
Alma Mater Studiorum · Università di
Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Informatica

Watermarking Techniques

applied to

Data Flooding against Ransomware

Relatore:
Chiar.mo Prof.
Giallorenzo Saverio

Presentata da:
Sami Pietro

IV Sessione
Anno Accademico 2023-2024

Contents

1 Introduction 3

2 Background 4
2.1 Ransomware . 4
2.2 Data Flooding Against Ransomware 6

2.2.1 Detection . 6
2.3 Ranflood . 7

2.3.1 Mitigation . 7
2.3.2 Restoration . 9

2.4 Watermarking . 10
2.4.1 Watermarking System . 10
2.4.2 Geometric Models of Watermarking 13
2.4.3 Transform Domain . 14

3 Our Contribution 16
3.1 Improving Random Flooding . 16
3.2 Proposed Watermarking System . 17

3.2.1 Embedding . 18
3.2.2 Detection . 21
3.2.3 Security Analysis . 24

4 Evaluation 26
4.1 Implementation . 26
4.2 Testing . 27
4.3 Results . 29
4.4 Finding the best configuration . 32

4.4.1 Selection of parameters . 33
4.5 Performance . 34

5 Conclusion 35
5.1 Summary . 35

1

5.2 Future Work . 35

2

Chapter 1

Introduction

Nowadays, it is impossible to think that a company, a hospital, a government, or
a private citizen can live without storing data in a computer and sharing it through
the internet. That is why cyber-attacks are becoming more and more dangerous
and frequent. Several examples can be found during the COVID-19 pandemic [11],
where cyber-criminals, exploiting fear and confusion, deployed ransomware in Brno
University Hospital in the Czech Republic, forcing the hospital to shut down its
IT systems and cancel surgeries.
In this thesis, we introduce a new approach, to refine a contrast technique of Data
Flooding against Ransomware (DFaR), which exploits the full potential of dynamic
honeypots to detect and mitigate ransomware attacks by flooding a specific file
location with decoy files. Our contribution is to improve this approach by adding
digital watermarking techniques to the flooding algorithm. Digital watermarking
is a set of techniques that allows hiding a message inside a file. Today, it is widely
used in several fields, such as copyright protection and content authentication.
In our case, digital watermarking will be added to the Random flooding process,
which floods the path with randomly generated decoy files, allowing them to be
recognized during the restoration phase.

3

Chapter 2

Background

This section provides a general background to understand the development of
this thesis, i.e., the main themes upon which this thesis revolves.

2.1 Ransomware

What is Ransomware? This name refers to a family of malware that has
a common objective: to make someone pay a ransom to regain control of some
resources.
In 1989, the first documented ransomware appeared, known as the AIDS Trojan.
It was a piece of malware that hid the files on the hard drive and encrypted only
their names, a false message would appear informing the user of the expiration
date of certain software. In the following decades, ransomware attacks prolifer-
ated, coming up with algorithms that can bring corporations, hospitals, and even
governments to their knees.
Although there are a very large number of ransomware types, we can group them
into three main categories: locker, crypto, and scareware [1].

� Locker: By encrypting specific and important files, these ransomware types
can deny basic computer functionality (e.g., computer screen and/or key-
board).

� Crypto: The objective of this group of ransomware is the user’s sensitive
files. The idea behind this strategy is quite simple: encrypt user data using
irreversible encryption techniques (e.g., AES and RSA). The only solution
left to the user is to pay the ransom and get the decryption key. For this
family of software, there are three types of encryption schemes:

– Symmetric: Uses a symmetric encryption scheme, and the key is embed-
ded in the ransomware. For this reason, this type of crypto ransomware

4

is vulnerable to reverse engineering.

– Asymmetric: Uses an asymmetric encryption scheme, where the private
key is not embedded in the ransomware. However, this solution is slower
compared to the symmetric one.

– Hybrid: This approach uses both symmetric and asymmetric schemes.
First, the ransomware creates a symmetric key to encrypt the victim’s
files. When it finishes the attack, a public-private key pair is generated
by a server. The public key is then used to encrypt the symmetric key.

� Scareware: This form of ransomware aims to trick the user into believing
that they are required to download a software. Instead of encrypting files,
this malware exploits the user’s fear.

In recent years, there has been significant progress in the fight against ran-
somware. The current state-of-the-art revolves around various detection tech-
niques, such as: Honeypots, Network traffic analysis, and Machine learning-based
approaches. Prevention techniques mostly rely on: Access control, Data and key
backup, Hardware-based solutions.

However, a major problem nowadays, is that ransomware can be easily created
and used (see Ransomware as a Service [6]). This phenomenon has led to an in-
creasing variety of behaviors in such malware, making it more difficult to find a
solution that can be effective in all cases. Traditional static analysis techniques
are not enough to detect ransomware and, since it is not enough to catalogue and
study their behavioral patterns, the need to create a robust method that can be
efficient in prevention, detection, and, most importantly, mitigation, is more nec-
essary than ever.
In the next section, we introduce a possible solution to this problem: Data Flood-
ing Against Ransomware [2].

5

2.2 Data Flooding Against Ransomware

Data Flooding Against Ransomware (DFaR) is a technique that offers robust
protection against ransomware, providing detection, mitigation, and restoration
services. The core idea of this technique is a dynamic honeypot approach,
which consists of creating decoy files (honeypots) to detect and mitigate ran-
somware activities. A honeypot is usually a dummy element (e.g., file) deployed
as an easy-to-access computer resource.
This solution could simultaneously detect activities, and also slow down the ongo-
ing attack of ransomware.
Why dynamic? As it is explained by the authors of the approach [2]:

instead of using static files and incurring in the related trapsurface
limitations, our intuition is to adopt a dynamic approach, where de-
tection works by monitoring the activity of processes and by generating
“floods” of honeypot files. If the process under inspection modifies the
honeypot files - refined instantiations can analyse the patterns of data
transformation to minimise false positives - we have strong evidence
that it is some malware trying to lock the files of the user.

The strength of this approach is that it gives more importance to sensitive loca-
tions, where it can achieve two key benefits:

� Resource Contention: The ransomware is slowed down by flood that gener-
ates numerous disk operations.

� Moving Target Defense: By significantly increasing the attack surface, the
ransomware will waste time, rising the possibility of preserving the user’s
data.

Below, we explain the main phases of data flooding against ransomware: detection,
mitigation, and restoration. The last two phases are currently implemented in a
suite of programs written in Java, under the umbrella of the Ranflood project.

2.2.1 Detection

The Detection phase offers two possibilities, distinguished by how target loca-
tions for decoy files are handled.

� Static mode: The user defines some target locations, where the detector
performs “mini-floods” consisting of the generation of sets of random files in
the target location. These files will be monitored, reporting any suspicious
activity.

6

� Dynamic mode: The detector is triggered by a process that “patrols” the
system.

2.3 Ranflood

Ranflood is an open-source software written in Java that offers an implemen-
tation of the mitigation phase following the DFaR principles. This tool follows a
client-daemon architecture: a deamon is always running in the background, while
the client is controlled by the user.

Figure 2.1: Model of Ranflood’s Architecture (from [2], Figure 3).

2.3.1 Mitigation

To mitigate the ongoing action of the ransomware, Ranflood generates a multi-
tude of decoy files, making it harder for the ransomware to distinguish them from
the originals. Ranflood can performs three data flooding strategies: Random,
On-The-Fly, and Shadow.

7

Random flooding

Random flooding is the most straightforward strategy that Ranflood can per-
form. Basically, Ranflood generates a large number of files, filled with random
content but with headers corresponding to the generated file’s extension. This
approach requires minimal setup and is effective if it meets three conditions:

1. It generates files, using the most common file extensions (e.g., pdf, jpeg, etc.)
that are likely targeted by the ransomware.

2. The generated files are difficult to discriminate from real files. Their synthetic
nature is covered through some techniques, such as avoid to reuse the same
sequences over and over or having file headers not matching the standard
format of their related extension.

3. In a short timeframe, it produces a large number of files.

Algorithm 1 Random Data Flooding
Require: path, minSize, maxSize

1: FILE EXT ← [".doc", ".pdf", ".xls", ".jpg", ".mp4", ...]

2: while keepFlooding do

3: f size← randomInt(minSize, maxSize)

4: cnt← newByteArray(f size)
5: ext← rndSelect(FILE EXT)

6: append(cnt, getHeader(ext))
7: seed← random64Seed()

8: for i← 0 to capacity(cnt)/64 do

9: seed← seed⊕ (seed≪ 13)
10: seed← seed⊕ (seed≫ 7)
11: seed← seed⊕ (seed≪ 17)
12: append(cnt, seed)
13: end for

14: if capacity(cnt) > 0 then

15: r ← newByteArray(capacity(cnt))
16: r ← fillWithRandomBytes(r)
17: append(cnt, r)
18: end if

19: writeFile(rndFilePath(path, ext), cnt)
20: end while

All the requirements are met by the Algorithm 1, which achieves fast randomness
thanks to the Xor-shift routine at lines 7-13, and attaches realistic headers based
on file extensions.

8

On-The-Fly

The On-The-Fly strategy is a copy-based solution that, instead of flooding
with random files, generates copies of the actual files found at flooding locations.
This method results into a simple way to increase the probability of preserving user
data: if more copies of the same file are created, some may escape the ransomware.
The Ranflood’s team has developed a “snapshotting phase” which is in charge of
saving a list of the valid files, avoiding replication of already encrypted ones. The
snapshooting procedure saves a digest of a file, that will be later used to validate
it during the flooding phase.
It is important to note that the existence of a list entails the risk that this will be
encrypted in turn, losing the possibility to apply the method, unless some offsite
methods are used to preserve and retrieve the list.

Shadow

The Shadow strategy differs from the On-The-Fly on in how snapshotting
works. In this case, snapshots save the entire content of files, acting as a backup
of user data. Even in this case:

since the Shadow snapshooting phase follows the traditional process
of backup systems, it also suffers the same, known tradeoffs of local,
on-site, and remote backup storage/retrieval.

2.3.2 Restoration

The objective of this phase is to restore the system of the user as it was before
the attack. Based on the type of flooding, we can distinguish two cases:

� For the Random Flooding, we want to get rid of all the generated files.

� For the copy-based flooding strategies (On-The-Fly, Shadow), we also want
to restore the user’s files using, if necessary, the decoy files.

To achieve this goal, we introduce a new tool called, FileChecker. For the Ran-
dom Flooding, it deletes all the files that are not in the snapshot’s list. For the
copy-based flooding strategies, it restores the user’s files using the decoy files,
checking the integrity of these.

9

2.4 Watermarking

By the definition from Mohanty et al. [10]:

“Watermarking is the process that embeds data called a watermark,
tag, or label into a multimedia object such that the watermark can be
detected or extracted later to make an assertion about the object.”

The origin of information concealment techniques dates back to the 13th century
AD in Italy. Initially, watermarking emerged as a method for paper manufacturers’
identification. In fact, the term probably comes from the resemblance of these
identifier marks to damp spots.
Digital watermarking began to spread in the late 1980s, as major companies started
to grow interest in robust watermarking systems for the protection of copyright
in multimedia products (e.g., copy protection of video on DVD disks). Today,
watermarking has a wide range of applications, for example [4]:

� Broadcast Monitoring: Identifying where and when broadcasted content is
transmitted

� Owner Identification: Type of embedding used to identify the ownership of
a product

� Transaction Tracking: Keeping track of products obtained in a legal manner
but distributed illegally

� Content Authentication: Digital signatures that can be checked to verify if
a product has been tampered with

� Copy Control: Preventing the illegal creation of copies of legally distributed
products

From now on, we refer to a specific multimedia object as a Work. The original
and not altered Work, such as a image is referred as Cover Work, which hides the
watermark. We explain the watermark in the images’ domain, due to its simplicity
and to the presence of a large number of proposals in this field.

2.4.1 Watermarking System

It’s important to define principal properties ([4], Chapter 2.3) that a Water-
marking System has. In particular, effectiveness, fidelity, and payload are linked to
the embedding process; while blind or informed detection, false positive behavior,
and robustness deal with the detection process. Security and the use of keys are
also important.

10

Properties

� Embedding Effectiveness: The probability that the Embedder will suc-
cessfully embed a watermark in a randomly selected Work.

� Fidelity: The perceptual similarity between the unwatermarked and water-
marked Works.

� Data Payload: The amount of information that can be carried in a water-
mark.

� Blind or Informed Detection:

– Detectors that require access to the original, unwatermarked Work are
referred to as informed detectors, and systems using informed detection
are often called private watermarking systems.

– Conversely, detectors that do not require any information related to
the original are referred to as blind detectors, and systems using blind
detection are called public watermarking systems.

� False Positive Rate: The frequency with which watermarks are falsely
detected in unwatermarked content.

� Robustness: The ability of the watermark to survive normal processing of
content.

� Security: The ability of the watermark to resist hostile attacks. Some exam-
ples are: unauthorized removal, unauthorized embedding and unauthorized
detection.

� Cost: The computational cost of the Embedder and Detector. The two
principal issues of concern are:

– The speed with which embedding and detection must be performed.

– The number of Embedders and Detectors that must be deployed.

11

Architecture

Generally, we define the main components of a watermarking scheme as follows:

� The Watermark: Which is the message to be embedded.

� A Key: Used to embed and detect the watermark, it will be likely to be
secret.

� A Cover Work: The original Work that will hide the watermark.

� A Watermark Embedder, which includes:

– The Encoder: an insertion algorithm, which embeds the watermark

� A Watermark Detector, which includes:

– The Extractor and the Comparator: respectively, algorithms for the
extraction and verification of the embedded watermark.

Figure 2.2: Simple Watermarking System with a blind detector.

The embedding process is performed by the Watermark Embedder. A mes-
sage m is encoded to match the Cover Work Domain, using a Watermark Key
k, the Watermark Encoder determines how the message will be adapted into the
Cover Work. Typically, the key generates a pattern wr of the same size as the
Cover Work. For instance, in the case of images, this process could involve gener-
ating a matrix of pixels randomly based on the watermark key. In the final step
of the embedding process, the Watermark is added to the Cover Work, resulting
in the Watermarked Work ww.

The detection process is performed by the Watermark Detector. Since it
knows the Watermark Key, the process can use it to determine whether or not a
watermark is present and extract the message.

12

2.4.2 Geometric Models of Watermarking

It is useful to see Watermarking System from a different perspective, in par-
ticular, we can interpret a watermarking system geometrically ([4], chapter 3.4).
Imagine a high-dimensional space in which each point corresponds to one Work:
we refer to this space as Media Space.
Examples: For a 256x256 grayscale image, there are 65,536 dimensions (one for
each pixel), for a 5-second mono audio clip, sampled at 44,100Hz, there are 220,500
dimensions (one for each sample).

Analysing a Watermarking System in this way helps us to understand how the
recognition of the watermark works. The detection process relies on calculating
the correlation value between the Watermarked Work and secret pattern generated
by the key (for example using linear correlation [16]). To better understand this
concept, we describe the embedding and detection process in the Media Space.

Assume that we want to embed a message m in a 2D image i with a key k, in
Media space, there exists a region of all unwatermarkedWorks calledDistribution
of unwatermarked Works, that includes the original starting image i. After
the embedding process, the watermarked work is in a different region of the Media
Space. That said, it is important to ensure that the watermarked image is similar
to the original one, and must be located in a Region of Acceptable Fidelity,
which is a area in Media Space where all Works are perceptually similar to the
original one.

The Detection Region represents the set of all Works in the Media Space,
which with a given message m and key k, will be detected as watermarked.

The detection region is often defined by a threshold τlc on a measure of
the similarity between the detector’s input and a pattern that encodes
m. We refer to this measure of similarity as a detection measure. For
linear correlation, cwr/N is equal to the product of their Euclidean
lengths and the cosine of the angle between them, divided by N. Be-
cause the Euclidean length of wr is constant, this measure is equivalent
to finding the orthogonal projection of the N-vector c onto the N-vector
wr. The set of all points for which this value is greater than τlc is just
the set of all points on one side of a plane perpendicular to wr.

It is important to note that there is not only linear correlation for the correlation
calculation. In this thesis, we also use the normalized correlation and the correla-
tion coefficient. Each of these metrics has its own advantages and disadvantages,
and it is important to choose the right one based on the application.

13

Figure 2.3: The region of acceptable fidelity and the detection regiom in media
space ([4], figure 3.13).

2.4.3 Transform Domain

We can perform embedding and detection in different domains rather than the
spatial domain. For example, we can transform an image from the spatial domain
(the pixel values) to the frequency domain, using the Discrete Cosine Transform
(DCT) [15]. There are many reasons to use frequency domain watermarking [8], [5],
we can easily achieve robustness against some attacks, such as compression, and
we can make the watermark less visible to the human eye.

The process follows this equation [8] [14]:

F (u, v) = C(N)f(x, y)(C(N))T (2.1)

when M = N , where M is the number of rows, and N is the number of columns of

14

the matrix.

C(N) =

√
1
N

[1 1 . . . 1]√
2
N

[cos
(

π
2N

)
cos

(
3π
2N

)
. . . cos

(
(2N−1)π

2N

)
]√

2
N

[cos
(

π
2N

)
cos

(
6π
2N

)
. . . cos

(
(2N−1)π

2N

)
]

...
...

...
. . .

...√
2
N

[cos
(

(N−1)π
2N

)
cos

(
(N−1)3π

2N

)
. . . cos

(
(N−1)(2N−1)π

2N

)
]

1. f(x, y) is a digital image matrix of M × N and the spatial sampled value,

that is the pixel value of the point (x, y), which is the coordinates of the
input 8× 8 pixels.

2. F (x, y) is the frequency domain sampled value, and the coordinates of the
output 8× 8 transform result.

Figure 2.4: Simple embedding examples of a real image, the first one is in the
spatial domain, the second one is in the frequency domain, as we can see the
watermark is less visible in the second image.

15

Chapter 3

Our Contribution

After taking a look at the main themes to understand this thesis, we now
introduce our contribution to Ranflood. An important improvement mentioned
by the authors of this software, is the possibility of using digital fingerprinting
to mark the flooding files [2]. By doing so, we can reconstruct the list of files
that were generated during the flooding, and avoid saving any information on
the fingerprinting process because this hidden “message” is embedded in the files
themselves. Without the need to save the list of files, we can also avoid the risk
of it being encrypted by the ransomware.

Using watermark techniques, we can create a system that meets our needs. By
embedding a watermark in the flooding files, we can:

� Recognize random decoy files during the restoration phase. If a Watermark
Detector can detect the watermark, then the file was generated by Ranflood.

� Avoid saving any information on the fingerprinting process.

With a good watermarking system, all these features can be achieved without
giving any advantage to the attacker (the ransomware), because the watermark is
hidden in the files themselves and only the user is in possession of the key.

3.1 Improving Random Flooding

For this thesis, we focus on the Random Flooding strategy. Since Ran-
flood creates random content during the flooding, it is not necessary to study
watermarking methods for specific file types, since all the generated files share a
uniform structure and do not need to match any specific format.

Overall this system must also be fast, since Ranflood cannot waste too much
time on the watermarking process, otherwise it would decrease Ranflood efficiency

16

in contrasting ransomare. For this flooding strategy, we integrate a watermarking
system into Ranflood that can generate a unique key for each flooding, used to
embed a watermark in the randomly generated content of each file.
The system should also detect if a file is a decoy, by identifying the watermark
and remove each watermarked file.
The first part is related to the embedding process and is performed during the
mitigation phase, while the last one is related to the detection process and is
carried out during the restoration phase.

3.2 Proposed Watermarking System

First of all, we must define the properties of the watermarking system that we
want to create:

� Embedding Effectiveness: All the files we produce during flooding must
be recognized, otherwise it is not worth using the watermark system.

� Fidelity: The similarity between the original un-watermarked file and the
watermarked one does not matter. Since we are using random files, abso-
lutely useless to the user, we do not need to work on the similarity between
the two.

� Data Payload: For this type of flooding, we are not concerned about the
amount of information we have to embed, we just need to know if a file is
generated by Ranflood or not. It is sufficient to know if a file is a decoy or
not, without the need of extracting the watermark.

� Blind Detector / Informed Detector: We use a blind detector, we do
not want to store all the generated files. It would not make sense to store a
list of decoy files, since we are trying to avoid saving the user’s file list.

� Robustness: The attacker could tamper with the Ranflood files. We need
to make sure that the watermark is still detectable after some modifications.
It is important to underline that, if the ransomware encrypts the files, the
watermark will not be detectable but, it is not a problem, because the mal-
ware has wasted time encrypting useless files.

� Security: Among all attacks that an attacker could perform, we must focus
on the unauthorized detection. If the attacker can detect which files are gen-
erated by Ranflood, it could avoid encrypting, making useless the Random
Flooding strategy. We want to make sure that the most efficient solution for
the attacker is encrypting all files, because detecting the watermark would
be too expensive.

17

Having clear properties to respect, we can now define the architecture of our wa-
termarking system.

Figure 3.1: Proposed Watermarking System.

3.2.1 Embedding

The embedding process is performed during the flooding. First, the Embedder
generates a key kf called Flood Key, that will be used to embed the watermark
in the files. This key is the concatenation of the Watermark Key kw, the Block
Key ko.

kf = kw ∥ kb (3.1)

The Flood Key is given to the user, and not saved in the system, in order to avoid
the risk of being found by the attacker.
The Watermark Key kw determines the random pattern that is added to the Cover
Work, in particular, it is the seed of a pseudo random number generator, that
creates a matrix of 8-bit integer values (that could be interpreted as pixels) with a
size of N ×N , called the Watermark w. The Block Key ko will be described later.

After creating the key, the Random Flooder generates random content as we
have seen in Algorithm 1. In this case, we adapt to work as a fixed-size matrix
R ×M , where R is a random integer that changes for each file and M is another
parameter called Default Embedding Surface. We can interpret this matrix as the
Cover Work co.
At this point, the Watermark Encoder could add the watermark in the Cover Work
according to certain parameters: Watermark intensity, Embedding Type,
Use Random Blocks, Watermark Size, and Default Embedding Surface.

Watermark intensity A scalar value α that determines the intensity of the
Watermark w embedded in a Cover Work co that produce a Watermarked Work

18

ww.

ww = co + α · w
0 < α < 1

(3.2)

Embedding Type The watermark could be added in the spatial domain or in
the frequency domain, using the DCT. For the DCT-Embedding, the Work
and the watermark are converted using the DCT, and the watermark is added to
the Work in the frequency domain, then the IDCT (inverse DCT) is applied to
the result.

Algorithm 2 Embedding Process

1: function embed(coverWork, watermark, e params)
2: if e params.useDCT then

3: co ← DCT(coverWork)
4: w ← DCT(watermark)
5: co ← co + e params.wtIntesity · w
6: wtWork ← IDCT(co)
7: else

8: wtWork ← coverWork + e params.wtIntesity · watermark
9: end if

10: return wtWork
11: end function

In Algorithm 2, e params (embedding parameters), a dictionary containing the
embedding settings, we store: the Watermark Size, the Watermark Intensity, the
Default Embedding Surface, the Embedding Type, and the Use of Random Blocks
Embedding.

Use Random Blocks Embedding The watermark could be spread in the
Cover Work only in some sub-blocks [5] [12], making more difficult for the attacker
to detect it. This operation follows the concept that the watermark is added only
in certain blocks and only who knows how the watermark is spread can detect it.
To achieve this goal, the watermark and the Cover Work are divided in sub-blocks
of size 8×8, the Block Key ko is used to select random blocks (via a pseudo random
number generator) in the Cover Work.

19

Algorithm 3 Embedding Process with Random Blocks

1: function embedBlocks(coverWork, watermark, e params, Kb)

2: if not e params.useBlocks then

3: return embed(coverWork, watermark, e params)
4: end if

5: coBlocks← divideInBlocks(coverWork)
6: wtBlocks← divideInBlocks(watermark)
7: random.seed(Kb)

8: for i ∈ wtBlocks do

9: n← random.randInt(0, len(CoverWorkBlocks))
10: coBlocks[n]← embed(coBlocks[n], wtBlocks[i], e params)
11: end for

12: return coBlocks
13: end function

In Algorithm 3, the random.seed function initializes a pseudo-random number gen-
erator, that will be used to select the blocks in the Cover Work where the water-
mark will be added.

Figure 3.2: Random Blocks Embedding.

Watermark Size and Default Embedding Surface The Watermark Size
N determines the shape of the matrix generated at the beginning of the embedding
process. The Default Embedding Surface M is the size of the matrix where the
watermark is added, this measure has to be greater or equal than the watermark
size.
In case of non-Random Blocks Emebedding, the watermark is added only in a
sub-matrix of N × N of the Cover Work. For Random Block Embedding the
watermark could be spread in all the Cover Work through the blocks.

In the last step of the embedding, the matrix is converted into a string of byte,
the following steps follow the instruction in the Algorithm 1, a signature is added,
and the files is saved into the disk with a random extension and with its specific
header attached.

20

3.2.2 Detection

The detection process if performed during the restoration phase, the Flood Key
(provided by the user) is used to determine the watermark, and the sequence of
blocks in case of blocks embedding. The process follows these steps:

1. The file is read from the disk and converted into a matrix of bytes.

2. The signature is removed, the remaining content is converted in a matrix of
M columns (Default Embedding Surface) and R rows (different from each
file).

3. The matrix and the watermark are compared through a correlation measure.
If the correlation value is greater than a threshold, the file contains the
watermark, so it was generated by Ranflood. Otherwise, the file does not
contain the watermark, and could be a user file (also an encrypted one). The
value of the threshold can be calculated before the flooding, after Ranflood
generates the Flood Key, it could perform a mini-flooding and calculate the
average correlation of these files.

In the cleaning process, all files that contain the watermark (i.e., all the files with
a correlation value greater than the threshold) are removed from the disk.

Correlation Measure

As we mentioned before, there are different correlation measures that can be
used to detect the watermark.

Linear Correlation This is the simplest correlation measure, which consists in
calculating the average product of two vectors, in our case, two matrices A and B
with sizes M ×N .

Zlc(A,B) =
1

MN

∑
i

∑
j

A[i, j] ·B[i, j] (3.3)

In media space, Comparing Zlc against a threshold leads to detection region with
planar boundary. But, as enlighted by Cox et al. in this book [4]

One of the problems with linear correlation is that the detection val-
ues are highly dependent on the magnitudes of vectors extracted from
Works.

21

Normalized Correlation The problems of linear correlation can be solved by
normalizing the matrices before computing the correlation.

Ã =
A

|A|

B̃ =
A

|A|
Znc(A,B) =

∑
i

∑
j

Ã[i][j] · B̃[i][j]

(3.4)

Algorithm 4 Random Data Flooding with Watermarking
Require: path, floodKey, e params

1: FILE EXT ← [".doc", ".pdf", ".xls", ".jpg", ".mp4", ...]

2: M ← e params.defaultEmbeddingSurface

3: N ← e params.watermarkSize

4: wt← generateWatermark(N, floodKey[0-63])

5: while (keepFlooding) do

6: R←randomInt(N, M)

7: cnt← newByteArray(M ×R)
8: ext← rndSelect(FILE EXT)

9: seed← random64Seed()

10: for i← 0 to capacity(cnt)/64 do

11: seed← seed⊕ (seed≪ 13)
12: seed← seed⊕ (seed≫ 7)
13: seed← seed⊕ (seed≪ 17)
14: append(cnt, seed)
15: end for

16: if capacity(cnt) > 0 then

17: r ← newByteArray(capacity(cnt))
18: r ← fillWithRandomBytes(r)
19: append(cnt, r)
20: end if

21: cnt← embedBlocks(cnt, wt, e params, floodKey[64-128])

22: writeFile(rndFilePath(path, ext), cnt)
23: end while

Algorithm 4 combines the watermark embedding process just described with the
Random Flooding strategy seen in the Algorithm 1.
The function generateWatermark, takes the size of the matrix, and the first 64 bits
of the Flood Key, and return a N ×N matrix of 8-bit integer values.

22

Algorithm 5 Restoration Process for Random Flooding with Watermarking
Require: path, floodKey, e params, threshold, corrMeasure

1: M ← e params.defaultEmbeddingSurface

2: wt← generateWatermark(N, floodKey[0-63])

3: for file in path do

4: f ←readFile(file)
5: f ←removeHeader(f)
6: cnt← newByteArray(getSize(f))
7: cnt← f

8: Z ← correlation(cnt, wt, f loodKey, e params, corrMeasure)
9: if Z > threshold then

10: removeFile(file)

11: end if

12: end for

In Algorithm 5, the correlation function is used to calculate the correlation between
the watermark and the file according to e params and follows the steps described
in the Detection process. The corrMeasure could be: Linear Correlation or Nor-
malized Correlation.

23

3.2.3 Security Analysis

Now, we analyze the security of the watermarking system we have created.
In a possible attack scenario, the ransomware may not only encrypt files, but
also try to detect the watermark in order to skip the encryption of the Ranflood
files, making the Random Flooding strategy counterproductive. We concern about
the unauthorized detection, which is the ability of the attacker to detect the
watermark in the files without the Flood Key.

We analyse some of the simplest strategies that the attacker could use to detect
the watermark:

Brute Force Attack The attacker could try to detect the watermark by trying
all possible Flood Keys. If we use a 64-bit key for the Watermark Key, and a
64-bit key for the Block Key, the attacker would have to try 2128 keys.

Using a watermarked file as watermark The attacker could use a known
file, generated by Ranflood, to detect the watermark. If our watermarking system
is not robust, an attacker could use an already watermarked file as a reference,
that may have the correlation value sufficiently different from a generic user file,
making the detection easier. For example, if the Embedder produces watermarked
files with the same size, each file will have some similarities with the others, due to
the fact that the watermark is added in the same way. To avoid this attack, we can
use the Random Blocks Embedding technique. By spreading the watermark
in some random blocks, each file will have differences on how the watermark was
added. Since each file has different size, the watermark will be likely added in
different blocks, making each file more indistinguishable from the others.

Rebuild the Watermark Even with the use of Random Blocks Embedding,
the attacker could try to rebuild the watermark.

1. The attacker takes two watermarked files, f1 and f2, and divide them in
blocks.

2. For each block of f1, the attacker calculates the correlation with each block
of f2.

3. The blocks where it found the highest correlation values are likely to contain
the watermark.

4. The attacker can then try to rebuild the watermark by taking the blocks
with the highest correlation values.

24

5. For each other file, the attacker can try to detect the watermark by comparing
each block found in file f1 with the blocks of the other files.

To avoid this attack, we can:

� Use a strong PRNG, like Fortuna [9], to select blocks and the watermark.

� Use a large Default Embedding Surface, to make the attacker take more time
to find the blocks.

� Ensure the size of all block is small, to make the correlation values less
significant.

25

Chapter 4

Evaluation

4.1 Implementation

In this chapter, we describe how the Watermarking System was tested. This
implementation was essential to evaluate the effectiveness of the designed system.
The implementation was written in Python, both because it is a language easy
to use and understand, and because it offers many easy-to-access libraries, for
example, Open CV for DCT or Matplotlib for the graphic visualization of results.

Figure 4.1: UML Diagram

We created an environment that simulates a flooding operation. For this pur-
pose, we designed several classes: an Embedder that embed the watermark, a

26

Detector that detects the watermark with the key, an Attacker that tries to de-
tect the watermark without the key, and a Simulator that simulates the Ranfood’s
instance.

4.2 Testing

The embedding and detection process follows the same scheme we have seen in
Chapter 3. In this specific implementation, first an Embedder, a Detector and an
Attacker are created. Each of these instances is initialized with the same param-
eters (Watermark Intensity, Embedding Type, Use Random Blocks, Watermark
Size and Default Emebedding Surface). At this point, a directory is filled with 100
decoy files watermarked by the Embedder. Then, the correlations (both Linear
Correlation and Normalized Correlation) with different type of files are calculated:

� Correlation with Watermark and watermarked files Zw,w: The cor-
relation with the watermark is calculated for each file.

� Correlation with watermark and random content Zw,r: Done to see
what values we expect when the correlation is calculated with random con-
tent, like encrypted files.

� Correlation with watermark and real files Zw,f : Which represents the
correlation we expect when the watermark is calculated with user files.

Real files are taken from CIFAR-100 dataset [7], where we take only 100 randomly
selected images. Even if we only use the images domain, this correlation could
be calculated with any type of file. For this purpose, we have created a script
that calculates: the correlation with images from CIFAR-100, the correlation with
real files with common file extension (pdf, xls, mp4 ...), and the correlation with
watermarked files (Figure 4.2).

27

Figure 4.2: Correlation with CIFAR-100 and Real Files.

To study the behaviour of a hypothetical attacker, we calculate:

� Correlation with a watermarked file and another one Za,w: This cor-
relation is calculated between two watermarked images (3.2.3). This should
simulate the correlation that an attacker would obtain with the decoy files.

� Correlation with a watermarked file and a real file Za,f : This corre-
lation represents the correlation that an attacker would obtain with a user
file and the watermarked file, which is used to detect the watermark.

This process simulates an attack where, without prior knowledge of which images
are watermarked, the attacker identifies the file that exhibits the highest correlation
value with a batch of files (e.g., 20) and then uses it in the later stages of the attack.
At the end of the test, all correlations are plotted and saved in a json file.

28

4.3 Results

In this section, we show the results of the tests carried out. The tests were
carried out with the following embedding parameters: embedding type, use random
blocks, watermark intensity, watermark size, default embedding surface, and blocks
size.

The results are shown in a line chart, where the x-axis represents the file index
and the y-axis represents the correlation value (Normalized Correlation). On the x-
axis, the i-th file is the same for both the blue and red correlation lines. Similarly,
the i-th file corresponds to both the purple and green lines. This means that
the correlations are computed on the same files, but under different conditions or
methods, allowing for a direct image-by-image comparison of the results.

Figure 4.3: Legend.

With the simplest configuration, using the spatial domain embedding (STD),
a watermark intensity of 0.9, and no random blocks, the results are as follows:

Figure 4.4: watermark intensity: 0.9, watermark size: 512, embedding type: STD.

29

As can be seen from the Figure 4.4, this configuration is not very effective. On
the one hand, we can easily recognize which files are watermarked and which are
not, the average correlation with these files is 0.99768 with a variance of 3.05540 ·
10−11. On the other hand, the correlation calculated by the attacker with the
watermarked files is very high too (the average is 0.99735).

Trying to reduce the Watermark intensity to 0, 1, seems to be not effective,
the average correlation calculated using the secret watermark is 0.79174. Not only
the problem of high value of correlation of the attacker persists with an average
value of 0.78682, but the normalized correlation does not allow us to distinguish
which is the watermark and which is not (Figure 4.5).

Figure 4.5: watermark intensity: 0.1, watermark size: 512, embedding type: STD.

Moving toDCT embedding, we can see that the results are better. The average
correlation between watermarked files and the watermark is 0.11031, while the
average correlation calculated by the attacker is 0.01205. This is a big improvement
compared to the previous configuration, but the attacker is still able to detect the
watermark because the correlation is still higher than the correlation with real files
(Figure x4.6).

30

Figure 4.6: watermark intensity: 0.1, watermark size: 512, embedding type: DCT.

A notable improvement is obtained if we use Random Blocks Embedding.
Using this technique allows us to use Watermark Size and Default Embedding
Surface values different from each other (Figure 4.7).

Figure 4.7: watermark intensity: 0.1, watermark size: 512, embedding type: DCT,
random blocks: True, default embedding surface: 1024.

31

4.4 Finding the best configuration

Although we know that some parameters lead to improvements, it is not easy
to find the best configuration, considering all parameter combinations. For this
reason, we model our problem as an objective function that as to be minimized.
In particular, we want to minimize the difference between Correlation with a wa-
termarked file and another one and Correlation with a watermarked file and a real
file, so that the attacker is not able to distinguish between the two. Meanwhile,
we want to maximize the difference between Correlation with Watermark and wa-
termarked files and Correlation with watermark and random content and
real files, so the watermark can be easily detected.
The variables that we can change, with their boundaries, are:

� Embedding Type: STD, DCT

� Use Random Blocks: True, False

� Watermark Intensity: 0.1, 0.9

� Watermark Size: 128, 256, 512

� Default Embedding Surface: 512, 1024, 2048

� Blocks Size: 8, 16, 32

To implement this model, we have used the Python library Scipy [13] its module,
Scipy.optmize, provides several functions for minimizing (or maximizing) objective
functions. In particular, we have used the dual annealing algorithm [3]. Dual
Annealing is a stochastic optimization method that can handle mixed continuous
and discrete variables (with bounds).

The objective function to be minimized, is defined as follows:

fo = |Za,w −Za,f | − |Zw,w −Zw,r| − |Zw,w −Zw,f | (4.1)

Furthermore, we have some constraints that we have implemented in the objective
function:

� Negative values are set to 0.

� During the test, we have seen that dual annealing had the tendency to in-
crease the watermark intensity, obtaing high values of Zw,w but also Za,w.
To avoid this, when: |Za,w−Za,f | > ω, where ω is a threshold, the objective
function returns an infinite value.

The best configuration found is:

32

� Embedding Type: DCT

� Use Random Blocks: True

� Watermark Intensity: 0.3

� Watermark Size: 256

� Default Embedding Surface: 1024

� Blocks Size: 8

Figure 4.8: Best Configuration.

Using normalized correlation as a metric, permits to compare every correlation
value in a equitable manner, because the correlation values are normalized between
0 and 1. It’s important to note that the configuration found through a heuristic
approach, it is not necessarily the best absolute configuration,

4.4.1 Selection of parameters

Even if we found an approximation of the best configuration, the idea is that,
the selection of the parameters will depend on the specific use case. A user who
wants better performance in terms of time, could choose to use a small Watermark.
The core idea is that the system is flexible and can be adapted while ransomware
attacks evolve (2.1).

33

4.5 Performance

The performance of the system is evaluated in terms of the time required to
embed and detect the watermark of 100 files. These tests were carried out on a
Debian 12 (bookworm) machine equipped with an Intel i3-8100 (3.600GHz), and
16GB of RAM.
To simulate the random flooding, we start the embedding process without adding
the watermark to the files, a Python implementation of the Ranflood random con-
tent generator was used to be as faithful as possible to the original implementation,
the Default Embedding Surface was 1024. The time required to perform a flooding
without the watermark is 35.71382 seconds.

A simple watermark process (embedding type: STD, no Random Blocks em-
bedding, and a watermark size of 1024), took the Embedder 36.6068 seconds, while
the Detector took 0.90186 seconds to calculate the normalized correlation for all
the decoy files. The Attacker took 2.92393 seconds.

Moving to the frequency domain embedding, the Embedder took 37.55784 sec-
onds, the Detector took 1.38709 seconds, and the Attacker took 4.27894 seconds.

Using the best configuration found, the Random Blocks embedding parameters
allow to significantly increase the time required by the Attacker, due to the fact
that, at each file, the Attacker has to calculate the correlation for each block of the
file. The Embedder took 86.39539 seconds, the Detector took 53.39403 seconds,
and the Attacker took 220.07028 seconds.

Figure 4.9: Times required for Embedder, Detector and Attacker.

34

Chapter 5

Conclusion

5.1 Summary

In chapter 2 of this thesis, we have analysed a major problem in today’s world,
ransomware. We presented an innovative solution, Ranflood, that put into practice
a new approach called Data Flooding against Ransomware. Like any emerging
technology, there are lots of components that need to be further developed. That
is why we give an introduction of Digital Watermarking as a technique useful for
improving some Ranflood strategies, like the Random Flooding, where it helps in
recognizing decoy files generated by Ranflood.
In chapter 3, we described the watermarking system that we developed. The
system is designed to be used in conjunction with Ranflood. In particular, it
embeds a watermark in the decoy files during the mitigation, and then it can be
used to recognize the decoy files during the restoration phase. We studied the
behavior of a hypothetical attacker (the ransomware). In chapter 4, we presented
the results of the experiments we carried out to evaluate our watermarking system,
and showed how the results are affected by the parameters. We also showed the
best configuration of parameters, found using the dual annealing optimization
algorithm.
During the experiments, we also stored and analyzed the time takes by Embedder,
the Detector and the Attacker to perform their tasks.

5.2 Future Work

Java Implementation in Ranflood The system was tested in a standalone en-
vironment using Python. The next step is to integrate the watermarking system
into the suite of software that makes up Ranflood. It should not be too difficult
thanks to the fact that the watermarking system has been developed around the

35

Random Flooding algorithm, and thanks to the followed object-oriented design,
the integration consists of creating the same classes described in the watermark-
ing system implemented in Python, but in Java. These will provide methods to
interact with the already existing Ranflood classes.

Making random files more realistic During the experiments, we noticed
that the correlation calculation reveals different behavior between real files and
random files. For example, for the best correlation found in section 4.4, Zw,r and
Za,w have values respectively of −3.64212 and 4.53522, with variance of 3286.39770
and 357.99387. Meanwhile, Zw,f and Za,f have values respectively of −0.0088 and
−0.00228, with variance of 0.01817 and 0.00155. This behaviour is shown even if
the watermark is not present. The attacker can exploit this difference to recognize
decoy files, so it’s important to make the random files more realistic, whether or
not the watermark is applied. The random file generation process must be refined
so that its statistical properties (e.g., entropy, mean, variance) closely mirror those
of real files.

Exploring other watermarking techniques and attack strategies The
watermarking system that we had shown in this thesis is not the only one that
can be used to improve Ranflood. There are many other techniques that can be
implemented [12]. The idea is to offer to the user different techniques and use
them based on use cases.
The same applies to the attacker, we have only tested a simple strategy because
we have no examples in literature for this kind of issue.

Improve copy-based solutions The study of watermark applied to Ranflood
opens the door to improvement that can be made for the Shadow and the On-the-
fly strategies. In particular, with the help of steganography, we can hide additional
flooding information in the generated files, such as the path of the original copy.

Deepen the study of frequency domain embedding The results show that
the combination of DCT and random blocks embedding is the most effective in
our case. The combination of normalized correlation and DCT embedding allows
us to obtain better results. A reasonable explanation could be that DCT produces
a matrix with values greater than 255, or even negative, so the amount of infor-
mation available for embedding increases, enhancing the watermark’s resilience
and making it easier to distinguish watermarked files from random content during
detection. It would be interesting to deepen the study of the frequency domain
embedding, to understand if there are other techniques that can be used to improve
the watermarking system.

36

Bibliography

[1] Craig Beaman, Ashley Barkworth, Toluwalope David Akande, Saqib Hakak,
and Muhammad Khurram Khan. Ransomware: Recent advances, analysis,
challenges and future research directions. Computers & security, 111:102490,
2021.

[2] Davide Berardi, Saverio Giallorenzo, Andrea Melis, Simone Melloni, Loris
Onori, and Marco Prandini. Data flooding against ransomware: Concepts
and implementations. Computers & Security, 131:103295, 2023.

[3] The SciPy community. dual annealing. https://docs.scipy.org/doc/

scipy/reference/generated/scipy.optimize.dual_annealing.html#

id5.

[4] Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton
Kalker. Digital Watermarking and Steganography. Morgan Kaufmann, 2007.

[5] Ingemar J Cox, Joe Kilian, F Thomson Leighton, and Talal Shamoon. Secure
spread spectrum watermarking for multimedia. IEEE transactions on image
processing, 6(12):1673–1687, 1997.

[6] Noël Keijzer. The new generation of ransomware: an in depth study of
ransomware-as-a-service. Master’s thesis, University of Twente, 2020.

[7] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

[8] Haiming Li and Xiaoyun Guo. Embedding and extracting digital water-
mark based on dct algorithm. Journal of Computer and Communications,
6(11):287–298, 2018.

[9] Robert McEvoy, James Curran, Paul Cotter, and Colin Murphy. Fortuna:
cryptographically secure pseudo-random number generation in software and
hardware. In 2006 IET Irish Signals and Systems Conference, pages 457–462.
IET, 2006.

37

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html#id5
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html#id5
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html#id5

[10] Saraju P Mohanty. Digital watermarking: A tuto-
rial review. URL: http://www. csee. usf. edu/˜ smo-
hanty/research/Reports/WMSurvey1999Mohanty. pdf, 1999.

[11] Heba Saleous, Muhusina Ismail, Saleh H AlDaajeh, Nisha Madathil, Saed
Alrabaee, Kim-Kwang Raymond Choo, and Nabeel Al-Qirim. Covid-19 pan-
demic and the cyberthreat landscape: Research challenges and opportunities.
Digital communications and networks, 9(1):211–222, 2023.

[12] Arooshi Verma. Image-watermarking-using-dct. https://github.com/

arooshiverma/Image-Watermarking-using-DCT.

[13] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian
Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Na-
ture Methods, 17:261–272, 2020.

[14] Open Source Computer Vision. Dct. https://docs.opencv.org/4.x/d2/

de8/group__core__array.html#ga85aad4d668c01fbd64825f589e3696d4.

[15] Wikipedia. Discrete cosine transform. https://en.wikipedia.org/wiki/

Discrete_cosine_transform, 2025.

[16] Wikipedia. Pearson correlation coefficient. https://en.wikipedia.org/

wiki/Pearson_correlation_coefficient, 2025.

38

https://github.com/arooshiverma/Image-Watermarking-using-DCT
https://github.com/arooshiverma/Image-Watermarking-using-DCT
https://docs.opencv.org/4.x/d2/de8/group__core__array.html#ga85aad4d668c01fbd64825f589e3696d4
https://docs.opencv.org/4.x/d2/de8/group__core__array.html#ga85aad4d668c01fbd64825f589e3696d4
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

	Introduction
	Background
	Ransomware
	Data Flooding Against Ransomware
	Detection

	Ranflood
	Mitigation
	Restoration

	Watermarking
	Watermarking System
	Geometric Models of Watermarking
	Transform Domain

	Our Contribution
	Improving Random Flooding
	Proposed Watermarking System
	Embedding
	Detection
	Security Analysis

	Evaluation
	Implementation
	Testing
	Results
	Finding the best configuration
	Selection of parameters

	Performance

	Conclusion
	Summary
	Future Work

