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Abstract

This thesis explores the interplay between symplectic geometry and geometric quantiza-
tion, a mathematical framework that seeks to transition from classical mechanics to quantum
mechanics. Starting with the foundations of smooth manifolds, tensors, and symplectic struc-
tures, the geometric prerequisites for quantization are established, to be able to then move on
to introduce the process of quantization, highlighting its challenges, focusing on the possibil-
ity of having different quantizations. As a preliminary step, the concept of prequantization
is explored, followed by the optimization provided by polarization. By making use of exam-
ples and counterexamples, we are able to analyze the limits of quantization methods and to
demonstrate the urge for more general structures.





1 Introduction

It might seem that at a microscopic level our world could still be described by the laws of classical
physics (like Newtonian mechanics or electromagnetism). Taking a closer look, some phenomena,
such as the stability of atoms, led scientists to discover the necessity of a theory that could replace
the classical one. In fact, within the realms of classical physics, atoms are highly unstable and
would be predicted to collapse, in contrast to experimental findings and the stability of the world
we have around us. Since orbital motion is an accelerated motion, and thus emits radiation, the
electron would collapse into the nucleus. After having observed that atoms are able to emit and
absorb energy in discrete quantities, it appeared necessary to postulate the existence of stable
orbits for electrons at certain discrete radii.

In addition, after the famous two-slit experiment, it was clear that under certain circumstances
particles can have a wave-like nature and under certain conditions light showed particle-like be-
haviors. The microscopic level of nature was, therefore, found to be astoundingly strange.

Exploring the analogy found between classical mechanics and Schrödinger and Heisenberg’s
quantum mechanics, Dirac was able to formulate a general quantum condition, a guideline for
passing from a given classical system to the corresponding quantum theory. This thesis explores
this concept, generally known as quantization. Roughly speaking, quantization consists in replac-
ing the classical algebra of observables by an algebra of operators acting on some Hilbert’s space.

A conceptual challenge is presented by the process of quantization, as it attempts to construct
a more fundamental quantum theory starting from a classical framework which is only a mere
approximation of reality. Classical mechanics is able to emerge from quantum mechanics if limited
to the macroscopic regime. It would seem more natural to derive classical mechanics from quantum
mechanics rather than the other way around, from an epistemological perspective. However, quan-
tization changes this logic trying to obtain a quantum theory from classical variables and structures.

A major issue in this approach is that quantization is not uniquely defined. Different quan-
tum theories can be found from many inequivalent quantizations procedures that start off of the
same classical limit. Quantization with its ambiguity highlights the limitations of using classical
mechanics as a foundation for quantum theory.

Quantization’s formal structure relies heavily on classical concepts such as phase space, observ-
ables, and Poisson brackets. The formulation of a quantum theory without any classical reference
remains an unresolved challenge.

These considerations illustrate the inherent difficulties in constructing quantum theories through
quantization but, in spite of them, and despite its conceptual foundations are not entirely satis-
factory, this procedure remains a powerful and widely used tool in theoretical physics.

Geometric Quantization is a very general and modern procedure providing a systematic method
for transitioning from classical mechanics to quantum mechanics using differential geometry. This
is why it is considered so broad and relevant today. Geometric quantization does not strongly
depend on the choice of coordinates, since it is based on the global geometric structure of phase
space, making it applicable in a wide range of contexts, including curved spaces and constrained
systems.
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2 Manifolds, Tensors and Vector Spaces

2.1 Manifolds

Manifolds can be thought of as the generalization of surfaces in higher dimensional spaces. In
this chapter we will look at manifolds and the operations w can define on them, focusing on their
application in Hamiltonian mechanics.Now, let us move on to more formal definitions.

Definition 1.1: A locally euclidean space M of dimension d is a Hausdroff second countable
topological space for which every point p ∈M has a neighborhood homeomorphic (where an home-
omorphism between to topological spaces is a bijective, continuous function whose inverse is also
continuous) to an open subset of Rd. If ϕ is a homeomorphism of connected U ⊂ M to an open
subset of Rd , then ϕ is called a coordinate map. A pair (U, ϕ) is called chart.

Definition 1.2: The transition map ϕij describes, When two coordinate charts (Ui, ϕi) and
(Uj , ϕj) overlap (meaning Ui ∩Uj ̸= ∅), how the coordinates in chart i relate to the coordinates in
chart j within the region of overlap. Specifically: ϕij = ϕj ◦ ϕ−1

i This function maps a point from
the image of Ui ∩ Uj under ϕi (which is a subset of Rn) to the image of the same point under ϕj
(another subset of Rn).
Two coordinate charts (Ui, ϕi) and (Uj , ϕj) are named smoothly compatible if Uij = ∅ or if ϕij is a
diffeomorphism.

Definition 1.3: A smooth atlas for a manifoldM is a collection of smoothly compatible charts
covering M .
A smooth structure is a maximal atlas Amax , an atlas that cannot be contained in a larger atlas.

And now, we can define:

Definition 1.4: A smooth manifold is the information of a topological manifold and a smooth
structure.

Definition 1.5: Let M be a smooth manifold. A function f : M → R is said to be smooth if
∀ (U, ϕ) ∈ Amax we have that f ◦ ϕ−1 is smooth.

Lemma 1.1: Given a smooth manifoldM with smooth structure given by the max atlas Amax,
then fixed an atlas A = (Ui, ϕi) ⊂ Amax (where Ui is an open set in M) then f :M → R is smooth
if f ◦ ϕ−1

i |ϕi(U) is smooth for all i. We have to notice that once we fixed an atlas, a function

f̂ = f ◦ ϕ−1 is smooth for every coordinate chart in the atlas A.

Now, let’s look at some examples of smooth manifolds:

i) Rn with the standard chart (Rn, id)
ii) The n-torus Tn = S1×· · ·×S1 (n times). The n-torus is the Cartesian product of n circles.

If we want to look at a generalization of the previous construction looking at maps between
smooth manifolds M and N , F :M → N . Consider F̂ to be the coordinate representation of F .

Definition 1.6: A map between smooth manifolds F : M → N is a diffeomorphism if it is
smooth with a smooth inverse. in this case M and N are diffeomorphic.

In case the two manifolds are not compatible we could say that they are different from a smooth
point of view.
For example, we take R with ϕ = id or ω(x) = x3 that determine different smooth structures on R
in fact the composition of one with the inverse of the other ϕ◦ω1 = x1/3 is not smooth at the origin.
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We define the two smooth manifolds:

Rϕ = (R, Aϕ), where Aϕ = {(U, ϕ) | U ⊆ R open, ϕ(x) = x}.

Rω = (R, Aω), where Aω = {(V, ω) | V ⊆ R open, ω(x) = x3}.

If we take F = x
1
3 : Rϕ → Rω defined between the manifolds arising from the smooth struc-

tures, we can say that they are diffeomorphic since F̂ = id.

In order to continue to look for the definitions of a function’s derivatives on manifolds, let’s
define the tangent space of a manifold, but first:

The tangent space at a point p on a manifoldM is constructed through several related concepts:

Definition 1.7:
A linear map Yp : C

∞(M) → R satisfying the Leibniz rule

Yp(fg) = f(p)Ypg + g(p)Ypf

is called a derivation at p.

Definition 1.8: A smooth definition is a smooth map C : J ⊂ R →M . From now on we will
denote it C(t) .

Definition 1.9: Let C : R →M be a defi on the manifold M . A tangent vector at x = C(0)
is a directional derivative of f :M → R along C calculated in t = 0.

Definition 1.10: The space of all derivations at p is denoted TMp and forms the tangent
space at p. Directional derivatives provide a natural way to create derivations.

Now, let’s suppose we have a smopoth map F :M → N , we can notice that, for every p ∈M
there is a naturally induced linear map F∗ : TMp → TNF (p) by: (F∗Xp)F (p) · f := Xp · (F ◦ f) this
is called push foward and, the linear map between the tangent spaces, is called differential.

We can now ask ourselves how to write derivations representations in a chart. Let’s start by
considering a chart (U, ϕ) for M .

We have a basis for TRnp̂ given by ∂i|p̂ where p̂ = ϕ(p) ∈ Rn. Since ϕ is a diffeomorphism, the
properties of the push-forward tell us that ϕ∗ is an isomorphism, so TRnp̂ is isomorphic to TMp.

Thus, we have a basis for TMp:
∂i|p = (ϕ−1)∗∂i|p̂.

Now, consider a function f : U → R. We can compute:

∂i|pf = (ϕ−1)∗∂i|p̂f = ∂i|p̂(f ◦ ϕ−1) = ∂i|p̂f̂ =
∂f̂

∂xi
(p̂).

Next, let’s examine how to push-forward this basis. Consider two charts (U, ϕ) and (V, ψ) for
M and N , and denote the coordinates in the domain by

p̂ = ϕ(p) = (x1, . . . , xn) = x

q̂ = ψ(q) = (z1, . . . , zm) = z

Let f ∈ C∞(N). Then

(F∗(∂xi |p))f = ∂xi(F ◦ f)
= ∂xi |p̂(f ◦ F ◦ ϕ−1)

= ∂xi |p̂(f ◦ ψ−1 ◦ ψ ◦ F ◦ ϕ−1)
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and, since f ◦ ψ−1 = f̂ and ψ ◦ F ◦ ϕ−1 = F̂ ,using the chain rule:

Now, if we take the two charts, and a point p ∈ V ∩U we can ask ourselves how the coordinates
functions of the two charts are related.

Given (x1, ...., xn) coordinates forM and (x̃1, ....; x̃n) for N every tangent vector can be written
as :

Xp = ai∂i|p or as Xp = ãi∂̃i|p .

Let’s compute the transition map ψ ◦ ϕ−1 by acting on a general smooth function f :

∂i|pf = ((ϕ−1)∗∂i|ϕ(p))f

= (∂i|ϕ(p))(f ◦ ϕ−1)

= (∂i|ϕ(p))(f ◦ ψ−1 ◦ ψ ◦ ϕ−1).

Using the chain rule, we obtain:

∂i|p =
∂x̃j

∂xi

∣∣∣∣
ϕ(p)

∂̃j |ψ(p),

where f̂(x̃) = f ◦ ψ−1 and ψ ◦ ϕ−1 = x̃(x).
Thus, we finally have:

∂i|p =
∂x̃j

∂xi

∣∣∣∣
ϕ(p)

∂̃j |p,

and consequently:

aj =
∂xi

∂x̃j

∣∣∣∣
ϕ(p)

ãj .

Now, we will define two other objects, very useful in physics:

Definition 1.11: The tangent bundle TM is a differentiable manifold and it is defined as⋃
p∈M TMp . A point in TM is a pair (x, y) where p is a point in M and y is s vector in TMp.

Definition 1.12: The cotangent space T ∗Mp is the dual space of TMp. An element of this
space is a linear function λp : TMp → R. Consider coordinates (x1, ...., xn) of x. We can define
in a coordinate chart (M,ϕ) a smooth map ∂i :M → TM that at each point p associates ∂i|p. In
this case the natural basis for the tangent space TpM at a point p is given by {∂i|p}, and the cor-
responding dual basis for the cotangent space T ∗

pM is given by {dxi|p}, satisfying:dxi|p(∂j |p) = δij ..

Definition 1.13: The cotangent bundle is a differentiable manifold and it is defined as⋃
x∈M T ∗Mx .

For reasons that will be explained later on, the cotangent bundle is highly important in physics
since it can be understood to be a phase space on which Hamiltonian mechanics plays out.

2.2 Tensors

Studying differentiable manifolds, tensors play a fundamental role, describing geometric and phys-
ical quantities in a coordinate-independent manner. Tensors generalize the concept of vectors and
linear transformations, allowing us to represent multilinear maps on vector spaces and their duals.

Definition 1.14: A covariant k tensor is a multilinear map :

τ : V × ..× V︸ ︷︷ ︸
k times

→ R
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The set of all covariant k tensors is denoted as T kV .

Definition 1.15: A controvariant p tensor is a multilinear map:

Y : V ∗ × ..× V ∗︸ ︷︷ ︸
p times

→ R

The set of all controvariant p tensor is denoted by TpV .

And finally:

Definition 1.16 : A mixed tensor of type (k, p) is a multilinear map

F : V × ..× V︸ ︷︷ ︸
k times

×V ∗ × ..× V ∗︸ ︷︷ ︸
p times

→ R

The set of all mixed tensors is denoted by T kp V .

Obviously, we can apply this construction to V = TMp:

Let’s consider α, β ∈ V ∗ and let’s define the map τα,β : V × V → R , v1;v2 → α(v1)β(v2)
This map is multilinear thus τα,β ∈ T 2V .

Given a ∈ R we note that :

(i) τα,β = τaα,β = τα,aβ

(ii) τα+α′,β = τα,β + τα′,β

(iii) τα,β+β′ = τα,β + τα,β′

Consider τ ∈ T kV and ρ ∈ TmV , and define an element of the space T k+mV denoted by τ ⊗ ρ
with the relation:

(τ ⊗ ρ)(v1, . . . ,vk+m) = τ(v1, . . . ,vk)ρ(vk+1, . . . ,vk+m).

Now, our purpose is to look for a generalization of integrands on manifolds and, in order to do
so, we need to focus on covariant alternating and symmetric k tensors.

Let π ∈ Sn (the symmetric group) be a permutation of n objects, and denote the sign of the
permutation by

sign(π) = (−1)n,

where n is the number of transpositions. The permutation π : V × · · · × V → V × · · · × V acts as
follows:

π(v1 × · · · × vn) = (vπ(1) × · · · × vπ(n)).

Definition 1.17: Let ρ ∈ TmV . The tensor ρ is called symmetric if

ρ(v1, . . . ,vm) = ρ(vπ(1), . . . ,vπ(m))

for any permutation π ∈ Sm.
The tensor ρ is called alternating if

ρ(v1, . . . ,vm) = sign(π)ρ(vπ(1), . . . ,vπ(m))

for any permutation π ∈ Sm.
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For example, the determinant of the matrix is an alternating covariant map on column vectors.
The set of alternating covariant k tensors is denoted by ΛkV , the set of symmetric covariant
tensors is ΣkV .

To construct symmetric or alternating tensors, we define two natural maps:
1. Symm: TmV → ΣmV , given by

Symm(ρ)(v1, . . . ,vm) =
1

m!

∑
π∈Sm

ρ(vπ(1), . . . ,vπ(m)),

where ΣmV denotes the space of symmetric tensors.
2. Alt : TmV → ΛmV , given by

Alt(ρ)(v1, . . . ,vm) =
1

m!

∑
π∈Sm

sign(π)ρ(vπ(1), . . . ,vπ(m)),

where ΛmV denotes the space of alternating tensors.

Note: we could also think about ΛkV as ΛkV = P−(V × .. × V ) where (P−)2 = P− is a
projection.

We construct another element of the space Λk+mV , denoted by τ ∧ µ, where τ ∈ ΛkV and
µ ∈ ΛmV , as follows:

τ ∧ µ =
(k +m)!

m!k!
· 1

(k +m)!

∑
π∈Sk+m

τ(vπ(1), . . . ,vπ(k))µ(vπ(k+1), . . . ,vπ(k+m)).

The wedge product ∧ is:

1. Skew-symmetric: τ ∧ µ = −µ ∧ τ (if τ and µ are tensors of the same degree),

2. Associative: (τ ∧ µ) ∧ ν = τ ∧ (µ ∧ ν),

3. Distributive: τ ∧ (µ+ ν) = τ ∧ µ+ τ ∧ ν.

Proposition 1.1: If βi is the base of V ∗ the set βi1 ⊗ ..⊗ βik is a set of covariant tensors of
rank k and it’s a basis for T kV .

Similarly:

Proposition 1.2: Let V be a real finite-dimensional vector space, and let {βi} be a basis of
its dual space.

The set
{βi1 ⊗ · · · ⊗ βik | i1 < · · · < ik}

is a basis for ΛkV .

Any element of ΛkV can be written as

ω =
1

k!
ωi1...ikβ

i1 ∧ · · · ∧ βik ,

where
ωi1...ik = ω(bi1 , . . . , bik),

with {bi} being a basis for V . The coefficients ωi1...ik are completely antisymmetric, meaning that
swapping two indices introduces a minus sign.

Consider now two finite dimensional vector spaces V and W and construct V ∗⊗W ∗ consisting
of the linear combination of objects of the form v ⊗w with v ∈ V ∗ and w ∈ W ∗. These objects
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are multilinear maps from V ×W to the reals. Therefore this space is by definition R⟨V ∗ ×W ∗⟩ .

Consider two finite-dimensional vector spaces V and W , and construct V ∗ ⊗W ∗, the space
consisting of linear combinations of objects of the form v⊗w, where v ∈ V ∗ and w ∈W ∗. These
objects represent multilinear maps from V ×W to the reals. Therefore, this space is, by definition,

R⟨V ∗ ×W ∗⟩.

Now, consider the subspace I spanned by all elements satisfying the following properties:

a(v,w)− (av,w), a(v,w)− (v, aw),

(v + v′,w)− (v,w)− (v′,w), (v,w +w′)− (v,w)− (v,w′).

We define V ∗ ⊗W ∗ := R⟨V ∗ ×W ∗⟩/I. We obtain the following relations:

a(v ⊗w) = (av)⊗w = v ⊗ (aw),

v ⊗w + v′ ⊗w = (v + v′)⊗w,

v ⊗w + v ⊗w′ = v ⊗ (w +w′).

Proposition 1.3: The vector space V ∗ ⊗W ∗ is canonically isomorphic to the vector space
Bil(V,W ) of bilinear functions V ×W to the reals.
This can be generalized to all tensors.

Let us denote from now T kr,p as: T kr,p = T ∗Mp ⊗ ..⊗ T ∗Mp︸ ︷︷ ︸
k−times

⊗TMp ⊗ ..⊗ TMp︸ ︷︷ ︸
r−times

Definition 1.18: A tensor field of rank k is a smooth assignment of elements of T kr,p to each

point p ∈M . their union for all p ∈M is called tensor bundle and it’s denoted T k
r (M).

Proposition 1.4: A mixed tensor F can always be written in terms of the basis of TM and
T ∗M in this form : F = F i1,i2..ikj1,j2..jp

dxi1 ⊗ ..⊗ dxik ⊗ ∂j1 ⊗ ..⊗ ∂jp where F i1,i2..ikj1,j2..jp
are smooth func-

tions. This confirms that a tensor field is a multilinear function on the sections of the tangent and
cotangent bundles, and can be seen as a multilinear map on C∞(M).

Now we can finally define a mathematical object that helps us generalize the concept of inte-
grands over manifolds; the differential form.

Definition 1.19: A differential form ωk of order k is a smooth assignment of exterior k-forms
on a tangent space V = TMp , meaning a linear antisymmetric function of k vectors. For these
reasons, ωk ∈ ΛkV.

Every k form on R∗ with coordinate system x1, .., xn can be written: ωk =
∑
j1<..jk

aj1,..,jk(x)dx
j1
1 ∧

.. ∧ dxjkk .

We could now think about the tensor products of spaces of k-forms. The problem with that
is that if we take Λk1V ⊗ Λk2V , this object is not completely antisymmetric: the first space is
completely antisymmetric for k1 and the second for k2 but if we swap the two k-form spaces we
will lose the antisymmetric property. For this reason, we need to introduce the concept of exterior
multiplication:

From now on, when we write explicitly, it means we are working on a chart.
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Now, denote by Ωkq (M) ≡ Λk(TqM) the space of k forms at q and by Ωk(M) the space of
smooth k forms.

Definition 1.20: The exterior derivative

dk : Ωk(M) → Ωk+1(M)

is defined in a chart as:

dk(ω) =
∑

j1<···<jk

∂ωj1...jk
∂xl

dxl ∧ dxj1 ∧ · · · ∧ dxjk .

where:
ω ≡

∑
j1<···<jk

aj1,...,jk(x) dx
j1 ∧ · · · ∧ dxjk

It could be useful to think about a simple example: If M ⊂ R3, we have ω0 = f(x, y, z) and
the exterior derivative is given by:

dω0 =
∑
l

∂f

∂xl
dxl,

which corresponds to the gradient.

2.3 Symplectic vector spaces and symplectic manifolds

Theorem 1.1: Let Ω : V × V → R be a skew-symmetric bilinear map with V m-dimensional
vector space. Then there is a basis u1, .., uk, e1, .., en, f1, .., fn (k + n+ n = m) of V such that :

(1) Ω(uj , v) = 0 ∀j with v ∈ V

(2) Ω(ej , ek) = 0 = Ω(fi, fk) ∀ei, fi

(3) Ω(ei, fk) = δij

Now, let’s have a look at the matrix form of Ω and let’s represent it with a block matrix, where

each entry is a vector u, e, f in this order:

0 0 0
0 0 I
0 -I 0


Definition 1.21: A skew Symmetric bilinear map Ω is symplectic if Ω̃ : V → V ∗, Ω̃[v](u) ≡ Ω(v, u)
is bijective. Then (V,Ω) is called a symplectic vector space.

Properties:
i) Ω̃ : V → V ∗ is a bijection.
ii) Since kerΩ̃ = U = Ω(u, u) = 0 k = dimU = 0 2n = m so U is even dimensional.

Definition 1.22: A symplectomorphism ξ between (V,Ω) and (V ′,Ω′) is an isomorphic linear
map such that ξ∗Ω′ = Ω where (ξ∗Ω′)(u, v) = Ω′(ξ(u), ξ(v)) Then we call (V,Ω) and (V ′,Ω′)
symplectomorphic.

Now, the idea we will follow is that symplectic manifolds are objects that locally look like
symplectic vector spaces.

Definition 1.23: A differential form ω|p : TMp × TMp → C∞ is symplectic if dω = 0 and ωp
is symplectic for all p ∈M . Remark that if ω is symplectic, dimTMp is even.

Definition 1.24: A symplectic manifold is a pair (M,ω) where M is a manifold and ω is a
symplectic form.
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Example: LetM = Rn with coordinates (x1, . . . , xn, y1, . . . , yn). The form ω =
∑n
j=1 dxj∧dyi

is symplectic. (Note that the coefficients need to be constant because dω = 0).

The symplectic basis for TR2n
p is(
∂

∂x1

∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣
p
,
∂

∂y1

∣∣∣
p
, . . . ,

∂

∂yn

∣∣∣
p

)
.

Definition 1.25: Let F :M → N be a smooth map between smooth manifolds. The pull-back
of a differential form ω ∈ Ωk(N) is the differential form F ∗ω ∈ Ωk(M) defined by

(F ∗ω)p(x1, . . . , xk) = ωF (p)(dFp(x1), . . . , dFp(xk)),

for all p ∈ M and x1, . . . , xk ∈ TpM , where dFp = F∗|p : TpM → TF (p)N is the push-foward of F
at p.

Definition 1.26: Let (M1, ω1) and (M2, ω2) be two symplectic manifolds. Let θ : M1 → M2

be a diffeomorphism. Then, θ is a symplectomorphism if θ∗(ω2) = ω1.

2.4 Vector fields and flows

Recall that a vector field X ∈ Ξ(M) for manifold M is a smooth assignment of X ∈ TMp ∀p.

Definition 1.27: An integral curve C(t) of X vector field on M is a curve in M such that the
tangent vector at C(t) is X|x(t).

Given a chart (U,φ) this is written as dxµ(t)
dt = X µ(x(t)) (we could think about these objects

as speed modules) where xµ(t) is the µth coordinate of φ(x(t)) and X = X µ(x) ∂
∂xµ . In order to

find an integral curve given X we need to solve this set of ODEs: dxµ(t)
dt = X µ(x(t)) .

Definition 1.28: Let σ(t, x0) be an integral curve of X ∈ Ξ(M) passing through x0 at t = 0.

Let σµ(t, x0) be the µth coordinate for σ , the dσµ(t,x0)
dt = X µ(σ(t, x0)) subject to σ

µ(t = 0, x0) = xµ0
. The map σ : R×M →M is called flow. A flow satisfies σ(t, σ(s, x0)) = σ(t+ s;x0)

Theorem 1.2: For any point x ∈ M , there exists (at least locally) a differentiable map
σ : R×M →M such that:

1) σ(0, x) = x,
2) t→ σ(t, x) satisfies σµ(t = 0, x0) = xµ0 ,
3) σ(t, σ(s, x)) = σ(t+ s, x).
From now on, let’s write σt(p) = σ(t, p)

Definition 1.29: The map σt is an isotopy if each σt :M →M is a diffeomorphism and σ0 is

the identity. Given an isotopy σ we can always obtain vt ∈ TM vector field via: vt(p) =
dσs(q)
ds |s=t

where q = σt−1(p)

Definition 1.30: When X = vt is independent of time, the isotopy is called the exponential
map of the flow X and is denoted by σµ(t, x) ≡ etX : M → M . The exponential map is a unique
form of diffeomorphisms satisfying:

1. e0X = id,

2. detX

dt = X (etX (x)).

The flow satisfies some properties:

9



i) σ(0, x) = x = e0X ,

ii) dσt(x)
dt = X (etX (x)) = d[etXx]

dt ,

iii) σ(t, σ(s, x)) = σ(t, esXx) = etX esXx = e(t+s)X = σ(t+ s, x).

Definition 1.31 Let X and Y be smooth vector fields on a manifold M . The Lie bracket [X,Y ]
of X and Y is the vector field which acts on a function f ∈ C∞(M) to give XY f − Y Xf .

To make sense of this definition we need to check that this does indeed define a derivation.
Linearity is clear, but we need to verify the Leibniz rule:

[X,Y ](fg) = X(Y (fg))− Y (X(fg))

= X(fY (g) + gY (f))− Y (fX(g) + gX(f))

= f(XY g) + (Xf)(Y g) + (Y g)(Xf) + g(XY f)

− (Y f)(Xg)− f(Y Xg)− g(Y Xf)− (Xf)(Y g)

= f(XY g − Y Xg) + (XY f − Y Xf)g

= f [X,Y ]g + ([X,Y ]f)g

It is useful to write [X,Y ] in terms of its components in some chart: Write X = Xi∂i and
Y = Y j∂j (here I’m using the summation convention: Sum over repeated indices).
Note that

[∂i, ∂j ]f = ∂i∂jf − ∂j∂if = 0.

Therefore we have

[X,Y ] = Xi∂iY
j∂j − Y j∂jX

i∂i =
∑n
i,j=1(X

i∂iY
j − Y j∂jX

i)∂i.

The Lie bracket measures the extent to which the flows in directions X and Y do not commute.
The following proposition makes this more precise:

Proposition 1.5: Let X,Y be two vector fields on a manifold M , and let Ψt and Φt be the
local flow of X in some region containing the point x ∈M . Then

[X,Y ]x = limt→0
d
dt (F∗Ψ−tYΨt(x)).

Where F∗ is the push-foward.

Now, a problem arises: what can one do to compare two things in two different points of a
manifold? It is not very clear what comparing in this case even means. For this reason, we need
to introduce an object called Lie’s derivative.

Definition 1.32: The Lie derivative associated to a vector field X on a manifoldM is the linear
map LX : A(T pqM) → A(T pqM) (where A(T pqM) is the set of all p-contravariant q-covariant tensors)

wich sends S to the tensor ( ddt )(ϕ
∗
tS)|t=0 where ϕtis the local one parameter group associated to X .

Proposition 1.6: The operator LX is actually defined by the following properties:
i) for f ∈ C∞(M), LX f = df(x)
ii) for Y ∈ A(TM), LXY = [X ,Y]
iii) for any tensors S, T : LX (S ⊗ T ) = LXS ⊗ T + S ⊗ LXT

∗

iv) for any (p, q)- tensors S and for any contraction c LX (c(S)) = c(LXS) .

2.5 Symplectic Geometry and classical mechanics

To summarise, by a symplectic manifold (M,ω) we will mean a smooth realm-dimensional manifold
M without boundary, equipped with a closed non-degenerate two-form ω, the symplectic form.
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’Closed’ means that
dω = 0 (1)

where d is the exterior differential

d : Ωk(M) → Ωk+1(M), d2 = 0 (2)

on differential forms on M . And ’non-degenerate’ means that at each point x ∈ M the antisym-
metric matrix ωx is non-degenerate.

det(ωx) ̸= 0 ∀x ∈M (3)

The most important example of a symplectic manifold is a cotangent bundle T ∗Q, where Q is
the configuration space (the space defined by the generalized coordinates). A cotangent bundle
has a canonical symplectic two-form which is globally exact,

ω = dθ. (4)

(and hence, in particular, exact), θ is the canonical one-form on the cotangent bundle T ∗Q, defined
in local coordinates (qk, pk) as: θ = pk dq

k. Any local coordinate system {qk} on Q can be extended
to a coordinate system {qk, pk} on T ∗Q such that θ and ω are locally given by

θ = pkdq
k, ω = dpk ∧ dqk. (5)

Since ω is invertible, at each point x ∈ M it gives an isomorphism between the tangent and
cotangent spaces of M at x,

ω : TMx → T ∗Mx (6)

expressed in local coordinates as
X → Xiωijdx

j . (7)

Crudely speaking, like a metric a symplectic form allows us to raise and lower indices on tensors.
This extends to an isomorphism between TM and T ∗M and between vector fields and one-forms
on M ,

X → i(X)ω = ω(X, ·) ∈ Ω1(M) (8)

i(X) denotes the contraction of a differential form with the vector field X.
In particular, therefore, the existence of ω allows us to associate a vector field Xf to every

function f ∈ C∞(M) via
i(Xf )ω = −df (9)

(the minus sign is for later convenience only). Xf , the ’symplectic gradient’ of f , is known as the
Hamiltonian vector field of f . The Lie derivative of ω along Xf is zero, then the Hamiltonian
vector field of f generates a flow on M that leaves omega invariant

L(Xf )ω = di(Xf )ω + i(Xf )dω = −d2f = 0. (10)

Thanks to the relation i(Xf )ω = −df , we see that the symplectic form provides an anti-symmetric
pairing {f, g} between functions f, g on M called the Poisson bracket of f and g. It is defined by

{f, g} := ω(Xf , Xg) ∈ C∞(M) (11)

and describes the change of g along Xf ,

{f, g} = i(Xg)i(Xf )ω = i(Xf )dg = L(Xf )g. (12)

In particular, f is constant along the integral curves of Xf . The Poisson bracket satisfies the Jacobi
identity

{f, {g, h}} = {{f, g}, h}+ {g, {f, h}}. (13)
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One further important identity we will need, that relates the Lie algebras of vector fields and
functions on M is

[Xf , Xg] = X{f,g}, (14)

which shows that the Hamiltonian vector fields also form an infinite dimensional Lie algebra.
Regarding the map f → Xf as an assignment of differential operators to functions , the prior
identity is also an illustration of the quantization paradigm , because the Poisson’s brackets will
become commutators.

Let’s now consider the phase space, in order to start linking mathematical objects with mechan-
ics. The phase space is the 2n-dimensional real vector space R2n with coordinates q1, . . . , qn, p1, . . . , pn
describing the position and the momentum of the particles involved. The dynamics of the system
is governed by Hamilton’s equations

dqk

dt
=
∂H

∂pk
,

dpk
dt

= −∂H
∂qk

, (15)

where H(qk, pk), the Hamiltonian, is a function on phase space describing the energy of the
system.

Typically, H is of the form H = T + V where T is the kinetic energy and V = V (qk) is the
potential energy whose gradient describes the forces acting on the particles.

If H does not depend on time explicitly, the equations of motion imply that H is conserved
along any trajectory in phase space,

Ḣ =
∑
k

∂H

∂qk
q̇k +

∂H

∂pk
ṗk = 0, (16)

(summation over repeated indices being understood) while the evolution of any other function
f on phase space (observable) is given by

ḟ = {H, f} =
∑
k

∂f

∂qk
∂H

∂pk
− ∂f

∂pk

∂H

∂qk
. (17)

In general, any constant of motion, i.e. any function f on phase space in involution with the
Hamiltonian, {H, f} = 0, can be used to reduce the dynamical system to a lower dimensional one
on the common level surfaces of the functions H and f . It follows from the Jacobi identity that
the Poisson bracket of any two constants of motion is also a constant of motion. If it is possible to
find n constants of motion in involution the system is called integrable.

The equations (16)-(18), characterizing Hamiltonian mechanics, arise naturally if we think
of R2n as the cotangent bundle T ∗Rn of the configuration space Rn. Namely, in that case the
Hamiltonian vector field Xf of a function f(qk, pk) is

Xf =
∑
k

∂f

∂pk

∂

∂qk
− ∂f

∂qk
∂

∂pk
, (18)

as it is easily verified that i(Xf )dpk ∧ dqk = −df . Therefore the Poisson bracket is

{f, g} =
∑
k

∂f

∂qk
∂g

∂pk
− ∂f

∂pk

∂g

∂qk
. (19)
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3 Introduction to quantization

In this section, we will start do distance ourselves from the classical theory outlined above.

The space C∞(M) of observables has, in addition to a Lie algebra structure provided by the
Poisson bracket, the structure of a commutative algebra under pointwise multiplication:

(fg)(x) = f(x)g(x) = (gf)(x) (20)

Due to the non-commutative nature of observables in the quantum theory, this property is
sacrificed. More specifically, quantization usually refers to an assignment

Q : f 7→ Q(f) (21)

of operators Q(f) on some Hilbert space to classical observables f . This Hilbert space is,
in general, infinite dimensional, but we could consider a finite dimensional Hilbert space and, in
that case, we can think of the Q(f)’s simply as finite-dimensional matrices. The scalar product
in the Hilbert space is necessary for the probabilistic interpretation of the theory and is thus of
fundamental importance. Q also must satisfy some more or less obvious requirements such as:

1. R-linearity Q(rf + g) = rQ(f) +Q(g) for all r ∈ R, f, g ∈ C∞(M).

2. The constant function 1 is mapped to the identity operator or matrix 1: Q(1) = 1.

3. Real functions should correspond to Hermitian operators: Q(f)∗ = Q(f).

4. [Q(f), Q(g)] = −iℏQ({f, g})

Where number 4 is Dirac’s idea of seeing commutators as the equivalent counterpart of Pois-
son’s brackets.

We can notice that sending ℏ → 0 (now treating ℏ just as a parameter), one recovers the
commutative structure of classical mechanics, for this reason for most macroscopic purposes we
can neglect it. At the microscopic level, however, ℏ needs to be taken into consideration. knowing
what quantization means, we need another condition that gives us some kind of irreducibility. The
same way there needs to be a complete set of observables, we define a complete set of operators so
that the only operators that commute with all operators from that set are multiples of the identity.

5. If {f1, . . . , fk} is a complete set of observables, {Q(f1), . . . , Q(fk)} is a complete set of oper-
ators.

In general, it is not always possible to satisfy both condition number 4 (for all f and g) and
number 5. The only way of operating is trying to find the best compromise, for example, demanding
number 4 only for a complete set of observables and perhaps some additional observables that are
of particular interest in the quantum theory. A key concept to understand is that different choices
of complete sets will lead to inequivalent quantum theories, leading to different predictions of the
results of experiments, since there is not one single rule to follow when choosing complete sets. It is
by common sense that we can rightfully choose which choice of complete sets to make, by looking
at certain symmetries of the system. We will now take as an example a set of observables that
we introduced before, the coordinate functions qk and pk. w We demand that the corresponding
operators satisfy the canonical commutation relations:

[Q(qk), Q(ql)] = 0 (22)

[Q(qk), Q(pl)] = iℏδkl (23)

[Q(pk), Q(pl)] = 0 (24)

This is the so-called Heisenberg algebra. We can now take in consideration Schur’s Lemma,
that states that for an irreducible representation ρ of a group or Lie algebra g, an operator A
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that commutes with all operators ρ(X) in the representation, must be a scalar multiple of the
identity operator. In other words, there exists a scalar λ such that A = λI. In the context
of an irreducible representation of the Heisenberg algebra, where qk and pk are the position and
momentum operators, any operatorA that commutes with all qk and pk, ([A, q

k] = 0 and [A, pk] = 0
for all k), must be a scalar multiple of the identity operator. This fact is crucial for proving the
uniqueness (up to unitary equivalence) of the representation. This tells us that rules (26,27,28)
are now equivalent to finding an irreducible representation of the Heisenberg algebra.

We can consider this representation as an example:

Q(qk)ψ(x) = xkψ(x) (25)

Q(pk)ψ(x) = −iℏ ∂ψ
∂xk

(x) (26)

The spectrum (range of eigenvalues) of these operators is (−∞,∞). It is important to know
that this is the Schrödinger picture of quantum mechanics, but the fact that, in this case, wave
functions can be represented by functions on the configuration space is only a mere consequence
of our quantization system, and not something that is valid in general.

Now we can ask ourselves if we can quantize any other observables, for example the kinetic
energy operator, p2 = pkplδkl, which is represented via the Laplacian:

Q(pkpl) = −ℏ2
∂2

∂xk∂xl
Q(p2) = −ℏ2δkl

∂2

∂xk∂xl
= −ℏ2∆ (27)

If we have observables that are quadratic in the coordinates we need to represent them with
multiplication operators. Imposing either the hermiticity condition or the quantum condition
number 4 one finds:

Q(pkq
l) =

1

2
(Q(pk)Q(ql) +Q(ql)Q(pk)) (28)

This can be interpreted as a particular operator ordering of Q(pkq
l) ∼ Q(pk)Q(ql) but, there

is no logical necessity for the assignment Q to satisfy some condition like Q(fg) ∼ Q(f)Q(g) in
general.

The quadratic observables form a closed Lie algebra under Poisson brackets, which is symplectic
sp(n):

{pipj , pkpl} = {qiqj , qkql} = 0

{piqj , pkpl} = δjkpi

{piqj , pkql} = δjkpiq
l + δilpjq

k

{piqj , qkql} = δjkpiq
l + δilpjq

k

{pipj , qkql} = δikpjq
l + δjkpiq

l + δilpjq
k + δjl piq

k

Thus, what the above means is that the symplectic Lie algebra obtained with a quantized
symplectic vector space on the quantum Hilbert space mirrors the classical symplectic invariance
of the theory.

Problems with this theory might occur especially if we treat observables of degree greater than
two. The Hermicity condition might be verified, but the commutation condition might not. A
counterexample will follow, in order to show the shortcomings of this theory.

3.1 Testing the theory’s limits: a counterexample

Consider the classical functions:

f(q, p) = q2p, (29)

g(q, p) = q3. (30)
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The objective is to quantize these functions and verify whether the commutator condition is
satisfied.

We use the canonical representation of the quantized operators:

Q(q) = q, (31)

Q(p) = −iℏ ∂
∂q
. (32)

To obtain a Hermitian operator, we choose the symmetric quantization for f(q, p):

Q(f) =
1

3
(q2Q(p) +Q(p)q2 + qQ(p)q). (33)

Expanding each term separately:

q2Q(p) = q2(−iℏ ∂
∂q

) = −iℏq2 ∂
∂q
, (34)

Q(p)q2 = (−iℏ ∂
∂q

)q2 = −iℏ(2q + q2
∂

∂q
), (35)

qQ(p)q = q(−iℏ ∂
∂q

)q = −iℏq ∂
∂q
q = −iℏq. (36)

Substituting these expressions into the definition of Q(f):

Q(f) =
1

3

(
−iℏq2 ∂

∂q
− iℏ(2q + q2

∂

∂q
)− iℏq

)
. (37)

Simplifying:

Q(f) = −2

3
iℏq2

∂

∂q
− iℏq. (38)

Thus, the quantized operator for f(q, p) is:

Q(f) = −2

3
iℏq2

∂

∂q
− iℏq. (39)

For g, the quantized operator is simply:

Q(g) = q3. (40)

To verify if Q(f) is Hermitian, we compute its conjugate:

Q(f)† =
1

3
(q2Q(p)† +Q(p)†q2 + qQ(p)†q). (41)

For the momentum operator:

Q(p) = −iℏ ∂
∂q
, (42)

we compute its adjoint using integration by parts:∫ ∞

−∞
ψ∗(q)(−iℏ ∂

∂q
ϕ(q))dq = −iℏ [ψ∗(q)ϕ(q)]

∞
−∞ + iℏ

∫ ∞

−∞

(
∂

∂q
ψ∗(q)

)
ϕ(q)dq. (43)

Assuming that wavefunctions vanish at infinity, the boundary term disappears, leaving:∫ ∞

−∞
(iℏ

∂

∂q
ψ∗(q))ϕ(q)dq. (44)
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Comparing with the inner product definition, we conclude: Q(p)† = −iℏ ∂
∂q , so we obtain:

Q(f)† =
1

3
(q2(−iℏ ∂

∂q
) + (−iℏ ∂

∂q
)q2 + q(−iℏ ∂

∂q
)q). (45)

Using the product rule for differentiation:

∂

∂q
q2 = 2q,

∂

∂q
q = 1, (46)

we rewrite each term separately:

q2(−iℏ ∂
∂q

) = −iℏq2 ∂
∂q
, (47)

(−iℏ ∂
∂q

)q2 = −iℏ(2q + q2
∂

∂q
), (48)

q(−iℏ ∂
∂q

)q = −iℏq ∂
∂q
q = −iℏq. (49)

Substituting these results:

Q(f)† =
1

3

(
−iℏq2 ∂

∂q
− iℏ(2q + q2

∂

∂q
)− iℏq

)
. (50)

Simplifying:

Q(f)† = −2

3
iℏq2

∂

∂q
− iℏq = Q(f). (51)

Thus, Q(f) is Hermitian.
Now, let’s verify the commutation condition that tells us that the commutator must satisfy:

[Q(f), Q(g)] = −iℏQ({f, g}). (52)

We compute:

[Q(f), Q(g)] = Q(f)Q(g)−Q(g)Q(f). (53)

Expanding each term separately:

Q(f)Q(g) =
1

3
(q2Q(p)q3 +Q(p)q5 + qQ(p)q4), (54)

=
1

3
(q2(−iℏ ∂

∂q
)q3 + (−iℏ ∂

∂q
)q5 + q(−iℏ ∂

∂q
)q4). (55)

Using the product rule:

∂

∂q
q3 = 3q2,

∂

∂q
q5 = 5q4,

∂

∂q
q4 = 4q3, (56)

we obtain:

Q(f)Q(g) = −4iℏq4. (57)

Similarly, we compute:

Q(g)Q(f) = −8

3
iℏq4. (58)

Thus:

[Q(f), Q(g)] = −4

3
iℏq4. (59)
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Then the classical Poisson bracket is given by:

{f, g} =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
. (60)

Computing each term:

∂f

∂q
= 2qp,

∂f

∂p
= q2, (61)

∂g

∂q
= 3q2,

∂g

∂p
= 0. (62)

Thus, the Poisson bracket simplifies to:

{f, g} = 2qp · 0− q2 · 3q2 = −3q4. (63)

Applying the quantization rule:

Q({f, g}) = Q(−3q4) = −3q4. (64)

Multiplying by −iℏ:

−iℏQ({f, g}) = iℏ3q4. (65)

Since:

[Q(f), Q(g)] ̸= −iℏQ({f, g}), (66)

The commutator’s condition is violated.

We have constructed a quantization operator that is Hermitian (Q(f) is self-adjoint), but does
not satisfy the commutator’s condition: we have found a counterexample to the quantization
relation. We have thus shown the difficulty of choosing the proper quantization. We consider the
classical functions on phase space:

f(q, p) = q2p, g(q, p) = q3.
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4 Prequantization

Given the problem regarding the fourth condition of quantization that arose in the previous chapter,
we need to construct a representation of the Poisson algebra of functions on the classical phase
space M by linear operators on a Hilbert space. This is known as prequantization and satisfies
every condition of quantization with the exception of the fifth one.

4.1 The Prequantum Hilbert Space

In order to geometrize the notion of quantization, it might be natural to attempt to construct the
quantum phase space (the Hilbert space) from the space of functions on the classical phase space
M .

We need to state the identity:

[Xf , Xg] = X{f,g} (67)

which shows that Hamiltonian vector fields provide a representation of the Poisson bracket algebra
by first-order differential operators on M .

We assign coherently:

f 7→ −iℏXf (68)

satisfies the conditions 1 (obviously), 2 (since Xf leaves ω invariant, with respect to the Liouville’s
measure), and 3 (by the identity above).

However, since the zero vector field is assigned to any constant function, this does not satistfy
the fourth condition.

A little further experimenting can lead us to the assignment:

P (f) = −iℏXf + θ(Xf ) + f

(where θ denotes the canonical one-form, wich only exists on T ∗Q and not in general). This thus
gives a faithful representation of the Poisson algebra by first-order differential operators on M .

For M = T ∗Q, where the symplectic form is given by the canonical two-form ω = dθ, the
prequantization operator is given by:

P (f) = −iℏXf + θ(Xf ) + f.

For Q = Rn, the prequantization operators satisfy:

P (qk) = iℏ
∂

∂pk
+ qk,

P (pk) = −iℏ ∂

∂qk
.

This shows that prequantization fails to satisfy the irreducibility condition, as the operator ∂
∂pk

commutes with all coordinate functions.

4.2 Refining the counterexample

Given the classical functions previously studied, our aim is now to show that introducing prequan-
tization, the problems previously encountered with the counterexample are solved:

f(q, p) = q2p, g(q, p) = q3, (69)

we compute the Hamiltonian vector fields using:
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Xf =
∂f

∂p

∂

∂q
− ∂f

∂q

∂

∂p
, (70)

Xg =
∂g

∂p

∂

∂q
− ∂g

∂q

∂

∂p
. (71)

Computing derivatives:

Xf = q2
∂

∂q
− 2qp

∂

∂p
, (72)

Xg = 3q2
∂

∂p
. (73)

Let us now compute the canonical one-form correction. In cotangent space M = T ∗Q, the
canonical one-form is given by:

θ = p dq. (74)

Thus, we compute:

θ(Xf ) = pXq
f = p(q2) = q2p, (75)

θ(Xg) = pXq
g = p(0) = 0. (76)

Let us now construct the corrected prequantization operators using the prequantization formula:

P (f) = −iℏXf + θ(Xf ) + f, (77)

P (g) = −iℏXg + θ(Xg) + g. (78)

Substituting values:

P (f) = −iℏ
(
q2
∂

∂q
− 2qp

∂

∂p

)
+ 2q2p, (79)

P (g) = −iℏ
(
3q2

∂

∂p

)
+ q3. (80)

The commutator is then given by:

[P (f), P (g)] = P (f)P (g)− P (g)P (f) (81)

= 6(iℏ)2q3
∂

∂p
− 3iℏq4 + 6(iℏ)2q3

∂

∂p
+ 6iℏq4 (82)

= (iℏ)2(12q3
∂

∂p
) + iℏ3q4. (83)

After simplifying all terms, we obtain:

[P (f), P (g)] = −iℏP ({f, g}). (84)

From our previous calculation, the Poisson bracket is:

{f, g} = −3q4. (85)
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Thus, applying prequantization:

−iℏP ({f, g}) = (iℏ)2(12q3
∂

∂p
) + iℏ3q4. (86)

With the introduction of prequantization, the commutator now correctly satisfies the condition:

[P (f), P (g)] = −iℏP ({f, g}). (87)

This confirms that prequantization successfully fixes the issue with the condition regarding the
Poisson’s brackets.

4.3 Explaining prequantization

There is still one minor difficulty with the construction we discussed about above. Instead of θ,
we could have chosen a symplectic potential of the form θ + df for some function f on M . This
can be compensated for by multiplying the functions by the phase factor exp(if/ℏ) (the resulting
prequantizations are unitarily equivalent). However, f is, only determined by df up to a constant,
resulting in a phase ambiguity of the prequantum wave functions.

In order to proceed we need to define a couple of mathematical concepts:

Definition 4.1: A complex line bundle over a smooth manifold M is a surjective map between
two smooth manifolds π : L→M . There exists an open cover {Ui} of M locally trivialized as

ϕi : π
−1(Ui) → Ui × C,

with transition functions ϕij : Ui ∩ Uj → C∗ satisfying the cocycle condition (ϕijϕjk = ϕik
on Ui ∩ Uj ∩ Uk)

Definition 4.2: A section of a fiber bundle π : L → M is a smooth function s : M → L such
that π(s(x)) = x, ∀x ∈M.

Definition 4.3: Let L→M be a complex line bundle over a smooth manifoldM . A connection
D on L is an operator that assigns to each smooth section s of L a differential form Ds with values
in L, such that for any smooth function f on M and any section s,

D(fs) = df ⊗ s+ fDs. (88)

where Ds = ds+As and A is the connection one-form associated with D.

Definition 4.4: The curvature Ω of a connection D is a two-form that measures the failure
of the connection to be locally trivial. It is defined as the exterior derivative of the connection
one-form,

Ω = dA. (89)

where A is the connection one-form associated with D.
Alternatively, in terms of the connection operator, the curvature is given by

Ω(X,Y ) = i ([DX , DY ]−D[X,Y ]) , (90)

for any pair of vector fields X,Y on M . It is shown that the curvature describes the noncommu-
tativity of the covariant derivatives.

It could thus be more convenient to regard the operators P (f) as acting on the space of sections
of a trivial complex line bundle L overM (globally isomorphic to the product spaceM×C) equipped
with a connection D, which can take the form (in a particular trivialization):

D = d− i

ℏ
θ. (91)
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Let us now look at another way of seeing P(f) that might be helpful to better understand this
concept. Via its Hamiltonian vector field Xf , the function f generates a flow

Φft : m 7→ Φft (m) (92)

of canonical transformations of M . Up to a phase, there is a unique way of lifting this flow to
an automorphism of L preserving the Hermitian structure and the compatible connection. This
induces a ‘pull-back’ action

Φ̂ft : ψ 7→ Φ̂ft ψ (93)

on sections of L and their local representatives ψ. Introducing the quantity

Lf = θ(Xf )− f (94)

= pk
∂f

∂pk
− f (95)

the Lagrangian of f , one finds that (106) is given explicitly by(
Φ̂ft ψ

)
(m) = ψ(Φft (m)) exp

(
− i

ℏ

∫ t

0

Lf (Φft′(m))dt′
)
. (96)

Thus, the evolution in time is given by the exponential of the classical action. Since P(f) can
be expressed in terms of Lf as

P(f) = −iℏXf − Lf , (97)

it follows that P(f)ψ is nothing but the derivative of (110) at t = 0,

P(f)ψ = −iℏ d
dt

(
Φ̂ft ψ

) ∣∣∣
t=0

. (98)

We can thus interpret P(f) as the generator of a connection that preserves automorphisms of L
lifting the action of the Hamiltonian vector field Xf on M .

Moving on, the curvature Ω of L, defined by

Ω(X,Y ) = i ([D(X), D(Y )]−D([X,Y ])) , (99)

is
Ω = iD2 = (1/ℏ)dθ = (1/ℏ)ω . (100)

Let us now look at this relation:

[P(f),P(g)] = −iℏP({f, g}) (101)

is satisfied for all f and g provided that L is a line bundle with connection D whose curvature
two-form is (1/ℏ)ω.

As ω = dθ is real, there always exists a compatible Hermitian structure on L, and we thus can
get to the following:

Definition 4.5: A prequantization of a symplectic manifold (M,ω) is a pair (L,D) where
L is a complex Hermitian line bundle over M and D a compatible connection with curvature
(1/ℏ)ω. The prequantum Hilbert space H is the completion of the space of smooth sections of L,
square-integrable with respect to the Liouville measure on M (and the Hermitian structure on the
fibers).
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5 Polarization

Up until now, Geometric Quantization has been quite straightforward and elegant. However, we
need some additional structures to obtain a quantization of a symplectic manifold. One of the
structures we need is a polarization, and this leads to rather severe technical complications, this
is the reason why it will be briefly treated in this context. Most of the problems are related to
the fact that there is no natural measure on the space of quantum states. This leads us to modify
the quantization scheme to what is known as half-form or metaplectic quantization. And even if
at this stage geometric quantization becomes quite successful, it simultaneously becomes rather
complicated.

Later on, it will be shown that the concept of a polarization arises rather naturally when one
tries to ‘cut down’ the prequantum Hilbert space.

5.1 The emergence of Polarization

The possible generalization of Schrödinger quantum mechanics on T ∗Q = R2n has been treated
before, which is based not on the concept of a complete set of observables, but on the concept of a
maximal commuting set. We also treated the possibility of seeing the Hilbert space L2(Q) as the
space of functions on the phase space constant along the leaves of a polarization.

It will now be shown how the concept of a polarization arises quite naturally if one attempts
to construct the quantum Hilbert space from the prequantum Hilbert space H.

The issue with the prequantum Hilbert space H is that it is too wide, consisting of functions
ψ which depend on all 2n coordinates of the symplectic manifold (M,ω). If we demand that wave
functions are constant along n vector fields on M , we find a way of eliminating ‘half’ of these
coordinates. Since ordinary differentiation has no invariant meaning for sections of a bundle, this
must be understood as them being covariantly constant. A way to proceed is to choose some
n-dimensional subbundle P of the tangent bundle TM of M and to consider only those wave
functions that satisfy

D(X)ψ = 0 ∀X ∈ P (102)

(where ‘X ∈ P ’ means ‘X is a section of P ’).There may now exist non-trivial integrability conditions
for these equations, which could become an obstruction to finding any solutions to (116). From
(116), we have that [D(X), D(Y )]ψ = 0 for all X,Y ∈ P . If we combine this expression with (104),
we are led to the integrability condition

D([X,Y ])ψ − (i/ℏ)ω(X,Y )ψ = 0 ∀X,Y ∈ P. (103)

Condition is which is satisfied if

X ∈ P, Y ∈ P ⇒ [X,Y ] ∈ P (104)

and
X ∈ P, Y ∈ P ⇒ ω(X,Y ) = 0 . (105)

The first condition tells us that P needs to be integrable, so that locally there exist integral
manifolds in M through P . As these manifolds are n-dimensional, the second condition tells us
that these integral manifolds are Lagrangian, where integral means a submanifold whose tangent
space at every point is completely contained within a given distribution (a smooth assignment of
a subspace of the tangent space at each point). If we demand the wave functions to be covari-
antly constant along the leaves (integral submanifolds corresponding to this polarization, seen as
the maximal involutive distribution of the tangent bundle) of a polarization P , we can see that
there are no local integrability condition. We are now able to see how this concept, which is a
generalization of that based on a maximal commuting set of observables, arises naturally from
prequantization.
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Definition 5.1: Let (M,ω) be a symplectic manifold. A submanifold L ⊂ M is called a
Lagrangian submanifold if:

1. L is isotropic, meaning that the symplectic form ω restricts to zero on L

2. dimL = 1
2 dimM.

Definition 5.2: Let (M,ω) be a symplectic manifold. A polarization P of (M,ω) is an in-
tegrable maximally isotropic (Lagrangian) subbundle of the complexified tangent bundle TM c of
M .

Let us now explore the concept of real polarization, which is characterized by the property
P = P̄ , that implies that P = Dc, where Dc is obtained by extending the vector spaces Dp at each
point p to the complex numbers. An example of a real polarization can be the vertical polarization
of a cotangent bundle M = T ∗Q. It is spanned by the vectors, in local coordinates, (∂/∂pk)
tangent to the fibers of T ∗Q. Thus D is the vertical tangent bundle, P is its complexification, and
the integral manifolds of D are the fibers T ∗

pQ, isomorphic to Rn. The space of integral manifolds
is just the configuration space Q itself.

This vertical polarization always exists for cotangent bundles, so does the Schrödinger repre-
sentation of quantum mechanics on M , based on the Hilbert space L2(M).

There can be real polarizations which are not vertical polarizations of some cotangent bundle,
but there are not many more possibilities that satisfy our regularity conditions. To see an example,
we can look at the cylinder M = T ∗S1. Instead of choosing the vertical polarization, spanned by
(∂/∂p), we can also choose a ‘horizontal’ polarization spanned by (∂/∂q). This leads to what is
known (for M = Rn) as the momentum representation. In this case the integral manifolds of D
are circles S1.

Now finally, after having accumulated all these bits and pieces of information, we come to the
quantization of symplectic manifolds. This involves the determination of the quantum Hilbert
space HP corresponding to a polarization P , and the construction of operators acting on HP .
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6 Conclusion

In this thesis, the fundamental aspects of symplectic geometry and its role in geometric quantiza-
tion, the mathematical framework constructed to establish a transition from classical to quantum
mechanics, were explored. We began with the foundations in differential geometry, treating mani-
folds, tensor fields, and symplectic structures, providing the language for Hamiltonian mechanics
and the representations of the phase space.

The main aim of this work has been to study quantization, a procedure focused on the assign-
ment of quantum operators to classical observables, preserving the underlying algebraic structures.
Later on, the difficulties inherent in this transition were analyzed. We focused in particular on the
challenge of finding a consistent way to replace Poisson brackets with commutators. After having
explored prequantization in detail, we noticed that while it provides a successful representation of
the Poisson algebra, it cannot be the base for a fully developed quantum theory.

The construction of a counterexample that explicitly demonstrates that prequantization fixes
the problems with the commutator relations was a crucial step to understand the limitations of
this theory, and the resolutions proposed by prequantization. We then highlighted the necessity of
additional structures, such as polarization. This process is vital to be able to define the quantum
Hilbert space and eliminate extraneous variables. The concept of polarization was only briefly
introduced in this thesis, focusing on real polarization, but it represents a fundamental step in
completing geometric quantization, leading to a more accurate and physically relevant quantum
model and letting us manage the problems found with prequantization.

Beyond its mathematical elegance, geometric quantization serves as a powerful theoretical tool
in modern physics. It finds applications not only in quantum mechanics but also in quantum field
theory, representation theory, and even in recent developments related to quantum computing and
quantum gravity. The study of alternative quantization methods, such as deformation quantization
or path integral approaches, remains an active area of research, offering potential solutions to some
of the ambiguities present in geometric quantization.

In conclusion, the theory of geometric quantization provides a rich framework for understand-
ing the transition from classical mechanics to quantum mechanics. There obviously are inherent
challenges and open problems, but in spite of them, its interplay with symplectic geometry and
mathematical physics continues to be an evolving field. Our understanding of quantum systems
is deepening, and geometric quantization will likely remain an essential tool in creating a bridge
between mathematical formalisms and physical intuition, paving the way for further developments
in theoretical physics.
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