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Abstract

In the era of data-driven decision-making, the detection and analysis of anomalies

have become increasingly critical, particularly within the healthcare sector. In this

context, enhancing efficiency, accuracy, and the early identification of irregularities

is essential. Given the complexity, and growing volume of healthcare data, there is

a pressing need for intelligent systems that not only identify anomalous patterns,

but also support users in effectively navigating vast amounts of information.

This thesis investigates the integration of recommendation system frameworks

within an outlier analysis platform on healthcare data, with the objective of improv-

ing user experience and streamlining investigative processes.

Three distinct recommendation approaches were developed and evaluated: (i)

Rank Aggregation, designed to improve the prioritization of elements on the plat-

form’s homepage by refining ranking mechanisms; (ii) Similar Product Recommen-

dation, which assists users in discovering related outliers through a clustering-based

approach and a nearest-neighbor ranking algorithm; and (iii) User-Based Personal-

ized Recommendation, leveraging user interaction history to generate tailored sug-

gestions via an autoencoder-based embedding model and a binary classifier.

This work holds significant implications for the healthcare domain, where iden-

tifying anomalies in medical and administrative data can lead to better resource

allocation, fraud detection, and improved patient outcomes. By integrating rec-

ommendation techniques, the system empowers users with more intuitive tools to

explore and understand critical insights. The emphasis is placed on a user-centric

approach, ensuring that recommendations align with individual search behaviors,

preferences, and investigative needs.

Future work will focus on expanding the dataset with real user interactions, opti-

3



4

mizing candidate generation, and incorporating explicit user preferences to enhance

recommendation quality. Additionally, A/B testing will be implemented to system-

atically assess user satisfaction and engagement, ensuring that recommendations

align with real-world needs.

This research lays the foundation for intelligent, user-centered outlier detection

in healthcare data, offering a valuable tool for professionals navigating complex

datasets and improving decision-making efficiency.
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Chapter 1

Introduction

1.1 Motivation

The healthcare sector is undergoing rapid digitalization, leading to an
exponential increase in available data. Data management in the health-
care sector represents a particularly complex challenge. This is conse-
quent to the high volume of data in combination with their heterogeneity.
Healthcare data span into a large plethora: critical patient information,
operative clinical insights and administrative data; each with its own
peculiarity and specific requisites for elaboration. The increase in vol-
ume of data and their heterogeneous characteristics delve the analysis
process extremely challenging. Thus the adoption of specific software
and tools is indeed an obligation to manage efficiently and effectively
those information.

1.1.1 Enhancing Healthcare Data Management with AI-Driven

Anomaly Detection

Traditional data management processes in the healthcare sector rely on
manual workflows and fragmented systems. This have been proven in-
adequate in addressing the growing demands of the modern landscape.
Manual data handling, in particular, increases the risk of human er-
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14 CHAPTER 1. INTRODUCTION

ror, delays in processing and transmitting information, and ultimately
compromises the timeliness of critical decision-making. The Outliers
Project (OP) was conceived to tackle one of the key challenges in man-
aging complex data: the accurate identification and interpretation of
anomalies. In data-intensive environments such as healthcare, anoma-
lies are not merely potential errors within operational processes; they
can also indicate significant shifts in system behavior or emerging trends
that require attention. The project takes advantage of Artificial Intelli-
gence algorithms capable of intelligently detecting these anomalies, en-
abling proactive analysis and management. Besides identifying errors
that could mine decision quality, OP also support users interpreting
anomalies as valuable indicators for monitoring deviations from stan-
dard operational or clinical patterns. By transforming outliers into ac-
tionable insights, the Outliers Project enhances both the efficiency and
accuracy of data-driven decision-making in healthcare.

1.1.2 The Outliers Project and Its Intentions

Anomalies in data can signal critical operational changes that require
attention. For instance, a sudden drop in activity might indicate a data
collection issue or an organizational shift. Without proper analysis,
such changes risk being dismissed as mere recording errors rather than
potential signs of necessary human intervention or resource reallocation
The project focuses on three main objectives:

• Optimizing organizational workflows

• Enhancing efficiency and responsiveness in data management

• Improving decision quality

By promptly identifying irregularities in operational processes, man-
agers gain a clearer, more comprehensive view of organizational pro-
cesses. Detecting unexpected data shifts provides insights into the im-
pact of strategic decisions, such as technology adoption or departmental
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restructuring. For example, if a department experiences a sudden fluc-
tuation in activity, the system alerts managers, enabling data-driven
decisions to address the situation effectively. This proactive strategy re-
duces downtime, optimizes resource utilization, and minimizes manual
workload. As a result, productivity improves while ensuring smoother
and more efficient operations.

1.2 Problem Statement

This software is the result of a collaboration between the Onit Group
and USL Toscana Sud Est (TSE), designed to support the management
of multiple healthcare facilities within the USL network. The primary
objective is to develop a system capable of effectively assisting managers
in overseeing diverse operational units simultaneously.

A key challenge that emerged in this context is the large number of
outliers detected, even after applying selection and filtering processes.
This issue stems from the system’s broad field of view, which encom-
passes a wide range of facilities and operational parameters. Conse-
quently, a critical aspect of system design is determining how to present
and prioritize outliers within the software in a meaningful and efficient
manner. Establishing a general ranking mechanism for outliers is in-
herently complex. The ranking must balance the organization’s specific
requirements - prioritizing elements deemed relevant - while avoiding
excessive focus on narrow categories. The goal is to develop an order-
ing system that aligns with institutional priorities while preserving the
system’s ability to highlight diverse and novel insights.

Additionally, the ranking methodology must adhere to long-term de-
sign principles that ensure scalability and adaptability. The system is
envisioned to extend beyond healthcare applications, potentially serving
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industries such as agriculture and the agrifood sector. To facilitate this
expansion, the ranking framework must be modular and composable,
allowing for seamless integration of new criteria without restricting flex-
ibility.

Beyond static ranking strategies, the system could greatly benefit
from personalized recommendation mechanisms. By leveraging user in-
teraction data, the system could intelligently guide users in exploring
outliers based on their past engagements, identifying relevant anomalies
with greater precision. In this advanced scenario, the system should
not only surface outliers similar to those previously examined but also
introduce novel elements with shared characteristics, fostering a level
of serendipity in the discovery process. This approach aims to enhance
analysis by revealing potential issues or irregularities that users may not
have otherwise encountered, thereby improving decision-making and op-
erational oversight.

1.3 Objectives and Contributions

The primary objective of this study is to develop a suite of tools de-
signed to enhance user-driven data exploration within the software. By
addressing existing limitations and introducing intelligent recommen-
dation mechanisms, the system aims to improve the identification and
prioritization of relevant outliers.

The key contributions of this work are as follows:

• Enhancing the Ranking System: The study seeks to overcome the
constraints of the current ranking approach, which relies on Eu-
clidean distances, by implementing a more flexible and adaptive
ranking mechanism.

• Introducing Advanced Recommendation Systems: Two distinct rec-
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ommendation systems are integrated to assist users in discover-
ing novel and potentially significant outliers. These systems serve
as navigational aids, guiding users toward unexplored yet relevant
anomalies.

To achieve these objectives, the following aspects were investigated
and developed, each one tailored to address specific user needs within
the software:

Ranking system The ranking approach employs metasearch rank ag-
gregation techniques, combining multiple ranking signals to generate
a unified and optimized ordering of outliers. This method integrates
diverse ranking criteria, ensuring a balanced trade-off between organi-
zational priorities and the need to discover novel insights.

Similar Product Recommender Also referred to as the correlated prod-
uct recommender, this system suggests outliers that share characteris-
tics with the one currently under analysis. Its function is analogous to
recommendation features found in e-commerce platforms, where simi-
lar products are displayed during the checkout process. Soft clustering
techniques on top of UMAP dimensionality reduction are introduced to
discover similarities among outliers’ characteristics.

Personalized Recommender This more advanced system generates rec-
ommendations based on a user’s past interactions with the platform.
By analyzing prior engagements, it identifies and suggests outliers that
align with the user’s interests, much like the "Recommended for You"
section in streaming services. A deep learning based method has been
crafted to specifically embed interaction histories into low dimensional
vectors, which are then fed on to a classifier for final recommendations.

Figures 1.1 and 1.2 respectively, show mock-ups of the "Outlier Project"
software with the additional contributions. Figure 1.1 shows the main
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outlier dashboard that presents items given the computed ranking, on
the left, while adding a section on the right for personalized outliers’ rec-
ommendations based on user interest and past interactions. Figure 1.2
refers to the inspector page: selecting an item from the dashboard list,
it can be further analyzed through graphs and detailed descriptions. On
the right side of the page, an additional section proposes similar items
that could be of interest given the current analysis.

Figure 1.1: Dashboard mock-up of the software, focusing on the Ranking (left), and
Personalized Recommender (right)

Figure 1.2: Inspector page mock-up of the software, focusing on the Similar Product
Recommender (right)
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1.4 Thesis Outline

The structure of this thesis follows a division based on the key arguments
explored, reflecting the distinct conceptual areas under investigation.
Chapter 2 provides a comprehensive review of existing methodologies in
recommendation systems, along with a technical overview of metasearch
approaches relevant to ranking.
Chapters 3, 4 and 5 detail the research conducted in three primary
areas: ranking systems, similar product recommendation, and personal-
ized recommendation. Each chapter focuses on the methodology, model
design, experimental setup, and results obtained.
Chapter 5 also includes a dedicated section on the creation of synthetic
datasets.
Chapter 6 discusses the key contributions of this work, addressing its
limitations and the expected impact on user experience. The thesis con-
cludes with proposals for future directions, emphasizing strategies to
explicitly evaluate user satisfaction and system effectiveness.
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Chapter 2

Background

2.1 Outlier Project

The Outlier Project employs advanced anomaly detection algorithms to
identify and classify irregularities in healthcare data. These anomalies
fall into three main categories:

Point Anomalies A point anomaly occurs when a single data point sig-
nificantly deviates from the expected range within a dataset. These
anomalies are relatively easy to detect as they stand out distinctly from
the normal data distribution.
Example: A hospital ward that typically registers 2,000 patient ad-
missions per day suddenly reports 20,000 admissions on a single day.
This could indicate a data entry error, a system malfunction, or an ex-
ceptional event such as a large-scale emergency, necessitating further
investigation.

Contextual Anomalies A contextual anomaly arises when a data point
appears unusual within a specific temporal, spatial, or categorical con-
text but may seem normal otherwise. These anomalies often occur in
time-series data, where seasonality and trends influence expected values.
Example: Flu vaccination rates generally peak during autumn and win-
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22 CHAPTER 2. BACKGROUND

ter, with lower numbers recorded in summer. If an unexpectedly high
number of flu vaccinations is reported in August, this anomaly could
indicate a data entry error or an unusual public health trend requiring
further analysis.

Collective Anomalies A collective anomaly occurs when a group of data
points collectively exhibits an unexpected pattern that deviates from the
norm, even though individual data points may not appear anomalous
on their own. Example: In medical billing, there is usually a correlation
between gross service charges and patient co-payments. If a subset of
procedures displays inconsistent pricing - such as identical treatments
being billed at significantly different rates without justification - this
may indicate incorrect pricing, billing fraud, or administrative errors,
all requiring further investigation.

To effectively detect these anomalies, the Outlier Project employs
a combination of specialized algorithms tailored to different anomaly
types:

• Point Anomalies: Isolation Forest [2] isolates anomalies by recur-
sively partitioning the dataset. This approach is particularly well-
suited for high-dimensional healthcare data, where outliers exhibit
distinct separability.

• Contextual Anomalies: Prophet [3], STL decomposition [4], an-
alyze seasonal trends and fluctuations. These methods effectively
identify deviations from expected time-series patterns, ensuring the
detection of anomalies influenced by temporal or contextual varia-
tions.

• Collective Anomalies: Correlation Distance [5] detects inconsisten-
cies within groups of correlated data points. This technique is par-
ticularly valuable for identifying irregularities in structured data,
such as medical billing discrepancies.
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2.2 Metasearch

Metasearch, or metasearch aggregation, refers to the process of combin-
ing results from multiple search engines or ranking systems into a single,
unified output. This technique is widely applied in domains where het-
erogeneous sources provide overlapping but distinct rankings or scores.
Common applications include web search engines, travel fare aggrega-
tors and job search platforms. In cases where no ground truth ranking is
available, metasearch techniques provide a structured way to integrate
multiple independent rankings into a coherent decision-making frame-
work. [6][7]
Metasearch is rooted in the idea that no single ranking function or source
can fully capture the complexity of relevance, importance, or user pref-
erence. Instead, different ranking sources contribute complementary
information. The challenge lies in determining how to aggregate these
rankings to produce a meaningful final ordering.

Metasearch techniques can be broadly categorized into two main ap-
proaches: rank-based fusion and score-based fusion.

Rank-based fusion methods determine the position of an item in the
final ranking based on how many independent rankers "vote" for that
item to appear at a specific position. This approach draws an analogy to
social voting systems, where different rankers contribute to a collective
decision. Algorithms such as Borda Count, Bayes Fuse and Condorcet
fall into this particular category [7][8].

On the other hand, score-based fusion methods aggregate rankings
based on numerical similarity scores assigned to each item. Instead of
relying on ordinal positions, these methods combine the similarity values
of items retrieved from different ranking models. Belong to this category
CombMIN, CombMAX and CombSUM [9].

Regardless of the chosen method, metasearch must address several
challenges, including rank bias, information redundancy, and conflicts
between different ranking sources. The presence of incoherent rank-
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ings, where one criterion ranks an element drastically differently from
others, further complicates aggregation. [6] By aggregating rankings
systematically, metasearch ensures that an element’s final position re-
flects a compromise between different sources, overcoming the problem
of skewed rankings.

2.3 Recommendation systems

A recommendation system is a software tool designed to help users dis-
cover relevant content within a large dataset. Typically functioning
alongside search or filtering mechanisms. Its primary role is to surface
items that users may not have explicitly searched for but could still find
valuable.

Figure 2.1: A generalized model for recommendation systems. Source: [1].

Two main types of recommendation systems are widely used: collabo-
rative filtering (CF) and content-based filtering (CB). These approaches
differ in how they identify relevant items.
Collaborative filtering relies on identifying users with similar interests
to the target user and inferring recommendations based on their pref-
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erences. The underlying assumption is that if two users share similar
tastes, items preferred by one may also be of interest to the other. [1]
Content-based filtering, on the other hand, focuses on item similarities.
Instead of analyzing user behavior, it recommends items with charac-
teristics similar to those the user has already shown interest in. [10][11]
Hybrid approaches then leverage aspects of both methods. Typically
deep learning approaches uses to embed user interests or MLP models
to predict interests toward specific items. [12][13]

Figure 2.2: Framework for content recom-
mender, explicating differences between con-
tent based filtering and collaborative filtering.
Source: [1].

A recommendation system typ-
ically follows a structured pipeline
composed of three main stages:
candidate generation, scoring, and
re-ranking. These steps work to-
gether to identify and prioritize
the most relevant items for the
user.
The process begins with the can-
didate generation phase. The sys-
tem starts with a vast dataset and
reduces it to a much smaller sub-
set of potential recommendations.
This step is crucial because eval-
uating every item in a large-scale
corpus would be computationally
infeasible. Instead, the system
quickly filters out irrelevant items,
retaining only a manageable set of
promising candidates. [1]

Once this initial selection is
made, the scoring phase refines
the ranking by assigning relevance

scores to the candidates. Unlike the previous step, which focuses on
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reducing the dataset size, scoring is concerned with identifying the best
options from the remaining candidates. Since this phase deals with far
fewer items, more sophisticated models can be employed, leveraging a
richer set of features such as user preferences, historical interactions,
and contextual information. The goal is to assign meaningful scores
that reflect the likelihood of user interest in each item.

Finally, the re-ranking phase further optimizes the selection by in-
corporating additional constraints and business logic. This step tailors
the ranking to specific needs by considering factors beyond basic rel-
evance, such as content freshness, diversity, and user preferences. For
instance, the model might demote items the user has explicitly disliked,
boost newer content to prevent outdated recommendations, or remove
inappropriate suggestions. Thus the final ranked list is the consequence
of multiple refinement stages, ensuring that the recommendations are
not only relevant but also contextually appropriate and engaging for
the user.

2.4 Dataset

The dataset used for this exploration consists of actual outliers extracted
using the Outlier Project software. Specifically, it comprises ten months
of extractions, spanning from January to October 2024, and includes a
total of 25300 items.
These alerts have already undergone preliminary filtering, ensuring that
only the most relevant anomalies requiring client attention are retained.
Each outlier is characterized by approximately thirty distinct features
that define the domain of interest and provide contextual information.
Among these features, some are specifically designed to assess the sever-
ity of the anomaly, including numerical scores that quantify its gravity.
To gain a deeper understanding of the dataset, a brief investigation of
the main features involved in the analysis is presented.
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The healthcare domain is broadly categorized into two main ser-
vice types: SPA (outpatient services) and SDO (hospital services).
SPA events, depending on the services provider, are further classified
into SSN public national healthcare services and PAG private health-
care services.

Each alert in the system is characterized by one or more dimen-
sions, which define the attributes of the analysis and provide essential
contextual information. Dimensions play a crucial role in interpreting
measures, representing the specific quantitative values under analysis.
A measure alone, without its corresponding dimensions, lacks context
and does not allow meaningful interpretability.

For instance, a common measure might be the number of patient ac-
cesses within a given time frame, such as a month. However, this value
alone lacks meaning unless paired with relevant dimensions. By intro-
ducing facility code as a dimension, the measure can be contextualized:
e.g., the monthly number of accesses at Hospital N-001. Moreover, di-
mensions can be combined to create a more granular field of analysis.
For example, using both facility code and department code allows for
a more refined comparison. This could results in evaluating monthly
accesses to the pneumology department across multiple hospitals within
a region.
Some examples of measures and dimensions can be found in Table 2.1:

measures
num_access, num_hospitalisations, gross_amount,
net_amount, postsurgery_day, presurgery_day,
waiting_time

dimensions
cod_facility, cod_hospital, cod_department, doc,
departure_modality, prescription, cod_analysis,
exemption, patient, cod_citizenship

Table 2.1: Examples of measures and dimensions analyzed by the software.

Each outlier record includes not only the observed measure value but
also the expected value predicted by the anomaly detection algorithm.
This comparison is crucial in assessing the severity of the alert.
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Additional metadata is recorded, including the timestamp of the
analysis and the time span of the data used. Each record also
specifies key details about the type of analysis performed: whether
it is point-based, collective, or contextual, along with the specific al-
gorithm applied. Furthermore, any algorithm-specific parameters are
stored, such as time-series window granularity, aggregation type,
seasonality, and the number of analyzed elements. To quantify the
severity of an outlier, two computed values are provided: normalized
difference and relevance score. Normalized difference represents the
deviation between the actual and expected values. To ensure compara-
bility, it undergoes a two-step normalization process: first, within the
batch of alerts detected for the same measure and dimension; then,
across different types of outliers. Relevance score further refines this as-
sessment incorporating both the severity of the deviation (as captured
by the normalized difference) and the seasonal impact of the period un-
der consideration, ensuring a more context-aware evaluation of outliers.

Figure 2.3: Dataset example, only the most relevant features are shown.



Chapter 3

Ranking System

This chapter aims to describe the proposed solution to enhance the
ranking methodology used in the Outlier Project by addressing the lim-
itations of the current system.

3.1 Distance Based Ranking

At present, ranking is based on distance metrics, specifically Euclidean
distance, calculated between each detected outlier and a prototyped ref-
erence element, using only a predefined subset of features. This method
was initially implemented to align with client preferences, allowing rank-
ings to prioritize specific aspects of an outlier.

The current process involves generating a mock outlier that serves as
a reference point. This prototype is constructed with values reflecting
the client’s priorities. For example, if the client is primarily interested
in recent outliers with a significant deviation between the actual and
expected values, the mock element would be assigned a recent timestamp
(e.g., the current date) and a maximized difference value (e.g., +inf).
By computing distances from this reference, the system effectively ranks
outliers based on their similarity to the client’s ideal anomaly.

Euclidean distance is a distance metric typically used to measure the
distance between two points in an n-dimensional space.

29
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Given two points A = (a1, a2, ..., an) and B = (b1, b2, ..., bn) is defined
as:

d(A,B) =

√√√√ n∑
i=1

(ai − bi)2

The choice of this metric is consequent to its computational efficiency
and straightforward geometric interpretation. In this context of rank-
ing, Euclidean distance is leveraged to quantify the similarity between
detected anomalies and a reference prototype.
By calculating the Euclidean distance between each detected outlier and
this reference point, the system ranks anomalies based on their proxim-
ity to the prototype. The closer an outlier is to the mock reference, the
higher it is ranked in relevance to the client’s priorities.

This approach assumes all selected features contribute equally to the
ranking. To mitigate this a weighted version of Euclidean distance is
introduced allowing for differential feature importance.
This allows to shift the focus of ranking toward the characteristics that
are considered to have greater impact. Thus the formulation shifts to:

dw(A,B) =

√√√√ n∑
i=1

wi(ai − bi)2

where wi is the weight associated to feature i.

While this method yields meaningful rankings in straightforward cases,
it exhibits significant limitations when applied to more complex rank-
ing criteria. As the number and complexity of relevant features increase,
manually constructing an appropriate mock outlier becomes increasingly
challenging. Certain features may require non-trivial computations to
generate representative values. Inaccurately hypothesizing these val-
ues could introduce bias or lead to misleading rankings. Consequently,
emerged the need for a more flexible and scalable ranking mechanism
that can dynamically adapt to diverse client preferences without relying
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on predefined reference points.

3.2 Rank Aggregation

This section explores the core principles of metasearch and its appli-
cation to multi-criteria decision-making, specifically in the context of
ordering elements where multiple competing factors must be balanced.
A key challenge in this task is the absence of user feedback or labelled
data to validate the rankings, making it necessary to design a system
that performs effectively without explicit supervision.

The requirements for the development of such a ranking system aligns
with those previously established for distance-based ranking. It must be
modular, allowing customization to accommodate specific client prefer-
ences. It should ensure a coherent ordering that respects the relative
importance of different characteristics. Finally, it must overcome the
limitations of the prior approach, particularly by eliminating the need
for a prototyped reference outlier and improving the overall consistency
of results.

Metasearch techniques have been investigated as a solution to address
these challenges. Metasearch provides a structured method for integrat-
ing multiple rankings without relying on user feedback or predefined
ground truth labels. The goal is to establish an optimal ordering of ele-
ments, ensuring that rankings reflect an effective balance of all relevant
attributes, even when those attributes may be in conflict. [7]

Metasearch techniques are typically employed in contexts where a
unified ranking must be derived from multiple independent sources, such
as aggregating search engine results or consolidating rankings in a demo-
cratic voting system. [7][14] However, in this scenario, there are no in-
herently separate rankers, but only a single ranking process that can be
systematically decomposed. The key distinction lies in the fact that,
unlike subjective settings where rankings emerge from indistinguishable
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combinations of individual preferences (such as in democratic consen-
sus voting), here the ranking criteria are explicitly defined and can be
independently assessed. This allows the single ranking mechanism to
be decomposed into multiple independent rankers, each corresponding
to a distinct feature of interest (e.g., relevance, popularity or recency).
Each of these features functions as a dedicated ranker, producing an
individual ranking based solely on that criterion. The process of gen-
erating these rankings is therefore reduced to a straightforward sorting
operation for each relevant feature, directly aligning with client-defined
priorities.
For instance, if the ranking must prioritize both recency and high dis-
crepancy, two rankers are independently evaluated: one orders elements
based on detection date, ensuring more recent outliers are prioritized,
while the other ranks them by descending discrepancy values. This re-
sults in two distinct rankings, each emphasizing a specific characteristic
relevant to the user. The challenge then becomes effectively merging
these rankings into a unified ordering that balances all prioritized fac-
tors, ensuring that no single criterion disproportionately dominates the
final ranking.

3.2.1 Methodology

The proposed methodology combines rank-based concepts and score-
based aggregation techniques to refine the ranking process. The result
of k singular ranking is therefore k ordered list of items indicating the
position each ranker assigns to each outlier.

Since only the rank positions of the items are available, a purely
rank-based aggregation approach might seem like an intuitive choice.
However some criticalities arises. Majority voting works under the as-
sumption that if most rankers agree on the relative ranking of two items,
their aggregated ranking should reflect this consensus. This principle is
effective when all rankers evaluate items based on the same underly-
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ing criteria, leading to natural alignment in their preferences. However,
when rankers prioritize different factors, such as recency, discrepancy, or
severity, their rankings may diverge significantly. This could introduce
inconsistencies that majority voting algorithms fail to resolve. In such
cases, the absence of a shared objective introduces noise into the rank-
ing process, making it difficult to derive a coherent final ordering using
purely rank-based methods. [15][16]

To address this, a score-based approach is adopted. Instead of di-
rectly merging rank positions, the rank of each item in the individual
orderings is translated into a score. This trick is inspired by the work
of Lee [17], who leveraged ranks instead of similarity scores in combin-
ing multiple sources of evidence for document retrieval. By applying
this transformation, the model can utilize score-based aggregation tech-
niques, even in the absence of explicit scores at fusion time.

To achieve this, each ranking position is mapped to a normalized
score within the range [0, 1] using the following function:

S(ranki) = 1− ranki − 1

number_of_items

In any ranking method, two primary types of errors can occur: as-
signing a high rank to a non-relevant element or assigning a low rank
to a relevant one [9]. However, in our particular scenario those two as-
pects assume minority importance due to the simplified nature of the
rankers; each of which assigns ordering over only one single criteria. It
has been shown that different ranking paradigms will perform differently
on the same set of data, often with little overlap in the set of results
[17]. This phenomenon is particularly evident in our setting, where one
ranker might assign a high rank to an item while another assigns it a
much lower rank due to the difference of objctives among rankers. This
discrepancy, commonly observed in information retrieval, suggests that
a fusion method incorporating multiple ranking perspectives can help
mitigate inconsistencies and reduce the likelihood of suboptimal rank-
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ings.

3.2.2 Combination Algorithms

Combination methods [17][9][15] work on explicit relevance scores pro-
vided by experts and include various linear combinations like Comb-
SUM, CombMNZ and CombANZ. Among non-linear methods, Comb-
MIN and CombMAX respectively rank the items on the minimum and
maximum scores received across the lists provided by experts. A com-
parative analysis is therefore carried on between CombSUM, CombMIN
and CombMAX.

The rationale behind the CombMIN combination method is to min-
imize the probability of ranking a non-relevant element too highly.

CombMIN = min(scorei)

It contrasts with its counterpart, CombMAX, which aims to prevent
relevant elements from being ranked too low.

CombMAX = max(scorei)

However, both methods have inherent flaws: each is specialized to han-
dle a particular type of ranking error while neglecting the opposing issue.
For instance, CombMIN prioritizes caution by ranking an element con-
servatively based on its lowest score, but this can lead to relevant items
being unfairly demoted. Conversely, CombMAX promotes items based
on their highest score, which risks elevating non-relevant elements [9].

To address this duality, the CombSUM combination method takes a
more balanced approach. Instead of selecting a single score from each
ranking, it aggregates all available scores by simply summing them [9].
This straightforward technique ensures that an element’s final ranking
reflects contributions from all individual rankers, reducing the likelihood
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of extreme misclassifications and providing a more stable overall ranking.

CombSUM =
k∑

i=0

scorei

Figure 3.1 shows the three tested algorithms, explaining how they
address the aggregation process with a sample dataset. As the exam-

Figure 3.1: Exemplification of different aggregation methods

ple indicates the three methodologies act very differently and the ob-
tained results are clearly diverging. Despite the existence of elements
exhibiting complete correspondence between the three algorithms (A),
or partial correspondence (B), there are instances (C) where the models
demonstrate a complete divergence placing the elements in all different
positions.

3.2.3 Metrics

The challenge in defining meaningful evaluation metrics for this rank-
ing problem stems from the absence of ground truth labels. Without a
correct ordering to compare against, it becomes infeasible to assess the
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absolute correctness of the ranking beyond qualitative domain knowl-
edge. In such unsupervised scenarios, a common approach is to establish
key performance indicators (KPIs) that reflect the expected behaviour
of the model. For this particular case, an essential requirement is that
the final ranking adequately integrates all individual criteria. One useful
KPI to measure this is the coverage of elements. This describes how well
the final aggregated ranking preserves the presence of items that were
ranked highly by each individual criterion. A practical way to quan-
tify this is through recall@k, which measures how many relevant items
from the original individual rankings appear within the top-k positions
of the final aggregated ranking. This ensures that no single ranking cri-
terion dominates at the expense of others and that the final list remains
representative of all relevant aspects.

recall@k =
Number_of_relevant_items

Total_number_of_relevant_items

In this particular setting, identifying relevant items requires careful
consideration. Each individual ranker prioritizes different aspects of the
data, meaning that the top-ranked items will vary significantly across
rankers. Given this variability, a useful approach is to evaluate the re-
call of the aggregated ranking with respect to each individual ranker’s
proposed ordering. Instead of selecting a fixed k (i.e., a predefined num-
ber of top items), percentile-based thresholds are used to ensure a more
adaptive and comparable evaluation across different rankers. Specifi-
cally, the top percentiles (75, 80, 85, 90, and 95) are considered in order
to analyze how well the aggregated ranking retains elements from each
individual ranking.

For a given ranking criterion, the relevant items are those that fall
within the top percentile of interest (e.g., the top 80%). The recall is
then computed by determining the overlap between these top-ranked
items and those that appear within the same range in the final aggre-
gated ranking.
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Thus the formulation becomes:

recall@% =
criteria_top% ∩ aggregator_top%

criteria_top%

This approach provides valuable insights by assessing the influence of
each individual criterion on the final ranking. By evaluating recall sepa-
rately for each criterion, it becomes possible to determine how strongly
each feature contributes in shaping the top-ranked elements. A straight-
forward way to quantify the overall representativeness of the aggregated
ranking is to compute the average recall across all criteria, obtaining a
single comprehensive index of alignment.

One limitation of this method is that it focuses exclusively on the
top-ranked portion of the list, without providing information about the
entire ranking distribution. However, this is a minor concern considering
its practical applications. In real-world scenarios, users primarily inter-
act with the top elements, making their correct positioning the most
critical factor. Since the ranking is designed to surface the most rele-
vant outliers, ensuring that the top-ranked items accurately reflect the
various criteria is the key priority.

3.2.4 Obtained Results

The tests were conducted using the same criteria as the Euclidean dis-
tance method currently used in production. The selected criteria in-
clude: maximized difference value (C1), measuring the deviation be-
tween the actual and expected outlier value, and temporal recency (C2),
prioritizing recent outliers. This alignment enables comparability be-
tween the proposed ranking aggregation methods and the existing ap-
proach.

Table 3.1 presents key results for different percentile ranges. Across
all tested approaches (CombMIN, CombMAX, and CombSUM), C1
consistently maintains strong representation, with recall values exceed-
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75% 80% 85% 90% 95%
Min Max Sum Min Max Sum Min Max Sum Min Max Sum Min Max Sum

C1 0.763 0.571 0.701 0.885 0.538 0.680 0.872 0.501 0.647 0.872 0.501 0.647 0.872 0.501 0.647
C2 0.567 0.565 0.589 0.387 0.485 0.510 0.301 0.439 0.456 0.276 0.372 0.411 0.245 0.254 0.257
AVG 0.665 0.568 0.644 0.636 0.512 0.595 0.587 0.470 0.552 0.574 0.436 0.529 0.558 0.378 0.452

Table 3.1: Comparison between recall@% of different combination methods.

ing 0.75 and reaching peaks of 0.87 for percentile thresholds above 80.
Among the three methods, CombMIN best preserves C1 representation
across all percentiles. Conversely, C2 is less well represented, with re-
call@75th values around 0.5, decreasing to 0.25 at recall@95th. The
CombSUM method demonstrates the strongest ability to retain C2 rel-
evance, outperforming the other methods in maintaining recency repre-
sentation.

When considering the average representativeness of both criteria,
CombMIN emerges as the most effective aggregation method across all
percentiles, consistently preserving the influence of both C1 and C2.
CombSUM follows closely behind, while CombMAX ranks third, trail-
ing the top method by 10 − 20 percentage points, depending on the
percentile range. These results suggest that CombMIN provides the
best overall balance between the two ranking criteria.

Rank Solutions Table 3.2 presents the top 20 outliers ranked by each
combination method, highlighting the key differences in the proposed
results. CombMAX heavily favours C1 (difference value) over C2 (re-
cency), leading to a ranking where all top-20 outliers have the maximum
possible difference value of 100, but the corresponding dates are inconsis-
tent, with some outliers being more than 10 months old. This behaviour
stems from the fundamental design of CombMAX, which assigns each
element the highest score across the rankers. As a result, all outliers
with C1 = 100 receive the same score, causing numerous ties in ranking
and reducing the model’s ability to differentiate among them.

CombMIN, on the other hand, is more conservative in elevating non-
relevant elements, as it assigns each outlier the lowest score among the
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CombMIN CombMAX CombSUM
C1 C2 C1 C2 C1 C2

1 59.32 04/10/24 100 19/01/24 100 01/10/24
2 59.32 04/10/24 100 24/01/24 100 01/10/24
3 59.31 04/10/24 100 19/01/24 100 01/10/24
4 59.25 04/10/24 100 19/01/24 100 01/10/24
5 59.20 04/10/24 100 19/01/24 95.43 01/10/24
6 59.00 04/10/24 100 10/06/24 94.04 01/10/24
7 58.90 04/10/24 100 10/06/24 92.39 01/10/24
8 58.87 04/10/24 100 29/02/24 83.94 01/10/24
9 58.73 04/10/24 100 18/01/24 78.26 01/10/24
10 55.55 01/10/24 100 16/05/24 45.37 23/10/24
11 55.02 01/10/24 100 19/01/24 45.37 23/10/24
12 48.66 10/10/24 100 18/01/24 59.32 04/10/24
13 46.67 10/10/24 100 18/01/24 59.32 04/10/24
14 46.67 10/10/24 100 18/01/24 59.32 04/10/24
15 46.62 10/10/24 100 27/05/24 59.32 04/10/24
16 45.95 09/10/24 100 19/01/24 59.31 04/10/24
17 45.94 09/10/24 100 19/01/24 58.97 04/10/24
18 45.93 09/10/24 100 19/01/24 58.96 04/10/24
19 45.88 09/10/24 100 19/01/24 58.92 04/10/24
20 45.80 10/10/24 100 27/05/24 58.90 04/10/24

Table 3.2: Top 20 ranked results for Combination methods.

proposed values. This approach produces a more coherent ranking, with
dates skewed towards recent observations. Therefore the values of C1 in
the top ranks are not maximum. While this trade-off may be acceptable,
it is not fully aligned with the client’s requirements, which prioritize both
high discrepancy and recency.

Finally, CombSUM offers the most balanced ranking between C1 and
C2. The values of C1 span a broad range, rather than being dominated
by the maximum score, while the recency factor C2 ensures that recent
outliers remain well represented. This approach reflects the core prin-
ciple of CombSUM, balancing the different criteria rather than favoring
one over the other. Despite not achieving the highest recall performance
(0.529 for recall@90th, compared to 0.574 for CombMIN), CombSUM
provides the most interpretable ranking. The fluctuations in C1 values
are clearly linked to corresponding variations in C2, making it easier for
non-technical users to understand the ranking logic.
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In conclusion, while CombSUM does not deliver the absolute best
recall, it remains a strong candidate for ranking due to its balance,
transparency, and usability. Its ability to account for all criteria with-
out overemphasizing any single aspect makes it a practical choice for
this application, especially considering scenarios where more than two
criteria must be considered.

3.3 Comparative Analysis

Figure 3.2 compares the top-15 ranked outliers produced by the current
Euclidean distance-based ranking and the best-performing aggregation
method, CombSUM. Both approaches yield coherent rankings but with
notable differences in prioritization.

CombSUM favours recency while still considering high difference val-
ues (C1). This ensures that the top-ranked elements are both recent and
significantly different from expectations, aligning better with real-world
usability where fresh insights are typically more actionable. In contrast,
the Euclidean distance method leans more heavily toward maximizing
C1, sometimes at the cost of recency. As a result, it introduces older
outliers into the top 15, which may not always be relevant depending
on the client’s needs.

Figure 3.3 illustrates how four different outliers are ranked under Eu-
clidean Distance (ED) and CombSUM (CS). The first example, item
22929, is ranked first by ED and second by CS, demonstrating a high
level of agreement between the two methods. This suggests that the
item has both a strong difference value and reasonable recency, making
it highly relevant regardless of the ranking approach. However, item
23701 sees a significant boost from position 55 under ED to position
4 under CS. This shift occurs because ED has a tendency to priori-
tize difference values (C1), rather than balancing the criteria, causing a
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Figure 3.2: Comparison between ranking methods results:
(a) Euclidean Distance (b) CombSUM
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Figure 3.3: Analysis on ranking positions for different algorithms:
(a) Euclidean Distance (b) CombSUM

lower rank. Conversely, item 2365 experiences a sharp drop of 10, 000
positions under CS, primarily due to its early timestamp (January).
While its difference value is still consistent, the older date reduces its
importance under the CS approach. Finally, item 5074 remains largely
unchanged at the bottom of both rankings, lacking both in significant
difference and recent occurrence.

Figure 3.4 shows the distribution of rank displacement among the
two algorithms. High peaks can be found for jumps of less than 400
elements, yet many records experience significant displacement. This
effect is primarily attributed to the greater emphasis on balancing the
time feature, which shifts rankings toward more recent outliers.

Overall, this example highlights how CombSUM effectively incorpo-
rates recency, leading to more timely rankings compared to the difference-
heavy Euclidean Distance approach. By balancing both recency and
discrepancy, CombSUM provides a more interpretable ranking, making
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it a better fit for scenarios where both factors are important.

Figure 3.4: Rank displacement distribution between CombSUM and Euclidean distance
approach



44 CHAPTER 3. RANKING SYSTEM



Chapter 4

Similar Products Recommendations

This section aims to integrate a system that proposes similar elements
to the one currently under analysis. These recommendations should
consider both domain-specific characteristics (e.g., type of event, mea-
sure, dimension, observation time) and anomaly-specific attributes (e.g.,
detection algorithm, severity, value discrepancy).

By incorporating both perspectives, this approach ensures that rec-
ommendations are not just similar in content but also in structure, pro-
moting diversity. By considering multiple aspects, the system moves
beyond direct similarity and incorporates serendipity, allowing users to
uncover unexpected yet relevant patterns.

A traditional recommendation system would primarily focus on direct
feature similarity. For example, when analyzing an outlier related to
unpaid amounts at the hospital level, a standard model would likely
suggest other cases with similarly high unpaid amounts. While this
method ensures consistency, it can overlook alternative but structurally
related insights.

However, this model takes a broader approach, identifying similar-
ity not only in content but also in structural characteristics. Instead of
restricting recommendations to unpaid amounts at hospitals, the sys-
tem might surface cases from different facilities (e.g., wards or private
clinic) or identify structurally similar anomalies in different domains,

45
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such as sharp fluctuations in hospital access rates. Even though access
rate variations are not directly related to unpaid amounts, they may
follow a comparable reporting pattern, making them informative from
an analytical standpoint.

By expanding the definition of similarity, this methodology helps
users move beyond expected correlations and instead discover patterns
that might have otherwise gone unnoticed. This approach broadens the
analytical scope, ensuring that the most relevant and insightful outliers
are surfaced—not just the most obvious ones.

Ultimately, this strategy enriches the recommendation process by
blending relevance with diversity, allowing users to gain a more com-
prehensive understanding of the dataset.

4.1 Methodology

The proposed system is designed as a two-stage pipeline Figure 4.1, en-
suring an efficient and structured approach to outlier recommendation.
These two stages consist of:

(I) Candidate Generation focusing on identifying a pool of potential
similar elements to the input query outlier. The process utilizes soft
clustering methodologies on data to identify a pool of elements with
similar characteristics to the input query element. The concept is as
follows: elements belonging to the same cluster as the query element are
presumed to be correlated or at least share some common characteristics
with it. Therefore, elements of this group can be considered a valid
candidate pool. The process utilizes Gaussian Mixture Model (GMM)
clustering over UMAP embedded data.

(II) Item Scoring stage involves ordering the candidates based on
their relevance to the query element. A distance-based approach, similar
to K-Nearest Neighbors (KNN), is used to rank the candidates leveraging
Euclidean distance to the query item. This method ensures that the
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most similar and contextually relevant outliers are prioritized in the
recommendation process.

Many recommendation systems include a third re-ranking step, which
refines the ordered list by filtering out less relevant elements, such as al-
ready seen outliers or redundant recommendations. However, in this
system, re-ranking is not currently included due to the absence of user-
specific interaction data (e.g., user feedback, historical preferences).
Since this type of user-aware filtering requires additional contextual in-
formation, it is planned as a future enhancement of the system.

Figure 4.1: Similar Product Recommendation operative pipeline

4.1.1 Feature Selection

Given the variegated nature of the domain, the feature selection process
was designed to strike a balance between maximizing informational value
and maintaining a broad contextual perspective. The key challenge in
achieving this balance was handling measures and dimensions, as they
both carry essential contextual knowledge necessary for outlier analysis.

Encoding Measures Measures are at the core of the anomaly detection
process, as they define the type of data being analyzed. To ensure that
the model captures both the scope of the analysis and the numerical
significance of each measure, a tailored encoding approach was required.
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The dataset originally stored measure-related information in two sep-
arate columns: 1. Measure Key – Representing the name or type of the
measure. 2. Measure Value – Containing the corresponding numerical
value.

This structure necessitated a refactoring step to ensure the data was
in a format that differentiates measures. The encoding strategy involved
transforming each measure into a separate feature, where each unique
measure key became a column. The corresponding measure values were
then assigned to their respective positions in this new format. This
ensures that the model captures and preserves the range and scale of
different measures separately.

Encoding Dimensions Dimensions define the scope and context in which
measures exist. However, including all dimension values could over-
whelm the model with excessive granularity, leading to unnecessary com-
plexity. To mitigate this, only dimension keys were retained as contex-
tual anchors, without including their specific values. A one-hot encoding
technique was applied to represent these categorical attributes efficiently.

For example, an outlier related to monthly hospital access numbers
would retain its measure value (e.g., 10,000 accesses) while keeping only
the dimension type (e.g., hospital code) rather than the specific hospital
it relates to.

This simplified encoding enables the model to generalize anomaly
categories rather than overfitting to specific details, ensuring that the
system captures broader patterns rather than isolated cases.

Other features included in the model are: reference value, value dif-
ference, time, granularity, analysis type, event type, event subset, al-
gorithm, outlier score, seasonality, aggregation, number of events, avg
number of events.

The pre-processing phase focused on transforming the features into
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a structured and meaningful format for analysis: numerical features
were normalized to ensure consistency across different scales. Categor-
ical features were one-hot encoded. At the end of the process, results
approximately 55 features for the model.

Initial clustering analysis did not reveal well-defined groupings, as
indicated by a silhouette score of 0.132, suggesting weak cluster sep-
aration. To explore potential improvements, dimensionality reduction
techniques were applied: PCA and t-SNE were tested but did not yield
significant benefits for clustering, resulting in a silhouette respectively
of 0.187 and 0.193. Given these limitations, a nonlinear transformation
approach, UMAP, was explored as an alternative to better capture the
underlying structure of the data.

4.1.2 Uniform Manifold Approximation and Projection

UMAP (Uniform Manifold Approximation and Projection) is a dimen-
sion reduction technique based on Riemannian geometry. The algorithm
operates by constructing a high-dimensional topological representation
of the data as a weighted k-neighbor graph, with edge weights deter-
mined by the distance between points, and then finds a low-dimensional
embedding that preserves this topological structure. [18]

The algorithm wants to create a dimensional reduction that maintains
both local and global relationships found in the high dimensional space.
To do so, the following assumptions about the data are made:

• There exists a manifold on which the data would be uniformly
distributed.

• The underlying manifold of interest is locally connected.

• Preserving the topological structure of this manifold is the primary
goal.



50 CHAPTER 4. SIMILAR PRODUCTS RECOMMENDATIONS

High Dimensional Space The approach is based on the creation of a
weighted k-nearest neighbor graph to approximate the manifold struc-
ture. For each point xi, it identifies its k nearest neighbors and computes
a local connectivity measure ρi as the distance to its nearest neighbor.

UMAP then establishes a set of probabilities pi,j that represent the
likelihood of a connection between points xi and xj in the high-dimensional
space. These probabilities are calculated using a smooth kernel function:

pi,j = exp(
−max(0, d(xi, xj)− ρi)

σi
)

where d(xi, xj) is the distance between points, and σi is a normaliza-
tion factor chosen to ensure that the sum of probabilities from point xi
to its neighbors equals a predefined parameter called "local connectiv-
ity." This creates what the authors call a "fuzzy topological representa-
tion", where the elements have degrees of membership valued in the real
unit interval [0, 1], effectively capturing the manifold structure locally
[18][19][20].

Fuzzy topological set composition UMAP has the ability to combine
multiple models integrating different fuzzy topological sets into one co-
hesive space.

As said, high-dimensional data are represented through fuzzy simpli-
cial sets, which are combinatorial structures that capture the topological
and geometric relationships within the data. Each simplex (a general-
ization of triangles to higher dimensions) in these sets has an associated
membership strength between 0 and 1, indicating the degree to which
data points form a cluster or neighborhood. [18]

Multiple UMAP models can be trained considering different feature
subsets or different parameter configurations; each model yields a dis-
tinct fuzzy simplicial set reflecting the manifold structure as perceived
through those characteristics. To integrate these models into a sin-
gle representation, UMAP employs operations such as intersections or
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unions on the fuzzy simplicial sets.
With intersection the membership strength of a simplex in the com-

bined set is taken as the minimum membership strength from the cor-
responding simplices in the individual sets. Union instead utilizes as
membership strength the maximum membership strength from the in-
dividual sets [21].

These operations result in a new fuzzy simplicial set that encapsu-
lates the shared or combined topological features across the different
perspectives [18][22]. This combined set is then used to construct a low-
dimensional embedding that reflects the integrated manifold structure
of the data.

Low Dimensional Space In the low-dimensional space, UMAP defines
a similar probability distribution qi,j for points yi and yj based on their
distances:

qi,j = (1 + a||yi − yj||2b)−1

where a and b are parameters that control the strength of attraction
and repulsion between points, and ||yi, yj|| is the distance (by default
Euclidean distance) in the low-dimensional embedding space [18][20].

Optimization The loss function optimized by UMAP is the cross-entropy
to measure how well the low dimensional similarities qi,j represent the
high dimensional similarities pi,j. This can be expressed as:

C = Σi,j(pi,jlog(
pi,j
qi,j

) + (1− pi,j)log(
1− pi,j
1− qi,j

))

The optimization process employs a specialized version of the stochas-
tic gradient descent (SGD) with negative sampling techniques. The gra-
dient update rule adjusts the positions of points in the low-dimensional
space based on a set of attractive forces applied along edges and a set
of repulsive forces applied among vertices. The algorithm proceeds by
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iteratively applying attractive and repulsive forces at each edge or ver-
tex. This amounts to a non-convex optimization problem. Convergence
to a local minima is guaranteed by slowly decreasing the attractive and
repulsive forces in a similar fashion to that used in simulated annealing
[18][20].

Hyperparameters The parameter settings in UMAP significantly influ-
ence its behavior: the n_neighbors parameter controls the size of the
local neighborhood and thereby affects the balance between preserving
local versus global structure; larger values emphasize global structure
at the expense of local details. The min_dist parameter influences how
close the points in the low dimensional embedding can be packed to-
gether. It influences, together with the spread parameter, the calcu-
lation of the a and b values. Influencing the computation of the low
dimensional similarities qi,j. Low values will result in compact embed-
dings, which can be useful for clustering [18].

4.1.3 Gaussian Mixture Models Clustering

Gaussian Mixture Models (GMM) [23] are selected as the preferred clus-
tering algorithm. GMM are probabilistic models that assumes all dat-
apoints are generated from a mixture of several Gaussian distributions
with unknown parameters. In particular each cluster is defined by a
Gaussian distribution, and the datapoints are assigned probabilities of
belonging to different clusters based on their distance from each Gaus-
sian. In the context of clustering, GMM provide a flexible approach.
It can be used to perform either hard clustering or soft clustering on
query data. To perform hard clustering, the GMM assigns query data
points to the multivariate normal components that maximize the com-
ponent posterior probability, given the data. Hard clustering assigns
a data point to exactly one cluster. Additionally, GMM can be used
to perform more flexible clustering on data, soft clustering, assigning a
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score to a data point for each cluster. The value of the score indicates
the association strength of the data point to the cluster. As opposed
to hard clustering methods, soft clustering methods are flexible because
they can assign a data point to multiple clusters. This characteristic
is particularly suitable within the recommendation domain. An outlier
may be included in more than one group given its characteristics, thus
boundaries are not exclusive [24][23].

Gaussian Mixture Models (GMM) The model assumes each datapoint
as a random variable independently and identically distributed from an
unknown distribution with a probability density function expressed as:

p(x) =
k∑

j=1

πjϕ(x;µj,Σj)

This indicates a mixture of k component multivariate Gaussian distribu-
tions where ϕ(x;µj,Σj) is a multivariate Gaussian density with unknown
parameters (µj,Σj). Thus

N (x|µj,Σj) =
1

|2πΣj|1/2
exp(−1

2
(x− µj)

TΣ−1
j (x− µj))

Factor πj is the unknown probability of selecting the component j, sat-
isfying

∑k
j=1 πj = 1. Solving clustering task resolves in inferring the

latent component zi responsible for each xi.

p(zi = j|xi) =
p(zi = j)p(xi|zi = j)

p(xi)
=

πjϕ(xi;µj,Σj)∑k
l=1 πlϕ(xi;µl,Σl)

To achieve this, a subtle problem must be addressed: estimating the pa-
rameters (π, µ1:k,Σ1:k) through statistical inference with the Expectation-
Minimization (EM) algorithm. [23]
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Expectation-Minimization EM EM is an iterative optimization tech-
nique that seeks to find maximum likelihood estimates in the presence
of latent variables, which in this case are the actual cluster assignments.
The algorithm is composed of two main steps: expectation step (E) and
minimization step (M). Expectation computes the posterior probability
that each data point xi belongs to each cluster j.

τij = P (zi = j|xij, π, (µl,Σl))

Maximization updates the parameters πk, µk and Σk by inserting the
factor τij to maximize the expected log-likelihood.

πj =
1

n

n∑
i=1

τij, µj =

∑n
i=1 τijxi∑n
i=1 τij

, Σj =

∑n
i=1 τij(xi − µj)(xi − µj)

T∑n
i=1 τij

The EM algorithm iterates between these two steps until convergence,
typically when the change in the log-likelihood function falls below a
predetermined threshold. This iterative process effectively handles the
uncertainty of cluster assignments.[23][24]

Soft clustering technique A key advantage of Gaussian Mixture Models
is the ability to provide soft clustering by expressing the probability
density of an element belonging to each cluster. This property becomes
particularly valuable in this setting where clustering is used for candidate
generation. In some cases, elements do not have a clear and exclusive
cluster assignment, particularly when they are positioned near cluster
boundaries. In these uncertain situations, soft clustering proves highly
useful, as it allows for a more flexible candidate selection.

To account for this uncertainty, an agglomerative clustering tech-
nique is applied to refine the candidate selection process. When deter-
mining an element’s belonging cluster to generate recommendations, a
threshold-based merging strategy is introduced. If an element’s proba-
bility of belonging to multiple clusters is within a certain percentage of
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its highest probability score, the corresponding clusters are merged into
a single candidate group. This approach ensures that items with similar
probabilities across multiple clusters are not arbitrarily assigned to one,
but instead considered within a broader yet structured context, leading
to more accurate and meaningful recommendations.

For this dataset, the merging lower bound threshold was set at 30%,
ensuring that elements with significant uncertainty are properly ac-
counted for. This threshold was determined based on the observation
that most items exhibit a strong tendency to belong to a single domi-
nant cluster, meaning they remain unaffected by the merging process.
However, a small subset of cases displays high uncertainty, where an el-
ement has relatively balanced probabilities across multiple clusters. By
setting the threshold at 30%, the model captures these ambiguous cases
effectively.

Considering a scenario where an element’s cluster membership prob-
abilities are 0.3, 0.3, 0.2, 0.1, with all other clusters summing to 0.1. In
this case, it is reasonable to assume that all four clusters contain poten-
tially relevant similar elements. However, in a scenario where an element
has a strong primary cluster membership (e.g., 0.8, 0.1 with all others
summing to 0.1), merging multiple clusters would be less justified.

4.1.4 Nearest Neighbors Selection

Given a query element x, the task consists in determining the k most
similar elements from the restricted candidate pool identified by GMM.
This is done using the KNN algorithm, involving the following steps:
first, the distance between x and each element in the candidate pool is
computed, then those distances are sorted in ascending order, and finally
the top k elements, with smallest distances, are selected. The Euclidean
distance is used as the similarity metric of choice; ensuring consistency
with UMAP, which was used in the dimensionality reduction step. Since
UMAP’s low-dimensional space is defined using Euclidean geometry,
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using the same metric in the ranking phase maintains coherence between
the embedding process and the retrieval mechanism.

4.2 Experimental Setup and Results

4.2.1 Training Strategy

The model underwent extensive parameter tuning to optimize clustering
performance.

The training strategy was designed to enhance the model’s ability to
cluster elements effectively. A key component of this approach was the
embedding method. In this case, UMAP was not just used for dimen-
sionality reduction but also for creating a meaningful Euclidean space
where all feature types could be represented coherently. To evaluate the
final clustering performance, a comprehensive pipeline was developed.
Since the problem is unsupervised, the Silhouette Score was chosen as
the guiding metric for hyperparameter tuning. The pipeline optimized
all stages of the clustering process, from UMAP embedding creation to
final clustering execution, ensuring that each component contributed to
a more coherent and effective grouping structure.

Figure 4.2: Similar product Recommendation: embedding and clustering

To better capture the underlying structure of the dataset, two sep-
arate UMAP models were trained, one dedicated to numerical features
and the other focused solely on categorical features. This distinction was
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introduced to preserve the integrity of the data structure and to mit-
igate potential topological distortions that could arise from differences
in scales and distributions. Since numerical and categorical features ex-
ist in fundamentally different metric spaces, combining them directly
in a single model could lead to imbalanced feature representation. In
such a scenario, certain features, particularly those with high variance,
might dominate the learned space, reducing expressivity of others and
distorting the overall vector space structure. The decision to learn sep-
arate embeddings ensures that each data type is processed using the
most appropriate similarity metric, leading to a more meaningful and
interpretable representation of the data. Additionally, training distinct
models allows for independent hyperparameter tuning, optimizing the
representation of each feature type and improving the clustering quality.

Once the two UMAP embeddings are learned, they are fused into a
single fuzzy topological representation, which is then embedded into a
low-dimensional Euclidean space.

4.2.2 Hyperparameters Optimization

A random search approach was employed to optimize the various em-
bedding parameters. The best hyperparameters identified through this
process are summarized in Table 4.1. One of the key findings from this
search was the determination of the optimal latent space size, which was
established at 14 dimensions.

Numerical UMAP Categorical UMAP
n-components 14 14
n-neighbors 250 100
min-dist 0.231 0.282
num-epochs 411 490
metric manhattan rogerstanimoto
combination-method union
k-clustering 20

Table 4.1: UMAP best hyperparameters - silhouette 0.592
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This optimized configuration significantly enhanced clustering perfor-
mance. The silhouette score improved substantially. Without UMAP
embeddings, clustering yielded a silhouette score of 0.193. However,
after incorporating the optimized UMAP transformation, the score in-
creased to 0.592, indicating a far more cohesive grouping of data points.

Following this, a secondary parameter search was conducted to refine
the settings for the Gaussian Mixture Model (GMM) clustering algo-
rithm. The best configurations for GMM, presented in Table 4.2, fur-
ther enhanced clustering effectiveness. With these optimized settings,
the silhouette score reached its peak at 0.653. The optimal number of
clusters for the dataset was determined to be 22.

n-components 22
covariance-type full
tol 0.001
init-params k-means++

Table 4.2: GMM best hyperparameters - silhouette 0.653

For the last step of nearest neighbors scoring, no training is necessary.
Having at hand the pool of generated candidates, the only operation
needed is to measure the Euclidean distance between the query element
and each candidate. The k elements having shorter distance to the query
element are selected as proposals.

4.2.3 Results

Follow some examples of query and their recommended similar elements.
The results presented in Table 4.3 illustrate the system’s effectiveness

in detecting and contextualizing outliers related to access numbers. In
this particular case, the query outlier corresponds to a 50% increase in
patient visits to a specific doctor within a particular ASL (local health
authority) during May 2024. This deviation is flagged as anomalous due
to its significant divergence from historical patterns. The recommenda-
tions maintain a high level of contextual relevance, as they all refer to the
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Query element
analysis event dimensions_keys dimensions measures_keys measure ref_val outlier_score diff_norm time

contextual SDO cod_azienda |
cod_medico_base 902 | XXX num_ricovero 19 13.66 26.94 6.67 2024-06-01

Recommendations
analysis event dimensions_keys dimensions measures_keys measure ref_val outlier_score diff_norm time

contextual SDO cod_modalita_ero |
cod_tipo_drg 6 | C num_ricovero 12 5.44 37.66 8.21 2024-05-01

contextual SDO cod_modalita_ero |
cod_ambito 6 | 901 num_ricovero 11 4.3 39.30 8.32 2024-05-01

contextual SDO cod_cittadinanza |
cod_medico_base 100 | YYY num_ricovero 17 10.71 34.11 7.86 2024-07-01

contextual SDO cod_azienda |
cod_medico_base 902 | XXX num_ricovero 17 11.64 27.03 6.69 2024-08-01

contextual SDO cod_diagnosi_pri |
cod_modalita_dim 653 | 02 num_ricovero 11 3.62 36.67 9.24 2024-06-01

Table 4.3: Top-5 Recommendations for outlier concerning number of access

number of accesses while remaining within the same analysis type (con-
textual) and event type (SDO). However, rather than providing identical
cases, the system expands the scope by suggesting similar anomalies in
slightly different domains. Each recommended case also exhibits a com-
parable increase in access (around 50%) and falls within a similar time
frame.

This suggests an accurate analysis of the phenomena: investigating
the causes of this access variation can help technicians to understand the
presence of ongoing anomalous trends in the area, allowing for preventive
measures.

Query element
analysis event dimensions_keys dimensions measures_keys measure ref_val outlier_score diff_norm time

contextual SPA cod_prestazione |
cod_tipo_contatto 88992 | 1 imp_lordo 103.0 3.78 38.20 5.50 2024-06-01

Recommendations
analysis event dimensions_keys dimensions measures_keys measure ref_val outlier_score diff_norm time

contextual SPA cod_prestazione |
cod_tipo_contatto 88992 | 1 imp_lordo 103.0 3.50 38.31 5.51 2024-05-01

contextual SPA cod_prestazione |
cod_tipo_contatto 88992 | 1 imp_lordo 103.0 3.49 38.28 5.52 2024-04-01

contextual SPA cod_prestazione |
cod_tipo_contatto 88992 | 1 imp_lordo 103.0 2.70 38.58 5.56 2024-03-01

contextual SPA cod_prestazione |
cod_tipo_contatto 88992 | 1 imp_lordo 103.0 2.78 38.66 5.55 2024-02-01

contextual SPA cod_prestazione |
cod_tipo_contatto 88992 | 1 imp_lordo 103.0 2.57 37.50 5.57 2024-01-01

Table 4.4: Top-5 Recommendations for outlier concerning ticket price

The results in Table 4.4 highlight the system’s ability to detect and
contextualize pricing discrepancies in healthcare services. The query
outlier pertains to a significant mismatch in gross ticket price, where a
visit estimated at €3.0 was instead charged at €103.0. Such discrep-
ancies are not uncommon in healthcare settings. The most likely causes
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include nationwide service price variations or human errors in price en-
try. Regardless of the underlying reason, such inconsistencies require
careful investigation to ensure financial and procedural coherence.

The recommendation system assists in this process by identifying five
additional cases that closely resemble the query scenario. Notably, all
proposed cases exhibit the same type of anomaly: a significant over-
charge for the same type of visit (n.88992), but occurring in different
past months. This pattern suggests that the issue has persisted over
time, remaining undetected and unaddressed due to the rarity of the
visit itself, which occurs only a few times per month.

By surfacing these past occurrences, the recommendation system pro-
vides users with immediate awareness of a long-standing issue, making it
easier to assess whether the pricing error is systematic or isolated. This
historical perspective is particularly valuable, as it enables healthcare
administrators to trace the origin of the anomaly, implement corrective
actions, and prevent further instances of incorrect billing.

Query element
analysis event dimensions_keys dimensions measures_keys measure ref_val outlier_score diff_norm time

puntuali SDO
cod_modalità_ero |
cdo_classe_pri |
cod_modalita_dim

88992 | A | 02 gg_preoperatorie 17 1 4.47 7.93 2024-10-25

Recommendations
analysis event dimensions_keys dimensions measures_keys measure ref_val outlier_score diff_norm time

puntuali SDO
cod_azienda_res |
cdo_classe_pri |
cod_modalita_dim

90203 | A | 02 gg_preoperatorie 16 1 3.53 7.44 2024-10-09

puntuali SDO cdo_classe_pri |
cod_modalita_dim A | 02 gg_preoperatorie 17 1 4.52 7.93 2024-10-25

puntuali SDO
cod_citta |
cdo_classe_pri |
cod_modalita_dim

100 | A | 02 gg_preoperatorie 16 1 4.16 7.42 2024-10-09

puntuali SDO
cod_citta |
cdo_classe_pri |
cod_modalita_dim

100 | A | 02 gg_preoperatorie 17 1 4.45 7.93 2024-10-25

puntuali SDO
cod_azienda_res |
cdo_classe_pri |
cod_modalita_dim

90203 | A | 02 gg_preoperatorie 17 1 3.77 7.95 2024-10-25

Table 4.5: Top-5 Recommendations for outlier concerning preoperative delay time (days)

Table 4.5 presents the system’s recommendations for an outlier re-
lated to surgical waiting times for patients classified under priority class
’A’. Normally, patients in this category are scheduled for surgery within
one day, yet the detected outlier indicates a delay exceeding two weeks.
Such a significant deviation raises concerns about potential inefficiencies,
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bottlenecks, or administrative issues in the scheduling process.
The recommendation system suggests five additional cases with sim-

ilar characteristics: same priority class and time frame. By analyz-
ing these recommendations, healthcare administrators can determine
whether the delays are isolated to specific hospitals or widespread across
multiple facilities. Notably, two out of the five recommendations point
to a particular facility (n.90203), suggesting that the issue may be con-
centrated in that specific location.

This insight enables hospital administrators to conduct targeted in-
vestigations to identify the root cause of the delays and implement
corrective actions accordingly. By leveraging these recommendations,
decision-makers can take a proactive approach to reducing wait times
and ensuring that urgent surgical cases are handled promptly.

4.2.4 Expert Assessment

The model revealed valuable insights over the data, demonstrating its
ability to generate meaningful recommendations. To assess how well the
model’s proposals aligned with domain knowledge, a validation process
was conducted with an expert. Since labeled data indicating the most
appropriate outliers recommendations for a given query were unavail-
able, conducting an extensive evaluation was impractical. Instead, a
preliminary validation phase was designed with the active participation
of healthcare experts involved in the project.

A single expert initially participated in the evaluation, reviewing ten
randomly selected cases. For each case, the expert was presented with
one query element and five recommended items generated by the model.
The task required the expert to classify each recommendation as either
coherent or not coherent with the query element, resulting in a binary
evaluation.

The results were promising: in most cases, the expert deemed three
out of five recommendations as coherent, with one case where all five
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recommendations were validated. The average validation rate was 3.4

out of 5, indicating that the majority of the recommendations aligned
with expert expectations.

To gain further insights, the test was also conducted with three ad-
ditional participants who were not from the healthcare domain. Their
assessments resulted in a slightly higher validation rate of 3.6 out of 5.

4.3 Methodology Evaluation

Recognizing the limitations of the initial validation approach: the small
sample size and the limited number of expert reviewers, a more extensive
evaluation method was adopted. Given the lack of labeled data and
the impracticality of manually verifying recommendations at scale, the
testing instead focused on validating the internal components of the
model, particularly the clustering process.

Since clustering directly influences candidate selection for recommen-
dations, it is crucial to determine whether the clusters are coherent with
domain knowledge. If the clusters fail to accurately group similar out-
liers, then the recommendations generated from them will also lack re-
liability.

To address this, a synthetic data generation approach was explored.
The idea was to use Gaussian Mixture Model (GMM) generative prop-
erties to create synthetic samples that follow the same distribution as
the real data. These labeled synthetic samples would then serve as a
benchmark for evaluating clustering coherence.

However, this approach led to an issue of self-fulfilling prophecy.
Since the synthetic data inherently conformed to the GMM-generated
distributions, any clustering performed on it would naturally align with
the original clustering structure. As a result, testing with this method
became meaningless, as it merely reconfirmed the model’s assumptions
rather than providing an independent evaluation of clustering validity.
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4.3.1 Validation Process

The focus moved from the direct evaluation of the clustering output
towards validating the methodology itself. The guiding intuition behind
this approach was that if the framework is sound, then the resulting
clusters could be trusted as well.

To test the soundness of the methodology, the validation process
draw inspiration from knowledge-driven validation and semi-supervised
clustering validation [25]. This approach ensures that the clustering
process adheres to meaningful domain rules, making the results more
interpretable and aligned with expert insights.
The validation methodology is structured around the following key steps:

1. Rule Creation: A set of domain-specific rules is defined to explore
different aspects of the dataset. These rules are crafted based on
expert knowledge, ensuring they reflect real-world relationships and
respect patterns within the data.

2. Cluster Consistency Check: The existing clusters are evaluated
against these rules to determine whether they respect the prede-
fined domain structure. The ideal scenario would be that elements
within a given cluster consistently adhere to a single rule, indicat-
ing that the clustering process effectively captures meaningful data
structures.

3. Re-Clustering for Rule Enhancement: The subset of elements that
matches a specific rule set are isolated from the whole dataset and
re-clustered to assess whether the new clusters improved rule rep-
resentativeness. This step provides insights into whether the clus-
tering methodology is capable of refining the groupings based on
the embedding characteristics of the data.

This framework, designed to validate the methodology, can also serve
as a tool for domain experts to explore and interpret the dataset. By
systematically investigating how different aspects of the data align with
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domain knowledge, the process enables both generalized insights and
the identification of highly representative subsets.

This validation approach not only helps in understanding which do-
main specific aspects are naturally identified by clustering, but also goes
further by assessing whether the underlying embedding is truly repre-
sentative of the data structure. Step three in the validation process
is specifically designed to test this aspect. In some cases, after apply-
ing a re-clustering procedure on a subset of elements aligned with a
given rule, the newly formed groupings may better align with domain
expectations. If this occurs, it suggests that the UMAP embedding
successfully captures the rule-based subdivision, meaning that the data
inherently supports coherent clustering that aligns with expert-defined
domain rules.

The methodology should be considered reliable under two key prop-
erties:

(I) Cluster coherence with domain rules : The clusters should natu-
rally align with known domain rules (Step 2).

(II) Embedding reliability : The underlying representation should al-
low for meaningful rule-based subdivisions (Step 3).

These two aspects can be independently validated by experts, en-
suring that the model’s decision-making aligns with real-world patterns.
Furthermore, the framework’s flexibility allows experts to test reliability
at different levels of detail, from broad generalizations to highly specific
use cases.

4.3.2 Purity Metric for Clustering Validation

The concept of purity as a clustering validation metric is inspired by
existing measures that evaluate the alignment between clustering par-
titions and external constraints, such as class labels or domain rules.
Traditional purity metrics [26] assess how well clusters correspond to
ground-truth categories, while homogeneity scores [27] measure whether
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clusters contain only elements of a single class. Our approach extends
these ideas by defining purity with respect to rule-based constraints,
similar to validation techniques in constrained clustering [28][25]. Specif-
ically, our metric quantifies the consistency of a clustering solution with
respect to predefined rule set, measuring their alignment.

Purity takes values in the range [0, 1], where:
P (ri) = 0 indicates that the rule is entirely misaligned with the

clustering, meaning no cluster predominantly adheres to the rule.
P (ri) = 1 indicates perfect alignment, meaning one or more clusters

are fully contained within the rule.
Figure 4.3 provides a graphical representation of this concept.

Figure 4.3: Purity metric for clustering validation

Purity of a rule ri can be formally defined as:

P (ri) =
1

|C(ri)|
∑

j∈C(ri)

|Ri ∩ Cj|
|Cj|

where:
P (ri) is the purity score of rule ri.
C(ri) is the set of clusters that contain at least one element satisfying
rule ri.
Ri is the set of elements satisfying rule ri.
Cj is the set of elements belonging to cluster j.



66 CHAPTER 4. SIMILAR PRODUCTS RECOMMENDATIONS

This metric provides an interpretable measure of clustering consis-
tency with respect to domain rules. Higher purity values indicate a
stronger agreement between clusters and predefined rules, thereby val-
idating the clustering structure against expected domain constraints.
Additionally, purity serves as a performance measure for evaluating the
overall effectiveness of the clustering model. By analyzing purity scores
across multiple rules, we can gain insights into which aspects of the
data structure are effectively captured and where improvements may be
necessary.

4.3.3 Evaluation Results and Considerations

This section provides a series of rule sets tested and considerations from
the validation procedure. To test the overall methodology coherence of
the clustering procedure, different levels of details are investigated: from
broad generalizations to highly specific use cases.

Broad Investigation Subdivision by measures is a broad investigation
of clustering. It’s expected that not all rules have completely separated
coverage because the elements that define the rule are not specific.

rules = {
’0’: measures == ’tempo_attesa_1disp’,
’1’: measures == ’gg_postoperatorie’,
’2’: measures == ’imp_lordo’

}

Each rule includes respectively [4656, 3048, 2583] elements.

0 1 2
Clustering 0.80 1.00 0.58
Re-Clustering 0.68 1.00 1.00

Table 4.6: Purity score: subdivision by measures
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Analyzing the purity score, we observe that the original clustering
successfully separates gg_postoperatoria perfectly from the other mea-
sures. Additionally, tempo_attesa_1disp also shows a fairly distinct
division, with a purity score of 0.80, indicating that this rule includes
many clusters that are not shared with other rules. Specifically, clusters
containing elements with tempo_attesa_1disp do not contain elements
related to gg_postoperatoria or imp_lordo, although there is a small
overlap with elements from clusters shared among multiple measures.

This effect becomes even more pronounced when considering imp_lordo.
In this case, the purity score is 0.58, suggesting that nearly half of the
clusters involved in this rule are shared with at least one other rule.

For gg_postoperatoria, the division remains intact even after perform-
ing a re-clustering, confirming the correct distribution of data within the
UMAP subspace, as supported by a purity score of 1. For imp_lordo, de-
spite not being perfectly separated in the original clustering, it achieves
a purity score of 1, indicating that the model has successfully abstracted
information consistent with the subdivision by measures. Overall, the
purity score reaches 1 for two out of the three rules, while the third rule
still has a relatively high score (0.70). This suggests that the proposed
methodology effectively captures the intended separation based on the
predefined rule set.

Mixed Rule Set Investigation In this case, the rules include both generic
criteria for measures and more specific conditions based on time periods.

rules = {
’0’: outlier_score > 30 and measures == ’num_accessi’

and analysis_type == ’puntuali’,
’1’: measures == ’num_ricovero’

and analysis_type == ’contestuali’
and (time_dimensions_vals.str.contains(’-04-’) or
time_dimensions_vals.str.contains(’-05-’) or
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time_dimensions_vals.str.contains(’-06-’))",
’2’: measures == ’num_accessi’

}

Each rule includes respectively [624, 277, 5856] elements.

0 1 2
Clustering 0.45 1.00 0.70
Re-Clustering 1.00 1.00 0.70

Table 4.7: Purity score: mixed subdivision by measures and time period

Rule 1 num_ricovero is perfectly respected, with a purity score of
1 indicating the model ability to distinguish distinct clusters for this
specific measure.

Rule 2 again, on a measure num_accessi, is partially respected. A
purity score of 0.70 suggests that the model can distinguish some clear
clusters for this rule, but not exclusively.

Rule 0 is computed over measure num_accessi and other filtering
criteria. Here the re-clustering evaluates a purity score of 1, in contrast
to the performance of the original model assessing a purity score of 0.45.
Even though this rule is not perfectly recognized by the initial clustering,
the underlying data characteristics that define it are preserved within
the embedding. This is confirmed by the re-clustering process, which
achieves a score of 1.

Specific Investigation Only two rules are evaluated, investigating the
same rule with a slight variation in the outlier_score. Rule 0 consid-
ers elements with outlier_score < 50. Rule 1 considers elements with
outlier_score in the range [50, 70].

rules = {
’0’: measures == ’gg_postoperatorie’

and analysis_type == ’puntuali’
and dimensions.contains(’cod_azienda_res’)
and outlier_score < 50,
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’1’: measures == ’gg_postoperatorie’
and analysis_type == ’puntuali’
and dimensions.contains(’cod_azienda_res’)
and outlier_score > 50,

}

Each rule includes respectively [529, 7] elements. Rule 0 achieves a high

0 1
Clustering 0.99 0.02
Re-Clustering 0.99 1.00

Table 4.8: Purity score: specific investigation exploiting one parameter

purity score of 0.99, indicating that the model effectively groups elements
within this rule, with minimal overlap with other rules. Therefore only
a small number of elements fall within Rule 1, having a size of only 2%
of Rule 0).

A purity score of only 0.02 indicates the elevated complexity of the
model to identify this rule. The primary reason for this low score is
the small size of Rule 1, which contains only 7 elements. The original
clustering algorithm struggles to isolate such a small subset into a dis-
tinct cluster, indicating its tendency to find global patterns rather than
highly specific ones. In this case, no single cluster (or a combination
of clusters) is uniquely representative of Rule 1, demonstrating that the
rule is not “pure” in terms of clustering.

Therefore, Rule 1 benefits significantly from the re-clustering process,
showing a much sharper distinction between clusters. This suggests that
the data embedding inherently supports meaningful segmentation, even
in this specific scenario, as indicated by the purity score raised to 1. The
improved ability of the re-clustered model to capture subtle differences
is largely due to the reduced dataset size, which simplifies intersections
between elements and makes rule-driven distinctions more apparent.
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4.4 Conclusive Remarks

Considering the obtained results and expert feedback, it is evident that
the proposed recommendation system effectively fulfills its intended ob-
jectives. The findings demonstrate that the UMAP-based method suc-
cessfully captures the spatial distribution of data, enabling an intuitive
and structured clustering of similar elements within a low-dimensional
space. This allows for a meaningful identification of correlated outliers,
surfacing patterns and anomalies that might otherwise remain unde-
tected.

A key advantage of this approach lies in its ability to address the lim-
itations of traditional ranking-based dashboards, which were discussed
in the previous chapter. Given the high volume of data processed, the
ranking system may struggle to highlight each relevant outlier, especially
those that are neither recent nor highly ranked. As a result, significant
but less obvious anomalies may be overlooked.

While homepage-ranked data provide a useful starting point for de-
tecting anomalies, deeper investigation is required. The proposed similarity-
based recommendation system enhances this analytical process by allow-
ing users to detect, compare, and investigate related elements, facilitat-
ing their understanding. This ensures that important insights are not
lost due to ranking biases and empowers decision-makers with a broader,
more contextualized view of anomalies within the dataset.



Chapter 5

Personalized Recommendations

This section explores a different approach to recommendations, shift-
ing the focus from finding similar outliers, as discussed in the previous
chapter, to personalized suggestions tailored to the user’s interests. This
method aims to function as a "Recommended for You" feature, similar
to those seen on streaming platforms, where suggested items are based
on past interactions with the system.

Given that the system serves a diverse user base, each with specific
business needs and analytical goals, this tool is designed to adapt to
individual preferences. It will be seamlessly integrated into the home-
page as a side panel, complementing the ranking displayed on the main
dashboard. With this addition, users can discover targeted items that
align with their interests while still benefiting from the broader ranking
mechanism.

By incorporating personalized recommendations, this tool enhances
user engagement and efficiency, helping analysts quickly identify relevant
outliers without needing to manually sift through large datasets. This
not only streamlines the investigative process but also provides a sense
of personalization, making the platform more intuitive and user-friendly.

Since the system does not currently store chronological data of user
interactions or preferences, a synthetic dataset is used to train the model.
This phase serves as an exploratory stage to assess the feasibility and
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the expected effects of implementing personalized recommendations in
the actual system.

The primary goal is to validate the methodology before committing
to a full-scale implementation. If successful, the next step will involve
developing an infrastructure for data collection, enabling real-time track-
ing of user interactions.

In Chapter 2, we outlined the typical stages of a recommendation
system: candidate generation, scoring, and re-ranking. For this exper-
iment, the initial candidate generation phase is deliberately bypassed
to focus on the effectiveness of the scoring and ranking processes in
proposing relevant elements. This decision allows for a more focused
evaluation of the model’s ability to assess and rank items based on user
interaction history. However, the candidate generation step remains a
modular component that can be seamlessly integrated at a later stage,
enhancing the system’s overall pipeline without requiring fundamental
changes to the existing framework.

5.1 System Description

Given the sparsity of the dataset, which consists of many outliers but
relatively few interactions, user interests are modeled based on viewed
(clicked) elements. This approach is commonly used in recommendation
systems, particularly when explicit feedback are limited. Engagement
signals serve as implicit indicators of preference [29].

At this stage, user interests are simply defined by past interactions.
From these interactions, additional informative features can be extracted,
such as topics of the viewed items and distribution of interactions over
time.

Therefore, the task objective is to estimate the probability of a user
engaging with a particular item based on their specific interaction his-
tory. This enables the system to recommend relevant outliers that align
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with individual user preferences, enhancing their discovery process. The
model treats the problem as a binary classification task, estimating the
compatibility likelihood between a user history and one outlier item.
Figure 5.1 explains graphically the architecture.

Figure 5.1: Personalized Recommendation System - model architecture

The model has three main components: item embedder, user-history
embedder and the final binary classifier combining user history and
items.

5.1.1 Item Embedding

This component is essential for embedding input outliers into a suit-
able vector space. The natural choice was to leverage the UMAP-based
encoding, which has already demonstrated strong performance in the
clustering scenario (as discussed in Chapter 4).

Each outlier processed by this pipeline is embedded using UMAP,
mapping it into a 14-dimensional Euclidean space. This step is indeed
useful for mapping a multivariate mixed dataset with both numerical
and categorical features into a cohesive numerical representation. For a
detailed explanation of the UMAP encoding process, refer to the previ-
ous chapter 4.1.2.

5.1.2 User History Embedding

This embedder is the most critical component among the two, as it is
responsible for creating a meaningful representation of the user’s history.
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The model used for this task is an autoencoder, enhanced with spe-
cific mechanisms to explicitly handle recurrent interests and outlier re-
cency 5.2.

The autoencoder was chosen among the plethora of different embed-
ding models due to its ability to learn compact and robust embeddings,
ensuring that user interaction patterns are captured effectively even in
an unsupervised scenario.

Figure 5.2: User History embedding model - autoencoder

Autoencoder An autoencoder architecture provides an efficient frame-
work for generating low-dimensional embeddings through unsupervised
dimensionality reduction by projecting high-dimensional input data into
a latent vector space. The model is divided into a two-stage process:
encoding and decoding.

The encoder component performs a non-linear transformation φ :

RD → Rd (where d ≪ D) that maps the input to a compressed repre-
sentation z in the latent space. This mapping optimizes the preservation
of essential structural and semantic information while discarding redun-
dant features.

The decoder subsequently attempts to reconstruct the original input
from this compressed representation through an inverse mapping ψ :

Rd → RD.
Training is driven by minimizing a reconstruction loss L(x, ψ(φ(x))),

implemented as mean squared error, which ensures that z preserves crit-
ical information necessary for accurate reconstruction.
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The resulting embeddings z inhabit a continuous, structured manifold
that captures disentangled and data variation, making them suitable
for downstream tasks such as clustering, visualization, or as input to
supervised models.

To make the model embed also information regarding the ordering of
the items within the chronological history and the importance of some
elements over others, two additional aspects are added to the embedding
module.

Gated Recurrent Unit - GRU The Gated Recurrent Unit (GRU) is a
recurrent neural network (RNN) variant specifically designed to address
the challenges of modeling temporal dependencies in sequential data. In
this scenario, the network is used as a component inside the encoder
pipeline to model temporal dependencies.

Unlike traditional RNNs, which struggle with vanishing gradients
and limited memory over long sequences, GRUs introduce gating mech-
anisms to dynamically regulate information flow across time steps.

The update gate zt and the reset gate rt enable the GRU to selectively
retain or discard information from previous states, allowing it to capture
both short-term and long-term dependencies effectively.

The update gate zt determines the balance between preserving the
previous hidden state ht−1 and incorporating new information from the
current input xt, while the reset gate rt controls the influence of ht−1 on
the candidate hidden state.

GRU has been chosen over Long Short-Term Memory (LSTM), an-
other popular gated architecture, for its simpler structure with fewer
gates, making it easier to train and faster to run compared to LSTMs
[30].

Multi Head Self Attention Self-attention initially introduced by Vaswani
in "Attention is all you need" [31], is commonly used in various AI mod-
els, one over all: transformers. This mechanism allows each element in
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a sequence to attend to all other elements, capturing dependencies and
relationships regardless of their distance in the sequence. Unlike GRUs,
which process information sequentially, self-attention operates on the
entire sequence simultaneously.

Given an input sequence represented as a matrix X ∈ Rn×d (where
n is the sequence length and d is the feature dimension), the model first
linearly transforms X into three different representations: Query matrix
(Q), Key matrix (K) and Value matrix (V), computed using learnable
weight matrices.

The attention scores between tokens are computed using scaled dot-
product attention:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

Here, QKT calculates the similarity between each token’s query and
all keys, and softmax normalizes these scores to determine how much at-
tention each token should pay to others. The scaling factor

√
dk prevents

extreme values, improving stability.

Instead of relying on a single attention operation, Multi-Head Self-
Attention splits the input into multiple subspaces and applies multiple
self-attention layers in parallel. If there are h attention heads, each
computes independent attention using different projection matrices, re-
sulting in multiple attention outputs:

headi = Attention(Qi, Ki, Vi)

where i represents different heads. The independent attention outputs
are then concatenated to produce the final representation.

In the context of outlier’s interaction histories, self-attention allows
the model to directly compare any inspected item with any other within
the sequence, regardless of when they occurred. This creates rich repre-
sentations that capture complex relationships between items.
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By combining these approaches, the embedder wants to capture both:
how items relate to each other and how preferences evolve over time.
The combination of these factors then undergoes standard linear layer
performing dimensionality reduction. Figure 5.2.

5.1.3 Binary Classifier

The recommendation task is formulated as a binary classification prob-
lem [32][33].
Given a user’s interaction historyH and a candidate outlier I, the model
predicts the likelihood that the user would find I relevant.

The model gets as input a concatenated vector [H; I], where H repre-
sents the user history embedding, dynamically updated as the user inter-
acts with the system, and I is the outlier embedding obtained through
UMAP.

A neural network processes this input, with a final sigmoid activation
function S(x) = 1

1+e−x responsible for converting the network output
into a probability score between 0 and 1. High values indicate strong
relevance, while lower values suggest the item is unlikely to be of interest.

The architecture consists of four fully connected layers that progres-
sively reduce the input dimensionality, allowing the model to extract
meaningful patterns while preventing overfitting. These layers are inter-
leaved with normalization and dropout layers, ensuring stable training
and improving generalization.

The model parameters are optimized to minimize a Binary Cross-
Entropy loss function, which minimizes the difference between the pre-
dicted probability and the actual user engagement labels.

BCE = −1

n

n∑
i=1

[yi log(pi) + (1− yi) log(1− pi)]

Where n is the number of observations, yi is the actual binary label
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(0, 1) of the i − th observation and pi is the probability of the i − th

observation to be in class 1.

Since the user history embedding evolves over time, this approach en-
ables the model to adapt its predictions to shifting interests, and ensures
that recommendations remain relevant as new interactions occur.

5.2 Dataset

As stated in the introduction of this chapter, no real user interaction
data are available for this task, necessitating the creation of a synthetic
dataset to simulate a realistic scenario of users engaging with the system.

5.2.1 User-History Generation

The most critical aspect of this pipeline is ensuring that user interac-
tion histories are coherent and reflect actual usage patterns. Each user
history is defined as the last n user’s interactions, representing the most
recently viewed items. A naive approach would involve selecting items
at random, but this method fails to capture the structured nature of
real interactions.

In real scenarios, users tend to focus on a restricted set of topics
based on their specific expertise or administrative responsibilities, mak-
ing a completely random selection unrealistic. To address this, user
histories are generated using insights from the previous clustering tech-
niques 4. The process begins by selecting a random item i from the
dataset, identifying its corresponding cluster ci, and performing a k-
nearest neighbors search starting from i. A set of k elements is selected
from its closest neighbors, and the process is repeated iteratively for
these new items. One important aspect is ensuring that all selected ele-
ments remain within the cluster boundaries. If a cluster lacks sufficient
items, a new random element is chosen from another cluster.
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This method preserves history coherence, following a similarity-driven
logic that aligns with real user behavior. The number of covered topics
remains limited through controlled cluster membership.

5.2.2 Users Definition and Generation

To ensure effective performance tracking in this synthetic and unsu-
pervised setting, the binary classifier has been trained on a restricted
number of users. This allows for better monitoring of model behavior
and evaluation of its capability to generalize across different user pro-
files. Three distinct user types, or personas, are defined to reflect real-
world interactions with the platform: administrative-oriented, medical-
oriented, and economic-oriented users. Each encapsulates a unique set
of interests.

For each persona type, three users are generated and carefully super-
vised to avoid inconsistencies.

Administrative-oriented users primarily focus on the number of ac-
cesses as a key measure, and dimensions such as facility codes, priority
access codes, service codes, and discharge modalities. User may focus
on a specific hospital, or maintain a broader field of view.

Economic-oriented users, on the other hand, refer to financial met-
rics, such as gross and net amounts, regional taxations, and variations
across specific time periods, often aligning with budgetary and regula-
tory constraints.

Medical-oriented users exhibit a keen interest in data related to hospi-
tals, doctors, services, and medical examinations, ensuring that insights
are tailored to healthcare-specific analytical needs.

Once these personas are defined, user generation followed a structured
approach. Each user is defined by its interaction history, meaning that
generating a new user equals to constructing an interaction sequence
constrained by predefined topics and content categories. This method
ensures that the synthetic dataset accurately models real-world patterns.
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5.2.3 Recommendation Dataset

For each of the nine users defined in Section 5.2.2, a set of 140 relevant
items is generated as described in 5.2.1. These items serve as the basis
for constructing the training, validation, and test datasets for the binary
classification task. Specifically, the first 100 interactions are allocated
to the training set, while the most recent 40 interactions are divided
between the validation set (20 items) and the test set (20 items).

To define each user, a history of past interactions is required. In
this framework, the user history is fixed at a length of 30 items. Con-
sequently, within the 100 training set items, the first 30 interactions
establish the initial user history, while the remaining 70 serve as posi-
tive item candidates. A sliding window approach is employed, where the
dynamic user history consists of the most recent 30 interactions, and the
subsequent item in the sequence is designated as the candidate outlier.

Figure 5.3: Dataset creation for Personalized Recommendations

Given the current user-history H0 and the candidate item I0 the cou-
pling [H0; I0] represents a positive instance. Since the recommendation
task is framed as a classification problem, the model also requires neg-
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ative samples for training, representing unrelated items.
Negative instances are generated by randomly selecting items from the
pool of non-relevant items (i.e., the dataset excluding the 140 initially se-
lected items). Consequently, negative samples [H0;N

1
0 ], [H0;N

2
0 ], [H0;N

3
0 ]

are generated to balance the training process.
The class distribution follows a 1:3 ratio, with negative samples out-
weighing positive ones. This weighting reflects the natural user inter-
action flow within the platform, where only a fraction of the displayed
items receive actual engagement. The ratio remains balanced enough to
prevent severe class imbalance, avoiding exaggerated discrepancies that
could lead to overfitting.

At this stage, the history window shifts forward by one position,
including the newly observed item I0. This process is iteratively repeated
until all the elements in the training set have been processed. As a result,
the final training dataset consists of 630 positive and 1890 negative
instances.

The last 40 selected items are divided into two sets of 20 each, forming
the validation and test sets. These sets are constructed similarly to the
training set, with one key difference: the user history is not generated
from scratch but instead evolves from the history established during
training.

This approach ensures that the test instances share partially the his-
tory with the training instances, mirroring real-world scenarios where
user interactions continue to evolve between consecutive model re-trainings
in a production environment.

5.3 Experimental Setup

5.3.1 User-History Embedder

The experiment focuses on training the autoencoder model responsible
for user-history embedding. The objective is to develop a model capable
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of learning a latent representation of a user’s interaction history, com-
pressing a variable-length sequence into a single 32-dimensional vector.
The training dataset consists of 250 batches, each containing 32 user
histories, with each history comprising 30 outlier items. This results in
a dataset with a final shape of [250, 32, 30]. Each user-history is gener-
ated as indicated in the previous section 5.2.1, but without any further
supervision.

The model was trained until the loss function, measured by mean
squared error (MSE), converged. The training process stabilized after
approximately 120 epochs with a learning rate of 0.001.

For what concerns the internal layers, the hyperparameter setup is
described in Table 5.1.

MHSA
Number of heads 2
Dropout 0.05

GRU
Hidden dimension 64
Number of layers 4
Dropout 0.05

FF
Latent dimension (1,32)

Table 5.1: Hyperparameters for User-History embedding model - autoencoder

Figure 5.4 illustrates the loss improvement throughout training, reach-
ing a minimum value of 6.62. This result represents the best configu-
ration obtained after a random search over different hyperparameter
settings. The model is trained on a diverse set of user histories, en-
abling it to effectively learn how to compress interaction sequences into
meaningful latent representations.

The nine predefined personas are used as a reference to assess the
quality of these embeddings. Ideally, the best embedding configura-
tion should ensure that similar personas produce embeddings that are
closer to each other, while those with different interests remain more
distinct. This evaluation is conducted using cosine similarity, a widely
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Figure 5.4: MSE loss for training User-History Embedder

used metric for comparing high-dimensional vectors. Cosine similarity
measures the cosine of the angle between two vectors. A value of 1

indicates perfect alignment (high similarity) and a value of 0 indicates
complete divergence. Analyzing these similarities, it is possible to deter-
mine whether the model successfully captures the underlying patterns
within user interaction histories.

The upper triangular matrix in Figure 5.5 summarizes these dis-
tances. It is evident that users with similar histories, particularly those
focused on administrative and economic topics, exhibit strong similari-
ties in their history embeddings. For most users within these categories,
the learned embeddings correctly cluster together, reflecting their shared
interests.

However, for users categorized under medical personas, the expected
similarity pattern is less clearly defined. In several cases, embeddings
for medical-oriented users are distant from each other. Sometimes those
share even higher similarity with administrative or economic personas
than with medical ones. A notable example is "medical_03", whose
embedding appears more aligned with users from the administrative
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Figure 5.5: Cosine similarity among computed User-History Embeddings

and economic categories rather than with other medical-focused users.

A possible explanation for this discrepancy is that medical-oriented
outliers belong to a broader and more diverse underlying clustering
structure, leading to greater dispersion in the vector space. Unlike
administrative or economic-oriented outliers, which tend to form more
compact and well-defined groups because of their restricted features vari-
ability (limited dimensions and restricted range of possible measures),
medical-related cases may exhibit a far wider spectrum of feature val-
ues. As a result, different users with medical interests may assume
embeddings that are not necessarily close to each other, despite sharing
a general thematic focus.
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5.3.2 Binary Classifier Recommender

The binary classifier model serves as the core of the recommendation
system. To better assess its performance in this synthetic setting, it is
trained on a limited set of users, allowing for a controlled evaluation of
its behavior. Specifically, the training set is composed of three users per
persona type, resulting in a total of nine users. 2520 pairs of user-history,
item [H; I] are utilized. This setup ensures a balanced representation
of different interaction patterns across personas. The finalized hyperpa-
rameter configuration is expressed in Table 5.2.

Binary Classifier
Number of layers 4
Dropout 0.1
Batch size 64
Learning rate 0.001

Table 5.2: Hyperparameters for final Binary Recommender Classifier model

To mitigate overfitting, the training process is guided by the valida-
tion loss forcing the training to stop after 10 epochs, to prevent excessive
memorization of the training data. The loss function showed a notice-
able decrease in the first epochs but exhibited minimal improvement in
the latest iterations, Figure 5.6.

To evaluate the model’s performance, standard classification met-
rics are computed: accuracy, precision, recall, and F1 score (Table 5.3).
These metrics are calculated using a macro-average approach, which
provides an equal-weighted comparison between classes without being
influenced by class imbalances. This approach results in a stricter eval-
uation, ensuring that both positive and negative predictions are consid-
ered with equal importance.

The model demonstrated strong performance during testing, Table
5.3, successfully distinguishing between relevant and irrelevant items for
all three user personas, Table 5.4. Overall, the model achieved an F1
score of 0.875 on the test set.

The primary challenge during evaluation was correctly identifying
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Figure 5.6: Validation Loss and F1 Score over epochs

Metric Overall Positive Negative
Accuracy 0.905 0.905 0.905
Precision 0.871 0.800 0.942
Recall 0.879 0.828 0.930
F1 Score 0.875 0.814 0.936

Table 5.3: Binary Classifier performance metrics over test set: overall (average macro),
and per class

true positive labels. A detailed analysis of per-label performance re-
vealed a notable disparity: the F1 score for positive-labeled items was
significantly lower at 0.814, while the negative class achieved a signifi-
cantly higher score of 0.936. This slight unbalance was expected due to
the different ratio in the training set, weighting more the negative class.

However, this limitation is of minor concern given the underlying
business objective. The primary aim is to prevent the proposal of in-
coherent outliers, rather than strictly identifying the most optimal one.
Determining what constitutes a relevant proposal is inherently subjec-
tive, as user interests and priorities can vary significantly. Conversely,
identifying irrelevant elements is a more straightforward task, as these
are typically characterized by a clear lack of alignment with the user’s
past interactions and preferences.
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Administrative Economic Medical
Positive Negative Positive Negative Positive Negative

Accuracy 0.933 0.933 0.908 0.908 0.895 0.895
Precision 0.797 0.993 0.880 0.915 0.753 0.953
Recall 0.983 0.916 0.733 0.966 0.866 0.905
F1 Score 0.880 0.953 0.800 0.940 0.806 0.928

Table 5.4: Metrics for each persona in the test set, computed per class.

Table 5.4 analyzes the performance across different personas, reveal-
ing the overall model strength. The user with administrative interests
is the best performing one, reflecting the strong embedding quality for
this user type as seen in Figure 5.5. This result aligns with the well-
clustered nature of administrative user histories, where interactions tend
to be tightly grouped. All users in fact focus on elements related to the
same measure: "number of access." Despite variations in dimensions and
time periods, the model successfully identifies the underlying similarities
between these outliers, contributing to its strong performance.

In contrast, the economic and medical-oriented users exhibit slightly
less consistent performance, especially for recall and F1 score. Since
these personas share by design fewer similarities among each other,
their embeddings result more sparse compared to those of administrative
users, Figure 5.5. As a consequence, the model faces greater difficulties
in establishing clear classification boundaries. Despite these variations,
the overall metrics remain encouraging, demonstrating the potential for
a coherent recommendation system. In this setting, the business objec-
tive is not to maximize metrics, but to propose coherent elements: thus
avoid proposing unrelated outliers. Thanks to the high performance ob-
tained for the negative instances, it can be affirmed that only relevant
and compliant outliers would be proposed at recommendation time.

5.3.3 Recommendation Results

Since no restricted candidate pool is available, the recommender system
evaluates all items in the dataset (except for those the user has already
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interacted with). While this approach is not ideal for a fully deployed
system, it serves well for these initial research stages.

When generating the top k recommendations for a user, the model
assigns to each candidate item a likelihood score reflecting the relevance
of the pairing between the user-history embedding and the candidate
item.

The results are then ranked in descending order, with the top five
highest-scoring items selected as personalized recommendations, ensur-
ing that only the most relevant suggestions are presented to the user.
Follow a set of examples to visually assess the model potentials.

Figure 5.7 and 5.8 present the proposed recommendations for two test
users. At the top of each example, an extract of the user’s actual history
is displayed, while the bottom section contains the five recommendations
generated by the model.

Figure 5.7: Administrative-oriented user: personalized recommendations output proposal

For the administrative user (Figure 5.7), the history consists of out-
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liers all related to the same topic: the number of accesses to a specific
facility within a one-month period. Notably, the user inspects these ele-
ments in chronological order, with the most recent data appearing last.
The outlier scores of these elements are relatively high, suggesting that
the user’s focus is directed toward the most critical cases flagged by the
system.

The generated recommendations align well with the user’s past inter-
actions, as the proposed elements follow the same structure, reflecting
monthly access data for a specific facility. Additionally, they pertain to
the same time periods as previously viewed items, revealing the model’s
ability to identify temporal patterns coherently.

Figure 5.8: Medical-oriented user: personalized recommendations output proposal

Figure 5.8, on the other hand, presents an example for a medical user,
whose interests, based on its history, are more diverse and less sharply
defined than in the previous case. This user focuses on different aspects
of the medical field, particularly the monthly number of hospitalizations
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and the number of hospitalization days before and after surgery. Unlike
the administrative user, this one does not prioritize recent outliers but
rather the most severe ones. The chronological ordering of inspected
items follows the decreasing value of the feature outlier score, indicating
a strong interest in cases with high variance compared to usual patterns.

Generating relevant recommendations in this scenario is inherently
more complex due to the greater variability in item topics. Despite this
challenge, the model successfully provides a coherent set of outliers, with
only minor biases. Specifically, the recommended items align with the
investigated measures, except for one instance where the model suggests
an item related to the amount owed by the region for a specific priority
service (never seen during past interaction). The dimensions covered
in the recommendations are more sparse due to the broader scope of
analysis, yet they remain generally aligned with the user’s areas of in-
terest. Looking at the outlier score in more detail, it can be noticed
that it closely follows the user’s previous exploration patterns. Notably,
the first proposed items relate to hospitalization numbers: the most fre-
quently occurring outliers in the user history. This highlights the model’s
ability to recognize recurrent patterns, beyond merely temporal trends,
revealing its strength in identifying meaningful recommendations even
in highly variable contexts.

The model performs in line with initial expectations, effectively iden-
tifying and suggesting items that could be of interest to a particular
user. As mentioned at the beginning of the chapter, this section serves
as a support tool during the exploration phase, assisting users in their
research and facilitating the discovery of new items to inspect. Rather
than replacing traditional search bars or filtering systems, this recom-
mender system functions as an extension of these tools, offering person-
alized suggestions that complement existing search methods and help
users navigate large datasets more efficiently.
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Conclusion and Future Work

This thesis explored how different recommendation frameworks can be
integrated into a software system for outlier analysis on healthcare data.
The objective was to enhance user experience, facilitate research and
analysis processes, and improve the accessibility of critical insights. The
overall results are positive, with each proposed solution addressing a
specific aspect of usability and interaction within the system.

6.1 Key Contributions

Rank Aggregation The Rank Aggregation phase was introduced to im-
prove the ordering of elements displayed on the homepage. Compared to
the baseline approach, which relied on Euclidean distances, this method
provided a more structured and meaningful ranking that aligned bet-
ter with the generalized guidelines established by stakeholders. The
new approach successfully overcame technical challenges encountered
in the first iteration, particularly the need to define a target element,
which previously complicated ranking consistency. By leveraging rank
aggregation, the system produces a more interpretable and user-friendly
ordering of items, ensuring that critical information is prioritized effec-
tively.

91
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Similar Products Recommendations The Similar Product Recommender
was developed to assist users during the outlier’s analysis phase by sug-
gesting elements related to the one under examination. The main goal
of this feature is to support users in discovering relevant insights, iden-
tifying patterns, and uncovering new data points that could enrich their
ongoing investigation. This system is built on a two-stage pipeline:

Clustering Phase: this step groups outliers based on their defining
features, such as the type of anomaly, the nature of the analysis, and
the characteristics of the data signal (e.g., intensity and deviation from
standard values). This ensures that similar anomalies are categorized
together, forming coherent clusters that aid in candidate generation.

Ranking Phase: this step is meant to perform a ranking of the rel-
evant set of candidates identified for a given query outlier. This is ad-
dressed with a nearest neighbor algorithm approach that utilizes Eu-
clidean distance in the embedded space.

The results demonstrated the effectiveness of this method, as it con-
sistently produced coherent and useful recommendations. The success
of this approach also validated the use of UMAP embeddings, which
proved to be a strong choice for representing outlier characteristics in
a lower-dimensional space while preserving meaningful relationships be-
tween data points.

Personalized Recommendations The final and most complex task in-
volved developing a personalized recommendation system based on user
interactions within the platform. The goal was to implement a feature
similar to the “Recommended for You” section found in streaming ser-
vices, where recommendations are tailored to individual users based on
their past interactions. Given the diverse range of users engaging with
the software, each with different interests and needs, this functionality
is designed to complement traditional content search, assisting users in
discovering new, yet relevant data points.

One of the main challenges of this phase was the absence of real user
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interaction data. To address this, a synthetic dataset was generated to
simulate realistic user behaviors.

The recommendation model was designed as a binary classifier, dis-
tinguishing between relevant and non-relevant items based on historical
user interactions. A key component of this system was the autoencoder-
based user-history embedder, which compresses a user’s chronological
interaction history into a lower-dimensional representation. Instead of
treating users as static entities, the model focuses on their evolving
history, allowing it to generalize across different users with similar ex-
ploration patterns.

The evaluation of this system showed promising results, demonstrat-
ing that the model was able to generate relevant recommendations aligned
with past user interactions. While some challenges remain, particularly
regarding generalization due to the limited training data, the approach
successfully captured patterns in user behavior, proving to be a viable
direction for further refinement.

6.2 Final Thoughts and Future Work

This research has demonstrated that integrating recommendation tech-
niques into healthcare outlier analysis software can significantly enhance
usability and decision-making. Each of the three proposed solutions:
rank aggregation, similar product recommendation, and user-based rec-
ommendations, plays a distinct role in making the system more intuitive
and user-friendly.

To ensure these improvements translate into meaningful user engage-
ment and improved satisfaction, A/B testing should be employed as a
critical evaluation method. Direct testing with real users is indeed es-
sential to measure the impact of each approach on user interactions, task
efficiency, and overall system satisfaction. Key performance indicators
(KPIs) such as click-through rate (CTR), time spent on recommended



94 CHAPTER 6. CONCLUSION AND FUTURE WORK

items, and user engagement serve as valuable indicators of user appre-
ciation and can help refine the system to better meet user needs.

Beyond evaluation, future enhancements could focus on:

• Optimizing candidate generation in the similar product recommen-
dation task to improve computational efficiency and scalability.

• Enhancing outlier embeddings by experimenting with alternative
techniques to refine clustering and similarity calculations.

• Expanding the training dataset in the personalized recommenda-
tion task by incorporating real user interactions, allowing the model
to be refined and validated in a real-world setting.

• Improving user embeddings by integrating alongside implicit chrono-
logical interactions, also explicit user feedback, such as: likes, saved
items, and stated topic preferences. This would create a more nu-
anced representation of user interests, helping the model distinguish
between exploratory interactions and genuinely valuable items.

• Enhancing recommendation diversity to ensure users receive not
only similar recommendations but also complementary insights aligned
with their explicit interests.

This research highlights the potential of integrating recommenda-
tion systems into healthcare outlier analysis, offering a powerful tool to
support data-driven decision-making. By enhancing usability and fa-
cilitating more intuitive exploration of complex datasets, the proposed
system can assist healthcare professionals in identifying critical patterns,
anomalies, and trends more efficiently. The ability to personalize rec-
ommendations based on user interactions and preferences ensures that
analysts receive relevant insights tailored to their specific areas of inter-
est. By bridging advanced recommendation techniques with healthcare
analytics, this work lays the foundation for a smarter, more adaptive
system capable of enhancing both efficiency and accuracy in medical
data analysis.
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