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Abstract

Cable-Driven Wrench Applicators (CDWA) are robotic systems that use multiple ca-
bles to generate forces and moments (wrench) at the end-effector (EE). In many appli-
cations, only certain components of the wrench need to be precisely controlled, while
the remaining components need to be managed according to some criteria. This the-
sis proposes a framework for analyzing and comparing CDWAs with an arbitrary num-
ber of cables greater than the number of wrench components to be controlled. The
framework introduces three performance indices to (i) optimize the tension distribu-
tion across the cables, (ii) evaluate the tension on the cables, and (iii) analyze the qual-
ity of the applied wrench. It allows determining the minimum number of cables re-
quired, comparing different architectures, and supporting the design of new tasks. The
effectiveness of the framework is demonstrated by comparing an 8-cable and a 4-cable
system in a rehabilitation scenario. Simulations and experimental validation show that
the 4-cable system, while requiring higher tensions, achieves comparable performance
in terms of applied wrench, while offering greater ease of use and mechanical simplic-
ity. These results suggest that task-specific optimization of cable robots can improve
usability without compromising performance, providing relevant insights for the de-
sign and optimization of new CDWAs.

I Cable-Driven Wrench Applicators (CDWA) sono sistemi robotici che utilizzano
più cavi per generare forze e momenti (wrench) sull’end-effector (EE). In molte appli-
cazioni, solo alcune componenti del wrench devono essere controllate con precisione,
mentre le restanti componenti devono essere gestite secondo alcuni criteri. Questa tesi
propone un framework per analizzare e confrontare i CDWA con un numero arbitrario
di cavi superiore al numero di componenti del wrench da controllare. Il framework
introduce tre indici di performance per (i) ottimizzare la distribuzione delle tensioni
sui cavi, (ii) valutare le tensioni sui cavi e (iii) analizzare la qualità del wrench appli-
cato. Permette di determinare il numero minimo di cavi necessari, confrontare diverse
architetture e supportare la progettazione di nuovi task. L’efficacia del framework è
dimostrata attraverso il confronto tra un sistema a 8 cavi e uno a 4 cavi in un con-
testo di riabilitazione. Le simulazioni e la convalida sperimentale dimostrano che il
sistema a 4 cavi, pur richiedendo tensioni più elevate, raggiunge prestazioni compara-
bili in termini di wrench applicato, offrendo al contempo una maggiore facilità d’uso e
semplicità meccanica. Questi risultati suggeriscono che l’ottimizzazione specifica dei
robot a cavi per un determinato task può migliorare l’usabilità senza compromettere
le prestazioni, fornendo indicazioni rilevanti per la progettazione e l’ottimizzazione di
nuovi CDWA.
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Chapter 1

Introduction

1.1 Cable-Driven Parallel Robots for Precise Force Con-
trol

In many real-world robotic applications, it is essential to decouple the control of posi-
tion from the ability to exert forces and moments (collectively referred to as wrench).
This separation is particularly important in systems where the primary goal is to apply
precise wrenches, while delegating positional control to an external mechanism or op-
erator. Examples include rehabilitation devices [1], training simulators [2], and haptic
interfaces [3], where precise force application is critical to achieving desired outcomes.
Cable-driven parallel robots (CDPRs) are a class of robotic systems uniquely suited for
such tasks, due to their inherent advantages related to force control [4]. Unlike tra-
ditional rigid-link robots, CDPRs use multiple cables to manipulate an end-effector
within a workspace (Fig. 1.1). By adjusting the tension in these cables, CDPRs can
apply controlled forces and moments to the end-effector with relatively high preci-
sion. These systems offer several advantages, including a larger and scalable work-
space, simpler mechanical design, reduced inertia, and the ability to achieve precise
force control with minimal complexity [5].

A specific subset of these systems, known as cable-driven wrench applicators (CD-
WAs), focuses exclusively on applying wrenches (forces and moments) without directly
controlling the end-effector position. CDWAs offer several distinct advantages over tra-
ditional rigid-link robotic systems, as highlighted in [6]. First, their cable-driven design
allows for adaptable and dynamic force application, enabling them to deliver forces
in multiple directions with adjustable magnitudes. This flexibility is crucial for tasks
such as gait training, postural control, and balance rehabilitation, where forces need
to be tailored to the user’s specific needs. Second, CDWAs modular design allows for
scalability and customization, enabling the same system to be adapted for different
users or applications. Third, the versatility offered by CDWAs makes them suitable for
a broader range of applications compared to current rigid-link rehabilitation devices,
enabling the rehabilitation of many additional body parts.

However, one of the most significant advantages of CDWAs that makes them in-
herently suitable for rehabilitation is their low inertia, which stems from the use of
lightweight cables instead of rigid links [7]. Unlike rigid-link exoskeletons, which add
substantial mass and inertia to the human body, CDWAs allow patients to move freely
without the burden of additional weight. This is critical for simulating natural human
movement during rehabilitation, as it ensures the therapy to not be biased by the me-
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Figure 1.1: Example of a 4-cable CDPR

chanical properties of the device. For example, rigid-link exoskeletons can alter a pa-
tient’s gait or posture due to their added mass and inertia, potentially leading to sub-
optimal therapeutic outcomes. In contrast, CDWAs provide precise force application
while maintaining the natural dynamics of human motion, making them ideal for ap-
plications where movement quality and authenticity are crucial.

The ROAR Lab at Columbia University, with whom this work is in collaboration,
has pioneered the development of CDWAs for rehabilitation purposes, creating inno-
vative devices such as the Trunk Support Trainer (TruST, Fig.1.2a), Tethered Pelvic As-
sist Device (TPAD, Fig.1.2b), Robotic Upper-body Support Trainer (RobUST, Fig.1.3a),
and Mobile Tethered Pelvic Assist Device (mTPAD, Fig.1.3b). These devices have been
successfully applied in various rehabilitation tasks, including improving sitting postu-
ral control [8], enhancing standing ability in individuals with spinal cord injuries [9],
promoting gait symmetry and weight-bearing in stroke survivors [10], and improving
balance and cognitive performance in older adults [11]. Additionally, they have been
used to measure and expand postural workspace during sitting in people with spinal
cord injuries [12]. These advancements highlight the transformative potential of CD-
WAs in rehabilitation.

1.2 Challenges in Cable-Driven Wrench Applicators (CD-
WAs)

Cable-Driven Parallel Robots (CDPRs) have been extensively studied for their use as
traditional position-controlled robots, with significant research focused on workspace
analysis [13] and performance evaluation [14]. However, when these systems are re-
purposed primarily for wrench application, i.e. applying controlled forces and mo-
ments to an object or user, there is a notable lack of comprehensive frameworks for
evaluating and optimizing their performance. This gap is particularly concerning given
the growing demand for such systems across a wide range of applications, including
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(a) TruST robot (b) TPAD robot

Figure 1.2: Example of two 4-cable driven wrench applicators for rehabilitation

(a) RobUST robot (b) mTPAD robot

Figure 1.3: Example of a 8- and a 6-cable driven wrench applicator for rehabilitation

rehabilitation, manufacturing, and aerospace.
The unique challenges of force-focused applications in CDPRs stem from their in-

herent design and operational characteristics. Unlike position-controlled robots, where
the primary goal is to achieve precise movement, wrench applicators must prioritize
the accurate and efficient delivery of forces and moments. This shift in focus intro-
duces several key challenges that require novel methodologies to address:

• Control Solutions for Variable Cable Configurations: In Cable-Driven Wrench Ap-
plicators (CDWAs), the primary objective is to exert a desired wrench (a combi-
nation of forces and moments) at the end-effector (EE). To achieve this, the sys-
tem must determine the appropriate set of cable tensions that, when applied,
result in the desired wrench. This process is known as tension distribution selec-
tion or tension planning. Robots with different number of cables presents unique
challenges for tension distribution [15]. For example, a system with fewer cables
may struggle to achieve full controllability, while a system with more cables may
face redundancy issues. Developing adaptable control solutions that can han-
dle these variations is critical for ensuring robust performance across different
setups.

11
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• Minimizing Undesired Wrench Components: When controlling a subset of wrench
components (e.g., applying a specific force while ignoring moments), undesired
wrench components often emerge as a byproduct [16]. These unintended forces
or moments can compromise the system’s effectiveness and safety. Address-
ing this issue requires control strategies that can selectively suppress unwanted
wrench components while maintaining the desired output.

• Ensuring Positive and Bounded Cable Tensions: Cables can only transmit tensile
forces [17], meaning that their tensions must always remain positive. Addition-
ally, these tensions must stay within predefined bounds to avoid cable damage
or failure. At the same time, the system must meet pose-dependent force re-
quirements, which can vary significantly across the workspace [18]. Balancing
these constraints results in a optimization problem that remains a challenge in
the field.

• Developing Meaningful Performance Metrics: Traditional performance metrics
for position-controlled robots [14] are not sufficient for evaluating wrench ap-
plication performance. New metrics are needed to capture the system’s ability
to deliver controlled forces and moments effectively [19]. These metrics should
account for factors such as wrench accuracy, cable tensions (and thus energy
efficiency), providing a comprehensive assessment of system performance. Be-
yond evaluating the absolute performance of a robot, these metrics should also
allow one to compare the performance of different designs. For example, they
should highlight the trade-offs between systems with varying numbers of cables
or different cable arrangements, to support the design of such systems.

In summary, the key challenges in cable-driven wrench applicators include: (i) de-
veloping adaptable control solutions for varying cable configurations, (ii) minimizing
undesired wrench components during force application, (iii) ensuring positive and
bounded cable tensions while meeting pose-dependent force requirements, and (iv)
establishing meaningful performance metrics for both absolute evaluation and com-
parative design analysis. Addressing these challenges is essential to advancing the ca-
pabilities of CDPRs in force-focused applications.

1.3 Research Objectives and Contributions

This thesis begins to address the challenges outlined in the previous section by intro-
ducing a novel analytical framework specifically designed to evaluate and compare the
performance of cable-driven wrench applicators. The framework is versatile and can
be applied to systems with any number of cables and for any task, with the only condi-
tion being the number of cables must exceed the cardinality of the wrench components
to be controlled, ensuring cable redundancy. Beyond performance evaluation, the
framework enables meaningful comparisons between different robot architectures, of-
fering valuable insights for design optimization. To demonstrate its practical utility,
the framework is applied to a real-world scenario, highlighting its strengths and limi-
tations. Additionally, experimental validation is conducted to confirm the consistency
and reliability of the proposed approach.

The primary contributions of this work are organized into three key components:

12
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• Tension Computation Method: We analyze a method for calculating cable ten-
sions in systems where the number of cables is greater than the wrench compo-
nents to be controlled. This scenario is common in many practical applications,
as it allows for redundancy and greater flexibility in force application. With a
geometric approach, we highlight how cable redundancy can be exploited to op-
timize the performance of the robot.

• Performance Metrics for Evaluation: To enable meaningful comparisons between
different cable-driven wrench applicators, we introduce three performance met-
rics:

– Overall Performance Index (OPI), which can be used to guide the selection
of the tension planning strategy by evaluating the overall effectiveness of
the system in delivering the desired wrench.

– Maximum Tension Index (MTI), which captures the maximum tension re-
quired in the cables, providing insights into the system’s energy efficiency
and mechanical limits.

– Maximum Parasitic-Wrench Index (MPI), which quantifies the undesired
forces or moments that can arise when controlling only a subset of wrench
components. Minimizing these parasitic effects is critical for ensuring pre-
cise and safe operation.

• Practical Application and Validation: To demonstrate the utility of the frame-
work, we apply it to a real-world rehabilitation robotics scenario. Specifically,
we use it to evaluate the feasibility of replacing an 8-cable robot with a simpler 4-
cable device, for improved accessibility and mechanical simplicity. This use-case
highlights how our framework can be used to evaluate and optimize the design
of cable-driven systems for specific applications.

The remainder of this document is structured as follows: Chapter 2 introduces the
mathematical foundation for the analysis of cable-driven wrench applicators. Chap-
ter 3 describes the proposed tension computation model for redundant cable-driven
wrench applicators and presents its geometric interpretation. Chapter 4 introduces
the three performance metrics (OPI, MTI, and MPI) and explains how they are used
to evaluate and compare different robot architectures. Chapter 5 presents a practical
application of the framework, comparing a 4-cable and an 8-cable robot in a rehabilita-
tion training task. This case study illustrates the framework’s ability to provide action-
able insights for system design and optimization. Chapter 6 concludes the thesis with
a discussion of the findings, limitations, and potential directions for future research.
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Chapter 2

Fundamentals of Cable-Driven Wrench
Applicators

Cable-Driven Wrench Applicators (CDWAs) apply a specific wrench to the end-effector
(EE) by tensioning a set of n cables attached to it. This chapter introduces the geo-
metric and wrench-exertion modeling of a generic CDWA, providing the mathemati-
cal framework to compute cable tensions when only a subset of the wrench compo-
nents requires precise control, while the remaining components, particularly those
that could interfere with the task, must be minimized or regulated.

The geometric model defines the spatial configuration of the CDWA, including the
positions of cable attachment points on the EE and the fixed pulley positions on the
frame. This model is crucial for understanding how cable routing influences the EE
wrench generation capabilities. Additionally, it provides the foundation for mapping
cable tensions to the resultant wrench at the EE, a key step in achieving the desired
control objectives.

The wrench exertion model focuses on the relationship between cable tensions and
forces and moments generated at the EE. To determine the required cable tensions for
a given wrench, the inverse wrench-exertion problem is solved. In redundant systems,
where the number of cables (n) exceeds the number of wrench components to be con-
trolled, the inverse wrench-exertion problem yields an infinite set of feasible tension
solutions. In such cases, optimization techniques can be employed to select an optimal
tension distribution that enhances system performance while minimizing undesirable
wrench components.

2.1 Geometric Model

We consider an inertial reference frame O(x, y, z) and a moving frame O′(x ′, y ′, z ′) at-
tached to the end-effector (EE), as shown in Fig. 2.1. The pose of the EE is defined by
its position vector p in the inertial frame and its orientation, represented by the ro-
tation matrix R. In this work, R is parameterized using a minimal set of orientation
parameters, specifically the tilt and torsion angles ϵ= [φ,θ,ψ]⊤ [20].

Each cable is modeled as a massless straight segment guided through an eyelet at
point Bi , whose position in the inertial frame is given by the vector bi . The cable is
attached to the EE at point Ai , whose position is expressed in the moving frame as the
constant vector r′i , and the inertial frame as:
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ai = Rr′i +p. (2.1)

The closure equation for the i -th cable, describing the relationship between the
attachment and routing points, is given by:

li = bi −ai . (2.2)

The unit vector defining the cable direction is:

ti = li

∥li∥
. (2.3)

Figure 2.1: Geometric model of the CDWA.

2.1.1 Geometric Problem Formulation

The geometric equations play a crucial role in the analysis and control of CDWAs:

• Inverse Geometric Problem: If the EE pose (p,R) is known, the cable vectors li can
be directly computed using Eq. (2.2) for each i = 1, . . . ,n.

• Forward Geometric Problem: If the cable vectors li are given for all i = 1, . . . ,n,
solving Eq. (2.2) allows for the determination of the EE position and orientation
(p,R). However, this is only feasible if the number of cables n exceeds the num-
ber of degrees of freedom of the EE (tipically 6), ensuring that the system is fully
constrained.

In underconstrained systems (n ≤ 6), the forward geometric problem must be solved
in conjunction with static equilibrium equations [21]. However, parallel robot forward
kinematics often yield multiple solutions, and numerical methods do not always guar-
antee convergence [22].

To address these challenges, recent research has investigated the integration of ex-
ternal sensors into the control loop to directly measure the EE pose [23]. Despite this,
many robotic systems still rely on camera-based motion capture systems [24] to bypass
solving the forward geometric problem. While effective, this remains an expensive so-
lution (see Chapter 5).
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2.2 Wrench-Exertion Model

In a Cable-Driven Wrench Applicator (CDWA) with n cables, the applied cable tensions
produce a resultant wrench at the end-effector (EE), governed by the following equa-
tions:

n∑
i=1

fi = fgen, (2.4)

n∑
i=1

ri × fi = mgen, (2.5)

where:

• fi ∈R3 is the force exerted by the i -th cable on the EE,

• fgen ∈R3 is the force generated on the EE center of mass,

• mgen ∈R3 is the moment generated on the EE.

Depending on the application, either all components of fgen and mgen need to be
controlled, or only a subset of them (see Section 2.3).

Since the direction of each cable force fi is determined by Eq. (2.3), the equilibrium
equations can be rewritten in terms of cable tensions:

n∑
i=1

tiτi = fgen, (2.6)

n∑
i=1

(ri × ti )τi = mgen, (2.7)

where τi represents the tension magnitude in the i -th cable.
Since Eqs. (2.6) and (2.7) are linear with respect to τi , they can be rewritten in matrix

form as:

[
t1 · · · tn

r1 × t1 · · · rn × tn

]τ1
...
τn

=
[

fgen

mgen

]
. (2.8)

Defining:

A =
[

t1 · · · tn

r1 × t1 · · · rn × tn

]
, w =

[
fgen

mgen

]
, (2.9)

Eq. (2.8) simplifies to:

Aτ= w, (2.10)

which represents the final formulation of the wrench-exertion model for a generic
CDWA, capturing the relationship between the tension array τ ∈ Rn and the wrench
w ∈R6 applied to the EE, through the structure matrix A ∈R6×n .

17
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2.3 Solution to the Inverse Wrench-Exertion Problem

To control a Cable-Driven Wrench Applicator (CDWA), the desired wrench at the end-
effector (EE) must be converted into cable tensions that the motors will generate. This
requires solving the inverse wrench-exertion problem, where Eq. (2.10) is solved for the
cable tensions.

In wrench-application tasks, the desired wrench w may be either fully or partially
controlled, depending on the number of components that must be regulated. Let m
denote the number of controlled components. The remaining s = 6−m components
are uncontrolled and can be further categorized based on their impact on the task:

• Parasitic components wp ∈ Rk : These hinder the task and negatively affect per-
formance.

• Residual components wr ∈ Rh : These are neutral or inconsequential to the task
and do not affect performance evaluation.

By definition, the sum of the parasitic and residual components must satisfy:

h +k = s. (2.11)

For example, if the task requires the control of forces Fx and Fy , then m = 2, mean-
ing that s = 6−2 = 4 components remain uncontrolled.

Moreover, for practical application and physical consistency, the classification of
controlled (wc ), residual (wr ), and parasitic (wp ) components of the wrench should be
designed so that wc , wr and wp consist of either only forces or only moments. This
ensures the three wrenches to be homogeneus in terms of units.

To facilitate analysis, we assume that the controlled coordinates appear first in the
wrench vector, followed by residual and parasitic components:

w = [
w⊤

c w⊤
r w⊤

p
]⊤

. (2.12)

Using this partition, Eq. (2.10) can be rewritten as a set of three equations:

Acτ= wc , (2.13)

Arτ= wr , (2.14)

Apτ= wp , (2.15)

where Ac ∈ Rm×n , Ar ∈ Rh×n , Ap ∈ Rk×n . Eqs. (2.13), (2.14) and (2.15) are referred to
as controlled, residual, and parasitic equilibrium equations, as they account for con-
trolled, residual and parasitic components of the wrench, respectively. The full struc-
ture matrix is given by:

A = [
A⊤

c A⊤
r A⊤

p
]⊤

. (2.16)

The objective of the inverse wrench-exertion problem is to compute the tension
array τ that achieves the desired forces wc while keeping wr and wp within accept-
able limits. Additionally, a positivity constraint on cable tensions is required to prevent
slack cables. The presence of these bounds makes the inverse wrench-exertion prob-
lem a constrained problem, whose solution is presented in [25] and is briefly recalled
here.

18
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To develop a structured solution, we first consider the unconstrained case, where
we temporarily ignore the presence of physical and task-specific bounds. The exis-
tence of a solution to the unconstrained inverse wrench-exertion problem depends
primarily on the number of cables and the properties of the structure matrix. Since
cables can only exert tensile forces, a minimum of m +1 cables is required to control
m components of the wrench [26]. This establishes a fundamental physical constraint
on the number of controllable wrench components:

m ≤ n −1. (2.17)

Additionally, the desired wrench vector wc must lie within the subspace spanned by
the structure matrix Ac , leading to the condition:

rank(Ac ) = m. (2.18)

If both conditions (2.17) and (2.18) are satisfied, the equation

Acτ= wc (2.19)

admits infinitely many solutions for τ ∈Rn , which can be expressed as in [27]:

τ=τp +Nλ, (2.20)

where:

• τp = A+
c wc is a particular solution,

• A+
c ∈Rn×m is a right-inverse of Ac ,

• N is a basis for the right null-space (kernel) of Ac,

• λ ∈ Rn−m is a free parameter vector determining a specific element in the null-
space.

Matrix N can be chosen to form an orthonormal basis of the (n − m)-dimensional
null-space of Ac , such that N⊤N = In−m . Moreover, the particular solution τp satisfies
N⊤τp = 0n−m , while the homogeneous solution Nλ satisfies Ac Nλ= 06×1.

We can now substitute Eq. (2.20) into Eqs. (2.14) and (2.15), obtaining the analytical
expression of residual and parasitic components:

wr = Ar
(
τp +Nλ

)
. (2.21)

wp = Ap
(
τp +Nλ

)
. (2.22)

In the unconstrained case, λ is free to take any real value, leading to an optimiza-
tion problem, where the goal is to select an optimal λ to achieve desired performance
criteria. However, in real applications, due to the presence of task-specific bounds
(see Section 3.1), solving for λ requires a constrained optimization approach rather
than simply selecting an arbitrary null-space solution. Chapter 3 presents a Quadratic
Programming (QP) formulation, a well-established technique for solving constrained
quadratic optimization problems.
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Chapter 3

Tension Distribution Optimization via
Quadratic Programming

As introduced in Section 2.3, the inverse wrench-exertion problem of redundant CD-
WAs requires a constrained optimization method, since it may allow infinite solutions,
subjected to some constraints on cable tensions, parasitic and residual effects.

While many options have been explored in the literature [1, 5], this thesis focuses
solely on quadratic programming (QP) due to its computational efficiency, ability to
prevent discontinuities, and widespread practical use [28]. In this section, we first
introduce the typical constraints which bound the solution of the inverse wrench-
exertion problem in CDWAs, then we present two quadratic cost functions for comput-
ingλ, each emphasizing key differences between CDWAs performing the same task, as
further discussed in Chapter 5:

• Minimizing the 2-norm of Cable Tensions (QPT), which prioritizes energy effi-
ciency and safety by reducing overall cable tensions. Lower tensions result in
reduced actuator effort, directly decreasing electrical power consumption [29].
From a safety perspective, cable tension is directly related to the system’s stiff-
ness. Higher tensions create a stiffer system, which can enhance control pre-
cision but may also lead to excessive rigidity, increasing the risk of discomfort
or unintended force transmission to the patient [30]. By reducing cable tensions,
the system becomes more compliant, allowing for safer and more adaptive inter-
actions between the robot and the user. This reduces the risk of excessive force
application while improving the overall comfort and safety of the rehabilitation
process.

• Minimizing the 2-norm of Parasitic Components (QPP), which aims to minimize
undesired wrench components.

Subsequently, we introduce a graphical tool for geometrically analyzing the solution
space of CDWAs with n=m+2 cables. This tool provides an alternative representation
of the constrained optimization problem and visualizes the two distinct solutions ob-
tained from QPT and QPP.

3.1 Optimization constraints

Cable-Driven Wrench-Applicators rely on cables to apply wrench to a platform or end-
effector. Enforcing constraints on cable tensions and parasitic wrench is essential for
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ensuring feasibility, safety, and performance. These constraints prevent cables from
going slack or exceeding their strength limits and help maintain stable and precise op-
eration [31]. By bounding tensions and parasitic wrenches, the system remains within
a safe and controllable regime [31].

A key requirement in CDWAs is that cables can only exert tensile forces [17]. If a
cable’s tension drops to zero or below (non physical), it slackens, leading to loss of
actuation, reduced control accuracy, and potential mechanical failure due improper
spooling. To prevent these issues, a lower bound on tension is imposed:

τi ≥ τmin, ∀i . (3.1)

The value of τmin is chosen to account for cable weight, elasticity, and expected distur-
bances, ensuring a baseline level of stiffness and control.

At the same time, an upper bound on tension prevents excessive forces that could
damage the system [32]:

τi ≤ τmax, ∀i . (3.2)

Exceeding τmax risks cable failure, actuator overload, or excessive power consumption.
The value of τmax can be set based on the weakest component in the system, whether
it is the cable, actuator, or supporting structure, or based on energetic considerations.

Beyond tension constraints, the parasitic wrench must also be limited. Unintended
forces or moments can introduce instability, compromise precision, and reduce per-
formance in applications such as rehabilitation robotics and precision manipulation
[16]. A bound is imposed to keep these disturbances within an acceptable range:

wp ≤ wp,max. (3.3)

The threshold wp,max is determined based on the application’s sensitivity to external
disturbances, ensuring reliable operation.

Finally, for some applications, a constraint on the residual wrench might also be
required, although, by definition, wr does not hinder the task at hand. Typically, the
residual wrench is constrained for safety reasons with relatively larger bounds than
wp , as Chapter 5 will show. Similarly to wp , the constrain on the residual wrench can
be expressed as:

wr ≤ wr,max. (3.4)

These constraints significantly impact the solution space of the inverse wrench-
exertion problem. As highlighted in Section 2.3, multiple feasible tension distributions
exist for a given desired wrench. However, enforcing constraints such as τmin ≤ τi ≤
τmax and wp ≤ wp,max reduces the solution set to only physically achievable and safe
configurations.

3.2 Optimization cost functions: QPT and QPP

The quadratic programming tension (QPT) cost function aims at minimizing the 2-
norm of cable tensions and is derived from Eq. (2.20) as:

∥τ(λ)∥2 =λ⊤Hλ+2f⊤λ+ g , (3.5)

with:
H = N⊤N, f = N⊤τp g =τ⊤

pτp .

22



3.2. Optimization cost functions: QPT and QPP

As highlighted in Section 2.3, N⊤N = Im and N⊤τp = 0n−m , and (3.5) can be rewrit-
ten as:

∥τ(λ)∥2 =λ⊤λ+ g . (3.6)

where g is a constant for a given pose of the EE. While g remains part of the cost func-
tion, it does not affect the optimization process since its gradient is zero. Thus, mini-
mizing ∥τ(λ)∥2 is equivalent to minimizing:

∥τ(λ)∥2 =λ⊤λ (3.7)

which represents the final formulation of the quadratic cost function associated to the
2-nor m of cable tensions. Although g is not explicitly included in the optimization, it
is still part of the full cost function definition.

The QPT optimization problem can be formulated as:

min
λ

∥τ(λ)∥2

s.t.

[
Ap

Ar

]
τ(λ) ≤

[
wp,max

wr,max

]
,

τmin ⪯τ(λ) ⪯τmax.

(3.8)

where ⪯ refers to element-wise inequalities, wp,max and wr,max are the vectors holding
maximum values of parasitic and residual wrench components, respectively, and τmin

and τmax are lower and upper cable tension limits, respectively.
Alternatively to QPT, we can computeλwith quadratic programming parasitic com-

ponents (QPP). The corresponding cost function can be found from Eq. (2.22) as:

∥wp (λ)∥2 =λ⊤Lλ+2p⊤λ+ c, (3.9)

with:
L = N⊤A⊤

p Ap N, p = N⊤A⊤
p Apτp , c =τ⊤

p A⊤
p Apτp .

Similarly to QPT, c is a constant for a given EE pose and its gradient is zero, thus can be
eliminated for simplicity from the optimization, yielding to:

∥wp (λ)∥2 =λ⊤Lλ+2p⊤λ, (3.10)

and the QPP optimization problem can be formulated as:

min
λ

∥wp (λ)∥2

s.t. Arτ(λ) ≤ wr,max,

τmin ⪯τ(λ) ⪯τmax.

(3.11)

The presented QPT and QPP optimization problems can be solved numerically in
MATLAB, for instance, using the quadprog function. Once λ is obtained from either
QPT or QPP, the tension distribution τ can be computed using Eq. (2.20), the residual
wrench wr from Eq. (2.21), and the parasitic wrench wp via Eq. (2.22).

However, an analytical solution to the constrained optimization problem also ex-
ists, based on the Karush-Kuhn-Tucker (KKT) conditions. This formulation can be
leveraged to develop efficient algorithms that determine a closed-form solution with
minimal numerical iterations, provided that the dimension of λ remains small, typi-
cally 1 or 2. The next subsection reviews a well-known algorithm originally designed
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for CDWAs with n = m + 2 cables to solve the QPT optimization problem. We then
demonstrate how this algorithm can be extended to derive the closed-form solution
for QPP as well.

3.3 Geometric approach for robots with m+2 cables

The analytical solution of constrained optimization problems using the Karush-Kuhn-
Tucker (KKT) conditions is well established in the literature [33] and can be employed
to solve such problems efficiently. However, deriving an analytical solution can be
challenging, particularly when the constraints are non linear or the problem is high-
dimensional.

In this section, we review [27], a versatile algorithm developed for CDWAs with
n = m+2 cables, where m denotes the number of components of the controlled wrench
vector wc . This algorithm (i) finds the feasible polygon, namely the set of feasible val-
ues of λ which satisfy the problem’s constraints, and (ii) leverages KKT conditions to
derive a closed-form solution of the QPT optimization problem, while requiring min-
imal numerical iterations, making it a fast hybrid numerical-analytical approach fea-
sible for real-time implementation. We will demonstrate how this algorithm can be
extended to address QPP as well. Finally, we will interpret the QPT and QPP solutions
geometrically, to highlight relevant properties of both options.

For the sake of simplicity, in this section we will consider the constraints on ca-
ble tensions only (3.1)-(3.2), while neglecting those regarding parasitic and residual
wrench (3.3)-(3.4).

3.3.1 Feasible tension polygon

For CDWAs with n = m+2 cables, with m being the cardinality of the controlled wrench
wc , the solution space of Eq.(2.20) is the vector subspace P ⊂R2, defined as in [27]:

P = {λ ∈R2 | τmin ≤ τp +Nλ≤ τmax}. (3.12)

P is referred to as feasible tension polygon, as it contains all the possible setsλ= [λ1,λ2]⊤

that, through Eq. (2.20), generate a tension distribution τ which satisfies the tension
constraints. In fact, substituting Eq.(2.20) into the constrain equations (3.1) and (3.2),
one obtaines a system of 2n linear inequalities:

τmi n −τp ≤ Nλ≤τmax −τp (3.13)

which can be explicitly written as:

n1λ≥ τmi n −τp,1,

n1λ≤ τmax −τp,1,

n2λ≥ τmi n −τp,2,

...

nnλ≤ τmax −τp,n ,

(3.14)

where ni (1x2) is the i -th row of matrix N, τmi n and τmax are the lower and upper
tension bounds, respectively, and τp,i is the i -th element of τp , with i = 1, ..,n. Each
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3.3. Geometric approach for robots with m+2 cables

(a) Inequality lines (b) Feasible tension polygon

Figure 3.1: Example of feasible tension polygon of a 4-cable wrench applicator with the
EE in a certain pose.

inequality defines a half-plane bounded by a line corresponding to values of λ for
which one cable tension is equal to τmi n or τmax . Such lines can be identified sim-
ply by turning the inequalities into equalities, and will be referred to as inequality
lines Lmi n

1 ,Lmax
1 ,Lmi n

2 , ...,Lmax
n (See Fig. 3.1a). The intersection of the 2n half-planes in

(3.14) forms the feasible tension polygon P (Fig. 3.1b). In [27], a versatile algorithm is
presented to determine the edges of the feasible polygon P for CDWAs with n=m+2 ca-
bles. It is shown that, after a finite number of iterations, the algorithm will complete the
identification of P with two possible outcomes: if a convex feasible polygon is found,
its vertices will be returned, otherwise P =;, namely ∄λ ∈R2 | {τmin ≤ τp +Nλ≤ τmax}
and Eq.(2.10) has no solution.

3.3.2 Closed-form QPT Solution

This subsection presents a method to determine the tension distribution given by QPT
in closed form with a few and finite numerical iterations, assuming that the feasible
polygon P is known. It is further assumed that P is nonempty, as otherwise, no feasible
tension distribution exists.

As highlighted in Eq. (3.8), the QPT problem is formulated as:

min
λ

λ⊤λ

s.t. τmin −τp ≤ Nλ≤τmax −τp .
(3.15)

This is a strictly convex quadratic optimization problem with a unique global solution
[27]. The quadratic form λ⊤λ is a circle centered at the origin. If the origin λ = 0 lies
within the feasible tension polygon P, it is the optimal solution to Eq. (3.15), with the
corresponding tension distribution given by τp = A+

c wc (Fig. 3.2). However, if 0 ∉ P,
the optimal solution must lie on the boundary of P (Fig. 3.3), and can be determined
using the Karush-Kuhn-Tucker (KKT) conditions iterating over the polygon’s vertices
and edges.
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Figure 3.2: Example of a scenario where 0 ∈ P

3.3.2.1 Vertex Optimality Condition

The vertex optimality check is performed using the Karush-Kuhn-Tucker (KKT) con-
ditions, which provide necessary conditions for a solution to be optimal under con-
straints (see Appendix A).

A vertex vi j ∈ P is formed at the intersection of two constraint lines, denoted as Li

and L j , which are derived by turning inequalities into equalities:

Li : niλ= bi −τp,i , (3.16)

L j : n jλ= b j −τp, j , (3.17)

where ni is the i -th row of the matrix N, and bi corresponds to either τmin or τmax,
depending on whether Li represents a lower or upper bound. The same applies to L j

with index j .
To determine whether a given vertex is optimal, we formulate the Lagrangian of the

problem as:

L (λ,µi ,µ j ) =λ⊤λ+µi (niλ− (bi −τp,i ))+µ j (n jλ− (b j −τp, j )), (3.18)

where µi and µ j are the Lagrange multipliers associated with the active constraints Li

and L j , respectively.
Applying the stationarity condition, which ensures that the gradient of the Lagrangian

with respect to λ is zero, we obtain:

∇λL (λ,µi ,µ j ) = 2λ+n⊤
i µi +n⊤

j µ j = 0, (3.19)

which leads to: [
n⊤

i n⊤
j

][
µi

µ j

]
=−2λ. (3.20)

where [n⊤
i n⊤

j ] is a (2x2) square matrix.
To facilitate a structured approach, we introduce the scaled constraint normals:

ai = si n⊤
i , a j = s j n⊤

j , (3.21)
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3.3. Geometric approach for robots with m+2 cables

(a) Vertex optimality (b) Edge optimality

Figure 3.3: Example of two scenarios where 0 ∉ P.

where the scaling factors si and s j are defined as:

si =
{
−1, if bi = τmax,

1, if bi = τmin.

and similarly for s j . The introduction of ai ensures a consistent sign convention when
handling constraints.

Using these definitions, we rewrite Eq. (3.20) in terms of the vertex currently being
explored, vi j , as: [

µi

µ j

]
= [ai a j ]−1vi j . (3.22)

The dual feasibility conditions require that all Lagrange multipliers associated with
active constraints are non-negative: {

µi ≥ 0,

µ j ≥ 0.

If both conditions hold, the vertex vi j ∈ P is the optimal solution to Eq. (3.15)1.
An example of a vertex satisfying optimality conditions is shown in Fig. 3.3a.

3.3.2.2 Edge Optimality Condition

If the vertex vi j ∈ P is not optimal, the search proceeds along the next edge of P, defined
as the segment of L j connecting the vertices vi j and v j k ∈ P.

From Eq. (3.17), the Lagrangian function for this optimization step is:

L (λ,µ j ) =λ⊤λ+µ j (n jλ− (b j −τp, j )), (3.23)

1In the general formulation presented in Appendix A, the vertex vi j ∈ P inherently satisfies primal fea-
sibility, while the absence of inequality constraints ensures that the complementary slackness condition
holds automatically.
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Figure 3.4: Example of QPT unfeasible edge search (λ ∉ P) along inequality line L j .

where µ j is the Lagrange multiplier associated with the active constraint L j .
Applying the stationarity condition by setting the gradient of the Lagrangian to

zero, we obtain:
∇λL (λ,µ j ) = 2λ+n⊤

j µ j = 0, (3.24)

which simplifies to:

λ=−
µ j n⊤

j

2
. (3.25)

To ensure consistency in handling constraints, we introduce:

a j = s j n⊤
j , (3.26)

where s j is defined as:

s j =
{
−1, if b j = τmax,

1, if b j = τmin.

Substituting λ into Eq. (3.17), we solve for µ j :

µ j =
2s j (b j −τp, j )

a⊤
j a j

. (3.27)

The solution satisfies optimality if the dual feasibility condition holds:

µ j ≥ 0. (3.28)

If Eq. (3.28) is satisfied, the optimal solution along the edge is:

λ= µ j a j

2
. (3.29)

Before confirming that λ from Eq. (3.29) is the optimal solution to Eq. (3.15), it is
necessary to verify that the primal feasibility condition holds, ensuring that the solu-
tion satisfies all constraints of the problem2. Specifically, we must check whetherλ lies
within the segment of L j bounded by vi j and v j k :

2In the general formulation presented in Appendix A, the complementary slackness condition holds
automatically due to the absence of inequality constraints.
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λ ∈ [vi j ,v j k ]. (3.30)

This verification can be performed by substituting Eq. (3.29) into Eq. (3.13) and ensur-
ing that all 2n inequality constraints are satisfied.

If the solution is found to be infeasible, the point defined by Eq. (3.29) must be dis-
carded, and the search for the optimal solution continues by exploring the next vertices
and edges of P.

An example of edge optimality is illustrated in Fig. 3.3b, while an instance of infea-
sibility is shown in Fig. 3.4.

3.3.3 Closed-form QPP Solution

This subsection presents a method to determine the tension distribution given by QPP
in closed form with a few numerical iterations, assuming that the feasible polygon P
is known. It is further assumed that P is nonempty, as otherwise, no feasible tension
distribution exists.

As highlighted in Eq. (3.11), the QPP problem is formulated as:

min
λ

λ⊤Lλ+2p⊤λ

s.t. τmin −τp ≤ Nλ≤τmax −τp .
(3.31)

This is a strictly convex quadratic optimization problem with a unique global solution
[27].

Since matrix L is a (2x2) positive definite, the quadratic form λ⊤Lλ+2p⊤λ is a 2-
D ellipsoid, i.e. an ellipse. The center of this ellipse minimizes the cost function and
corresponds to the unconstrained optimal solution. It can be found minimizing Eq.
(3.10):

∇λ∥wp (λ)∥2 = 2Lλ+2p = 0, (3.32)

yielding:
λc =−L−1p. (3.33)

If λc lies within P, it is a feasible solution and represents the global optimum of
Eq. (3.31)(Fig. 3.5). Conversely, ifλc ∉ P, the optimal solution must lie on the boundary
of P (Fig. 3.6), and can be determined using the Karush-Kuhn-Tucker (KKT) conditions
iterating over the polygon’s vertices and edges.

3.3.3.1 Vertex Optimality Condition

The vertex optimality check is performed using the Karush-Kuhn-Tucker (KKT) con-
ditions, which provide necessary conditions for a solution to be optimal under con-
straints (see Appendix A).

A vertex vi j ∈ P is formed at the intersection of two constraint lines, denoted as Li

and L j , which are derived by turning inequalities into equalities:

Li : niλ= bi −τp,i , (3.34)

L j : n jλ= b j −τp, j . (3.35)

where ni is the i -th row of matrix N, and bi corresponds to either τmin or τmax, depend-
ing on whether Li represents a lower or upper bound. The same definitions apply to
L j for index j .
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Figure 3.5: Example of a scenario where λc ∈ P

To determine whether a given vertex is optimal, we construct the Lagrangian func-
tion:

L (λ,µi ,µ j ) =λ⊤Lλ+2p⊤λ+µi (niλ− (bi −τp,i ))+µ j (n jλ− (b j −τp, j )), (3.36)

where µi and µ j are the Lagrange multipliers associated with the active constraints Li

and L j , respectively.
Applying the stationarity condition by setting the gradient of the Lagrangian with

respect to λ to zero, we obtain:

∇λL (λ,µi ,µ j ) = 2Lλ+2p+n⊤
i µi +n⊤

j µ j = 0. (3.37)

which leads to: [
n⊤

i n⊤
j

][
µi

µ j

]
=−2(Lλ+p). (3.38)

where [n⊤
i n⊤

j ] is a (2x2) square matrix.
To simplify handling of constraints, we introduce the scaled constraint normals:

ai = si n⊤
i , a j = s j n⊤

j , (3.39)

where the scaling factors si and s j are defined as:

si =
{
−1, if bi = τmax,

1, if bi = τmin.

and similarly for s j . The introduction of ai ensures a consistent sign convention when
handling constraints.

Using these definitions, Eq. (3.38) can be solved in closed form for the Lagrange
multipliers: [

µi

µ j

]
= [ai a j ]−1(Lvi j +p). (3.40)
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(a) Vertex optimality (b) Edge optimality

Figure 3.6: Example of two scenarios where λc ∉ P.

The dual feasibility conditions require that all Lagrange multipliers remain non-
negative: {

µi ≥ 0,

µ j ≥ 0.

If both conditions hold, the vertex vi j ∈ P is the optimal solution to Eq. (3.31)3.
An example of a vertex satisfying optimality conditions is shown in Fig. 3.6a.

3.3.3.2 Edge Optimality Condition

If the vertex vi j ∈ P is not optimal, the search proceeds along the next edge of P, defined
as the segment of L j connecting the vertices vi j and v j k ∈ P.

From Eq. (3.35), the Lagrangian function for this optimization step is:

L (λ,µ j ) =λ⊤Lλ+2p⊤λ+µ j (n jλ− (b j −τp, j )), (3.41)

where µ j is the Lagrange multiplier associated with the active constraint L j .
Applying the stationarity condition, we set the gradient of the Lagrangian to zero:

∇λL (λ,µ j ) = 2Lλ+2p+n⊤
j µ j = 0, (3.42)

which leads to:

λ=−L−1(p+
µ j n⊤

j

2
). (3.43)

To ensure consistent handling of constraints, we introduce:

a j = s j n⊤
j , (3.44)

3In the general formulation presented in Appendix A, the vertex vi j ∈ P inherently satisfies primal fea-
sibility, while the absence of inequality constraints ensures that the complementary slackness condition
holds automatically.
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where the scaling factor s j is defined as:

s j =
{
−1, if b j = τmax,

1, if b j = τmin.

Substituting Eq. (3.43) into Eq. (3.35), we solve for µ j :

µ j =
2s j (n j L−1p+b j −τp, j )

a⊤
j L−1a j

. (3.45)

The solution satisfies optimality if the dual feasibility condition holds:

µ j ≥ 0. (3.46)

If Eq. (3.46) is satisfied, the optimal solution along the edge is:

λ=−L−1(p− a jµ j

2
). (3.47)

Before confirming that λ from Eq. (3.47) is the optimal solution to Eq. (3.31), it is
necessary to verify that the primal feasibility condition holds, ensuring that the solu-
tion satisfies all constraints of the problem4. Specifically, we must check whetherλ lies
within the segment of L j bounded by vi j and v j k :

λ ∈ [vi j ,v j k ]. (3.48)

This verification can be performed by substituting Eq. (3.47) into Eq. (3.13) and ensur-
ing that all 2n inequality constraints are satisfied.

If the solution is found to be infeasible, the point defined by Eq. (3.47) must be dis-
carded, and the search for the optimal solution continues by exploring the next vertices
and edges of P.

An example of edge optimality is illustrated in Fig. 3.6b, while an instance of infea-
sibility is shown in Fig. 3.7.

3.3.4 Geometric interpretation of QPT and QPP

The Quadratic Programming Tension (QPT) defines a cost function with circular level
sets, which must be minimized within the feasible region. Since the level sets are con-
centric circles always centered at the origin, the cost function is determined solely by
the radius. A larger radius corresponds to a higher cost. At any given radius, all points
on the circle share the same cost, namely same ∥τ∥2, as shown in Fig.3.8a. If 0, cen-
ter of the circular level set, is contained within P, it represents the global minimum of
the cost function, as, for example, in Fig. 3.2. Conversely, if the center lies outside the
feasible region, the optimal solution is obtained by expanding the circle until it first
intersects the feasible polygon. This intersection occurs either at a vertex or along an
edge of the polygon, as illustrated in Fig. 3.3.

In contrast, the Quadratic Programming Parasitics (QPP) defines a cost function
with elliptical level sets. Unlike QPT, where the cost function is determined solely by

4In the general formulation presented in Appendix A, the complementary slackness condition holds
automatically due to the absence of inequality constraints.
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Figure 3.7: Example of QPP unfeasible edge search (λ ∉ P) along inequality line L j .

(a) Cost levels QPT: circles centered at the
origin

(b) Cost levels QPP: ellipses

Figure 3.8: Cost levels QPT and QPP.

the radius, the elliptical level sets of QPP depend on three parameters: the center,
which determines the ellipse position, and the two semi-axes, which determine the
ellipse shape. If the center of the elliptical level set in QPP lies within P, it represents
the global minimum of the cost function, achieving the lowest possible cost (Fig. 3.5).
When the center is outside the feasible region, the optimal solution is found by expand-
ing the ellipse outward at higher and higher cost levels, as shown in Fig. 3.8b, until it
first intersects the feasible polygon, occurring either at a vertex or along an edge, as for
example happens in Fig. 3.6.

Through simulation, we observed that the presence of a linear term in the QPP
cost function (3.10) can impact the continuity of its solutions over time. Specifically,
changes in the end-effector (EE) pose can cause significant shifts in the center of the
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Figure 3.9: Comparison of λ solutions over time for QPT (red) and QPP (blue) with a
simulated 4-cable CDWA: QPT solutions exhibit continuity and form a clear pattern,
while QPP solutions are scattered, indicating potential discontinuities. The controlled
wrench dimension is m = 2, with a null-space dimension of n −m = 2.

elliptical level sets due to the influence of the linear term. As a result, the computed
values of λ may vary considerably between consecutive time steps. In particular, we
could observe that the continuity of λ solutions over time is particularly sensitive to
changes in EE orientation.

Conversely, in the absence of a linear term, the QPT cost function results in level
sets that are concentric circles always centered at the origin. This inherent property
prevents shifts in the center position over time, promoting greater continuity in the
computed λ values. Consequently, the tension distribution remains smooth over con-
secutive time steps, avoiding abrupt variations, as previously reported in the litera-
ture [28].

Figure 3.9 illustrates the solutions of λ obtained using QPT (red markers) and QPP
(blue markers) at each time step of a simulation conducted using real kinematic data
from a 4-cable CDWA experiment. The controlled wrench wc has a dimension m = 2,
resulting in a null-space of dimension n −m = 2.

The QPT solutions exhibit continuity over time, forming a clear, continuous and
well-defined pattern. In contrast, the QPP solutions are scattered without any dis-
cernible structure, highlighting the potential for discontinuities in theλ solutions pro-
vided by QPP.

However, the sensitivity of the QPT and QPP tension distribution to changes in EE
position and orientation has not yet been systematically analyzed and remains an open
question for future research.
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Chapter 4

Performance Metrics for Cable-Driven
Wrench Applicators

In this chapter, we introduce three new performance metrics for evaluating cable-
driven wrench applicators (CDWAs). These metrics serve two primary objectives:

1. Evaluating tension distribution strategies for a given robot architecture using the
Overall Performance Index (OPI).

2. Comparing different robot architectures based on a fixed tension distribution
using the Maximum Parasitic-Wrench Index (MPI) and the Maximum Tension
Index (MTI).

The proposed metrics are local, meaning they are computed for a specific position
i and a set of relevant orientations. To provide a broader analysis, the workspace is dis-
cretized into N positions, each associated with M orientations. This allows the metrics
to be evaluated both globally across the entire workspace and locally in task-relevant
regions.

Additionally, as mentioned in Chapter 2, wc , wr and wp should be defined such that
they contain either only forces or moments. This ensures dimensional consistency in
the cost functions defined in Eqs. (3.5) and (3.9), as well as in the performance metrics.

To illustrate these concepts, we present examples based on a 4-cable CDWA ar-
chitecture, where two wrench components are actively controlled while the remain-
ing four components remain uncontrolled. This results in a null-space dimension of
r = n −m = 2, allowing the analysis to be conducted in a 2D space of vectors λ. This
simplification enables intuitive geometric reasoning to better understand the perfor-
mance evaluation framework.

4.1 Comparison of two tension distributions through OPI

The Overall Performance Index (OPI) is a dimensionless index developed to evaluate
and compare the effectiveness of two tension distributions in a CDWA. Different ten-
sion distributions may require a trade-off between cable tensions (and consequently
power, safety concerns, etc..) and parasitic wrench components that negatively impact
the task. Determiningλwith QPT minimizes cable tensions at the potential expense of
higher parasitic components, whereas using QPP may do the opposite. This trade-off
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Figure 4.1: Example of a 2-D scenario where a trade-off between QPT and QPP is nec-
essary.

is illustrated in Fig. 4.1, using the 2-D scenario introduced earlier (i.e., a 4 cable robot
with r = 2).

In this example, we consider the parasitic wrench wp comprising moments, i.e.,
wp = [Mx My Mz]⊤. Given a fixed end-effector (EE) pose, the feasible tension poly-
gon P is computed using the method described in [27] (see Section 3.3.1) and is repre-
sented in pink in Fig. 4.1. The red marker denotes the solution obtained via QPT, which
minimizes ∥τ∥2 and results in an optimal cable tension norm of ∥τ∥2 = 42N . In con-
trast, the blue marker corresponds to the QPP solution, which minimizes ∥wp∥2 and
achieves an optimal parasitic moment norm of ∥wp∥2 = 6N m.

From Fig. 4.1, it is evident that selecting the QPT solution (red marker) results in
higher parasitic moments of ∥wp∥2 = 8N m, whereas the QPP solution (blue marker)
leads to a significantly higher cable tension norm of ∥τ∥2 = 74N . This demonstrates
the necessity of a trade-off between different tension distributions, for example those
given by QPT and QPP, to achieve a balanced performance.

The OPI serves as a quantitative tool to compare two alternative tension distri-
butions and determine which one provides the most favorable compromise between
minimizing cable tensions and reducing parasitic effects.

Given:

• an EE position

• a set of M task-relevant orientations

• two tension distributions, one computed by QPT (denoted by τT ) and the other
by QPP (denoted by τP )
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Figure 4.2: Geometric explanation in 2-D of τ∗
T,i and τ∗

P,i . In red, different ∥τT ∥2 pro-
vided by QPT, in blue, different ∥τP∥2 provided by QPP, computed over the M orienta-
tions, at a fixed EE position i .

we define:

τ∗
T,i = max

j

∥τT,i j∥p
n

, τ∗
P,i = max

j

∥τP,i j∥p
n

(4.1)

w∗
pT,i

= max
j

∥wpT,i j ∥, w∗
pP,i

= max
j

∥wpP,i j ∥ (4.2)

where j is the index that identifies a specific orientation in the list of the considered
ones, with j = 1, ..., M . Basically, τ∗

T,i and τ∗
P,i are the largest RMS values of the tension

arrays among the considered orientations, computed with QPT and QPP, respectively.
Similarly, w∗

pT,i
and w∗

pP,i
represent the largest 2-norm values of the parasitic wrench

among the considered orientations.
In a robot with n = m+2 cables, the norm ∥τ∥2 describes a circle centered atλ= 0,

allowing for a straightforward geometric interpretation of the termsτ∗
T,i = max j ∥τT,i j∥/

p
n

and τ∗
P,i = max j ∥τP,i j∥/

p
n. These quantities can be visualized by solving the QPT and

QPP formulations across M different orientations, where the solutions obtained from
QPT and QPP are represented as red and blue markers, respectively. Neglecting, for
the moment, the scaling factor

p
n appearing in (4.1), the term τ∗

T,i corresponds to the
minimum-radius circle that encloses all red markers, while τ∗

P,i is defined analogously
for the blue markers. This geometric representation is illustrated in Fig. 4.2, which
depicts the distribution of ∥τT ∥2 and ∥τP∥2 over multiple orientations at a fixed end-
effector position i . A similar geometric representation cannot be applied to w∗

pT,i
and

w∗
pP,i

, as different orientations provide changes in both position and shape of the cor-
responding ellipses, and the spatial relationship between a marker’s position in the λ
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space and its associated ∥wp∥ is no longer preserved, making a direct visualization of
these quantities not straightforward.

The Overall Performance Index (OPI) at position i is defined as:

OPIi =∆τi +∆wp,i (4.3)

where

∆τi =
τ∗

P,i −τ∗
T,i

(τ∗
P,i +τ∗

T,i )/2
·100, ∆wp,i =

w∗
pP,i

−w∗
pT,i

(w∗
pP,i

+w∗
pT,i

)/2
·100. (4.4)

Here:

• ∆τi quantifies the relative change in cable tensions, with respect to the mean
value, when switching from QPT to QPP.

• ∆wp,i quantifies the relative change in parasitic components, with respect to the
mean value, under the same transition.

Since strictly convex quadratic optimization problems have a unique global solu-
tion [27], at each j -th orientation the solution found by QPT is certainly the global op-
timum for ∥τ∥2, while the one found by QPP is certainly the global optimum for ∥wp∥.
This holds:

τ∗
T,i ≤τ∗

P,i , w∗
pP,i

≤ w∗
pT,i

. (4.5)

From Eqs. (4.2), the denominators in Eqs. (4.4) are always positive. Additionally, the
conditions established in Eqs. (4.5) ensure that the numerator of ∆τi is positive, while
the numerator of ∆wp,i is negative. As a result, we obtain:

∆τi ≥ 0, ∆wp,i ≤ 0 (4.6)

A positive OPI indicates that the reduction achieved by QPP in parasitic compo-
nents (∆wp,i ≤ 0) cannot outweigh the increase in cable tensions (∆τi ≥ 0), favoring
the use of QPT overall. The opposite happens when OPI is negative. Thus, when OPI is
greater than 0, QPT is more advantageous, while having an OPI smaller than 0 suggests
the opposite. OPI is equal to 0 if τ∗

T,i =τ∗
P,i and w∗

pP,i
= w∗

pT,i
, meaning that Eqs.(4.1) and

(4.2) selected, across the different orientations, a tension distribution and a parasitic
wrench which encapsule the same λ, resulting in QPT coinciding with QPP.

The definition of ∆τi and ∆wp,i presented earlier assume that OPI were computed
to evaluate the transition from QPT to QPP. However, if OPI was instead computed by
comparing QPP against QPT, the expressions for ∆τi and ∆wp,i would be reversed as
follows:

∆τi =
τ∗

T,i −τ∗
P,i

(τ∗
T,i +τ∗

P,i )/2
·100, ∆wp,i =

w∗
pT,i

−w∗
pP,i

(w∗
pT,i

+w∗
pP,i

)/2
·100. (4.7)

Despite this change in formulation, the interpretation of OPI remains unchanged: an
OPI greater than 0 still indicates the the original method (previously QPT, now QPP) is
preferable, while OPI smaller than 0 suggests the opposite.

The OPI index has some drawbacks that should be considered. By directly sum-
ming the two contributions of ∆τi and ∆wp,i without weighting them, we implicitly
assume that the two terms have the same importance. Depending on the application,
though, this might not be true, and weighting the two factors may be relevant. More-
over, when both w∗

pP,i
and w∗

pT,i
are close to zero (which is an ideal situation),∆wp,i may
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become undefined. A possible solution could be to define a threshold such that, when
both terms in∆wp,i are very small, wp,i is set to zero. In this case, OPI only depends on
τ, since wp is ideal in both optimizations.

By analyzing OPI across the workspace, it is possible to identify regions that suggest
the use of specific tension distribution, as their advantages outweigh disadvantages.
Therefore, OPI provides a practical tool for selecting which tension distribution should
be used among two potential candidates, either across the entire workspace or within
specific regions relevant to the task. By identifying tension distributions that optimally
balance tensions and parasitic wrench-components, OPI contributes to strengthening
the performance of CDWAs. An example of OPI application is provided in Chapter 5.

4.2 Comparison of different robot architectures through
MTI and MPI

The Maximum Tension Index (MTI) and Maximum Parasitic-Wrench Index (MPI) are
designed to evaluate the performance of different CDWAs, as they provide a measure of
the system’s ability to work with minimal effort (thus, minimizing cable tensions) and
limited interference to the task (thus, minimizing the parasitic effects), once a tension
distribution strategy is selected.

Given an EE position i , and its set of M task-relevant orientations, the MTI and MPI
are defined as:

MTIi = max j ∥τi j∥/
p

n, MPIi = max j ∥wp,i j∥ (4.8)

The MTIi measures the maximum RMS value of the tension array at position i , and
MPIi measures the maximum 2-norm of the parasitic wrench, across M different ori-
entations. For the MTIi it is possible to make similar consideration as in the previous
section. In a robot with n = m +2 cables, the norm ∥τ∥2 describes a circle centered at
λ = 0, allowing for a geometric interpretation of the MTIi . By finding cable tensions
with the previously selected tension distribution across M different orientations, and
neglecting, for the moment, the scaling factor

p
n, the term MTIi corresponds to the

minimum-radius circle that encloses all black markers. This geometric representation
is illustrated in Fig. 4.3, which depicts the distribution of ∥τ∥2 over multiple orienta-
tions at a fixed end-effector position i . Similarly to the previous section, geometric rep-
resentation cannot be applied to the MPIi , as different orientations provide changes in
both position and shape of the corresponding ellipses. Consequently, the spatial rela-
tionship between a marker’s position in the λ space and its associated ∥wp∥ would no
longer preserved, making a direct visualization of these quantities infeasible.

The workspace can be mapped with MTI and MPI values, enabling a quantitative
assessment of the robot performance. These indices can be useful for:

• identifying regions within the workspace where the robot experiences high cable
tensions or parasitic effects.

• designing tasks by selecting trajectories that pass through areas with low MTI
and MPI values.

• comparing different robot architectures under the same workspace and task con-
straints.
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Figure 4.3: Geometric explanation in 2-D of the MTIi . In black, different values of norm
∥τ∥2 computed over the M orientations, at a fixed EE position i .

The MTI and MPI may serve as tools for evaluating and optimizing CDWAs, facili-
tating informed design and task decisions.

4.3 Collective framework to analyze and compare CDWAs

The Overall Performance Index (OPI), Maximum Tension Index (MTI), and Maximum
Parasitic-Wrench Index (MPI) together form a structured framework for evaluating Cable-
Driven Wrench Applicators (CDWAs). These indices are intended to be used in a se-
quential manner to systematically assess different aspects of performance.

First, the OPI is used to determine the most suitable tension distribution (TD) strat-
egy by evaluating how different TD choices affect overall performance. Once the opti-
mal TD is selected, MTI and MPI are employed to compare performance across differ-
ent robot architectures or task conditions. Specifically, these indices allow for the eval-
uation of different CDWA designs performing the same task, the same CDWA executing
different tasks, and various actuation strategies applied to the same device. This lay-
ered approach ensures that the evaluation process accounts for both task-dependent
optimization and hardware-dependent performance variations.

The structured nature of this framework enables direct comparisons between dif-
ferent cable-driven systems, regardless of their design complexity or degree of actu-
ation redundancy. By analyzing key performance factors in a systematic manner, it
provides a standardized methodology for assessing tension distribution strategies and
performance (cable tensions and undesired parasitic wrenches) in applications such
as rehabilitation robotics, assistive exoskeletons, and force-feedback devices.

Beyond its role in performance assessment, this framework can be applied to de-
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sign, optimization and task-specific tuning. By analyzing how each index varies under
different task conditions, cable configurations, and control strategies, engineers can
identify design trade-offs, improve system efficiency, and enhance overall functional-
ity. The following Chapter illustrates how this framework was applied to evaluate the
performance of 4-cable and 8-cable CDWAs executing the same rehabilitation task.
Through this analysis, the two configurations were systematically compared, leading
to the validation that, for this specific task, the 8-cable device could be effectively re-
placed by a simpler and more cost-efficient 4-cable alternative without compromising
performance.
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Chapter 5

Framework Application: Comparison of
Two Cable Driven Wrench Applicators
for Rehabilitation

This chapter applies the proposed framework to analyze and compare Cable-Driven
Wrench Applicators (CDWAs) for rehabilitation. Specifically, we focus on a subset of
these systems known as Cable-Driven Force Applicators (CDFAs), where forces must be
precisely controlled while minimizing unwanted parasitic moments. Accurate force
application is essential in rehabilitation, as controlled forces facilitate effective patient
training, whereas undesired moments may introduce instability or discomfort [34].

The goal of this study is to evaluate whether a simpler, more accessible, and cost-
effective 4-cable CDFA can effectively replace an 8-cable system for a specific reha-
bilitation task. While 8-cable systems offer enhanced control over applied forces and
moments, they come with added complexity, increased costs, and potential usability
challenges, which may hinder their adoption in clinical settings. The core trade-off
explored in this chapter is between system complexity, accessibility, and performance.

This research is motivated by the need to increase accessibility for physiotherapists
during rehabilitation tasks. The ROAR Lab at Columbia University works with spinal
cord injury (SCI) patients, who often require continuous hands-on intervention from
clinicians while using robotic assistance. However, in an 8-cable system, the physi-
cal constraints imposed by multiple cables can limit real-time therapist interaction,
making the therapy less practical and efficient. In contrast, a 4-cable system reduces
obstructions, allowing for easier patient access and a more natural therapist-patient
interaction during training.

The focus of this study is to determine whether a 4-cable CDFA, which offers greater
accessibility and ease of use, can effectively perform the same rehabilitation task as an
8-cable system while maintaining high performance in force application.

Demonstrating the feasibility of a 4-cable system would highlight its potential to
reduce complexity and improve accessibility in clinical environments, thereby facili-
tating the adoption of CDWAs in rehabilitation settings. A system with fewer cables
could provide a simpler yet effective rehabilitation solution while maintaining thera-
peutic efficacy and ensuring a practical balance between performance and usability.

To systematically compare these two devices, we employ the proposed framework,
which consists of three key components:

1. Tension distribution selection using the Overall Performance Index (OPI): Ensures
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Figure 5.1: Exercise setup: a pelvic belt is attached to 8 cables while a screen in front of
the patient displays the trajectory to be followed.

that the cable-generated forces achieve the desired wrench while minimizing ca-
ble tensions and reducing parasitic effects.

2. Performance evaluation using the Maximum Tension Index (MTI) and Maximum
Parasitic-Wrench Index (MPI): Quantifies how well each system transmits the de-
sired forces while minimizing cable tensions and undesired moments.

3. Experimental validation: Verifies the practical feasibility of the framework’s pre-
dictions using real experimental data.

By structuring the comparison in this way, we aim to provide an objective and sys-
tematic evaluation of 4-cable vs 8-cable CDFAs, highlighting their respective advan-
tages and limitations in the rehabilitation context. The results will offer insights into
whether simpler systems can achieve comparable performance to more complex al-
ternatives, and what trade-offs arise in terms of force accuracy and patient experience.

Beyond the specific case of these two systems, this analysis demonstrates the broader
applicability of the proposed CDWA evaluation framework. The methodology devel-
oped in this study can be generalized to compare other cable-driven devices, helping
guide future design choices in rehabilitation robotics.

5.1 Rehabilitation task and system setup

The rehabilitation task is designed to enhance stand-balance capabilities by challeng-
ing the patient’s stability in a controlled manner. During the session, the patient stands
with their feet in a fixed position while wearing a pelvic belt, which serves as the robot’s
end-effector (EE). The patient is instructed to follow a custom-designed trajectory dis-
played on a screen in front of them (Fig. 5.1).

The task consists of two main phases:
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(a) Example of a customized trajectory that
the patient is required to follow with their
center of mass. The green arrow indicates
the direction the patient is facing during
training.
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Figure 5.2: Task trajectory and force field.

1. Offline Base of Support (BOS) Assessment: before the training session begins, the
patient’s Base of Support (BOS) is evaluated using the Star Reaching Test [35]. This test
allows for an individualized assessment of the patient’s stability limits and is used to
design a custom trajectory that effectively challenges their equilibrium.

2. Online Robot-Assisted Training: during training, the patient is required to shift
their center of mass (COM) along the predefined trajectory (Fig. 5.2a). This involves
controlled bending movements to reach different positions while maintaining balance.

To ensure patient safety and assist only when necessary, the robot employs an assist-
as-needed control strategy [36]. Specifically, when the real-time COM position devi-
ates from the trajectory by more than the force field radius, the robot applies planar
horizontal assistive forces Fx ,Fy , equal to 10% of the patient’s body weight, directed
towards the center of the force field (Fig. 5.2b. This assistance is intended to guide the
patient back towards stability without overcompensating.

The task is currently implemented using the RobUST robot [37], which features an
8-cable design (Fig. 5.1). The robot’s geometric configuration has been reconstructed
in Fig. 5.4a, with detailed geometric parameters provided in Tab. 5.1. The COM posi-
tion is continuously tracked in real time using a Vicon motion capture system, which
consists of high-speed cameras capturing reflective marker positions at a sampling fre-
quency of 200 Hz (Fig. 5.3). These markers, strategically placed on both the robot’s
EE and the patient, enable high-precision kinematic tracking, eliminating the need to
solve the analytical forward geometric problem (2.1.1).

In this study, we applied the presented framework to evaluate the feasibility of a
simplified 4-cable design (Fig.5.4b, geometric parameters in Tab. 5.2), with all pulleys
positioned in a single intermediate plane, to improve accessibility for the physiothera-
pist during the rehabilitation task, while maintaining adequate performance.
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Figure 5.3: Vicon motion capture system: cameras (circled in red) and markers. Mark-
ers on the EE are for kinematic tracking, while those on the human body are for biome-
chanical analysis.

(a) 8-cables CDFA (RobUST).

-0
.9

0
.7
5

1

0
.3

0
.5

0
.7

0
.9

-
0
.
9

-
0
.
7

-
0
.
5

-
0
.

-
000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b) 4-cables CDFA.

Figure 5.4: Architecture comparison: CDWAs eyelets are in red, cables are black lines,
and the cylindrical object is the EE.

The volume relevant to the rehabilitation exercise was discretized, in both archi-
tectures, with N = 1000 positions and a set of M = 15 orientations for each position,
as shown in Fig.5.5. The workspace bounds were set to x, y ∈ [−0.5,0.5]m and z ∈
[0.3,1.2]m for position, and ±20◦ (tilt) and ±10◦ (torsion) for orientation, as suggested
in [38]. The patient’s body weight was considered to be 85kg, and the desired wrench
10% of this body weight, to be applied at the center of mass of the EE. Two tension
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Table 5.1: Geometrical parameters of the RobUST architecture.

i 1 2 3 4 5 6 7 8

bi [m]

 0.9
−0.9

0

 0.9
0.9
0

 −0.9
−0.9

0

 −0.9
0.9
0

  0.9
−0.9
1.5

 0.9
0.9
1.5

 −0.9
−0.9
1.5

 −0.9
0.9
1.5


r′i [m]

 0.14
−0.14
−0.05

  0.14
0.14
−0.05

 −0.14
−0.14
−0.05

 −0.14
0.14
−0.05

  0.14
−0.14
0.05

 0.14
0.14
0.05

 −0.14
−0.14
0.05

 −0.14
0.14
0.05



Table 5.2: Geometrical parameters of the 4-cable architecture.

i 1 2 3 4

bi [m]

 0.9
−0.9
0.75

  0.9
0.9

0.75

 −0.9
−0.9
0.75

 −0.9
0.9

0.75


r′i [m]

 0.14
−0.14

0

 0.14
0.14

0

 −0.14
−0.14

0

 −0.14
0.14

0



(a) 8-cables CDFA (RobUST). (b) 4-cables CDFA.

Figure 5.5: Discretized workspace: robot frame in black, cable eyelets in red, discrete
workspace points in grey.

distributions, namely QPT and QPP, were compared for each architecture, and the fol-
lowing constraints were considered: τmin = 10N, τmax = 90N, wr,max = 70N (account-
ing for Fz), and wp,max = 15Nm (accounting for parasitic moments Mx , My , Mz). The
mathematical framework described in Chapter 3 was implemented for both architec-
tures in MATLAB. (3.8) and (3.11) were solved by using the quadprog function, allowing
for the computation of OPI, MTI, and MPI.
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Figure 5.6: OPI distribution over the workspace.

(a) Workspace and task trajectory (b) Focus on task trajectory

Figure 5.7: Task subregion analysis of the 8-cable robot: task trajectory in black, posi-
tive OPI values in blue, negative OPI values in red.

5.2 Tension distribution selection through OPI

The comparison between tension distributions provided by QPT and QPP was evalu-
ated through OPI for each robotic architecture, with the results illustrated in Fig. 5.6.
In general, both 4-cable and 8-cable robots exhibit predominantly positive OPI values
across the workspace, indicating the convenience of using QPT for both architectures.
However, a notable subregion of the 8-cable robot’s workspace (Fig. 5.6a) displays neg-
ative OPI values and requires further investigation.

To better assess the significance of these negative OPI values, we analyzed the inter-
section between a potential task’s trajectory and the 3D workspace, as shown in Fig. 5.7.
In this figure, the task trajectory (depicted in blue) is overlaid on a 3D map of OPI val-
ues. Blue dots represent points with positive OPI, while red dots indicate negative OPI
values. As Fig. 5.7b demonstrates, the majority of the points surrounding the trajec-
tory’s relevant subregion are blue, suggesting that negative OPI values have minimal
impact on the task. Therefore, QPT remains a viable and recommended choice even
for the 8-cable device.
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5.3 Performance evaluation through MTI and MPI

With the selected tension distribution (QPT) applied to both architectures, performance
was analyzed in terms of cable tensions and parasitic moments, captured by MTI and
MPI, respectively.

The 4-cable architecture demonstrates high MTI values, indicating significant ca-
ble tensions across the entire workspace, as shown in Fig. 5.8a, compared to the 8-cable
architecture, which achieves consistently lower MTI values (Fig. 5.9a). Hence, for the
given setup, the 8-cable system is more effective at minimizing cable tensions. Both ar-
chitectures exhibit strong continuity in MTI values across adjacent positions, aligning
well with the requirements in rehabilitation applications.

Regarding parasitic moments, the 4-cable configuration exhibits a steep gradient
(Fig. 5.8b), with MPI values increasing substantially as positions move further away
from the pulley plane. On the other hand, the 8-cable architecture displays a more
uniform distribution of parasitic moments (Fig. 5.9b), maintaining relatively constant
and generally higher values throughout the workspace.

For the rehabilitation task under consideration, the trajectory is positioned at the
center of the workspace (Fig. 5.7), a region where the parasitic moments for the 4-cable
architecture not only are significantly reduced, aligning well with the task’s require-
ments. This localized reduction mitigates the impact of the 4-cable system’s limitations
and suggests that it can perform adequately for the given exercise.

(a) 4-cable MTI (b) 4-cable MPI

Figure 5.8: 4-cable performance.

5.4 Experimental validation

To validate the proposed framework and assess the feasibility of replacing an 8-cable
CDWA with a more accessible 4-cable system, we conducted a controlled experimen-
tal study replicating the conditions used in simulation, described in Section 5.1. The
experiment was designed to verify the predictions made by the framework regarding
tension distribution and parasitic wrenches during a rehabilitation task.

A human subject was recruited to perform the same task under two different con-
ditions: once with the 4-cable system and once with the 8-cable system. The exper-
imental setup was carefully designed to match the simulated conditions as closely as
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(a) 8-cable MTI (b) 8-cable MPI

Figure 5.9: 8-cable performance.

(a) 8-Cable robot (RobUST) (b) 4-cable robot

Figure 5.10: Experimental setup.

possible 5.10. The tension distribution for both configurations was determined using
Quadratic Programming Tension (QPT) optimization, as recommended by the Over-
all Performance Index (OPI)(Section 5.2). The task parameters remained unchanged
across both experiments to ensure a direct comparison.

During the trials, real-time data were collected on the end-effector (EE) trajectory,
cable tensions, and structure matrices. The EE trajectory and the structure matrices
were tracked using motion capture system, while load cell measurements provided di-
rect recordings of the cable tensions. Fig.5.11 shows the EE trajectory in the 8-cable
and 4-cable system, respectively.

The experimental results closely aligned with the theoretical predictions, validating
the proposed framework. In terms of cable tensions (Fig.5.12), the 4-cable system ex-
hibited consistently higher mean cable tensions compared to the 8-cable system, with
a mean range of 35N to 45N , whereas the 8-cable system showed lower mean tensions,
ranging from 18N to 30N . Additionally, the standard deviation of cable tensions was
significantly larger in the 4-cable system (up to 50N ) compared to the 8-cable system
(up to 25N ). These results indicate that, for this specific task and configuration, the
reduction in the number of cables led to higher tension requirements to achieve the
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(a) 8-Cable robot (RobUST) (b) 4-cable robot

Figure 5.11: 2-D trajectories described by the belt centroid during the experiments.
The exercise was repeated 6 times for each configuration, resulting in overlapping
plots.

desired force application, aligning with predictions.
The parasitic moment analysis demonstrated a clear advantage for the 4-cable sys-

tem in minimizing unwanted moments for this specific rehabilitation task and cable
arrangement(Fig.5.13). While Mx values were comparable between the two configura-
tions (mean of 3.7N m for the 4-cable vs. 3.0N m for the 8-cable system), the 4-cable
system exhibited significantly lower parasitic effects in My and Mz . Specifically, the
mean parasitic moment in My was approximately 1.5N m for the 4-cable system com-
pared to 5.0N m in the 8-cable system, with a standard deviation nearly twice as large in
the latter. The most striking difference was observed in Mz , where the 8-cable config-
uration exhibited a mean of 7.5N m, nearly four times higher than the 2.0N m recorded
for the 4-cable system. This confirms that, under the conditions of this specific exam-
ple, reducing the number of cables leads to a more stable and controlled force applica-
tion, effectively mitigating excessive parasitic moments.

Despite the increased cable tensions, which might contribute to a stiffer feel and
potentially increased jerkiness for the patient, the substantial reduction in parasitic
moments resulted in an overall higher-quality wrench application. Furthermore, an
analysis of the residual force Fz , although not directly relevant to the rehabilitation
task, revealed significantly lower values in the 4-cable configuration (Fig. 5.14). Specif-
ically, the mean residual force in the 4-cable system was approximately 5N , with a stan-
dard deviation of 4N , whereas the 8-cable system exhibited a much higher residual
force, with a mean of 30N and a standard deviation of 12N . However, it is important
to note that in the 4-cable configuration, the pulleys were placed at pelvic height, re-
sulting in a predominantly planar setup. This inherently aligns well with the primarily
planar nature of the rehabilitation task, potentially explaining the observed reduction
in residual forces. In contrast, the 8-cable system, which features pulleys distributed
across multiple height levels, introduces a greater degree of force coupling in the ver-
tical direction, leading to higher residual forces in Fz . Consequently, the comparison
regarding residual force reduction may be biased by the geometric configuration of the
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Chapter 5. Framework Application: Comparison of Two Cable Driven Wrench
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Figure 5.12: Tensions on each cable (experimental).
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Figure 5.13: Parasitic moments (experimental).

systems, rather than solely by the number of cables.
To further validate the accuracy of the framework, the simulated Maximum Para-

sitics Index (MPI) and Maximum Tension Index (MTI) were extracted from colormaps
(Fig. 5.8, 5.9) at the positions corresponding to the real trajectory. The MPI and MTI
were then recomputed using experimental data over the full trajectory. The results
(Fig. 5.15,5.16) indicate that, for the 8-cable robot, the real MPI and MTI closely align
with the predicted values. Regarding the 4-cable robot, MPI was slightly overestimated,
while MTI was a little underestimated. Overall, the findings validate the framework’s
effectiveness in both relative performance comparisons, such as evaluating trade-offs
between 4-cable and 8-cable systems, and absolute performance estimation. The frame-
work provides consistent numerical predictions of system performance in terms of ca-
ble tensions and parasitic wrench for a given task.

These findings strongly support the feasibility of replacing an 8-cable CDWA with
a more accessible, cost-effective, and simpler 4-cable system while even achieving im-
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5.4. Experimental validation
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Figure 5.14: Residual force (experimental).

proved performance in terms of parasitic wrench minimization. The experimental val-
idation confirms that the proposed analysis and optimization framework is a reliable
tool for assessing and optimizing the performance of cable-driven rehabilitation de-
vices.
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Figure 5.15: Comparison of simulated and measured MTI values over six laps of the
experiment. The black lines represent the average simulated MTI values, while the red
lines indicate the instantaneous values of the real MTIs.
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Figure 5.16: Comparison of simulated and measured MPI values over six laps of the
experiment. The black lines represent the average simulated MPI values, while the red
lines indicate the instantaneous values of the real MPIs.
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Chapter 6

Conclusions

Cable-Driven Wrench Applicators (CDWAs), a specialized subset of Cable-Driven Par-
allel Robots (CDPRs), are widely employed in robotics for the precise application of
forces and moments at the end-effector through cable actuation. However, to the
best of the author’s knowledge, existing literature lacks a comprehensive framework
for evaluating and optimizing these systems when used specifically for wrench ap-
plication. As the demand for such systems continues to grow across various applica-
tions, a structured methodology was needed to address key challenges, including: (i)
the variability in control strategies depending on the number of employed cables, (ii)
the management of undesired wrench components that naturally arise when a subset
of wrench components is controlled, (iii) ensuring that cable tensions remain positive
and bounded while satisfying pose-dependent force requirements, and (iv) developing
meaningful performance metrics for wrench application.

This thesis started to address this gap by introducing an analytical framework de-
signed to systematically analyze and compare CDWAs, regardless of the number of ca-
bles or the specific task being performed. The proposed methodology was developed
in three main stages. First, in Chapter 3, a tension computation strategy was intro-
duced, under the assumption that the number of cables exceeds the number of con-
trolled wrench components. Next, in Chapter 4, three performance metrics were pro-
posed to quantify CDWA efficiency: the Overall Performance Index (OPI) for selecting
the optimal tension distribution strategy, and the Maximum Tension Index (MTI) and
Maximum Parasitic-Wrench Index (MPI) for assessing cable tensions and undesired
wrench components. Finally, in Chapter 5, the framework was applied to simulate and
evaluate the feasibility of replacing an 8-cable with a 4-cable robot for a rehabilitation
task.

Results showed that a 4-cable system performs as well as an 8-cable system in ap-
plying a given force along a given trajectory, while maintaining applied moments un-
der control. Cable tensions, however, are comparatively higher in the 4-cable system,
despite tension minimization being applied during the tension computation. Overall,
results validated the feasibility of performing the rehabilitation task using the simpli-
fied 4-cable design. These insights were confirmed by a real-world experiment, further
reinforcing the effectiveness of the proposed evaluation methodology.

Beyond the specific case of the 4-cable and 8-cable systems analyzed, this study
highlights the broader applicability of the proposed framework. The developed method-
ology can be extended to evaluate and compare other cable-driven robotic systems,
providing valuable insights for optimizing CDWA designs in various application do-
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mains. Future research may further refine these performance metrics, explore alterna-
tive optimization strategies for tension distribution, and assess the framework’s appli-
cability in non-rehabilitation contexts.
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Appendix A

General Formulation of KKT Conditions

The general formulation of the Karush-Kuhn-Tucker (KKT) conditions is given in [33]
and is briefly recalled here.

Considering the following constrained optimization problem:

min
x

f (x) (A.1)

subject to

gi (x) ≤ 0, i = 1, . . . ,m, (A.2)

h j (x) = 0, j = 1, . . . , p, (A.3)

where:

• f (x) is the objective function,

• gi (x) are the inequality constraints,

• h j (x) are the equality constraints.

The Lagrangian function for this problem is:

L (x,µ,ν) = f (x)+
m∑

i=1
µi gi (x)+

p∑
j=1

ν j h j (x), (A.4)

where:

• µi are the Lagrange multipliers for the inequality constraints gi (x),

• ν j are the Lagrange multipliers for the equality constraints h j (x).

For a feasible solution x∗ to be optimal, it must satisfy the Karush-Kuhn-Tucker
(KKT) conditions:

• 1. Stationarity

∇xL (x,µ,ν) =∇ f (x)+
m∑

i=1
µi∇gi (x)+

p∑
j=1

ν j∇h j (x) = 0. (A.5)
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• 2. Primal Feasibility

gi (x) ≤ 0, ∀i , (A.6)

h j (x) = 0, ∀ j . (A.7)

• 3. Dual Feasibility
µi ≥ 0, ∀i . (A.8)

• 4. Complementary Slackness

µi gi (x) = 0, ∀i . (A.9)

Interpretation of KKT conditions and role in optimality

The stationarity condition (A.5) ensures that the gradient of the Lagrangian with re-
spect to the decision variables x is zero. At an optimal point, the objective function
cannot be further minimized without violating at least one constraint.

The Primal Feasibility Condition (A.7) ensures that the solution x∗ satisfies all given
constraints of the problem, i.e., it remains within the feasible region defined by the in-
equality and equality constraints.

The Dual Feasibility Condition (A.8) guarantees that Lagrange multipliers µi asso-
ciated with the inequality constraints must be non-negative. The sign of µi determines
the influence of the constraint on the solution. A negative µi would indicate that the
constraint is pushing the solution in the wrong direction, which contradicts optimal-
ity. Non-negative multipliers ensure that constraints are correctly contributing to the
minimization process.

The Complementary Slackness Condition (A.9) enforces that either:

• The constraint is active (gi (x) = 0), meaning it is exactly satisfied at the optimal
solution, or

• The corresponding Lagrange multiplier is zero (µi = 0), indicating that the con-
straint is inactive and does not affect the solution.

This condition prevents unnecessary constraints from distorting the solution. Only
the active constraints influence the optimality conditions, while inactive constraints
(those not affecting the solution) have zero multipliers.

Together, the KKT conditions ensure that:

• The solution is a critical point of the Lagrangian (stationarity), ensuring a bal-
ance between the objective function and the constraints.

• The solution satisfies all problem constraints (primal feasibility).

• The Lagrange multipliers for inequality constraints are non-negative (dual feasi-
bility), ensuring that constraints influence the solution in the correct direction.
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• Only the active constraints influence the optimal solution (complementary slack-
ness), preventing unnecessary constraints from affecting the outcome.

These conditions are necessary for optimality in constrained optimization prob-
lems. In cases where the problem satisfies convexity conditions, the KKT conditions
are also sufficient for global optimality.
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