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Abstract

This thesis presents the modelling and control of the ITER Gas Injection System. The
non-linear models for both the valve and the pipe are formulated using the port-Hamiltonian
approach. The primary focus of this study is the valve model, which incorporates both
the mechanical and electrical domains, as well as the nonlinear coupling between them.
An observer is designed for the valve to reconstruct the system states from the gas flow
measurement at the valve output. A passivity-based controller is then developed to reg-
ulate gas flow into the tokamak vacuum vessel. The valve model is implemented in the
ITER simulation platform PCSSP and validated with experimental data. The control
algorithm is implemented and tested in simulation.
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Chapter 1

Introduction

Talk about fusion energy, history of Tokamaks, ITER project.
The world is undeniably undergoing a climate crisis that requires urgent action [1].

The energy sector is one of the main contributors to the greenhouse gas emissions that
are causing this crisis, and it is therefore crucial to transition to cleaner energy sources
[20]. Moreover, we heavily rely on fossil fuels, which are limited in their quantity and
may in a not so distant future run out [4]. Research in fusion energy aims to solve these
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Figure 1.1: Global average temperature change, By RCraig09 - Own work, CC BY-SA
4.0, wikimedia commons

problems. Nuclear fusion is the process that powers the stars, and it is a very promising
source of energy for the future of humanity. Interest in the potential of nuclear fusion for
the production of energy started in the Los Alamos Laboratory, during the Manhattan
project [5]. Nuclear fusion is a nuclear reaction, in which the nuclei of two or more
atoms combine to form a larger nucleus and other nuclei/neutrons as byproducts. The
difference in mass between the original atoms and the combined product is manifested as
excess energy, stemming from the difference in nuclear binding energy before and after

9

https://commons.wikimedia.org/w/index.php?curid=88535596


10 CHAPTER 1. INTRODUCTION

the reaction. To achieve nuclear fusion, atoms require enough energy to overcome the
natural barrier stopping them from combining on their own [12]. This requires conditions
of extreme pressure and temperature. These conditions are achieved in star cores, nuclear
weapons, and fusion power devices. In order to harness the power of fusion energy, the
highly exothermic fusion reactions must be contained. There are two main methods that
are used to achieve confinement of plasma:

• Inertial confiemeent, where the plasma is compressed to extremely high densities,
and the inertia of the plasma particles is enough to confine them to within the
reactor vessel. This implies that the fusion reactions would happen in a pulsed
fashion, for extremely short durations (around 100 ps) [14].

• Magnetic confinement, where the plasma is confined by magnetic fields which act
upon the charged particles in the plasma. Different tipes of devices have been
ideated and tested using magnetic confinement:

– Tokamaks: toroidal device, using a combination of magnets to confine the
plasma within a toroidal shape. This has been the most popular approach so
far

Figure 1.2: Schematic of the working of a Tokamak, [21]

– Stellarators: similar to tokamas, they use a carefully designed set of magnets
to address some of the instability challenges faced by tokamaks by creating a
twisted magnetic field configuration. The challenge is shifted from control of
instabilities to geometric design and fabrication of the machine

– Mirror devices present a cylindrical geometry, with magnets designed to sup-
press longitudinal leakage of plasma through magnetic forces parallel to the axis
of the cilinder. The main advantage of such devices is the ease of construction
as compared to tokamaks and stellarators [15]
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Figure 1.3: Schematic of the working of a Stellarator, [3]

Figure 1.4: Schematic of the magnetic field in a magnetic mirror device, By
User:WikiHelper2134, CC BY-SA 3.0, wikimedia commons

The main challenge in fusion remains to this day to achieve a net energy gain from the
fusion reactions.

1.1 The ITER Project

The work presented in this thesis was developed during an internship at ITER. ITER
is an international research project based in Cadarache, in the south of France. Over
the course of decades, the ITER Members – China, the European Union, India, Japan,
Korea, Russia and the United States – have collaborated with the main goal of building a
tokamak capable of achieving a ten-fold return on power. This is to be achieved through
a ”burning plasma”: the heat produced by the fusion reaction should be sufficiently
contained within the plasma itself to continuouslly fuelk it and provide the main source
of heating to achieve prolonged fusion. Other goals of the project are to contribute to
the demonstration and development of technologies for fusion power plants, test tritium

https://commons.wikimedia.org/w/index.php?curid=29562309


12 CHAPTER 1. INTRODUCTION

breeding (producing tritium within the vacuum vessel exploiting the fusion reaction), and
demonstrate the safety of nuclear fusion devices.

The ITER project is currently in the assembly phase, with the first plasma expected
to be achieved in 2034. The project is divided into several systems, each responsible for
a different aspect of the operation of the tokamak. The systems are designed to work
together to achieve the main goals of the project. This work focuses on the Gas Injection
system.

1.2 The ITER Gas Injection System

The ITER Gas Injection System (GIS) is the system responsible for supplying gas to
the vacuum vessel, for both fuelling purposes and for impurity injection. It will play a
key role in the plasma density control performed by the Plasma Control System (PCS)
[6]. This work focuses on the modelling and control of the ITER GIS, with particular
attention to the valves that supply gas to the vacuum vessel. The main challenge in
control of the GIS is given by the delay introduced into the system by the length of the
pipes connecting the fuelling valves to the vacuum vessel. This warrants the development
of accurate models and suitable control algorithms for the system. A testbench was built
at South Western Institute of Physics to characterize the response of the GIS, and the
data was used to validate the valve model proposed in this thesis. The GIS is composed of
10 Gas Valve Boxes (GVB), each consisting of 6 Mass Flow Controlled (MFC) valves, and
the pipe system connecting the GVBs to the vacuum vessel (VV). This work proposes

Figure 1.5: injection points of the GIS in the
vacuum vessel, [11]

Figure 1.6: schematic of a gas valve box

accurate models and an advanced control algorithm to guarantee the performance of
the GIS. The port-Hamiltonian approach [13, 28], with its modular feature and stability
analysis advantages, is an appropriate method for modelling of multiphysic systems, such
as the GIS. Different from the levitated ball system in [28],Sec.2.6, non-linear coupling is
considered between the mechanical and electrical domains in this application.

The control strategy Interconnection and Damping Assignment - Passivity Based Con-
trol (IDA-PBC) proposed in this paper was initially presented in [17]. Control of a simi-
larly class of the considered systems has been discussed in [29, 23]. The solutions in the
aforementioned rely on the linear structure of the considered systems, which is not present
in the case discussed in this paper. In [24] it is shown that integral control can be com-
bined with the IDA-PBC technique to improve robustness of the control. The IDA-PBC
control algorithm developed in this work requires a full knowledge of the system states,



1.2. THE ITER GAS INJECTION SYSTEM 13

therefore, an observer is also designed for the valve to reconstruct the these states from
the gas flow measurement at the valve output.

The proposed valve model is implemented in the ITER simulation platform PCSSP [22]
and validated with experimental data from the testbench at the South Western Institute
of Physics (SWIP). The control algorithm is implemented and tested in simulation. The
rest of this work is organized as follows:

• Chapter 2 presents the theoretical framework for port-controlled Hamiltonian sys-
tems, which is used throughout the rest of the thesis

• Chapter 3 presents the dynamic model developed for the MFC valves and compares
it to the experimental data from SWIP.

• Chapter 4 discusses the pipe model developed at CEA and compares it with the
experimental data from SWIP, and proposes some alternative models that could be
employed in its place.

• Chapter 5 presents the control scheme developed for the MFC valve and showcases
its performance and robustness for step references.
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Chapter 2

Port-Hamiltonian Systems

Port-Hamiltonian system theory [29] is born of the combination of the Bond Graph ap-
proach to modelling [19],[10] with the geometric Hamiltonian formulation of mechanics
[2]. The core idea is to model systems as an interconnection of different basic elements,
the interaction of which is determined by an interconnection structure.

This approach to modelling and control is quite general, well suited to multi-physics
systems, scalable and versatile. It provides great insight into the behaviour of dynamcal
systems and among its advantages makes one of the main problems in system theory
–stability analysis– quite intuitive. In this chapter we deal with the simpler cases of finite
dimensional systems defined on Rn and infinite dimensional systems treated through dif-
ferential operators, however there exist frameworks based on differential geometry where
finite dimensional systems are treated in the case of state spaces defined on manifolds and
infinite dimensional systems are approached through the use of differential forms. These
approaches are more general, however they introduce a rather heavy formalism that is
outside the scope of this work.

In the following, concepts in port-Hamiltonian modelling and control will be displayed,
starting from bond graph modelling.

2.1 Modelling: finite dimensional case

We start by considering two classical systems: the mass-spring-damper and the RLC cir-
cuit in Figure 2.1. As is already known from bond graph modelling, the representation

m

k

b

F

(a) mass-spring-damper

Vs

R

L

C

(b) RLC circuit

I 1 C

R

Se

(c) bond graph for both sys-
tems

Figure 2.1: Analogous representation of mechanical and physical systems
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16 CHAPTER 2. PORT-HAMILTONIAN SYSTEMS

for both systems is analogous: they both present inertial, capacitive, and dissipative ele-
ments, all sharing the same flow (velocity in the mechanical case, electric current in the
electric case). In the port-Hamiltonian philosphy, we would rather see the systems as
composed of energy storage (including both capacitive and inertial components), dissi-
pative components, and potentially an external interaction port, interconnected by some
structure. The bond graph in Figure 2.2 portrays this concept: S reprents the storage

S RD
es

fs

ed

fd

e i f i

Figure 2.2: general bond graph of a PH system

element, R the dissipation element and D the interconnection structure. The concepts
of flow and effort are inherited from bond graph theory and are thus typically associated
to variables the product of which is instantaneous power. In table 2.1 a classification of
flows and efforts in different domains is displayed. In general, we consider an abstract
finite(for now)-dimensional vector space of flows F , the elements of which we denote as
f ∈ F and call flow vectors. We call the dual to this vector space the space of efforts
E = F∗ and denote its elements by e ∈ E . We call the cartesian product of the flow and
effort spaces the space of port variables. Power is given by the canonical pairing on the
space of port variables:

P = ⟨e|f⟩ (f, e) ∈ F × E (2.1)

physical domain flow effort storage state
electric current voltage charge

magnetic voltage current flux linkage
potential translation velocity force displacement
kinetic translation force velocity momentum
potential rotation angular velocity torque angular displacement
kinetic rotation torque angular velocity angular momentum

potential hydraulic volume flow rate pressure volume
kinetic hydraulic pressure volume flow rate flow tube momentum

Table 2.1: Domain of classification in port-Hamiltonian framework

2.1.1 Interconnection structure

Definition 2.1 ([8, 29])
A Dirac structure on F × E is a subspace D ⊂ F × E such that:

1. ⟨e|f⟩ = 0 for all (f, e) ∈ D

2. dimD = dimF
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Property 1 corresponds to power-conservation: it indicates that the total power flowing
through a Dirac structure is zero, i.e. all the Dirac structure does is route power within
the system. It can be shown that the maximal dimension the Dirac structure D can
assume maintaining property 1 is dimF , and thus property 2 says that a Dirac structure
is the maximal subspace of F × E ensuring property 1. There is an equivalent definition
of Dirac structures which is useful as it generalizes also to infinite-dimensional structure.
In order to give this definition, we introduce the bilinear form canonically defined on the
bond space F × E :

≪ (fa, ea), (f b, eb) ≫:=
〈
ea|f b

〉
+
〈
eb|fa

〉
(2.2)

we can now give the following alternative definition of a Dirac structure [8]:

Proposition 2.1
A (constant) Dirac structure on F × E is a subspace D ⊂ F × E such that:

D = D⊥ (2.3)

where D⊥ is the orthogonal complement of D with respect to the bilinear form ≪ ·, · ≫:

D⊥ = {(f, e) ∈ F × E| ≪ (f, e), (f ′, e′) ≫= 0∀(f ′, e′) ∈ D} (2.4)

proof of this proposition can be found in [8].

This additional definition, while it may seem rather abstract, has the benefit of not be-
ing tied to finite-dimensional vetor spaces, thus allowing for definition of Dirac strucutres
for infinite-dimensional systems. This will be further discussed in section 2.3 of this chap-
ter. Furthermore, the only requirement imposed on flow and effort spaces is that they be
vector spaces; for example, in the finite-dimensional case we need not limit ourselves to
Rn, but can rather consider for example in rigid body mechanics, the lie algebra of the
special euclidean group of R3 se(3) (along with its dual) to represent twists and wrenches.

An very relevant example of Dirac structure is the following:

Proposition 2.2
Let J : E → F be a skew-symmetric linear mapping, that is J = −J∗, where J∗ : E → F
is the adjoint mapping. Then

graph J := {(f, e) ∈ F × E|f = Je} (2.5)

is a Dirac structure

Proof. We use the first definition of Dirac structure and verify the two properties. First,
we have that for all (f, e) ∈ graph J :

⟨e|f⟩ = ⟨e|Je⟩ = ⟨J∗e|e⟩ = −⟨e|Je⟩ = 0

where the first equivalence is given by the definition of the Dirac structure we are con-
sidering, the second by the definition of the adjoint operator of J and the third by the
condition that J be skew-symmetric. Property 2 is trivially satisfied as dim graph J =
dim E = dimF .
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2.1.2 Energy storage

An energy storage is characterized by two elements:

• A physical state x ∈ M

• An Hamiltonian function H : M → R denoting energy

In the general setting the state space M is a smooth manifold, however we limit ourselves
to consider state-spaces defined on Rn. The vector of flow variables of the energy storing
element is given by the time derivative of the state, while the effort is given by the gradient
of the Hamiltonian:

fs = −ẋ es = ∇H(x) (2.6)

We obtain the following power balance for energy storing elements:

d

dt
H = −⟨es|fs⟩ = ⟨∇H(x)|ẋ⟩ (2.7)

Note that the gradient of the Hamiltonian is a covector and the time derivative of the
state is a vector, thus the pairing is well defined.

Remark. the − sign in equation (2.6) is necessary to ensure a consistent power flow
convention: ⟨∇H|ẋ⟩ is the power flowing into the storage element, while ⟨es|fs⟩ is the
power flowing into the Dirac structure.

2.1.3 Dissipation

The dissipation port is characterized by a resistive relation R. This relation is in general
in the form

R(fd, ed) = 0 (2.8)

with the property for all (fd, ed) satisfying (2.8)

⟨ed|fd⟩ ≤ 0 (2.9)

i.e., power only flows into the disspiation element.
Taking into account also the external interaction port, we can write the power balance

for the whole system as:
⟨es|fs⟩ + ⟨ed|fd⟩ + ⟨ei|fi⟩ = 0 (2.10)

An updated version of equation (2.7) follows as:

d

dt
H = ⟨ed|fd⟩ + ⟨ei|fi⟩ (2.11)

2.1.4 Port-Hamiltonian dynamics

Formally, a port-Hamiltonia system is defined as follows:

Definition 2.2
Consider a state space X and a port-Hamiltonian

H : X → R
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Figure 2.3: Magnetically levitated ball

defining energy-storage. A port-Hamiltonian system on X is defined by a Dirac structure

D ⊂ TxX × T ∗
xX × Fd × Ed ×Fi × Ei

having energy storing port (fs, es) ∈ TxX × T ∗
xX where TxX is the tangent space to X

at x and T ∗
xX is the cotangent space(in the case X = Rn the tangent space is the space

itself), and a resistive structure

R ⊂ Fd × Ed

corresponding to an energy-dissipating port. Its dynamics is specified by:

(−ẋ(t),∇H(x(t)), fd(t), ed(t), fi(t), ei(t)) ∈ D(x(t))

(fd(t), ed(t)) ∈ R(x(t)), t ∈ R
(2.12)

One useful form in which the system dynamics can present in the case of finite-
dimensional systems with state in Rn is the following:

ẋ = [J(x) −R(x)]∇H(x) + g(x)u

y = gT (x)∇H(x)
(2.13)

where J : Rn → Rn×n is a skew-symmetric matrix representing the interconnection of
the system, R : Rn → Rn×n is a symmetric, positive semidifinite matrix representing the
resistive relation, u ∈ Rm is an input to the system and g(x) : Rm → Rn is the input map.

Example 2.1 (Magnetically levitated ball)
Consider the dynamics of an iron ball affected by the magnetic field created by an actuated
inductor, shown in Fig. 2.3. The state of the system is given by the height of the ball
q, its momentum p, and the flux linkage of the inductor φ. The system Hamiltonian is
given by:

H(q, p, φ) = mgq +
p2

2m
+

φ2

2L(q)
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The dynamics of the system is given by: q̇
ṗ
φ̇

 =

 0 1 0
−1 0 0
0 0 −R




∂H
∂q
∂H
∂p
∂H
∂φ

 +

0
0
1

V (2.14)

We may note that the coupling between the mechanical and magnetic domains happens
through the Hamiltonian.

2.2 Control: finite dimensional case

2.2.1 Interconnection and Damping Assignment

IDA-PBC control was introduced in [18] as a method to synthesize stabilizing controllers
for port-controlled Hamiltonian systems in input output-form as in equation (2.13). The
control design objective of interconnection and damping assignment passivity-based con-
trol is to obtain a closed loop PH system of the form

ẋ = [Jd(x) −Rd(x)]∇Hd(x) (2.15)

where Jd, Rd and Hd are desired interconnection and damping matrices and Hamiltonian
function of the closed loop system respectively. The main proposition of IDA-PBC is the
following [18, 8]:

Proposition 2.3
Consider the system (2.13), assume there are matrices g⊥(x), Jd(x) = −JT

d (x), Rd(x) =
RT

d (x) and a function Hd(x) that verify the following PDE:

g⊥(x)[J(x) −R(x)]
∂H

∂x
= g⊥(x)[Jd(x) −Rd(x)]

∂Hd

∂x
(2.16)

where g⊥(x) is a full rank left annihilator of g(x), i.e. g⊥(x)g(x) = 0, and Hd(x) is such
that

x⋆ = arg minHd(x) (2.17)

with x⋆ the desred equilibrium to be stabilized. Then, the closed-loop system (2.13) with
u = β(x), where

β(x) = [gT (x)g(x)]−1gT (x)

{
[Jd(x) −Rd(x)]

∂Hd

∂x
− [J(x) −R(x)]

∂H

∂x

}
takes the port-Hamiltonian form (2.15), with x⋆ a (locally) stable equilibrium. It will be
asymptotically stable if, in addition, x⋆ is an isolated minimum of Hd(x) and the largest
invariant set under the closed-loop dynamics (2.15) contained in{

x ∈ X
∣∣∣∣∂THd

∂x
Rd(x)

∂Hd

∂x
= 0

}
equals {x⋆}.
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We may view IDA-PBC as adding an energy function Ha(x) to the system through
the control port, thus obtaining at closed loop Hd(x) = H(x)+Ha(x). On top of adding a
term to the energy we also may formulate the modification to the damping and injection
matrices in terms of addition of other interconnection and damping matrices, namely
Jd(x) = J(x) + Ja(x) and Rd(x) = R(x) + Ra(x). Equation (2.16) can therefore be
rewritten as:

[Ra − Ja]
∂H

∂x
+ gu(x) = [J + Ja −R−Ra]

∂Ha

∂x
(2.18)

2.2.2 Solving the matching equation

Equation (2.16) is called the matching equation as it corresponds to imposing that the
closed-loop dynamics match the desired dynamics. The key step in IDA-PBC control
synthesis is solving this PDE. There are three main ways to go about solving this equation:

1. Algebraic IDA: The simplest method is to fix a desired energy function, satisfying
the conditions of proposition 2.3, and solve the matching equation for the desired in-
terconnection and damping matrices. This turns the problem into a set of algebraicn
equations in Jd(x) and Rd(x) which if solvable are quite easy to solve.

2. Parametrized IDA: This approach consists in restricting the closed loop energy func-
tion to a certain class, without however fixing it completely. This results in a simpler
PDE with some constraints on Jd(x) and Rd(x).

3. Non-Parametrized IDA: The most cumbersome of the three from a computational
point of view, this approach consists in fixing the desired interconnection and damp-
ing matrices Jd(x) and Rd(x), – as well as g⊥(x) – (hence the name Interconnection
and Damping Assignment), yielding a PDE whose solution is a family of admissible
closed-loop energy functions. Among these, one must be chosen that satisfies the
conditions of proposition 2.3

Example 2.2 (control of a magnetically levitated ball)
Consider the magnetically levitated ball of Example 2.1. We set as our control design goal
to stabilize the ball at some height q⋆. We employ the IDA-PBC approach, in particular
we may elect to use the Non-Parametrized IDA as is done for this system in [29]. It
can be observed that an obstacle in the control of the system is that the interconnection
matrix J does not couple the mechanical portion of the system with the electromagnetic
dynamics, through which the system is controlled. For this reason, we pick as our desired
interconnection matrix

Jd =

 0 1 0
−1 0 −α
0 α 0

 (2.19)

By plugging this into the matching equation (2.18) (considering Rd = 0) we get the
following PDE system:

∂Ha

∂p
= 0

−∂Ha

∂q
− α

∂Ha

∂φ
= α

(1 − q)

k
φ

α
∂Ha

∂p
−R

∂Ha

∂φ
= α

p

m
+ u(x)

(2.20)
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The third equation prescribes the control law, whereas the second can be resolved to
obtain:

Ha(q, φ) = − φ3

6kα
− 1

2k
(1 − q)φ2 + Φ(q +

φ

α
) (2.21)

with Φ(·) to be chosen such that condition (2.17) is satisfied.

2.3 Modelling: inifinite dimensional case

As was anticipated in section 2.1, the port-Hamiltonian framework has been extended to
include infinite-dimensional systems as well. In this section a framework for distrubuted
parameter systems on 1D domains is presented, following the tractation in [8].

The definitions in section 2.1 were kept as general as possible to allow for use in the
finite-dimensional case as well as in the infinite-dimensional case. We therefore need only
specify some details to show how they adapt to the infinite-dimensional case. Firstly, we
consider as the spatial domain the set Z = [a, b] with a, b ∈ R, with boundary ∂Z = {a, b}.
The spaces within which flows and efforts lie require care in their definition to be able to
obtain Dirac structures. We start by considering flows and efforts in the spatial domain
as smooth functions from the domain Z to Rn:

fZ(z) ∈ C∞(Z;Rn) eZ(z) ∈ C∞(Z; (Rn)∗) (2.22)

We define two boundary port variables as the restriction of flows and efforts to the bound-
ary of the domain:

f∂ =

[
fZ(a)
fZ(b)

]
, e∂ =

[
eZ(a)
eZ(b)

]
(2.23)

We define the space of flows as:

F =

{
f =

[
fZ
f∂

]
∈ C∞(Z;Rn) × Ra,b

}
(2.24)

and accordingly the space of efforts as its dual:

E =

{
e =

[
eZ
e∂

]
∈ C∞(Z; (Rn)∗) × Ra,b

}
(2.25)

these spaces are dual to each other, and are thefore endowed with a duality pairing:

⟨e|f⟩ =

∫
Z

⟨eZ(z)|fZ(z)⟩dz + e∂(b)f∂(b) − e∂(a)f∂(a) (2.26)

where the pairing ⟨eZ(z)|fZ(z)⟩ is the same used in section 2.1. In the characterizing
Dirac structures for distributed parameter systems we will use the following concepts:

Definition 2.3 (Differential operator)
Given a nonnegative integer m, an order-m differential operator is a map P from a function
space F1 on Rn to another function space F2 that can be written as:

P =
∑
|α|≤m

aα(x)
∂|α|

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

(2.27)
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Definition 2.4
A differential operator J on H is formally skew-adjoint if it satisfies ⟨J x|y⟩ = −⟨x|J y⟩
With the functions x and y having 0 boundary conditions at the boundary of the domain.

We have the following result:

Proposition 2.4
The linear subset D ⊂ F × E defined by

D =

{
(f, e) ∈ F × E|fZ = J eZ and

[
f∂
e∂

]
(a, b) = eZ |(a,b)

}
(2.28)

Where J is a formally skew-adjoint differential operator, is a Dirac structure with respect
to the bilinear form (2.2).

This result is a case of proposition 2.2.
Now talk about energy storage and dissipation and power balance

2.3.1 Energy storage

For distributed parameter systems, the Hamiltonian takes the form:

H(t) =

∫
Z

H(z, α)dz (2.29)

where H(z, α) is an energy density function, depending on the position within the spatial
domain z ∈ [a, b] and on the state of the system x : [a, b] → Rn. Flows and efforts within
the domain are related to the Hamiltonian as follows:

fZ = ẋ eZ =
δH

δx
(2.30)

where δ
δx

denotes the variational derivative with respect to variable x, which is defined
as follows [8]:

Definition 2.5
Consider a functional

H[x] =

∫ b

a

H
(
z, x, x(1), . . . , x(n)

)
dz (2.31)

for any smooth real function x(z), z ∈ Z where the integrand H is a smooth function of x
and its derivatives up to order n. The variational derivative of H with respect to x is the
only function that satisfies for every ε ∈ R and smooth real function δx(z), z ∈ Z, such
that its derivatives satisfy δx(i)(a) = δx(i)(b) = 0, i = 0, . . . , n:

H[x + εδx] = H[x] + ε

∫ b

a

δH

δx
δxdz + O(ε) (2.32)

in the case where H does not depend on the derivatives of x, then the variational

derivative is simply
∂H
∂x

.

In analogy with the finite-dimensional dynamics formulation in Equation (2.13), we
describe the dynamics of distributed parameter port-Hamiltonian systems as:

∂x

∂t
= J δH

δx
(2.33)
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2.3.2 Dissipation

To deal with dissipation, we follow the approach in Chapter 6 of [30]. To this end, we
rewrite the system dynamics (2.33) in a different form:

∂x

∂t
(t, z)x = JL(z)x(t, z) α(0, z) = x(z) (2.34)

where J is a formally skew-adjoint differential operator and L(z) is a coercive operator.
The efforts are therefore given by e = Lx(t, z).

To include dissipation, we extend our attention to the class of systems described by:

∂x

∂t
(t, z) = (J − GRSG∗

R)Lx(t, z), x(0, z) = x0(z) (2.35)

where S and L are bounded coercive operators on L2(a, b;Rm) and X = L2(a, b,Rn)
respectively. The differential operators J and GR are given by:

J x =
N∑
i=0

Pi
∂ix

∂zi
GRx =

N∑
i=0

Gi
∂ix

∂zi
, G∗

Rx =
N∑
i=0

(−1)iGT
i

∂(i)x

∂zi
(2.36)

with G∗
R the formal adjoint of GR, and Gi, Pi, i = 1, 2, . . . , N constant real matrices of

sizes n×m and n× n respectively. It is furthermore assumed that these matrices satisfy

Pi = (−1)i+1P T
i i = 0, 1, . . . , N (2.37)

and either of the following[
PN GN

GT
N 0

]
has full rank, if Gi ̸= 0 for at least one i ∈ {1, 2, . . . , N} (2.38a)

PN has full rank, if Gi = 0 for all i ∈ {1, 2, . . . , N} (2.38b)

The interpretation of the new terms introduced in (2.35) is as follows:

• GR describes how dissipation comes into the system

• S describes the amount of dissipation in the system

We rewrite the system with dissipation (2.35) in the following form, by letting er =
Sfr: (

f
fr

)
= Je

[
e
er

]
=

[
J GR

−G∗
R 0

] [
e
er

]
(2.39)

The differential operator Je is formally skew-adjoint, as J is formally skew-adjoint itself
and G∗

R is the formal adjoint of GR.

Example 2.3 (Vibrating string with structural damping)
Let us consider a vibrating string, starting from the lossless case. The string has a 1D
domain Z = [a, b] ⊂ R. The dynamic model is based on the combination of Newton’s law
and Hooke’s law, which yields the wave equation in one dimension:

∂2u(z, t)

∂t2
=

1

µ(z)

∂

∂z

(
T (z)

∂u(z, t)

∂z

)
(2.40)

where u(z, t) is the transverse displacement of the string, µ(z) is the mass density of the
string, and T (z) is the elastic modulus of the string. We denote by v(t, z) the velocity of
the string v = ∂u

∂t
. The energy variables of the system x = [ε p]⊤ are:
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• the strain ε(z, t) = ∂u(z,t)
∂z

• the elastic momentum p(z, t) = µ(z)v(z, t)

The total energy is given by:

H(ε, p) = U(ε) + K(p)) (2.41)

where U(ε) is the elastic potential energy:

U(ε) =

∫ b

a

1

2
T (z)(

∂u(z, t)

∂z
)2dz =

∫ b

a

1

2
Tε(z, t)2 (2.42)

and K(p) is the kinetic energy:

K(p) =

∫ b

a

1

2
µ(z)v(z, t)2dz =

∫ b

a

1

2

1

µ(z)
p2(z, t) (2.43)

We can rewrite the wave equation (2.40) in the form of (2.33)

∂

∂t

[
ε
p

]
=

[
0 ∂

∂z
∂
∂z

0

] [
δH
δε
δH
δp

]
(2.44)

We can introduce structuural damping in the system. The conservation laws for the
system now become:

∂

∂t

[
ε
p

]
=

∂

∂z

[ p
µ

Tε + ks
∂ε
∂z

(
p
µ

)] =

[
0 ∂

∂z
∂
∂z

(
∂
∂z
ks

∂
∂z

)] [ δH
δε
δH
δp

]
(2.45)

which can be recast into the form of (2.35) by letting:

J =

[
0 ∂

∂z
∂
∂z

0

]
, GR =

[
0
∂
∂z

]
, S = ks > 0, L =

[
1
µ

0

0 T

]
(2.46)

Let us prove that the differential operator J in the previous example is indeed formally
skew-adjoint. The duality pairing with respect to which we prove skew-adjointedness is:

⟨u|v⟩ =

∫ b

a

uvdz (2.47)

we therefore have:

⟨J u|v⟩ =

∫ b

a

(J u)vdz

=

∫ b

a

(
∂u1

∂z
v2 +

∂u2

∂z
v1

)
dz

=

∫ b

a

∂u1

∂z
v2dz +

∫ b

a

∂u2

∂z
v1dz

(2.48)

By applying integratio by parts to both we get:

⟨J u|v⟩ = [u1v2 + u2v1]
b
a −

∫ b

a

u1
∂v2
∂z

dz − u2
∂v1
∂z

dz (2.49)

By considering that u and v vanish at the boundary of the domain, we get:

⟨J u|v⟩ = −⟨u|J v⟩ (2.50)
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Chapter 3

MFC Valve model

The MFC valves in the ITER GIS are solenoid actuated, normally closed valves. The
dynamic model of the valves was divided into two main components: an electromechanical
model for the the solenoid, and a flow characteristic that relates mechanical variables of
the system to gas flow out of the valve.

3.1 Plunger model

The linear solenoid actuator that operates the valve is modelled through the interaction
of two subsystems: a mass-spring-damper, representing the mechanical portion of the
actuator, and an RL circuit, for the electric part of the actuator. The interaction between
these two subsystems is of electromagnetic nature. As the ferromagnetic plunger within
the solenoid moves, the inductance of the RL cuircuit changes, and a magnetic force
is exerted on the mass-spring-damper system based on the current flowing through the
inductor. Following the PH approach, we may develop models for the two subsystems
and then connect them.

Figure 3.1: Side section of an MFC valve

27
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3.1.1 Mechanical subsystem

The Hamiltonian for the mechanical subsystem is the sum of elastic and kinetic energy:

Hm(q, p) =
1

2
kq2 +

1

2m
p2 (3.1)

where q is the position of the plunger and p is its momentum, k is the spring constant
and m is the mass of the plunger. The interconnection and damping matrices are:

Jm =

[
0 1
−1 0

]
Rm =

[
0 0
0 b

]
(3.2)

where b is the damping coefficient. The dynamic equations for the mechanical subsystem
are then

ẋm = [Jm −Rm]
∂Hm

∂xm

(3.3)

where xm =
[
q p

]⊤
is the state of the mechanical subsystem

3.1.2 Electrical subsystem

The Hamiltonian for the electrical subsystem is composed only of the energy stored in
the solenoid coil, using as state the flux linkage in the inductor:

He(φ) =
φ

2L
(3.4)

Interconnection and damping are trivial:

Je = 0 Re = Rc (3.5)

with Rc the resistance of the RL circuit. The electrical subsystem presents an input
voltage, thus the dynamic equation presents as:

ẋe = [Je −Re]
dHe

dxe

+ gu (3.6)

with g = 1 and u = vin the input voltage

3.1.3 Coupling the subsystems

Following PH system theory the mechanical and electromechanical subsystems can be
interconnected by considering a state space composed of the cartesian product of the
state spaces of the subsystems, a Hamiltonian constructed as the sum of the subsystem
Hamiltonians and interconnection and damping matrices composed with those of the
subsystems. Dependance of the inductance on the plunger position gives the coupling
between the mechanical and electrical physical domains.

H(q, p, φ) = Hm + He =
1

2
kq2 +

1

2m
p2 +

φ

2L(q)
(3.7)

J =

[
Jm 0
0 Je

]
=

 0 1 0
−1 0 0
0 0 0

 (3.8)

R =

[
Rm 0
0 Re

]
=

0 0 0
0 b 0
0 0 0

 (3.9)
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The dynamic equations of the system can be expressed as

ẋ = [J −R]
∂H

∂x
+ gu (3.10)

with x =
[
xm xe

]⊤
, g =

[
0 0 1

]⊤
and u = vin.

Figure 3.2 potrays a bondgraph representing the coupled plunger dynamics. The
coupling between the electrical subsystem (on the left) and the mechanical subsystem (on
the right) is achieved through an IC field, with the intertial component on the electrical
side and the capacitive component on the mechanical side.

C : k

I : m

11

R : b

IC

R : Rc

Se : vin

Figure 3.2: Bond graph of the electromechanical dynamics of the solenoid actuated valve

Inductance function

The relation between position of the plunger in the solenoid and inductance is rather
complex in its nature, and analytic expressions can be quite involved [27]. For this reason,
an approximation of the inductance function based on the experimental work in [25] is
used:

L(q) = A

(
1 +

q

c + q

)
(3.11)

By solving L(q) > 0 for q, we find that L(q) < 0 for −c < q < −c/2. Naturally, negative
inductance does not make any physical sense. However, in our case the plunger position
is constrained to the interval [0, 1], and therefore as long as c > 0 inductance is always
positive. Figure 3.3 portrays L(q) for the tuned values of its parameters A and c.

3.2 Flow characteristic

The valve is approximated as varying conductance between two pipes. The particle flow,
expressed in Pa ·m3/s is given by Bernoulli’s equation:

Q =
RT

M

Cd√
1 − β4

ε
π

4
d2
√

2(Pup − Pdown)ρ (3.12)

many of these parameters are unknown, and are therefore aggregated into a single one,
yielding the following expression:

Q = ξgasCd

√(
P 2
up − P 2

down

)
(3.13)
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Figure 3.3: Inductance function L(q)

3.2.1 Discharge coefficient

The discharge coefficient Cd is a function of the plunger position q. The rationale behind
deterimining such function is based on observations made on the experimental data from
SWIP. It can be observed by plotting the relation between input voltage and gas flow
rate at steady state that it seems to be linear (See fig. 3.4) Based on thes observations,
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Figure 3.4: Voltage-flow relations at steady state from SWIP data

the discharge coefficient function is crafted to have the same behavior in the simulation
model. The chosen function is the product between the plunger position and a number
of gaussian functions tuned to obtain this goal:

Cd(q) = q(1 + a1e
−b1(x−d1)2)(1 + a2e

−b2(x−d2)2)(1 + a3e
−b3(x−d3)2)(1 + a4e

−b4(x−d4)2) (3.14)

The resulting steady state voltage-flow relation can be seen in figure 3.5

3.2.2 Flow coefficient

The coefficient ξgas in equation (3.13) was tuned by extracting information on the gas flow
rate through the valve at steady state with full aperture from SWIP data, and on pressure
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Figure 3.5: simulation model voltage-flow relation at steady state

downstream of the valve from simulations with the pipe model discussed in chapter 4. The
pressure upstream of the pipe is assumed to be constant at the value of 90 KPa. The
coefficient is thus determined as:

ξgas =
Qmax√

P 2
up − P 2

down,max

(3.15)

3.3 Sensor model

The MFC valve is equipped with a sensor to measure the flow rate, schematized in figure
3.6. Part of the gas flowing through the valve flows through the sensor. The gas stream
through the sensor is warmed up by two heaters (RHT1 and RHT2 in Fig. 3.6). When
the valve is open, the gas transports heat from the first resistor to the second, causing
a temperature difference between the two resistors, which, at steady state, is linearly
dependent to mass flow rate [31]:

ṁ = α∆T (3.16)

Before steady state is reached however, the relation is not as trivial. It can be observed

Laminar flow element

RHT1 RHT2

Flow

Turbulence filter

Figure 3.6: Schematic of the MFC valve flow meter
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by analyzing experimental data from the SWIP testbench, that the flow sensor seems
to respond to changes in the system with some delay compared to the pressure sensor
downstream of the MFC valve (see Figure 3.7). This can be explained by taking into
account that thermal transport within the moving gas is naturally slower than the flow
of gas itself. A very simple way to capture such a behaviour is to model the flow sensor
as a low-pass filter, which was the chosen approach. In order for the model of the sensor
to be physically sensible, a sought property of the used filter is the lack of overshoot. For
this reason, the chosen type of filter is a Bessel low-pass filter, which has the property
of providing maximally flat group delay, thus preserving the wave shape of signals in the
passband [26].
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Figure 3.7: Comparison of flow sensor data with pressure downstream of MFC valve

The cutoff frequency for the low-pass filter can be expected to depend on properties
of the gas being considered — molar mass, flow rate, temperature, etc. In this case
temperature is assumed to always be the same, while gas species and flow rates clearly
vary. In particular, the sensor will be slower for heavier gas species and also for slower
flowing gas. A different cutoff frequency was tuned for each gas-valve pairing to account
for this, with low flow valves getting sensibly lower cutoff frequencies. The tuning was
done keeping in mind that the dynamics of the plunger itself remain unchanged across
different gasses, and would therefore only depend on the gas species for same type valves
(i.e., all high flow valves have the same plunger dynamics and likewise for low flow valves).
The different cutoff frequencies can be seen in Table 3.1

The models fo the valve and sensor are implemented in Simulink within the iter Plasma
System Simulation Platform. The Simulink model can be seen in Figure 3.8
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cutoff frequency
H2, high flow 28 rad/s
D2, high flow 28 rad/s
Ar, low flow 9 rad/s
N2, low flow 11 rad/s
Ne, high flow 28 rad/s

Table 3.1: flow sensor cutoff frequencies

Figure 3.8: Simulink scheme of the MFC valve model.

3.4 Comparison of the simulation model with exper-

imental data

The model was validated against experimental data gathered on a testbench by SWIP The
comparison is carried out by feeding the simulation model the same input voltage that
was sent to the valve in the experimental test, and the result is considered satisfactory if
the flow measured by the simulated sensor sufficiently matches the flow measured by the
real sensor.
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Figure 3.9: Comparison of simulated high flow valve with experimental data, H2
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Figure 3.10: Comparison of simulated high flow valve with experimental data, Ar



Chapter 4

Pipe model

A model of the pipes connecting the MFC valves to the vacuum vessel was developed as
part of a contract with CEA (Commissariat à l’énergie atomique et aux énergies alterna-
tives). This model was coupled with the MFC valve model presented in chapter 3 for a
comprehensive simulation of gas injection. In this chapter, the model is described, along
with its coupling with the valve model. A comparison of data produced by simulation
of the pipe model with experimental data is carried out, and some alternatives for pipe
modelling are presented.

4.1 Model description

The pipe connecting the valve to the vacuum vessel is modelled by a 1D diffusion PDE:

Qk(x, t) = −Ck(x, t)∂xPk(x, t)

∂tPk(x, t) = − 1

A
∂xQk(x, t)

(4.1)

where the pipe conductance Ck = Ck−molecular + Cviscous is composed of a molecular and
viscous component. The molecular component is computed as

Ck−molecular =
π

12
v̄kd

3 v̄k =

√
3RT

Mk

(4.2)

with d the pipe diameter, v̄k the molecular velocity, R, T , and Mk respectively the perfect
gas constant, the gas temperature and molar mass of gas species k. Viscous conductance
is computed as:

Cviscous(x, t) =
πR4

0

8η(x, t)

∑
k

Pk(x, t) (4.3)

where R0 is the pipe radius and η(x, t) is the viscous friction:

η−1(x, t) = η−1
k

MkPk(x, t)∑
k

MkPk(x, t)
(4.4)

where ηk is the viscosity of each single gas, computed with Sutherland’s formula:

ηk = ηk−0
Tk−0 + Ck′
T + Ck′

T 3/2

T
3/2
k

(4.5)

where ηk−0, Tk−0 and ck′ are respectively the reference viscosity, the reference temperature
and Sutherland’s constant for the gas species.
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4.2 PH formulation of the pipe model

To make the structure of equation (4.1) as a diffusion equation apparent, it can be rewrit-
ten as a single equation:

∂tPk(x, t) = − 1

A
∂x(−Ck(x, t)∂xPk(x, t)) (4.6)

This can be seen as an infinite-dimensional PH system with dissipation (refer to equation
in theory part), where:

J = 0, GR = ∂x, S =
Ck(x, t)

A
(4.7)

It can be easily verified that this satisfies the requirements in section (refer to theory).
With the introduction of dissipation flow and effort fp and ep = Sfp the system can be
rewritten as: (

∂tPk(x, t)
fp

)
=

(
0 ∂x
∂x 0

)(
Pk(x, t)

ep

)
(4.8)

The dissipation flow and effort can be interpreted respectively as particle flow rate diveded
by pipe section and as the gradient of pressure in the pipe:

ep =
Qk(x, t)

A
fp = ∂xPk(x, t) (4.9)

4.3 Coupling witht valve model

The pipe model interacts with its environment solely through its boundary. In particular,
there are four boundary variables: pressure and molecular flow rate at the inlet and outlet
of the valve. The model is implemented so that gas flow at the inlet and pressure at the
outlet are input variables to the model, while the other two are output variables.

For the inlet, the molecular flow rate is taken from the valve model, sending back
the pressure. The (partly symbolic) bond graph of Figure 4.1 depicts this part of the
coupling.

Se:vin 1 IC 1 C:k

I

R:bR:Rc

R:Cd 1

Se:Pup

Pipe

q

Figure 4.1: bond graph of the coupled pipe and valve

For the outlet, a very simple model of the vacuum vessel is used: The model integrates
the difference of the flow rate from the pipe outlet and the pumping speed of the pumps in
the vacuum vessel, and based on the volume of the vacuum vessel computes the pressure
in the vacuum vessel which is sent to the pipe model as the pressure at the outlet.
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4.4 Comparison with experimental data

The pipe model was compared with the data from SWIP to validate it. For this sake,
simulations were ran of the coupled valve-pipe system. The same input voltage from the
SWIP tests was sent to the valve, and from the pipe model pressure is measured at the
inlet of the pipe, in the end portion of the pipe, and inside the vacuum vessel. Data for the
pipe model is taken from SWIP datasheets of their simulation setup. Figure 4.2 shows the
pressur at the pipe inlet, for both hydrogen through a high flow valve, and argon through
a low flow valve. The simulation results are not too fare off from the experimental results.
However, looking at Figure 4.3, which depicts pressure towards the end of the pipe, we see
that for the high flow case, the model predicts far more pressure than is present, while in
the low flow case it predicts much less. Finally, Figure 4.4 shows the pressure inside the
vacuum vessel. In this case, the datasheet values for the pumping speed of the vacuum
vessel were not used. Instead, the effective pumping speed was estimated directly from
experimental data. With this approach, a good matching of the simulation model with
the experimental data was obtained.
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Figure 4.2: Pressure at the pipe inlet

insert plots of comparison, talk about datasheet values for pumping speed and why
we change them willy-nilly, talk about negative pressure readings and mismatch of data
with simulation model, difference in timing of transients. Specify model is part of CEA
contract. Talk about options to modify/change model, why only tuning will not help.

In some of the plots of the experimental data, negative values of pressure are present.
This is obviously not physically possible, however it can be attributed to sensor noise
and/or offset that is within the specifications of the sensors.

It is to be noted that while the model does not accurately capture the behaviour
of the system, what is most important is the prediction of the flow at the gas outlet.
Unfortunately, no flow meter was installed at the pipe outlet in the SWIP tests, therefore
no flow measurement at the outlet is available for comparison with the pipe model.
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Figure 4.3: Pressure at the end of the pipe
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Figure 4.4: Pressure in the vacuum vessel

4.5 Alternative pipe models

Two main potential alternatives were identified for the pipe model: the first is to augment
the existing model with a trasport term, thus obtaining an Advection-Diffusion equation.
The second is to change approach entirely, and to instead use a model based on the
isothermal Euler equations.



4.5. ALTERNATIVE PIPE MODELS 39

4.5.1 Advection-Diffusion model

The Advection-Diffusion model is obtained by adding a transport term to the diffusion
equation (4.6):

∂tPk(x, t) = − 1

A
∂x(−Ck(x, t)∂xPk(x, t)) + U∂x(Qk(x, t)) (4.10)

The main idea behind this approach is that diffusion describes gas motion well at slow
speeds and small pressure, while transport becomes more relevant at higher speeds. This
might help make the model more accurate overall.

Advection-Diffusion (or Convection-Diffusion) models can be cast in the PH formu-
lation as shown in [30]. The difference with what presented for the Diffusion model in
section 4.2 is that the differential operator J becomes

J = U∂x (4.11)

4.5.2 Euler model

An alternative, popular in modelling gas networks [7], is to use the isothermal Euler
equations. We consider for a first overview the Euler equations in the case of no friction
and with a horizontal pipe. The model is formulated as:

∂tρ = −∂x(ρv)

∂t(ρv) = −∂x(ρv2 + P )
(4.12)

where:

• ρ is the gas density

• v is the stream velocity

• P is the gas Pressure

• x is the spatial variable aligned with the length of the pipe

• t is time

Pressure and density can be related as follows:

P = c2ρ (4.13)

with c the speed of sound in the gas, thus obtaining:

∂tρ = −∂x(ρv)

∂t(ρv) = −∂x(ρv2 + c2ρ)
(4.14)

We wish to use as state variables ρ and v, therefore we must reformulate the equations.
By differentiating using the chain rule, we obtain:

∂t(ρv) = ρ∂tv + v∂tρ (4.15)

∂x(ρv) = ρ∂xv + v∂xρ (4.16)
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By applying these relations to (4.14) we obtain:

∂tρ = −∂x(ρv)

∂tv = −c2

ρ
∂xρ− v∂xv

(4.17)

We now have a pair of conservation laws. We must identify a suitable Hamiltonian
function for the system. We consider a function of the following form:

H =

∫
L

H(ρ, v)dx (4.18)

where the enrgy density function H is of the form

H =
1

2
ρv2 + ρU(ρ) (4.19)

where the first term represents kinetic energy and the second a general potential energy
function. We wish to write the system in the form:

∂t

(
ρ
v

)
=

(
0 −∂x

−∂x 0

)(
δH
δρ
δH
δv

)
(4.20)

By comparing our desired form of the dynamics with what obtained above we get, by
looking at the time derivative of velocity:

−∂x

(
v2

2
+ U(ρ) + ρU ′(ρ)

)
= −c2

ρ
∂xρ− v∂xv (4.21)

here U ′(ρ) is the derivative of U(ρ) with respect to ρ. By manipulating the left side we
get

v∂xv + (2U ′(ρ) + ρU ′′(ρ))∂xρ = −c2

ρ
∂xρ− v∂xv (4.22)

and thus obtain the ODE

2U ′′(ρ) + ρU ′(ρ) =
c2

ρ
(4.23)

which has as solution
U(ρ) = c2 log(ρ) +

c1
ρ

+ c2 (4.24)

with c1, c2 integrating constants.



Chapter 5

MFC Valve control

The control scheme for the valve is composed of two main components: an observer to
reconstruct the state of the valve, and a controller that uses this information to steer the
system to a desired setpoint or trajectory. Both the observer and the control law have
been implemented in discrete-time in accordance with the requirements for the ITER
Control System. It is to be noted that the controller was developed with the assumption
that the state of the valve be known, thus creating the need for an observer to infer such
information.

5.1 Observer

In order to build the observer the state is extended by adding the flow rate measured by
the flow sensor as it has dynamic behaviour wrt the state of the plunger, and is renamed
ξ = [x Qm]⊤ with Qm the measured flow rate. The chosen structure for the observer is
that of a Luenberger observer with added integral action:

ξ̂k+1 = fd(ξ̂k, uk) + KP (ŷ − y) + KI

k∑
t=0

(ŷ − y) (5.1)

where fd is the discretized valve dynamics, obtained through the Runge-Kutta method
for the plunger dynamics, and through the least-squares method using MATLAB’s c2d()
function to discretize the Bessel filter transfer function for the sensor dynamics.

In Figure 5.1 the behaviour of the observer with white noise on the flow measurement
is displayed for a high flow valve, while in Figure 5.2 the behaviour of the observer when
a force step is applied to the plunger at t = 3s can be seen.

As can be seen in the disturbed case (Fig. 5.2) plunger momentum and flux linkage
estimates do not converge to the real values. This is not a problem as the controller only
needs to ensure that the plunger position reaches its reference to achieve the desired flow
rate.

5.2 Reference Generation

The designed controller focuses on controlling the plunger subsystem. As such, it tracks
references for the state of the plunger as described in subsection 3.1. In order for the
controller to be of use for the control system, it is therefore to be taken into account that
references for the control system are given in terms of flow rate. It is therefore necessary to
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Figure 5.1: observer estimates of valve state
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Figure 5.2: observer estimates of valve state

translate flow references into references for the state of the plunger. This can be achieved
by inverting the flow characteristic of the valve, obtaining the desired plunger position.
The open loop valve dynamics can then be solved to find the required steady state flux
linkage, and for static references the desired momentum will be 0.
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5.3 IDA-PBC controller

Control is developed for the electromechanical subsystem described in subsection 3.1. The
chosen control scheme is IDA-PBC [17], following the Algebraic approach to solving the
matching equation. A quadratic desired energy function is selected:

Hd(q, p, φ) =
γ1
2

(q − q⋆)2 +
p2

2m
+

γ2
2

(φ− φ⋆)2 (5.2)

A general form for the desired interconnection (Jd) and damping (Rd) matrices is consid-
ered at first, along with a trivial option for the left annihilator of g:

Jd(x) =

 0 J1,2 J1,3
−J1,2 0 J2,3
−J1,3 −J2,3 0

 Rd(x) =

r1 0 0
0 r2 0
0 0 r3


g⊥ =

[
1 0 0
0 1 0

] (5.3)

The matching condition thus yields a set of two equations:
p

m
= −r1γ1(q − q⋆) + J12

p

m
+ J13γ2(φ− φ⋆)

− kq +
φ2

2L2(q)

dL

dq
− b

p

m
== −γ1(q − q⋆) − r2

p

m
+ J23γ2(φ− φ⋆)

(5.4)

Solving the matching equation yields the following:

J1,2 = 1, J1,3 = 0, r1 = 0, r2 = b, γ1 = k

J2,3 =
1

γ2(φ− φ⋆)

(
φ2

2L2(q)

dL

dq
− kq∗

)
(5.5)

leaving as freely assignable the parameters γ2 and r3, respectively related to closed loop
magnetic energy storage and electric damping. The control law can be computed as

(g⊤g)−1g⊤
[
(Jd −Rd)

∂Hd

∂x
− (J −R)

∂H

∂x

]
=

= −J2,3
p

m
− r3γ2(φ− φ⋆) +

Rcφ

L(q)

(5.6)

the control effort is singular for the desired equilibrium, in particular for φ = φ⋆. It is to
be noted that in steady state, (one very relevant occasion in which φ = φ⋆), we would also
have p = 0. Solving the closed loop dynamics for steady state conditions, with the added
caveat of considering J23 = 0 when its denominator vanishes (thus giving a well defined
value to the controller in that situation), yields the desired equilibrium. In practice, a
threshold for (φ− φ⋆) under which J2,3 is set to 0 is chosen.

The resilience of the system to steady state disturbances was also tested. A step force
is applied to the valve plunger at t = 3s, and as can be seen in Figs. 5.5 and 5.6 the
system converges back to the desired equilibrium.

The observer and controller are both implemented in Simulink within the iter Plasma
System Simulation Platform. The Simulink models can be seen in Figure 5.8 and 5.7
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Figure 5.3: result of IDA-PBC control on high flow valve with H2
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Figure 5.4: result of IDA-PBC control on high flow valve with Ar
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Figure 5.5: high flow valve with step force disturbance at t = 3s, H2

5.4 Alternative control functions

While the Algebraic approach is what was ultimately used, it is still interesting to explore
the outcomes of the Parametrized and Non-Parametrized approaches to crafting a control
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Figure 5.6: low flow valve with step force disturbance at t = 3s, Ar

Figure 5.7: Controller Simulink model

Figure 5.8: Observer Simulink model

function. The results are presented as an exploratory exercise as they were out of the
scope of this work having achieved a working control scheme, and were therefore not
pursued to completion.

5.4.1 Parametrized IDA

Based on physical intuiton, we set the following form for the desired closed loop Hamil-
tonian:

Hd(q, p, φ) =
1

2m
p2 + χ(q, φ) (5.7)

we consider the same generic Jd, Rd and g⊥ as in (5.3). Imposing the matching condition
we obtain the following:

p

m
= −r1

∂χ

∂q
(q, φ) + J12

p

m
+ J13

∂χ

∂φ
(q, φ)

− kq +
φ2

2L2(q)

dL

dq
− b

p

m
= −J12

∂χ

∂q
(q, φ) − r2

p

m
+ J23

∂χ

∂φ
(q, φ)

(5.8)

from which we get:

J1,2 = 1, J1,3 = 0, r1 = 0, r2 = b (5.9)

− kq +
φ2

2L2(q)

dL

dq
=

∂χ

∂q
(q, φ) + J23

∂χ

∂φ
(q, φ) (5.10)
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Taking J23 ̸= 0, equation (5.10) turns out to be a non-homogeneous transport PDE. The
reader is referred to appendix A for more details on the method used to solve PDEs of
similar structure. We start by rewriting the PDE in a more amenable form:

∂χ

∂q
(q, φ) − J23

∂χ

∂φ
(q, φ) = +kq − φ2

2L2(q)

dL

dq
(5.11)

We employ the change of coordinates:

(q, φ) → (ξ, φ) = (−J23q − φ, φ) (5.12)

and look for a solution in the these coordinates

v(ξ, φ) = χ(q, φ) (5.13)

The solution to the PDE is then:

v(ξ, φ) = − 1

J23

∫ φ

0

ω(ξ, λ)dλ + g(J23q − φ)

ω(ξ, φ) = −k
ξ + φ

J23
− φ

2L2
(

ξ+φ
J23

) dL

d
(

ξ+φ
J23

) (
ξ + φ

J23

) (5.14)

with g(J23q − φ) a function to be assigned. Among the family of solutions, one must
choose one such that the conditions in (2.17) are satisfied.

5.4.2 Non-Parametrized IDA

With the Non-Parametrized approach, we fully fix the desired closed loop structure of
the system. In this case, we may observe that the main obstacle in control is the lack of
coupling between the electromagnetic and mechanical physical domains. For this reason,
we consider as desired interconnection and damping matrices:

Jd =

 0 1 0
−1 0 −α
0 α 0

 Rd = R (5.15)

The desired Hamiltonian remains to be fully determined from the matching condition.
By imposing it, we obtain (much similarly to (2.20), however with nonlinear terms that
make the solution much more cumbersome):

∂Ha

∂q
− α

∂Ha

∂φ
= α

φ

L(q)
(5.16)

as in the Parametrized case we obtain a 2D diffusion PDE with a source term. By changing
once again to characteristic coordinated, we compute a solution in the form

v(ξ, φ) = Ha(q, φ), ξ = −αq + φ (5.17)

the solution once again comes from integration:

v(ξ, φ) =
1

α

∫ φ

0

ω(ξ, λ)dλ + g(−αq + φ)

ω(ξ, φ) = −αλ

A

(
−αq + λ + c

2(−αq + λ) + c

) (5.18)
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The solution of the integral is:∫ φ

0

ω(ξ, λ)dλ =
1

A

[
c(2qα− c)ln(2λ− 2qα + c) + 2λ2 + 2cλ

8A

]φ
λ=0

(5.19)

The function g(−αq + φ) is to be chosen such that the conditions in (2.17) are satisfied.
As can be noted by the last two sections, finding closed form solutions for the control

function is a non-trivial task. The Algebraic approach was chosen as it was the most
straightforward to implement and provided satisfactory results. The other two approaches
can greatly benefit from the use of numerical solvers rather than finding closed form
solutions for the energy function through the matching equation. It can also be noted
that the control law from the Algebraic approach has the benefit of being a generally
simpler function, at least in the considered case.
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Chapter 6

Conclusion

This thesis presents a dynamic model of solenoid-actuated MFC valves intended for use
in the ITER GIS system, as well as a model for the piping connecting the valves to
the vacuum vessel. The models were tested against experimental data to validate them.
The MFC valve model achieved satisfactory results, while the pipe model was found to
lack some accuracy. Other options for pipe modelling were proposed. An observer and
controller for the MFC valve were developed, tested in simulation, and their performance
and robustness to disturbances were successfully validated. The proposed control strategy
demonstrates superior effectiveness compared to a PID controller, particularly in scenarios
where flow sensor limitations are most significant, such as in the case of low-flow valves,
by minimizing overshoot.

The work was carried out exploiting the port-Hamiltonian framework, which was
briefly presented. This framework aided in crafting a multiphysics model of the valves, as
well as a naturally stable controller.

The work presented in this thesis is part of a larger project at ITER, which aims to
develop a density control scheme for the plasma. The models and simluations presented
aid in assessing the functionality of the GIS as part of the density control scheme, as
well as identifying potential challenges and technological constraints in operations of the
tokamak.

The continuation of this project would involve further developement of the gas pipe
model, with particular attention to the effects of gas mixtures within the pipes. From
the control point of view, a control scheme exploiting the use of multiple gasses in the
same pipe, in particular the seeding of impurities through fuelling gasses to expedite their
arrival in the vacuum vessel.
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Appendix A

Solution of transport PDEs

In this appendix, the problem of solving the matching equation coming from IDA-PBC is
tackled, in a way that aims at finding closed-form solutions to the PDEs rising from this
type of problem. What rises from the matching equation can be seen as a transport PDE
with a source term (see sections 5.4.1 and 5.4.2). In the following, a method for solving
2D equations, based on the method of characteristics described in [16, 9].

Given a PDE of the form
aux + buy = f(x, y) (A.1)

we seek for a solution u(x, y) satisfying it. The method of characteristics is based on a
change of variables, putting the problem in characteristic coordinates. Characteristics are
curves along which the homogeneous solution to the PDE are constant. The change of
coordinates is:

(x, y) → (ξ, y) = (bx− ay, y) (A.2)

and we seek for a solution to the equation in characteristic coordinates

v(ξ, y) = u(x, y) (A.3)

By applying the chain rule, we can write the derivatives of v in terms of the derivatives
of u:

∂xu = ∂xv = ∂ξv∂xξ + ∂yv∂xy = b∂ξv

∂yu = ∂yv = ∂ξv∂yξ + ∂yv∂yy = −a∂ξv + ∂yv
(A.4)

We may thus recast the problem in characteristic coordinates, obtaining the following
PDE:

aux + buy = abvξ + bvy − abvξ = f(x, y) (A.5)

which can be simplified to:

vy =
f( ξ+ay

b
, y)

b
(A.6)

where we have recast f(x, y) in terms of the characteristic coordinates. The solution is
then obtained simply by integration:

v(ξ, y) =
1

b

∫ y

0

f(
ξ + as

b
, s)ds + g(ξ) (A.7)

with g(ξ) an arbitrary function of ξ only. The solution in the original coordinates is then
obtained by reverting the change of coordinates:

(ξ, y) → (x, y) =

(
ξ + ay

b
, y

)
(A.8)
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