time evolution of the composite

background can be written as,

ℓpṄΛ√
NΛ

≃ ϵ− 1− ϵ

NΛ

, (5.3)

where, NΛ = NΛ(t) is the number of gravitons in the background condensate. Fur-

thermore, the time evolution of the depleted quanta can be described as,

ℓpṄk√
NΛ

≃ 1− ϵ

NΛ

. (5.4)

One can begin by considering a toy model where ṄΛ = 0; equation (5.3) simplifies

to,

0 ≃ ϵ− 1− ϵ

NΛ

, (5.5)

NΛ =
1− ϵ

ϵ
. (5.6)

Thus, equation (5.4) becomes,

Ṅk =
(ϵ− ϵ2)

1
2

ℓp
. (5.7)

This equation can be integrated and compared to equation (5.1); assuming a con-

stant ϵ,

Nk =

∫ tin

tout

Ṅk dt =

∫ tin

tout

(ϵ− ϵ2)
1
2

ℓp
dt =

(ϵ− ϵ2)
1
2

ℓp
(tin − tout) (5.8)

The value of the slow-roll parameter, ϵ, can be approximated from CMB observables.

The scalar spectral index can be related to the slow-roll parameters by (Baumann

2012),

ns − 1 = 2η − 6ϵ. (5.9)
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Figure 5.1: Plot of the parameter σ as a function of tin − tout; as given by σ ≈
1.3+ln (tin − tout)/60. It should be noted that σ ≥ 1 always; therefore, this solution
is compatible with the QTF result, Nk ≃ eσNk .

The most recent Plank measurements of CMB anisotropies found ns = 0.965±0.004

(Aghanim et al. 2020). Assuming a quadratic inflationary potential, where η ≈ ϵ,

we can find ϵ ≈ 10−2. As ℓp ≈ 10−35m, Nk can be written as,

Nk = 1034(tin − tout). (5.10)

This solution can now be compared to equation (5.1), and thus σ can be written as,

σ ≈ 1

Nk

ln(1034(tin − tout)). (5.11)

Assuming Nk ≈ 60 this equation becomes,

σ ≈ 1.3 +
ln (tin − tout)

60
. (5.12)

This can be visualized by Figure 5.1, a plot of σ against tin − tout, the duration the

perturbation spends outside the horizon. From this, one can assess if this model

produces physically reasonable solutions for σ. Moreover, as this graph reflects

σ ≥ 1 for all σ and as Nk must be at least 60, Nk must always be greater than one.

Therefore, this overly simplistic corpuscular model is consistent with the standard

cosmological model.

5.1.2 Computing Nk considering NΛ = NΛ(t)

The occupation number of constituent gravitons decreases throughout inflation.

Therefore, utilizing a time-dependent NΛ allows for a more accurate assessment
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of the value of Nk. Consider NΛ(tout) ≃ LΛ
2/ℓp

2 ≃ (1/Hℓp)
2, where LΛ ≃ H−1.

Equation (5.4) becomes,

Ṅk = (1− ϵ)H. (5.13)

Now, one can integrate over time to find Nk,

Nk(tout) =

∫ tin

tout

Ṅk(tout) dt

= (1− ϵ)

∫ tin

tout

H(t) dt

= (1− ϵ) ln

(
ain
aout

)
= (1− ϵ)Nk.

(5.14)

This result should equal (5.1). The dependence of a on k is given by the horizon

crossing condition, k = aH. Furthermore, the dependence of σ on k is manifest, and

the value of σ = σk can be found from the value of ϵ given by the scalar spectral

index. To find σ = σk one can set equation (5.1) equal to equation (5.14),

Nk = (1− ϵ)Nk = eσNk . (5.15)

Thus,

eσ = (1− ϵ)Nke
−Nk , (5.16)

σk = ln(1− ϵ) + ln(Nk)−Nk. (5.17)

Given the observed value of ϵ and equation (5.17), σ can be plotted as a function of

the number of e-folds, seen by Figure 5.2. These results show that σ must always be

negative while Nk must always be positive. This is consistent with the requirement

that the number of e-folding must be at least 60 to resolve the problems associated

with the Hot Big Bang model. However, complications arise in its comparison to

equation (5.1). These results indicate that the occupation number of perturbations

must be between 0 and 1, which is physically unreasonable. Furthermore, if Nk is

less than 1 and Nk = 60 then equation (5.14) indicates that ϵ must be greater than

59/60, which is inconsistent with the observed value of ϵ ≈ 10−2. This inconsistency

can be attributed to a time-independent ϵ assumption. In reality, ϵ grows until it

is equal to 1 at the end of inflation, which occurs at tend between tin and tout, thus

ϵ = ϵ(t).

5.1.3 Computing Nk considering NΛ = NΛ(t) and ϵ = ϵ(t)

A time-dependent ϵ can be defined by,

ϵ ≡ − Ḣ

H2
. (5.18)
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Figure 5.2: Plot of σk = ln(1− ϵ)+ ln(Nk)−Nk, where ϵ = 10−2. This plot shows a
critical point where σ = −1 and Nk = 1, providing an upper bound on σ, following
this point σ remains inversely proportional to Nk. It should be noted that σ < 0
always; therefore, this solution is not compatible with the QTF result, Nk ≃ eσNk .

Therefore, Nk can be written as,

Nk =

∫ tin

tout

(1− ϵ(t))H(t) dt = (1− ϵ)

∫ tin

tend

H(t) dt+

∫ tend

tout

(1− ϵ(t))H(t) dt. (5.19)

However, as ϵ = 1 by the end of inflation, the first term cancels,

Nk =

∫ tend

tout

(1− ϵ(t))H(t) dt

=

∫ tend

tout

H(t) dt−
∫ tend

tout

ϵ(t)H(t) dt

= ln
aend
aout

−
∫ tend

tout

ϵ(t)H(t) dt. (5.20)

Considering equation (5.18),

Nk ≈ ln
aend
aout

+

∫ tend

tout

Ḣ(t)

H2(t)
H(t) dt

≈ ln
aend
aout

+

∫ tend

tout

Ḣ(t)

H(t)
dt

≈ ln
aend
aout

+ ln
Hend

Hout

≈ ln
aend
aout

Hend

Hout

≈ Nk ln
Hend

Hout

. (5.21)
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As,

Hend > Hout, (5.22)

Nk will always be positive. Therefore, the inconsistency of the previous solution

given by equation (5.14) is remedied, and the above solution is compatible with

the QFT result. However, the magnitude of depleted quanta given by this result

is insufficient to reproduce the magnitude of primordial perturbations evidenced by

CMB anisotropies.

5.2 Channels and Patches

This section will provide a physical interpretation of the results of the previous sec-

tion and discuss some possible amendments that should be considered. The number

of depleted quanta computed in the previous section holds for each inflationary

patch. Thus, it must be multiplied by the number of patches to reproduce the

number of primordial perturbations evidenced by the CMB. Furthermore, accord-

ing to corpuscular theory, the depletion rate is enhanced by the number of species

of constituent quanta. Therefore, the number of depleted quanta previously com-

puted should be multiplied by the number of polarization states of the constituent

gravitons.

5.2.1 Multiple de Sitter Patches

To remedy this inconsistency, one must understand the physical interpretation of

the QFT result. The semi-classical view of inflation proposes that each inflationary

de Sitter patch grows by a factor of eN , where N is the number of e-folding and

is approximately 60. In the corpuscular model, the universe at the end of inflation

can be described by eN overlapping de Sitter patches. Therefore, the total number

of depleted wave modes would be equal to (5.21) times eN . Thus, the magnitude

of (5.21) is inconsistent because this formula defines the number of depleted quanta

given by each de Sitter patch. The corpuscular result must be multiplied by the

number of de Sitter patches to compare it to CMB observations. Therefore, the

total number of depleted wave modes is given by,

Ntot ≈ eNN ln
Hend

Hout

. (5.23)

Moreover, this analysis sheds light on the physical interpretation of σ in (5.1); it

accounts for the number of inflationary de Sitter patches.
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5.2.2 Multiple Depletion Channels

This addendum to the solution (5.21) can be further refined by considering mul-

tiple depletion channels. The number of species of quanta enhances the rate of

depletion as each species gives way to a new depletion channel. Therefore, the num-

ber of predicted depleted quanta should be multiplied by the number of species of

quanta. The corpuscular model assumes the background condensate is composed of

two species of quanta: inflatons and gravitons. Depletion is dominated by inflation-

graviton scattering; however, the two polarizations of gravitons could enhance the

number of depletion channels. Inflatons are spin-0 particles that lack intrinsic po-

larizations (Dvali and Gomez 2014). Gravitons have helicity ±2 corresponding to

’+’ and ’x’ polarizations (Palmerduca and Qin 2024). Inflaton-graviton scattering

dominates depletion, and considering two species of gravitons, the number of quanta

each channel depletes sum to give the total depletion,

Nk,tot = Nk,g+ +Nk,gx . (5.24)

where Nk,g+ is the number of depleted quanta due to inflaton- ’+’ graviton scatters

and Nk,gx is the number of depleted quanta due to inflaton- ’x’ graviton scatters.

Assuming λk,g+ ≈ λk,gx ,

Nk,g+ ≈ Nk,gx . (5.25)

Therefore, equation (5.23) becomes,

Ntot ≈ 2eNN ln
Hend

Hout

, (5.26)

which differs from the previous result by a factor of two. While a factor of 2 is

likely not very cosmologically significant, the relation between the depletion rate

and the number of constituent species is an interesting phenomenon to remember

when discussing corpuscular inflation.
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Chapter 6

Discussion and Conclusion

This thesis has focused on analyzing the corpuscular model applied to an inflationary

universe. Inflation, typically described with a semi-classical approach, is the rapid

exponential expansion theorized to occur in the first fraction of a second after the

Big Bang. While there is broad consensus that such a period is needed to remedy key

issues with the Hot Big Bang model, such as the Horizon, Flatness, and Monopole

problems, it is notoriously difficult to study. This difficulty arises from modern

cosmology’s limited theoretical consensus and observational capacity.

Theoretically, the standard cosmological model has several limitations that hin-

der scientific consensus. Inflation is considered to be driven by a hypothetical scalar

field called the inflaton; however, little is known about the exact nature of this field

and how it fits into Standard Model physics. Additionally, the study of inflation

requires a knowledge of physics near the Planck scale, i.e., a theory of quantum

gravity, for which there is little scientific consensus. In other words, one of the

most significant limitations of the semi-classical theory of inflation is its inability to

reconcile the quantum nature of the space-time background and the back-reaction

of primordial perturbations on that background. Another critique of semi-classical

inflationary theory is that it requires the inflationary universe to follow the slow-roll

trajectory, i.e., maintaining slow-roll conditions until the end of inflation, at which

point these conditions are violated. However, it does not explain why the universe

would follow such a trajectory.

From an observational perspective, the empirical evidence used to study inflation

is limited, as is the prospect of experimental corroboration. The key inflationary

observable is the CMB. While a wealth of information is imprinted into the CMB,

the semi-classical approach views it as merely a snapshot of the universe at the end of

inflation; therefore, it does not store information throughout inflation. Furthermore,

inflationary conditions cannot be reproduced in a lab as the energy scales of the

universe at this time are near the GUT scale; such scales are too high for particle

accelerator experiments.
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A corpuscular description can remedy many of these constraints with the semi-

classical picture. Corpuscular cosmology replaces the classical curved background

metric with a quantum composite background. In this scenario, the wavelength of

quanta is set by the ’would be’ classical curvature metric and classical geometry

is recovered at the limit where the occupation number of the composite state, N,

approaches infinity. While this model was first applied to black holes, it can be

extended to all maximally symmetric spaces, such as the inflationary universe. In

this description, the inflationary universe acts as a Bose-Einstein condensate.

Theoretically, the corpuscular model can fill in many gaps left open by the semi-

classical model. The corpuscular model provides a foundation for holography; when

this picture is applied to AdS space, the occupation number of gravitons correlates

to the central charge of a CFT. Additionally, the corpuscular model puts forth

an alternative explanation for particle creation. While the semi-classical model

assumes particle creation is a vacuum process, the corpuscular model attributes this

to condensate depletion, i.e., the scattering of constituent off-shell quanta. Only in

the limit where the occupation number, N, approaches infinity can this be confused

for a vacuum process.

This should not be overlooked as it has broad implications for both the theoretical

and observational studies of inflationary cosmology. Explaining particle production

as purely a vacuum process leads to difficulties in addressing the extent of reheating

and the back-reaction of particle production on inflationary dynamics. Additionally,

this alternative explanation for Hawking radiation has several implications for black

hole physics; for example, it would provide a solution to the information paradox.

Moreover, particle creation via depletion broadens the capacity for observational

and experimental studies. Under this model, the CMB does not merely contain

information on the state of the universe at the end of inflation; instead, it stores

the cumulative effects of depletion throughout the entire duration of inflation. Ad-

ditionally, while particle accelerators cannot reproduce inflationary conditions, the

depletion of Bose-Einstein condensates can be studied in a laboratory.

The occupation number of depleted quanta computed in this project provides a

basis for further research to corroborate the corpuscular model with observations.

The primordial density fluctuations imprinted in the CMB result from the depletion

of the condensate background. Therefore, the amplitude of primordial density fluc-

tuations in the CMB can be compared to the occupation number of depleted quanta

computed in this paper to check this model’s compatibility with cosmological ob-

servations.

This paper discussed the key inflationary observable, the Cosmic Microwave

Background. The formation of the CMB, as well as the statistical information it

carries, was discussed. Subsequently, the Hot Big Bang model was introduced, as
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were its limitations, the flatness, horizon, and monopole problems. It was then

explained how a period of rapid accelerated expansion, known as inflation, can

solve these problems. Furthermore, the conditions such a period is required to

meet, namely the slow-roll conditions, were explored. Chapter 2 concluded with a

discussion on slow-roll inflationary dynamics.

Chapter 3 focused on primordial perturbations under a semi-classical framework,

resulting from quantum fluctuations in the classical inflaton field. It began by

discussing the formation and evolution of these perturbations during inflation. These

fluctuations were then quantized to calculate their power spectrum. The theoretical

inflationary phase, in which the production of perturbations grows exponentially,

known as the ultra-slow roll phase, was then discussed. This was followed by a

derivation of the occupation number of inflationary perturbations using quantum

field theory. This result is later compared with the analogous corpuscular result in

Chapter 5.

Up to this point, inflation was discussed with a semi-classical approach. In Chap-

ter 4, the focus shifted to a purely quantum, corpuscular model of cosmology. This

model was first applied to black holes, and this prescription was briefly discussed.

This prescription was then generalized to all maximally symmetric cosmological

spaces. This framework was then used to address inflationary dynamics in a cor-

puscular model. Here, the generation of primordial perturbations is interpreted as

the depletion of the background condensate. Thus, the occupation number of in-

flation perturbations could be computed by integrating the depletion rate of the

background. The derivation of this depletion rate was provided, setting the stage

for the final computation in the next chapter.

This project aimed to compute the occupation number of depleted quanta under

a corpuscular inflationary model. Stemming from the works of (Dvali and Gomez

2014) and (Casadio, Kühnel, and Orlandi 2015), this paper computed the occupa-

tion number of depleted quanta by integrating over the depletion rate computed in

previous works. This value was then compared to the QFT result for primordial

perturbations to assess its feasibility. The number of depleted modes was recovered

for each inflationary de Sitter patch. It can be multiplied by the number of patches

to recover the magnitude of density fluctuations imprinted in the CMB. Further

refinement of this picture can be given by accounting for the multiple polarization

states of the composite gravitons. Each additional species in the condensate gives

way to an additional depletion channel. Therefore, the number of depleted quanta

computed should be multiplied by the number of constituent species. The results

of this thesis indicate that the corpuscular theory can produce physically reason-

able values for the number of primordial perturbations and, thus, the number of
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e-folding. The next step would be to directly compare the occupation number com-

puted in the previous chapter to the amplitude of the power spectrum of primordial

perturbations given by the CMB. The findings presented in this thesis, and those

made by corpuscular theory as a whole, show that thus far, the corpuscular theory

can recover the observational findings of the standard semi-classical inflation model.
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