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Abstract

Convolutional Neural Networks have seen a lot of advancements over the

years. All modern CNNs moved from using classical convolutions, that pro-

cess the spatial and channel dimension simultaneously, to depth-wise separa-

ble convolutions, effectively separating the spatial aggregation with the chan-

nel mixing. This has enabled to get a better picture on how kernels are pro-

cessing the images, in fact, recently it was discovered that many of them share

a set of common patterns, resembling the Difference of Gaussian (DoG) func-

tion. This has led us into formulating a new DoG-parametrized convolutional

kernel called DoGConv that aims at recreating the common kernel patterns

observed in the wild. With this we created DoGNeXt, a CNN based on the

ConvNeXt V2 architecture. We test DoGNeXt on ImageNet1K and MedM-

NIST achieving remarkable results, beating ConvNeXt V2 when the training

data is scarce. Thanks to the DoGConv parametrization we are able to resize

the kernels without retraining. This property is used to improve the perfor-

mance of the network when used on images with small resolutions. In this

setting DoGNeXt is able to perform remarkably well. Finally, we highlight

a lack of augmentation for small images in the classic ImageNet1K training

recipe. We propose an additional augmentation that is able to outperform,

across a wide range of image resolutions, the vanilla training, performing on

par with DoGNeXt kernel resizing technique.
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Chapter 1

Introduction

Convolutional Neural Networks (CNNs) are one of the building blocks of

many modern computer vision architecture. With the advent of AlexNet [17]

a lot of focus has been put on deep convolutional neural networks, and thanks

to the ILSVRC (ImageNet) competition [26], image classifiers became more

and more powerful, even surpassing the human performance [27]. It became

clear with Inception [30] that the convolutional part of the model was respon-

sible for the majority of the performance, since the hard part of the problem

is the feature extraction, that consists in transforming an image in a dense,

semantically meaningful representation. Most of the backbones that differ-

ent architecture use to accomplish their task, mostly object detector or seg-

mentation models, are pre-trained on ImageNet or similar datasets. This is

because the representation that image classifiers learn is generic enough to

improve the performance on these tasks, even if the training data is scarce and

the objective is particularly different. Therefore, improving the performances

backbones is crucial for many downstream tasks. The overall paradigm to

build feature extractors shifted over the years from classic convolutions to

group convolutions with ResNeXt [35] and depth-separable convolution with

MobileNet [12]. The main drive for this was primarily to reduce the com-

putational cost of the operation, therefore making faster models. This con-

ception shifted with ConvNeXt[22] that used depth-separable convolutions in
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combination with point-wise convolutions to outperform Swin Transformers

[21], a special type of Vision Transformer (ViT), on key benchmark like Im-

ageNet1K, ImageNet22K, COCO object detection [20] and ADE20K image

segmentation [39].

The work of Babaiee et al. [3] showed that many CNNs that use depth-

separable convolutions share a unique hidden characteristic. In fact, the au-

thors noticed that, by plotting the kernels of trained models, a lot of similar

patters were repeating, even between models with vastly different architec-

tures. They observed a strong resemblance between these patterns and the

Difference of Gaussian (DoG) function and it’s derivatives. This has led them

to create a clustering solution that could enumerate the most popular patterns

in order to have a quantitativemeasure to compare different models. With this,

they observed a strong correlation between the clusterability of the kernels and

the performance of the network, leading to speculations regarding the nature

and role of the patterns. This has inspired us to build DoGNeXt, a CNN based

on the ConvNeXt V2[33] architecture that uses DoG-parametrized kernels. In

this work we provide a complete formulation of the DoG-parametrized ker-

nels, called DoGConv, to best resemble the empirical observations.

Originally, our work was more focused on the problem of classification

at different resolutions. The objective was to develop a novel technique that

could better withstand scale changes. This is a closely related problem found

in object detection, where small objects are usually detected with less accu-

racy. Many different techniques have been developed to mitigate the issue,

most notably Feature Pyramid Network (FPN) [18], but little was done to im-

prove scale robustness on the backbones directly. In the literature we can

find many examples of scale equivariant networks [23][34][40][28][29], de-

veloped with different approaches, but none of them have been trained and

tested on challenging benchmarks, therefore it is hard to assess whether they

are useful in real world applications or not. In our work we put the main focus

on getting good performances on the challenging ImageNet1K benchmark, to
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then shift our attention to some possible application of our resizable kernel

parametrization.

Our experiments achieve a remarkable level of accuracy, near the one of

ConvNeXt V2 [33]. We tested DoGNeXt also in the medical domain with

the MedMNIST [36] classification task, managing to beat ConvNeXt V2 by a

small margin. Unfortunately, our quest for improving scale robustness did not

produce the results we had hoped for, showing that the approach is viable only

when training in a specific and articulated way. A noteworthy discovery was

the lack of a meaningful scale augmentation for small objects in the classic

ImageNet1K training recipe. In fact, we need to remember that the training

recipe was developed over the years to get the best possible accuracy on the

standard validation resolution, and not across a diverse spectrum. We propose

an additional step during training that boosted the performance on small im-

ages by significant margins, suggesting the fact that the limitation observed is

due to a lack of exposure during training to small images and not inherit with

the architecture itself.



Chapter 2

Background

In this chapter we are going to present the datasets used in this work and the

original inspiration that led to the development of DoGNeXt.

2.1 Datasets

2.1.1 ImageNet1K

Figure 2.1: Example images from ImageNet1K.
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ImageNet1K [26] is the most famous image classification problem to this

day. Many major computer vision architecture like ResNet[10], Efficient-

Net[31] and ConvNeXt[22][33] are trained or pre-trained on it, creating foun-

dational work for many models with countless applications. The dataset is a

collection of 1.3 million natural images divided into 1000 different classes.

The images display different resolutions and aspect ratio, therefore the con-

vention is to use 224px×224px crops when training and evaluating. In Figure

2.1 we can see a collection of some random crops drawn from ImageNet1K.

2.1.2 MedMNIST

MedMNIST [36] is a large-scale MNIST-like dataset collection of standard-

ized biomedical images, consisting of 12 datasets in 2D and of 6 in 3D. All

datasets are available with resolution 28× 28 or 224× 224. For the purpose

of this work we are going to use the 2D datasets at a resolution of 224×224

to resemble ImageNet. In Table 2.1 we have a summary of each of the task

in the dataset. As we can see the datasets vary in size and in the number of

classes. In Figure 2.2 we can see an example image from each of the task, that

compared to ImageNet’s, exhibits difference features. This is the main reason

we chose MedMNIST as a supplementary benchmark to evaluate DoGNeXt.

It is important to note that every dataset is balanced, therefore we don’t

have any class imbalance that could skew the results and would require further

attention from our side. Moreover, this enables us to compare the different

models using just the class accuracy and not other metrics, like F1, that are

less sensitive to the class distribution.

2.2 CNNs and the scale problem

With the advent of object detection models a problem presented: scale vari-

ation. Small objects are notably harder to detect due to the absence of scale

equivariance in convolutions. Many different techniques over the years have
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PathMNIST ChestMNIST DermaMNIST OCTMNIST

PneumoniaMNIST RetinaMNIST BreastMNIST BloodMNIST

TissueMNIST OrganAMNIST OrganCMNIST OrganSMNIST

Figure 2.2: Example images from MedMNIST datasets.

been developed tomitigate this, most notably Feature PyramidNetwork (FPN)[18],

but the problem remains. FPN is now used in object detectors like R-CNN [24]

or RetinaNet [19] style networks as it improves performance on a wide range

of scales. We argue that one reason for low performance with small objects

has to do with the backbones of the detectors. Our primary objective is to de-

velop an architecture that is more resistant to scale changes, or alternatively,

that can be adapted to work at different scales without retraining.

There are many different attempts to build models that are scale invari-

ant and equivariant. For clarity, we define a network invariant to scale where

given the same input image at different scales it produces the same exact re-

sult for each of them. Meanwhile, we have equivariance, with regard to scale,

when the output is proportional to the input scale. In the case of image classi-

fiers, we areworkingwith discrete classes and there is not a difference between
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Table 2.1: MedMNIST sub-dataset summary.

Name Data Modality Number of Classes
Number of Images

Total Train Validation Test

PathMNIST Colon Pathology 9 107,180 89,996 10,004 7,180

ChestMNIST Chest X-Ray 2 112,120 78,468 11,219 22,433

DermaMNIST Dermatoscope 7 10,015 7,007 1,003 2,005

OCTMNIST Retinal OCT 4 109,309 97,477 10,832 1,000

PneumoniaMNIST Chest X-Ray 2 5,856 4,708 524 624

RetinaMNIST Fundus Camera 5 1,600 1,080 120 400

BreastMNIST Breast Ultrasound 2 780 546 78 156

BloodMNIST Blood Cell Microscope 8 17,092 11,959 1,712 3,421

TissueMNIST Kidney Cortex Microscope 8 236,386 165,466 23,640 47,280

OrganAMNIST Abdominal CT 11 58,850 34,581 6,491 17,778

OrganCMNIST Abdominal CT 11 23,660 13,000 2,392 8,268

OrganSMNIST Abdominal CT 11 25,221 13,940 2,452 8,829

invariance and equivariance if we look at the class output, instead, we should

consider the final activation of the model, just before the classification head.

Arguably, equivariance has more applications, for example in object detec-

tion, therefore we will focus more on it. One possible approach is to work

with Fourier or Riesz transforms [23][5][15], in this case the idea is to use

the transform to build the kernels or to transform the activation and perform

the operation in the Fourier domain. While this approaches often achieve an

excellent level of equivariance, they are often limited in efficiency due to the

usage of the DFT (Discrete Fourier Transform), which is not well parallelize

for GPU computation. A different approach is based on building a convolution

operation that is scale equivariant by processing the input at different scales

[34][40][28][14][16][9][29], this most of the time has the massive drawback

of increased computational cost. The idea that many use to process a different

scale is to build convolutional kernel with some function basis that the network

optimize and fuse. This idea is used also in DoGNeXt with the difference that

we don’t aim at complete scale equivariance. All of them share the same eval-

uation procedure that consists in the use of Scale-MNIST[29] and STL-10[8]

to assess equivariance. While these benchmarks are useful for the purpose, we

argue that it is hard to understand the real world performance of the techniques

in challenging situations like ImageNet1K. For example, a scale equivariant

model that performs worse than one that was simply scale-augmented does
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not have a meaningful relevance in practice.

(a) ConvNeXt V2 Tiny (b) EfficientNet (c) MobileNet V3

Figure 2.3: Random set of kernels drawn from different architectures. Source

[3]

DoGNeXt draws inspiration from themwith the idea to build a kernel basis

that works in the challenging ImageNet1K with good performances.

A different approach comes from FlexiViT [6]. In fact, ViT are limited in

the patch size they can use, changing it results is a noticeable performance de-

crease. FlexiViT uses some clever weight interpolation techniques to be able

to perform training at different path resolutions without the need of different

patchifiers for each path dimension. This enables, at inference, to decide the

patch size depending on the level of accuracy desired and computational re-

sources available. We argue that their multi-patch training hides an implicit

multi-scale augmentation, therefore similar results can be achievedwith CNNs

by increasing stride or dilating kernels. DoGNeXt has the added benefit of be-

ing able to fully utilize the input image thanks to resizable kernels, therefore,

we will cover this setting in chapter 4.

2.3 DoGConv inspiration

In [3] the authors analyzed many different CNNs that use depth-separable

convolutions, in figure 2.3 we can see some kernels drawn at random. We
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can clearly distinguish some common patters among them, even if the kernel

dimension is different. Moreover, Babaiee et al. [3] developed a clustering

technique in order to systematically enumerate the patters; the results can be

seen in figure 2.4. Finally, they observed an interesting correlation shown in

table 2.2. In fact, we can notice how the greater the percentage of clustered

kernel the better the performance. It is important to point out that training

with more data (ImageNet22K instead of ImageNet1K) has a great influence

in both accuracy (on ImageNet1K) and on the amount of clustered kernels.

Table 2.2: ImageNet1K Accuracy@1 and percentage of clustered kernels in

different network architectures and training modalities. Source [3].

Model Parameters Accuracy@1 Kernels Clustered

ConvMixer 768_32 28 M 83.9% 98.16%

ConvNextV2 tiny 22k 28 M 83.0% 97.33%

ConvNextV2 tiny 28 M 82.1% 95.21%

ConvNeXt tiny 22 M 82.8% 80.71%

HorNet tiny 25 M 83.4% 78.87%

MogaNet small 21 M 80.1% 56.64%

ConvNextV2 huge 1k_224 660M 86.3% 82.08%

ConvNextV2 huge 22k_384 660 M 88.7% 92.41%

ConvNextV2 large 1k_224 198 M 84.3% 90.82%

ConvNextV2 large 22k_224 198 M 86.6% 96.63%

This striking correlation inspired us to build a network where all spatial

aggregation was done using parametrized kernels that best resemble what they

observed. In figure 2.5 we can see the pattern distribution of ConvNeXt V2

(tiny), as we can see only few patterns observed in figure 2.4 are relevant,

therefore we will limit the formulation to only those.

Off-Center dxx Off-Centre Off-Centre Cross Off-Centre dy Off-Centre dx

Off-Center dxx On-Centre On-Centre Cross ON-Centre dx ON-Centre dy

Figure 2.4: Identified kernel patters from [3].
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Figure 2.5: Distribution of kernel patters in ConvNeXt V2 Tiny. Ima-

geNet22K pre-training. Source [3].
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Architecture

DoGNeXt is a Convolutional Neural Network (CNN) where each convolu-

tional kernel is sampled from a parametrized Difference of Gaussians (DoG)

function and its derivatives. In this chapter, we will explain how the kernels

are created and what changes to the ConvNeXt V2 architectures have been

made in order to improve the performances when using them.

3.1 DoG Kernels

The DoGConv is the building block of DoGNeXt, in this section we will an-

alyze how it is composed and built. We start by defining the Difference of

Gaussians function as follows

DoG(σ1,σ2) = N (0,σ1I)−N (0,σ2I) (3.1)

where N (0,σ I) is a bivariate Gaussian function with diagonal covariance

matrix

Σ =

σ2 0

0 σ2

= σ I

As we can see, the mean of both functions is set to 0 since it represents

just an offset from the center, and thus it doesn’t influence the shape of the
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function.

We can rewrite explicitly the function and take the assumption of zero mean

and constant diagonal covariance to simplify the expression. Let’s start from

the generic bivariate Gaussian function

fN (µ,Σ)(x,y)=
1

2πσX σY
√

1−ρ2
e

(
− 1

2
[
1−ρ2

][( x−µX
σX

)2
−2ρ

(
x−µX

σX

)(
y−µY

σY

)
+
(

y−µY
σY

)2
])

(3.2)

where ρ is the correlation between X and Y , that in our case is 0 since the

non-diagonal elements of the covariance matrix are 0. Moreover, we have

σX = σY , therefore we can simplify the expression

fN (µ,Σ)(x,y) =
1

2πσ2 e

(
− 1

2

[(
x−µX

σ

)2
+
(

y−µY
σ

)2
])

(3.3)

We observe that µx = µy = 0, this gives us the final expression

fN (µ,Σ)(x,y) =
1

2πσ2 e

(
− x2+y2

2σ2

)
(3.4)

In order to create the kernels we also need the first order derivatives
(

∂

∂x and
∂

∂y

)
and second order derivative

(
∂ 2

∂x2 ,
∂ 2

∂y2 and ∂ 2

∂x∂y

)
of the DoG function (see Fig-

ure 3.1 for the 3D plot of the functions).

∂

∂x
=− x

2πσ4 e−
x2+y2

2σ2 (3.5)

∂ 2

∂x2 =
x2

2πσ6 e−
x2+y2

2σ2 − 1
2πσ4 e−

x2+y2

2σ2 (3.6)

∂ 2

∂x∂y
=

x · y
2πσ6 e−

x2+y2

2σ2 (3.7)

It is important to highlight the fact that we do not have to explicitly com-

pute ∂

∂y and ∂ 2

∂y2 , this is because we can just take the derivative along x and

transpose the output, this will be explained in more detail later with the kernel

building process.
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Figure 3.1: 3D plot of the DoG functions used by DoGNeXt.
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Now that we have all the functions needed to build the kernel, we need to

understand how to perform the sampling in order to move from continuous to

discrete space. The simplest solution would be to define a region, discretize it,

and finally compute the function on the discrete points (that correspond to the

kernel entries). This is a possible solution that lacks a key property, the ability

to resize the kernels after the training is complete. This can come handy in

some specific experiments and it will be tested in chapter 4. Very intuitively

we can think of a 7× 7 kernel that represents a fixed function, now imagine

we want to increase the dimension to 15×15 or 21×21. We can immediately

notice a problem, the more we increase the ‘resolution‘ of the sampling, the

more elements are going to get summed by the convolution operator, this is

clearly not acceptable sincewe are technically changing the output distribution

of the operation, thus invalidating any training done to the network. Imaging

we have a 1× 1, the kernel will be computed by sampling the center point

of the kernel (0,0) and thus become f (0,0). Now, suppose to transform it

to a 3× 3 by increasing the sampling rate. This resulting kernel would still

compute the function at (0,0) since is the center point of the central entry of

the kernel. But the difference this time is that we are also incorporating into

the kernel all other surrounding entries, therefore distorting the original.

The solution to this problem involves dividing the function in K2 different

regions of the xy−plane, whereK is the kernel dimension. This effectively can

be seen as overlapping the xy−plane of the function with a 2D representation

of the kernel. Each entry of the kernel will then hold the integral of the function

computed on the corresponding region (Figure 3.2). Doing this will result in

a change of the values of the kernels, compare to the naive technique. This is

not a problem, in fact, the main objective is to replicate the empirical findings

of [3]. This gives us the freedom of using a transformation of the original

function, granted it keeps the same patters, which is the case for the integral.

To prove that this sampling methods will give us the desired resizing prop-

erty, we first need to derive the formula to integrate a function over a given
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Figure 3.2: 3D representation of the kernel sampling process. In figure (a) we

can imagine the kernel overlaying the DoG function. This delimits a region R
on the xy−plane and each entry delimits K2 subregions. Meanwhile. figure

(b) shows the result of the sampling process, where each entry will hold the

integral of the function computed over that specific subregion.

interval R

f̄R =
∫∫

R
f (x,y) dx dy =

∫ by

ay

∫ cx

ax

f (x,y) dx dy (3.8)

where R is the integration interval (see Figure 3.3). Now, if we take R and

split it in 4 different regions R′
1...4 of the same exact size, we need to prove the

following

f̄R = ∑
1≤i≤4

f̄R′
i

(3.9)

Proof. Let’s start by expanding the formula

∫ by

ay

∫ cx

ax

f (x,y) dx dy = ∑
1≤i≤4

∫ byi

ayi

∫ cxi

axi

f (x,y) dx dy (3.10)

This can be easily proved by using the following property

∫ b

a
+
∫ c

b
=
∫ c

a
(3.11)

We notice that by definition the integration limits defined by R′
1...4 are adja-

cent (see Figure 3.3). Therefore, we can rewrite the equation and merge the



3.1 DoG Kernels 16

different terms as follows

∫ by

ay

∫ cx

ax

= ∑
1≤i≤4

∫ byi

ayi

∫ cxi

axi

=
∫ by1

ay1

∫ cx1

ax1

+
∫ by1

ay1

∫ cx2

cx1

+
∫ by3

by1

∫ cx3

ax3

+
∫ by3

by1

∫ cx4

cx3

=

∫ by1

ay1

∫ cx2

ax1

+
∫ by3

by1

∫ cx4

ax3

=
∫ by1

ay1

∫ cx2

ax1

+
∫ by3

by1

∫ cx2

ax1

=
∫ by3

ay1

∫ cx2

ax1

=
∫ by

ay

∫ cx

ax

(3.12)

For simplicity Rwas divided into just 4 subregions, but it is easy to see that

the technique we used is generalizable, therefore the proof can be extended to

any arbitrary split.

Intuitively, if we keep constant the interval in which we compute the func-

tion, we can imagine that this sampling method is just taking the mass of the

function and discretizing it. In this way the resolution at which this operation

is performed will not interfere with the total mass of the function, therefore

producing a kernel that can be resized without the problem of changing the

output distribution when applied to a tensor via convolution.

We now provide the formula to compute the average of the DoG and its

derivatives

f̄N (0,σ I)(x,y) =
∫ by

ay

∫ cx

ax

1
2πσ2 e

(
− x2+y2

2σ2

)
dx dy =

=
1
4

(
erf

(
by√
2σ

)
− erf

(
ay√
2σ

))
·
(
erf

(
cx√
2σ

)
− erf

(
ax√
2σ

)) (3.13)

∂

∂x
f̄N (0,σ I)(x,y) =

∫ by

ay

∫ cx

ax

− x
2πσ4 e−

x2+y2

2σ2 dx dy

=

√
2π

4πσ

(
e−

c2
x

2σ2 − e−
a2
x

2σ2

)
·
(
erf

(
by√
2σ

)
− erf

(
ay√
2σ

)) (3.14)
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∂ 2

∂x2 f̄N (0,σ I)(x,y) =
∫ by

ay

∫ cx

ax

x2

2πσ6 e−
x2+y2

2σ2 − 1
2πσ4 e−

x2+y2

2σ2 dx dy

=

√
2π

4πσ5

(
ax

2
e−

a2
x

2σ2 − cx

2
e−

c2
x

2σ2 +

(
erf

(
cx√
2σ

)
− erf

(
ax√
2σ

)))
·

·
(
erf

(
by√
2σ

)
− erf

(
ay√
2σ

))
− 1

σ2 f̄N (0,σ I)(x,y)

(3.15)

∂ 2

∂x∂y
f̄N (0,σ I)(x,y) =

1
A

∫ by

ay

∫ cx

ax

x · y
2πσ6 e−

x2+y2

2σ2 dx dy =

=
1

2πσ4

(
e−

a2
y

2σ2 − e−
b2
y

2σ2

)
·
(

e−
a2

x
2σ2 − e−

c2
x

2σ2

) (3.16)

where erf(·) is the error function defined as

erf(z) =
2√
π

∫ z

0
e−t2

dt (3.17)

this is built in all major deep learning frameworks, therefore we do not care

about the implementation of it.

Using the definition of all the function needed to build our DoG kernels we

can give the complete formulation that the network will optimize during train-

ing. In this formulation, the y derivatives are not computed directly because

our output is a matrix that can be transposed to simulate a ’swap’ between

the x and y axes; therefore, we can use the transposed x derivatives. First we

define the kernel using just second order derivative DoG

K′′
σ1,σ2,pd2

= softmaxT=0.01 (pd2) ·

·
[

DoG ∂2N
∂x2

(σ1,σ2),DoG ∂2N
∂x2

(σ1,σ2)
T ,DoG ∂2N

∂x∂y
(σ1,σ2)

]T (3.18)
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We define softmaxT as

softmax
(i)
T=τ

(x) =
e

xi
τ

∑
l
j=1 e

x j
τ

(3.19)

where x ∈ Rl and τ is the temperature. Notice that in our formulation the

temperature value is close to zero, this produces an output distribution with

lower entropy compared to the ’vanilla’ softmax where T = 1, therefore, it

acts more like a hard selection. This, in combination with pd2 ∈ R3, which is

optimized by the network, controls which of the function is dominant in the

kernel.

The notationDoG ∂2N
∂x2

(σ1,σ2) indicates that the base function used to com-

pute the difference of Gaussians is the second-order derivative
(

∂ 2N
∂x2

)
. Intu-

itively, this creates a mix of DoGs thanks to pd2. The same approach is applied

also to the first order derivatives as follows

K′
σ1,σ2,pd1

= σ

( pd1

0.01

)
·
[
DoG ∂N

∂x
(σ1,σ2),DoG ∂N

∂x
(σ1,σ2)

T
]T

(3.20)

where pd1 ∈ R2 and has the same purpose as pd2.

The final kernel is than given by mixing again all the functions

Kσ1,σ2,pd,pd1,pd2,ρ,b = softmax
( pd

0.01

)
·

·
[
DoGN (σ1,σ2),K′

σ1,σ2,pd1
,K′′

σ1,σ2,pd2

]T · eρ +b
(3.21)

where b is the bias, ρ is a scaling term and pd ∈ R3 is the mixing parameter.

Note that ρ is used as exponent; this is done for the sole purpose of having

a better numerical range of the parameter during optimization and to avoid

negative or zero values that could destabilize the training process.

Lastly, we need to address the integration intervals to use when comput-

ing the DoG functions. Until now all the formulations used ax,ay,by,cx as

extremes, but we need real values to compute the kernels. In fact, all of them
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are fixed when deciding what region of the xy−plane we want to represent

in the kernels. We empirically define this space as R = [−2,2] to be a good

enough region to display good diversity in the patterns, we then define the di-

mension of the kernel k = 7, therefore, we can divide in 7×7 squared regions

R obtaining the integration intervals (see Figure 3.3).

This completes the definition of the DoG based convolutions, that from

now on are going to be called DoGConv.

(ax,ay)

(ax,by)

(cx,ay)

R1

(ax,by)

(ax,ay)

(a)

(ax1,ay1)

({
a x

3
,a

x 1
},
{a

y 3
,b

y 1
})

({ax2,cx1},{ay2ay1})

({ax4 ,cx3},ay4)

(cx2,ay2)

(cx4 ,a
y4 )

(ax3,by3) (ax4,by4)

R′
1 R′

2

R′
3 R′

4

(b)

Figure 3.3: Panel (a) shows a 3×3 kernel and the relative integration extremes

of the top left region R1. Panel (b) meanwhile takes R1 and split it into four

subregions R′
1...4 each with the relative extremes. From (b) we can notice how

many of the coordinates overlap, for example while considering the x axis we
observe that ax1 = ax3 , ax2 = cx1 = cx3 = ax4 and that cx2 = cx4 . The same

reasoning can be applied to y axis.

3.2 DoGNeXt and Downsample Blocks

With the definition of the DoGConv operator we can analyze the differences

between ConvNeXt V2[33] and DoGNeXt, but first we need to establish some

design criteria. First, we want all spatial aggregation of the network to be

done exclusively with DoGConv; the reason behind this is having the option

to rescale the kernels with the objective of modifying the scale of at which the

network performs the best, this will be used in chapter 4. Second, we want to

keep approximately the same amount of FLOPs of the original network; doing
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this will ensure a fair comparison between the different architectures.

Let’s start by analyzing the differences between the stem layer and down-

sampling blocks of the two architectures. In Figure 3.4a we can see the first

problem with ConvNeXt, the stem layer is a 4×4 classic convolution. This is

problematic for several reasons: first, our DoG-based kernels are depth-wise

only, therefore cannot be used to replace it; second, the size of the kernel is

too small to have a meaningful representation of the underlying function if we

were to use a DoGConv. The solution is unconventional but it solves the two

issues, we can simply reduce the stem layer to a 1× 1 convolution (Figure

3.4b). The idea is that we keep the same amount of FLOPs, this is because

the stem layer of ConvNeXt has a stride of 4, therefore it processes the same

spatial location only once, making it almost equivalent to ours (we are missing

a summation that is not making a meaningful impacting on the overall FLOPs

count). Moreover, we avoid the spatial aggregation without DoGConv, which

is one of our design principles.

However, this approach introduces a problem, the activation after the stem

layer is not correctly strided. The solution that DoGNeXt uses is to add stride

to the first block of the network, doing this ensures that the convolution re-

ceives in input a more dense input compared to pooling techniques. But as we

can see in Figure 3.5a, the ConvNeXt block has a residual connection, as it

is usual to have in modern architectures, this creates a problem similar to the

one seen in ResNet[11]. When a block has stride greater than 1 the shape of

the input and output activation do not match, this makes impossible to apply

the residual connection unless the input tensor is downsampled. Several so-

lutions have been explored with ResNet, like 1×1 convolution with stride 2,

removing the residual connection or using an average pool operator followed

by a 1×1. DoGNeXt uses just an s× s average pool, where s is the stride of

the block (Figure 3.5c).

The downsampling block is very similar to the stem layer, with the differ-

ence that the stride is 2 instead of 4. Note that while the first block has stride
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4 to compensate the missing stride in the stem, all the blocks after the don-

wsample blocks have stride 2 (Figure 3.4d). The reason behind keeping this

block even if is not effectively donwsampling is that it increases the number

of channels and it regularizes the network, thanks to the LayerNorm[2].

In Figure 3.5a we can see the structure of the main block that composes the

ConvNeXt V2 architecture. The design principle comes from the transformer

block, with an MLP with expansion ratio of 4, but with the substitution of the

attention with convolutions. The main innovation proposed in the V2 revision

compared to the original ConvNeXt[22] is the addition of the GRN (Global

Response Normalization) layer that aims at promote feature diversity in be-

tween the two point-wise convolutions, refer to the original work for a more

in depth explanation. DoGNeXt build upon this and retains the same exact

structure, with the substitution of the classic convolutions with DoGConvs.

It is important to highlight some differences between the two architecture

from a computational cost perspective. Following our design principle we

were able to keep approximately the same amount of FLOPs as the original

network. It has to be noted that the computational cost of the DoGConv is

slightly different from a normal convolution. This is because we need to con-

sider that the kernel needs to be sampled after each parameter update, this in-

troduces a bit of overhead to the forward pass during training. However, note

that it is completely independent of the batch size and image dimension, there-

fore practically negligible. Additionally, there is a slight parameter reduction

with DoGConvs compared to normal convolutions, but since the parameter

budget is completely allocated to the MLPs, the reduction is also negligible.

Lastly, using stride has a drawback that could hurt performance when training

on memory constrained settings. The stem layer in ConvNeXt V2 has the job

of both increasing the number of channels while reducing the spatial dimen-

sion, this results in an output activation with shape H
4 × W

4 ×C. DoGNeXt

does not reduce the spatial dimension, producing an activation that is 16 times

larger after the stem layer, increasing the memory consumption.
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4 × 4 conv S = 4

H ×W ×3

LayerNorm

H
4 × W

4 ×C

H
4 × W

4 ×C

Stage 1

7 × 7 conv S = 1

(a) ConvNeXt V2 stem
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(b) DoGNeXt stem
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Stage n
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(d) DoGNeXt downsample

Figure 3.4: ConvNeXt V2 and DoGNeXt stem and donwsample blocks. From

(a) and (b) we can see how DoGNeXt differs since it uses a simple 1 × 1
convolution instead of the 4×4 of ConvNeXt V2 meanwhile adding stride to

the subsequent block. From (c) and (d) we can see a similar approach to the

previous example.
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Figure 3.5: ConvNeXt V2 and DoGNeXt blocks. As we can see from (a) and

(b) the only difference between ConvNeXt V2 and DoGNeXt is the use of

DoGConvs in the latter. In (c) we can see the solution used by DoGNeXt to

use stride in conjunction with residual connections.



Chapter 4

Experiments

Now that we have a complete overview of the DoGNeXt architecture we can

move to the experiments conducted using the network. We present some ab-

lations on the network architecture itself to assess the validity of our design

choice and to discard some possible alternatives. We then move on some

more specific benchmark, medical images, to assess how DoGNeXt performs

in other types of image domains. Lastly, by using the property of resizing

kernels, we are going to experiment with scale robustness, and we are going

to see how we can reduce the number of FLOPs of the model by changing the

total stride of the network.

4.1 Experimental setup

DoGNeXt takes the work of ConvNeXt V2 and builds upon it as they share the

same underlying network structure. The codebase is developed in PyTorch

[1] and for most of the experiments we used 2×L40 NVIDIA GPUs as our

accelerators.

The training details for ImageNet1K of DoGNeXt can be seen in Table

4.1, unless specified we used the same for all our experiments. ConvNeXt V2

is a family of different sized models, due to our limited training resources we
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took as reference the smallest, named atto, moreover, we reduced the train-

ing epochs from 600 to 50. ConvNeXt V2 atto did not use MixUp[38] or

CutMix[37] due to the network capacity being particularly low, therefore we

kept this also in the training of DoGNeXt. One notable difference from clas-

sic CNNs is the absence of model Exponential Moving Average (EMA)[13],

this was forced since the EMA checkpoint of DoGNeXt never converged for

some unknown reasons. Our best hypothesis is that making an EMA of the

parameters of the DoGConv doesn’t result in a meaningful set of kernels. We

also avoided to use weight decay for the DoGConv parameters as they are

quite sensitive to changes and they do not have overfitting problems; this is

because the capacity is significantly lower than a classic convolution. Lastly,

ConvNeXt uses layer-wise learning rate decay[4][7], this is a technique that

reduces the learning rate based on the layer depth (starting from the last layer)

with the theoretical objective of reducing the magnitude of updates in the first

layers to help convergence. We found that it was reducing the convergence

speed for DoGNeXt, therefore we kept a constant learning rate throughout the

network. In Table 4.1 we specify the ‘Base LR‘ that is not the true learn-

ing rate used by the network but is the learning rate tuned for a batch size

of 256. To get the true value we multiply the base learning rate with the

ratio between the new batch size and 256, in our case the result would be

1024
256 · (2 ·10−4) = 4 · (2 ·10−4) = 8 ·10−4.

4.2 Network ablations

The objective of the ablation on the network architecture is to show the per-

formance of different configurations, validating the design choice explained

in Chapter 3. In table 4.2 we can see the results of different DoGNeXt and

ConvNeXt V2 variation. We refer to 3 different versions of DoGConv: base,

d1 and d2. These are networks where we keep the same exact architecture of

ConvNeXt V2 but we substitute the kernel with DoGConv. The base uses just
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Table 4.1: DoGNeXt Hyper-Parameters for ImageNet1K training.

Training hyper-parameter Value

Optimizer AdamW

Base LR 2 ·10−4

Weight Decay 0.3

Optimizer momentum β1 = 0.9, β2 = 0.999
Batch size 1024

LR Schedule Cosine Decay

Warmup epochs 0

Training epochs 50

Label smoothing 0.2

Drop path 0.1

the base DoG function, the d1 and d2 use first and second order derivatives

respectively. Stride downsample is the true DoGNeXt as outlined previously,

it uses stride to downsample instead of 4×4 and 2×2 classic convolutions.

We then tried to make small changes to improve further the architecture

with poor results. DoGNeXt uses a kernel dimension of 7, this derives from

an extensive ablation done in the original ConvNeXt[22] paper. We tried to

enlarge the kernel to assess the validity of that ablation also with DoGConv

finding that in fact 7 is the best kernel dimension. Note that enlarging the ker-

nel from 7 to 9 or 11 implies a careful consideration on the initialization and

scale. In fact, DoGNeXt uses a careful initialization that will be explained in

section 4.2.1. If we increase the sampling rate of the function, we incur a side

effect. In fact, we would like to keep constant the ratio between size of the

patterns displayed in the DoGConv and image resolution. If we were to just

increase the kernel dimension the formulation will create a higher resolution

version of the kernel, therefore enlarging the pattern relative to the image, an

effect that will be used to control the optimal scale of detections in the next sec-

tions. To avoid this problem we enlarge the integration limits of the function

instead, so that the inner 7×7 square of the kernel is kept equal regardless of

the kernel dimension. We can imagine this as taking the original kernels and

adding one or two outer rings around each kernel. Even with this extra care
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Table 4.2: Network ablations results for ImageNet1K.

Model Accuracy@1 Accuracy@5

ConvNeXt V2 atto 70.87 89.97

DoGConv (base) 68.40 88.53

DoGConv (d1) 70.22 89.73

DoGConv (d2) 69.56 89.26

Stride downsample (d1) 70.15 89.63

Stride downsample (d2) - DoGNeXt 70.59 89.76

Kernel size 9 70.43 89.79

Kernel size 11 70.31 89.68

Double Residual 69.80 89.29

No GRN 68.83 88.50

ConvNeXt V2 atto (600 epochs) 76.2 -

we see degrading performance the larger the kernel. Future work could assess

the relationship between kernel dimension and image resolution, theoretically

images with large resolutions could benefit from larger kernels without the

convergence problems that classic convolution may have, as shown in [3].

In Chapter 3 we have seen how the residual connection get in the way of

strided convolutions in some blocks. Taking inspiration from the transformer

block we tried to create a double residual connection, one that would skip

the convolutional part and one for the MLP. The results are underwhelming,

therefore this solution was not used.

Finally, ConvNeXtV2 introduces theGroupResponseNormalization (GRN)

layer. We assessed that it is essential in order to get good performances out of

the network.

Note that all the networks have been trained with just 50 epochs, mean-

while the original training recipe uses 600 epochs. We included the results

as reported in the ConvNeXt V2 paper[33] for the atto variant (without pre-

training). We can see that training for longer gives around 5.3 points of accu-

racy.
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4.2.1 DoGConv initialization

Until now, we did not mention how the parameters of the DoGConv are initial-

ized. This is a very important topic because we need a careful consideration

due to their unique usage in the network. In Figure 4.1 we can see the different

patterns that a DoGConv can exhibit. We define a range of values for σ1,2 that

produce each patter:

• On/Off Center: σ1,σ2 ∈ [−1.1,−0.7]

• On Center Cross: σ1 ∈ [0,0.8], σ2 ∈ [1,1.1]

• First derivative: σ1,σ2 ∈ [−1,1]

• Second derivative: σ1,σ2 ∈ [−0.5,0.5]

All the values have been chosen empirically in order to have good variety in

kernel patterns. Note that, in order to produce the Off Center Cross, we swap

the two sigma of the On variant described above, this results in a sign flip of

the function.

In addition to σ1,2, we have all the parameters that determine the function

mix, these are used to let just a single function emerge while suppressing the

others. To initialize this, we decided to give equal space for each patter, pri-

oritizing the base function. More precisely: On/Off Center andOn/Off Center

Cross have allocated 25% of the kernels each (per DoGConv module); First

derivative have 25%, comprised of a 12.5%+12.5% split between dx and dy;

the remaining 25% is used by Second derivative in a 10%+ 10%+ 5% split

between dx2, dy2 and dxy. This was determined empirically with some quick

experiments on the different proportions.

To summarize the initialization process, firstly, we determine which ker-

nels need to exhibit which pattern and therefore we fix the mixing parameters,

lastly we draw at random the values for σ1,2 from the respective ranges based

on the pattern.
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(a) On-Center (b) Off-Center (c) On-Center-Cross

(d) Off-Center-Cross (e) First derivative (dx) (f) First derivative (dy)

(g) Second derivative (dx2) (h) Second derivative (dy2) (i) Second derivative (dxy)

Figure 4.1: DoGConv kernel patterns



4.2 Network ablations 30

Table 4.3: Comparison of initialization strategies (ImageNet1K performance).

Init Strategy Accuracy @1 Accuracy @5

Random 67.65 87.85

Custom 70.59 (+2.94) 89.76 (+1.91)

In Table 4.3 we provide a quantitative measure of the impact of our initial-

ization. We put it against a strategy that uses a truncated normal distribution

with σ = 0.02. This is the same type of initialization that ConvNeXt V2 uses

for the convolution’s and linear layer’s weights. As we can see the degradation

in performance is significant, validating our technique.

In Figure 4.2 and Figure 4.3 we can see all the kernels of the first block of

DoGNeXt before training and after training. Note that the colors in the image

are scaled on a kernel base, this is done to have a consistent coloring and avoid

deleting details due to very diverse value range between kernels. We can use

these images to assess the patterns but not the values of the kernels. From

Figure 4.2 it is clear that the difference between the initialized (before training)

and after training are very subtle, with some kernels changes and minor shape

differences. This unexpected behavior might have different causes. We can

argue that the initialization is good enough that the optimizer is not pushed to

substantially change the kernels, but on the other hand, we can suppose that

such strong initialization is inducing the network to reach a local minima that

could be avoided with a different one. These are just suppositions, future work

might give more plausible reasons with a more in depth analysis.

4.2.2 Performance with data scarcity

We showed how DoGNeXt kernels do not require a major tuning from the

training to be meaningful, this can result in better performance when data is

scarce. In Table 4.4 we can see the results from DoGNeXt and ConvNeXt V2

atto on different versions of ImageNet1K, namely:

• Full ImageNet1K. This is the full version of the dataset trained for a
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(a) Custom Initialized Kernels

(b) Trained Kernels

Figure 4.2: DoGNeXt first block kernels before and after training using the

custom initialization.
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(a) Random Initialized Kernels

(b) Trained Kernels

Figure 4.3: DoGNeXt first block kernels before and after training using the

random initialization.
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Table 4.4: ConvNeXt V2 and DoGNeXt performance on different data

regimes.

Model
ImageNet1K ImageNet1K (200) ImageNet50

Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

ConvNeXt V2 70.87 89.97 59.56 81.27 81.26 95.71

DoGNeXt 70.59 89.76 60.02 81.72 83.58 96.49

limited number of epochs due to the computational cost. Recall that the

dataset consists of 1000 classes, each with 1300 images, for a total of

approximately 1.3 million images.

• Small ImageNet1K (200). This is a cut down version of the dataset

that uses just 200 images per class, for a total of 200K images. To

compensate the small amount of data the number of epochs has been

increased to 200 epochs.

• ImageNet50. This is a random set of just 50 classes of ImageNet1K.

This is the smallest dataset of the three with a total image count of

around 65K. To further compensate the limited number of data we in-

creased the number of epochs to 600.

Our hypothesis is confirmed by the result in Table 4.4. In fact, we see how

DoGNeXt is able to perform better than ConvNeXt V2 when we reduce the

amount of data. When training on the full dataset we are not able to replicate or

surpass ConvNeXt V2, this could be a ground for future work to explore with

some changes to the architecture or formulation of the DoGConv. Overall

the results are remarkable when we consider that our kernels are extremely

constrained and that they work as a drop-in replacement almost without any

tuning.
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4.3 MedMNIST benchmark

In section 2.1.2 we described the MedMNIST dataset and here we are present-

ing the results for ConvNeXt V2 and DoGNeXt. Recall from Table 2.1 that

each sub-dataset in MedMNIST has a limited number of images compared to

the size of ImageNet1K, this is a unique situation where data efficiency is key.

Moreover, the distribution of the images is quite different compared to Ima-

geNet, and it will be interesting to assess if the DoG kernels are good also in

this setting.

Table 4.5 shows the accuracy of the various models on each task. We

included the average accuracy as a single comparison metric, this will sum-

marize the performance on the entire benchmark. The original MedMNIST

paper [36] provides the results for ResNet-18 and ResNet-50. We included

those with an asterisk in the table as well, even though they have 11.7M pa-

rameters with 1.8G FLOPs and 25.6M parameters with 4.1G FLOPs respec-

tively, which is considerably more than the 3.7M and 3.4M parameters with

550M FLOPs of ConvNeXt V2 and DoGNeXt. In addition to this, we provide

the results with fine-tuned models that we pre-trained on ImageNet1K for 50

epochs. Moreover, as a reference, we include a ConvNeXt V2 pre-trained for

600 epochs, that is publicly available from the original authors, to show what

performance could be archived with an extensive pre-training.

We trained all the models for 100 epochs and batch size of 128, all other

training details are equal to the recipe for ImageNet1K of Table 4.1, with the

exception of the data augmentation. In fact, we use just a random horizontal

flip to avoid disrupting the images and therefore the ability to classify them.

Usually fine-tuning doesn’t require an extensive training of this many epochs,

but we wanted to picture the best possible scenario for each model, without the

risk of under-training and without the problem of tuning the recipe for each

separate task.

When training from scratch, DoGNeXt performs remarkably well, beating
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Table 4.5: Test Accuracy on the MedMNIST benchmark.

Model Path Chest Derma OCT Pneumonia Retina Breast Blood Tissue OrganA OrganC OrganS Average

ConvNeXt V2 88.83 94.78 76.77 84.80 83.97 55.25 82.05 96.61 68.10 92.99 88.97 72.58 82.14

DoGNeXt 89.29 94.81 76.67 86.90 85.41 54.00 82.05 98.45 72.72 94.42 91.74 79.42 83.82

ResNet-18* 90.9 94.7 75.4 76.3 86.4 49.3 83.3 96.3 68.1 95.1 92.0 77.8 82.13

ResNet-50* 89.2 94.8 73.1 77.6 88.4 51.1 84.2 95.0 68.0 94.7 91.1 78.5 82.14

ConvNeXt V2 (pretranied) 95.33 94.83 87.18 89.00 93.10 65.50 89.74 99.15 75.14 97.12 95.09 83.17 88.69

DoGNeXt (pretrained) 95.58 94.83 88.88 91.50 90.86 64.75 88.46 98.71 75.42 97.22 95.02 83.64 88.73

ConvNeXt V2 (pretrained 600) 96.74 94.85 88.63 90.30 90.70 66.75 90.38 99.09 75.40 97.38 95.47 84.05 89.14

ConvNeXt V2 on the majority of the tasks. On average, it is able to score bet-

ter than all other models, showing the benefit of having the DoGConv. When

fine-tuning from a pre-trained checkpoint the performance increases substan-

tially. In this regime ConvNeXt V2 is able to perform as good as DoGNeXt

and in some cases better, the reason is plausibly that the bias that the DoGConv

provides is less impactful in this instance due to the pre-training.

4.4 Scale Adaptation and Augmentation

DoGNeXt has the property of resizing the kernels at inference thanks to the

formulation of the DoGConv. In this section we want to assess if it is feasible

to change the scale at which the accuracy is best via a kernel resizing.

Let’s start by outlining the situation with a default train on ImageNet. In

Table 4.6 we can see how decreasing the evaluation resolution, therefore re-

ducing the scale of the images, results in a sharp drop in accuracy for both

DoGNeXt and ConvNeXt V2. Our objective is improving them by shrinking

the kernels of each DoGConv. Note that in this section we train DoGNeXt

with a kernel size of 9 instead of 7, this is because we need bigger kernels to

avoid a collapse when we will shrink them.

In Table 4.7 we have the performance of DoGNeXt when evaluating at

kernels size 9, 7 and 5. As we can see the results are not good unfortunately.

The reason for this decay in performance is not completely clear, but we can

suppose that it is due to some distribution shift on the activation of the kernels,

caused by the discretization of the function, in particular, kernel 5 is com-

pletely collapsed. We don’t have a clear solution to this other than to train the
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network with the different kernel dimensions. This is not the solution we were

hoping for but it is the best compromise. Many recipes have been tested, we

will just show the best in order to avoid presenting useless information.

Since we need to modify the training process we should include a com-

parison with a scale augmented network. This is done in order to assess if

DoGNeXt exhibit some additional benefits thanks to the DoGConv or not.

The training recipe for ImageNet1K already includes a scale augmentation,

called

RandomResizedCropAndInterpolation, included in the Python library timm.

ConvNeXt V2, and many other CNNs trained on ImageNet, uses it with pa-

rameters scale=(0.08, 1.0) and ratio=(0.75, 1.3333). The scale ar-

gument defines the scale of the crop on the original image, for example, if we

have scale 0.5 and an image with dimension 1000×500, it will take a random

crop of size 500×250. Meanwhile, ratio defines the aspect ratio of the crop,

that then will be resized to a 1 : 1 for the network, producing a vertical or hor-

izontal stretch of the crop. From this we can understand the source why the

performance on smaller resolutions is bad, in fact, the scale is at maximum 1.0,

this means that, during training, the images are never downsampled but we al-

ways zoom-in a bit. This is also the main cause of the FixRes effect [32]. We

define a different form of scale augmentation that does not interfere with the

one already implemented. There are multiple factors in play behind this deci-

sion. First, if we want to resize the kernels when the resolution is in a certain

range we need the entire batch to have the same exact resolution. Second, we

want to have a better control over the distribution of the augmentation, without

the limitation of a random scale drawn from a uniform distribution. The solu-

tion we propose is to place a donwsampling operation before the forward pass.

This will reduce the resolution of the input batch with a scale factor drawn at

random in the range s ∈ [0.35,0.9] with a probability p = 0.2 of activating.

In Table 4.8 we find the results of ConvNeXt V2 and DoGNeXt trained

with this technique. Both network improved massively on small images with
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gains of more than 25 points of accuracy when evaluating 64 px×64 px im-

ages. Both network did not suffer from a significant loss in performance, with

ConvNeXt V2 performing better across the board. This is extremely unex-

pected since we are focusing on smaller resolution, but we observe better per-

formances also on 2× the training resolution. Future work could focus on this

augmentation with more extensive testing, including different architectures,

evaluating the viability and impact for object detectors.

In Table 4.9 we find the results for DoGNeXt when training with different

kernels. We train the network with kernel size 9, 7, 5 and for each we define a

scale range to use. Kernel 9 is the base and it will be used every time we don’t

change the scale, therefore s = 1.0. If s ∈ [0.6,0.9] we use kernel 7, mean-

while, if s ∈ [0.35,0.6] we will use kernel 5. These ranges have been chosen

in order to keep the ratio between kernel size and resolution constant. The

results are marginally better when compared to the custom scale augmenta-

tion we defined, but a clear improvement over a normal train recipe. In Table

4.10 we trained DoGNeXt with a hybrid approach. In fact, we use the train

with multiple kernel dimensions but with a probability of 0.5 of using kernel

9 even if the s < 1.0, thus performing half custom scale augmentation and half

multi-kernel. In this case we see better results over the baseline compared to

the previous approach, especially in lower resolution the gain is significant

and the loss in larger ones is marginal. Kernel 5 did not manage to get better

results than kernel 7 even in very small resolution. We can suppose that the

additional scale augmentation was more beneficial to the latter, producing a

big improvement.

In summary, DoGNeXt is able tomarginally surpass the remarkable results

we can obtain with the custom scale augmentation we implemented. Unfor-

tunately, the DoGNeXt approach has the crucial problem of having to define

resolution range for each kernel, this is something that could be done empiri-

cally but is an added complication.
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Table 4.6: Accuracy@1 on ImageNet1K at different resolutions. Vanilla

training.

Resolution (px) 64 96 128 156 192 224 312 384 448

DoGNeXt (K9) 2.48 27.06 50.95 61.92 68.03 70.44 71.65 70.31 68.99

ConvNeXt V2 3.92 33.57 54.04 56.72 68.57 70.84 71.85 70.79 69.55

Table 4.7: DoGNeXt accuracy@1 on ImageNet1K at different resolutions for

the different kernel sizes. Vanilla training without scale augmentation.

Resolution (px) 64 96 128 156 192 224 312 384 448

Kernel 9 2.48 27.06 50.95 61.92 68.03 70.44 71.65 70.31 68.99

Kernel 7 4.99 31.11 51.80 59.95 64.40 65.50 62.64 58.78 55.39

Kernel 5 1.62 8.03 14.49 15.91 16.55 14.86 9.16 7.19 5.92

∆ w.r.t. Kernel 9 +2.51 +4.05 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0

4.5 Adapting Model FLOPs

This experiment aims at partially replicating the work done in the FlexiViT pa-

per [6]. The idea is to have a single model, in their case a ViT, in ours a CNN,

that is able to adapt the FLOPs count at inference. This has several benefits

that were highlighted in the original work like: quickly adapting at inference

the performance of the network depending on the hardware resources avail-

able, but also being able to leverage this for faster pre-training and transfer

learning purposes. To ”flexify” a ViT the idea was to create a way to resize

and interpolate the patchifier so that an arbitrary patch size could be used,

therefore enlarging the patch size would reduce the FLOPs count. In case of

a CNN it is easier due to the equivariance of the convolution operator, in fact,

we can change the stride of the network at any time. Increasing the stride of

a convolution has a problem, the kernel size. In the case the stride is larger

than half the kernel dimension, we would occur in a situation where part of

the activation is unused. DoGNeXt, by having the ability to resize the kernels,

can avoid this undesirable effect. The objective is to keep the ratio between

kernel size and stride constant, for example, going from stride 4 to 8 will result

in the kernel size going from 7 to 15. This ensures that the whole activation
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Table 4.8: Accuracy@1 on ImageNet1K at different resolutions. Custom

scale-augmented training.

Resolution (px) 64 96 128 156 192 224 312 384 448

DoGNeXt (K9) 28.69 48.47 59.30 65.15 68.61 70.39 72.03 71.69 71.12

∆ w.r.t. vanilla +26.20 +21.41 +8.34 +3.22 +0.59 -0.04 +0.38 +1.38 +2.13

ConvNeXt V2 32.25 51.47 61.13 63.69 69.20 71.05 72.44 72.51 72.11

∆ w.r.t. vanilla +28.33 +17.90 +7.09 +6.97 +0.64 +0.21 +0.59 +1.73 +2.56

Table 4.9: DoGNeXt accuracy@1 on ImageNet1K at different resolutions for

the different kernel sizes. Multi-kernel scale-augmented training. Comparison

with custom scale-augmented training.

Resolution (px) 64 96 128 156 192 224 312 384 448

Kernel 9 12.64 39.34 54.54 62.34 67.24 69.45 71.35 70.72 69.75

Kernel 7 22.56 47.27 59.59 65.43 68.49 69.86 69.44 67.99 66.06

Kernel 5 29.08 49.67 59.62 63.61 65.22 65.51 62.52 59.68 56.35

∆ w.r.t. DoGNeXt (K9) +0.39 +1.20 +0.32 +0.28 -0.12 -0.53 -0.67 -0.97 -1.36

∆ w.r.t. ConvNeXt V2 -3.17 -1.80 -1.50 +1.74 -0.71 -1.19 -1.08 -1.79 -2.36

is used. Another possible way to reduce the FLOPs count is to simply reduce

the input resolution, this is strongly related to the experiments done in section

4.4, related to scale, moreover, it is not dependent on a specific architecture.

For all our experiments we computed the FLOPs of the forward pass using

the tool provided in the Python library fvcore[25].

In Figure 4.4 we have a comparison between three different techniques:

stride increase, resolution decrease and stride increase with kernel size in-

crease. Note that we alter just the stride of the first DoGConv, the same ap-

plies for the kernel size. This will produce the desired FLOPs reduction. As

we can see from the results we observe a sharp decrease in accuracy the more

the number of FLOPs decreases. This is somewhat expected but not to this

extent. The reason is simple and it lays in what we can call the ”effective res-

olution”. Doubling the stride of the first DoGConv produces a donwsampling

effect for all subsequent layers. When we combine this information with the

finding of section 4.4, we can see that a plausible problem can be the lack of

resistance to scale decrease. In Figure 4.5 we perform the same comparison

but with the scale-augmented DoGNeXt. We can see how the results are much
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Table 4.10: DoGNeXt accuracy@1 on ImageNet1K at different resolutions

for the different kernel sizes. Hybrid multi-kernel scale-augmented training.

Comparison with custom scale-augmented training.

Resolution (px) 64 96 128 156 192 224 312 384 448

Kernel 9 26.45 46.74 58.01 63.98 67.93 70.09 71.94 71.37 70.80

Kernel 7 30.72 50.20 60.40 65.42 68.54 70.02 70.17 69.02 67.47

Kernel 5 29.76 48.22 57.66 62.37 64.44 65.12 63.05 60.30 57.22

∆ w.r.t. DoGNeXt (K9) +2.03 +1.73 +1.1 +0.27 -0.07 -0.3 -0.09 -0.32 -0.32

∆ w.r.t. ConvNeXt V2 -1.53 -1.27 -0.73 +1.73 -0.66 -0.96 -0.5 -1.14 -1.31

better with significant gains across the board.

This approach on CNNs has a major limiting factor, the stride. With ViTs

one could theoretically choose an arbitrary patch size, but we cannot. For

example, if we move from stride 4 to 6 we have a decrease of 1.5× in the

activation size, meanwhile, a ViT could change the patch size from 14× 14

to 16× 16 with a decrease of ∼ 1.14× in the activation size. This reduction

is proportional to the FLOPs of the subsequent operations. This lack of gran-

ularity, especially with small strides, is a problem that we can only fix with a

resolution reduction. In summary, unfortunately the results are not convinc-

ing enough to justify the DoGNeXt approach. Resizing the kernel does not

degrade the performance, something that is only possible thanks to the DoG-

Conv, but is not making a major difference, scale augmentation is the key.

Another point against the kernel resizing is the FLOPs penalty that comes

with it. In Figure 4.5c we can see how the FLOPs count doesn’t decrease a

lot compared to 4.5a, especially when using a large stride. The resolution ap-

proach is the most promising. Future work could focus more on it, trying to

replicate some benefits observed in FlexiViT with simply a resolution change.
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Figure 4.4: DoGNeXt accuracy @1 on ImageNet1K at different FLOPs lev-

els. No scale augmentation. Each plot uses a different technique for reducing

the FLOPs: Stride (a) increase, Resolution (b) decrease, Stride increase with

Kernel adaptation (c).
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Figure 4.5: DoGNeXt accuracy@1 on ImageNet1K at different FLOPs levels.

Scale augmented network. Each plot uses a different technique for reducing

the FLOPs: Stride (a) increase, Resolution (b) decrease, Stride increase with

Kernel adaptation (c).
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Conclusions

With the advent of deep learning computer vision moved from complicated

and handcrafted techniques to a learning-based approach. Convolutional Neu-

ral Networks took the spotlight as one of the main architecture used to solve

easily a variety of different tasks. For long, considering to bake into the ker-

nels parametrized functions was thought to be extremely inefficient and useful

only in very specific and limited scenarios due to the decrease in performance.

In this work we showed that this is not anymore the case. The DoGNeXt archi-

tecture, thanks to the DoGConv kernel parametrization, is in fact able to per-

form similarly to ConvNeXt V2, one of the best performing models for image

classification. We further proved the quality of our solution in a completely

different domain with the MedMNIST dataset, a collection of different classi-

fication tasks onmedical images. Moreover, we tried to use the kernel resizing

properties of DoGConv to adapt the accuracy curve with respect to input scale,

a problem that could benefit object detectors that struggle with small objects.

The results obtained are encouraging but also mixed. This is because we cre-

ated an alternative training recipe, that focuses more on small images, that

is able to improve substantially the accuracy across different scales, beating

the DoGNeXt approach. Finally, we showed how the model can be adapted

on-the-fly to reduce the computational cost, founding that having a resizable

stem provides a small, and inconsistent, improvement over naive techniques,
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however, scale augmentation makes a significant difference.

This work wants to be a foundation and a first attempt towards high per-

forming parametrized CNNs. We believe this to be extremely useful for spe-

cific applications, like scale equivariant networks, but also for advancements

in AI explainability. Knowing the exact formulation of the kernels could spark

new ideas to explain howCNNs learn to solve complicated vision tasks. More-

over, future work could focus on better evaluating and improving the proposed

scale augmentation, with a special focus on object detection tasks.
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