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In the current digitized world, trivial information is

accumulating every second; preserved in all its triteness. Never

fading, always accessible. Rumors about petty issues,

misinterpretations, slander. All this junk data preserved in an

unfiltered state, growing at an alarming rate. It will only slow

down social progress, reduce the rate of evolution. The digital

society furthers human flaws and selectively rewards

development of convenient half-truths. Just look at the strange

juxtapositions of morality around you. [...] You exercise your

right to “freedom” and this is the result. All rhetoric to avoid

conflict and protect each other from hurt. The untested truths

spun by different interests continue to churn and accumulate in

the sandbox of political correctness and value systems.

Everyone withdraws into their own small gated community,

afraid of a larger forum. They stay inside their little ponds

leaking what ever “truth” suits them into the growing cesspool

of society at large. The different cardinal truths neither clash

nor mesh. No one is invalidated, but nobody is right. Not even

natural selection can take place here. The world is being

engulfed in “Truth”. And this is the way the world ends. Not

with a BANG, but a whimper.

Metal Gear Solid 2 (2001)
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Chapter 1

Introduction

In the last years, with the progressive and dramatic increase in size of Lan-

guage Models, in addition to the traditional paradigm of pre-training and fine-

tuning, the In-Context Learning approach has gained more and more popu-

larity in a wide variety of tasks. While fine-tuning often allows to achieve

better performances, the process is computationally expensive and requires

large amounts of good-quality data. On the other hand, In-Context Learning

allows to employ general-purpose Large Language Models on a wide range

of tasks without the need for costly weight updates. While powerful and ver-

satile, this method yields a new set of challenges that make for compelling

research topics. One of such challenges is prompt designing. Specifically, a

lot of studies are aimed at exploring effective ways to format prompt templates

and organizing the demonstrations included in the prompt itself, with a focus

on demonstration selection, reformatting and ordering.

In this thesis, we focus in particular on the demonstration selection aspect,

for which we propose a fast, versatile and theoretically sound graph-based ap-

proach. The reference setting is one in which, given a query for a specific

task, a set of demonstrations must be retrieved from an available large knowl-

edge base. Several studies found that there exists a trade-off in effectiveness

between selecting demonstrations that are relevant (usually meaning that they

are similar) to the query and choosing examples that are semantically diverse
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from each other. Popular heuristic approaches include KNN-based [16] and

greedy MMR-maximizing [28] methods. The goals of our method are to se-

lect examples that are both relevant to the query (via any suitable distance or

similarity metric) and that cover a variety of concepts encoded in the knowl-

edge base. Moreover, tools from graph theory allows to select examples that

best summarize such concepts.

The proposed method can be applied in any task that can be formulated

as described above. Here, we perform experiments evaluating several config-

urations of the retrieval approach on five distinct tasks from three different

datasets, comparing them to Random and KNN-based baselines.

In Chapter 2 we introduce the theoretical concepts upon which our ap-

proach is grounded. In particular, Section 2.1 includes the relevant literature

about In-Context Learning, which evidences the similarity-diversity tradeoff.

Section 2.2 focuses on the description of the tools from graph theory that are

used, with the associated motivations that support their adoption.

Chapter 3 is devoted to the full description of our proposed methodology.

There we illustrate the process of creation of what we call the Demonstration

Graph, a large graph where nodes represent demonstrations from the knowl-

edge base and edges represent similarity relations between examples. At in-

ference time, a subgraph is extracted depending on the query, and it is sub-

sequently partitioned into dense and scarcely connected communities. Last,

the most representative demonstrations from each community is selected and

included in the prompt.

Chapter 4 includes several experiments aimed to test the effectiveness of

our method. In Section 4.1 we tackle three tasks concerning argument mining

in the legal domain. In Section 4.2 the goal is to assess the compliance to the

GDPR of clauses from privacy policies of online companies in terms of com-

prehensiveness of information. Last, in Section 4.3 we test the capability of

LLMs to learn to play the card game Chef’s Hat by providing only examples.
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In Chapter 5 we summarize our findings by highlighting both shortcom-

ings and promising results. The approach we propose offers a huge design

space that leaves room for possibly large improvements. Hence, we include

in the same section several methods and topics that can be explored in order

to further improve the performances in all tasks.



Chapter 2

Background

2.1 In-Context Learning

In recent years, the popularity of in-context learning (ICL) as a research topic

has seen as significant rise, starting from the influential article LanguageMod-

els are Few-Shot Learners [7], which accompanied the release of the GPT-3

transformer model. This paradigm consists in providing a task instruction to a

large language model in natural language as a prompt, together with a number

of demonstrationswhich act as examples. This approach has also been referred

to as zero-shot learning, one-shot learning, or few-shot learning, depending

on the number of provided demonstrations. One of the greatest appeals of in-

context learning is that it allows large language models to tackle a variety of

novel and complex tasks without the need for the expensive process of fine-

tuning. It has been observed that the capability of successfully tackle this kind

of tasks via in-context learning is an emergent ability of LLMs. In fact, by

studying the performances of different models with similar sizes, it has been

observed in [26] that for several tasks (such as Truthful Question Answering,

3-digit addition and subtraction and Word Unscrambling), the performances

of models in the few-shot prompting setting are very close to random base-

lines until a certain threshold of number of parameters, after which they see a

steep increase (Figure 2.1).
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Figure 2.1: Examples of emergence in the few-shot prompting setting from
[26].

Formally, if Dk = {f(x1, y1), . . . , f(xk, yk)} represents a set of demon-

strations with k examples and f(xk, yk) is the prompt function that transforms

the k-th task example into a natural language prompt, then the prediction of

the output ŷk+1 generated from LLMs can be formulated as follows:

LLM

I, f (x1, y1) , . . . , f (xk, yk)︸ ︷︷ ︸
demonstrations

, f

xk+1︸ ︷︷ ︸
input

, ___︸︷︷︸
answer


 → ŷk+1,

where I is the task description, and xk+1 is a new input query. It has been ob-

served that the effectiveness of ICL during inference is sensitive to a variety of

factors concerning both the instruction formatting and the demonstration or-

ganization. The former pertains to the realm of prompt engineering [17] and

includes a wide range of possibilities (e.g. Chain-of-Thought prompting, role-

playing strategies) that are beyond the scope of this work. For what concerns

demonstration organization, three main aspects have been identified:

• Demonstration Selection: selecting a subset of examples from a given

knowledge base. This can be done either for a given test instance or in
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order to select examples to annotate before test time. Both heuristic and

LLM-based approaches have been proposed;

• Demonstration Format: effectively integrating and formatting each

selected demonstration into a prompt formulated in natural language;

• Demonstration Order: rearranging the demonstrations in a good or-

der. Several heuristic methods have been proposed, such as ordering

the examples according to the similarity to the query in the embedding

space.

2.1.1 Related Work

In this work we focus specifically on the Demonstration Selection aspect of

ICL. It has been shown that choosing examples that are close to the query in

the embedding space (either via cosine similarity or euclidean distance) can

greatly improve the performance of ICL. This is due to the fact that closeness

in the embedding space is associated to semantic similarity between the avail-

able demonstrations and the given query. In particular, in [16] the authors in-

troduce and evaluate KATE, a KNN-based demonstration retriever, with GPT-

3 in three different tasks, namely Sentiment Analysis, Table-to-text Genera-

tion and open-domain Question Answering. In this article, they use different

sentence embeddings produced by both the original RoBERTa-large model

[18] and differently fine-tuned versions of the same RoBERTa model. In or-

der to retrieve similar examples, both euclidean distance and cosine similarity

are considered. This approach has been shown to significantly outperform a

random sampling baseline, and to achieve similar (or even better, in the case

of Question Answering) performance to a small (3B parameters) fine-tuned

T5 model on the same tasks.

In addition to the relevance to a given test instance, understood as close-

ness in the embedding space, semantic diversity between the retrieved exam-

ples has also been identified as a key factor for achieving good performance in
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ICL. In [25] the authors identify a tension between the need for the demonstra-

tions to be relevant to the test instance and the need for diversity between the

examples. In the same article a reinforcement learning approach to demon-

stration selection is proposed, which aims to maximize both relevance and

diversity. This approach, however, computes diversity by only taking into

account the distribution of labels among the selected demonstrations.

In [28] it is shown that LLMs can benefit from exemplar sets that ex-

hibit both complementarity and relevance to a given test query. Contrary to

the previous study, the diversity between demonstrations does not concerns

the labels only, but it is based on the same similarity metric that is used in

order to assess the relevance. Specifically, they test a Maximum-Marginal-

Relevance(MMR)-based retriever on three tasks (Letter Concatenation, Coin

Flips and Grade-School Math). In particular, they use a greedy approach by

iteratively selecting demonstrations in such a way to maximize the MMR:

q̂ = arg max
qj∈D/T

(
λS(q, qj) − (1 − λ) max

qi∈T
S(qj, qi)

)
,

where S denotes a similarity function, 0 ≤ λ ≤ 1 is a parameter which con-

trols the trade-off between relevance and diversity, D is the pool of available

demonstrations and T is the set of the currently selected demonstrations. It is

observed that the best results are achieved for values 0.5 ≤ λ ≤ 0.6, roughly

balancing the impact of relevance and diversity.

Last, in [24] a graph-based approach is used in order to select effective

demonstrations to label from a larger set of unlabeled data before test time.

At test time, the retrieved demonstrations to be prompted to the LLM are

still selected via KNN. This method also encourages diversity between the

demonstrations, and has been proven to outperform random selection on sev-

eral tasks.
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2.2 Graph Theory

In this section we introduce several tools and concepts from graph theory upon

which our approach to Demonstration Selection is grounded. Specifically, we

make heavy use of the PageRank centrality measure and the Louvain method

for community detection. We begin with the following basic definitions:

Definition 2.2.1. A graph G is an ordered pair G = (V, E), where V is a

finite set, whose elements are said vertices or nodes, and E ⊆ V × V is the

set of the edges of the graph.

Edges can also be weighted according to someweight functionω : E → R.

Definition 2.2.2. A graph S = (VS, ES) is a subgraph of G = (V, E) if

VS ⊆ V and ES ⊆ E.

In the following, we will label nodes in vertices with natural numbers V =

{1, 2, . . . , n}, with n = |V |. Any graph with such labels can be uniquely

identified by its adjacency matrix:

Definition 2.2.3. Let G = (V, E) be a graph with V = {1, 2, . . . , n}. The

adjacency matrix of G is A = (aij) ∈ Rn×n, where

aij =


1 if (i, j) ∈ E,

0 otherwise.

This definition naturally extends to weighted graphs by letting

aij =


ω(i, j) if (i, j) ∈ E,

0 otherwise.

2.2.1 Centrality measures

In graph theory and network science, a common interesting property to study

is which nodes can be deemed the most important in a given graph. Since
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there are a number of different characteristics that can be used to determine

this importance, a number of centrality measures have been identified [19, 10,

4]. Formally, a centrality measure is any function of nodes that is invariant by

graph automorphism:

Definition 2.2.4. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Then

G1 and G2 are isomorphic if and only if there exists a bijection ϕ : V1 → V2

such that for all i, j ∈ V1,

(i, j) ∈ E1 ⇐⇒ (ϕ(i), ϕ(j)) ∈ E2.

Such bijection ϕ is an isomorphism between G1 and G2. An isomorphism

from a graph G to itself ϕ : V → V is said automorphism.

Remark 2.2.1. Two graphs G1, G2 are isomorphic if and only if there exists

a permutation matrix P such that their respective adjacency matrices A1, A2

are conjugated via P :

A2 = PA1P
T .

Definition 2.2.5. A centrality measure for a graph G = (V, E) is a function

fG : V → R such that for all graph automorphisms ϕ : V → V , and for all

i ∈ V , fG(i) = fG(ϕ(i)).

The definition of centrality measure is remarkably broad and allows to

define measures that capture both local and global properties of graphs. For

instance, one of the simplest centrality measures is the (out-)degree of nodes:

deg(i) = | {(i, j) | (i, j) ∈ E} |.

The class of centrality measures that is most relevant to this work is that

of spectral centrality measures. This type of centrality measures are based on

spectral properties of adjacency matrices. Often, they are based on the idea

that the importance of a node correlates with the importance of neighboring
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nodes [22], and they account for long-range effects of nodes, rather than the

effects on their immediate neighborhood. The most straightforward spectral

measure is probably the eigenvector centrality. This measure assigns to each

node i a score vi that is proportional to the scores of nodes that are connected

to it:

λvi =
∑

j : j→i

vj =
n∑

j=1
Ajivj =

(
AT v

)
i
,

where A is the adjacency matrix of the graph. This means that the vector of

scores v is in fact an eigenvector of AT . For connected graphs, the Perron-

Frobenius theorem [15] guarantees that choosing λ as the largest eigenvalue

and normalizing v makes this centrality measure well-defined:

Definition 2.2.6. AmatrixA ∈ Rn×n is reducible if there exists a permutation

P such that

A = P

X Y

0 Z

P T ,

where X and Z are both square. If a square matrix is not reducible then it is

irreducible.

Definition 2.2.7. A graph G = (V, E) is connected if for all u, v ∈ V , there

exists a path from u to v.

Remark 2.2.2. If G is a connected graph, then its adjacency matrix is irre-

ducible.

Theorem 2.2.1 (Perron-Frobenius). Let A ∈ Rn×n be an irreducible and non-

negative matrix. Then:

1. A has an eigenvalue λ = max
i=1,...,n

|λi|, where λ1, . . . , λn are the eigen-

values of A;

2. there exists a positive eigenvector v associated to λ;

3. λ has algebraic multiplicity 1;
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4. if Ax = λx, then x is a multiple of v.

In this work, however, we deal for the most part with disconnected graphs.

For this reason, we cannot use directly this measure when assessing the cen-

trality of nodes. Another important spectral centrality measure that we can

use in its place is the PageRank score [21]. This measure was defined by

the founders of Google Larry Page and Sergey Brin. The main intuition that

motivates it is very similar to the idea of mutual reinforcement behind the

eigenvector centrality. In this case, the importance of a node is still measured

in terms of the importance of its neighbors, but the contribution of each neigh-

bor is divided by their respective (out-)degree. The behaviour of this metric

on a directed graph is illustrated in Figure 2.2. In addition, the PageRank score

is well-defined even for disconnected graphs, which allows it to be used in a

wider range of situations.

Definition 2.2.8. Let A = (aij) ∈ Rn×n be the adjacency matrix of graph G.

Then we define the transition matrix N ∈ Rn×n of G as

N = (nij) =
(

aij∑n
k=1 aik

)
,

that is, thematrix obtained from the adjacencymatrix by dividing each element

by the sum of the elements in its row.

Formally, the vector of PageRank scores of a graph G can be defined as

the eigenvector centrality of the weighted graph that has as adjacency matrix

a convex linear combination of its transition matrix and the constant matrix( 1
n

)n×n

:

Γ = αN + (1 − α)
( 1

n

)n×n

,

where 0 < α < 1 is traditionally set to α = 0.85. The matrix Γ is called the

Google matrix of graphG. By the Perron-Frobenius theorem, since this matrix

is strictly positive, the vector of PageRank scores is well-defined for arbitrary

graphs with nonnegative weights. Moreover, this measure is closely related
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Figure 2.2: Graphical representation of unnormalized PageRank scores on a
directed graph.

to the behaviour of random walk on graphs; in fact, it can be proved that it is

the only stationary probability vector of the random walk on G defined by the

Google matrix.

2.2.2 Modularity

One of the most crucial problems in graph theory is to identify meaningful

communities (or clusters) of nodes within graphs. For instance, if a graph is

used to represent a net of friendships or co-authorships in research papers,

communities can be formed by groups of friends that get on well or authors

that are interested in the same specific topic. In general, divisions into com-

munities of the vertices of a graph G = (V, E) are subsets C ⊆ P(V ), but

they are often straight partitions of V . Usually, communities are groups of

nodes that are densely connected to each other, and are scarcely connected to
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nodes belonging to other communities. A remarkably successful formaliza-

tion of this concept is given in [20] and [8], via the definition of modularity.

The modularity of a partition C of a graph is defined as

Q(C) = 1
2m

∑
vw

[
Avw − kvkw

2m

]
δ(cv, cw),

where m = 1
2
∑

vw Avw is the total number of edges in the graph, A is as

usual the adjacency matrix, δ(i, j) is 1 if i = j and 0 otherwise, and cv, cw ∈

C are the communities that contain nodes v and w, respectively. The term
kvkw

2m
represents the probability of an edge existing between vertices v and

w if connections are made at random but respecting vertex degrees. Hence,

modularity can be interpreted as a measure of the ratio of intra-community

edges to inter-community edges.

Theorem 2.2.2. Let G = (V, E) be an undirected, unweighted graph and

C ⊆ P(V ) a partition of the nodes of G. Then, −1
2 ≤ Q(C) ≤ 1 holds.

Proof. The theorem is proved in [6].

In particular, anti-community partitionings yield negative values for mod-

ularity, with the minimum being achieved for instance by bipartite graphs with

the canonic clustering. If the number of intra-community edges is close to the

expected value for a random graph with the same degree distribution, then

Q(C) ≈ 0, and positive values indicate strong community structure.

2.2.3 Louvain method

It has been proved that the problem of finding the partition yielding the max-

imum value for modularity is strongly NP-complete [5]. One of the most

popular and widely used heuristic methods for finding partitions with large

modularity is the Louvain method [3]. Its popularity is due to the fact that it

is extremely fast in terms of computational time, in addition to yielding clus-

ters with good quality, modularity-wise. The algorithm is composed by two
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phases, repeated iteratively. In the first phase, it assigns each node to its own

singleton community. Then, for each node i, it evaluates the gain of modular-

ity that would be obtained by moving i from its community to the ones of each

of its neighbours. Last, if a positive gain is possible, i is moved to the com-

munity that yields the largest modularity increase. The process is repeated

for all nodes until no further improvement can be achieved. In the second

phase, it builds a new graph whose nodes represent the communities inden-

tified in the first phase. The new nodes are subsequently linked with edges

having a weight given by the sum of the weights of the edges between nodes

in the corresponding two communities (defaulting to 1 if the original network

is unweighted). This leads to the creation of self-loops for each node having

a weight equal to the sum of weights of intra-community edges in the corre-

sponding community in the original graph. The two phases are iterated until

no further gain of modularity is obtained. Two iterations of this process are

illustrated in Figure 2.3.

Remark 2.2.3. In addition to returning a good partition of the whole graph into

communities, the outlined process also yields a number of smaller, hierarchical

subcommunities after each second phase.

Remark 2.2.4. The Louvain algorithm is sensitive to the order in which nodes

are examinated and it does not provide a heuristic method to determine such

order. Unless some criterium for ordering nodes is chosen beforehand, this

process is not deterministic.
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Figure 2.3: Graphical representation of the Louvain algorithm.



Chapter 3

Methodology

In this chapter we outline a general-purpose graph-based approach to demon-

stration retrieval for in-context learning. Guided by the observations from the

sources described in Section 2.1 and by using the tools from Section 2.2 we

introduce a method that retrieves demonstrations from an available knowledge

base while pursuing the following goals:

G1 The demonstrations must be relevant to any given input query;

G2 In order to make the most use of the whole knowledge base, the demon-

strations must be representative of abstract concepts represented in the

knowledge base itself;

G3 The demonstrations must be semantically diverse from each other in

order to effectively cover a variety of concepts.

3.1 Demonstration Graph creation

The first step consists in the creation of the Demonstration Graph G. During

this phase, for each demonstration diwith features xi in the knowledge base

K = {d1, . . . , dN}, a node with label i is added to the Demonstration Graph.

I Then, given a similarity measure S (or a distance D) and a threshold R, for
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Figure 3.1: Demonstration Graph creation. In the left picture, blue points
represent features of demonstrations from a knowledge base in a 3D space. In
the right picture the same points are connected to each other if their euclidean
distance is below a set threshold R.

each pair 1 ≤ i, j ≤ N , an undirected edge is added between nodes i and j if

and only if S(xi, xj) ≥ R (respectively, D(xi, xj) ≤ R).

Remark 3.1.1. The threshold parameterR directly influences the edge density

of the Demonstration Graph. In the following, we refer to it as the resolution

of the graph. Large values of R trivially correspond to highly dense Demon-

stration Graphs.

In the experiments from Chapter 4, we used both the Euclidean distance

between sentence embeddings generated by the Llama-3.1-8B-Instruct

transformer model and the Hamming distance between structured sequences

of numbers as metrics for the creation of the Demonstration Graphs.

3.2 Query Subgraph Extraction

The second step is dependent on the query input. In this phase, given a test

instance q with features xq, a Demonstration Graph G and a radius parameter

r, we extract a subgraph S of G by removing from it each node i such that

S(xi, xq) ≤ r (orD(xi, xq) ≥ r). This step is graphically illustrated in Figure

3.2 and Figure 3.3.
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Figure 3.2: Flattened representation of the graph from Figure 3.1. The large
red point represents the features of the query and the dashed circle represents
the cut which yields the subgraph S.
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Figure 3.3: Extracted subgraph S from the Demonstration Graph G in Figure
3.2.

Remark 3.2.1. The first and second step are theoretically interchangeable.

In fact, creating a large Demonstration Graph and then extracting a subgraph

is equivalent to first selecting all nodes that are closer than r to the query and

then connecting them to each other according to the resolution parameter R.

In the setting of our experiments, given the large number of required infer-

ences, the first approach is more convenient. On the contrary, in a different

scenario where the number of inferences is limited, the second approach might

be more appropriate, since the former involves computing all the
(

N
2

)
possible

(dis)similarities and keeping a potentially much larger graph in memory.

Remark 3.2.2. Having an effect similar to the KNN approach, this step is re-

sponsible for achieving the goal G1. In particular, the lower the radius r, the

more semantically relevant to the query the retrieved demonstrations will be.

Remark 3.2.3. Depending on the specific query instance, it is possible that the

extracted subgraph has less nodes than the required number of demonstrations.
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Figure 3.4: Partition of the graph from Figure 3.3 yielded by the Louvain
algorithm.

In these cases, in the experiments we iteratively increase the radius r by a

relatively small amount (typically 10%) until a sufficient number of nodes is

obtained.

Remark 3.2.4. If G and S are obtained by using a distance D, then the reso-

lution parameter R should be set to less than double r. Otherwise, due to the

triangular inequality, S would result in a clique, rendering subsequent steps

useless.

3.3 Louvain Partitioning and Demonstration Se-

lection

The last step consists in creating partitions in the subgraph S and selecting the

most important nodes from each partition. First we apply the Louvain method

on S in order to detect cohesive partitions.
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Figure 3.5: Selection of the top 2 nodes according to the PageRank metric
computed in each community detected in Figure 3.4.

Remark 3.3.1. The application of the Louvain algorithm on the extracted sub-

graph allows the satisfaction of the objective G3. In fact, by choosing nodes

from disjunct and dense communities, we obtain demonstrations that are re-

lated to separate abstract concepts.

Last, from each community we select the k nodes that have the highest

PageRank score computed in the respective partition.

Remark 3.3.2. The Louvain method does not allow to decide beforehand how

many communities are detected. In the experiments, we select the top k nodes

from the largest detected communities, where k is the smallest integer that

allows to obtain a sufficient number of demonstrations.

Remark 3.3.3. Following the discussion from Section 2.2.1, in this context

where edges between nodes represent similarity between demonstrations, nodes

with a high PageRank score represent examples that are similar to many exam-

ples that are in turn similar to many demonstrations. Hence, these examples



3.4 Label-Balanced Variant 22

make for good representatives of abstract concepts encoded in their respective

partition, working towards the satisfaction of goal G2.

3.4 Label-Balanced Variant

We also test a variant of the described method specifically for single-label and

multi-label classification. In this case, we aim to further increase the diversity

of demonstrations by providing in the prompt an approximatively equal num-

ber of examples for each possible label. By following the outlined methodol-

ogy, it is possible that all of the retrieved demonstrations share the same label,

especially for low values of the radius r and for highly unbalanced datasets.

This has the potential to set major drawbacks in the performance of ICL: pre-

liminary experiments show that not having access to any example for a given

label can make discarding it remarkably difficult for the LLM, unless the de-

scription of the label itself in the template is extremely accurate and effective.

This variant simply consists in creating a different Demonstration Graph for

each label in the dataset by following the same process as before. Then, for

each graph we retrieve the most relevant demonstrations and include them in

the prompt.

Remark 3.4.1. For multi-label classification, this can lead to including multi-

ple copies of some demonstrations in the prompt. If the number L of labels is

very small (ideally 2 or 3, depending on how large the knowledge base is and

on the actual distribution of the labels included in it), another possibility that

allows to avoid this phenomenon would be to create a different Demonstra-

tion Graph for each possible combination of labels. Of course, the exponential

growth of the combinations renders this approach unviable for larger numbers

of labels.

Figures 3.6 and 3.7 illustrate an example of how the two methods differ

on a test instance from our first experiment.
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Query:
Text: finding corroborated Article 20 Regulation 6591999 governs
rights interested parties
Answer:

Retrieved Examples:
Text: Secondly reasons set paragraph 65 present judgment General
Court required adjudicate discounts provided 2006 schedule
Answer: prem
Text: result aid cannot considered separately method financing see
effect judgment 14 April 2005 AEM AEM Torino C‑12803 C‑12903
EUC2005224 paragraph 45
Answer: prem
Text: apparent Court’s caselaw cited paragraphs 89 90 recovery
unlawful aid different purpose Directive 2014104
Answer: prem
Text: Second regards merits plea Article 44 Regulation 178581 merely
provides Articles 92 93 94 Treaty apply production trade sugar save
otherwise provided Regulation
Answer: prem
Text: Accordingly General Court err law determining reference system
Answer: prem

LLM output: conc
ground truth: prem

Figure 3.6: Example of prompt with demonstrations retrieved via the orig-
inal graph-based approach. The examples are not able to provide sufficient
informations to the LLM in order to exclude the “conc” label.
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Query:
Text: finding corroborated Article 20 Regulation 6591999 governs
rights interested parties
Answer:

Retrieved Examples:
Text: follows first ground appeal must rejected part inadmissible part
unfounded
Answer: conc
Text: result aid cannot considered separately method financing see
effect judgment 14 April 2005 AEM AEM Torino C‑12803 C‑12903
EUC2005224 paragraph 45
Answer: prem
Text: circumstances third ground appeal must rejected unfounded
Answer: conc
Text: follows foregoing second plea relied upon Telefónica support
appeal must also dismissed
Answer: conc
Text: Secondly reasons set paragraph 65 present judgment General
Court required adjudicate discounts provided 2006 schedule
Answer: prem

LLM output: prem
ground truth: prem

Figure 3.7: Example of prompt with demonstrations retrieved by using a sepa-
rate graph for each label. Contrary to the example from Figure 3.6, the demon-
strations with the “conc” label guide the LLM to output the correct answer.



Chapter 4

Experiments

We apply the described methodology to five tasks tasks on three different

datasets. In all tasks, we join a predefined template with 5, 10, 15, 30 and

50 retrieved examples and provide the resulting prompt as input to the trans-

former model Llama-3.1-8B-Instruct. We perform experiments by setting

the resolution R and radius r depending on the specific dataset: we test res-

olutions that yield Demonstration Graphs where each node is connected on

average to 0.5% (“Sparse Graphs” , in the Tables), 1% (“Default R”) and

2% (“Dense Graphs”) of other nodes, and subgraph radii such that, applied

to demonstrations in the knowledge base, would yield subgraphs of average

size
√

N · 50 (“Default r” , in the Tables) and
√

N ·50
2 (“Small r”), where N is

the number of examples in the knowledge base. This last choice is motivated

by the fact that in this way, when choosing 50 demonstrations, the two steps of

subgraph extraction and selection of the most important nodes in the detected

communities yield on average two roughly equal reductions of the size of the

available dataset. Moreover, as an attempt to give even more importance to

similarity in the graph-based approach, we test using half the default radius

(“Smallest r”). This always yields empty graphs, until the iterative process

of incrementing r yields enough nodes. In all experiments we compare our

approach to two baselines with random and KNN-based demonstration selec-

tion. For the classification tasks we include an additional Zero-Shot baseline.
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The first dataset is Demosthenes [13, 23], a corpus on which we tackle

three sentence classification tasks from the field of argument mining in the

legal domain. The second dataset [12] includes annotated privacy policies of

online platforms, on which we classify clauses as sufficienty informative or

insufficiently informative according to Articles 13 and 14 of the GDPR. Last,

we perform experiments on the capability of the LLM of understanding the

legality of moves from examples in the Chef’s Hat boardgame [1, 2]. In this

case we use a dataset that has been artificially created by letting agents play

random moves for 100 matches.

In the appendix we show all the prompt templates that have been used in

the experiments.

4.1 Argument Mining

4.1.1 Dataset

The Demosthenes corpus encompasses 40 decisions on fiscal State aids by the

Court of Justice of the European Union (CJEU). The dataset is characterized

by a focus on argument mining, with 4 related classification tasks being ad-

dressed. Sentences from the Findings of the court section of each document

have been manually annotated by experts in the legal domain. The choice of

this specific section is motivated by the fact that it has been identified as the

main source of interacting inferences, which ultimately lead to conclusions on

the parties’ claims. The documents have been pre-processed via the removal

of stop-words and punctuation and the sentence segmentation has been per-

formed based on periods, semicolons and newlines. The tasks introduced in

the article that presents the corpus are:

• Argument Detection;

• Argument Classification;
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• Type Classification;

• Scheme Classification.

We tackle here the last three tasks, which assume that argumentative com-

ponents have been previously correctly identified. In the original article, the

authors evaluated several traditional machine learning techniques via 5-fold

cross-validation, with manually created splits at the document level in order

to balance their composition. In our experiments, we use one of these folds as

a test set, reserving all the other elements to the knowledge base. For all the

tasks, in order to measure the dissimilarity of demonstrations, we use the eu-

clidean distance between sentence embeddings produced by the same model

used for inference.

4.1.2 Argument Classification

This first single-label classification task consists in determiningwhether a sen-

tence that has been identified as argumentative is a premise (prem) or the con-

clusion (conc) of the argument it belongs to. It is important to point out that,

in general, an argumentative sentence can be both a premise of an argument

and a conclusion of another argument at the same time. In these cases, sen-

tences have been marked as premises. The dataset for this task is highly unbal-

anced, including 2535 argumentative sentences, of which 2375 are marked as

premises and 160 marked as conclusions. In the test set there are 345 premises

and 22 conclusions.

Table 4.1 shows the F1 scores achieved by the different approaches and

Table 4.2 shows the same metric achieved by the respective label-balanced

variants. The most dramatic improvement in performances comes by switch-

ing each approach to its respective label-balanced version. In fact, on aver-

age, the base methods achieve a macro F1 score lower than 10, with exception

of the Random-based demonstration retrieval, which achieves the highest F1

score for both labels on average. However, even the Random-based approach
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fails in achieving performances comparable to the Zero-Shot approach. This

is most probably due to the high unbalance of labels: the KNN-based and

graph-based approaches are more likely to retrieve only premise-labeled ex-

amples to each of the test instances with the same label, resulting in a severe

degradation of performance.

All the label-balanced variants yield a dramatic improvement, with the

strongest performance being obtained by the KNN-based retrieval approach.

In almost all cases the performances tend to increase with respect to the num-

ber of provided demonstrations. falling behind the competitive KNN baseline,

the label-balanced variant of the graph-based approach surpasses the zero-shot

and random baselines in all configurations, with the best improvements being

achieved with extracted subgraphs of small size. These considerations indi-

cate that the proposedmethod can be beneficial, even if the impact of similarity

has been underestimated.

4.1.3 Type Classification

The second task we tackle is Type Classification. This is a multi-label clas-

sification problem in which premises have to be classified as legal (L) and/or

factual (F). Legal premises are sentences that support a conclusion by provid-

ing legal elements such as legal rules, precedents, interpretations of applicable

rules and principles; while premises labeled as factual contain descriptions of

specific events and existing situations. Of the 2375 premises in the corpus,

906 have been marked as legal, and 1576 as factual, with only 107 possessing

both labels.

The performance of the considered base and label-balanced approaches are

shown in Table 4.3 and Table 4.4, respectively. Interestingly, in this case the

base approaches seem to slightly outperform the label-balanced variants. In

general, however, the number of demonstrations and the methods to retrieve

them do not seem to affect significantly the performances. Remarkably, in
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Method # Dem. Premise Conclusion Macro

Zero-Shot 96.88 21.43 59.16

Random

5 17.46 12.36 14.91
10 11.99 11.99 11.99
15 8.86 11.80 10.33
30 6.18 11.64 8.91
50 12.50 12.02 12.26
Avg. 11.40 11.96 11.68

KNN

5 8.09 6.06 7.07
10 7.65 8.15 7.90
15 8.22 9.21 8.72
30 9.78 9.29 9.54
50 14.89 10.61 12.75
Avg. 9.73 8.66 9.20

Method # Dem. Premise Conclusion Macro

Louvain;
Default R;
Default r

5 8.72 8.72 8.72
10 6.13 10.13 8.13
15 6.69 10.67 8.68
30 8.26 10.24 9.25
50 7.76 10.72 9.24
Avg. 7.52 10.10 8.80

Louvain;
Dense Graph;
Default r

5 8.77 9.76 9.26
10 3.94 10.03 6.99
15 4.46 8.53 6.50
30 5.56 9.09 7.32
50 8.29 10.75 9.52
Avg. 6.20 9.63 7.92

Louvain;
Sparse Graph;
Default r

5 8.15 7.65 7.90
10 5.04 10.08 7.56
15 6.67 10.16 8.41
30 10.87 10.38 10.63
50 15.75 9.07 12.41
Avg. 9.30 9.47 9.38

Method # Dem. Premise Conclusion Macro

Louvain;
Default R;
Small r

5 10.19 7.20 8.69
10 5.54 8.58 7.06
15 6.63 9.14 7.88
30 8.74 9.24 8.99
50 7.73 10.22 8.97
Avg. 7.77 8.88 8.32

Louvain;
Dense Graph;
Small r

5 6.63 9.14 7.88
10 5.01 9.07 7.04
15 5.56 9.09 7.32
30 6.69 10.67 8.68
50 6.65 9.65 8.15
Avg. 6.11 9.52 7.81

Louvain;
Sparse Graph;
Small r

5 7.18 9.68 8.43
10 6.61 8.63 7.63
15 10.30 9.32 9.81
30 10.84 9.86 10.35
50 13.33 9.47 11.40
Avg. 9.65 9.39 9.52

Method # Dem. Premise Conclusion Macro

Louvain;
Default R;
Smallest r

5 8.70 8.20 8.45
10 7.61 7.10 7.36
15 7.67 8.67 8.17
30 5.00 8.56 6.78
50 9.32 10.30 9.81
Avg. 7.66 8.57 8.11

Louvain;
Dense Graph;
Smallest r

5 9.16 7.16 8.16
10 5.51 7.55 6.53
15 7.65 8.15 7.90
30 4.47 9.04 6.76
50 7.18 9.68 8.43
Avg. 6.79 8.32 7.56

Louvain;
Sparse Graph;
Smallest r

5 7.65 8.15 7.90
10 7.67 8.67 8.17
15 10.81 9.34 10.08
30 9.81 9.81 9.81
50 9.86 10.84 10.35
Avg. 9.16 9.36 9.26

Table 4.1: F1 scores for Zero-Shot, Random-based, KNN-based and graph-
based approaches on the Argument Classification task without balancing the
labels in the prompt.
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Method # Dem. Premise Conclusion Macro

Random

5 76.21 24.00 50.10
10 85.38 33.33 59.36
15 86.14 34.38 60.26
30 86.93 34.43 60.68
50 88.92 37.84 63.38
Avg. 84.72 32.80 58.76

KNN

5 87.50 29.09 58.30
10 93.42 46.91 70.16
15 92.76 44.71 68.73
30 92.74 45.98 69.36
50 94.03 51.85 72.94
Avg. 92.09 43.71 67.90

Method # Dem. Premise Conclusion Macro

Louvain;
Default R;
Default r

5 83.44 23.08 53.26
10 88.36 31.78 60.07
15 91.67 37.21 64.44
30 91.25 40.43 65.84
50 91.78 40.45 66.12
Avg. 89.30 34.59 61.95

Louvain;
Dense Graph;
Default r

5 82.35 24.46 53.41
10 88.68 33.64 61.16
15 92.76 44.71 68.73
30 89.03 34.29 61.66
50 91.28 39.13 65.20
Avg. 88.82 35.25 62.03

Louvain;
Sparse Graph;
Default r

5 81.34 20.14 50.74
10 86.82 26.79 56.80
15 91.47 38.20 64.84
30 91.56 42.55 67.06
50 92.64 41.46 67.05
Avg. 88.77 33.83 61.30

Method # Dem. Premise Conclusion Macro

Louvain;
Default R;
Small r

5 81.62 22.70 52.16
10 87.76 26.67 57.21
15 91.61 40.00 65.81
30 91.30 37.78 64.54
50 92.09 42.79 67.39
Avg. .8888 33.99 61.42

Louvain;
Dense Graph;
Small r

5 84.87 26.98 55.93
10 88.82 28.28 58.55
15 92.09 42.70 67.39
30 90.88 40.82 65.86
50 91.05 41.24 66.14
Avg. 89.54 36.00 62.77

Louvain;
Sparse Graph;
Small r

5 82.00 19.40 50.70
10 88.00 31.19 59.60
15 92.09 42.70 67.39
30 90.85 42.00 66.43
50 92.57 45.45 69.01
Avg. 89.10 36.15 62.63

Method # Dem. Premise Conclusion Macro

Louvain;
Default R;
Smallest r

5 83.44 27.83 57.21
10 90.42 37.11 63.77
15 92.74 45.98 69.36
30 92.19 46.81 69.50
50 93.70 50.60 72.15
Avg. 90.50 41.67 66.40

Louvain;
Dense Graph;
Smallest r

5 86.41 27.59 57.00
10 89.45 32.32 60.89
15 93.42 46.91 70.16
30 91.73 43.01 67.37
50 92.86 48.89 70.87
Avg. 90.77 39.74 65.26

Louvain;
Sparse Graph;
Smallest r

5 86.45 26.32 56.38
10 89.91 36.00 62.95
15 93.72 49.38 71.55
30 91.88 44.68 68.28
50 93.70 50.60 72.15
Avg. 91.13 41.40 66.26

Table 4.2: F1 scores for Random-based, KNN-based and graph-based ap-
proaches on the Argument Classification task by balancing the labels in the
prompt.
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most cases a larger number of examples seem to slightly increase the F1 score

for the factual label, while having the opposite effect on both the macro F1

score and the F1 score for the legal label. The best macro F1 scores are ob-

tained in both cases by different variants of the graph-based approach with a

small amount of demonstrations (∼ 71 and ∼ 70, respectively), while the

KNN-based methods achieve the strongest F1 on the factual label when re-

trieving many examples. The best average macro F1 scores are achieved by

the graph-based approach with the default value for the subgraph radius r,

even if by tiny margins, suggesting that for this task the increase in semantic

diversity between the demonstrations is slightly more beneficial and impactful

than similarity. It is worth observing that for this task the Zero-Shot approach

obtains a relatively strong performance, indicating that in this specific case

the demonstrations are not particularly effective in guiding the model towards

correct classifications.

4.1.4 Scheme Classification

The last task we tackle on the Demosthenes corpus is Scheme Classification.

This is again a multi-label classification task, in which the goal is to estab-

lish whether a legal premise is used in an inference that follows one of the

following argumentation schemes:

• Rule (or established rule) scheme;

• Precedent scheme;

• Authoritative scheme;

• Classification scheme;

• Interpretative scheme.

The Rule scheme characterizes legal premises that explicitly cite an EU norm

as part of the relevant legislative framework. Legal premises belonging to
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Method # Dem. Factual Legal Macro

Zero-Shot 80.21 59.24 69.73

Random

5 80.78 57.21 68.99
10 80.07 60.29 70.18
15 79.86 61.20 70.53
30 80.14 58.17 69.15
50 80.07 57.02 68.54
Avg. 80.18 58.78 69.48

KNN

5 80.21 59.39 69.80
10 79.72 59.50 69.61
15 80.00 58.35 69.18
30 80.84 57.83 69.34
50 81.51 57.74 69.62
Avg. 80.46 58.56 69.51

Method # Dem. Factual Legal Macro

Louvain;
Default R;
Default r

5 78.86 57.51 68.18
10 80.28 59.11 69.70
15 80.21 59.31 69.76
30 79.79 58.85 69.32
50 81.21 58.93 70.07
Avg. 80.07 58.74 69.41

Louvain;
Dense Graph;
Default r

5 79.14 59.65 69.40
10 79.72 61.19 70.46
15 80.00 60.62 70.31
30 79.37 60.61 69.99
50 80.57 59.95 70.26
Avg. 79.76 60.40 70.08

Louvain;
Sparse Graph;
Default r

5 79.86 59.80 69.83
10 79.50 57.99 68.74
15 79.86 56.04 67.95
30 79.93 58.00 68.97
50 80.49 57.59 69.04
Avg. 79.93 57.88 68.91

Method # Dem. Factual Legal Macro

Louvain;
Default R;
Small r

5 79.57 60.05 69.81
10 79.08 60.67 69.87
15 81.28 58.94 70.11
30 80.63 59.11 69.87
50 80.43 58.47 69.45
Avg. 80.20 59.45 69.82

Louvain;
Dense Graph;
Small r

5 79.86 60.05 69.95
10 80.36 61.35 70.85
15 80.00 58.27 69.13
30 80.57 58.82 69.69
50 80.28 57.68 68.98
Avg. 80.21 59.23 69.72

Louvain;
Sparse Graph;
Small r

5 80.14 59.66 69.90
10 80.00 57.84 68.92
15 80.71 58.39 69.55
30 80.14 58.60 69.37
50 80.99 58.47 69.73
Avg. 80.40 58.59 69.49

Method # Dem. Factual Legal Macro

Louvain;
Default R;
Smallest r

5 80.21 59.75 69.98
10 79.50 58.44 68.97
15 80.35 60.50 70.43
30 79.86 59.13 69.50
50 80.84 58.26 69.55
Avg. 80.15 59.22 69.69

Louvain;
Dense Graph;
Smallest r

5 80.78 59.50 70.14
10 79.93 57.79 68.86
15 78.57 59.54 69.06
30 80.35 58.45 69.40
50 80.71 56.42 68.57
Avg. 80.07 58.34 69.21

Louvain;
Sparse Graph;
Smallest r

5 79.86 59.20 69.53
10 79.21 59.30 69.25
15 79.35 58.42 68.88
30 80.63 56.59 68.61
50 81.36 57.60 69.48
Avg. 80.08 58.22 69.15

Table 4.3: F1 scores for Zero-Shot, Random-based, KNN-based and graph-
based approaches on the Type Classification task without balancing the labels
in the prompt. The underlined configurations are the ones that perform better
than both the Random and the KNN-based retrieval approaches in terms of
average Macro F1 score.
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Method # Dem. Factual Legal Macro

Random

5 79.93 58.88 69.40
10 79.79 56.88 68.33
15 80.35 58.45 69.40
30 80.21 56.22 68.22
50 80.49 56.05 68.27
Avg. 80.15 57.30 68.72

KNN

5 80.71 59.75 70.23
10 80.78 58.31 69.54
15 80.70 56.67 68.68
30 80.56 55.73 68.15
50 81.91 56.33 69.12
Avg. 80.93 57.36 69.14

Method # Dem. Factual Legal Macro

Louvain;
Default R;
Default r

5 79.86 60.47 70.16
10 80.70 58.59 69.64
15 80.35 58.25 69.30
30 80.57 56.76 68.66
50 80.28 56.47 68.37
Avg. 80.35 58.11 69.23

Louvain;
Dense Graph;
Default r

5 80.71 59.41 70.06
10 79.08 58.37 68.73
15 80.07 58.12 69.10
30 81.13 55.95 68.54
50 80.56 55.72 68.14
Avg. 80.31 57.51 68.91

Louvain;
Sparse Graph;
Default r

5 80.56 58.11 69.34
10 80.50 57.14 68.82
15 80.42 56.80 68.61
30 80.42 56.43 68.43
50 80.42 55.60 68.01
Avg. 80.46 56.82 68.64

Method # Dem. Factual Legal Macro

Louvain;
Default R;
Small r

5 81.35 59.20 70.28
10 80.14 57.76 68.95
15 80.70 55.71 68.21
30 80.49 55.90 68.19
50 80.57 55.79 68.18
Avg. 80.65 56.87 68.76

Louvain;
Dense Graph;
Small r

5 80.35 59.85 70.10
10 80.56 57.77 69.16
15 80.70 57.35 69.02
30 80.35 55.51 67.93
50 80.21 55.72 67.97
Avg. 80.43 57.24 68.84

Louvain;
Sparse Graph;
Small r

5 81.13 58.44 69.78
10 80.35 57.89 69.12
15 80.28 57.14 68.71
30 80.42 56.00 68.21
50 80.78 56.21 68.49
Avg. 80.59 57.14 68.86

Method # Dem. Factual Legal Macro

Louvain;
Default R;
Smallest r

5 79.93 58.50 69.21
10 80.28 56.80 68.54
15 80.92 56.54 68.73
30 80.42 57.40 68.91
50 81.48 55.13 68.30
Avg. 80.61 56.87 68.74

Louvain;
Dense Graph;
Smallest r

5 79.72 59.90 69.81
10 80.14 57.97 69.06
15 80.28 56.74 68.51
30 80.42 56.64 68.53
50 80.63 56.17 68.40
Avg. 80.24 57.48 68.86

Louvain;
Sparse Graph;
Smallest r

5 80.57 56.87 68.72
10 80.85 58.03 69.44
15 81.77 57.21 69.49
30 80.28 56.70 68.49
50 80.84 56.28 68.56
Avg. 80.86 57.02 68.94

Table 4.4: F1 scores for Random-based, KNN-based and graph-based ap-
proaches on the Type Classification task by balancing the labels in the prompt.
The underlined configuration performs better than both the Random and the
KNN-based retrieval approaches in terms of average Macro F1 score.
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the Premise scheme (Prem) refer to past decisions of the CJEU. Authorita-

tive (Aut) legal premises include references to indications by an authority, not

necessarily legally binding, such as opinions of the Advocate General. Sen-

tences annotated under the Classification (Class) scheme consist of definitions

of legal concepts. Last, the Interpretative (Itpr) scheme ascribes a meaning

relevant to the decision to a legal source via various kinds of interpretative

reasoning, such as literal, teleological or psychological interpretation of the

legal source. In addition to these argumentative schemes, in [13] the authors

mention the Principle scheme, which applies when a general legal principle

is applicable to a case and may determine its outcome. However, this last

scheme has not been considered due to it not being sufficiently represented

in the dataset. Of the mentioned schemes, only the Authoritative, Precedent

and Rule are to be considered reliably annotated, due to the strong agreement

between the two annotators of the dataset, while the others are mentioned to

be potentially noisy. Of the legal premises, 53 are marked as belonging to

the Authoritative scheme, 503 belong to the Precedent scheme and 322 to the

Rule scheme. For unreliable schemes, there are 56 sentences belonging to the

Classification scheme and 296 belonging to the Interpretative scheme.

The F1 scores for each class are displayed in Tables from 4.5 to 4.12 for

both the base and the label-balanced approaches. The base methods’ results

are comparable to Zero-Shot classification (which achieves a reliable macro

F1 score of ∼ 70), while balancing the labels in the retrieved demonstra-

tions yields a major improvement. Generally, increasing the number of re-

trieved demonstrations seem to enhance the performances, especially concern-

ing the reliablemacro F1. For label-balanced graph-based approaches, denser

Demonstration Graphs work better on average for the default and small values

of r, while the opposite is true for very small extracted subgraphs. The best

reliable macro F1 score (∼ 85) is achieved by the label-balanced version of

KNN with 15 demonstrations. On average however, the results of this last

approach are matched by the label-balanced graph-based method with a small
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Method # Dem. Aut Class Itpr Prec Rule Macro Macro (reliable)

Zero-Shot 66.67 0.00 22.86 84.44 59.52 46.70 70.21

Random

5 57.14 0.00 33.90 78.61 62.59 46.45 66.11
10 57.14 11.76 31.75 77.71 61.15 47.90 65.33
15 60.00 0.00 28.13 75.98 60.00 44.82 65.33
30 66.67 0.00 24.14 79.56 64.15 46.90 70.13
50 85.71 0.00 21.05 77.84 60.00 48.92 74.52
Avg. 65.33 2.35 27.79 77.94 61.58 47.00 68.28

KNN

5 47.06 40.00 40.74 84.09 68.46 56.07 66.54
10 57.14 62.50 38.46 82.95 65.38 61.29 68.49
15 66.67 58.82 39.22 82.22 67.11 62.81 72.00
30 80.00 47.62 32.14 82.61 64.90 61.45 75.84
50 100.00 50.00 42.31 82.87 64.10 67.86 82.33
Avg. 70.17 51.79 38.57 82.95 65.99 61.90 73.04

Table 4.5: F1 scores for Zero-Shot, Random-based and KNN-based ap-
proaches on the Scheme Classification task without balancing the labels in
the prompt.

subgraph radius r and a dense Demonstration Graph. Similarly to what has

been observed for the first task, the graph-based approaches greatly overcome

the Zero-Shot and Random baselines, but in most cases they fall slightly be-

hind the KNN-based approach, pointing towards a slight underestimation of

the impact of similarity in favor of the improved semantic diversity.

4.2 Privacy Policy Compliance

4.2.1 Dataset

The second dataset we experiment with has been presented in [12]. This cor-

pus has a strong focus on assessing the comprehensiveness of information

provided by data controllers to data subjects in privacy policies. The corpus

contains 30 privacy policies of online companies and in the original article the

authors performed a manual train-validation-test split at the document level,

with rate 60%-20%-20%. In order to mantain coherence with the original

study, in this experiment we use the same training set (with sentences from
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Method # Dem. Aut Class Itpr Prec Rule Macro Macro (reliable)

Louvain;
Default R;
Default r

5 80.00 27.27 11.76 77.58 60.76 51.47 72.78
10 57.14 47.06 19.35 80.70 62.11 53.27 66.65
15 80.00 40.00 29.51 77.46 61.35 57.66 72.94
30 80.00 42.11 26.67 78.61 61.35 57.75 73.32
50 57.14 38.10 30.30 76.74 61.73 52.80 65.21
Avg. 70.86 38.91 23.52 78.22 61.46 54.59 70.18

Louvain;
Dense Graph;
Default r

5 72.73 30.00 27.12 77.11 62.89 53.97 70.91
10 66.67 28.57 34.92 80.92 64.43 55.10 70.67
15 66.67 47.06 35.82 77.65 59.63 57.36 67.98
30 66.67 40.00 26.09 79.77 62.34 54.97 69.59
50 66.67 44.44 19.72 75.58 65.81 54.44 69.35
Avg. 67.88 38.01 28.73 78.21 63.02 55.17 69.70

Louvain;
Sparse Graph;
Default r

5 72.73 47.06 31.25 75.74 62.42 57.84 70.30
10 72.73 57.14 36.84 84.66 59.74 62.22 72.38
15 57.14 57.14 24.24 83.04 59.34 56.18 66.51
30 80.00 53.33 26.47 83.15 64.90 61.57 76.02
50 80.00 47.06 35.09 84.32 63.23 61.94 75.85
Avg. 72.52 52.35 30.78 82.18 61.93 59.95 72.21

Table 4.6: F1 scores for the graph-based approach with Default r on the
Scheme Classification task without balancing the labels in the prompt.

Method # Dem. Aut Class Itpr Prec Rule Macro Macro (reliable)

Louvain;
Default R;
Small r

5 66.67 42.11 25.00 75.31 63.29 54.47 68.42
10 80.00 40.00 33.90 82.29 63.29 59.90 75.19
15 88.89 31.58 31.03 79.10 60.87 58.29 76.28
30 75.00 50.00 31.75 80.43 64.47 60.33 73.30
50 72.73 53.33 30.99 82.22 66.23 61.10 73.72
Avg. 76.66 43.40 30.53 79.87 63.63 58.82 73.38

Louvain;
Dense Graph;
Small r

5 47.06 26.09 25.00 82.14 63.23 48.70 64.14
10 54.55 42.11 31.88 78.61 60.26 53.48 64.47
15 42.86 42.11 34.78 79.31 60.65 51.94 60.94
30 72.73 38.10 33.33 81.97 63.58 57.94 72.76
50 72.73 47.06 39.29 84.78 64.52 61.67 74.01
Avg. 57.99 39.09 32.86 81.36 62.45 54.75 67.26

Louvain;
Sparse Graph;
Small r

5 44.44 31.58 30.19 80.92 61.04 49.64 62.14
10 57.14 44.44 23.33 82.49 65.31 54.54 68.31
15 72.73 55.56 36.92 82.02 64.86 62.42 73.20
30 80.00 50.00 50.00 83.42 63.51 65.39 75.65
50 80.00 58.82 37.74 85.41 64.90 65.37 76.77
Avg. 66.86 48.08 35.64 82.85 63.92 59.47 71.21

Table 4.7: F1 scores for the graph-based approach with Small r on the Scheme
Classification task without balancing the labels in the prompt. The underlined
configuration performs better than both the Random and the KNN-based re-
trieval approaches in terms of average Macro (reliable) F1 score.
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Method # Dem. Aut Class Itpr Prec Rule Macro Macro (reliable)

Louvain;
Default R;
Smallest r

5 53.33 32.00 35.71 81.61 64.00 53.33 66.31
10 40.00 30.00 28.07 82.95 61.84 48.57 61.60
15 50.00 52.63 32.35 81.61 62.34 55.79 64.65
30 72.73 55.56 33.33 84.27 66.67 62.51 74.55
50 85.71 50.00 42.62 80.43 65.36 64.83 77.17
Avg. 60.35 44.04 34.42 82.17 64.04 57.01 68.86

Louvain;
Dense Graph;
Smallest r

5 53.33 42.11 37.04 81.40 64.52 55.68 66.41
10 61.54 47.62 29.63 79.31 64.05 56.43 68.30
15 61.54 43.48 33.90 84.75 64.86 57.71 70.38
30 72.73 55.56 26.42 82.95 64.52 60.43 73.40
50 66.67 47.06 33.33 84.78 65.77 59.52 72.41
Avg. 63.16 47.17 32.06 82.64 64.74 57.95 70.18

Louvain;
Sparse Graph;
Smallest r

5 57.14 50.00 45.28 86.86 64.56 60.77 69.52
10 57.14 50.00 37.04 82.76 66.67 58.72 68.86
15 72.73 58.82 31.03 84.62 66.67 62.77 74.67
30 88.89 50.00 43.64 84.32 65.36 66.44 79.52
50 80.00 43.48 33.96 84.78 65.33 61.51 76.71
Avg. 71.81 50.46 38.19 84.67 65.72 62.04 73.86

Table 4.8: F1 scores for the graph-based approach with Smallest r on the
SchemeClassification taskwithout balancing the labels in the prompt. The un-
derlined configurations performs better than both the Random and the KNN-
based retrieval approaches in terms of average Macro (reliable) F1 score.

Method # Dem. Aut Class Itpr Prec Rule Macro Macro (reliable)

Random

5 57.14 0.00 31.03 81.40 63.09 46.53 67.21
10 60.00 12.90 20.34 79.04 61.25 46.71 66.76
15 85.71 16.22 26.67 77.91 64.00 54.10 75.87
30 88.89 23.81 13.33 74.29 65.75 53.21 76.31
50 100.00 29.41 12.50 74.29 64.52 56.14 79.60
Avg. 78.35 16.47 20.77 77.39 63.72 51.34 73.15

KNN

5 100.00 22.22 37.04 82.95 66.67 61.78 83.21
10 80.00 34.48 31.03 83.15 66.67 59.07 76.60
15 100.00 31.25 42.86 85.88 68.49 65.70 84.79
30 88.89 34.48 27.59 85.56 69.50 61.20 81.32
50 100.00 29.41 28.57 81.61 70.92 62.10 84.18
Avg. 93.78 30.37 33.42 83.83 68.45 61.97 82.02

Table 4.9: F1 scores for Random-based, KNN-based and graph-based ap-
proaches on the Scheme Classification task by balancing the labels in the
prompt.
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Method # Dem. Aut Class Itpr Prec Rule Macro Macro (reliable)

Louvain;
Default R;
Default r

5 100.00 20.69 33.96 83.24 63.16 60.21 82.13
10 85.71 25.64 26.87 82.68 66.67 57.51 78.35
15 57.14 21.62 20.59 82.02 62.75 48.82 67.30
30 100.00 27.03 28.57 83.70 64.94 60.85 82.88
50 100.00 31.25 18.92 81.11 66.23 59.50 82.45
Avg. 88.57 25.25 25.78 82.55 64.75 57.38 78.62

Louvain;
Dense Graph;
Default r

5 80.00 30.77 20.69 80.00 62.11 54.71 74.04
10 100.00 30.30 25.00 84.39 63.16 60.57 82.52
15 80.00 30.30 21.33 85.56 66.20 56.68 77.25
30 88.89 34.48 25.32 85.71 68.46 60.57 81.02
50 100.00 24.39 15.79 77.27 66.21 56.73 81.16
Avg. 89.78 30.05 21.63 82.59 65.23 57.85 79.20

Louvain;
Sparse Graph;
Default r

5 66.67 26.67 25.00 83.98 60.69 52.60 70.44
10 100.00 25.64 22.54 84.27 68.61 60.21 84.29
15 75.00 27.78 18.18 80.00 66.67 53.53 73.89
30 100.00 25.00 17.65 84.66 69.06 59.27 84.57
50 88.89 28.57 24.32 84.62 66.67 58.61 80.06
Avg. 86.11 26.73 21.54 83.51 66.34 56.84 78.65

Table 4.10: F1 scores for the graph-based approach with Default r on the
Scheme Classification task by balancing the labels in the prompt.

Method # Dem. Aut Class Itpr Prec Rule Macro Macro (reliable)

Louvain;
Default R;
Small r

5 88.89 15.38 28.57 82.22 63.69 55.75 78.27
10 75.00 27.59 26.23 86.03 62.34 55.44 74.46
15 80.00 28.57 20.34 84.57 63.64 55.42 76.07
30 80.00 27.78 19.35 84.92 65.75 55.56 76.89
50 80.00 29.41 21.54 81.14 64.43 55.30 75.19
Avg. 80.78 25.75 23.21 83.78 63.97 55.49 76.18

Louvain;
Dense Graph;
Small r

5 100.00 21.43 29.63 84.62 61.15 59.36 81.92
10 88.89 33.33 25.00 84.09 63.01 58.87 78.66
15 100.00 33.33 28.17 85.08 65.73 62.46 83.61
30 100.00 30.30 22.54 84.57 66.67 60.82 83.75
50 100.00 23.26 21.54 82.87 64.71 58.47 82.53
Avg. 97.78 28.33 25.38 84.25 64.25 60.00 82.09

Louvain;
Sparse Graph;
Small r

5 66.67 22.22 26.23 85.71 64.86 53.14 72.42
10 75.00 32.26 25.40 83.98 65.75 56.48 74.91
15 75.00 26.32 24.62 87.64 67.12 56.14 76.59
30 88.89 27.03 18.75 83.80 69.93 57.68 80.87
50 88.89 27.03 25.40 84.09 64.43 57.97 79.14
Avg. 78.89 26.97 24.08 85.04 66.42 56.28 76.79

Table 4.11: F1 scores for the graph-based approach with Small r on the
Scheme Classification task by balancing the labels in the prompt. The under-
lined configuration performs better than both the Random and the KNN-based
retrieval approaches in terms of average Macro F1 score.
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Method # Dem. Aut Class Itpr Prec Rule Macro Macro (reliable)

Louvain;
Default R;
Smallest r

5 100.00 25.81 40.00 86.52 62.42 62.95 82.98
10 80.00 27.59 36.67 82.95 64.90 58.42 75.95
15 80.00 30.30 30.51 85.23 66.67 58.54 80.00
30 75.00 30.30. 30.99 86.36 69.93 58.52 77.10
50 100.00 27.03 22.95 80.23 69.86 60.01 83.36
Avg. 87.00 28.21 32.22 84.26 66.76 59.69 79.88

Louvain;
Dense Graph;
Smallest r

5 88.89 32.26 35.29 84.92 64.10 61.09 79.30
10 80.00 27.78 21.82 80.00 68.46 55.61 76.15
15 85.71 31.25 27.59 82.29 67.11 58.79 78.37
30 85.71 30.30. 26.67 84.44 68.06 59.04 79.40
50 100.00 30.30 28.57 82.49 70.00 62.27 84.16
Avg. 88.06 30.38 27.99 82.83 67.55 59.36 79.48

Louvain;
Sparse Graph;
Smallest r

5 80.00 25.00 36.00 84.15 64.05 57.84 76.07
10 100.00 31.25 28.07 85.39 68.46 62.63 84.62
15 88.89 27.03 31.58 84.75 67.57 59.96 80.40
30 57.14 30.30 29.51 80.45 67.57 52.99 68.39
50 100.00 26.32 36.07 82.68 66.67 62.35 83.12
Avg. 85.21 27.98 32.25 83.48 66.86 59.15 78.52

Table 4.12: F1 scores for the graph-based approach with Smallest r on the
Scheme Classification task by balancing the labels in the prompt.

18 documents) as the source of clauses for our knowledge base and we per-

form the evaluation of the various methods with the same test set (including

6 documents). The relevant clauses included in the dataset have been manu-

ally annotated as sufficiently informative (Level 1 in Tables) or insufficiently

informative (Level 2 in Tables) according to the dispositions from Articles 13

and 14 of the GDPR. The task we tackle here is therefore a binary, single-

label classification task. The dataset is remarkably unbalanced with respect to

the labels: of the 579 relevant clauses in the dataset, 438 have been marked

as insufficiently informative, with the remaining 141 marked as sufficiently

informative. Contrary to Demosthenes, clauses included in this dataset have

not undergone pre-processing (such as stop-words removal) except for text

segmentation into sentences.

4.2.2 Experimental Results

Table 4.13 and Table 4.14 summarize the results achieved by the LLMwith the

different methods and configurations for demonstration retrieval. In this case,
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providing demonstrations proves to be greatly beneficial to ICL performance,

with all methods and configurations surpassing the Zero-Shot baseline (macro

F1 ∼ 39) by ample margins. Moreover, the macro F1 scores vastly improve

with larger numbers of provided examples and forcing an equal number of both

labels in the retrieved demonstrations. In the non-balanced case, the random

baseline is the best performing approach, on average. However, the random

approach does not benefit as much from larger numbers of demonstrations,

with the best single performance (∼ 65macro F1 score) being achieved by the

graph-based approachwith 50 examples and aDenseDemonstrationGraph. In

the balanced case, the KNN-based approach with 50 demonstrations achieves

the single strongest performance (∼ 74 F1 score), while being surpassed on

average by the graph-based methods withDefault R and small subgraph sizes.

This is mainly due to the high variance of the performance of KNN. In fact,

this approach seem to be much less effective than the graph-based one when

a low number of demonstration is provided, with a difference in macro F1

score of up to ∼ 12 with 5 demonstrations. This phenomenon is likely to be

due to the increased diversity provided by the graph-based methods even with

a small number of examples: with few demonstrations the KNN approach

fails in covering a sufficient variety of abstract concepts, while by increasing

the number of demonstration (and, as a consequence, the average distance

between the examples and the query) it gains a better capability of capturing

more diverse and informative concepts.

4.3 Legal Moves Generation

The last experiment focuses on the task of understanding the legality of the

moves of the Chef’s Hat [1] card game via In-Context Learning. In particular,

we do not provide an explanation of the rules of the game, and test whether

and to what extent the LLM is able to recognize which moves are legal in a

given game state having access only to a number of examples with pairs of
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Method # Dem. Level 1 Level 2 Macro

Zero-Shot 35.53 42.94 39.24

Random

5 44.29 56.67 50.48
10 45.93 60.54 53.23
15 40.00 56.22 48.11
30 43.41 61.78 52.60
50 45.05 70.81 57.93
Avg. 43.74 61.20 52.47

KNN

5 39.74 46.15 42.94
10 45.12 42.31 43.71
15 42.50 42.50 42.50
30 48.98 56.65 52.81
50 48.48 63.83 56.16
Avg. 44.96 50.29 47.62

Method # Dem. Level 1 Level 2 Macro

Louvain;
Default R;
Default r

5 40.24 37.18 38.71
10 44.58 40.26 42.42
15 46.45 49.79 48.07
30 43.36 54.24 48.80
50 53.57 75.00 64.29
Avg. 45.64 51.29 48.46

Louvain;
Dense Graph;
Default r

5 41.25 41.50 41.38
10 45.86 47.85 46.86
15 43.04 44.44 43.74
30 44.44 49.10 46.77
50 54.87 75.36 65.11
Avg. 45.89 51.65 48.77

Louvain;
Sparse Graph;
Default r

5 43.59 46.34 44.97
10 40.99 40.25 40.62
15 45.28 45.96 45.62
30 42.76 52.57 47.67
50 53.10 74.40 63.75
Avg. 45.14 51.90 48.53

Method # Dem. Level 1 Level 2 Macro

Louvain;
Default R;
Small r

5 43.04 44.44 43.74
10 44.31 39.22 41.76
15 45.57 46.91 46.24
30 48.00 54.12 51.06
50 45.38 67.66 56.52
Avg. 45.26 50.47 47.86

Louvain;
Dense Graph;
Small r

5 44.30 45.68 44.99
10 45.00 45.00 45.00
15 44.87 47.56 46.22
30 46.90 56.00 51.45
50 50.88 72.82 61.85
Avg. 46.39 53.41 49.90

Louvain;
Sparse Graph;
Small r

5 44.44 43.04 43.74
10 40.99 40.25 40.62
15 44.59 46.63 45.61
30 49.66 58.29 53.97
50 51.24 70.35 60.80
Avg. 46.18 51.71 48.95

Method # Dem. Level 1 Level 2 Macro

Louvain;
Default R;
Smallest r

5 43.21 41.77 42.49
10 45.12 42.31 43.71
15 44.72 44.03 44.37
30 48.95 58.76 53.85
50 48.74 69.65 59.20
Avg. 46.15 51.30 48.72

Louvain;
Dense Graph;
Smallest r

5 42.42 38.71 40.57
10 43.68 32.88 38.28
15 43.37 38.96 41.17
30 44.44 54.55 49.49
50 49.18 68.69 58.93
Avg. 44.62 46.76 45.69

Louvain;
Sparse Graph;
Smallest r

5 42.24 41.51 41.87
10 44.44 43.04 43.74
15 43.04 44.44 43.74
30 44.74 50.00 47.37
50 50.42 70.65 60.53
Avg. 44.98 49.93 47.45

Table 4.13: F1 scores for Zero-Shot, Random-based, KNN-based and graph-
based approaches on the Privacy Policy dataset without balancing the labels
in the prompt.
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Method # Dem. Level 1 Level 2 Macro

Random

5 43.93 59.89 51.92
10 47.14 58.10 52.62
15 51.52 65.96 58.74
30 51.13 65.24 58.18
50 55.86 76.56 66.21
Avg. 49.92 65.15 57.53

KNN

5 41.96 53.11 47.53
10 48.92 60.77 54.85
15 51.56 67.71 59.64
30 54.55 76.19 65.37
50 62.22 85.22 73.72
Avg. 51.84 68.60 60.22

Method # Dem. Level 1 Level 2 Macro

Louvain;
Default R;
Default r

5 52.71 68.06 60.39
10 52.17 63.74 57.96
15 50.37 63.78 57.08
30 52.99 72.91 62.95
50 50.00 68.37 59.18
Avg. 51.65 67.37 59.51

Louvain;
Dense Graph;
Default r

5 48.53 61.96 55.24
10 52.31 67.36 59.83
15 46.27 61.29 53.78
30 52.31 67.37 59.84
50 50.82 69.70 60.26
Avg. 50.05 65.54 57.79

Louvain;
Sparse Graph;
Default r

5 50.00 63.04 56.52
10 49.25 63.44 56.35
15 50.00 66.67 58.33
30 57.63 75.25 66.44
50 50.88 72.82 61.85
Avg. 51.55 68.24 59.90

Method # Dem. Level 1 Level 2 Macro

Louvain;
Default R;
Small r

5 51.09 63.39 57.24
10 48.92 60.77 54.85
15 53.85 68.42 61.13
30 56.00 71.79 63.90
50 57.66 77.51 67.58
Avg. 53.50 68.38 60.94

Louvain;
Dense Graph;
Small r

5 50.38 65.61 58.00
10 51.80 62.98 57.39
15 52.48 62.57 57.53
30 55.12 70.47 62.79
50 52.73 75.24 63.98
Avg. 52.50 67.37 59.94

Louvain;
Sparse Graph;
Small r

5 50.38 65.61 58.00
10 46.04 58.56 52.30
15 49.64 62.30 55.97
30 56.20 73.37 64.78
50 54.39 74.76 64.57
Avg. 51.33 66.92 59.12

Method # Dem. Level 1 Level 2 Macro

Louvain;
Default R;
Smallest r

5 50.75 64.52 57.63
10 48.92 60.77 54.85
15 49.64 62.30 55.97
30 58.82 75.62 67.22
50 56.36 77.14 66.75
Avg. 52.90 68.07 60.48

Louvain;
Dense Graph;
Smallest r

5 52.63 66.31 59.47
10 47.06 60.87 53.96
15 50.36 61.88 56.12
30 53.66 71.07 62.36
50 52.25 74.64 63.45
Avg. 51.19 66.95 59.07

Louvain;
Sparse Graph;
Smallest r

5 48.57 60.00 54.29
10 47.48 59.67 53.58
15 49.64 62.30 55.97
30 59.13 77.07 68.10
50 56.36 77.14 66.75
Avg. 52.24 67.24 59.74

Table 4.14: F1 scores for Random-based, KNN-based and graph-based ap-
proaches on the Privacy Policies dataset by balancing the labels in the prompt.
The underlined configurations are the ones that perform better than both the
Random and the KNN-based retrieval approaches in terms of average Macro
F1 score.
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game states and corresponding lists of legal moves. Chef’s hat is a simple

game with rule patterns that are easy to learn but not trivial, especially if no

description of the rule is given in the prompt, making it a good candidate for

this experiment. Moreover, the lack of literature about it with respect to other

more famous board games such as Chess or Othello is expected to force the

LLM not to rely on its pre-training data.

4.3.1 Dataset

The data has been obtained by letting 4 agents that always choose a random

move play against each other for 100 matches. At each player’s turn, we ex-

tracted the game state, which consists of a pair of board state and the player’s

hand, and the corresponding list of currently legal moves. After removing du-

plicates, this process resulted in 7819 unique triples of Player Hands, Board

States and Possible Actions. Player’s hands and board states are represented

by lists of respectively 17 and 11 natural numbers ranging from 0 to 13, where

each number corresponds to the value of a card, except for 0 and 12, which

represent respectively a missing card and a Joker card. Legal moves are en-

coded as lists of elements of the form ‘CX;QY;JZ’,and pass, where the former

represents the move which consists in playing Y cards with value X and Z

Joker cards. Due to long inference time, we only use the 221 triples from the

last 3 matches as a test set, reserving the remaining triples to the knowledge

base.

4.3.2 Experimental Results

The highly structured format of the data allows us to experiment with different

distances. Specifically, we use the Hamming distance between the concatena-

tions of players’ hands and board states. Moreover, we test the behaviour of

the LLM both with symbolic demonstrations and with their respective verbal-

ized versions.
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Example 4.3.1. Here is an example of a symbolic demonstration and its re-

spective verbalized version:

• Symbolic Demonstration:

A: Player hand: (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 10, 10, 10,

11);

Board state: (13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

B: [’C9;Q1;J0’, ’C9;Q2;J0’, ’C10;Q1;J0’, ’C10;Q2;J0’, ’C10;Q3;J0’,

’C11;Q1;J0’, ’pass’]

• Verbalized Demonstration:

A: Player hand: [’2 card(s) with value 9’, ’3 card(s) with

value 10’, ’1 card(s) with value 11’];

Board state: [’1 card(s) with value 13’]

B: [’play 1 card(s) with value 9’, ’play 2 card(s) with value

9’, ’play 1 card(s) with value 10’, ’play 2 card(s) with value

10’, ’play 3 card(s) with value 10’, ’play 1 card(s) with value

11’, ’pass’]

For evaluation we rely on the Intersection over Union (IoU) between the

list of returned legal moves in a given game state and the actual list of legal

moves in the same game state.

Table 4.15 and Table 4.16 show the IoU scores for the symbolic and the

verbalized versions of the demonstrations, respectively. In all cases, using

symbolic representations of the query and demonstrations leads to better re-

sults. For the symbolic representation, KNNperforms better on average. How-

ever, it must be noted that the graph-based approach matches and surpasses

the IoU scores achieved by KNN with multiple configurations, for large num-

bers of retrieved demonstrations. In fact, the graph-based approach has the

largest improvement in performance when increasing the number of demon-

stration from 5 up to 50. On the contrary, the KNN-based method achieves
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Number of Demonstrations
Method 5 10 15 30 50 Average

Random 30.60 32.09 32.43 34.62 35.04 32.96

KNN 43.71 43.49 43.65 44.25 43.95 43.81

Louvain

R=3; r=5 38.82 37.98 40.57 41.33 42.77 40.29
R=3; r=6 38.00 37.81 38.72 40.10 41.20 39.17
R=4; r=5 38.54 38.76 40.66 41.90 44.59 40.89
R=4; r=6 37.94 37.71 38.64 39.34 42.88 39.30
R=3; Smallest r 43.70 40.98 42.27 44.12 44.86 43.19
R=4; Smallest r 42.89 41.51 41.76 42.34 43.92 42.48

Table 4.15: IoU scores for the Chef’s Hat board game with symbolic demon-
strations.

Number of Demonstrations
Method 5 10 15 30 50 Average

Random 32.15 32.61 33.27 33.33 32.40 32.75

KNN 39.30 39.98 39.99 39.91 39.93 39.82

Louvain

R=3; r=5 37.66 38.26 38.02 37.94 38.02 37.98
R=3; r=6 38.21 40.18 38.20 38.68 38.38 38.73
R=4; r=5 37.85 38.57 39.18 38.59 39.54 38.75
R=4; r=6 37.98 37.54 38.97 37.76 38.60 38.17
R=3; Smallest r 39.87 40.18 38.63 38.78 38.84 39.26
R=4; Smallest r 39.27 38.26 39.46 38.86 39.32 39.03

Table 4.16: IoU scores for the Chef’s Hat board game with verbalized demon-
strations.
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strong performance with even a small number of examples, improving only

slightly as the number of demonstrations increases. This is likely due to the

choice of the Hamming distance: in fact, demonstrations with pairs of players’

hands and board states that are close to each other according to the Hamming

distance (even with just a distance of 1) can admit extremely different lists of

legal moves. This effect becomes even more relevant as the distance keeps

increasing. Hence, when given few demonstrations, without having access to

the rules of the game the model is not able to achieve good performances just

by mimicking the demonstrations retrieved via the graph-based method. On

the other hand, increasing the number of demonstrations helps it reconstruct

abstract patterns and obtain better results.

4.4 Discussion

In most experiments, the KNN baseline proved to be the most competitive,

showcasing the positive impact of similarity between demonstrations and query.

On the other hand, the graph-based approaches are usually able to surpass both

the Random and the Zero-Shot baselines. In most cases, the best average per-

formances in terms of Macro F1 score has been achieved by one or more con-

figurations of the graph-based methods, suggesting that this method is capable

of retrieving effective demonstrations with appropriate settings. This, com-

bined with the dramatic improvements obtained with label-balanced variants

for classification tasks, confirms findings about the importance of diversity of

demonstrations in the prompt. It is important to observe, however, that usually

the KNN and graph-based approaches achieve similar scores, with the latter

surpassing the former with only a few configurations. Moreover, among all

configurations, the best performing ones are often those with a smaller radii.

These observations show that in the experiments, the impact of relevance in the

similarity-diversity tradeoff has been somewhat underestimated. Hence, we

suggest that the radius should be set in general to lower values. In addition, the
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10% increase in radius when there are not enough items in the knowledge base

in the corresponding region of the embedding space is likely to be too large,

partially explaining the non-monotonicity of the macro F1 scores, which in

turn undermines the average scores of the graph-based approaches.

Conversely, the impact of the resolution parameter R by itself on perfor-

mances remains unclear given the results of the experiments. There are how-

ever a couple of meaningful observations concerning the interaction between

the two parameters. First, decreasing r can cause the relative performances

of Dense and Sparse Demonstration Graphs to shift from Dense graphs per-

forming better to Sparse graphs achieving better results, while the opposite

shift almost never occurs. Second, again as r decreases, the best performing

configurations are in most cases ordered decreasingly by density. These two

remarks suggest that the best performing values of radius and resolution are

loosely positively correlated. This is intuitively justifiable following Remark

3.2.4. In fact, for extreme values R = 0 and R ≥ 2r we obtain respectively

a totally disconnected subgraph and a clique, making the subsequent steps of

community detection and node ranking ineffective. As r decreases, keeping

the resolution fixed pushes the extracted subgraph towards being a clique, los-

ing exploitable local information.

The study of the interplay between radius and resolution, how to systemat-

ically set them, and how to appropriately assign the correct weight to similarity

and diversity is left as future work.



Chapter 5

Conclusions

The main contribution of this thesis is the proposal of a fast, versatile and

theoretically sound graph-based approach for demonstration retrieval in In-

Context Learning. Previous studies indicate that similarity of examples to

an input query and diversity of demonstrations are key factors in ICL perfor-

mances. We exploit tools and notions from graph theory to choose examples

that are relevant, semantically diverse and representative of concepts encoded

in the knowledge base. Contrary to heuristic approaches based on maximiz-

ing of an abstract metrics (such as MMR-optimization), and learning-based

methods, our approach naturally yields better interpretability. Similarly to

KNN, which retrieves demonstrations that are relevant to the query because

they are the most similar, we guide the LLM towards the correct output via

demonstrations chosen for their capability to summarize diverse and relevant

concepts.

To assess the effectiveness of our method, we conducted experiments on

five different tasks, evaluating several configuration of the radius r and res-

olution R parameters and comparing results to Zero-Shot, Random and KNN

baselines. In almost all cases the graph-based approach surpassed both the

Zero-Shot and the Random baselines. The KNN baseline outperforms our ap-

proach in several configurations, but there are also cases in which the graph-

based method performs better or on par with it.
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The proposed method presents a huge design space to be explored. It is

important to note that this work focuses much more on the theoretical moti-

vations behind the outlined approach, rather than on finding the best possi-

ble configurations for the method itself. In fact, most decisions (such as the

choice of parameters, centrality measures and graph-partitioning algorithms)

were made based on some preliminary studies, due to lack of literature on the

matter.

The most trivial direction for future work is to determine a systematic way

to set the parameters r and R. Another interesting topic to investigate is the

impact of different community detection algorithms and other node central-

ity measures. Among the latters, the most promising ones are other spectral

centralities such as the Katz and the subgraph centralities [19]. Additionally,

we would like to assess the effectiveness of assigning positive weights (that

decrease with distance in the knowledge base) to the edges of the Demonstra-

tion Graph. Lastly, we mention the possibility of working with generalized

definitions of modularity that would allow to influence the number and the

size of the communities detected via the Louvain algorithm.
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Appendix A

Prompt Templates

In this Appendix we show the prompt templates that have been used in all ex-

periments. The templates for the Demosthenes corpus and the privacy policies

dataset have been directly taken and/or adapted from [11] and the repository

of [12], respectively.

A.1 Argument Mining

Argument Classification:

Classify the following argumentative text as premise ’prem’ or

conclusion ’conc’. A premise (prem) is a proposition that pro-

vides a reason or support for the argument. A conclusion (conc)

is the statement that follows logically from the premise(s) and rep-

resents the final point being argued for. Only reply with ’prem’

or ’conc’.\nExamples:

Type Classification:

Classify the following premise as factual ’F’, legal ’L’ or both.

Factual premises (F) describe factual situations and events, per-

taining to the substance or the procedure of the case. Legal premises
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(L) specify the legal content (legal rules, precedents, interpreta-

tion of applicable laws and principles). The expected output is

a list with all applicable labels. For example: [’F’, ’L’]. Only

reply with the list of labels.

Scheme Classification:

Classify the following legal premise as one or more of the follow-

ing argumentative schemes: Rule, Prec, Class, Itpr, Aut. Rule:

whether there is an explicit or implicit reference to an article of

law or citation of the text of a certain article. Prec: whether

there is a reference to a previous ruling of the Supreme Court or

the Court of Justice of the European Union. Class: if there is a

definition of a legal concept or its constituent elements. Itpr: if

there is reference to one of the interpretative criteria contained

in Article 12 of the prelegislations (literal, teleological, psycho-

logical, systematic) to the Civil Code. Aut: if there is a reference

to an indication by an authority (e.g. an opinion of the Advocate

General). The expected output is a list with all applicable labels.

For example: [’Prec’, ’Aut’, ’Rule’]. Only reply with the list of

labels.

A.2 Privacy Policy Compliance

You will be given as input a sentence from a privacy policy that

contains information about what data the service collects about

the user. You have to classify the sentence into one of the fol-

lowing classes: ”sufficiently informative” or ”insufficiently in-

formative”.

In doing so, consider that GDPR, and the EDPB’s Guidelines,
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contain a certain inherent tension, namely that between requiring

that the information is provided in as easy a way to understand as

possible (comprehensibility) and that it is concrete and definitely

(comprehensiveness).

Sometimes, using open-ended qualifiers like “for example” or

“such as” might actually facilitate understanding by the data

subject, especially when terms not often used in the natural lan-

guage (e.g. “device information” or “geolocation information”)

are concerned. For this reason, we differentiate between:

Abstract terms (e.g. usage information) vs. concrete terms (e.g.

geolocation information)

Open-ended qualifications (“for example”, “such as”, etc.) vs.

closed-catalogues (“meaning”, “understood as” ).

A sentence containing an abstract term, UNLESS followed by a

comprehensive enumeration, should be judged as ”insufficiently

informative”.

A sentence containing a concrete term, even if followed by an

open-ended qualifier, should be judged as ”sufficiently informa-

tive”.

Avoid explanations. Only reply with ”insufficiently informative”

or ”sufficiently informative”.

Here are some examples:
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A.3 Legal Moves Generation

You are an expert board game player, and you are playing a card

game called Chef’s Hat. This game is played with cards with val-

ues ranging from 1 to 13, both included.

In the following examples ”A” provides two lists.

The first list is a description of the cards in hand of a player.

The second list is a description of the cards that are already on

the board.

Then ”B” replies with the full list of the current legal moves in

the situation presented by ”A”.

Complete the text by listing all the current legal moves given the

last description from ”A”. Only add the text that comes after

”B:”.
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