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Abstract

The use of artificial intelligence (AI) in diagnosing skin diseases presents a signifi-
cant opportunity to enhance healthcare accessibility. However, the effectiveness of
AI-based diagnostic systems is often compromised by several challenges, particularly
those related to fairness and representation. One prominent issue is the limited diversity
in real-world datasets, which can lead to substantial classification biases. This study
addresses these challenges by analyzing a dataset collected from an Italian hospital.
The dataset exhibits limited data availability, resulting in inadequate representation—
especially for darker skin tones. Furthermore, the dataset primarily consists of non-
dermoscopic, consumer-grade images, which often suffer from quality issues such as
inconsistent lighting and blurriness. These factors collectively complicate the develop-
ment of accurate and fair AI models for skin disease diagnosis.

To address these issues, this research proposes a novel diagnostic pipeline designed
to improve both accuracy and fairness in real-world scenarios. The proposed pipeline
consists of two main stages: (1) data pre-processing and augmentation, wherein images
that better represent darker skin tones are generated using a state-of-the-art diffusion
model, and (2) disease classification through deep learning techniques. The efficacy of
the proposed methodology is demonstrated through comprehensive validation on real-
world data, highlighting significant improvements in both reliability and fairness across
various skin disease classifications.
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Chapter 1

Introduction

This chapter aims to provide a general introduction to the Thesis. Specifically, it outlines
the problem under investigation, reviews previous approaches, and presents the adopted
methodology, comparing it with prior work.

The Chapter is structured as follows:

• Section 1.1 discusses the issue of AI fairness in dermatology from a general per-
spective, highlighting its significance and referencing relevant literature that sub-
stantiates the existence of this problem.

• Section 1.2 provides an overview of previous approaches in the literature, analyz-
ing their limitations and key strengths.

• Section 1.3 details the methodology adopted in this study, explaining why it is
well-suited for this specific use case and how it can serve as a generalizable pipeline.

1.1 Problem Description

Skin diseases are among the most prevalent human health conditions, affecting nearly
900 million people globally at any given time [33]. Early and accurate diagnosis is
critical for effective treatment, yet access to dermatological care remains limited in many
regions. Automating the diagnostic process through artificial intelligence (AI) offers the
potential to make healthcare more accessible, especially for underserved populations.
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Advances in deep learning (DL) have significantly improved diagnostic accuracy and
reliability [57, 17, 47], but addressing biases and ensuring fairness in AI systems remain
significant challenges.

A major hurdle is the use of non-dermoscopic images captured with consumer-grade
cameras. While this approach democratizes access by relying on widely available tools,
it introduces variability in image quality, lighting, and focus, complicating disease clas-
sification [36]. Additionally, diagnostic performance often varies across demographic
groups, potentially disadvantaging underrepresented populations, such as those with
darker skin tones. Ensuring fairness requires accurate evaluation of model performance
for each demographic group and targeted methodologies for bias detection and mitiga-
tion [64].

To address these issues, this study proposes a pipeline to mitigate the bias detected
in the classification of dermatological diseases within a non-dermoscopic dermatology
dataset by augmenting it with synthetic images. Specifically, the dataset utilized in this
study is imbalanced in terms of skin color, predominantly featuring images of diseases
on caucasian skin, which introduces bias in classification. Another key characteristic of
this dataset is the absence of skin color labels, necessitating an automatic measurement
of skin tone to assess the presence of potential bias.

The issue of skin color imbalance in datasets is highly prevalent in dermatology,
affecting both dermoscopic and non-dermoscopic datasets. For instance, Forero et al.
[45] demonstrated through an in-depth exploration of the HAM10000 dataset [63] that
fewer than 5% of images originate from black patients. Similarly, Alipour et al. [3]
conducted a review of major dermatology datasets, emphasizing the necessity of greater
efforts to ensure diversity within them.

As evidenced by several previous studies, an imbalanced dataset in terms of skin
color induces bias in the classification of dermatological lesions and diseases, often fa-
voring lighter skin tones at the expense of darker ones. For example, Bencevic et al.
[10] found a significant correlation between image segmentation performance and skin
color, highlighting a notable bias against darker skin tones. Daneshjou et al. [20] devel-
oped the Diverse Dermatology Images (DDI) dataset—the first publicly available, ex-
pertly curated, and pathologically confirmed image dataset with diverse skin tones—and
evaluated state-of-the-art AI models on it. Their findings indicate that these AI models
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exhibit substantial limitations on this dataset, particularly disadvantaging darker skin
tones and less common diseases. Furthermore, Diaz et al. [22] conducted a systematic
literature review to highlight the extent of bias present in clinical datasets. Their results
reveal that many imaging datasets underrepresent certain skin tones, leading machine
learning models to be trained primarily on images of individuals with lighter skin.

Additionally, robust skin tone estimation is crucial for assessing fairness in classifi-
cation. The study by Kalb et al. [37] highlights inconsistencies in skin color estimation
across prior works in the literature. Such inconsistencies can potentially compromise
fairness verification, as demographic groups may not be accurately categorized as re-
quired.

In conclusion, ensuring fairness in classification across different demographic
groups is a critical and pressing issue in automated dermatological analysis, partic-
ularly for clinical datasets, where models trained on dermoscopic datasets exhibit signif-
icant performance gaps [27]. This study proposes a potential pipeline to mitigate bias in
the classification of a non-dermoscopic dataset, as introduced in the subsequent sections
of this Chapter.

1.2 Related Work

Significant efforts have been made to mitigate bias in dermatological AI applications
without compromising the privacy or integrity of demographic data. For instance, the
study by Chiu et al. [16] introduces a method to ensure fairness by enhancing feature
selection during the model training phase, purposely omitting sensitive demographic at-
tributes. This technique relies on sophisticated feature entanglement strategies to focus
solely on disease-relevant features, minimizing biases associated with non-disease at-
tributes like skin tone. Moreover, the introduction of PatchAlign, as discussed in [1],
marks a notable advancement in aligning skin condition image patches with correspond-
ing clinical descriptions. Using a Masked Graph Optimal Transport (MGOT) algorithm
effectively reduces noise and improves diagnostic accuracy and fairness across vari-
ous skin tones by focusing on disease-relevant image regions. The work of Yuan et al.
[67] presents EDGEMIXUP, a preprocessing technique that alters image data to dimin-
ish bias by manipulating colour saturation and integrating edge detection outputs. This
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method has shown efficacy in decreasing the performance disparity between different
skin tones while maintaining overall diagnostic accuracy. Similarly, the FairSkin frame-
work introduced in [68] leverages diffusion models to generate synthetic medical images
that represent various skin tones equitably. Through a resampling mechanism and class
diversity loss, this approach ensures that the synthetic data aids in balancing dataset
representation across demographic groups. Lastly, [31] and [42] propose innovative
solutions to enhance fairness through structural model adjustments. The FairQuantize
methodology employs weight quantization to adjust model performance across different
demographics, and the channel pruning approach identifies and reduces bias by pruning
channels that disproportionately affect specific demographic groups.

While the related works present innovative solutions for addressing bias and achiev-
ing acceptable accuracy in AI-based diagnostics for skin diseases, these solutions are
still largely explorative and preliminary, rather than robust solutions to be applied in
real-world scenarios. When applied to real-world scenarios, particularly employing non-
dermoscopic images, they often yield unsatisfactory results [66]. When used in our spe-
cific scenario, the existing techniques still pose significant challenges that frequently
lead to suboptimal outcomes if these techniques are applied in isolation [29].

1.3 Our Approach

It is worth emphasizing that the dataset used in our study introduces several unique chal-
lenges that must be responsibly addressed. The main challenges are related to (1) inher-
ent dataset features (including its characteristics and variability), and (2) specific chal-
lenges related to the skewness of the available data, which significantly over-represent
certain populations, thus inducing unfairness in the classification process (more details
follow in the data description Section in Chapter 3). Failing to meticulously study and
address these issues within the development pipeline could lead to misdiagnoses, which
in turn may exacerbate existing healthcare inequalities and result in adverse outcomes
for affected patients. Such oversight highlights the critical need for rigorous evalua-
tion and refinement of AI diagnostic tools to prevent potential harm and ensure their
reliability and fairness across all populations.
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This work builds upon existing state-of-the-art foundational efforts, intending to ad-
dress additional limitations in real-world, highly imbalanced datasets. We explicitly
consider both classification performance and fairness metrics in our analysis. There are
a few methods in the literature that aim at improving the fairness of non-dermoscopic
image disease classification through the refinement of sophisticated Deep Learning (DL)
models ([18, 42, 31, 16]) – this approach is orthogonal as it does not focus on the clas-
sification model itself but rather proposes a pipeline for image data pre-processing and
data augmentation that can complement any existing DL model for classification of skin
diseases. In particular, the pre-processing technique employs the Individual Typology
Angle (ITA)metric alongwith a novel thresholdingmethod based on a GaussianMixture
Model to accurately measure the skin tone depicted in each image. For data augmen-
tation, this study proposes a novel combination of stable diffusion with DreamBooth to
address the challenge of data scarcity, which is particularly acute for darker skin tones.
To the best of our knowledge, this is the first work to consider using DreamBooth for
generating skin disease images for different skin shades. The pre-processing method can
be affected by issues such as poor lighting and image blurriness, which may distort the
perceived skin tone. To counteract these problems, the images used for training Dream-
Booth are carefully hand-picked, ensuring that they represent the skin tones targeted for
augmentation. This meticulous selection process is especially crucial as only three out
of the nine diseases catalogued in our dataset have examples of ’dark’ and ’brown’ skin,
necessitating precise and representative training data to enhance model fairness and ac-
curacy. The final step is the training of DL models for skin disease classification using
pre-processed and augmented data. The current study opted for two of the most efficient
models currently available, namely the Swin Transformer (ST) and the Convolutional
Neural Network (CNN); potentially, other DL approaches could be plugged in, accord-
ing to the available resources and desired outcomes. The overall pipeline is illustrated in
Fig. 1.1 and consists of the previously discussed preprocessing steps, plus the compar-
ison of enhanced results via data augmentation. Please note that the proposed pipeline
requires co-design and co-creation phases (especially in the selection phase during the
pre-processing), during which stakeholders (in this case, doctors) are involved to assist
in the selection and validation processes.

This Thesis is organized as follows:



1.3 Our Approach 6

Figure 1.1: Diagram of our pipeline.

• Chapter 2 introduces the theoretical background necessary for understanding this
work. Specifically, it details the architecture of the Swin Transformer (ST) and
explains the concept of Diffusion Models, followed by an introduction to Stable
Diffusion and, finally, the DreamBooth fine-tuning technique.

• Chapter 3 provides a detailed explanation of the examined dataset, highlight-
ing its critical characteristics, explaining the adopted preprocessing methods, and
describing the process of estimating the skin tone of the images using the ITA
metrics.

• Chapter 4 describes the classification process of various diseaseswithin the dataset
using a Convolutional Neural Network (CNN), explaining how it was trained on
the given dataset. Additionally, this Chapter presents the classification results on
the original dataset in terms of both performance and fairness.

• Chapter 5 outlines the classification process of various diseases within the dataset
using an ST, explaining how it was trained on the given dataset. This Chapter also
presents the classification results on the original dataset in terms of both perfor-
mance and fairness.

• Chapter 6 details the image generation process through the fine-tuning of a Stable
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Diffusion model using DreamBooth. It then explains the different approaches
used for dataset augmentation and the classification results – both for the CNN
and ST – on the augmented dataset with synthetic images, focusing on fairness
and performance, with the aim of comparing these results to those on the original
dataset from previous Chapters 4 and 5.

• Chapter 7 presents the conclusions and discusses possible extensions or improve-
ments to this work.



Chapter 2

Background

This Chapter provides a theoretical foundation for the key concepts necessary to compre-
hend the pipeline developed in this work. Specifically, the Chapter focuses on the theo-
retical explanation of the ST, employed for image classification, and Diffusion Models,
first offering a general introduction and subsequently concentrating on Stable Diffusion
and, finally, DreamBooth. At the end of each theoretical section, a brief discussion on
its application in the dermatological field and its role in our work is provided.

This Chapter is structured as follows:

• Section 2.1 presents previous studies on the use of CNNs in dermatology, high-
lighting their advantages over traditional automated diagnosis methods, as well
as their limitations compared to other architectures such as Vision Transformers
(ViTs) and STs.

• Section 2.2 introduces the ST architecture in detail, explaining its advantages over
traditional ViTs and discussing prior research that has employed STs or modified
versions thereof in dermatology.

• Section 2.3 provides a general introduction to Diffusion Models, explaining their
forward process, reverse process, loss function, and typical architectural compo-
nents.

• Section 2.4 introduces Stable Diffusion and its architecture, emphasizing its ad-
vantages over traditional Diffusion Models and listing previous studies that have
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utilized it in dermatology.

• Section 2.5 presents the DreamBooth fine-tuning technique and its specialized
loss function, concluding with a discussion of prior research that has applied this
technique in combination with Stable Diffusion for dermatological applications.

2.1 Convolutional Neural Networks in Dermatology

Before the adoption of Convolutional Neural Networks (CNNs) in dermatology, au-
tomated diagnosis methods primarily relied on traditional machine learning techniques
and image processing algorithms. These approaches required manual feature extraction,
where handcrafted features such as texture, color, and shape were selected to charac-
terize dermatological lesions. Among the most commonly employed techniques were
Support Vector Machines (SVMs), which were widely used for both binary and multi-
class classification tasks, Random Forests (RFs), which leveraged decision tree en-
sembles to improve robustness, and k-Nearest Neighbors (k-NN), which classified le-
sions based on their proximity to labeled examples in the feature space. Additionally,
rule-based systems and thresholding algorithms were used to segment and classify skin
lesions based on predefined criteria, but these methods often struggled with variations
in illumination, skin tone, and lesion morphology. Other approaches, such as Prin-
cipal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), were
occasionally employed for dimensionality reduction and feature selection, but their ef-
fectiveness was constrained by the quality of the manually extracted features. Overall,
these early methods lacked the adaptability and scalability necessary for large-scale der-
matological applications, as discussed in [38]:

• Manual Feature Extraction: Traditional methods often rely on manually ex-
tracted features such as texture, color, and shape, which are then used to classify
skin lesions.

• Rule-Based Systems: These approaches use predefined rules and thresholds to
identify and classify dermatological diseases, making them inflexible and unable
to capture complex patterns.
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• Lower Accuracy and Human Error: Since these methods depend on manual
feature extraction, they often exhibit lower accuracy and are more susceptible to
human error.

• Limited Scalability: Traditional techniques require human intervention for each
analysis, making them inefficient and unsuitable for large-scale applications.

In 2017, Esteva et al. [24] utilized a CNN for the classification of skin cancer,
demonstrating its potential in dermatological diagnosis. This study marked a pivotal
moment in the field, as it became evident that Deep Learning models could achieve
significantly higher reliability and accuracy compared to any previously employed auto-
mated techniques. The superior performance of CNNs in capturing complex patterns and
features directly from raw image data underscored their transformative role in dermato-
logical image analysis, setting the foundation for subsequent advancements in AI-driven
skin disease classification. CNNs offer several advantages over traditional methods:

• Automated Feature Learning: CNNs learn features automatically from data
during the training process, eliminating the need for manual feature engineering.

• HighAccuracy: CNNs achieve superior accuracy in skin lesion classification due
to their ability to capture intricate patterns. In some cases, their diagnostic perfor-
mance is comparable to, or even exceeds, that of board-certified dermatologists,
as further explained in the papers cited below.

• Scalability: CNNs can efficiently process large datasets, making them highly
scalable and suitable for large-scale applications.

• Adaptability: CNNs can be trained on diverse datasets, allowing them to gen-
eralize to various skin diseases and improve over time with the inclusion of new
data.

For instance, Ganthya et al. [28] explore the application of CNNs for automated skin
cancer diagnosis, covering key aspects such as convolutional layers, pooling layers, ac-
tivation functions, and backpropagation algorithms. Their study also addresses dataset
preparation, including image preprocessing and augmentation techniques to enhance
model performance.
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Wong et al. [65] employ a CNN model trained on real-world smartphone images
with histopathological ground truth for binary lesion classification (benign vs. malig-
nant). Results indicate that the model’s accuracy in predicting malignant lesions was
comparable to that of board-certified dermatologists (71.31% vs. 77.87%, 69.88%, and
71.93%, respectively), validating the clinical utility of automated diagnosis.

Additionally,Musthafa et al. [44] employ a CNN with an optimized layer config-
uration and data augmentation for skin cancer diagnosis using the HAM10000 dataset,
achieving a remarkable accuracy of 97.78%.

These studies highlight that CNN architectures exhibit performance comparable to,
and in some cases exceeding, that of board-certified dermatologists for automated der-
matological diagnosis. Future advancements in dermatological AI will likely involve a
hybrid approach that integrates automated diagnosis with expert clinical evaluation, as
supported by Ba et al. [7], which examines the impact of CNN-assisted diagnosis on
dermatologists’ performance. The study shows that dermatologists, particularly those
with less experience, benefit from CNN assistance in terms of diagnostic accuracy.

Despite their widespread adoption in dermatology, CNNs have several limitations
when compared to more recent models such as Vision Transformers (ViTs) and Swin
Transformers. Firstly, CNNs primarily focus on local feature extraction and may fail to
capture crucial global contextual information necessary for accurate diagnosis. In con-
trast, Vision Transformers—especially Swin Transformers—utilize self-attention mech-
anisms to integrate global contextual information, enabling superior pattern recognition,
as discussed in [4]. Secondly, training CNNs on large-scale datasets is computation-
ally expensive and time-consuming. Swin Transformers, in contrast, are designed for
computational efficiency through hierarchical representations and window-based self-
attention, making themmore suitable for large-scale applications. Finally, multiple stud-
ies have demonstrated that Vision Transformers outperform CNNs on dermatological
datasets, as shown in [56] and in [61].

In this study, a simple Convolutional Neural Network is initially used for the classi-
fication of nine different skin diseases, achieving an overall accuracy of 77.0% and an
F1-score of 0.77 on the non-augmented dataset described in Chapter 4. To enhance per-
formance, a Swin Transformer is subsequently employed, attaining an overall accuracy
of 91.3% and an F1-score of 0.90 on the non-augmented dataset. These results further



2.2 Swin Transformer: Architecture and Applications in Dermatology 12

confirm the superiority of Swin Transformers for this dermatological classification task.

2.2 Swin Transformer: Architecture and Applications
in Dermatology

For a long time, modeling in computer vision has been dominated by CNNs, with ar-
chitectures such as AlexNet demonstrating revolutionary performance on ImageNet.
In contrast, the evolution of architectures in the field of natural language processing
(NLP) has followed a different trajectory, where the predominant architecture today is
the Transformer. Designed for sequential modeling, Transformers leverage attention
mechanisms to capture long-range dependencies in data. Given their remarkable suc-
cess in NLP, researchers have explored their application to computer vision, starting
with ViTs and more recently with the Shifted Window Transformer, i.e. the Swin
Transformer.

However, significant challenges arise when transferring the performance of Trans-
formers from a text-based domain to an image-based one. The first major challenge is
scale: unlike word tokens, which serve as the fundamental elements in NLP Transform-
ers, the scale of visual elements can vary significantly, as is the case in object detec-
tion. Another challenge stems from the substantially higher pixel resolution of images
compared to the word-level representations in text sequences. This issue is particularly
critical for tasks such as semantic segmentation, which requires dense, pixel-level pre-
dictions. The quadratic computational complexity of self-attention with respect to image
size makes it impractical for high-resolution images.

To address these challenges, Liu et al., in their paper from which this introduction
is adapted [43], proposed a general-purpose Transformer backbone known as the Swin
Transformer. This architecture constructs a hierarchical featuremap thatmaintains
computational complexity linear in image size, enabling more efficient and scalable
modeling for vision tasks.
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2.2.1 Architecture

The Swin Transformer is a hierarchical architecture whose representation is computed
through a shifting windowmechanism. This design enhances computational efficiency
by restricting self-attention computation to non-overlapping local windows while simul-
taneously enabling cross-window connections. The Swin Transformer constructs a hier-
archical representation by starting from small-sized patches and progressively merging
neighboring patches at deeper layers, providing the flexibility to model visual infor-
mation at multiple scales. Due to the computation of self-attention within each local
non-overlapping window, its computational complexity remains linear with respect to
image size.

The architecture is illustrated in Figure 2.1: First, the input RGB image is split into
non-overlapping patches using a Patch Partition module, similar to ViTs. Each patch
is treated as a ”token,” whose feature representation consists of the concatenation of raw
pixel RGB values. In its original implementation, a patch size of 4×4 is used, resulting in
each patch having a feature dimension of 4×4×3=48. Next, multiple stages are applied
to these patch tokens. The main component of these stages is the Swin transformer
Block, shown in Figure 2.2.

Figure 2.1: Swin Transformer Architecture [43].

Within a Swin Transformer Block, the standard multi-head self-attention (MSA)
used in ViTs is replaced by a Window-based MSA (W-MSA) and a Shifted Window
MSA (SW-MSA). Each block consists of two sub-units: each sub-unit includes a Layer
Normalization (LN) + Attention module, followed by another LN + Multi-Layer Per-
ceptron (MLP) layer, as shown in Figure 2.2. The first sub-unit utilizes W-MSA, while
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the second sub-unit employs SW-MSA. Specifically:

• Unlike traditional ViTs, which apply global self-attention where each patch at-
tends to all other patches—resulting in quadratic complexity with respect to the
number of patches—Window-based MSA (Figure 2.3a) operates within fixed-
size windows, where each window contains a fixed number of patches (M×M
in the original paper). Self-attention is then computed only within each win-
dow, leading to linear complexity with respect to the number of patches. In par-
ticular, the computational complexity of W-MSA for an image with h × w is
Ω(W -MSA) = 4hwC2 + 2M2(hw)C, where M is the aforementioned number
of patches and C is the third dimension of the feature map after the Linear Em-
bedding in the first stage. This complexity is linear to patch number hw, when
M is fixed. For the sake of comparison, it is worth noting that the computational
complexity of a standard of the standard MSA in ViT is quadratic with respect to
the number of patches, i.e. Ω(MSA) = 4hwC2 + 2(hw)2C.

• However, if only W-MSA were used, relationships between different windows
would be missing, which would be a limitation for the model. To address this,
ShiftedWindow-based Self-Attention (SW-MSA) is introduced. SW-MSA takes
the output of W-MSA, shifts all windows by (M/2, M/2) relative to the previous
layer, and then applies W-MSA within the shifted windows. However, this shift
results in the presence of “orphan” patches that do not belong to any window, as
well as windows with incomplete patches. To handle this issue, the Swin Trans-
former employs a “Cyclic Shift” technique (Figure 2.3b), which moves orphan
patches into windows with missing patches. After this shift, a window consists of
patches that are no longer adjacent in the original feature map. To ensure attention
is limited to adjacent patches, a masked MSA is applied during computation.

The original Swin Transformer architecture, represented in Figure 2.1, consists of
four stages, each containing a Swin Transformer Block:

• Stage 1: Each input patch, initially of size 48 pixels, is projected into a feature
dimension of C using a Linear Embedding layer. The resulting feature map
is then processed through a Swin Transformer Block, producing an output with
dimensions H

4 × W
4 × C.
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Figure 2.2: Swin Transformer Block [43].

(a) An illustration of the Window-based Multi-
Head Self-Attention mechanism [43]. (b) Cyclic shift technique [43].

Figure 2.3

• Stage 2: The feature map of size H
4 × W

4 × C is passed through a Patch Merging
layer (Figure 2.4), which combines adjacent 2×2 patches into a single patch. This
operation effectively downsamples the resolution by a factor of 2 while increasing
the feature map dimension by a factor of 2. Unlike convolutional downsampling,
the Patch Merging layer groups adjacent n × n patches and concatenates them
depth-wise. Specifically, to downsample an input feature map by a factor of n,
the input is first divided into groups, where each group consists of n × n adjacent
patches. These groups are then concatenated along the channel dimension. As a
result, an input feature map of size H × W × C is transformed into H

n
× W

n
×

(2nC), as illustrated in Figure 2.4. In this case, the output dimension becomes
H
8 × W

8 × 2C. After the Patch Merging layer, the feature map is processed by
another Swin Transformer Block, maintaining the same output dimensions.

• Stages 3 and 4: The same procedure as Stage 2 is applied, further downsampling
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Figure 2.4: Downsampling operation in the Patch Merging layer of a Swin Transformer
stage [39]. Assuming n=2, each group consists of 2x2 neighbouring patches. First, the
input image is split into groups of 2x2. Later, the patches in each group are stacked
depth-wise. Finally, the last step involves combining the stacked group.

the resolution, resulting in output dimensions of H
16 × W

16 and
H
32 × W

32 , respectively.

These stages construct a hierarchical representation, maintaining a feature map res-
olution similar to convolutional neural networks such as VGGNet and ResNet. This
characteristic allows the Swin Transformer to conveniently replace conventional back-
bone networks in existing vision tasks.

Finally, Swin Transformers include theRelative Position BiasB of size (M2 ×M2)
for calculating self-attention, i.e.:

Attention(Q, K, V ) = SoftMax(QKT /
√

d + B)V, (2.1)

where Q, K and V are the query, key, and value matrices; d is the query/key dimen-
sion, and M2 is the number of patches in a window. Using relative position bias signif-
icantly improves performance over transformers that use absolute position embedding.

2.2.2 Swin Transformers in Dermatology

Swin Transformers have been increasingly utilized in dermatology due to their ability to
capture multi-scale features, making them highly effective for skin disease classification
and lesion segmentation. Their hierarchical structure and attention mechanisms enable
superior performance compared to traditional Convolutional Neural Networks and Vi-
sion Transformers, particularly in tasks requiring fine-grained pattern recognition across
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varying lesion sizes and shapes.
For instance, Zhong et al. [69], conducted empirical studies which demonstrate that

the Swin Transformer Large model achieves the highest classification performance, with
an accuracy of 93.5%, outperforming multiple ResNet variants.

Similarly, Tang et al. [62] introduces the SkinSwinViT methodology, which lever-
ages cross-window attention within the Swin Transformer architecture for improved skin
lesion classification. Experimental results highlight its superiority, achieving an impres-
sive accuracy of 97.88%.

Moreover, modified versions of the Swin Transformer have shown remarkable re-
sults, surpassing both conventional Vision Transformers and classical CNNs. For in-
stance, Pacal et al. [48] implement a modified Swin Transformer incorporating Hy-
brid Shifted Window-Based Multi-Head Self-Attention (HSW-MSA) and replacing the
standard Multi-Layer Perceptron (MLP) with a SwiGLU-based MLP. This optimiza-
tion enhances accuracy, training speed, and parameter efficiency. The modified Swin
Transformer achieves an outstanding classification accuracy of 89.36% and an F1-score
of 86.65% on the ISIC 2019 test set, surpassing all prior research and deep learning
models documented in the literature.

In the study of Paraddy et al. [49], a Convolutional Swin Transformer (CSwinfor-
mer) is employed for precise skin lesion segmentation and classification. This approach
introduces Swinformer-Net, which integrates a Swin Transformer with a U-Net archi-
tecture for accurate region of interest delineation. In the final classification phase, the
segmented output is fed into aMulti-Scale Dilated Convolutional Neural Network meets
Transformer (MD-CNNFormer) module. The model achieves an accuracy exceeding
95% across four benchmark dermatological datasets—HAM10000, ISBI 2016, PH2,
and Skin Cancer ISIC.

These studies demonstrate that the Swin Transformer is particularly well-suited for
dermatological applications, as it effectively captures features at multiple scales, outper-
forming convolutional architectures, ResNet models, and Vision Transformers for tasks
such as lesion segmentation, disease classification, and feature extraction.

This work employs a Swin Transformer in its standard configuration, as implemented
by Hugging Face. Additionally, the utilized model has been fine-tuned on a skin cancer
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dataset, contributing to its superior performance on the specific dermatological task ad-
dressed in this study. The results indicate that even without synthetic data augmentation
generated via Stable Diffusion, the Swin Transformer achieves a classification accuracy
exceeding 90% and an F1-score of 0.90, further validating its suitability for this task.

2.3 A General Introduction to Diffusion Models

In recent years, Diffusion Models [59] have emerged as a powerful class of generative
models within the field of Machine Learning. Also referred to as diffusion probabilistic
models or score-based generative models, these techniques leverage a stochastic pro-
cess to model complex data distributions. As latent variable generative models, Diffu-
sion Models aim to establish a probabilistic relationship between observable data and
underlying latent variables, enabling the generation of new data samples that closely
resemble the original dataset.

A Diffusion Model operates through three fundamental components: the forward
process, the reverse process, and the sampling procedure. The forward process system-
atically corrupts data by iteratively adding noise, transforming structured information
into a distribution that approximates pure Gaussian noise. Conversely, the reverse pro-
cess—parametrized by a neural network—learns to progressively denoise the corrupted
data, effectively reconstructing realistic samples. The sampling procedure allows for
the generation of new data points by initializing a noisy input and iteratively refining it
through the learned reverse process.

Diffusion Models have demonstrated remarkable success in a variety of computer
vision applications. By 2024, they have become the foundation for state-of-the-art tech-
niques in image denoising, inpainting, super-resolution, and high-fidelity image and
video synthesis. The core principle behind their success lies in their ability to learn
the distribution of complex datasets and generate new instances with superior quality
compared to previous generative approaches. Unlike Generative Adversarial Networks
(GANs), which often suffer from mode collapse and training instability, diffusion mod-
els offer greater diversity in sample generation and improved training robustness.

Given their versatility and increasing adoption, diffusionmodels continue to push the
boundaries of generative AI, finding applications in domains beyond computer vision,



2.3 A General Introduction to Diffusion Models 19

including natural language processing, drug discovery, and medical imaging. Their abil-
ity to produce highly detailed and realistic outputs positions them as a leading approach
in modern generative modeling. The following sections will delve into their theoret-
ical foundations, training methodologies, and recent advancements, highlighting their
growing impact on scientific research with a focus on the dermatological field.

2.3.1 Forward Process [55]

Given an initial image x0, the forward process progressively adds stochastic noise to it to
create a chain x1...xT of noisy versions (i.e. latent vectors) of the image, as represented in
Figure 2.5. The forward process is stochastic, but it does not have learnable parameters -
only hyper-parameters. It is modelled as the blending between the (attenuated) previous
latent and standard Gaussian noise, i.e.

xt =
√

1 − βt xt−1 +
√

βtϵt (2.2)

where ϵt ∼ N(0; I). Sampling a vector x from a Gaussian distribution with mean µ and
covariance matrix Σ can be realized by sampling y ∼ N(0; I) from a standard Gaussian
and then setting x = µ+Σ1/2y. IfΣ = σ2I , Σ1/2 = σI . Hence, from a probability point
of view, the latent vector at each time-step follows a multivariate Gaussian distribution
with mean

√
1 − βt xt−1 and variance βt, i.e.

xt ∼ q(xt|xt−1) = N(
√

1 − βt xt−1; βtI) (2.3)

which represents a Markov chain, since xt depends only on xt−1.
The hyper-params β1...βT are the noise schedule. It is possible to directly generate a
latent vector at each timestep t given x0. Indeed, knowing that

x1 =
√

1 − β1 x0 +
√

β1ϵ1 where ϵ1 ∼ N(0; I)

x2 =
√

1 − β2 x1 +
√

β2ϵ2 where ϵ2 ∼ N(0; I)
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one can compute

x2 =
√

1 − β2

(√
1 − β1 x0 +

√
β1 ϵ1

)
+
√

β2 ϵ2

=
√

1 − β2

√
1 − β1 x0 +

√
(1 − β2)β1 ϵ1 +

√
β2 ϵ2

=
√

1 − β2

√
1 − β1 x0 +

√
(1 − β2)β1 + β2 ϵ where ϵ ∼ N (0; I)

=
√

1 − β2

√
1 − β1 x0 +

√
(1 − β2)β1 + β2 − 1 + 1 ϵ

=
√

1 − β2

√
1 − β1 x0 +

√
(1 − β2)β1 − (1 − β2) + 1 ϵ

=
√

(1 − β2)(1 − β1) x0 +
√

1 − (1 − β1)(1 − β2) ϵ.

In general, it holds that

xt =
√

Πt
i=1(1 − βi) x0 +

√
1 − Πt

i=1(1 − βi) ϵ where ϵ ∼ N(0; I) (2.4)

By setting αt = Πt
i=1(1 − βi), we obtain

xt =
√

αt x0 +
√

1 − αt ϵ where ϵ ∼ N(0; I) (2.5)

meaning that xt follows a normal distribution, i.e. xt ∼ qt|0(xt|x0) = N (√αtx0, (1 −
αt)I). Note that, since βt < 1, limt→+∞ αt = 0 and only noise remains in the latent
vectors. In practice, already with sufficient steps T (usually 1000), all traces of the
original data are removed, and q(xT |x0) = qT (xT ) = N (0; I). The forward process
transforms an arbitrary complex distribution q0(x), e.g. the distribution of real images
preal(x), into a standard Gaussian qT (x).

Figure 2.5: Forward process [34].
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2.3.2 Reverse process [55]

To reverse the process, one could think of applying the Bayes rule

q(xt−1|xt) = q(xt|xt−1)
q(xt−1)
q(xt)

(2.6)

However, a closed-form expression for q(xt−1) and q(xt) is not available. Thus, to obtain
a ground truth for training, it is possible to leverage the Markov chain properties to
compute the conditional distribution with respect to x0, available at training time

q(xt−1|xt, x0) = q(xt|xt−1, x0)
xt−1|x0

xt|x0
= q(xt|xt−1)

q(xt−1|x0)
xt|x0

(2.7)

Hence, with a few omitted steps, one can show that

q(xt−1|xt, x0) = N (1 − αt−1

1 − αt

√
1 − βt xt +

√
αt−1

1 − αt

βtx0,
βt(1 − αt−1)

1 − αt

I). (2.8)

The learnable part of a diffusion model is the reverse process (Figure 2.6), i.e. the
Markov chain of probabilisticmappings from latentxT to the original imagex0. p(xt−1|xt)
will not, in general, be Gaussian, and will have a probability density function that de-
pends on the real distribution preal(x). They will be Gaussian only in the limit of βt → 0.
However, when βt are small and T is large, they can still be approximated with Gaus-
sians, by defining

p(xT ) =def N (0, I)p(xt−1) =def (2.9)

N (µt(xt; θt), σtI) ∀t = T, ..., 1. (2.10)

Figure 2.6: Reverse process [34].
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2.3.3 Training and Loss [55]

In order to find the optimal parameter values, one could think of maximizing the log-
likelihood of the real images {x

(i)
0 }I

i=1:

θ∗
1, . . . , θ∗

T = arg max
θ1,...,θT

I∑
i=1

log p(x(i)
0 |θ1, . . . , θT ).

For each training sample, the joint distribution of the observed image x0 and the
latent vectors x1, . . . , xT is:

p(x0, x1, . . . , xT |θ1, . . . , θT ) = p(x0|x1, . . . , xT , θ1, . . . , θT ) p(x1, . . . , xT |θ1, . . . , θT ),

= p(x0|x1, θ1) p(x1, . . . , xT |θ2, . . . , θT ),

= p(x0|x1, θ1) p(x1|x2, . . . , xT , θ2, . . . , θT ) p(x2, . . . , xT |θ2, . . . , θT ),

= p(x0|x1, θ1) p(x1|x2, θ2) p(x2, . . . , xT |θ3, . . . , θT ),

= · · · = p(x0|x1, θ1)
∏T

t=2 p(xt−1|xt, θt)p(xT ).

To find the likelihood of x0, one could, in principle, marginalize the joint probability:

p(x(i)
0 ) =

∫
p(x0, x1, . . . , xT |θ1, . . . , θT ) dx1 . . . dxT ,

but such marginalization is intractable.
However, it is possible to define a lower bound on the log-likelihood and optimize

the parameters to maximize such a bound, which will, in turn, push the likelihood to
high values. Such a bound is called the Evidence Lower Bound (ELBO).

To derive the bound, it is sufficient to multiply and divide by the forward process
distribution q(x1, . . . , xT |x0):

log p(x0|θ1, . . . , θT ) = log
∫

p(x0, x1, . . . , xT |θ1, . . . , θT ) dx1 . . . dxT

= log
∫ p(x0, x1, . . . , xT |θ1, . . . , θT )

q(x1, . . . , xT |x0)
q(x1, . . . , xT |x0) dx1 . . . dxT
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= logEq(x1,...,xT |x0)

[
p(x0, x1, . . . , xT |θ1, . . . , θT )

q(x1, . . . , xT |x0)

]

and then to apply the Jensen’s inequality 1 to the latter expression obtained. After a
series of calculations, one can show a compact expression for the ELBO:

ELBO(θ1, . . . , θT ) = Eq(x1|x0) [log p(x0|x1, θ1)]−
T∑

t=2
Eq(xt|x0) [DKL (q(xt−1|xt, x0) ∥ p(xt−1|xt, θt))] .

By approximating expectations with sampling, writing explicitly the KL divergence
and using the same explicit expression for the probabilities already obtained, the ELBO
becomes the final loss to minimize:

L(θ1, . . . , θT ) =
I∑

i=1
− log N

(
x

(i)
0 ; µ1

(
x

(i)
1 ; θ1

)
, σ1I

)
+

T∑
t=2

1
2σt

||1 − αt−1

1 − αt

√
1 − βtx

(i)
t +

√
αt−1

1 − αt

βtx
(i)
0 − µt

(
x

(i)
t ; θt

)
||2.

where the first addendum represents the reconstruction of the input from x1 and the
second addendum is the explicit expression of the KL divergence between two Gaus-
sians with constant covariances, like in this case. µt represents the prediction of the
network, while the first two elements in the norm represent the ground-truth mean of
q(xt−1|xt, x0).

In practice, the actual loss computed during the training of Diffusion Models is this
latter loss reparametrized to predict noise. After this step, the loss becomes

L(θ1, . . . , θT ) =
I∑

i=1

T∑
t=1

β2
t

αt−1(1 − βt)
||
(
ϵt

(√
αtx0 +

√
1 − αtϵt; θt

)
− ϵt

)
||2. (2.11)

The training algorithm is illustrated in Figure 2.7 by Prince’s Understanding Deep
Learning.

1f(Ex∼p(x)[x]) ≥ Ex∼p(x)[f(x)]
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Figure 2.7: Diffusion Model training algorithm by [50].

2.3.4 Architecture [23]

The architecture for Diffusion Models is amodified U-Net architecture [53]. The orig-
inal U-Net architecture by Ronnemberg et al. is depicted in Fig. 2.8, while the modified
version is represented in Fig. 2.9. While the baseline architecture is relatively straight-
forward, it becomes increasingly complex with advancements in diffusion models. For
instance, later developments such as Stable Diffusion introduced an entire latent layer
to embed image data. However, this section focuses on the initial versions of the Diffu-
sion Models, as understanding these foundational designs facilitates comprehension of
subsequent improvements.

Figure 2.8: The original U-Net architecture by Ronneberger et al. [53].
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Figure 2.9: The modified U-Net architecture of early DiffusionModels [23]. Purple rep-
resents ResNet blocks, Blue represents Downsampling blocks, Orange represents Self-
Attention blocks and Green represents Upsampling blocks.

The following paragraphs describe the main components of the modified U-Net ar-
chitecture used in Diffusion Models.

Embeddings. At each timestep, the model integrates the initial noisy image embed-
dings that contain information about the current timestep and, if supported, the prompt.
However, it is important to note that early diffusion models did not support prompting.

To encode the timestep t, a sinusoidal positional encoding is employed, a technique
widely adopted in transformer architectures [15]. For the prompt, an embedding is gen-
erated using a suitable embedder.

Embedder. The embedder is responsible for transforming prompts into a format com-
patible with the network. In the early conditional diffusion models where prompts were
supported, simple embedders were sufficient. Nowadays, more sophisticated embed-
ders, such as CLIP, may be employed. These embedders enable the model to process
arbitrary text prompts and generate corresponding images. However, such embedders
must also be utilized during training to ensure consistency.

The outputs from the positional encoding and text-embedder are combined and in-
jected into the downsampling and upsampling blocks of the network.
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ResNet block. The ResNet block (Figure 2.10a) serves as a foundational component
of the architecture and is utilized in both downsampling and upsampling operations. In
the initial diffusion models, the ResNet block employed was a simple, linear design: one
Conv2D layer followed by a GroupNorm and a GELU activation (Gaussian Error Linear
Unit), another Conv2D layer and a final GroupNorm layer.

Downsampling Block. The downsampling block (Figure 2.10b) is the first component
that processes both the image data and the embeddings containing timestep and prompt
information. Functionally, it performs standard downsampling as in the U-Net architec-
ture. The block receives input, downsamples it to match the resolution of the subsequent
layer, and integrates the embedding information.

The downsampling process is implemented using a MaxPool2d layer with a kernel
size of 2, halving the input dimensions (e.g., 64×64→32×32). This operation is fol-
lowed by two ResNet blocks. Embeddings are processed through a Sigmoid Linear Unit
(SiLU) and a linear layer to match the dimensionality of the ResNet block’s output. The
embedding tensor and the processed image tensor are then combined and passed to the
next block.

Self-Attention Block. In the modified U-Net architecture, some ResNet blocks are
replaced with self-attention blocks (Figure 2.10c) to enhance the model’s ability to cap-
ture global dependencies. For the attention mechanism, Multi-Head Attention (MHA)
is employed, where the embedding dimension is set to 128 and the number of attention
heads is fixed at 4.

The self-attention block processes input tensors that have been downsampled (e.g.,
128×32×32). To apply attention, the input tensor is reshaped to align with the require-
ments of the attention mechanism. Specifically, the last two dimensions are flattened
and transposed, transforming the tensor from 128×32×32 to 1024×128. The reshaped
tensor is normalized using layer normalization and is then used to compute the query
(Q), key (K), and value (V ) tensors for the attention operation.

Two skip connections are incorporated within the block. The first adds the reshaped
input directly to the output of the attention layer before passing it through a forward
layer consisting of normalization, linear transformations, and a GELU activation. The



2.3 A General Introduction to Diffusion Models 27

second skip connection adds the output of this forward layer back to the attention output.
Finally, the tensor is reshaped back to its original dimensions (1024×128→128×32×32).

Upsampling Block. The upsampling block (Figure 2.10d) performs the reverse op-
eration of the downsampling block, reconstructing higher-resolution representations. It
integrates three inputs: (1) the output from the previous layer, (2) the residual connection
from the corresponding downsampling block, and (3) the embedding tensor.

The primary input is upscaled using a simple upsampling layer with a scale factor of
2. The upscaled tensor is concatenated with the residual connection, ensuring both have
compatible dimensions. For instance, after upsampling, the tensor from the 5th self-
attention block may have dimensions 64×64×64, which matches the dimensions of the
residual connection. The concatenated tensors are passed through two ResNet blocks.

The embedding tensor undergoes SiLU activation and a linear transformation before
being added to the output of the secondResNet block. The final output of the architecture
is obtained via a Conv2d layer with a kernel size of 1, reducing the tensor dimensions
(e.g., 64×64×64) to match the target dimensions (e.g., 3×64×64). This output represents
the predicted noise.

(a) The ResNet block
used in Diffusion Mod-
els [23].

(b) The Downsampling
block used in Diffusion
Models [23].

(c) The Self-Attention
block used in Diffusion
Models [23].

(d) The Upsampling
block used in Diffusion
Models [23].

Figure 2.10
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2.4 Stable Diffusion [5]

Traditional Diffusion Models rely on an iterative reverse diffusion process in which a
full-sized image is passed through aU-Net architecture to obtain the final denoised result.
While effective, this approach faces significant challenges in computational efficiency,
especially when dealing with large image sizes and a high number of diffusion steps
(T). The time required for sampling, which involves denoising the image from Gaussian
noise, can become prohibitively long. To address these limitations, researchers pro-
posed a novel approach known as Stable Diffusion, originally introduced as the Latent
Diffusion Model (LDM) [52].

The Stable Diffusion framework introduces two key advancements over conven-
tional diffusion models: the use of latent space for diffusion processes and the incor-
poration of conditioning mechanisms. These modifications significantly enhance both
computational efficiency and the versatility of image generation.

1. Latent Space to reduce computational burden: Stable Diffusion achieves its
efficiency by performing the diffusion process in a compressed latent space in-
stead of directly in pixel space. This approach involves encoding full-size images
into lower-dimensional latent representations using a trained encoder (E). The dif-
fusion process, including both forward and reverse diffusion, is then carried out
within this latent space. Finally, the latent representation is decoded back to pixel
space using a trained decoder (D). The encoder and decoder are typically com-
ponents of a Variational Autoencoder (VAE), which is trained independently,
allowing for the decoupling of these components during the diffusion process.
Figure 2.11a shows the concept of a Variational AutoEncoder: a full-sized im-
age x0 ∈ RCxHxW is encoded into a latent representation z0 ∈ RC′xH′xW ′ by the
encoder E. Here, H ′ < H and W ′ < W , leading to significant dimensionality re-
duction. During the forward process, Gaussian noise is progressively added to z0

over T steps to obtain zT , the highly noisy latent representation. The reverse pro-
cess begins with a noisy latent vector zT . At each timestep t, the U-Net predicts the
noise component, which is partially removed to obtain a less noisy representation
zt−1. After T steps, the final latent representation ẑ0 is obtained. Finally, during
the decoding step, the latent representation ẑ0 is transformed back to pixel space
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using the decoder D, yielding the generated image x̂0. By shifting the diffusion
operations to latent space, Stable Diffusion dramatically reduces the computa-
tional costs of image generation. This allows for faster denoising and sampling
while maintaining high-quality outputs. Furthermore, the approach enhances the
overall stability and robustness of the training process.

2. Conditioning: One of the most notable advancements introduced in Stable Dif-
fusion is its ability to generate images conditioned on specific inputs, such as text
prompts or spatial information. This is achieved through the integration of condi-
tioning mechanisms within the diffusion process. The resulting framework sup-
ports diverse applications, including text-to-image synthesis, semantic image gen-
eration, and inpainting. Conditioning mechanisms include Classifier-Free Guid-
ance and Cross-Attention.

• Classifier-Free Guidance: Prior to Stable Diffusion, generating images of
specific classes relied on classifier guidance, where a class label was in-
corporated into the model input. Stable Diffusion advances this concept by
employing Classifier-Free Guidance (CFG) [35], which enables image gen-
eration conditioned on more complex inputs, such as textual descriptions.

• Cross-AttentionMechanism: To incorporate conditioning information, the
denoising U-Net employs a cross-attention mechanism. This mechanism
aligns the conditioning inputs with the image features during the denoising
process. In the case of Textual Conditioning, text inputs are first trans-
formed into embeddings using pre-trained language models, such as CLIP or
BERT. These embeddings are mapped to the U-Net usingMulti-Head Atten-
tion (MHA), where the input tensors Q, K, and V represent the query, key,
and value, respectively. In the case of Spatial Conditioning, other forms
of conditioning, such as semantic maps or images, are integrated through
concatenation with the intermediate feature maps of the U-Net. By incorpo-
rating these mechanisms, Stable Diffusion enables controlled and versatile
image generation. Users can define specific attributes or styles in the gener-
ated images by crafting appropriate conditioning inputs. This functionality
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also extends to advanced applications like prompt engineering, where care-
ful design of text prompts results in highly customized outputs. Figure 2.11b
shows the conditioning mechanism that was just introduced.

(a) AutoEncoder as proposed by the Stable Dif-
fusion paper [60].

(b) Conditioning mechanism within Stable Dif-
fusion’s U-Net [60].

Figure 2.11

2.4.1 Architecture and Training

The Stable Diffusion architecture combines the principles of latent space diffusion and
conditioning to achieve efficient and flexible image generation. The process can be
divided into training and sampling phases, as outlined below.

Training Phase - Fig. 2.12a. During training, input images x0 ∈ RCxHxW are encoded
into latent representations z0 ∈ RC′xH′xW ′ using the encoder E. During the forward dif-
fusion step, Gaussian noise is added to z0 over T steps to generate zT . Subsequently, the
noisy latent representation zT is passed through the U-Net, which predicts the noise com-
ponent. This latter predicted noise is compared with the actual noise added during the
forward diffusion process, and the resulting loss is used to update the U-Net parameters
through backpropagation.

Sampling Phase - Fig. 2.12b. Sampling begins by initializing zT as random Gaussian
noise in the latent space. During the reverse diffusion step, the U-Net iteratively predicts
and removes a fraction of the noise over T timesteps, refining zT to obtain ẑ0. The final
latent representation ẑ0 is decoded into pixel space using the decoder D, yielding the
generated image x̂0. By leveraging latent space and conditioning, the Stable Diffusion
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model achieves a balance between computational efficiency and flexibility, making it a
powerful tool for high-quality, controlled image synthesis.

(a) (b)

Figure 2.12: Stable Diffusion architecture while training (a) and sampling (b) [5].

2.4.2 Stable Diffusion in Dermatology

Stable Diffusion has demonstrated significant potential in the dermatological field. By
generating synthetic images of various dermatological lesions, StableDiffusion enhances
existing datasets, improving model training and increasing diagnostic accuracy. This
technique has become a cornerstone in data augmentation, as evidenced by the Derm-
T2IM study [25], where the inclusion of synthetic data generated with Stable Diffusion
improved the robustness and adaptability of both CNNs and Vision Transformers. Fur-
thermore, the ability to condition diffusion models through textual prompts enables the
generation of high-quality and diverse dermoscopic images, leading to increased model
accuracy, as observed by Shavlokhova et al. [58]. An additional critical advantage is
privacy preservation: by leveraging synthetic data, researchers can circumvent ethical
and legal challenges associated with the dissemination of sensitive medical information.

A particularly important application of Stable Diffusion, explored in this study, is
its role in promoting fairness. The generation of synthetic images can be strategically
designed to include underrepresented categories in dermatological datasets, such as pa-
tients with darker skin tones. It has been observed that this type of dataset imbalance
induces bias in deep learning models used for classification [9]. To address this issue, in
addition to conventional bias mitigation techniques, synthetic images of skin diseases on
darker skin tones can be generated. For instance, in the FairSkin study, a novel diffusion
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model framework mitigates these biases through a three-level resampling mechanism,
ensuring a more equitable representation across different racial categories [68]. Simi-
larly, Borghesi and Calegari [11] employ Stable Diffusion to create clinical images of
skin diseases for underrepresented skin tones.

The objective of this work is to utilize Stable Diffusion—specifically in combination
with the DreamBooth technique, which will be introduced in the following subsection—
to generate images of skin diseases specifically on darker skin tones, with the aim of
mitigating classification bias across different skin colors.

2.5 Fine-tuning StableDiffusionModels viaDreamBooth

Despite their versatility, pre-trained Diffusion Models often lack the capability to faith-
fully capture and reproduce specific, personalized visual concepts or subjects, limiting
their direct application in tasks requiring high levels of customization.

DreamBooth is a fine-tuning technique introduced by Ruiz et al. [54] designed to
address this limitation by enabling the personalized customization of pre-trained dif-
fusion models. Originally proposed for fine-tuning text-to-image generative models,
DreamBooth allows for the incorporation of a specific subject—such as a unique object,
person, or artistic style—into a generative framework with a minimal set of subject-
specific images. By introducing a unique textual identifier during the training process,
the model learns to associate this identifier with the desired subject, while maintaining
the diversity and generalization capabilities of the original model.

The process of fine-tuning with DreamBooth involves leveraging a combination of
subject-specific data and a carefully balanced optimization strategy. This includes the
use of a class-preserving loss function, which ensures that the model does not suffer
from catastrophic forgetting2. In the context of Stable Diffusion, this methodology
integrates seamlessly with the model’s pre-trained architecture, allowing it to gener-
ate high-quality, customized images that maintain stylistic coherence and fidelity to the

2Catastrophic forgetting, also known as catastrophic interference, is a phenomenon in machine
learning where a model loses previously learned information when it is trained on new data. This typically
occurs in neural networkswhen sequential training is used, especially in the context of continual or lifelong
learning.
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specified subject.

2.5.1 Loss Function in DreamBooth Fine-Tuning

The fine-tuning process in DreamBooth relies on a carefully designed loss function to
achieve two primary goals: (i) to train the model to generate images faithfully repre-
senting the specific subject, and (ii) to preserve the model’s generalization capability
to avoid catastrophic forgetting. The total loss combines multiple components, as de-
scribed below.

Reconstruction Loss for Subject-Specific Training. The reconstruction loss ensures
that the model learns to associate the unique identifier (e.g., “xyz”) with the specific sub-
ject by conditioning on the provided images and textual descriptions. This is achieved
by adapting the noise-prediction objective commonly used in Diffusion Models.

Let Dsubject = {xi}N
i=1 denote the dataset of N images of the specific subject. Each

image xi is paired with a textual prompt yi containing the unique identifier for the subject
(e.g., “a photo of xyz dog”).

The reconstruction loss is defined as:

Lrecon = Exi∼Dsubject,ϵ∼N (0,I),t
[
∥ϵ − ϵθ(zt, t, yi)∥2

]
, (2.12)

where:

• zt is the noisy latent representation of the image xi at diffusion timestep t, obtained
via the forward diffusion process.

• ϵθ is the noise-prediction network of the diffusion model, parameterized by θ.

• ϵ ∼ N (0, I) is sampled Gaussian noise.

• yi is the textual prompt describing the subject (e.g., “a photo of xyz dog”).

This loss forces the model to learn the association between the unique identifier “xyz”
and the subject in the training images.
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Class-Preserving Loss. To prevent the model from forgetting its ability to generate
diverse images of the subject’s broader class (e.g., “dog”), a class-preserving loss is
introduced. This loss ensures that the fine-tuning process retains the generalization ca-
pabilities of the pre-trained model.

Let Dclass = {xj}M
j=1 denote a dataset of generic images representing the same class

as the specific subject (e.g., generic “dog” images). The class-preserving loss is defined
as:

Lclass = Exj∼Dclass,ϵ∼N (0,I),t
[
∥ϵ − ϵθ(zt, t, yj)∥2

]
, (2.13)

where:

• zt is the noisy latent representation of the generic image xj .

• yj is a generic prompt describing the class (e.g., “a photo of a dog”).

This loss ensures that the fine-tuned model continues to generate images aligned with
the broader class, avoiding overfitting to the specific subject.

Total Loss. The total loss used for fine-tuning combines the reconstruction loss and
the class-preserving loss with weighting factors λrecon and λclass:

Ltotal = λreconLrecon + λclassLclass. (2.14)

The weights λrecon and λclass are hyperparameters that control the balance between
subject-specific fine-tuning and preservation of generalization. Typically, λrecon is set
higher to prioritize learning the new subject, while λclass is chosen to prevent catastrophic
forgetting.

Regularization Strategies. To further mitigate overfitting and ensure stability during
training, additional regularization strategies are often employed:

• Parameter-Freezing: Fine-tuning is restricted to specific layers of the model,
such as the cross-attention layers, to avoid excessive deviation from the pre-trained
weights.
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• Noise Augmentation: The input images in Dsubject are augmented with varying
levels of noise to enhance robustness and generalization.

By carefully balancing the reconstruction and class-preserving losses, DreamBooth
achieves effective subject-specific fine-tuning while maintaining the versatility of the
original diffusion model.

2.5.2 DreamBooth in Dermatology

The application of DreamBooth represents an innovation in the dermatological field.
However, DreamBooth has already been employed in several studies. Specifically, its
use in dermatology enables the generation of personalized images based on the unique
characteristics of an individual, thereby improving diagnostic outcomes. Moreover,
DreamBooth facilitates few-shot learning, as it requires only a limited number of im-
ages to generate high-quality synthetic images. These advantages have establishedDream-
Booth as an effective and widely used tool in dermatological research [25]. For instance,
DreamBooth can be particularly useful for generating feature-aligned synthetic data, as
demonstrated from Nair et al. [46], where intermediate features of a diffusion model
are aligned with expert output features, thereby enhancing generation accuracy.

This thesis explores the use of Stable Diffusion with the DreamBooth technique to
generate highly faithful medical images that closely resemble the original ones. This
approach leverages DreamBooth’s ability to achieve effective training with a limited
number of input images, making it particularly well-suited for medical imaging appli-
cations where data availability is often constrained. Overall, in our study, DreamBooth
has proven to be an effective technique for synthetic image generation in scenarios with
limited data availability. Specifically, it has allowed us to focus on underrepresented
skin tones, ultimately improving the fairness of our model.



Chapter 3

Dataset description and Preprocessing

This Chapter provides a detailed explanation of the characteristics of thenon-dermoscopic
dataset used in this work, along with the preprocessing steps applied to it. In particular,
since the images in the dataset were captured using consumer cameras, they exhibit low
quality, which makes classification challenging. To address this issue, a sliding window-
based algorithm was employed. Subsequently, it was necessary to automatically detect
the skin color of each image to obtain a general understanding of the classification bias
present in the dataset. Skin tone estimation was performed using the Individual Ty-
pology Angle (ITA), a widely adopted formula in the literature for extracting skin tone
from images.

The results indicate that some of the crops obtained through the preprocessing algo-
rithm are of poor quality, suggesting room for improvement in this stage. Additionally,
the low illumination conditions of the images make automatic skin color detection via
ITA more challenging, although ITA remains a robust tool for this purpose.

The Chapter is organized as follows:

• Section 3.1 provides a comprehensive description of the dataset and its main chal-
lenges;

• Section 3.2 details the preprocessing steps applied to the dataset using the sliding
window-based algorithm;

• Section 3.3 explains the technique adopted to automatically measure skin color
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in the images with the ITA, enabling the assessment of classification bias with
respect to skin tone.

3.1 Data

The dataset consists of approximately 8,000 images of 273 pediatric patients at Sant’Orsola
hospital in Bologna representing nine possible skin diseases: drug-induced iatrogenic
exanthema, maculopapular exanthema, morbilliform exanthema, polymorphous exan-
thema, viral exanthema, urticaria, pediculosis, scabies and chickenpox. The images
were captured using consumer-grade cameras by the hospital’s doctors, meaning they
are non-dermoscopic. The dataset exhibits several critical characteristics that compli-
cate classification:

• High variability in illumination: Many images were taken under suboptimal
lighting conditions and are therefore darker than in reality. In addition to compli-
cating classification, poor illumination significantly affects skin tone classifica-
tion, shifting skin tones to darker values that do not accurately reflect the patient’s
skin colour.

• High variability in size and quality: Since the images were taken with different
consumer cameras, they lack a standard size or quality. As a result, a standardiza-
tion process is required to enable the dataset to be processed by a neural network.

• Inconsistent focus on affected skin areas: Some images capture the whole body,
others only a small body part, and some focus solely on the skin region where the
disease is present.

• Blurriness: Some images are blurrier than others.

• Imbalance in skin tones: The dataset predominantly contains photos of patients
with lighter skin tones, making classificationmore challenging for less-represented
skin tone categories.

• Imbalance in disease classes: Some diseases (Figure 3.1) are overrepresented in
the number of samples. Consequently, the network is expected to better classify
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certain illnesses over others. While this is anticipated, addressing class imbalance
is not the focus of this work.

3.2 Data preprocessing

The data preprocessing pipeline aims to standardize the dataset by generating uniformly
sized image crops. The objective is to identify and extract regions of the images contain-
ing visible skin disease, using the binary mask associated with each image. The process
follows a sliding-window approach and consists of the following steps 1:

1. Patch extraction: The algorithm starts at the top-left corner and extracts a fixed-
size patch (256×256 pixels).

2. Disease coverage calculation: For each patch, the binary mask is used to cal-
culate the disease coverage, defined as the ratio of positive labels (1) to negative
labels (0) within the mask. This metric is used to evaluate the presence of the
skin disease based on contrast within the patch: if the disease coverage exceeds
a predefined threshold (indicating sufficient contrast), the patch is retained, and
discarded otherwise.

3. Sliding window application: The patch extraction process repeats as the sliding
window moves across the image in set steps, generating overlapping patches. To
reduce redundancy, a non-maxima suppression procedure discards patches with
lower disease coverage when overlap exceeds a threshold.

4. Finally, patches exhibiting low contrast (e.g., due to poor illumination or blurri-
ness) are removed to improve the overall quality of the dataset. This step ensures
that only well-defined and informative regions are retained for further analysis.

As expected, the preprocessing step reveals an inherent imbalance in the dataset
across the different disease classes. Figure 3.1 illustrates the distribution of retained

1The preprocessing algorithm was adapted from the one developed by Alessandro D’Amico,
Riccardo Murgia and Mazeyar Moeini Feizabadi: https://github.com/eskinderit/
experiments-synthetic-generation-clinical-skin-images/blob/main/generate_
images.ipynb
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Figure 3.1: Number of generated crops for each disease.

crops for each disease. Notably, certain diseases are underrepresented, with fewer than
ten thousand examples available after preprocessing. This imbalance is anticipated to
impact model performance, particularly for less-represented diseases. Furthermore, the
cropping algorithm is blind towards body parts and/or regions that do not display signs
of skin disease but still exhibit high ”disease” coverage. This results in the generation of
a variable number of crops - depending on the quality of the image - which may include
portions of eyes, noses, lips, genitals, areas with body hair, or edges. A potential solution
to address this issue is discussed in the Conclusions Chapter.

Other issues include poor illumination and blurriness, which cannot be resolved
through cropping alone. Examples of blurry and poorly illuminated crops are shown
in Figure 3.2.

3.3 Skin tone classification on non-dermoscopic images

In the literature, skin tone classification is commonly performed using the Individual
Typology Angle (ITA), a metric first introduced by Chardon et al. in 1991 [13], and
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Examples of bad crops generated by the cropping algorithm: unnecessary
body part (a), area with body hair (b), edges (c), poor illumination (d, e), poor illumina-
tion and blurriness (f).

widely adopted in subsequent studies for its simplicity and effectiveness [32, 30, 41].
ITA values are computed within the CIELAB colour space, leveraging the lightness
(L*) and yellow-blue axis (b*) components to derive an angular value correlating with
skin tone:

ITA = tan−1
(

L∗ − 50
b∗

)
× 180

π
(3.1)

While this method has proven effective in controlled environments, such as der-
moscopic datasets, it assumes uniform illumination and does not account for variations
introduced by pathological changes in the skin or external artefacts.

In this work, we propose a modified ITA computation method tailored to our dataset,
which includes images of skin conditions captured under non-standardized conditions
with consumer-grade cameras. To address challenges such as altered pigmentation in
the affected skin, inconsistent illumination, and shadows, we exclude disease-affected
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regions from ITA computation using binary maps, ensuring only unaffected skin is an-
alyzed. Unlike prior works relying on fixed thresholds from dermoscopic datasets [30,
41, 14], we classify ITA values into skin tone categories using a Gaussian Mixture
Model (GMM), which better handles dataset variability. This refined method provides
a more accurate representation of skin tone, enabling a fairer evaluation of classification
performance across diverse skin tones.

3.3.1 Our approach

Figure 3.3: ITA dataset distribution.

The computation of the ITAmust account for the fact that skin affected by disease of-
ten appears darker and reddish compared to healthy skin. To ensure reliable ITA values
that represent the baseline skin tone, it is key to exclude disease-affected regions from
the calculation. This was achieved by applying a bitwise AND operation between the
original image crop and its corresponding segmentationmask, replacing disease-affected
regions with black pixels. The ITA value was then computed exclusively for the non-
black pixels in the crop. The resulting distribution of ITA values, shown in Figure 3.3,
closely resembles a Gaussian distribution with a longer tail extending towards lower val-
ues. Following the computation of ITA values, ranges are required to classify skin tone
according to the Fitzpatrick scale [32], which categorizes skin into six types. Various
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thresholding schemes have been proposed to map ITA values to Fitzpatrick skin types
[30, 41, 14]. However, these ranges were primarily designed for dermoscopic datasets,
devoid of variability caused by illumination, angulation, or other artefacts. Given the
non-dermoscopic nature of our dataset, these thresholds were deemed unsuitable.

Instead, we assumed that images with similar skin tones exhibit similar ITA values
within a reasonable range of variation. To classify the ITA values, we fitted the distribu-
tion using a Gaussian Mixture Model2 with six components, corresponding to the six
skin tone categories in the Fitzpatrick scale. Each ITA value was assigned to a Gaus-
sian component according to the thresholds given by the intersection of the Gaussian
components (see the Appendix for further details). The resulting skin tone labels were
categorized as dark, brown, tan, intermediate, light, and very light.

Figure 3.4: Six skin labels dataset distribution.

Examples of the automatic skin tone classification are presented in Figure 3.5. While
the ITA value is generally robust, shadows and poor illumination can lower the ITA
value, resulting in a darker assigned skin tone. Nonetheless, darker images—whether
due to actual skin tone or suboptimal lighting—were correctly assigned a lower ITA
value, whereas lighter images were assigned higher ITA values. Figure 3.4 shows the

2https://scikit-learn.org/stable/modules/generated/sklearn.mixture.
GaussianMixture.html#sklearn.mixture.GaussianMixture.predict
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distribution of skin tone labels across the dataset. Notably, the dark and brown skin
tone categories are underrepresented, highlighting an imbalance in skin tone distribution
within the dataset.

Figure 3.5: Examples of automatic skin tone classification based on the ITA values and
the Gaussian mixture technique.

Despite the robustness of the ITA calculation, this labelling process is not entirely
accurate. Poor illumination or other artefacts cause the computed ITA value to deviate
from the expected value for the true skin tone for a non-negligible number of images. Fu-
ture work could address this limitation by incorporating advanced correction techniques
for artefacts such as shadows and uneven lighting.



Chapter 4

Classification with a Convolutional
Neural Network

This Chapter addresses the classification of nine skin diseases from the original dataset
using a Convolutional Neural Network (CNN). Initially, a grid search was conducted
to obtain the optimal combination of hyperparameters. Subsequently, the CNN was
trained on the non-augmented dataset, and performance was measured using both tradi-
tional metrics, namely Accuracy and F1-score, as well as fairness metrics, specifically
Disparate Impact (DI), Equalized Odds Ratio (EOR), and Predictive Rate Ratio (PRR).

The results demonstrate the presence of a skin color-dependent bias in the classi-
fication, with the CNN’s performance varying significantly across different diseases.
This variation highlights the need for a more stable and balanced performance across
the different classes.

The Chapter is structured as follows:

• Section 4.1 describes the hyperparameter search process and the training of the
CNN on the non-augmented dataset.

• Section 4.2 introduces the fairness metrics (DI, EOR, and PRR) in detail and dis-
cusses the classification results in terms of these fairness measures.
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4.1 CNN Architecture and training

The task of dermatological classification necessitates the model’s ability to effectively
capture intricate features at multiple scales. To address this, a deep Convolutional Neural
Network (CNN) architecture consisting of five convolutional layers, each with a kernel
size of 3, was chosen. The first convolutional layer expands the number of channels
from 3 (corresponding to the standard RGB input) to 64, allowing the network to extract
detailed low-level features. In the subsequent layers, except for the final one, the num-
ber of channels is progressively doubled, enhancing the network’s ability to represent
more complex features. Following each convolutional block, a MaxPooling layer with a
kernel size of 2 is applied to reduce the spatial dimensions and help mitigate overfitting.
The final layer is a fully connected layer that outputs nine logits corresponding to the
nine target classes. The architecture is shown in Figure 4.1.

Figure 4.1: Diagram of the architecture of the Convolutional Neural Network.

The dataset of cropped images was divided into training (60% of the samples), val-
idation (20%), and test sets (20%).

A hyperparameter optimization phase was carried out to fine-tune the batch size
and learning rate. Six different combinations of these parameters were tested, with the
model trained for 5 epochs using stochastic gradient descent (SGD) with momentum as
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the optimizer. The optimal performance, as evidenced by trends in both the loss and F1
score in Figures 4.2 to 4.7, was achieved with a batch size of 128 and a learning rate
of 0.01. It was observed that a learning rate of 0.01 combined with smaller batch sizes,
such as 32 or 64, resulted in early overfitting, as shown in the F1-score plots in Figures
4.2 and 4.7. Additionally, a learning rate of 0.001 also led to overfitting, while a higher
value of 0.05 caused divergence during training.

Figure 4.2: CNN grid search training using batch size = 32 and learning rate = 0.01.

Figure 4.3: CNN grid search training using batch size = 64 and learning rate = 0.01.

Figure 4.4: CNN grid search training using batch size = 128 and learning rate = 0.01.
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Figure 4.5: CNN grid search training using batch size = 64 and learning rate = 0.001.

Figure 4.6: CNN grid search training using batch size = 256 and learning rate = 0.001.

Figure 4.7: CNN grid search training using batch size = 128 and learning rate
= 0.05.

For the final model training, the following configuration was adopted: batch size
= 128, learning rate = 0.01, number of epochs = 15, and optimizer = SGD with mo-
mentum. To further enhance the training process, a cosine decay learning rate scheduler
and an early stopping mechanism were employed to prevent unnecessary computational
costs in cases of premature overfitting. Figure 4.8 illustrates the trends for both loss
and F1 score, with the F1 score being the primary metric for saving model checkpoints
during training.
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Figure 4.8: Loss and F1-score trends for the final training of the networkwith the optimal
hyperparameter values.

4.2 Results and discussion

The model’s evaluation was conducted using standard performance metrics, specifi-
cally Accuracy and the F1 score, computed for each skin tone category. The Accuracy
results, as reported in Table 4.1, demonstrate relatively stable performance across most
skin tones, except for the “very light” category, which achieved a significantly higher
accuracy. This disparity may stem from the superior overall quality and illumination of
images in this category, facilitating easier classification.

However, Accuracy alone does not capture the distribution of misclassifications
among different skin tones. For example, despite comparable average Accuracy scores,
discrepancies in true positive rates (TPRs) and false positive rates (FPRs) across groups
may indicate biases in classification. Themacro F1 score values, also presented in Ta-
ble 4.1, align with the trends observed in Accuracy, providing additional insights into the
model’s performance across different skin tones. These findings highlight the necessity
of incorporating multiple evaluation metrics to effectively detect biases and potential
limitations in the model’s performance across demographic groups.

While traditional performance metrics offer some insights into model behavior, they
provide limited information regarding fairness in diagnostic predictions. To further in-
vestigate this aspect, the model was assessed using fairness metrics widely utilized in
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Accuracy F1 score

Minority dark 78.4% 0.74
brown 78.2% 0.71

Majority

tan 75.5% 0.69
intermediate 75.1% 0.68

light 76.5% 0.68
very light 82.0% 0.75

Table 4.1: Total CNN accuracy and F1 score across the different skin tones.

the literature for tasks related to skin disease classification. Specifically, we report the
Disparate Impact Ratio (DI), Equalized Odds Ratio EOR), and Predictive Rate Ra-
tio (PRR), which will be later introduced. Since fairness metrics are conventionally
designed for binary classification problems, their adaptation to this study’s multi-class
setting, which includes multiple demographic groups, requires careful consideration. To
facilitate this adaptation, skin tones were grouped into two broader categories: aMinor-
ity group (comprising “dark” and “brown” skin tones) and aMajority group (including
“tan,” “intermediate,” “light,” and “very light” skin tones). This classification is moti-
vated by two key factors: (1) the observed underrepresentation of “dark” and “brown”
skin tones in the dataset, as illustrated in Chapter 3, and (2) methodological precedents
established in prior research, such as Corbin et al. [19]. This grouping enables a mean-
ingful application of fairness metrics while addressing the inherent complexities of a
multi-class, multi-group classification task. Additionally, Accuracy and F1 score were
calculated for each disease, considering the aforementioned skin tone aggregation, with
the results summarized in Table 4.2.

The evaluation of the model’s performance for individual diseases reveals consid-
erable variability. Notably, for nearly half of the diseases, Accuracy and F1 scores in
the test set are higher for the Minority group than for the Majority group, contra-
dicting the expectation that the Minority group would be systematically disadvantaged.
Two plausible explanations may account for this trend in conventional metrics:

1. Artifacts such as inadequate lighting, body hair, or image noise may lead to errors
in skin tone classification, misassigning certain images to the Minority group
instead of the Majority group. This misclassification complicates the accurate
assessment of bias.
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2. The limited diversity between the training and test sets for the “black” and
“brown” skin tone categories (especially the former) may inadvertently inflate
classification performance. For instance, in the case of maculopapular exanthema
on “black” skin, the Minority group exhibits a substantially higher Accuracy and
F1 score. Further qualitative examination reveals that the dataset contains only
one individual with this skin tone and condition. As outlined in Chapter 3, the
cropping algorithm generates multiple image crops from a single individual, dis-
tributing them across training, validation, and test sets. Consequently, during
training, the model learns to recognize these crops effectively, and at test time,
it encounters visually similar samples, leading to an artificially high Accuracy for
this condition in “black” skin. We hypothesize that if the test set contained im-
ages of additional individuals with “black” skin who were absent during training,
the model’s performance would decline significantly. Conversely, the Majority
group benefits from greater diversity in training samples, enabling the model to
generalize more effectively when encountering unseen test images, resulting in
more robust classification performance.

As previously mentioned, in addition to the traditional metrics, we have employed
three widely used fairness metrics from the literature, which are outlined in detail in the
following paragraphs.

Disparate Impact Ratio [26]. In the binary case, the DI is defined as

DI = Pr(Ŷ = 1|X ∈ minority_group)
Pr(Ŷ = 1|X ∈ majority_group)

(4.1)

This metric evaluates the proportion of individuals receiving a positive outcome between
theminority group and themajority group. A value of 1 indicates perfect fairness (equal
probabilities), while values below 1 suggest unfairness against the minority group. Con-
versely, values above 1 imply unfairness against the majority group.

The DI was calculated separately for each condition, where Ŷ = 1 represents the
presence of the disease and Ŷ = 0 its absence. The results are presented in Table 4.2. A
value between 0.8 and 1.2 is generally considered fair. Values below 0.8 indicate unfair-
ness against the minority group, whereas values above 1.25 suggest unfairness against
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the majority group. Notably, the model demonstrates significant bias against the minor-
ity group for diseases such as pediculosis and chickenpox, as evidenced by DI values
below 0.8. This disparity may be attributed to the limited number of positive samples
from the minority group for these conditions. In contrast, for diseases such as macu-
lopapular rash, morbilliform rash, and scabies, there is a proportionally higher number
of positive detections in the minority group compared to the majority group, resulting in
DI values above 1.2. These observations highlight the varying degrees of fairness across
different conditions and the impact of sample imbalances in fairness evaluations.

Equalized Odds Ratio [2]. A classifier satisfies Equalized Odds under a distribution
over (X, A, Y ) (where A indicates the sensitive feature) if its prediction Ŷ is condi-
tionally independent of the sensitive feature A given the label Y . As shown by [2],
this is equivalent to E(Ŷ |A = a, Y = y) = E(Ŷ |Y = y) ∀ a, y. Equalized odds
requires that the true positive rate, Pr(Ŷ = 1|Y = 1), and the false positive rate,
Pr(Ŷ = 1|Y = 0), are equal across groups. In our case, EOR was computed for each
disease using the fairlearn library, in which EOR is defined as ’the smaller of two met-
rics: true_positive_rate_ratio and false_positive_rate_ratio. The former
is the ratio between the smallest and largest of Pr(Ŷ = 1|A = a, Y = 1), across all
values of the sensitive feature(s). The latter is defined similarly but for Pr(Ŷ = 1|A =
a, Y = 0). The equalized odds ratio of 1 means that all groups have the same true
positive, true negative, false positive, and false negative rates1.

The EOR takes values between 0 and 1. An EOR value of 1 indicates fairness,
meaning all groups exhibit identical true positive, true negative, false positive, and false
negative rates. Consistent with the Disparate Impact Ratio analysis, skin tones were ag-
gregated into two broader categories: a minority group and a majority group (Table 4.2).
Notably, the EOR values for several diseases—iatrogenic drug-induced rash, morbilli-
form rash, polymorphic rash, pediculosis, scabies, and chickenpox—are significantly
below 1. These findings suggest that the model’s predictions Ŷ are influenced by the
skin tone attribute, even when conditioned on the true label Y . Such dependencies high-
light potential biases in the classifier and underline the need for interventions to improve

1https://fairlearn.org/main/api_reference/generated/fairlearn.metrics.
equalized_odds_ratio.html#fairlearn.metrics.equalized_odds_ratio
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fairness across groups.

Accuracy F1 score DI EOR PRR
Minority Majority Minority Majority

drug-induced i. exanthema 71.3% 76.8% 0.73 0.78 0.99 0.78 0.93
maculopapular exanthema 57.7% 49.03% 0.65 0.55 1.35 0.85 1.18
morbilliform exanthema 71.5% 74.12% 0.74 0.78 1.32 0.55 0.96
polymorphous exanthema 63.8% 52.28% 0.69 0.59 0.85 0.63 1.22

viral exanthema 80.9% 76.8% 0.79 0.75 0.98 0.82 1.05
urticaria 85.9% 85.6% 0.84 0.83 0.93 0.86 1.00
pediculosis 62.4% 65.4% 0.68 0.69 0.74 0.68 0.95
scabies 74.1% 69.8% 0.75 0.72 1.46 0.67 1.06

chickenpox 54.3% 57.0% 0.61 0.61 0.76 0.70 0.95
All 78.2% 76.8% 0.72 0.70 1.04 0.73 1.03

Table 4.2: Fairness and performance results for the CNN model.

Predictive Rate Ratio [6]. The predictive Rate Parity is achieved when the Positive
Predictive Value (PPV), also known as precision, is the same across all skin tone groups.
The formula for precision is

PPV = True Positives (TP )
True Positives (TP ) + False Positives (FP )

(4.2)

The PRR compares the precision between the two groups. It is computed by taking the
ratio of the PPV of the minority group to the PPV of the majority group:

PRR =
PPVminority_group

PPVmajority_group
(4.3)

In our implementation, this value is calculated for each disease, using the common divi-
sion of skin tones into minority and majority groups. The results are presented in Table
4.2. We observe that PRR values are fair across all diseases, in contrast to the unfair
values observed for the DI and the EOR. To understand this difference, it is important
to note that the PPV relative to a group measures the frequency with which the model
correctly predicts the positive class for that group. In this sense, PPV serves as a mea-
sure of the quality of predictions. On the other hand, the Disparate Impact Ratio focuses
on the probability of a positive prediction for each group, regardless of its correctness,
making it a measure of quantity. Similarly, the EOR evaluates the True Positive Rate
(recall) and the False Positive Rate, which also reflect the quantity of True Positives and
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False Positives identified by the model. Therefore, while PRR compares the model’s
precision across groups, the other metrics (DIR and EOR) assess the distribution and
balance of predictions among groups.



Chapter 5

Classification with a Swin Transformer

This Chapter addresses the classification of the nine diseases from the non-augmented
dataset using a Swin Transformer (ST). As discussed in Chapter 2, the Swin Trans-
former has recently gained significant popularity in the medical domain, particularly in
dermatology, due to its scalability and ability to capture long-range dependencies. In
this work, a pre-trained Swin Transformer is employed, and a grid search is performed
to find the optimal fine-tuning hyperparameters. Subsequently, the performance is eval-
uated using the same metrics applied to the CNN case, to provide a comparison.

The results show that bias remains present in the classification, but the Swin Trans-
former achieves significantly higher and more consistent performance compared to the
CNN. This improvement is likely attributed to the model’s greater capacity and the fact
that it was pre-trained.

The chapter is structured as follows:

• Section 5.1 describes the grid search process to find the optimal hyperparameter
configuration and the final training on the non-augmented dataset;

• Section 5.2 presents the classification results in the same format as the CNN and
discusses them in terms of fairness.
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5.1 Swin Transformer Training

During the training phase, the cropped dataset was partitioned in the same manner as
for the CNN: 60% for training, 20% for validation, and 20% for testing. To effectively
capture both skin texture and disease-specific features, a model variant pre-trained on
ImageNet-1k and fine-tuned on a skin cancer dataset was employed 1. The fine-tuning
process involved updating the parameters of the last three stages of the Swin Transformer
while keeping the weights of the initial stage frozen, resulting in a total of 26 million
trainable parameters.

To facilitate model convergence and systematically explore the parameter space, hy-
perparameter tuning was primarily conducted on the learning rate, evaluating three val-
ues: 1e-4, 1e-3, and 1e-2. All experiments were carried out with a batch size of 512,
as larger batch sizes are expected to yield more stable gradient estimates. Each learning
rate configuration was tested over 20 training epochs, with an Early Stopping mecha-
nism in place to halt training if the validation loss failed to improve within a predefined
tolerance over a given number of epochs, thereby preventing unnecessary resource con-
sumption. The results of the hyperparameter tuning process are illustrated in Figures 5.1
to 5.3: while lower learning rates promoted stable convergence, they frequently caused
the model to become trapped in local minima, leading to suboptimal accuracy and F1
scores. Consequently, a learning rate of 1e-2 was selected, as it allowed for more sub-
stantial parameter updates. To enhance stability in later epochs, the learning rate was
reduced by a factor of 100 after nine epochs, based on the observed loss patterns. The
evolution of loss and F1 scores throughout training is presented in Figure 5.4.

Figure 5.1: ST grid search training using batch size = 512 and learning rate = 0.0001.

1https://huggingface.co/gianlab/swin-tiny-patch4-window7-224-finetuned-skin-cancer
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Figure 5.2: ST grid search training using batch size = 512 and learning rate = 0.001.
Note how the training was stopped early due to lack of performance improvement on
the validation set.

Figure 5.3: ST grid search training using batch size = 512 and learning rate = 0.01.

Figure 5.4: Loss and F1-score trends for the final training of the Swin Transformer with
the optimal hyperparameter values.

5.2 Results and discussion

To assess the model’s performance, we adopted the same metrics specified for the CNN.
The final results are shown in Table 5.2. First, we notice a significant performance im-
provement, likely due to the remarkably higher capacity of the Swin Transformer (∼26
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million trainable parameters versus the ∼4 million of the CNN). Moreover, examining
the Accuracy and F1 score columns in Table 4.2 and Table 5.2, it is evident that, while
for the CNN the Accuracy and F1 scores vary significantly between demographic groups
depending on the disease, the Swin Transformer shows more consistent Accuracy and
F1-score values. The DI values of the Swin Transformer indicate that, on average, it
demonstrates greater fairness compared to the CNN. Specifically, the Swin Transformer
exhibits only three out of nine instances of unfair values, in contrast to the CNN, which
presents five out of nine instances of unfair values. On the other hand, EOR values are
systematically lower in the Swin Transformer results compared to those of the CNN,
once again indicating that the model’s predictions are strongly influenced by the skin
tone attribute.

Accuracy F1 score

Minority dark 90.8% 0.91
brown 91.2% 0.91

Majority

tan 91.9% 0.92
intermediate 91.7% 0.92

light 90.3% 0.90
very light 91.5% 0.92

Table 5.1: Swin Transformer accuracy and the F1 score.

Accuracy F1 score DI EOR PRR
Minority Majority Minority Majority

drug-induced i. exanthema 94.7% 96.8% 0.90 0.93 1.01 0.72 0.98
maculopapular exanthema 88.4% 88.6% 0.84 0.84 1.36 0.74 1.00
morbilliform exanthema 89.7% 95.1% 0.89 0.92 1.21 0.76 0.94
polymorphous exanthema 91.7% 87.1% 0.92 0.89 0.81 0.73 1.05

viral exanthema 95.1% 95.6% 0.90 0.90 0.96 0.91 0.99
urticaria 91.9% 88.8% 0.93 0.93 0.99 0.74 1.03
pediculosis 84.0% 88.2% 0.89 0.92 0.78 0.61 0.95
scabies 81.9% 89.0% 0.90 0.93 1.23 0.10 0.92

chickenpox 88.4% 91.0% 0.89 0.86 0.72 0.35 0.97
All 91.1% 91.3% 0.90 0.90 1.01 0.63 0.98

Table 5.2: Results for the Swin Transformer model.



Chapter 6

Synthetic generation of skin images

Chapters 3, 4, and 5 have revealed that the dataset used in this study exhibits an un-
derrepresentation of dark skin categories. This underrepresentation introduces a bias in
classification, as observed in the cases of both the CNN and the Swin Transformer (ST).
Chapter 2 explained how Stable Diffusion can be leveraged to balance datasets, a capa-
bility that may prove useful in improving classification fairness by generating images of
underrepresented categories, such as skin diseases on dark skin.

This Chapter introduces a methodology for generating synthetic images of skin dis-
eases on dark skin using Stable Diffusion in conjunctionwithDreamBooth. The first step
involved the manual selection of images for model training, constructing mini datasets.
Subsequently, a grid search was conducted to identify optimal hyperparameters, explor-
ing various hyperparameter combinations in the final training phase to enhance diversity.
Finally, the synthetic images were incorporated into the dataset using three different nu-
merical approaches, and both the CNN and the Swin Transformer were retrained on
the augmented dataset. The results obtained were then compared with those from the
non-augmented dataset.

The findings demonstrate that synthetic data significantly improved fairness metric
values, bringing them within fair thresholds in many cases for both the CNN and the
Swin Transformer. Furthermore, for the CNN, synthetic data likely had a strong regu-
larization effect, as evidenced by a substantial increase in performance across Accuracy
and F1-score metrics.

In conclusion, the generation and utilization of synthetic data had an overall positive
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impact, increasing classification fairness. This confirms that DreamBooth can serve as
a valuable tool for generating dermatological images that faithfully replicate real cases
and highlights how synthetic data can contribute to more equitable classification in the
medical domain by facilitating the creation of balanced datasets.

This Chapter is structured as follows:

• Section 6.1 describes the fine-tuning process of a Stable Diffusion model using
DreamBooth, aimed at generating realistic images of dark-skinned patients.

• Section 6.2 outlines the three different numerical data augmentation approaches
employed to construct three datasets with varying numbers of synthetic images,
enabling an analysis of the extent to which synthetic image addition enhances
fairness.

• Section 6.3 presents the results of data augmentation using the three approaches
on the CNN, along with a discussion of the findings.

• Section 6.4 reports the results of data augmentation using the three approaches on
the Swin Transformer (ST), followed by their discussion.

6.1 Image Generation Via DreamBooth

The dataset utilized in this study contains a limited number of examples of skin diseases
affecting individuals with black skin, with at most 4 or 5 individuals with dark skin
for each disease. The preprocessing pipeline described in Chapter 3 generates a large
number of image crops from photographs of the same individual. However, using all
these crops to train an image generation model would be redundant, as the crops
originating from the same individual are highly similar to one another. Consequently, it
is sufficient to select only a few representative crops (3 or 4) per individual with dark
skin and construct a small, curated dataset comprising multiple individuals with dark
skin exhibiting the specific disease of interest. This curated dataset can then be used to
train an image generation model.

One technique well-suited for training with such a limited number of examples is
DreamBooth, introduced by Ruiz et al. in 2023 [54] and further explored in theory
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in Chapter 2. DreamBooth is a fine-tuning technique for generative models, such as
diffusion-based models, that enables the generation of high-quality, subject-specific im-
ages. By leveraging only a few samples of a subject, DreamBooth personalizes the
model while preserving its ability to generate diverse and photorealistic outputs. This
makes it particularly effective for scenarios where data scarcity is a critical limitation.

Figure 6.1: Example of loss plot obtained while fine-tuning Stable Diffusion with
DreamBooth.

In this study, DreamBooth was employed to fine-tune a pre-trained Stable Diffu-
sion model, specifically, the version provided by RunwayML, which was pre-trained on
images of size 512×512. The fine-tuning process was divided into the following stages:

1. Manual Exploration of the Dataset. A manual inspection of the dataset was
conducted to identify the skin diseases for which images of ’dark’ or ’brown’ skin
types were available. This exploration revealed that only three out of the nine
diseases—maculopapular exanthema, viral exanthema, and scabies—contained
images of individuals with ’dark’ and ’brown’ skin. Consequently, image gener-
ation was feasible only for these three diseases.

2. Construction of Mini-Datasets. Mini-datasets were manually constructed for
each of the three diseases, separately for ’brown’ and ’dark’ skin types. This
process resulted in six datasets (two for each disease: one for ’brown’ skin and
one for ’dark’ skin), with each dataset containing between 14 and 29 images.
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3. Fine-Tuning with DreamBooth. For each of the six mini-datasets, the Stable
Diffusion model was fine-tuned using the DreamBooth technique. A grid search
was conducted to identify optimal hyperparameter configurations, exploring the
following parameters:

• Learning rate: Values of 5e-7, 2e-6, 5e-6, and 1e-5 were tested. This wide
range ensured adequate exploration of the parameter space, as the learning
rate is a critical factor for convergence.

• Maximum training steps: For mini-datasets with fewer than 15 images, val-
ues of 1000, 2000, 3000, and 4000 steps were tested. For mini-datasets
with more than 15 images, values of 2000, 3000, 4000, and 5000 steps were
tested. This choice was guided by a commonly applied rule of thumb in
DreamBooth, which recommends fine-tuning with at least 100 training steps
per image.

• Instance prompt: The instance prompt in DreamBooth plays a key role in
both the training and image generation phases. During training, a unique
identifier (e.g., <unique_ID>) is included in the prompt alongside descrip-
tive context (e.g., “human skin” or “a person with a skin condition”) to asso-
ciate the fine-tuned model with the specific features of the training images.
This enables the model to learn how to reproduce those features while main-
taining its broader generative capabilities. During image generation, the in-
stance prompt is used to guide the model in synthesizing new images that
reflect the characteristics of the fine-tuned training data. By combining or
modifying the instance prompt with additional textual descriptions, keeping
the <unique_ID> in the text, it is possible to control the specific details of
the generated images, ensuring alignment with the desired output while re-
taining diversity and realism. In our case, both the prompt “<unique_ID>”
and “<unique_ID> human skin” were evaluated. Including ’human skin’
in the prompt was hypothesized to provide context and aid in accurately re-
producing skin texture. However, this inclusion might also reduce image
diversity, as the model could exhibit a monotonic and non-diverse interpre-
tation of ’human skin.’
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A batch size of 1 was selected, as experiments revealed that smaller batch sizes
promoted greater diversity when other hyperparameters were held constant. Ad-
ditionally, both the U-Net and the text encoder were fine-tuned. Images in the
mini-datasets were resized to 512×512 prior to fine-tuning to fully leverage the
capabilities of the pre-trained Stable Diffusion model.

4. Selection of Fine-Tuned Models. For each of the six mini-datasets, the fine-
tuned models with the most promising hyperparameter configurations were se-
lected based on an empirical evaluation of the generated images. The evaluation
prioritized diversity, accuracy, faithful representation of skin texture and colour,
and fidelity to the real images in the mini-dataset.

6.2 Data Augmentation Approach

After determining the number of synthetic images required for each of the three dis-
eases and each of the two skin colours (’dark’ and ’brown’), this total was distributed
among the fine-tuned models selected for that disease and skin colour. This distribution
ensured that the synthetic images were generated by models fine-tuned with different
hyperparameter combinations, thereby enhancing the diversity of the generated dataset.
Fine-tuned models with varying hyperparameters tend to produce images with unique
characteristics that reflect differences in the mini-dataset used for training. Additionally,
the generation seed was frequently altered to further increase diversity in the synthetic
images. Figure 6.2 presents examples of generated images compared to real ones for
both skin tones. It can be observed that the generated images closely resemble the orig-
inal ones, accurately replicating both the texture of the disease and its localization.

To incorporate the synthetic images into the original training set (while leaving the
test and validation sets untouched to ensure they contained only real images), thereby
providing more examples of diseases on darker skin tones, three distinct numerical ap-
proaches were followed:

1. AugMin – in this approach, synthetic images of ’dark’ and ’brown’ skin are added
such that the total number of images (real + synthetic) for each of these two skin
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Figure 6.2: Real vs. generated images for each of the three target diseases using the
DreamBooth technique.

colours for a specific disease was equal to the smallest number of images among
the other four skin colours (’very light,’ ’light,’ ’intermediate,’ ’tan’) for that dis-
ease1.

2. AugBalanced – synthetic images are added for the ’dark’ and ’brown’ skin colours
of each disease such that, for that specific disease, the number of images for each of
the two colours (’dark’ and ’brown’) represented one-sixth (approximately 17%)
of the total number of images for that disease. This approach was based on the

1For example, if, for the disease scabies, the skin colour ’tan’ has the smallest number of examples
among the other four colours, with x images, then synthetic images of scabies were added for ’dark’ and
’brown’ skin to ensure that each of these two colours also had a total of x images.
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rationale that there are six possible skin colours, and ideally, the number of im-
ages for each colour should constitute roughly one-sixth of the total number of
images for any given disease. Consequently, the combined number of images for
’dark’ and ’brown’ skin colours accounted for approximately one-third (34%) of
the total images for that disease.

3. AugMax – the third approach is analogous to the first but differs in that the total
number of images (real + synthetic) for each disease and each of the two skin
colours (’brown’ and ’dark’) was made equal to the largest number of images
among the other four skin colours (’very light,’ ’light,’ ’intermediate,’ ’tan’) for
that disease.

The introduction of these three distinct approaches aims to evaluate the impact of
each proportion of ’dark’ and ’brown’ skin images on various fairness metrics, as well as
on accuracy and F1 score. This approach allows for a constructive analysis of how the
representation of underrepresented skin tones in the training set influences model
performance and fairness outcomes. Comparing the three proportions is particularly
valuable for understanding the trade-off between fairness and performance, as well as for
identifying the proportion that best balances equitable representation across skin tones
with high predictive accuracy. Such a comparative study provides insights into the rela-
tionship between data distribution and model behaviour, highlighting the potential ben-
efits or drawbacks of increasing diversity within a dataset.

6.3 Results of Synthetic Augmentation on the CNN

The addition of synthetic images generally resulted in a significant performance im-
provement across all diseases2, as evidenced by the values of Table 6.1. This effect may
be attributed to the regularizing impact of these new data on the dataset, which bene-
fited all diseases. Furthermore, Accuracy and F1-score also improved across individual
skin tones, including both darker and lighter tones, for which no synthetic images were
generated. Overall, except for the ‘very light’ skin tone, the addition of synthetic data

2Including those for which no synthetic data was added
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helped equalize performance across skin tones, raising metrics for lighter tones (which
previously had lower Accuracy and F1 scores compared to ‘dark’ and ‘brown’ tones)
more than it did for darker tones. Regarding fairness metrics, synthetic data also bene-
fited diseases for which no synthetic images were generated. We provide now a more
detailed analysis of each augmentation technique.

AugMin adds the fewest synthetic images and provides the smallest improvement
in terms of both traditional and fairness metrics, suggesting that more synthetic data
could be beneficial. As shown in Table 6.1, the Accuracy and F1-score improvements
for individual diseases sometimes narrowed the performance gap between Minority and
Majority groups (e.g., in the case of drug-induced iatrogenic exanthema, morbilliform
exanthema, polymorphous exanthema, viral exanthema, urticaria, and scabies), while
in other cases, the performance gap widened. Regarding fairness metrics (Table 6.2),
no significant improvement was observed for the three diseases targeted with synthetic
images in ‘dark’ and ‘brown’ tones, and in some cases, a decline was noted. Interest-
ingly, however, certain diseases for which no synthetic images were generated showed
counterintuitive fairness improvements. In summary, this approach appears to function
as a regularizer that enhances overall performance and improves the homogeneity of
model performance across skin tones. However, it is not effective in improving classi-
fication fairness, particularly for the targeted diseases (i.e., maculopapular exanthema,
viral exanthema, and scabies).

AugBalanced outperformed the previous approach in terms of both Accuracy and
F1-score. In this case, fairness outcomes for the three targeted diseases were very similar
to those observed without synthetic data. However, for most other diseases, fairness
appeared to improve, particularly for EOR values. Overall, this demonstrates that a
greater presence of synthetic data has a stronger regularizing effect on performance,
benefiting nearly all diseases and all skin tones.

AugMax yielded the best trade-off between fairness and performance. Accuracy and
F1-score metrics remained higher than the model trained on the original dataset, while
the average fairness metrics for each disease fell within ranges considered fair. Sig-
nificant improvements were observed for both DI and EOR values in two of the three
diseases for which synthetic images were generated (i.e., viral exanthema and scabies).
Additionally, for most other diseases, fairness metrics also improved. For the CNN,
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generating synthetic images for the three targeted diseases and incorporating them into
the dataset proved beneficial for both overall model performance and classification fair-
ness. The more synthetic images, the merrier: AugMax achieves the best trade-off
between fairness and performance.

No synthetic augmentation AugMin AugBalanced AugMax
Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score

Min Maj Min Maj Min Maj Min Maj Min Maj Min Maj Min Maj Min Maj
DII ex. 71.3% 76.8% 0.73 0.78 76.5% 80.5% 0.77 0.80 77.8% 82.6% 0.79 0.83 76.5% 81.2% 0.78 0.83
MP ex. 57.7% 49.0% 0.65 0.55 70.5% 57.2% 0.73 0.61 69.3% 58.7% 0.73 0.63 68.5% 59.0% 0.71 0.63
MF ex. 71.5% 74.1% 0.74 0.78 75.2% 77.5% 0.79 0.82 76.4% 80.0% 0.82 0.84 73.3% 80.7% 0.79 0.84
PM ex. 63.8% 52.3% 0.69 0.59 69.9% 59.1% 0.73 0.64 74.7% 62.6% 0.77 0.66 71.2% 61.6% 0.75 0.67
V ex. 80.9% 76.8% 0.79 0.75 81.4% 78.8% 0.82 0.79 80.5% 79.4% 0.82 0.80 83.2% 79.8% 0.83 0.80

urticaria 85.9% 85.6% 0.84 0.83 88.4% 88.4% 0.85 0.86 89.2% 89.2% 0.86 0.87 88.9% 89.4% 0.86 0.87
pediculosis 62.4% 65.4% 0.68 0.69 57.7% 70.9% 0.63 0.74 68.6% 74.8% 0.71 0.76 67.5% 72.0% 0.73 0.76
scabies 74.1% 69.8% 0.75 0.72 79.1% 75.3% 0.79 0.77 81.3% 77.6% 0.81 0.79 78.4% 75.5% 0.81 0.78

chickenpox 54.3% 57.0% 0.61 0.61 50.9% 60.7% 0.59 0.66 52.0% 62.3% 0.61 0.69 62.4% 65.5% 0.66 0.70
All 78.2% 76.8% 0.72 0.70 81.1% 80.2% 0.75 0.74 82.0% 81.5% 0.77 0.76 82.1% 81.4% 0.77 0.76

Table 6.1: CNN accuracy and F1-score: disease aggregation.

No synthetic augmentation AugMin AugBalanced AugMax
DI EOR PRR DI EOR PRR DI EOR PRR DI EOR PRR

DII ex. 0.99 0.78 0.93 0.97 0.93 0.95 0.98 0.83 0.94 0.99 0.76 0.94
MP ex. 1.35 0.85 1.18 1.44 0.81 1.23 1.46 0.85 1.18 1.44 0.86 1.16
MF ex. 1.32 0.55 0.96 1.26 0.68 0.97 1.21 0.82 0.95 1.19 0.71 0.91
PM ex. 0.85 0.63 1.22 0.85 0.65 1.18 0.82 0.56 1.19 0.83 0.61 1.16
V ex. 0.98 0.82 1.05 0.95 0.73 1.03 0.95 0.80 1.01 0.99 0.86 1.04

urticaria 0.93 0.86 1.00 0.95 0.97 1.00 0.95 0.97 1.00 0.94 0.93 0.99
pediculosis 0.74 0.68 0.95 0.73 0.81 0.81 0.75 0.84 0.92 0.74 0.73 0.94
scabies 1.46 0.67 1.06 1.44 0.68 1.05 1.43 0.69 1.05 1.35 0.91 1.04

chickenpox 0.76 0.70 0.95 0.71 0.75 0.84 0.73 0.83 0.83 0.84 0.95 0.95
All 1.04 0.73 1.03 0.93 0.78 1.01 1.03 0.88 1.01 1.03 0.81 1.01

Table 6.2: CNN DI, EOR and PRR: disease aggregation.

No synthetic augmentation AugMin AugBalanced AugMax
Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score

Minority dark 78.4% 0.74 81.6% 0.77 82.7% 0.79 81.9% 0.79
brown 78.2% 0.71 81.0% 0.74 81.8% 0.76 82.1% 0.76

Majority

tan 75.5% 0.69 79.3% 0.73 80.5% 0.75 80.5% 0.76
intermediate 75.1% 0.68 78.7% 0.73 80.0% 0.75 79.6% 0.75

light 76.5% 0.68 79.7% 0.73 81.0% 0.74 80.9% 0.74
very light 82.0% 0.75 84.9% 0.79 86.2% 0.81 86.3% 0.81

All 77.0% 0.77 80.3% 0.80 81.6% 0.81 81.5% 0.81

Table 6.3: CNN Accuracy e F1-score: skin tones aggregations.
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6.4 Results of Synthetic augmentation on the ST

The Swin Transformer has already demonstrated very high Accuracy and F1-score val-
ues across all diseases and skin tones, while EOR values were notably problematic,
particularly for the latter diseases. Even in this case, different trends can be observed
depending on the data augmentation approach:

AugMin improved the Accuracy and F1-score for several diseases in the minority
categories (i.e., ‘dark’ and ‘brown’ skin tones) at the cost of a slight and acceptable
decrease in Accuracy and F1-score for the majority category. Overall, however, Ac-
curacy and F1-score remained high and comparable to the baseline across skin tones
and diseases. Regarding fairness metrics, AugMin produced significant improvements,
particularly for the EOR metric: the addition of synthetic data improved seven out of
nine EOR values (with only one deteriorating compared to the baseline), bringing four
of these values into the fairness range. Additionally, DI values improved for two of the
three target diseases. Furthermore, overall PRR values, which were already good, also
showed improvement. On the whole, this approach provides the best trade-off between
performance and fairness.

AugBalanced resulted in amore substantial decrease inAccuracy and F1-score com-
pared to the other approaches, although these metrics remained high. In terms of fairness
metrics, AugBalanced led to notable improvements in EOR values, with six out of nine
improving (at the cost of two deteriorating compared to the baseline). However, it was
not as effective as AugMin, bringing only two EOR values within the fairness threshold.
Finally, this approach worsened DI values overall but improved PRR values.

AugMax also delivers good Accuracy and F1-score values, albeit distributed differ-
ently compared to AugMin. Regarding fairness metrics, this approach performs well for
DI and PRR values (though without substantial improvement over the model trained on
the original dataset, except for pediculosis). However, it is less effective for EOR val-
ues, with the exception of two diseases—urticaria and scabies—for which the values
were brought within the fairness range.
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In conclusion, for the Swin Transformer, AugMin proved to be the most effec-
tive. This highlights how the model’s fairness (and, in some cases, classification ac-
curacy) benefited from the addition of synthetic images. Nonetheless, the Swin Trans-
former exhibited fewer improvements in Accuracy and F1-score compared to the CNN
when the same number of synthetic images were added. This outcome can be explained
by at least two factors:

1. Although the Swin Transformer has significantly more trainable parameters than
the CNN, it is a pre-trained model, making it inherently more resistant to substan-
tial changes. In contrast, the CNN is entirely retrained from scratch, allowing for
greater flexibility in performance improvements.

2. The Swin Transformer had already achieved high Accuracy and F1-score during
training without synthetic data, showing far fewer signs of overfitting compared
to the CNN. Consequently, synthetic images did not have the same regulariz-
ing effect on the Swin Transformer as they did on the CNN, as there was less
room for improvement. This also explains why the Swin Transformer benefited
more from the approach involving fewer synthetic data: adding more data likely
exceeded the model’s “saturation point,” limiting the desired improvements in
fairness, though it still delivered better results than the model trained on the orig-
inal dataset in terms of fairness.

Overall, the generation of synthetic images proved to be a successful strategy for
both the CNN and the Swin Transformer. In both cases, all approaches achieved bet-
ter fairness outcomes compared to the respective models trained on the original dataset,
and for the CNN, significant gains were observed in Accuracy and F1-score as well.
The use of the DreamBooth technique, which enables lightweight fine-tuning of the
Stable Diffusion model and allows for multiple training iterations with differently fine-
tuned models, was critical in ensuring diversity and equitable representation. Our find-
ings advocate for the continued use of synthetic data augmentation to enhance fairness
and performance in dermatological AI applications, paving the way for more equitable
healthcare solutions.
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No synthetic augmentation AugMin AugBalanced AugMax
Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score

Min Maj Min Maj Min Maj Min Maj Min Maj Min Maj Min Maj Min Maj
DII ex. 94.7% 96.8% 0.90 0.93 95.8% 94.8% 0.94 0.94 96.3% 97.1% 0.90 0.91 94.4% 96.2% 0.93 0.93
MP ex. 88.4% 88.6% 0.84 0.84 87.5% 89.5% 0.84 0.83 88.1% 87.4% 0.84 0.84 91.8% 86.5% 0.84 0.84
MF ex. 89.7% 95.1% 0.89 0.92 96.4% 93.9% 0.89 0.86 95.2% 93.9% 0.89 0.86 96.4% 91.8% 0.91 0.85
PM ex. 91.7% 87.1% 0.92 0.89 91.7% 87.5% 0.92 0.88 84.3% 84.4% 0.87 0.86 91.7% 86.5% 0.89 0.86
V ex. 95.1% 95.6% 0.90 0.90 95.9% 94.9% 0.90 0.90 95.1% 95.5% 0.88 0.88 96.1% 95.5% 0.91 0.89

urticaria 91.9% 88.8% 0.93 0.93 90.4% 88.1% 0.93 0.92 86.3% 84.7% 0.90 0.90 90.2% 86.9% 0.93 0.91
pediculosis 84.0% 88.2% 0.89 0.92 86.6% 89.4% 0.90 0.93 83.5% 89.1% 0.88 0.93 85.6% 87.3% 0.89 0.92
scabies 81.9% 89.0% 0.90 0.93 84.1% 87.6% 0.91 0.92 85.2% 88.2% 0.91 0.91 85.7% 87.8% 0.91 0.92

chickenpox 88.4% 91.0% 0.89 0.86 88.4% 92.7% 0.89 0.87 85.0% 88.6% 0.88 0.86 83.2% 87.7% 0.87 0.87
All 91.1% 91.3% 0.90 0.90 91.3% 90.7% 0.90 0.89 89.3% 89.4% 0.89 0.89 91.4% 90.1% 0.90 0.89

Table 6.4: ST accuracy and F1-score: disease aggregation.

No synthetic augmentation AugMin AugBalanced AugMax
DI EOR PRR DI EOR PRR DI EOR PRR DI EOR PRR

DII ex. 1.01 0.72 0.98 1.01 0.87 1.01 1.00 0.88 0.99 0.94 0.70 0.98
MP ex. 1.36 0.74 1.00 1.28 0.93 0.98 1.41 0.65 1.01 1.52 0.56 1.06
MF ex. 1.21 0.76 0.94 1.17 0.91 0.98 1.22 0.95 1.01 1.21 0.77 1.05
PM ex. 0.81 0.73 1.05 0.79 0.54 1.05 0.76 0.58 1.00 0.83 0.79 1.06
V ex. 0.96 0.91 0.99 0.98 0.91 1.01 0.97 0.95 1.00 0.95 0.76 1.01

urticaria 0.99 0.74 1.03 0.98 0.78 1.03 0.97 0.75 1.02 0.97 0.93 1.04
pediculosis 0.78 0.61 0.95 0.78 0.88 0.97 0.76 0.76 0.94 0.82 0.43 0.98
scabies 1.23 0.10 0.92 1.28 0.40 0.96 1.28 0.45 0.96 1.32 0.91 0.98

chickenpox 0.72 0.35 0.97 0.71 0.40 0.95 0.72 0.35 0.96 0.73 0.42 0.95
All 1.01 0.63 0.98 1.00 0.74 0.99 1.01 0.70 1.00 1.03 0.70 1.01

Table 6.5: ST DI, EOR and PRR: disease aggregation.

No synthetic augmentation AugMin AugBalanced AugMax
Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score

Minority dark 90.8% 0.91 91.5% 0.92 89.9% 0.90 91.5% 0.91
brown 91.2% 0.91 91.3% 0.90 89.2% 0.88 91.4% 0.90

Majority

tan 91.9% 0.92 91.7% 0.90 90.3% 0.89 91.7% 0.90
intermediate 91.7% 0.92 91.0% 0.90 90.2% 0.89 90.5% 0.89

light 90.3% 0.90 89.4% 0.87 88.2% 0.87 88.1% 0.86
very light 91.5% 0.92 91.1% 0.90 88.5% 0.89 90.1% 0.89

All 91.3% 0.90 90.8% 0.91 89.4% 0.89 90.2% 0.90

Table 6.6: ST Accuracy and F1-score: skin tones aggregation



Chapter 7

Conclusions and Further Work

This study demonstrated the effectiveness of using advanced image generation tech-
niques, like DreamBooth combined with Stable Diffusion, to enhance the representa-
tion of underrepresented skin tones in medical datasets. Our methods significantly im-
proved fairness metrics, balancing performance and fairness effectively. Incorporating
synthetic images, especially in the training sets for diseases affecting ’dark’ and ’brown’
skin tones, addressed data scarcity issues and reduced bias in medical image analysis.
The comparison of different data augmentation strategies (AugMin, AugBalanced, Aug-
Max) helped us understand the trade-offs between dataset diversity and predictive ac-
curacy. While the CNN showed more significant improvements due to its flexibility,
the pre-trained nature of the ST limited its adaptability to synthetic data enhancements.
However, both models benefited from our approach, underscoring the potential of syn-
thetic data to improve diagnostic tools across diverse skin tones. We also noticed that al-
though synthetic images are produced only for specific diseases, the experimental results
demonstrate enhanced performance across all nine diseases catalogued in our study. Our
findings advocate for using synthetic data augmentation to enhance fairness and perfor-
mance in dermatological AI applications, paving the way for more equitable healthcare
solutions.

There are several improvements that can be applied to the pipeline of this work to
enhance its robustness and generalizability:
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• One key aspect to address is the preprocessing stage, particularly in terms of bet-
ter isolating disease-affected areas and ensuring that only high-quality images are
included. An important step in this direction could be the removal of hair from
the images. For instance, Delibasis et al. [21] leverage machine learning-based
approaches to segment hair pixels, subsequently employing an inpainting algo-
rithm to replace hair pixels with values derived from the surrounding image struc-
ture. Variational autoencoders can also be employed for this purpose, as demon-
strated by the study of Bardou et al. [8]. Another relevant preprocessing im-
provement involves removing facial features such as the nose, eyes, and mouth,
replacing them with black pixels and constraining the cropping algorithm to avoid
generating crops containing these pixels. This approach would enhance both clas-
sification performance and data anonymization. Existing tools like Eczemaless1

are designed for this specific purpose, while OpenCV offers built-in functions that
can also be utilized to achieve similar results. Furthermore, preprocessing can be
enhanced by imposing stricter criteria for crop acceptance, including bright-
ness and disease coverage. In particular, implementing a more effective automatic
detection method for the Region of Interest (ROI) could improve data quality. For
instance, Kim et al. [40] propose a semi-supervised method for acne segmenta-
tion, which may prove useful for identifying regions of interest in the context of
skin rashes.

• Another critical improvement concerns achieving amore robust labeling of skin
tone. As discussed in Chapter 3, the ITAmetric is highly susceptible to image illu-
mination, and despite employing aGaussianMixtureModel (GMM) for automatic
classification, a significant number of errors persist. Unsupervised and machine
learning-based methods tend to be ineffective when dealing with shaded images,
as they consistently produce distorted results, even when illumination-enhancing
processing is applied. A potential solution would involve manual classification of
skin tone by certified dermatologists, although this process is resource-intensive.
Alternatively, automated classification could leverage a deep learningmodel specif-
ically trained to identify skin tone from non-dermoscopic images. However, this

1https://eczemaless.com/dermatology-image-anonymization/
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would necessitate training the model on a sufficiently diverse dataset of non-
dermoscopic images to ensure reliable classification even under varying lighting
conditions.

• A further enhancement could involve generating disease images on dark and
brown skin by transforming images of light skin conditions. For example,
a straightforward approach could employ a pix2pix model to colorize light skin
images after converting them to grayscale to simulate dark skin (e.g., using the
instruct pix2pix model by Brook et al. [12]). However, empirical observations
during this study revealed that pretrained image-to-image models often fail to fol-
low prompts requiring dark skin colorization, even after fine-tuning on dark skin
datasets. This limitation likely arises from pretraining biases favoring light skin
examples. Moreover, it is crucial to consider that the texture of certain skin con-
ditions may significantly vary across skin tones, implying that simple colorization
might not adequately capture the differences. An alternative to colorization would
be using Style Transfer or Deep Blending techniques through deep learning meth-
ods, as suggested by Rezk et al. [51].

• Incorporating certified dermatologists into the pipeline is also essential, par-
ticularly in critical stages such as selecting the most promising models for image
generation. In the current study, all synthetic images generated by the selected
model were utilized to augment the dataset. However, in a real-world scenario,
synthetic images should undergo expert evaluation to discard unrealistic samples.
As previously mentioned, dermatologist involvement could also benefit the skin
tone classification step or the definition of a Region of Interest (ROI).

These improvements would make the pipeline more robust and generalizable. Nev-
ertheless, it is important to acknowledge the limitations imposed by the dataset, which
presents considerable challenges due to the low quality of the images. Overall, despite
these challenges, the proposed pipeline has proven effective in enhancing fairness in
classification, thereby fulfilling its primary objective.



Appendix

• Analytical computation of the thresholds for the ITA
values

Each Gaussian distribution is given by the probability density function:

f(x) = 1√
2πσ2

exp
(

−(x − µ)2

2σ2

)

Where:

– µ is the mean of the Gaussian,

– σ2 is the variance.

The decision boundary x between two Gaussian distributions occurs where the
probability densities of the two distributions are equal:
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Taking the natural logarithm of both sides, we get:
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This simplifies to the quadratic equation:

ax2 + bx + c = 0
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Where:
a = 1
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1

− 1
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2
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The solution to this quadratic equation is:

x = −b ±
√

b2 − 4ac

2a

The correct decision boundary is the root that lies between the means µ1 and µ2.
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