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Sommario
Il monitoraggio accurato della pressione arteriosa (PA) è fondamentale per la gestione e il con-
trollo della salute cardiovascolare. I metodi tradizionali basati su bracciale, sebbene affidabili,
sono poco pratici per il monitoraggio continuo.
Questo studio esplora un approccio non invasivo per la stima della PA utilizzando segnali di
fotopletismografia (PPG), sfruttando modelli di machine learning (ML) classici, deep learning
(DL) e basati su transformer. Viene eseguita un’analisi comparativa su vari dataset per valutare
l’efficacia di questi modelli.

Questa ricerca valuta metodi basati su features, come SVR, Decision Trees e Random Forests,
insieme ad architetture profonde, inclusi modelli di reti CNN come CNN-LSTM, ResNet, UNet,
ResUNet con attenzione, reti Transformer e Foundation Models.
I modelli sono verificati sul dataset VitalDB, ottenendo per SBP e DBP rispettivamente un MAE
minimo di 5.33 e 3.42 mmHg nel caso di test con calibrazione e di 12.61 e 8.04 mmHg nel caso
dell’approccio senza calibrazione.

I metodi proposti sono testati anche su dataset benchmark più piccoli per verificare come le
prestazioni del modello cambiano quando applicato a dati provenienti da diverse fonti.
Dai risultati, si evince che l’accuratezza dei modelli dipende dalle condizioni sperimentali, tra
cui il setup di misura, il dataset utilizzato e le modalità di acquisizione dei dati, quindi devono
essere considerate le specifiche esigenze applicative e le caratteristiche dei dati quando si sce-
glie l’approccio per la stima della PA.
I risultati indicano che i modelli di DL migliorano l’accuratezza della previsione della PA, in
particolare su grandi dataset, rispetto ai metodi ML tradizionali. Tuttavia, i metodi di ML ot-
tengono risultati migliori su dataset più piccoli, evidenziando le difficoltà di addestrare adegua-
tamente i modelli di DL su dataset di dimensioni ridotte. Inoltre, quando vengono incorporati i
segnali ECG insieme ai PPG, gli errori di previsione della PA si riducono notevolmente, eviden-
ziando la possibilità di aumentare l’accuratezza mediante configurazioni multimodali e approcci
di sensor fusion.
Nonostante i risultati siano promettenti, una soluzione esclusivamente algoritmica basata sul
solo PPG o sulla sua combinazione con l’ECG non sembra garantire un livello di affidabilità
adeguato per applicazioni cliniche o diagnostiche. Di conseguenza, un possibile sviluppo fu-
turo di questo lavoro potrebbe essere l’esplorazione di configurazioni multimodali alternative,
mirate a migliorare sia l’accuratezza che la robustezza della stima.
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Abstract

Accurate blood pressure (BP) monitoring is crucial for cardiovascular health monitoring and
management. Traditional cuff-based methods, while reliable, are impractical for continuous
tracking.
This study explores a non-invasive approach to BP estimation using photoplethysmography
(PPG) signals, leveraging classical machine learning (ML), deep learning (DL), and transformer-
based models. A comprehensive benchmark analysis is performed across various datasets to
assess the efficacy of these models.

The research evaluates feature-based methods, like SVR, Decision Trees and Random Forests,
alongside deep architectures, including CNN-based models such as CNN-LSTM, ResNet, UNet,
ResUNet with attention, Transformer networks and Foundation Models.
The models are tested on VitalDB dataset, obtaining for SBP and DBP respectively a lowest
MAE of 5.33 and 3.42 mmHg in the case of calibration based test sets and 12.61 and 8.04
mmHg in the case of calibration free approach.

Moreover the proposed methods are tested on smaller benchmark datasets, to verify how model
performances change when applied to data of different sources. The results indicate that model
accuracy depends on experimental conditions, including the measurement setup, the dataset
used, and data acquisition methods, therefore specific use cases and data properties must be
considered when choosing the BP estimation approach. The results indicate that DL models
enhance BP prediction accuracy particularly on large datasets, when compared to traditional
feature based ML methods on the same data. Furthermore, traditional ML methods achieve
better results for smaller datasets, denoting the difficulties of adequately training DL on data-
sets of reduced size. Moreover, when incorporating ECG signals together with PPG, the BP
prediction errors are notably reduced, highlighting the possibility of increasing accuracy with
sensor fusion.

Although the results obtained are promising, a purely algorithmic solution based solely on PPG
or its combination with ECG does not appear to provide a sufficient level of reliability for
clinical or diagnostic applications. Consequently, a possible future development of this work
could be the exploration of alternative multimodal configurations aimed at further improving
both the accuracy and robustness of the estimation.
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Chapter 1
Introduction

Blood pressure (BP) is a fundamental physiological parameter essential for assessing cardiovas-
cular health. As a matter of fact, hypertension, or high blood pressure, is a major risk factor for
severe medical conditions such as heart disease, stroke, and kidney failure.
While traditional cuff-based methods such as sphygmomanometers offer reliable measurements,
their intermittent nature and discomfort limit continuous monitoring, while the intra-arterial
catheter method presents risks due to invasive procedures.
These limitations have motivated the exploration of alternative methods for continuous and non-
invasive BP estimation, particularly leveraging the application of novel machine learning and
deep learning methods on physiological signals and wearable technology.

This thesis investigates a non-invasive approach to estimate BP using photoplethysmography
(PPG) signals, evaluating and benchmarking various computational models, including classical
machine learning (ML), deep learning (DL), and transformer-based architectures. In particular,
feature-based methods such as Support Vector Regression (SVR), Decision Trees, and Random
Forests are compared with more sophisticated deep learning models, including CNN-LSTM,
ResNet, UNet, ResUNet with attention, Transformer networks and Foundation Models.

The study’s main contributions include:

• A comprehensive benchmark analysis on several publicly available datasets, such as Vi-
talDB, UCI, Sensors, BCG, and PPGBP, to evaluate the performance and generalisability
of the implemented models.

• Identification of the dependency of model performance on experimental conditions, in-
cluding dataset characteristics and measurement setup, highlighting the necessity of choos-
ing estimation methods aligned with the specific target data and clinical application con-
text.
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1 Introduction

• Demonstration of significant improvements in BP estimation accuracy through calibration-
based approaches, with a minimum achieved mean absolute error (MAE) of 5.33 mmHg
for systolic (SBP) and 3.42 mmHg for diastolic blood pressure (DBP) using a CNN-
LSTM model on the VitalDB dataset.

• Evaluation of calibration-free scenarios, showing that Transformer-based models achieved
the lowest errors (12.61 mmHg SBP, 8.04 mmHg DBP) among the tested approaches.

Results demonstrate that the optimal model for BP estimation significantly depends on dataset
characteristics, with deep learning models generally excelling on large datasets and traditional
machine learning methods showing competitive performance on smaller datasets.

Furthermore, the thesis highlights the importance of calibration and sensor fusion, suggest-
ing that integrating multiple physiological signals and subject-specific calibration substantially
improves BP estimation accuracy, providing practical insights for future wearable device im-
plementations.
Although the results obtained are promising, a purely algorithmic solution based solely on PPG
or its combination with ECG does not appear to provide a sufficient level of reliability for clin-
ical or diagnostic applications. Consequently, a possible future development of this work could
be the exploration of alternative multimodal configurations aimed at further improving both the
accuracy and robustness of the estimation.

The remainder of this thesis is structured as follows:

• Chapter 2 provides background information, describing the traditional BP measurement
methods, physiological signals such as ECG, PPG and arterial blood pressure (ABP) and
the use of artificial intelligence methods for regression tasks.

• Chapter 3 reviews the alternative BP estimation methods that have been developed in the
past, with a focus on PPG-based methods, and gives an overview of the current State of
the Art in BP estimation from PPG signals.

• Chapter 4 outlines the datasets used in this study, including public physiological signal
datasets like MIMIC-III, VitalDB and benchmark datasets. Moreover it describes the
implementation of the experimental methods that were used.

• Chapter 5 discusses the obtained results from the different regression methods and com-
pares them to the State of the Art.

• Chapter 6 concludes this work with suggestions for potential areas for future research.
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Chapter 2
Background

This chapter introduces the blood pressure estimation problem, first by describing the import-
ance of continuous BP monitoring, then by characterising the different traditional methods of
BP measurement. Moreover, the most important physiological information on signals that are
frequently used in innovative BP monitoring techniques is outlined.
Finally, a brief description of some of the most significant machine learning and deep learning
architectures commonly applied to biomedical signals is given.

2.1 Blood pressure monitoring

Blood Pressure (BP) is one of the most relevant vital parameters which are commonly monitored
in ambulatory settings, due to its importance in assessing cardiovascular status and the risk of
associated diseases. Specifically, blood pressure is defined as the force that blood exerts against
the wall of a blood vessel.

Systolic Blood Pressure (SBP) is identified as the pressure value measured at the contraction of
the heart, which corresponds to the maximum force exerted by the blood being pumped into the
circulatory system, while Diastolic Blood Pressure (DBP) is the pressure at the dilation of the
heart.

BP values are measured in millimeters of mercury (mmHg), and based on the results obtained
from the measurements in a clinical setting, the patient’s pressure level classification is defined
as shown in Table 2.1.
BP normally varies throughout the day and according to the activities performed; typically it is
lower during sleep, while it tends to be higher in the morning and evening [13].

3



2 Background

Level Systolic pressure
(mmHg)

Diastolic pressure
(mmHg)

Optimal <120 <80
Normal 120–129 80–84

Normal - high 130–139 85–89
Grade 1 hypertension 140–159 90–99
Grade 2 hypertension 160–179 100–109
Grade 3 hypertension ≥180 ≥110

Isolated systolic hypertension ≥140 ≤90

Table 2.1: Blood pressure level classification

The primary reason why BP measurement is important is due to the risks associated with high
values, which can lead to a diagnosis of hypertension. According to the World Health Organiz-
ation (WHO), an estimated 1.28 billion adults aged 30 to 79 suffers from hypertension; among
them, it is believed that 46% are unaware of their condition, while only 42% are diagnosed and
receive treatment [14].

Hypertension is also commonly referred to as the "silent killer" because it can cause severe
complications such as heart disease, kidney failure, or stroke, often without presenting obvious
symptoms. Therefore, BP monitoring is essential for diagnosing hypertension and assessing
a patient’s health status, allowing for timely preventive or therapeutic measures. Regular BP
checks help detect any abnormalities early, monitor the effectiveness of medication or lifestyle
changes, and reduce the risk of long-term cardiovascular complications.

2.1.1 Blood pressure measurement

Blood pressure measurement techniques can either be invasive or non invasive.
The invasive method is the most accurate and it is considered the gold standard for BP measure-
ment; it involves inserting a cannula directly into an artery, usually the radial or femoral artery.
Using a transducer, the mechanical wave of BP is converted into an electrical signal, which can
be analysed in real time to monitor BP variations. This technique allows for continuous and
precise BP measurement, making it useful in contexts such as Intensive Care Units (ICUs) or
during complex surgical procedures, where constant monitoring of the patient’s BP is essential.
However, since it is an invasive procedure, it carries higher risks, such as infections or vascular
damage, and it requires specialised skills and a suitable hospital environment to be performed
safely.

For these reasons, various non-invasive BP measurement methods are often used, which can
also be applied outside of hospital settings.

4



2 Background

The most widespread instrument for non-invasive and indirect BP measurement is the sphyg-
momanometer, which can be either manual or electronic.

The manual sphygmomanometer is a medical device which consists of the inflatable arm cuff,
a bulb pump for pumping air into the cuff and a pressure dial which measures the air pressure.
As shown in Figure 2.1, the working principle of the sphygmomanometer is based on the tem-
porary interruption of blood flow in the patient’s arm using the cuff, which is inflated to a
pressure higher than that of the blood in the brachial artery and then gradually deflated.
In the case of a manual sphygmomanometer, blood flow is detected using a stethoscope placed
below the cuff. The systolic pressure corresponds to the minimum pressure at which the cuff
is inflated, where no sound is heard. As the cuff deflates, rhythmic sounds known as Korotkoff
sounds can be heard for intermediate pressure values between systolic and diastolic pressure.
As the cuff pressure continues to decrease, the diastolic pressure is identified as the point at
which the sounds disappear, indicating that normal blood flow has resumed in the artery.

Figure 2.1: Diagram of the manual sphygmomanometer use and working principle

An alternative instrument to the manual sphygmomanometer is the electronic sphygmomano-
meter, which allows for automatic BP measurements, so it can also be used in non-ambulatory
settings by patients themselves, since specialised medical personnel is not needed.

This type of instrument does not use the auscultatory method like the manual sphygmomano-
meter, but instead relies on oscillometric measurements. The oscillometric method analyses air
pressure oscillations in the cuff, which are caused by pressure fluctuations in the brachial artery.

5



2 Background

BP values are then determined using proprietary algorithms developed by the medical device
manufacturers [15].

The main disadvantage of these devices is the cuff that the patient must wear to enable the
measurement. This can be bulky and uncomfortable for prolonged use, since normal blood flow
is interrupted. Furthermore, the cuff needs to be inflated and deflated repeatedly to obtain the
measurements, making it unsuitable for continuous BP monitoring.

As a result, several researchers have sought alternative methods for non-invasive estimation of
BP that do not require the use of a cuff and allow for continuous measurement for uninterrupted
monitoring.
Among the various solutions, one method that stands out is the use of physiological signals such
as electrocardiogram (ECG) and photoplethysmogram (PPG).

2.2 Physiological Signals

Physiological signals are signals produced by the body during its functioning, by creating
changes in electrical, mechanical, chemical activity which can be measured. They are paramet-
ers that can give insight into the wellbeing of the patient and allow the medical professionals to
diagnose, monitor and treat different diseases and conditions.

The main physiological signals traditionally measured to assess the status of the cardiovascular
system are the arterial blood pressure signal (ABP) and the electrocardiogram (ECG).

In addition, the photoplethysmogram (PPG) has gained particular attention in recent years due
to its ability to detect blood volume changes within blood vessels, with promising results for
non-invasive heart rate and BP estimation.

2.2.1 ECG Signal

The electrocardiogram (ECG) measures the electrical activity of the heart during the cardiac
cycle. It is performed by placing electrodes on the patient’s body to measure the potential
differences generated by the depolarization and repolarization of the heart muscle.

The importance of the ECG signal lies in the fact that by analysing its waveform, medical per-
sonnel and new automated technologies can non-invasively detect the onset of heart diseases,
without any risks to the patient. ECG measurement in an outpatient setting for diagnostic pur-
poses typically uses multiple electrodes, positioned to obtain 12 leads, which allow a compre-
hensive analysis of the heart’s dipole vector variations. For wearable devices, the measurement
is reduced to a single lead to ensure compactness and user comfort.

6



2 Background

In literature, ECG is often used in conjunction with PPG in studies for BP estimation.
In fact, ECG alone does not provide sufficient information for BP estimation. Evidence suggests
that ECG characteristics are indirectly related to BP, as the morphology of the ECG is influenced
by heart diseases, which, in turn, are associated with high BP values [16].

2.2.2 PPG signal

Photoplethysmography (PPG) is an optical technique that allows the measurement of volumetric
variations of blood circulating in blood vessels.

The PPG signal is gaining increasing relevance in medical research due to its simplicity of
non-invasive measurement and low implementation costs. Unlike other plethysmography tech-
niques, which are based on capacitive, inductive, and piezoelectric properties, photoplethysmo-
graphy relies on optical properties.

PPG measurement is performed using a light source, typically a Light Emitting Diode (LED),
which illuminates the skin tissue, and a photodetector, such as a photodiode, which detects
variations in light absorption or reflection caused by changes in blood volume within the tissues.
PPG can be detected either in transmission or reflection mode, as shown in Figure 2.2.

Figure 2.2: (Left) Reflective and (Right) transmissive operating principles of PPG [1]

In the transmission mode, the light source and the photodiode are placed on opposite sides of
the tissue, for example, on a finger or an earlobe, so that the light emitted by the LED passes
through the tissue and is detected by the photodetector. This mode is particularly effective for
thin, well-vascularised tissues.

In the reflection mode, however, the light source and the photodetector are positioned on the
same side of the skin surface. The light emitted by the LED penetrates the tissue and is par-
tially reflected by blood vessels before being captured by the photodetector. This configuration
is more suitable for body areas where light transmission is impractical, such as the wrist or
forehead.

As shown in Figure 2.3, the PPG signal varies during the cardiac cycle due to changes in light
absorption by tissues, which are determined by variations in blood volume within the vessels.
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Figure 2.3: Working principle of PPG [2]

During the systolic phase of the cardiac cycle, the ejection of blood from the heart leads to an
increase in blood volume within the arterial vessels, resulting in greater light absorption and
a decrease in the intensity of the signal measured by the photodiode. Subsequently, during
diastole, there is less light absorption and a higher detected signal intensity due to venous return
and the reduction of arterial volume.

The PPG signal is continuous and quasi-periodic, as its waveform repeats with each cardiac
cycle, though it may undergo variations due to physiological or environmental factors.
As highlighted in Figure 2.3, the signal is characterised by both a direct current (DC) com-
ponent and an alternating current (AC) component. The DC component is due to the constant
absorption of light by denser and less vascularised tissues, such as adipose tissue, connective
tissue and bones. It represents the baseline component of the signal and may vary slowly over
time due to factors such as respiration, the sympathetic nervous system and skin temperature.
The pulsatile component of the signal is associated with BP variations caused by changes in
blood volume within the vessels with each heartbeat.

An example of a PPG signal is shown in Figure 2.4. As commonly reported in the literature,
the PPG signal typically exhibits a peak corresponding to the systolic phase and a trough during
the diastolic phase, in contrast to what is shown in Figure 2.3. In fact, the signal is usually
inverted using inverting amplifiers to obtain a waveform similar to the ABP signal during the
same cardiac cycle.
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Figure 2.4: Example of PPG signal [3]

Different characteristic points and segments of the PPG signal can be identified:

• Systolic upslope, corresponding to the rapid rise of the PPG signal during the systole,
caused by the increased blood volume in the blood vessels as the heart contracts;

• Systolic peak, given by the highest point of the signal due to the maximum blood volume
in the arteries;

• Dictrotic notch, namely the signal deflection which can occur following the systolic peak,
associated with the closure of the aortic valve;

• Diastolic peak, i.e., the secondary peak which may appear in some cases, signaling the
start of the diastole;

• Diastolic decay, the decline in signal intensity caused by the reduction of blood in the
vessels as the heart relaxes.

Beyond its recent applications in BP estimation, the PPG signal is most frequently used in
medical devices designed for measuring blood oxygen saturation and heart rate.

2.2.3 ABP Signal

The arterial blood pressure (ABP) wave is generated by the displacement of blood following
the contraction of the left ventricle, which propagates through the cardiovascular system as a
pulsatile wave. This propagation depends on the elastic properties of the vascular walls and the
patient’s hemodynamic state.
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As previously described, BP can be measured either invasively or non-invasively. In the first
case, the result is a continuous signal, as shown in Figure 2.5, while in the second case, discrete
BP values are obtained, corresponding to the time intervals during which the measurements
were taken.

Figure 2.5: Example of ABP signal [4]

Analysing the waveform of the continuous ABP signal allows for the assessment of a patient’s
haemodynamic properties in intensive care settings, where continuous monitoring is necessary
due to the risk of hypotensive states, hypertensive crises or potential patient instability, as well
as to evaluate the effects of medications, guide diagnosis and inform therapeutic decisions.

2.3 Machine Learning and Deep Learning

In recent years, Artificial Intelligence (AI) has significantly revolutionised the healthcare field,
providing support to medical professionals in diagnostics, personalised treatments, imaging
and signal analysis [17]. AI, defined as the ability of a computer to mimic human behaviour in
performing tasks, can be divided in the fields of Machine Learning (ML) and Deep Learning
(DL).

ML consists of many algorithms that learn patterns from data in order to carry out a task, such
as classification or regression. The ML approaches can be supervised or unsupervised [18].
In supervised ML, the input data is labelled with the corresponding output class or value, so that
the ML model can measure its accuracy and improve its performance, while in unsupervised
learning, the model learns patterns from unlabelled data, without human intervention.
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Specifically, ML allows models to improve their performance over time as they are exposed to
more data. Some examples of such algorithms are Decision Trees, Support Vector Machines
(SVM), Random Forests, and k-Nearest Neighbors.

Artificial Neural Networks (ANN) are a subset of ML, inspired by biological neural networks
and the way that information propagates between the neurons. An ANN consists of many
nodes, or neurons, which receive input data, process it and pass it to the next neuron in the layer
toward the output. An ANN typically consists of an input layer, one or more hidden layers and
an output layer. If the number of hidden layers is greater than one, then the network can be
defined as a deep neural network.

DL is an advanced branch of ML, which uses deep ANN in order to extract information directly
from raw data in a data-driven approach [19]. In fact, one of the limitations of traditional ML is
the need for preprocessed input data, for example by manual feature extraction. However, with
the advent of DL, raw data can be fed directly into the network, as the model itself is capable of
automatically learning and extracting the most relevant features from the data.

Some of the most frequently used deep neural networks include Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM) and
Transformer models.

2.3.1 Feature extraction

Feature extraction consists in the preprocessing of raw data to extract meaningful information
to reduce the computational load for a ML algorithm [20]. This procedure is useful for some
ML applications, where the direct use of raw data is unfeasible.

Feature extraction is often applied to biomedical signal processing, since important character-
istics of such signals can provide valuable information on an individual’s health status [21].

In general, features extracted from a signal can be:

• Time domain features, which are computed from the signal time series. They can be gen-
eral statistical descriptors of a signal such as mean, variance, standard deviation, skew-
ness, kurtosis, amplitude and signal energy, or ad hoc features for a specific signal, com-
puted by waveform analysis.

• Frequency domain features, that represent signal characteristics with respect to frequency
rather than time, like band energy ratio, spectral entropy, power spectral density and dom-
inant frequency components.

• Time-frequency domain features, that study a signal in both time and frequency domain at
the same time, leveraging wavelet or spectrogram based time-frequency representations.
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After the feature extraction process, the obtained features are normalised and given as inputs to
the classifier or regression ML algorithm. The approach for the use of extracted features and
ML models is summarised in Figure 2.6.

Figure 2.6: Pipeline of ML models applied to features

Regression is a type of supervised learning that has the goal to predict a continuous output
variable based on input features. Various ML models can be used for regression, some are
presented in the following paragraphs.

Multi-Layer Perceptron (MLP)

A Multi-Layer Perceptron (MLP) is one of the most known and used ANN. It can model non-
linear relationships between features and the target variable, so it can be used for regression
problems [22]. The basic architecture of MLP is depicted in Figure 2.7.
The extracted features are fed into the input layer of the MLP, which processes them in its
hidden layers and generates the predicted output; it is a feed-forward NN, which means that
information flows from the inputs to the outputs without loops and the output of each neuron
does not affect the neuron itself.

Figure 2.7: Multi-Layer Perceptron architecture
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Each hidden layer utilises a non-linear activation function that models the action potentials
of biological neurons. This is important because it introduces non-linearity in the model, in
order to obtain the desired output. MLP models are trained in a supervised manner with the
backpropagation algorithm, which means that MLP layers’ weights are iteratively updated by
minimising the error between MLP outputs and the desired outputs indicated by the labeled
data.

Support Vector Regression (SVR)

Support Vector Regression (SVR) is a version of Support Vector Machines (SVM) for regres-
sion that can give continuous output values instead of a discrete class. SVM are supervised
classification algorithms that work by identifying an hyperplane that separates the classes of
data with a maximum margin. SVR works similarly, but instead of finding a hyperplane that
separates classes, it attempts to find a function that approximates the relationship between the
input features and the target variable while maintaining an acceptable error margin [23].

Decision Trees

Decision Trees are a type of predictive models which recursively divide the dataset based on
feature values [24]. The features extracted from the signals are used to make branching de-
cisions in the tree structure. Each internal node of the tree represents a decision based on a
specific feature, while the leaf nodes correspond to the predicted output values. The tree splits
the data at each node by selecting the feature and threshold that result in the most significant re-
duction in variance: the goal is to find a feature and a threshold that best separates the data into
more homogeneous subsets. In classification, this means groups of data points that belong to
the same class, and in regression, it means groups of data points with similar numeric values.

Random Forest

Random forests or random decision forests is an ensemble learning method that works by creat-
ing multiple decision trees during training based on the input data and obtains the final predic-
tion by averaging the outputs of all the trees. This type of approach reduces the decision trees’
risk of overfitting to the data [25].
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2.3.2 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a type of feed-forward ANN which represent one
of the most significant networks in the DL field [26].

CNN’s architecture is based on visual perception and it consists of layers that perform convo-
lution operations, followed by activation functions, pooling layers, and fully connected layers.
An example of CNN architecture is shown in Figure 2.8.

Key Components of CNNs

The basic elements of the CNN architecture are the following:

• Convolutional layers, the core building block of CNNs, which convolves the input tensor
and gives feature maps as output. It is characterised by filter size, stride, which determ-
ines how much the filter moves at each step, and padding, that controls how the input is
extended at the borders.

• Activation Functions, typically applied after a convolutional or fully connected layer,
allowing non-linearity in the model.

• Pooling Layers, which reduce the dimensionality of the data in the network.

• Fully Connected Layers, also known as Dense layers, which are layers where all the
neurons are connected to every neuron in the previous layer and give the final prediction
based on the features extracted in the previous layers.

Figure 2.8: Architecture of a 1D CNN
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Convolution Operation

The convolution operation is the core of a CNN. It involves applying a small filter, or kernel,
over an input matrix to detect spatial or temporal patterns. This operation is used in the CNNs
in order to autonomously extract features from the input signal or image, depending on the
application domain. The discrete convolution operation is shown in Equation 2.1:

s(t) = (x∗w)(t) =
k−1

∑
i=0

x(t + i) ·w(i) (2.1)

where:

• x is the 1D input sequence;
• w is the filter (or kernel) of length k;
• t is the output sequence index;
• s(t) is the convolution output sequence;
• ∗ is the convolution operation symbol.

Activation Functions

Activation functions are non-linear functions that are applied at the output of NN layers to add
non-linearity and complexity to the computed output [27].
Some of the most used activation functions consist in:

• ReLU (Rectified Linear Unit), a fixed-shape activation function that, given an input x,
computes its output as shown in Equation 2.2;

ReLU(x) = max(0,x) (2.2)

• Leaky ReLU, an extension of ReLU defined in Equation 2.3, where α is a small constant;

f (x) =

x, if x > 0

αx, if x ≤ 0
(2.3)

• Sigmoid, a smooth S-shaped function that maps inputs to a range between 0 and 1, as
defined in Equation 2.4;

f (x) =
1

1+ e−x (2.4)

• Tanh (Hyperbolic Tangent), which maps inputs to a range between -1 and 1, defined in
Equation 2.5.

f (x) = tanh(x) =
ex − e−x

ex + e−x (2.5)
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Pooling Layers

Pooling layers are used to reduce the dimensionality of the data in the network, which helps in
reducing the number of parameters and computation and to avoid overfitting [28].
The two most common types of pooling layers are:

• Max pooling, where the maximum value is selected among the inputs;
• Average pooling, which computes the mean of the input values.

Fully Connected Layers

Fully Connected (FC) layers are introduced at the end of the NN, to combine all the features
extracted in the convolutional layers and produce the final output [29]. The output of a FC layer
is given by Equation 2.6:

y = f (Wx+b) (2.6)

where:

• W is the weight matrix of the layer;
• x is the input vector;
• b is the bias vector;
• f is the activation function applied to the output of the linear transformation.

2.3.3 Temporal Convolutional Networks (TCNs)

Temporal Convolutional Networks (TCNs) are built on standard Convolutional Neural Network
(CNN) principles but are specifically designed for sequential data [30].
The key characteristics that distinguish TCNs from regular CNNs are:

• Causal Convolutions, namely convolutions where the output at a certain time step does
not depend on future time steps. Given an input sequence x = [x1,x2, . . . ,xT ], a causal
convolution ensures that at time t, the output yt is only influenced by xt and previous
inputs, preserving the temporal order of the input data.

• Dilated Convolutions, a type of convolution where a dilation factor d is introduced to
expand the receptive field without increasing the number of layers, so the kernel has
gaps and skips some signal samples for one-dimensional data or image pixels for two-
dimensional data. In a dilated convolution, the output at time step t is computed as:

yt =
k−1

∑
i=0

wi · xt−d·i (2.7)

16



2 Background

where wi are the convolution filter weights, k is the filter size, and d determines the
spacing between sampled input values.

• Residual Connections, which consist in shortcut paths that allow data to bypass multiple
layers, in order to mitigate the vanishing gradient problem and facilitate training, as de-
scribed in Equation 2.8:

y = F(x)+ x (2.8)

where F(x) represents the output of the convolutional layers and x is the input to the
residual block.

2.3.4 Long Short-Term Memory (LSTM) Networks

Long Short-Term Memory (LSTM) Networks are a type of Recurrent Neural Networks (RNNs),
specifically designed to address the limitations of traditional RNNs when dealing with long-
term dependencies in sequential data [31].

RNNs are a class of neural networks designed for sequential data. Unlike feedforward neural
networks, RNNs have a hidden state that allows them to maintain memory of previous inputs.
While RNNs work well for short sequences, they struggle with long-range dependencies due to
the vanishing and exploding gradient problem during backpropagation [32].

LSTM networks are a special type of RNN that solve the vanishing gradient problem by intro-
ducing a memory cell and a set of gates that control information flow and use sigmoid and tanh
activation functions.
The gates that are used in an LSTM layer are the forget layer, which selects if the content stored
in the cell is to be discarded or not, the input gate, which decides the information to be stored
in the cell, and the output gate, that selects the information to give as output.
Figure 2.9 depicts the diagram of a LSTM cell.

The operations inside an LSTM cell can be described using the following equations:

ft = σ(Wf xt +U f ht−1 +b f ) (Forget Gate) (2.9)

it = σ(Wixt +Uiht−1 +bi) (Input Gate) (2.10)

C̃t = tanh(Wcxt +Ucht−1 +bc) (Cell Candidate) (2.11)

Ct = ft ⊙Ct−1 + it ⊙C̃t (Cell State Update) (2.12)

ot = σ(Woxt +Uoht−1 +bo) (Output Gate) (2.13)

ht = ot ⊙ tanh(Ct) (Hidden State Update) (2.14)
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Where:

• xt is the input at time step t,
• ht−1 is the hidden state from the previous time step,
• Ct−1 is the previous cell state,
• W∗, U∗, and b∗ are the weight matrices and biases for each gate,
• σ represents the sigmoid activation function,
• tanh represents the hyperbolic tangent activation function,
• ⊙ denotes element-wise multiplication.

Figure 2.9: LSTM cell diagram

2.3.5 Transformers

Transformers are a type of DL model designed for processing sequential data, particularly ex-
celling in natural language processing tasks, which were first presented in the research paper by
Ashish Vaswani et al. called “Attention Is All You Need” [5].
Contrary to recurrent architectures such as LSTMs, transformers leverage self-attention mech-
anisms to process input sequences in parallel, which means that they assign different importance
to various parts of the input sequence, allowing them to focus on the most significant features
dynamically.

18



2 Background

Self-Attention Mechanism

The self-attention mechanism enables the model to weigh the importance of different elements
in the input sequence when making predictions.
Figure 2.10 showcases the Attention and Multi-Head Attention layers diagrams presented in
[5], whose output is computed as described by the Equations 2.15, 2.16 and 2.17.

Figure 2.10: Attention layers [5]

The attention mechanism computes the output as:

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V (2.15)

where Q represents the queries matrix, K the keys matrix, V the values matrix and dk is the
dimension of the keys.
Multi-head attention applies multiple attention heads in parallel:

MultiHead(Q,K,V ) = Concat(head1, . . . ,headh)W O (2.16)

where each attention head is computed as:

headi = Attention(QW Q
i ,KW K

i ,VWV
i ) (2.17)

Key Components of Transformers

The Transformer model, as shown in Figure 2.11, consists of an Encoder-Decoder structure.
Both encoder and decoder blocks are composed by the repetition of N blocks made of multiple
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layers, each incorporating the following key components:

• Multi-Head Self-Attention, the layer that extract features from the data, capturing short
and long-term dependencies;

• Positional Encoding, necessary to add information about the relative position of tokens in
the sequence, since the model does not contain recurrent or convolutional layers;

• Layer Normalisation and Residual Connections. Residual connections are useful to mit-
igate the vanishing gradient problem, while layer normalisation helps stabilise and accel-
erate training.

Figure 2.11: Transformer model architecture [5]
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2.3.6 Foundation Models

Foundation Models (FMs) represent a recent advancement in AI, where a single large-scale
model is pre-trained on massive datasets and fine-tuned for specific tasks [33].
These models, typically based on deep neural networks, have revolutionised AI by enabling
transfer learning across various domains [34].

Foundation models possess the following characteristics:

• FMs are pretrained on large and diverse datasets, in order to allow the model to develop
an understanding of patterns in data across different domains;

• Scalability, since FMs can process and understand large volumes of data more efficiently
than traditional models;

• Generalization across tasks, given by the fact that FMs are trained on a vast quantity of
data, so they can be adapted to different tasks.
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Chapter 3
Non-Invasive Blood Pressure Estimation
Methods

This chapter outlines the alternative cuff-less BP measurement methods that have been designed
in the last decades, with a focus on PPG and ECG based methods. Then, a brief overview of
state-of-the-art methods of BP estimation from the PPG signal is given.

As an alternative to the classical BP measurement methods presented in Chapter 2, several
techniques have been developed over the years for non-invasive BP estimation, some leading to
the creation of commercially available devices. Some of these methodologies include:

• Peñáz’s volume-clamp method [35];

• Ultrasound [36];

• Tonometry [37];

• Bioimpedance [38];

• PPG and ECG signals, which are the focus of this thesis [39, 40].

3.1 Relationship between PPG and Blood Pressure

Although, as presented in Section 2.2, the PPG and ABP signals share similarities in their
waveform, such as the presence of a systolic peak, a dicrotic notch, and a diastolic peak, the
relationship between the PPG signal and BP values is not straightforward.

This difficulty is due to the factors that can influence the PPG waveform, such as patients’
arterial compliance and stiffness, peripheral resistance, and individual differences in arterial
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properties, as well as external factors such as the PPG sensor placement, motion artifacts and
temperature, which add additional variability to the signal [41].

Nevertheless, different methods were implemented for the BP estimation from PPG. This is
due to the fact that researchers have identified patterns and features within the PPG waveform
that correlate with blood pressure changes. Many signal processing techniques and machine
learning models have been explored to extract meaningful information from the PPG signal and
improve BP estimation accuracy.

3.2 PPG and ECG Signals for BP Estimation

Numerous studies have been conducted on the use of physiological signals like PPG and ECG
for continuous BP estimation. These studies can be categorised into three main approaches:

• Using both types of signals to estimate BP from the Pulse Arrival Time (PAT) [6];

• Measuring PPG signals at different body locations to compute the Pulse Transit Time
(PTT) for BP estimation [7];

• Estimating BP from a single PPG signal by extracting features and applying advanced
machine learning and deep learning techniques [42].

3.2.1 Pulse Arrival Time (PAT)

The Pulse Arrival Time (PAT) is defined as the time interval between the R-wave of the ECG
and a fiducial point of the PPG signal, typically the systolic peak, both associated with the same
cardiac cycle, as illustrated in Figure 3.1.

Figure 3.1: Example of PAT measurement [6]
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PAT is the sum of the PTT and the Pre-Ejection Period (PEP), which is defined as the time
interval between the depolarization of the left ventricle and the beginning of ventricular ejection
of blood through the aorta.

PAT has been studied as a surrogate of blood pressure and many studies have demonstrated that
a correlation exists between PAT and BP [43]. PAT consists of both PTT and PEP, meaning it is
influenced not only by arterial stiffness and vascular properties but also by cardiac contractility
and pre-ejection dynamics. As a result, its correlation with blood pressure (BP) is lower than
that of PTT alone. Additionally, PEP is affected by factors such as stress, age, emotions, and
physical exertion, introducing further variability to PAT. Another limitation of PAT-based BP
estimation is the requirement to measure two distinct signals—ECG and PPG—which can be
challenging to implement in wearable devices due to motion artifacts and the necessity for
synchronized signal acquisition. Moreover, PAT can vary significantly between individuals,
necessitating a calibration step in some studies [44].

3.2.2 Pulse Transit Time (PTT)

The Pulse Transit Time (PTT) is measured using two PPG sensors placed at a certain distance
from each other: the sensor closer to the heart is positioned proximally and is also called the
leading sensor, while the one further away is placed distally and is also termed lagging sensor.
The PTT is defined as the time interval between the arrival of the pulsation wave at the proximal
sensor and its arrival at the distal sensor [45].

PTT can be measured from different fiducial points of the two PPG signals measured at the
proximal and distal location, as shown in Figure 3.2.

Figure 3.2: Example of PTT measurement [7]
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PTT, like PAT, is often inversely related to BP and it depends on individual physiological factors.
Since PTT does not depend on PEP, it is often considered a more direct approach to BP estima-
tion than the use of PAT. The drawbacks of using PTT are the need to measure the PPG signal
from two different body locations, so there is the need for two synchronised sensors, addi-
tionally this introduces problems due to motion artifacts, making the detection of PPG fiducial
points more difficult.

3.2.3 Single PPG Signal

In recent years, the use of a single PPG signal for BP estimation has gained increasing attention,
since it bypasses the requirement for ECG electrodes or multiple PPG sensors.

The main distinction of the methods that only use the PPG signal is between methods based on
features extracted from the PPG signal or methods which directly take the PPG signal as input.
The first approach is the classical one, which leverages traditional ML algorithms to model
a relationship between the target output and the input features [46]. The second approach is
the more modern one, which is possible thanks to the faster computing of modern hardware
and advancements in DL techniques; this allows the DL model itself to learn the most relevant
features from the raw input signal, eliminating the need for manual feature extraction [47].

3.3 State of the Art of PPG-based BP estimation

The estimation of blood pressure from PPG signals has been an active area of research for the
last three decades. As explained in the previous section, there are many techniques of PPG-
based BP estimation that have been presented in the last years [48].

The earliest approaches have been centered on PAT and PTT-based estimation, leveraging the
inversely proportional relationship that can be found between those time intervals and the BP
values. Several studies have explored this methodology, including [49, 50, 51].
With the rise of ML techniques, researchers have increasingly applied ML methods to the BP
estimation problem. PPG-based BP estimation methods can be classified in three ways [52]:

• Features to label, where PPG is preprocessed and features are extracted. The prediction
method takes the features as input and gives the discrete SBP and DBP as outputs.

• Signal to label, which means that the algorithm takes the temporal signal as input, since
it extracts its features autonomously, and estimates the discrete SBP and DBP values.

• Signal to signal, where the input is given by the PPG signal samples and the label is the
continuous ABP signal; the output is the reconstructed ABP waveform.
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3.3.1 Features to label estimation

Kurylyak et al. computed several parameters from the PPG pulse waveform, namely the time
periods and intervals in which the pulse reaches certain amplitudes with respect to its peak. The
features used in this study are depicted in Figure 3.3 and were used in a multilayer feed-forward
ANN for the BP regression task [8].

Figure 3.3: PPG features extracted from the pulse waveform [8]

Kachuee et al. computed features derived from the ratio of the peak and dicrotic notch amp-
litudes, the area under the PPG pulse, PAT and heart rate features and make use of different ML
regression algorithms such as Linear Regression (LR), Decision Trees, SVR, AdaBoost and
Random Forest [53].
Yang et al. used features computed from PAT, HR and PPG morphology features such as the
ones shown in Figure 3.3 and features obtained from the second derivative of PPG, called Accel-
eration Plethysmogram (APG). The models used were LR, Random Forest, ANNs, and RNNs
[54].
Maqsood et al. extract PPG time-domain features, such as those used by Kurylyak et al., statist-
ical features and frequency domain-based features. The extracted information is given as input
to traditional ML models, such as LR, Random Forest, AdaBoost, and SVR, and neural models,
consisting in LSTM, Bi-LSTM and Gated Recurrent Unit (GRU) [55].

27



3 Non-Invasive Blood Pressure Estimation Methods

3.3.2 Signal to label estimation

More recent BP estimation methods based on PPG consist in the use of DL models, capable
of extracting the PPG features without the need of manual feature engineering. The signal to
label approach consists in designing an algorithm which takes the temporal PPG signal as input,
extracts its important features autonomously and uses that information to predict the SBP and
DBP values for the corresponding time interval in which the PPG was measured.

Many studies make use of hybrid CNN architectures, for example Shaikh et al. use a CNN-
LSTM architecture where there are two CNN branches for PPG and ECG signal respectively,
which extract features that are concatenated and fed to a Bi-LSTM network followed by fully
connected layers [56]. In the same study, Shaikh et al. perform an ablation study to verify
how each module of the network contributes to the prediction accuracy. They observe that all
the models perform better if also ECG data is given as input, moreover the CNN-LSTM with
Bi-LSTM layers performs better than the simple CNN or LSTM networks.

A similar approach of employing CNN-LSTM networks has been followed by other researchers,
like in [57, 58]. Another example of hybrid CNN model is described in [11], where signal
features are extracted with a CNN and a Transformer branch.

3.3.3 Signal to signal estimation

Furthermore, the signal to signal approach aims to reconstruct the continuous ABP waveform
directly from the PPG signal, providing a more comprehensive representation of BP variations.
Paviglianiti et al. employ the signal to signal approach of ABP recontruction, using WaveNet,
ResNet and LSTM [59]. A similar approach was followed by Cheng et al. [60].
Other signal to signal models include UNet, which is fully convolutional and has an encoder-
decoder architecture [52].

Table 3.1 summarises the results of various studies, including the type of model used, the dataset
on which the model was trained and evaluated, and the best results obtained. The main difficulty
in comparing different BP estimation methods in the literature lies in the fact that different
authors have used different data, both in terms of the dataset source and number of subjects and
the way the data was split for training and testing the model.
As observed in various studies, like [61], in many cases the researchers have not divided the
training and testing set to guarantee that there was no data leakage, which means that the model
performs better on the testing set due to the presence of similar or overlapping subject data
used during training. This lack of proper data splitting can lead to overestimated performance
metrics, making it challenging to assess the true effectiveness of the proposed models.
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Approach Signals Dataset Calibration
Validation Dataset size SBP DBP

Neural Network[8] PPG MIMIC N/A
Subjects: N/A
Segments: 15000
separate PPG heartbeats

MAE: 3.80
STD: 3.46

MAE: 2.21
STD: 2.09

Adaboost [53] PPG, ECG MIMIC-II
No
10-Fold

Subjects: 942
Segments: 3663

MAE: 11.17
STD: 10.09

MAE: 5.35
STD: 6.14

SVR [52] PPG Sensors
No
5-Fold

Subjects: 1195
Segments: 11102

MAE: 15.60
STD: 19.68

MAE: 7.50
STD: 9.81

AdaBoost [52] PPG BCG
No
5-Fold

Subjects: 40
Segments: 3063

MAE: 11.42
STD: 16.44

MAE: 8.06
STD: 10.73

LightGBM [52] PPG PPGBP
No
5-Fold

Subjects: 218
Segments: 619

MAE: 13.06
STD: 16.65

MAE: 8.16
STD: 10.30

ResNet [52] PPG UCI
No
Hold-One-Out

Subjects: N/A
Segments: 410596

MAE: 16.59
STD: 20.65

MAE: 8.30
STD: 10.84

CNN-LSTM [56] PPG PulseDB
Yes
Train/Test split

Train Subjects: 3027
Segments: 1024321
Test Subjects: 2506
Segments: 100240

MAE: 10.74
STD: 14.45

MAE: 6.87
STD: 9.27

CNN-LSTM [56] PPG, ECG PulseDB
Yes
Train/Test split

Train Subjects: 3027
Segments: 1024321
Test Subjects: 2506
Segments: 100240

MAE: 5.16
STD: 7.73

MAE: 3.24
STD: 5.14

PCTN [11] PPG MIMIC-III

No
Train/Test split
with subject
holdout

Subjects: 808
Segments: N/A

MAE: 4.44
STD: 5.98

MAE: 2.36
STD: 3.22

XGBoost [61] PPG MIMIC-III
Yes
Train/Test split

Subjects: 633
Segments: N/A

MAE: 2.85
STD: 4.31

MAE: 1.32
STD: 2.28

XGBoost [61] PPG MIMIC-III
No
Train/Test split

Subjects: 633
Segments: N/A

MAE: 16.18
STD: 20.77

MAE: 8.45
STD: 11.60

ResNet+LSTM [59] PPG MIMIC
Yes
Train/Test split

Subjects: 121
Segments: N/A

MAE: 7.12
RMSE: 11.21

MAE: 3.53
RMSE: 5.03

ResNet+LSTM [59] PPG, ECG MIMIC
Yes
Train/Test split

Subjects: 121
Segments: N/A

MAE: 4.12
RMSE: 5.68

MAE: 2.23
RMSE: 2.99

ResNet+LSTM [59] PPG MIMIC
No
Leave-One-Out

Subjects: 121
Segments: N/A

MAE: 23.59
RMSE: 27.64

MAE: 10.75
RMSE: 12.34

ResNet+LSTM [59] PPG, ECG MIMIC
No
Leave-One-Out

Subjects: 121
Segments: N/A

MAE: 20.37
RMSE: 23.07

MAE: 9.55
RMSE: 10.85

Table 3.1: Summary of the SoA

3.3.4 Standards for wearable cuffless blood pressure measuring devices

Given the emerging and promising alternatives to cuff-based BP estimation, different associ-
ations established standards of evaluation to ensure the accuracy, reliability, and clinical accept-
ance of these proposed methods.
Key standards include those set by the IEEE (Institute of Electrical and Electronics Engineers),
BHS (British Hypertension Society), and AAMI (Association for the Advancement of Med-
ical Instrumentation). BHS and AAMI standards in particular have been frequently used by
researchers to demonstrate the effectiveness and accuracy of their models in estimating BP.
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IEEE Standard (IEEE Std 1708)

IEEE Std 1708 provides a comprehensive framework for the objective performance evaluation
of wearable cuffless BP measuring devices. The standard is applicable to all types of wearable
BP devices, including epidermal and unobtrusive devices. It specifies procedures for testing
accuracy, repeatability and robustness of cuffless devices and includes guidelines for acceptable
error margins in SBP and DBP readings [62].

British Hypertension Society (BHS) Standard

The BHS protocol provides a grading system based on the accuracy of the devices in measuring
SBP and DBP. Devices are graded from A (highest accuracy) to D (lowest accuracy) based on
the percentage of readings within specified error ranges as defined in Table 3.2 [63, 64].

Grade Error ≤ 5 mmHg Error ≤ 10 mmHg Error ≤ 15 mmHg
A 60% 85% 95%
B 50% 75% 90%
C 40% 65% 85%

Table 3.2: BHS standard for BP measuring devices

Association for the Advancement of Medical Instrumentation (AAMI) Standard

The AAMI standard is widely recognised for the validation of BP measuring devices, including
cuffless wearable devices. According to the AAMI protocol, a device is considered accurate if
the mean difference between the device measurements and a reference standard is within ±5
mmHg, with a standard deviation of less than 8 mmHg for both SBP and DBP. The evaluation
process involves testing the device on a minimum of 85 subjects, ensuring a diverse range of
age, gender, and blood pressure levels to reflect a general population [65].
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Chapter 4
Materials and Methods

This chapter describes the material and methods used to carry out this thesis’ work.
Firstly, the publicly available datasets containing the required signals are described. Then,
an overview of the selected benchmark models is presented. Finally, the training and testing
approach that was followed for evaluating the models’ performances is described, along with
the metrics that were utilised to compare the perfomances.

4.1 Public Physiological Signals Datasets

A search was conducted to identify publicly available datasets containing PPG signals and BP
measurements, to develop a model to estimate the BP values from the associated PPG signals.

Dataset Name Signals Subjects Duration Sampling
Frequency

MIMIC-III PPG, ECG, BP, others > 30000 Variable 125 Hz
VitalDB PPG, ECG, BP, others 6388 Variable 500 Hz
PulseDB
(MIMIC-III + VitalDB) PPG, ECG, BP, others 5361 10 seconds 125 Hz

Sensors (MIMIC-III) PPG, BP 1196 15 seconds 125 Hz
UCI (MIMIC-II) PPG, ECG, BP N/A Variable 125 Hz
Bed-Based BCG
Dataset BCG, ECG, PPG, BP 40 Variable 1 kHz

PPGBP PPG, BP 219 2.1 seconds 125 Hz
Benchmark datasets
(Sensors, UCI,
BCG, PPGBP)

PPG, BP Variable 5 or 2.1 seconds 125 Hz

Table 4.1: Characteristics of public datasets containing PPG and blood pressure signals
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The selected datasets needed to have sufficiently long recordings of PPG signals and corres-
ponding BP values measured at the same time instants, either in the form of a continuous ABP
signal or as discrete values of systolic and diastolic pressure.

Table 4.1 summarises the main characteristics of the datasets that were found during the search.
The table provides information on the measured signals, the number of subjects involved in the
recordings, the duration of the acquired signals, and the sampling frequency.
Given the presented datasets, the following observations can be made:

• The MIMIC-III dataset (Multi-parameter Intelligent Monitoring for Intensive Care) and
its previous versions contain signals acquired from Intensive Care Unit (ICU) patients at
the Beth Israel Deaconess Medical Center in Boston. Since not all physiological signals
were acquired for every patient, filtering is necessary to select subjects for whom both BP
and PPG signals are available. Moreover, as stated in [66, 67, 68], the measured signals
are not synchronised, since there could be delays for example due to signal acquisition
and filtering. This means that MIMIC-III is not a suitable dataset for PAT-based BP
estimation.

• The VitalDB database collects signals recorded at Seoul National University Hospital
from patients undergoing routine or emergency non-cardiac surgeries. Similarly to the
previous case, record filtering is required since not all signals are available for every
patient [69].

• The PulseDB dataset compiles signals selected from the MIMIC-III and VitalDB data-
bases by keeping the cleaned records containing both PPG, ECG and BP values, in order
to establish a benchmark for BP estimation based on physiological signals. The obtained
PulseDB dataset contains records of 2423 subjects from the MIMIC dataset and 2938
subjects from the VitalDB dataset. Specifically, the Authors provide a training subset of
signals and BP labels along with different testing subsets to allow reproducible testing of
DL models applied to BP estimation [70]. Moreover, a subset with only the VitalDB sig-
nals is provided by the Authors, since the MIMIC-III does not guarantee inter-waveform
alignment of PPG and ECG signals, for testing models that use both signals.

• The Sensors and UCI datasets are respectively subsets of MIMIC-III and MIMIC-II and
they are described in [71] and [72] and made available by the Authors.

• The Bed-Based Ballistocardiography Dataset collects ballistocardiograms (BCG) and
time-aligned ECG, PPG and BP waveforms measured from 40 different subjects at Kan-
sas State University [73].
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• The PPGBP dataset provides three measurements of 2.1 seconds of PPG signal and dis-
crete BP readings obtained from 219 subjects with different cardiovascular diseases at
Guilin People’s Hospital [74].

• The benchmark datasets Sensors, UCI, BCG and PPGBP are presented in [52]. They
are taken from datasets available online and described above, which are cleaned and pro-
cessed in order to create a benchmark for BP estimation methods evaluation.

In particular, the MIMIC-III database and its previous version, MIMIC-II, are the most fre-
quently used datasets in the literature, primarily due to the large number of available records.

For this study, the VitalDB subset from the PulseDB dataset along with the benchmark datasets
(Sensors, UCI, BCG, and PPGBP) were selected to train and test different models for BP es-
timation from PPG. The selection was based on the availability of synchronised PPG and BP
values, the quality of the preprocessed data, and the standardised validation strategies provided
in these datasets.

4.1.1 VitalDB Subset of PulseDB

The Authors of the PulseDB dataset provide the signal segments, scripts and information needed
to reproduce the subject-balanced training set and testing sets. However after trying to repro-
duce the dataset using Python, it was observed that in the files provided not all the needed
segments are available, therefore the final dataset that was reproduced has a smaller number of
records than the one described in the article and a different BP distribution. Nevertheless, the
Authors provide the VitalDB subsets ready to download, so it was chosen to proceed with the
VitalDB subset of PulseDB, in order to have a balanced training set and testing sets.

The Authors provide the training subset, named VitalDB Train, which contains 465480 seg-
ments recorded from 1293 subjects. Additionally, three testing subsets are made available.
The first one is a calibration based subset (VitalDB CalBased), since the subjects whose signals
are included are the same subjects of the training subset, which means that during training the
model can leverage information from these subjects to improve performance. This subset is
useful for evaluating how well the model can generalise to seen subjects.
The second subset (VitalDB CalFree) is the calibration free subset, consisting in 57600 seg-
ments from unseen subjects in the training.
Finally, the third testing subset, Vital AAMI Test, consists in a smaller number of records of
unseen subjects during training, whose BP labels distribution respects the AAMI standard de-
scribed in Subsection 3.3.4.

The available training and testing sets obtained from VitalDB are described with their statistical
characteristics in Table 4.2.
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Each record contains a segment of PPG, ECG and continuous ABP signals of 10 seconds dur-
ation sampled at 125 Hz, so 1250 samples per signal, and the discrete BP values for the 10
seconds interval.

Subset
Name

Dataset
size

Demography
(% Male & Age) SBP (mmHg) DBP (mmHg)

VitalDB Train
Subjects: 1293

Segments: 465480
57.70%

58.98 ± 15.03

Min: 38.51
Max: 286.58
Mean: 115.48

SD: 18.93

Min: 16.23
Max: 276.93
Mean: 62.92

SD: 12.08

VitalDB CalBased
Subjects: 1293

Segments: 51720
57.70%

58.98 ± 15.03

Min: 46.55
Max: 248.48
Mean: 115.50

SD: 18.85

Min: 22.46
Max: 241.00
Mean: 62.94

SD: 12.07

VitalDB CalFree
Subjects: 144

Segments: 57600
59.72%

58.17 ± 15.43

Min: 46.48
Max: 211.96
Mean: 115.43

SD: 18.72

Min: 22.98
Max: 193.57
Mean: 63.02

SD: 11.87

VitalDB AAMI Test
Subjects: 116
Segments: 666

59.16%
57.27 ± 13.50

Min: 72.82
Max: 214.23
Mean: 134.67

SD: 30.90

Min: 37.72
Max: 131.79
Mean: 75.39

SD: 18.22

Table 4.2: Characteristics of VitalDB subsets of the PulseDB database

4.1.2 Benchmark Datasets

The benchmark datasets denominated Sensors, UCI, BCG and PPG are compiled by González
et al. in order to provide a baseline benchmark for PPG-based BP estimation using ML and DL
methods [52]. The Authors observe that in the studies presented in literature, many researchers
use arbitrary subsets taken from available public datasets of physiological signals, often without
providing clear instructions to reproduce their result. Moreover many studies use the records
from subjects present both in the training set and the testing set, which causes information leak-
age and overestimates the model’s real performance on unseen data.
Therefore, they endeavoured to create a benchmark with four preprocessed datasets with valid-
ation strategy, obtained from open datasets, in order to allow an easier model comparison.
The four datasets are the preprocessed version of the Sensors, UCI, Bed-Based Ballistocardi-
ography and PPGBP datasets described in Table 4.1. The modified datasets contain records
which have been selected according to signal quality and preprocessed with the same procedure
for all the datasets.
Sensors, BCG and PPGBP datasets are divided by the Authors in 5 folds in order to carry out a
5-Fold Cross-Validation, while the UCI dataset, which is the biggest datasets among the selected
datasets, is split in 3 sets for a Hold-One-Out strategy.
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The statistical characteristics of each of the four datasets are presented in Table 4.3.

Dataset
Name

Dataset
size

Demography
(% Male & Age)

Segment
length (s) SBP (mmHg) DBP (mmHg)

Sensors
Subjects: 1195

Segments: 11102
59.8%

57.1 ± 14.2 5

Min: 81.84
Max: 198.66
Mean: 134.36

SD: 21.78

Min: 50.07
Max: 116.64
Mean: 65.37

SD: 10.51

UCI
Subjects: N/A

Segments: 410596 N/A 5

Min: 64.45
Max: 199.66
Mean: 131.57

SD: 11.16

Min: 50.00
Max: 102.18
Mean: 66.79

SD: 10.48

BCG
Subjects: 40

Segments: 3063
44.5%

34.2 ± 14.5 5

Min: 71.75
Max: 191.07
Mean: 120.99

SD: 15.29

Min: 44.47
Max: 100.67
Mean: 67.23

SD: 9.30

PPGBP
Subjects: 218
Segments: 619

46.9%
56.9 ± 15.8 2.1

Min: 80.00
Max: 182.00
Mean: 128.02

SD: 20.50

Min: 42.00
Max: 107.00
Mean: 71.91

SD: 11.20

Table 4.3: Characteristics of the benchmark datasets

4.2 Blood Pressure Estimation Algorithms

As previously explained, different methods of BP estimation from the single PPG signal have
been developed in the past decades. The aim of this work is to provide a comprehensive analysis
of these methods, evaluating their effectiveness and potential limitations.
Following the literature review, different methods were tested on the previously described data-
sets. The first approach leverages ML algorithms which take features extracted from the PPG
signal as input, then, various DL models were implemented, in order to compare the perform-
ances of traditional ML algorithms and DL models for BP estimation.
Each model that was implemented is described in the following paragraphs.

4.2.1 Feature Extraction

Building on the PPG features discussed in Section 3.3, various characteristics of the PPG signal
have been extracted and utilised for regression with different ML algorithms. These features,
summarised in Table 4.4, comprise of PPG waveform features and frequency-domain features.
They were derived from the PPG signal through custom Python functions developed for feature
extraction.
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Time-domain features

The Python code that was developed extracts several time-domain features that describe the
morphology and time intervals of the PPG waveform. These features include cardiac peri-
ods (determined from PPG systolic peak-to-peak intervals), peak amplitudes, systolic upstroke
times, and diastolic times.
Additionally, the implemented function identifies and analyses fiducial points such as the Di-
crotic Notch (DN), a and b peaks from the second derivative of the PPG signal, and computes
ratios like the b/a ratio. Augmentation Index (AI) and the Large Artery Stiffness Index (LASI)
are also derived from the relationship between peaks and the DN.
Figure 4.1 displays a PPG signal taken from the BCG dataset, with identified onsets, peaks, and
the second derivative of the signal, highlighting key fiducial points such as the a and b peaks.

Figure 4.1: PPG waveform with detected peaks, onsets, and its second derivative showing fidu-
cial points a and b

Moreover, the areas under specific parts of the PPG waveform, such as between the peak and
DN, and from the DN to the next onset, are computed to capture information about the signal.
Figure 4.2 shows the location of the DN within the PPG waveform. The position of this notch,
along with its relationship to surrounding peaks, is used to compute the Augmentation Index and
Large Artery Stiffness Index (LASI) and the areas under defined portions of the PPG waveform.
Other features of the PPG waveform are analysed by dividing the pulses into intervals before

and after peaks at various percentages of the maximum amplitude (25%, 33%, 50%, 66%, and
75%). For each of these intervals, features like Systolic Width (SW), Diastolic Width (DW),
total width, and the ratio between diastolic and systolic width are calculated.
Figure 4.3 illustrates the division of the PPG waveform into different intervals at 25%, 33%,
50%, 66%, and 75% of the maximum amplitude.
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Figure 4.2: PPG waveform with the identification of the dicrotic notch

These metrics provide insights into the shape of the PPG waveform and the dynamics of blood
volume changes, as described in Subsection 3.3.1.

Figure 4.3: PPG waveform with intervals marked at 25%, 33%, 50%, 66%, and 75% of the
maximum amplitude

Frequency-domain features

In addition to time-domain characteristics, the code extracts frequency-domain features using
power spectral analysis. By applying the Welch method, the Power Spectral Density (PSD) of
individual PPG beats is computed.
Features derived from the PSD include total power, power in very low frequency (VLF), low
frequency (LF), and high frequency (HF) bands, as well as the LF/HF ratio.
Dominant frequency, spectral entropy, and spectral centroid are also extracted to characterise
the frequency distribution and complexity of the PPG signal.

37



4 Materials and Methods

Furthermore, wavelet analysis is performed using discrete wavelet transforms with Daubechies
wavelets (db4) to extract energy levels at different decomposition levels. These wavelet energy
features capture localised changes and transients in the PPG signal.

Feature name Feature description
Cardiac period Time interval between two subsequent systolic peaks
Peak amplitude Amplitude of the systolic peaks
Systolic time Time interval between the PPG onset and systolic peak
Diastolic time Time interval between the systolic peak and the onset

b/a ratio
Ratio between peak and minimum and maximum
of the second derivative of PPG

Systolic Width
Interval between samples at 25%, 33%, 50%, 66%
and 75% of the peak and the peak

Diastolic Width
Interval between the peak and samples at 25%, 33%,
50%, 66% and 75% of the peak

Total Width
Interval between samples at 25%, 33%, 50%, 66%
and 75% before and after the systolic peak

Width ratio
Ratio of the diastolic width and corresponding
systolic width at 25%, 33%, 50%, 66% and 75%

Augmentation index Ratio between the systolic peak and the first DN after it
LASI (Large Artery Stiffness Index) Interval between the systolic peak and the first DN after it
Peak-DN Area Area under the curve between the peak and the DN
DN-Onset Area Area under the curve between the DN and the onset
Mean Average amplitude of the PPG signal
STD Measure of the variability in the PPG signal within a beat
Skewness Asymmetry of the PPG waveform distribution
Kurtosis Degree of peakedness of the PPG waveform
Dominant frequency Frequency component with the highest power

Power in frequency bands
Total power and power in the bands: 0.003 to 0.04 Hz,
0.04 to 0.15 Hz and 0.15 to 0.4 Hz

Spectral entropy Measure of the spectral complexity of the PPG beat
Wavelet Energy Energy of the wavelet coefficients

Table 4.4: PPG features summary

BP regression from PPG features

Four different ML models have been tested on PPG features for BP estimation, consisting in:

• MLP, implemented with 3 Linear layers using PyTorch. The architecure includes an input
layer with input size matching the number of features, two hidden layers and an output
layer that predicts the SBP and DBP values. The activation function used between layers
is ReLU.
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• Decision Trees, implemented with the DecisionTreeRegressor class of the scikit-learn
Python library.

• Random Forest, implemented with the RandomForestRegressor class available in scikit-
learn.

• SVR, implemented like the previous models, with scikit-learn. Two separate SVR models
are used: one for SBP prediction and one for DBP prediction.

4.2.2 Neural Networks with Temporal Signal Input

Starting from the models discussed in the literature review presented in Section 3.3, various
DL models which take the temporal PPG signal as input have been implemented, using Python
and the PyTorch framework. The performance of these models has then been evaluated and
compared as described in Chapter 5.

Convolutional Neural Network

The first model that was implemented consists in a simple 1D CNN, with three convolutional
layers followed by a max pooling layer. The convolutional layers use a kernel size of 5 and
progressively increase the number of output channels from 64 to 256, with padding to maintain
the temporal dimension of the input signal. The pooling layers reduce the size of the feature
maps by half after each convolution. After the convolutional and pooling layers, the output is
flattened and given as input to three fully connected layers, which reduce the feature vector to
predict the systolic and diastolic BP values. ReLU (Rectified Linear Unit) activation functions
are applied after each convolutional layer and fully connected layer, to introduce non-linearity
in the model.

Temporal Convolutional Network: TEMPONet

Another model that was applied to the BP estimation problem is TEMPONet, which is a TCN
that was designed for biosignal based classification and is presented in [75]. For the scope
of this work, TEMPONet was adapted to implement the regression of the two SBP and DBP
values.
TEMPONet consists in three blocks, each composed of 2 temporal convolutional layers with
kernel size 3 and a convolutional layer of kernel size 5 followed by an average pooling with
kernel size 2. After each layer, the ReLU activation function and Batch-Normalisation are
applied. In each block, the dilation rate progressively increases to 2, 4 and 8, while the stride
follows the same pattern, set to 1, 2, and 4, respectively. Similar to a CNN, the output is then
flattened and passed through fully connected layers to predict SBP and DBP.
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CNN-LSTM Model

Another model that was implemented for this work is a hybrid CNN-LSTM model. Such model
was built following the model described in [9], which is shown in Figure 4.4. In this work, since
some datasets contain only the PPG signal without the synchronised ECG, also a model with
only the CNN branch for PPG was implemented.

Figure 4.4: Hybrid CNN-LSTM network [9]

The implemented CNN-LSTM model consists of a convolutional block followed by an LSTM
block and a fully connected layers block. The convolutional block consists of five convolutional
layers with increasing channel sizes (from 64 to 256) and kernel sizes (respectively 3, 5, 7, 9,
11); the last three layers use a stride of 2 to reduce dimensionality. After each layer, Batch-
Normalisation and ReLU are applied.
The LSTM block consists of a Bi-LSTM layer, which processes the output of the convolutional
block and is followed by four linear layers that process the output BP predictions.

ResNet

ResNet is a deep CNN, which was initially developed for image recognition [76]. It incorporates
residual connections, consisting in the addition of the input tensor to the output of some layers,
making it easier for gradients to flow backward during training.
The ResNet-18 model that was used has the following architecture:

• Initial convolution layer, followed by batch normalisation and ReLU activation function;
• Residual blocks, lumped in four blocks, with an increasing number of output channels;
• Average pooling, that reduces the feature maps;
• Fully connected layer, which computed the output.
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The residual building block of ResNet is shown in Figure 4.5.

Figure 4.5: Residual block of the ResNet NN

The implementation of this NN was done by using the PyTorch torchvision library and adapting
the ResNet model to accept 1D input tensors instead of images. By default, ResNet-18 expects
3-channel (RGB) images as input, however the 2D convolutional layers of the original ResNet
were replaced with convolutional layers that accept 1D data, to capture temporal patterns in the
sequential PPG data effectively.

UNet

UNet is a CNN that was designed for biomedical image segmentation [10]. It is a fully convolu-
tional network, as it does not make use of fully connected layers, and it has an encoder-decoder
structure, as depicted in Figure 4.6.

Similarly to the ResNet, also UNet can be adapted to 1D data; the 1D UNet is a signal-to-signal
NN, which means that it can reconstruct a continuous output signal.

The architecture begins with an initial convolutional layer that extracts low-level features. The
encoder follows, progressively reducing the temporal resolution while increasing the number of
channels through stacked convolutional layers and downsampling operations. Each stage in the
encoder consists of multiple convolutions followed by a downsampling step.
At the network’s deepest point, the bottleneck captures high-level feature representations with
additional convolutional layers. The decoder then reverses this process, using upsampling oper-
ations to gradually restore the original sequence resolution. Skip connections from correspond-
ing encoder stages ensure fine-grained details are preserved.
The final output layer maps the reconstructed feature maps to the desired output shape.

For this work, the UNet was implemented using the 1D UNet presented in the Modern Deep
Network Toolkits for PyTorch (MDNC) framework [77], modifying it by adding a MLP re-
gressor at the output, which extrapolates the SBP and DBP predicted values.
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Figure 4.6: Original UNet architecture [10]

Paralleled CNN and Transformer network

Another model that was implemented is a Paralleled CNN and Transformer network (PCTN),
which was presented in [11].

The PCTN is a hybrid DL architecture designed for BP estimation from PPG signals. This
model integrates CNNs for local feature extraction and a transformer branch for capturing global
dependencies, followed by a feature fusion module and a regression head to predict SBP and
DPB values.

As depicted in Figure 4.7, the network begins with a Stem Module, which processes the in-
put PPG segments using a 1D convolutional layer followed by batch normalisation and ReLU
activation. This module extracts shallow features and reduces the input’s temporal dimension.
The extracted features are then passed through two parallel branches: a CNN Branch and a
Transformer Branch. The CNN branch consists of a convolutional block that applies multiple
convolutional layers, which use a combination of under-projection, spatial, and up-projection
convolutions with residual connections to refine local features. Meanwhile, the Transformer
Branch processes the extracted features by embedding the input into smaller patches, adding po-
sitional embeddings, and passing them through multiple Transformer Blocks, each containing
multi-head self-attention mechanisms and feed-forward layers to capture long-range dependen-
cies in the signal.
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Figure 4.7: Paralleled CNN and Transformer network [11]

After feature extraction, the outputs from both branches are fused using CBAM (Convolutional
Block Attention Module), which applies both spatial and channel attention mechanisms. Spatial
attention enhances relevant regions of the signal, while channel attention emphasises important
feature dimensions, ensuring a robust fusion of local and global representations. The fused
features are then passed through a Regressor Module, which applies global average pooling
followed by two fully connected layers with ReLU activations. The final output consists of the
predicted systolic and diastolic BP values.

Transformer network

The next model that was implemented was a Transformer network, which was inspired by the
PCTN but without the parallel CNN path. It consists in a Stem Module, a Transformer Branch
and a Regressor module.

The Stem Module is a shallow feature extractor that applies a 1D convolution, batch normal-
isation, and ReLU activation to extract meaningful local features from the raw PPG input. This
module reduces the dimensionality and prepares the data for further processing.

Next, the Transformer Branch models long-range dependencies within the extracted features. It
utilises patch embeddings and a series of transformer blocks. Each transformer block contains
multi-head self-attention, layer normalisation, and an MLP with residual connections.

After passing through the transformer, the extracted features are fed into the Regressor, a fully
connected module that maps the high-dimensional features to the final BP predictions.
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ResUNet + Attention

A more complex model that was implemented follows the architecture described in [12] and
shown in Figure 4.8. It consists in the integration of a Residual UNet and self-attention mech-
anism for feature extraction.

Figure 4.8: ResUNet + Attention network [12]
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The model leverages a residual UNet, which combines the strengths of UNet for preserving
high-level semantic features with residual connections that mitigate the vanishing gradient prob-
lem. The architecture is composed of a three-layer encoder, a bridge layer, and a three-layer
decoder. Additionally, a self-attention mechanism is integrated in the skip connections of each
encoder block before concatenation with the corresponding decoder features. This allows the
network to focus on the most relevant spatial and temporal features by computing attention
scores from query, key, and value matrices, following the formulation of the transformer archi-
tecture.

The model was implemented with PyTorch Lightning and processes 1D physiological signals,
expands them into 2D with an initial convolutional layer of 64 channels, and applies a series
of convolutional layers with 128, 256, and 512 channels, each followed by batch normalization
and ReLU activation for hierarchical feature extraction.
The encoder gradually reduces spatial dimensions with convolutional blocks, each with kernel
size 3 and stride 2, employing residual connections to retain information. A bridge block with
512 channels refines representations before passing them to the decoder.
The decoder progressively reconstructs the input structure using transposed convolutions with
512, 256, 128, and 64 channels, integrating skip connections from the corresponding encoder
layers.

Self-attention layers with 2, 4 and 8 heads are incorporated after each encoding block to cap-
ture long-range dependencies. The final output is generated through a convolutional layer that
aggregates the global features, producing two values representing SBP and DBP.

Foundation Model

The final model explored in this study was a transformer Foundation Model designed for time-
series analysis, known as Moment, as described in [78]. FMs have gained significant attention
in various domains due to their ability to learn generalisable representations from large data-
sets, which can then be fine-tuned for specific tasks. Given their success in natural language
processing and computer vision, this research aimed to investigate whether such models could
be effectively applied to BP estimation using PPG signals.
In this study, the pretrained Moment model was employed and adapted for regression by incor-
porating a Regression Head into its architecture. This modification allowed the model to predict
SBP and DBP values directly from PPG-derived features.
The rationale behind using a FM was to leverage its ability to capture complex temporal depend-
encies and feature representations in time-series data, potentially improving prediction accuracy
compared to conventional ML models.
The evaluation of this approach involved fine-tuning the pretrained model on a dataset of PPG
signals paired with reference BP measurements.
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4.3 Training and Testing

This section presents the approach that was followed to train and test the various prediction
models, including the data normalisation approach, the implementation of the models and the
computational resources utilised.

4.3.1 Data normalisation

The PPG signals obtained from the datasets were normalised with a min-max approach, as
shown in Equation 4.1, so that the all the signals are scaled between 0 and 1. The minimum and
maximum of the PPG signal are computed across the training sets and the same values are used
on the testing sets, to ensure consistent scaling and prevent data leakage between training and
testing phases. This guarantees that the normalisation process does not incorporate information
from the test set into the training phase, maintaining the integrity and generalisability of the
model’s performance evaluation.

The min-max normalisation is defined as:

PPGnorm =
PPG−PPGmin

PPGmax −PPGmin
(4.1)

Where:

• PPGnorm is the normalised signal value;
• PPG is the original signal value;
• PPGmin and PPGmax are the minimum and maximum values of the signal, respectively.

The same min-max normalization approach was applied to the extracted features for feature-
based ML models, ensuring consistent data scaling across different inputs.
The normalisation for features was defined as:

Featurenorm =
Feature−Featuremin

Featuremax −Featuremin
(4.2)

Where:

• Featurenorm represents the normalised feature value.
• Feature is the original extracted feature value.
• Featuremin and Featuremax are the minimum and maximum values of the feature.
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4.3.2 Model implementation and training

The DL models were implemented in Python, with the PyTorch library and PyTorch Lightning
framework to allow for faster training of the models using multi-GPU training.

Each DL model has been trained and tested with the same approach, using:

• Adam optimiser with a starting learning rate of 0.0001;
• Tensorboard logger to monitor the training metrics;
• Maximum 150 epochs with an early stopping strategy and 10 epochs patience, to prevent

overfitting to the training data.

Given the substantial size of some of the datasets that were used, particularly the VitalDB
subsets, it was necessary to leverage high-performance computing resources. Therefore, the
Leonardo supercomputer was utilised to efficiently train the models. In fact, Leonardo is a
pre-exascale supercomputer hosted by CINECA and built in the Bologna Technopole, which is
one of the most powerful computing infrastructures in Europe [79]. As part of the EuroHPC
initiative, Leonardo provides cutting-edge computational capabilities, enabling researchers to
tackle complex scientific and industrial challenges.

In particular, Leonardo’s system consists of two main compute blade architectures [80]:

• X2135 GPU Blade, equipped with NVIDIA Ampere A100-64 accelerators, available
through the Leonardo Booster partition.

• X2140 CPU-only Blade, based on Intel Sapphire Rapids processors, available through
the Leonardo Data Centric General Purpose (DCGP) partition, suitable for CPU-intensive
computations.

In this work, Leonardo’s capabilities were exploited, thanks to its high-speed storage system
that facilitated the handling of large datasets, ensuring efficient data loading and processing,
and the computational power to handle large-scale data processing and model training.
Specifically, the GPU Booster partition was employed, since it provided the necessary computa-
tional resources to efficiently train DL models, as GPUs are particularly well-suited for this task
due to their parallel processing capabilities, which significantly accelerate matrix operations and
backpropagation, making them ideal for handling the intensive computations required.
The Python-based training pipeline was executed on Leonardo’s GPU nodes, enabling accel-
erated computations and reducing training times significantly. This approach allowed for the
training of DL models with optimised parallel processing, leveraging the PyTorch Lightning
framework for multi-GPU training.
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The use of supercomputing resources was particularly crucial for training Transformer-based
architectures, which require extensive memory and computational power due to their self-
attention mechanisms and number of parameters.

To efficiently manage computational workloads, the SLURM scheduler is used to submit and
queue jobs on the Leonardo system, which runs on Red Hat Enterprise Linux 8.6.
Due to the shared nature of the system, jobs were scheduled based on resource availability,
ensuring fair access to the compute nodes. The jobs were executed in Batch Mode, which
required preparing shell scripts specifying the operations to be performed once resources were
allocated.

4.4 Evaluation Metrics

Different metrics can be used for the evaluation of the model performance for regression tasks.

For this work, Mean Squared Error (MSE) was used for the training loss function. MSE is
defined by Equation 4.3, where N is the number of predicted values, yi is the actual value and
ŷi is the predicted value.

MSE measures the mean of the squared differences between the predicted values and the labels,
it is more sensitive to large errors, therefore it is more sensitive to outliers.

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (4.3)

To compare the model’s performance to the ones presented in the literature review, the Mean
Absolute Error (MAE) metric was computed during the testing, since it is one of the most
popular metrics for this problem. The reason why it is used frequently is because the error
units are the same of the target label units, in this case the blood pressure unit mmHg so it is
more easily interpreted. Additionally, since it is computed as the average of the absolute error
between real and predicted values as shown in Equation 4.4, the MAE values increase linearly
with the errors.
Since the two distinct value of systolic and diastolic blood pressure are computed from the
models, the MAE equation is specialised for the two separate values as indicated in Equations
4.5 and 4.6 , considering that it is interesting to verify which quantity is better predicted.

MAE =
1
N

N

∑
i=1

|yi − ŷi| (4.4)

MAESBP =
1
N

N

∑
i=1

|ySBP,i − ŷSBP,i| (4.5)
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MAEDBP =
1
N

N

∑
i=1

|yDBP,i − ŷDBP,i| (4.6)

Another interesting metric to compute is the Standard Deviation of Errors (STD). which gives
and indication on the variability of the errors between the real and predicted values.

The general STD equation is shown in Equation 4.7, where ei is the difference between each
label and predicted value and ē is the Mean Error (ME), computed like in Equation 4.8.
Moreover, Equations 4.9 and 4.10 show how the STD is computed separately for SBP and DBP
values.

ST D =

√
1
N

N

∑
i=1

(ei − ē)2 (4.7)

ME = ē =
1
N

N

∑
i=1

ei (4.8)

ST DSBP =

√
1
N

N

∑
i=1

(eSBP,i − ēSBP)2 (4.9)

ST DDBP =

√
1
N

N

∑
i=1

(eDBP,i − ēDBP)2 (4.10)
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Chapter 5
Results

This chapter presents the BP estimation results on the test datasets, obtained from the models
described in Section 4.2. The performance of each model is evaluated on a range of metrics
presented in Section 4.4.

5.1 Comparison Between Models

Each model was trained and tested on VitalDB, UCI, Sensors, BCG and PPGBP datasets.
In the case of VitalDB, the subsets derived from PulseDB were used. Each model was trained
on the VitalDB Train Subset and tested on each of the three testing subsets, which are described
in Subsection 4.1.1.
Considering UCI, Sensors, BCG and PPGBP datasets, which are available from the benchmark
described in [52], a different approach was used. As these datasets are provided already divided
in 5 folds in the case of Sensors, BCG and PPGBP, and 3 sets in the case of UCI, each model
was trained leaving one set out and testing on the remaining fold. Then, the metrics obtained
from the different tests have been averaged.
For each testing set, MAE, ME and STD were computed for SBP and DBP separately, in order
to assess the model’s performances in estimating the two BP values.
Furthermore, to verify the accuracy of the predictions and verify how closely the model is able
to correctly predict the BP, different plots were generated from the test data.
The first plot consists in a scatter plot which maps the real and predicted values of SBP and
DBP, it includes also the ideal prediction line to allow a visual assessment of the accuracy and
variance in the predictions.
The second type of plot consists in a histogram, which overlays the real distribution of BP and
the predicted one, in order to verify the presence of possible bias in the prediction or imbalance
in the distribution.
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The third plot is another histogram, which represents the error distribution. This helps identify
if the errors are centered around zero or if the model is biased, additionally it can help identify if
the model consistently overpredicts or underpredicts the BP values. Moreover, it can also help
visualise the variance in the errors.

5.1.1 VitalDB results

Table 5.1 summarises the performances of the different methods on the VitalDB subsets.

Model VitalDB_CalBased VitalDB_CalFree VitalDB_AAMI
MAE ME STD MAE ME STD MAE ME STD

Feat. with MLP Sys: 12.78 -0.55 16.24 13.09 -0.36 16.53 20.87 -10.30 24.68
Dias: 8.35 0.10 10.62 8.32 0.12 10.50 13.21 -8.32 14.89

Feat. with Decision Tree Sys: 14.38 0.02 20.08 18.02 -1.20 23.04 25.03 -11.15 30.28
Dias: 9.32 -0.10 13.04 11.63 -0.57 14.75 15.86 -9.02 18.61

Feat. with Random Forest Sys: 10.14 0.56 13.56 13.01 -1.34 12.46 20.71 -11.03 16.48
Dias: 6.60 0.20 8.85 8.30 0.31 7.00 13.22 -7.99 10.48

Feat. with SVR Sys: 18.52 -3.78 22.77 19.49 -7.89 23.74 29.01 -12.87 30.00
Dias: 16.96 -2.34 20.77 17.41 -3.04 21.39 24.01 -9.12 26.47

CNN Sys: 12.21 -0.1 13.77 13.45 -0.42 12.46 19.50 -10.80 22.51
Dias: 7.98 0.01 8.46 8.44 -0.29 7.00 12.72 -7.55 13.69

CNN with ECG Sys: 9.84 -0.60 12.13 13.94 -1.07 13.03 20.14 -12.6 22.8
Dias: 6.51 -0.25 7.70 9.08 -0.68 7.91 13.46 -8.63 14.63

CNN-LSTM Sys: 8.88 0.67 11.06 13.77 0.42 12.61 18.78 -8.06 22.8
Dias: 5.89 0.73 6.98 8.63 0.53 7.27 11.55 -5.67 13.01

CNN-LSTM with ECG Sys: 5.33 -0.20 7.29 13.27 -1.44 11.67 17.43 -8.02 20.10
Dias: 3.42 -0.08 4.69 8.76 -0.24 7.25 11.48 -5.53 12.95

TCN Sys: 10.21 -0.31 12.02 13.33 -1.54 12.05 18.76 -9.06 21.88
Dias: 6.83 -0.22 7.64 8.43 -0.42 7.08 12.08 -6.59 13.19

TCN with ECG Sys: 7.92 -1.25 9.97 13.21 -2.60 11.86 18.29 -10.54 20.82
Dias: 5.49 -0.56 6.63 8.88 1.22 7.42 12.25 -7.57 12.80

Transformer Sys: 11.84 0.71 12.75 12.61 0.38 10.93 18.34 -9.7 21.59
Dias: 7.78 0.10 7.89 8.04 -0.27 6.19 12.04 -7.40 12.79

Transformer with ECG Sys: 8.88 -0.40 10.94 13.52 -1.58 12.13 18.97 -11.55 21.59
Dias: 5.98 0.19 7.09 8.83 -0.40 7.42 12.79 -7.42 14.01

PCTN Sys: 9.66 0.06 11.84 12.65 -2.11 10.75 20.46 -14.06 22.50
Dias: 6.56 -0.01 7.58 8.15 -1.85 6.05 13.41 -9.79 13.28

ResNet Sys: 9.67 -2.34 11.47 13.71 -2.41 12.19 19.06 -11.23 21.64
Dias: 6.30 -0.78 7.31 8.55 -0.85 7.15 12.16 -7.24 12.93

UNet Sys: 12.73 0.64 13.44 12.82 0.21 11.18 21.31 -13.96 23.39
Dias: 8.42 -0.09 8.34 8.31 -0.42 6.23 13.77 -9.98 14.45

ResUNet + Attention Sys: 8.29 -0.05 9.86 13.72 -0.35 12.31 18.42 -8.65 21.02
Dias: 5.65 -0.18 6.22 8.63 -0.47 7.12 11.89 -6.28 12.77

ResUNet + Attention
with ECG Sys: 5.60 0.28 7.36 13.69 -1.05 11.34 17.12 -7.90 20.54

Dias: 3.80 0.08 4.88 8.91 -0.67 7.00 11.78 -6.04 13.15
Moment Sys: 10.47 0.03 12.90 14.20 0.07 13.59 19.81 -10.17 23.29

Dias: 6.99 0.03 7.99 8.70 -0.10 7.65 12.64 -7.09 13.81

Table 5.1: Model performances on the VitalDB subsets
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Considering the results across the different test sets, for all the various implemented models,
it can be observed that generally the resulting prediction error is significantly lower in the cal-
ibration based testing, compared to the two calibration free testing cases. This suggests that
calibration on subject data significantly enhances BP estimation accuracy.
Model performance varies significantly across the three subsets of the VitalDB dataset, in par-
ticular no single model consistently outperforms the others across all testing sets.

Considering the Calibration Based subset, the best overall performance for both SBP and DBP
was achieved with the ResUNet + Attention model, with a MAE of respectively 8.29 mmHg
and 5.65 mmHg without the ECG data and 5.33 mmHg and 3.42 mmHg with the ECG data,
using the CNN-LSTM model.
Among feature-based methods, Random Forest demonstrated the lowest MAE (10.14 for SBP
and 6.60 for DBP). However, SVR exhibited the worst performance, with a MAE of 18.52
(SBP) and 16.96 (DBP). This trend remains consistent across all three subsets of VitalDB,
demonstrating limited generalizability of SVR for BP estimation over large datasets.

The best model for the Calibration Free subset was the Transformer model, with a resulting
MAE of 12.61 mmHg for SBP and 8.04 mmHg for DBP.

Finally, in the case of the AAMI subset, the Transformer model achived the lowest MAE for
SBP for data without the ECG, with 18.24 mmHg, while the ResUNet + Attention architecture
achieved 17.12 mmHg when ECG was included. In the case of DBP, the best performing
model was CNN-LSTM both with and without ECG, with MAE of respectively 11.48 and
11.55 mmHg.

As a whole, models utilising additional ECG data (e.g., CNN-LSTM with ECG, ResUNet +
Attention with ECG) tend to outperform their counterparts that rely solely on PPG signals,
especially considering the calibration based approach. This improvement is particularly no-
ticeable in SBP estimation, which is more difficult to estimate compared to DBP, since it can
be observed that generally the prediction results in much higher errors for SBP compared to
DBP.

The CNN-LSTM and ResUNet + Attention architectures consistently achieve lower errors com-
pared to simpler CNN and UNet models, highlighting the benefits of combining convolutional
and sequential processing capabilities. Transformer-based models also demonstrated strong
performance, particularly in the calibration-free setting.

Regarding the performances of the FM Moment model, it can be observed that the increase in
model complexity and number of parameters did not correspond to a reduction of the prediction
errors, as the model does not perform significantly better than other DL models.
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Despite being fine-tuned, leveraging the pretrained knowledge alone was not sufficient to achieve
superior performance in BP estimation. This suggests that while pretrained FMs may offer gen-
eralisable features, their adaptation to specific physiological signal tasks like BP estimation
requires further optimisation beyond standard fine-tuning.

In Figure 5.1 the plots of the predictions from the Transformer model on Vital AAMI Test
are shown. They represent the best results on that test subset with the use of the single PPG.
Whereas in Figure 5.2 are shown the results on the same subset obtained from the ResUNet +
Attention model, which includes the ECG and gives the best SBP estimation among the models
that jointly use PPG and ECG.

It can be observed that in the case of the model that includes the ECG, the distribution of the
predicted SBP and DBP values matches better with the real distribution. One reason why the
distributions do not match perfectly, particularly in the range of 115-130 mmHg for SBP, could
be due to the fact that the Vital AAMI Test subset follows the AAMI Standard, which requires a
certain proportion of hypertensive and hypotensive BP measurements; the resulting distribution
does not necessarily match the training set distribution, so the model has difficulty in correctly
predicting some BP values. Specifically, the model is less accurate in the prediction of highest
and lowest SBP and DBP values, which can be seen since some of the points representing the
predictions in Figure 5.2 stay below or above the ideal prediction line and the distributions of
the predicted SBP and DBP values has a smaller width compared to the real distribution of
values in the test set.

Moreover, in Figure 5.3 are shown the prediction results for the VitalDB Calibration Free subset
using the Transformer model, which gave the lowest prediction metrics on this subset.
It can be observed that the same problem of predicting the extreme SBP and DBP values in
the distribution persists, even with this different test set. This could be due in part to the fact
that these labels are not sufficiently represented in the training set, so the models don’t learn to
generalise well for extreme BP values.

Additionally, Figure 5.4 shows the prediction results for the VitalDB Calibration Based subset
obtained with the CNN-LSTM model without ECG. In this case, we can see that the predic-
tions follow more closely the ideal distribution compared to the Calibration Free case, so using
calibration and therefore having the same subjects in both the training and testing data can
significantly lower the prediction errors.

Finally, Figure 5.5 displays the results obtained using the CNN-LSTM model with the ECG
signal on the same test subset. It can be noted that adding the ECG signal remarkably improves
the prediction, both in terms of the metrics reported in Table 5.1 both in the distribution of the
predicted values.
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Figure 5.1: Prediction results on Vital AAMI Test subset using the Transformer-based model
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Figure 5.2: Results on Vital AAMI Test subset using the ResUNet + Attention with ECG
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Figure 5.3: Results on Vital CalFree subset with the Transformer model
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Figure 5.4: Results on Vital CalBased subset with the CNN-LSTM model with only the PPG
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Figure 5.5: Results on Vital CalBased subset with the CNN-LSTM model with ECG
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Model size

The size of each DL model, in terms of both the number of parameters and memory footprint, is
a crucial factor in evaluating computational efficiency and feasibility for real-world deployment.
Table 5.2 summarises these aspects for the different models analysed in this work.

Model Number of Parameters Size in Memory (MB)
CNN 5.3 M 21.304
CNN-LSTM 3.7 M 14.700
TCN 406 K 1.626
Transformer 1.5 M 5.934
PCTN 1.9 M 7.521
ResNet 11.2 M 44.685
UNet 80.6 K 0.322
ResUNet + Attention 6.7 M 26.608
Moment 35.5 M 141.877

Table 5.2: Number of parameters and memory size for the different DL models

Among the tested architectures, ResNet and Moment exhibit the highest number of parameters,
with 11.2 M and 35.5 M, respectively, leading to a considerable memory footprint.
Notably, some of the best-performing models (CNN-LSTM, Transformer, and ResUNet + At-
tention) achieve a balanced trade-off between model size and effectiveness.
CNN-LSTM, with 3.7 M parameters and a memory footprint of 14.7 MB, demonstrates a strong
capacity for sequence modeling while maintaining moderate computational requirements.
The Transformer architecture, known for its efficiency in handling long-range dependencies,
has a relatively compact size of 1.5 M parameters and requires only 5.9 MB in memory.
ResUNet + Attention, despite its more complex structure incorporating attention mechanisms,
remains computationally manageable with 6.7 M parameters and 26.6 MB in memory, benefit-
ing from its ability to focus on relevant features while maintaining efficiency.

5.1.2 Benchmark datasets results

In the case of the smaller benchmark datasets (UCI, Sensors, BCG and PPGBP), it was observed
that the deep models used are too complex to be adequately trained due to the limited size of
these datasets. The insufficient amount of training data leads to overfitting and prevents the
models from effectively learning the underlying patterns necessary for accurate BP estimation.
To address this issue, a transfer learning approach was adopted: the models were first pre-trained
on the larger VitalDB Training set and subsequently these pre-trained models were fine-tuned
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on the smaller datasets. This allows the models to exploit the information acquired from the
larger dataset and employ it with the smaller datasets.

Table 5.3 summarises the performances of the different methods on the benchmark datasets.

Model UCI Sensors BCG PPGBP
MAE ME STD MAE ME STD MAE ME STD MAE ME STD

Feat. with MLP Sys: 17.81 -0.03 21.80 16.62 2.09 20.57 14.22 0.15 16.10 19.88 -1.47 25.47
Dias: 8.28 0.11 10.39 7.98 0.83 10.30 9.04 0.01 10.41 10.82 -0.68 13.65

Feat. with Decision Tree Sys: 23.87 2.49 29.84 22.98 0.40 28.82 14.62 -1.04 16.96 19.44 0.53 24.80
Dias: 11.45 1.42 15.37 11.01 0.34 14.37 10.29 1.39 11.47 11.83 -0.25 15.02

Feat. with Random Forest Sys: 18.18 2.46 22.25 16.28 0.35 20.30 13.16 -0.93 15.83 14.20 0.23 18.39
Dias: 8.42 1.32 10.70 7.99 0.19 10.14 8.35 0.42 9.28 8.81 -0-06 11.06

Feat. with SVR Sys: 17.21 -0.32 21.22 16.00 -0.45 20.05 14.20 -0.20 16.72 13.84 -0.75 18.28
Dias: 7.58 -1.56 10.12 7.82 -1.59 10.16 8.36 0.47 8.71 8.95 -1.16 11.17

CNN Sys: 17.19 0.73 7.27 16.33 0.09 18.72 12.18 0.81 9.49 16.17 0.66 19.31
Dias: 7.97 0.89 3.72 8.00 0.05 9.16 8.29 0.39 5.90 8.85 -0.02 10.57

CNN-LSTM Sys: 18.69 2.64 9.35 18.42 0.42 21.49 14.63 -0.37 9.57 14.56 -0.44 18.20
Dias: 7.99 -0.03 4.28 8.22 -0.21 8.22 9.37 0.59 5.48 8.45 -0.29 10.30

TCN Sys: 17.28 0.79 8.41 17.39 -1.09 20.44 13.94 -3.85 10.61 23.59 -17.13 23.39
Dias: 8.01 0.59 4.34 8.31 -0.58 9.77 10.04 -2.77 6.61 14.35 -11.65 13.19

Transformer Sys: 17.65 1.55 8.15 16.78 1.45 19.18 13.31 0.14 9.62 15.15 1.86 18.26
Dias: 8.06 1.03 4.11 8.16 0.40 9.35 8.93 0.42 5.61 8.83 0.31 10.67

PCTN Sys: 18.78 0.85 10.71 16.87 -0.89 19.19 14.28 2.41 9.72 15.68 -1.53 19.29
Dias: 8.33 -0.02 4.95 8.19 0.09 9.34 8.57 1.64 5.59 9.11 -1.43 11.14

ResNet Sys: 19.82 3.76 10.93 18.01 -0.43 21.00 15.05 -0.56 9.91 19.88 -12.57 21.38
Dias: 9.07 2.12 5.43 8.44 0.06 10.01 9.65 0.04 6.02 12.00 -8.69 11.89

UNet Sys: 17.48 2.05 7.91 16.17 -0.57 18.39 12.49 0.36 8.92 15.79 0.25 19.29
Dias: 7.89 0.72 4.08 7.93 -0.31 9.09 8.60 0.39 5.08 8.89 -0.09 10.75

ResUNet + Attention Sys: 18.86 3.25 10.08 16.44 -0.87 18.95 14.09 0.45 8.92 15.28 -0.96 19.08
Dias: 9.01 1.41 5.12 8.08 0.02 9.53 8.57 0.65 5.67 9.03 -1.12 11.16

Moment Sys: 19.03 2.93 11.42 17.23 -0.19 20.18 13.19 -0.05 9.48 14.42 0.21 17.65
Dias: 8.92 1.18 5.73 8.26 -0.13 9.76 7.77 0.16 5.48 8.84 -0.59 10.80

Table 5.3: Model performances on the UCI, Sensors, BCG, and PPGBP datasets

From the results, it can be observed that the best performing model depends on the dataset and
that there is not a model that consistently outperforms the others across all datasets.

For the UCI dataset, the best model was CNN for SBP prediction, with the lowest MAE of
17.19 mmHg, and SVR for DBP prediction, with a MAE of 7.58 mmHg.

For the Sensors dataset, the best performing model was SVR, with the lowest MAE of 16.00
and 7.82 mmHg respectively per SBP and DBP. This suggests that traditional machine learning
methods may still have an advantage, especially when data volume is limited.

For the BCG dataset, CNN provided the best performance for SBP, with a MAE of 12.18 mmHg,
while the Transformer model performed best for DBP, with a MAE of 8.29 mmHg.

In the PPGBP dataset, SVR achieved the lowest MAE for SBP, with MAE 13.84 mmHg, while
CNN-LSTM performed best for DBP, with MAE 8.45 mmHg.

The signficantly lower errors obtained from BCG and PPGBP datasets could be due to the
characteristics of the dataset such as the BP distribution; moreover, the quality of the signal
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could be higher, since the acquisitions of the original datasets were not carried out in an ICU
environment, contrary to the Sensors and UCI datasets.

Overall, it can be observed that no single model surpasses all the others, so data characteristics
have an impact on model performances.
Moreover, traditional ML models, like SVR, remain competitive, particularly in the case of
small datasets, where DL models risk overfitting and low generalisability.
Additionally, in some cases SBP and DBP values are better predicted from different models,
this could mean that the underlying patterns in the signal which are influenced by SBP and
DBP are not entirely the same, therefore the two values require different modelling approaches
to obtain a better performance.
Similarly to what was observed with VitalDB, also for the benchmark datasets the FM Moment
did not provide significant accuracy in terms of predictions, therefore simpler approaches like
traditional ML methods yield better results, particularly in smaller datasets.

5.2 Comparison with State-of-the-Art

As mentioned in Section 3.3, comparing the results from different authors regarding BP estim-
ation from PPG signals can be difficult.
Firstly, different studies use different starting datasets; this issue was addressed in this work by
using benchmark datasets, which made the comparison easier.
Furthermore, several authors use different metrics, so in this case, the most commonly used
metrics in BP regression problems, namely MAE, ME, and STD, were computed in order to
compare the different methods.

Comparing the results presented in this chapter to those presented in Section 3.3, it can be noted
that some models achieve the SoA results, when considering the calibration free approach.
In particular, considering the VitalDB dataset, the results obtained with the best performing
model (CNN-LSTM) are comparable to the results presented by the study that inspired the use
of this network, [56]. Shaikh et al. use a calibration based approach, by using the PulseDB
Calibration Based testing subset as the testing set, while the other subsets (PulseDB Training,
Calibration Free and AAMI Testing sets) were merged and used as the training set.
In this work it was decided to use the VitalDB sets as provided by their Authors, therefore the
comparison can be made considering the performances on VitalDB CalBased testing set with
the VitalDB Training set as a training set, to maintain the calibration based approach. In this
thesis, it was achieved 5.33 and 3.42 mmHg MAE for SBP and DBP respectively, while Shaikh
et al. obained 5.16 and 3.24 mmHg MAE, in the case of the model that includes the ECG.
Moreover, the model implemented in this work outperforms its original counterpart when using
only the PPG signal, in fact 8.88 and 5.89 mmHg for SBP and DBP were obtained compared to
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10.74 and 6.87 mmHg. The differences in the results could be due to the different testing and
training sets that were used, even if PulseDB contains the VitalDB data that was used in this
work.

Considering the benchmark datasets, the achieved results were close to the SoA set by the study
that provided them [52], achieving slightly higher errors.

Considering the UCI dataset, for SBP prediction, the CNN model achieved an MAE of 17.19
mmHg, which is slightly higher than the 16.59 mmHg reported for ResNet in González et al.
For DBP prediction, SVR performed better than ResNet, achieving a lower MAE (7.58 mmHg
vs. 8.30 mmHg).

Regarding the Sensors dataset, SVR was the best-performing model, achieving an MAE of
16.00 mmHg for SBP and 7.82 mmHg for DBP. These values are close to the 15.60 mmHg
and 7.50 mmHg reported by González et al. with the same method, but slightly worse. This
suggests that traditional ML models still hold an advantage in this dataset and González et al.

probably achieved a better result due to the different signal features that they used and possibly
the fine-tuning of SVR parameters.

For the BCG dataset, for SBP prediction, CNN achieved an MAE of 12.18 mmHg, which is
slightly worse than the 11.42 mmHg achieved by AdaBoost in González et al. However, CNN
had a much lower standard deviation, indicating more consistent predictions.
For DBP prediction, the Transformer model performed similarly to AdaBoost (8.29 mmHg vs.
8.06 mmHg), but again with a much lower standard deviation.

Finally, for PPGBP dataset, in the case of SBP prediction SVR achieved an MAE of 13.84
mmHg, which is slightly worse than the 13.06 mmHg obtained with LightGBM in González
et al.; similarly, for DBP prediction, CNN-LSTM had a slightly higher MAE than LightGBM
(8.45 mmHg vs. 8.16 mmHg).

Despite these results, which reach other studies’ levels of accuracy in predicting SBP and DBP,
if compared to other SoA performances, which present much lower estimation errors, the mod-
els described in this work appear to perform worse. However, this discrepancy is largely due to
differences in the datasets used and on the validation approach that was employed.
As a matter of fact, many studies either use proprietary datasets or a selection of data extracted
from publicly available datasets, though they do not disclose the data selection procedure that
was followed, limiting the reproducibility of their results.
Moreover, many studies employ a calibration-based approach, where data acquired from the
same subjects is included in both the training and testing sets. This is typically done by ran-
domly splitting the initial dataset in training, validation and testing subsets without ensuring
that subjects do not overlap across these partitions. As a result, these studies often do not valid-
ate their models on entirely unseen subjects, making it difficult to assess the true generalisation

63



5 Results

performance of different models.
To address this limitation, the model evaluation presented above is based on reproducible bench-
mark datasets, ensuring a fair and standardised comparison of various BP estimation tech-
niques.

Considering the evaluation standards described in Subsection 3.3.4, it is clear that solely the
proposed models are still not adequate to be used in medical BP measuring devices, since they
do not achieve sufficiently accurate predictions for clinical and diagnostic applications.
However, this could be solved in the future by improving the model architectures, incorporat-
ing more diverse and representative datasets, and refining feature extraction techniques. Future
work should also focus on exploring personalised calibration techniques to reduce estimation
errors and improve the clinical applicability of the proposed methods.
Additionally, a key direction for future research is to investigate alternative multimodal ap-
proaches, which could enhance both the reliability and accuracy of BP estimation, making it
more suitable for real-world healthcare settings.
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Chapter 6
Conclusion and Future Work

This thesis explored various ML and DL approaches for non-invasive BP estimation using
physiological signals, particularly PPG. The research focused on evaluating different models,
including traditional ML algorithms such as Decision Trees, Random Forest and SVR, and ad-
vanced DL models, such as CNN based architectures, LSTM and Transformer based models.
The implemented models were tested on publicly available benchmark datasets to ensure a fair
comparison and to validate the effectiveness of the proposed methodologies.

The results indicate that no single model consistently outperforms all others across different
datasets. Traditional ML models such as SVR demonstrated strong performance, particularly
for smaller datasets, where deep learning models tend to overfit.

The comparison with SoA methods revealed that the proposed approaches achieved compet-
itive results, particularly when considering calibration free BP estimation. While some mod-
els reached SoA accuracy, variations in dataset characteristics and BP distribution affected the
overall performance. This highlights the complexity of BP estimation and the need for model
selection based on specific use cases and data properties.
While the results obtained are promising, a purely algorithmic solution based solely on PPG or
on the simple combination of PPG and ECG does not appear to achieve a level of reliability
sufficient for clinical or diagnostic use. This suggests that a key direction for future research is
the exploration of alternative multimodal configurations that can enhance both the accuracy and
robustness of BP estimation.

Building from the presented results, several areas remain open for improvement and future
research:

• Implementation of a wearable system that integrates DL models with PAT and PTT ap-
proaches, leveraging the strengths of both techniques for BP estimation;
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• Development of subject-specific calibration approaches to improve the prediction based
on individual physiological characteristics;

• Expansion of datasets by incorporating real-world wearable device data to test the robust-
ness and reliability in practical applications;

• Deployment of models for real-time BP monitoring on edge devices, ensuring efficient
and low-power operation for continuous health tracking.

By addressing these challenges, future research can further improve the accuracy, reliability, and
real-world applicability of ML and DL models for non-invasive BP estimation, contributing to
better cardiovascular health monitoring and management.
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