
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Artificial Intelligence

COMPARING LARGE LANGUAGE MODELS
ON UNFAIR CLAUSE DETECTION IN TERMS

OF SERVICES

CANDIDATE SUPERVISOR

Marco Panarelli Prof. Andrea Galassi

CO-SUPERVISORS

Prof. Francesca Lagioia

Prof. Marco Lippi

Academic year 2023-2024

To my future self, who will hopefully look at all this with a wry smile on his face.

ii

Contents

1 Introduction 1

2 Background 5

2.1 Language Model . 5

2.1.1 n-grams . 6

2.1.2 Neural Language Model 8

2.1.3 Training . 12

2.1.4 Implementations . 15

2.1.5 What makes a LLM 19

2.2 Data . 22

2.2.1 Corpora . 23

2.2.2 Benchmarks . 23

2.3 Why AI in the legal field ? 24

2.3.1 EU Law on unfair terms in contracts 25

2.4 CLAUDETTE . 27

2.5 LLMs for Legal Tasks . 28

2.6 LLMs Limitations . 31

3 Method 32

3.1 Dataset . 32

3.1.1 Corpus statistics . 34

3.2 Methodology . 35

3.2.1 Transformer-based 36

iii

3.2.2 LLMs . 37

3.2.3 Selection of examples for few-shot setting 40

3.3 Experiments . 41

3.3.1 Experimental Setting 42

3.3.2 Model Ensemble . 43

4 Discussion 45

4.1 Transformer-based . 45

4.2 Comparison of prompt strategies 46

4.2.1 Per-category evaluation 46

4.2.2 Error analysis . 49

4.2.3 Ensembling . 52

5 Conclusions 54

Bibliography 56

iv

Chapter 1

Introduction

In our everyday activity on the Internet we engage with different websites

and applications that require us to actively, or passively, accept a contract that

governs the relationship between us and the provider of the service. These

contracts are necessary since they govern mutual rights and obligations be-

tween the two parties, a legitimate contract is legally binding and companies

can enforce its terms by refusing the user access to the service. Users should

be genuinely interested in knowing what are the company responsibilities and

under which situations it can be deemed liable. Although there is a lack of

recent studies on user reading behavior, older literature [61][5][55] as well as

everyday anecdotal experience tells that most of us click on the ”I have read

and agree to the Terms” button without actually reading the contract. This

is also ironically known as ’the biggest lie on the Internet”. The reasons of

this phenomenon can be summarized by the sentence ”too many documents,

too long to read”. Given the average adult reading speed it would take ∼ 15

minutes to read a single ToS, if we sum this for each digital service we em-

ploy daily it would cost 200 hours a year [57] or even more. This would be

a secondary matter if online platform ToS were fair towards the user, which

is not the case especially for bigger service providers [58]. Some initiatives

like the ToS;DR[73] project try to bridge the gap with the help of the commu-

nity by manually checking contracts and flagging those clauses that concern

Introduction 2

user rights. However, this process needs to be reiterated every time contracts

changes and it is hard to scale it on all the websites, apps and platform we

daily use. Most of the unfair clause policing fall back to consumer protection

organizations and agencies that has to monitor over companies. Starting le-

gal proceedings is an arduous task that includes searching through documents

for potentially unfair clauses. Automating this step would enable a lawyer to

focus on a much restricted set of clauses, saving resources and time for those

administrative bodies that, often, relies on a limited amount of resources. One

effort in this direction is the CLAUDETTE project, which applies machine

learning methods to detect unfair clauses in terms of service and privacy poli-

cies. The latest corpus released, and freely available, consists of 142 ToS doc-

uments in English, a sufficiently large dataset to train modern neural models

in a supervised setting, making it a valuable resource for advancing automated

unfair clause detection. The problem with this kind of approach, however, is

that it might become obsolete overtime since the language deployed by service

providers may change and adapt to new regulations. Under these conditions,

the dataset would need to be relabeled according to the new laws and conse-

quently the models should be retrained with the new dataset. Large language

models (LLMs), on the other hand, have recently become a mainstream solu-

tion for natural language processing and understanding and they can be easily

adapted to classification tasks thanks to their in-context learning capabilities.

Yet, these models often require very large computational resources to run and,

in some cases, the best-performing solutions are proprietary and available only

under payment (e.g. ChatGPT or Gemini).

This work wants to explore the effectiveness of using LLMs for unfair

clause detection in terms of service contracts. Differently from other machine

learning approaches such as transformer-based models, LLMs do not inher-

ently need a fine-tuning phase that aligns them with the context and the task

they need to undertake. All the necessary guiding that the model need can

be convoluted by designing a suitable prompt which describe both the task

Introduction 3

and any context information. In this practical case, the legislation regarding

the contract’s unfairness conditions may change overtime, transformer mod-

els would then need to be fine-tuned again possibly discarding all the previous

tuning phase to adapt to the dataset containing the newly annotated examples.

LLMs instead would only need to incorporate in their prompt the new legis-

lation, thus they could be directly used off-the-shelf. It’s worth to mention

that the phase of creating a newly annotated dataset would be needed in any

case since in every practical setting it is necessary to have a dataset to assess

the performance of the tools. Furthermore, this study prioritizes open-source

and smaller-scale models, which are particularly relevant in low-resource con-

texts. These models require significantly fewer computational resources, both

environmentally and economically [51], making them more accessible to civil

society and enforcement agencies. Moreover, the transparency of open-source

models, with their publicly available architectures, allows for more thorough

assessment and accountability.

To this end, this work evaluates open-source models through an extensive

set of experiments, comparing 8 classifiers against 9 LLMs in 6 different set-

tings, resulting in a total of 62 combinations of model and setting. As a start-

ing point, a comprehensive literature review was conducted to explore cur-

rent trends and techniques used in addressing similar legal tasks with LLMs.

The various experimental settings presented in this study stem from an exten-

sive effort to identify optimal prompts and develop more effective prompt-

ing strategies tailored to both the legal domain and the specific task at hand.

The resulting techniques, such as the pipeline and multi-prompt approaches,

demonstrate improved performance compared to plain zero-shot and few-shot

prompting. However, even the most effective methods, including those us-

ing larger models, still fall short of outperforming supervised models in unfair

clause detection. Additionally, as a collateral contribution, a lightweight and

user-friendly framework was developed to efficiently evaluate LLMs on the

142 ToS dataset, allowing for systematic testing across different settings and

Introduction 4

parameter configurations while being easily adaptable to new tasks.

Chapter 2 focuses, in the first part (2.1), on defining the theoretical foun-

dations of large language models (LLMs), including their formal definition,

implementation, and their apparent suitability for a wide range of language

processing tasks. It follows a brief part on the most commonly used datasets

and benchmarks in the legal domain (2.2), a section on the use of AI in the legal

domain (2.3), the description of the CLAUDETTE project (2.4) and a collec-

tion of representative work (2.5, 2.6). Chapter 3 details the dataset (3.1) and

the in-depth analysis (3.2) of the methodologies employed for experiments

on both fine-tuned models and LLMs, followed by the experimental setting

(3.3). Chapter 4 discuss the results, detailing the performances of the differ-

ent approaches 4.2 and the error analysis 4.2.2 on the best performing models.

Finally, Chapter 5 concludes the study (5).

Chapter 2

Background

Just as the foundation of a structure determines its stability, understanding and

evaluating the influence of AI in any domain, including the legal field, requires

a clear definition of its fundamental components. This involves delineating

their definitions, formalism, and implementations. Given the focus of this

study on the role of Large Language Models in the legal field, it is appropriate

to begin by describing what a language model is.

2.1 Language Model

It is sound to begin by providing a formal definition of language, drawing

initially from the foundational works of Chomsky [9] and subsequently ex-

ploring its evolution through modern paradigms. With language, we mean a

set (finite or infinite) of sentences, each of finite length, all constructed from

a finite alphabet of symbols. Following this, we can define as the grammar

of a language a device that produces all and only those strings1 that are sen-

tences of the language [9]. This ”device” proves useful in various contexts;

from a linguistic perspective, it can aid in better understanding the language,
1A string is simply anything obtained by concatenating the symbols of the alphabet (e.g.

a word).

2.1 Language Model 6

such as by supporting semantic analysis. Alternatively, when properly de-

signed, it can be applied to tasks requiring language-related functionalities.

From a strictly formal point of view, the concept of a language model can be

interchangeable with the one of a grammar, however it is standard to identify

the former as a statistical model of language, that is, a model that defines a

probability distribution over sequences of tokens in a language. These tokens

can be characterized as simple words, characters or even part of words. In

their most common usage, language models assign probabilities to sequences

of words, this means that it is possible to assign probabilities either to a word

given some previous context or to an entire sentence, these two concepts are

linked by the chain rule of probability.

P (w1:n) = P (w1)P (w2 | w1)P (w3 | w1:2) · · ·P (wn | w1:n−1)

=
n∏

k=1
P (wk | w1:k−1)

(2.1)

A sequence of n words is represented as w1:n. Knowing the probability

of a sentence2 or what is the next most probable word results very useful in

different tasks such as speech recognition or spelling correction. Such a

probabilistic model can be helpful in dealing with homophone confusion or

grammatical errors by predicting, for example, that ”Your going to loose your

keys” is a much less probable english sentence than ”You’re going to lose

your keys”. We will start by describing the earliest and most successful type

of language model, the n-gram.

2.1.1 n-grams

The term n-gram can identify both the probabilistic model and a sequence of

n words, by relying on the previous definition (2.1) the probability of the next
2With the probability of sentence we refer to the probability of the sentence to appear in a

language.

2.1 Language Model 7

word provided by a tri-gram will be:

P (wt) = P (wt−2)P (wt−1 | wt−2) =
3∏

k=1
P (wk | w1:k−1) (2.2)

Generally speaking, when using an n-gram model we are making the fol-

lowing approximation:

P (w1:n) ≈
n∏

k=1
P (wk | w1:k−1) (2.3)

This implies that we are making aMarkov assumption, where the probability

of a word depends solely on a portion of its preceding context. The formal-

ization of the n-gram model traces back to Markov himself [54], that used

bi-gram and tri-gram to predict the likelihood of the next letter being a vowel

or a consonant in Pushkin’s Eugene Onegin. Given a corpus of text, an n-

gram model can be trained simply by counting and normalizing the n-grams.

This approach to probability estimation is known as Maximum Likelihood

Estimation. Various smoothing techniques are available to address scenarios

where a word in the test set appears in an unfamiliar context despite being in

the training vocabulary. Additionally, words absent from the training set are

typically managed by converting the problem into a closed-vocabulary one.

With these precautions, n-gram models have been successfully applied to sys-

tems for speech recognition [36] [2], plagiarism detection [3], andmachine

translation [53]. However, it is evident from their training method that the

number of parameters grows exponentially with the order of the n-gram, which

is why no models extend beyond 5-grams. Moreover, n-grams inherently lack

the ability to represent the ”similarity” between words, a feature that would

facilitate more effective generalization.

2.1 Language Model 8

2.1.2 Neural Language Model

To address the limitations of n-gram models, Bengio et al. [4] introduced the

use of neural networks with distributed word representations. Their approach

incorporated many foundational elements later utilized by modern methods,

although the specific implementations have evolved significantly. Notably,

contemporary architectures, such as Transformers, rely on self-attention mech-

anisms rather than the feedforward neural networks initially proposed. A word

can be represented as a point in an m-dimensional vector space, Rm, com-

monly referred to as a feature vector or, more typically, an embedding. These

representations are learned based on the distribution of words in a text corpus,

aligning with the distributional hypothesis, which posits that words with sim-

ilar semantic and/or syntactic roles tend to occur in similar contexts. Conse-

quently, similar words are located closer in the vector space due to their similar

embeddings. Several methods have been developed to learn these representa-

tions. For example, tf-idf, which relies on the frequency of terms relative to a

collection of documents, serves as a baseline approach, although it produces

sparse, high-dimensional vectors. In contrast, algorithms like Word2Vec and

GloVe generate dense vectors with dimensionalities significantly smaller than

the vocabulary size (m << |V |). Modern techniques, such as those used in

Transformer-based models, directly learn contextual embeddings during train-

ing, without relying on predefined word representations. The simplest kind

of neural network is a feedforward network where multiple layer are con-

nected without cycles, each layer is composed by different units that performs

a weighted sum of the input, add a bias term and then apply a non-linear func-

tion. The results of this operation are called activations which will be used as

inputs to the subsequent layer. A 3-layer network is illustrated in figure 2.1, it

is a fully-connected network since each unit in a layer receives inputs from all

units in the previous layer. Using matrix notation, the activations of the first

2.1 Language Model 9

Figure 2.1: The structure of a general multi-layer neural network.

layer (a0) can be expressed as:

a0 = f(W0 · x + b) (2.4)

Here W0 is the weight matrix, the bias term b is used to avoid 0-valued activa-

tions and the activation function f is a non-linear function which is applied

element-wise to the input vector x. This family of functions are introduced

to enable to learn complex, non-linear relationships between features; without

them, the network would only learn a composition of linear functions. Since

we are dealing with words in a vector space, the input word is a vector with

dimension m, consequently the weight matrix W0 has dimensions h0 × m

where h0 is the number of units in the first hidden layer. The same extends

to the subsequent layers: W1 has dimension h1 × h0 and W2 has dimensions

n×h1), where n is the number of output units. The output dimension n varies

depending on the task being performed, such as part-of-speech tagging or next

word prediction. The output vector contains real values, also called logits, that

needs to be transformed into probabilities, this is achieved using the softmax

function:

softmax(si) = exp(si)∑V
j=1 exp(sj)

, i ∈ [1..V] (2.5)

2.1 Language Model 10

If the task involves predicting the next word given the previous context, softmax(s)

will produce a probability distribution over all the words in a vocabulary with

length |V |. In this case, the input would consists of the concatenation3 of the

words embeddings.

To train this kind of model, and also more modern architectures, there are

three fundamental steps that are necessary. First, a forward pass is performed

to compute the output of the model, which in this case is a probability distri-

bution. A loss function is need to model the distance between this output

and the true one expected for the provided input. Secondly, the gradient for

all the model’s parameters with respect to the loss function must be computed.

This is done by an algorithm called backpropagation. Lastly, each parameter

must be updated according to its gradient with techniques such as stochastic

gradient descent or Adam.

Loss Function

When training a machine learning model, we typically have access to a set of

training examples X and their corresponding labels Y . Training the model

can be formulated as solving an optimization problem of the form:

θ∗ = argminθL(fθ(X), Y), (2.6)

where fθ(X) represents the model’s output given the input data, and L is

a loss function that evaluates the discrepancy between the predicted output

and the true labels. The loss function L should provide meaningful feedback

about the model’s performance with respect to the learning objective, whether

it involves predicting a discrete set of labels or approximating a probability

distribution. Ideally, a loss function is both convex, to ensure effective opti-

mization, and differentiable, to allow gradient-based optimization. Although

neural networks introduce non-linearities that violate these requirements, the
3A general pooling operation such as max or avg can also be applied.

2.1 Language Model 11

properties of a loss function can still be studied independently of the under-

lying model. A widely used loss function is the cross-entropy loss, which

measures the difference between a true probability distribution P (that gener-

ated the data Y) and an approximating distribution Q (produced by the model).

The continuous form of cross-entropy is:

H(P, Q) = −Ex∼P [log Q(x)] (2.7)

In practical scenarios we are dealing with a finite amount of data (|X| = |Y | =

n), therefore we must rely on the discrete formulation of the cross-entropy.

The model outputs a vector of scores (or logits) which is converted into a

probability distribution by the softmax function. For each input vector x, the

true label vector y is typically one-hot encoded, meaning yk = 1 for the correct

class k, and yj = 0 for all other classes (j ̸= k). The discrete cross-entropy

loss can then be expressed as:

LCE(x, y) = −
|V |∑
i

yi log (xi) (2.8)

Given the one-hot nature of y, this simplifies to:

LCE(x, y) = − log xk, (2.9)

where k is the index of the correct class. Substituting the softmax function

(Eq. 2.5), the loss becomes:

LCE(x, y) = − log exp(sk)∑|V |
j=1 exp(sj)

(2.10)

This formulation shows that the cross-entropy loss quantifies the difference

between the true label distribution and the predicted probabilities, driving the

model to assign higher probabilities to the correct classes.

2.1 Language Model 12

Backpropagation

To train a neural network, the primary goal is to minimize the loss function

by updating the model’s parameters. This requires calculating the derivative

of the loss with respect to each parameter, traversing the entire network from

the final layer back to the initial layers. These derivatives, or gradients, are

then used to adjust the parameters to reduce the loss. The algorithm used

for this purpose is called error backpropagation [65], which leverages the

chain rule of calculus and the notion of computation graph to compute these

gradients efficiently. The backpropagation process begins by performing a

forward pass through the network, where the input propagates through each

layer, and intermediate results are computed and stored for the subsequent

gradient computations. During the backward pass, the derivative of the loss

with respect to the model’s output is computed first. This initial gradient is

then propagated back through the network, layer by layer. At each layer, the

gradient of the loss with respect to the layer’s parameters is calculated using

the chain rule which allows the computation of gradients for earlier layers

by combining the gradient from the subsequent layer with the local gradient

at the current layer. This process systematically computes gradients for all

parameters, ensuring that the contributions of all layers to the loss are taken

into account. Once the gradients are obtained, they are used to update the

parameters with optimization algorithms.

2.1.3 Training

Training a machine learning model involves finding the optimal weights, de-

noted as θ∗, by minimizing a loss function. This optimization problem can

be solved using gradient descent, which iteratively updates the weights by

moving them in the opposite direction of the gradient, scaled by a small step

size. If the loss function is convex, gradient descent is guaranteed to converge

to the global minimum regardless of the starting point in the loss landscape.

2.1 Language Model 13

For multi-layer neural networks, however, the loss function is typically non-

convex due to the non-linear activation functions. This non-convexity intro-

duces challenges, such as saddle points, flat regions, and local minima, which

can slow down or hinder convergence. Nevertheless, gradient descent meth-

ods are commonly used in deep learning because they often lead to satisfactory

solutions with very low loss values in practice. This success is attributed to the

properties of neural network loss landscapes, which tend to have large regions

of near-optimal solutions rather than isolated local minima [44]. Second-order

optimization methods are theoretically faster than first-order methods like gra-

dient descent. However, these methods are challenging to scale to large net-

works due to the computational cost of inverting the Hessian matrix (contain-

ing the second-order partial derivatives), which has a computational complex-

ity of O(k3), where k is the number of parameters, and requires memory in the

order of the square of k. For this reason, first-order methods remain the stan-

dard approach for training deep models. Gradient descent updates the model

parameters according to the following rule:

θ(t+1) = θ(t) − µ∇θL, (2.11)

where µ > 0 is the learning rate, controlling the size of the parameter update,

and ∇θL is the gradient of the loss function L with respect to the parameters

θ. Computing this gradient over the entire training set can be computationally

expensive, especially during the initial stages of training when the model is

far from optimal. To address this inefficiency, stochastic gradient descent

(SGD) approximates the gradient by computing it over a randomly selected

subset of training examples. In its most extreme form, called online SGD, the

gradient is computed using only a single example at a time. Algorithm 2.1.3

shows the pseudocode for the online gradient descent.

A more common variant is mini-batch SGD, where the training set is

divided into smaller subsets, or batches, typically of size that is a power of 2

2.1 Language Model 14

Algorithm 1 Line 7 performs the forward pass given the input x(i), line 9
corresponds to the backward pass while line 10 is the parameter update. This
is repeated on all the input data and for a predefined number of epochs E

1: D = {(xi, yi)}N
i=1 ▷ training data

2: Parameters θ ▷ Model parameters
3: Loss function L(ŷ, y)
4: for e = 1,...,E do
5: shuffle D
6: for i = 1,...,N do
7: Compute prediction ŷ(i) = fθ(x(i); θ) ▷ fθ is the actual model
8: Evaluate loss function L = L(ŷ(i), y(i)) ▷ This is optional
9: Compute gradient g = ∇θL(θ)

10: Update parameters θ ← θ − µg
11: end for
12: end for

(e.g., 32, 64, 128). Mini-batching leverages the parallel processing power of

modern GPU architectures, significantly improving computational efficiency.

Moreover, the inherent noise introduced by using smaller batches can act as a

form of regularization, preventing the model from overfitting to the training

data [1, 59].

The learning rate µ is a critical hyperparameter in the optimization process

which significantly impacts both the model’s convergence speed and its final

performance. A learning rate that is too large can cause the optimization pro-

cess to diverge, while one that is too small can lead to slow convergence. To

address this, adaptive learning rate algorithms, such as Adam [39], are com-

monly used. Adam adjusts the learning rate for each parameter individually

based on estimates of the first and second moments of the gradients. This ap-

proach allows the optimization process to adaptively scale the learning rate

during training, leading to faster convergence and improved performance in

many cases.

2.1 Language Model 15

2.1.4 Implementations

brief description of RNN and LSTM, self-supervision, autoregressive gener-

ation (no specific techniques), what task can they solve

The transformer architecture, first introduced by Vaswani et al. [77], has

become the standard framework for building large language models. While it

has undergone various modifications and improvements, modern implemen-

tations of transformers retain the key concepts from the original design. Prior

to the introduction of transformers, models such as recurrent neural net-

works (RNNs) [18] and long short-term memory networks (LSTMs) [30]

were widely used for natural language processing tasks. These recurrent ar-

chitectures were the first to explicitly incorporate the temporal and sequential

nature of language into their designs, enabling them to process input data step

by step over time. However, they faced significant challenges that the trans-

former architecture partially overcame. One of the primary shortcomings of

recurrent models is their difficulty in capturing long-term dependencies within

a sequence. This limitation arises not only from the vanishing gradient prob-

lem, which hampers their ability to propagate information over long time steps

during training, but also from their inherently sequential processing. Because

each step t depends on the computation performed at step t− 1, these models

lack the ability to parallelize computations effectively, leading to inefficien-

cies, especially when working with long sequences. The transformer architec-

ture addresses these issues by completely eliminating recurrence. It introduces

an encoder-decoder architecture designed to process sequences in parallel

while efficiently capturing dependencies between input elements by using the

attention mechanism as the core tool to model these dependencies. The en-

coder processes the input sequence and generates a set of context-aware repre-

sentations, while the decoder uses these representations to produce the output

sequence, one token at a time. Attention allows the model to weigh the impor-

tance of all input tokens relative to one another, regardless of their position in

2.1 Language Model 16

the sequence, enabling it to capture both short and long-term dependencies ef-

fectively. The final output of the transformer is a probability distribution over

possible tokens, computed through a softmax (Eq. 2.5) function applied to the

model’s logits. This probability distribution allows the model to generate pre-

dictions for tasks such as translation, text generation, or classification. This

design facilitates parallel processing, as attention computations can be per-

formed simultaneously across all tokens, making the transformer architecture

highly efficient and scalable for modern hardware. Since the transformer is a

complex architecture with several details and components, only the main com-

ponent of the multi-head attention will be described along with how these

models are trained.

Attention

The attention mechanism has a biological background deriving from how the

human brain focus its processing capabilities on specific environment cues to

optimize its resources and elaborate only those things that are important. For

what concern the language, it would be useful to know how much attention

each word in a sequence should take with respect to other words in the same

sentence. A classic example is the following:

1. The student didn’t submit the assignment because it was too complex.

2. The student didn’t submit the assignment because it was too lazy.

2.1 Language Model 17

Figure 2.2: Y is the input sequence of N embeddings, each of dimension dY .

The softmax function is applied row-wise on the scores deriving from the

WQ ⊗W T
K dot-product.

The meaning of the word it could be derived by assessing how much at-

tention it should make to the words ”student” and ”assignment”. Concerning

deep learning architecture, we are working with words represented as embed-

dings with dimension a certain dimension d. Given embedding representation

of a sentence x, the whole attention function can be summarized as follows:

A = softmax(QKT

√
d

)V (2.12)

where

Q = xWQ; K = xWK ; V = xWV (2.13)

The matrices Q, K and V are different representation of the input embeddings

that corresponds to queries, keys and values. Queries are the subject of the

attention analysis, these are compared to the keys via a dot-product and scaled

down by
√

d to avoid numerical issues when dealing with embeddings having

large dimensionalities (e.g. 512 or 1024). The softmax function is applied

row-wise to produce the normalized attention weights which are then used

to weight the actual value stored in V . Since we are using x for all the three

matrices, we are performing self-attention, the same operation is called cross-

attention if x is used only as query and another element is employed as key

2.1 Language Model 18

and value. Finally, Themulti-head attention primitive arise by computing N

attention heads and apply another linear projection WO to their concatenation.

headi = softmax(QiK
T
i√

d
)Vi (2.14)

A = (head1
⊕

head2
⊕

...
⊕

headN) (2.15)

This operation make it possible to learn N different attention representations.

Figure 2.2 depict a single self-attention head, since we want to attend only to

previous word in a sentence, it is common to mask the scores associated to

future words (si,j = −∞ where j > i).

Training Method

The training process begins with the collection of a comprehensive dataset, of-

ten referred to as a corpus. This dataset serves as the foundation for the model’s

knowledge and it typically comprises text from diverse sources, such as books,

articles, websites, and other publicly available content. Commonly used cor-

pora include datasets like Wikipedia, Common Crawl, and OpenWebText,

among others. Once the corpus is collected, it undergoes a pre-processing

stage to standardize and clean the text for use as input to the transformer

model. A key aspect of this step is tokenization, which involves breaking

the text into smaller units called tokens. These tokens can represent words,

sub-words, or even individual characters, depending on the tokenization al-

gorithm used. The resulting tokens are then mapped to embeddings using

an embedding matrix, which serves as a lookup table associating each token

with a fixed-dimensional vector representation. LLMs are trained using self-

supervised learning, a method that does not requires any labeling step since

the natural sequence of words embody the gold label itself. Two common ap-

proaches are causal language modeling where the model has to predict the

next word in a sentence and mask language modeling where the model is

tasked to fill missing words in a passage.

2.1 Language Model 19

In this first stage, known as pre-training, the model is exposed to the en-

tire training corpus and is trained to minimize the cross-entropy loss between

its predictions and the actual text. Pre-training results in a model that pos-

sesses a broad understanding of language but is not yet specialized for specific

tasks or aligned with human preferences, but it already has the foundational

capabilities necessary for a wide range of downstream applications.

After pre-training, the model undergoes an alignment phase to ensure its

outputs are useful, accurate, and aligned with human intentions. This phase

typically involves fine-tuning the model on smaller, task-specific datasets,

which may include human-annotated examples. Reinforcement learning from

human feedback (RLHF)[38] is a common technique used during alignment.

In RLHF, human evaluators rank model outputs based on quality, and this

feedback guides themodel toward generatingmore desirable responses. Align-

ment should ensures that the model’s behavior is safe, ethical, and effective

for real-world applications, addressing issues such as harmful outputs, biases,

or unintended behavior observed during pre-training.

Up to now, the main ingredients that are presents behind a LLM have been

described. Many of them may be found also in other areas besides NLP, since

most of these concepts are at the foundations of how modern AI techniques are

developed. At this point, it is worth to make a brief analysis that better describe

the transition to modern LLMs from per-trained language models (PLM).

2.1.5 What makes a LLM

Earlier methods relied on the pre-training and fine-tuning paradigm which

gave light to popular models such as BERT[15] and all its family of related

models. As the name suggests, first the model is pre-trained on large-scale

unlabeled corpora and then fine-tuned on the specific downstream task. This

second step usually relies on an additional smaller dataset that is specifically

related to the task that the model has to specialize on. The general idea is that

2.1 Language Model 20

the pre-train phase let the model learn context-aware representations that can

be later optimized according to the downstream task. Upon this paradigm, a

wealth of models have been defined, such as GPT-2, BART and RoBERTa[63,

43, 47], that try to explore different architectures and pre-training strategies.

Starting from this baseline, several studies found that scaling the model size

and the data size of PLMs led to improved performances on downstream tasks.

Just to give a comparison, GPT-3 has 175 billion parameters and was trained

on 300 billion tokens, making it several order of magnitude larger than GPT-

2, which has 1.5 billion parameters and 40 billion tokens. This scaling re-

sults in bigger models that are not only able to solve more complex tasks but

also shows a range of new abilities, called emergent, that were not present

in smaller PLMs. Earlier models shows good performances on tasks like se-

quence classification, named entity recognition and question answering, how-

ever they are limited in reasoning capabilities and on generating coherent con-

tent by following instructions. On the other hand, LLMs not only performs

these tasks better but they can also perform more advanced ones such as co-

herent text generation, multi-turn conversations, reasoning, code generation,

and multilingual translation, often without requiring fine-tuning

Although there is not a formal definition, the research community started

to use the term ”large language models” after the first articles on these big-

ger models where published. This size difference rises several challenges on

how these models are trained, if models up to few billions parameters can be

managed without too much efforts even on personal computers shifting to big-

ger sizes requires a rigorous engineering approach. Matters such as parallel

processing efficient distributed training, memory optimization, and hardware

acceleration become critical. Training large-scale models like GPT-3 demands

massive computational resources, typically relying on clusters of GPUs or

TPUs to handle the enormous parameter space and data throughput. TPUs, in

particular, have been extensively used for training large language models due

to their specialized architecture, which is optimized for matrix operations and

2.1 Language Model 21

large-scale parallelism. Additionally, techniques such as model parallelism

and pipeline parallelism are necessary to distribute the workload across multi-

ple devices, ensuring that both computation and memory usage are balanced.

Both PLM and LLM relies on the transformer architecture which is also

referred to as encoder-decoder (ED) but most recent LLMs use only its de-

coder stack (DO). In the first case, the encoder is fed with the input sequence

and use self-attention to produce a vector of the same length as the input

of high-dimensional contextual-representations. The decoder instead use a

combination of self-attention and masked cross-attention to predict the out-

put sequence with the conditioning of the representations produced by the en-

coder. In decoder-only architecture instead all tokens are processed equiva-

lently by conditioning only on previous tokens thanks to a causal masking pat-

tern. These models have a simpler architecture and are more naturally suited

for a next-world prediction objective while PLMs are usually trained with a

masked language modeling approach. As an example, BART[43] is an ED

transformers pre-trained by corrupting the input tokens in different ways such

as masking, deletion and infilling. This difference in the training objective and

in the architecture is reflected also on how the models encode the linguistic

information. BERT-like models[35], for instance, encodes surface features at

the bottom, syntactic features in the middle, and semantic features at the top

while LLMs like tends to gather lexical semantics in shallower layers4 to later

aggregate these information in higher layers to make the predictions[78, 48].

Delving briefly into the previously mentioned emergent abilities, two of

the most representative are in-context learning (ICL) and instruction tuning.

With ICL we refer to the ability of the model to adapt to new tasks or con-

texts by processing prompts provided by users without any updates to its un-

derlying parameters. These prompts may include instructions, examples, or

contextual information that guide the model’s behavior for a specific query
4”Shallow” or ”bottom” layers refer to those closer to the input, while ”top” or ”high”

layers are closer to the output

2.2 Data 22

or task. Based on the type of prompt fed to the model, techniques such as

zero-shot or few-shot prompting can be derived. In the first case, the model

is asked to perform a task without any prior examples in the prompt relying

purely on its pre-trained knowledge. Few-shot prompting, instead, make use

of few examples that acts as demonstrations, helping the LLM to learn the

pattern between input and output. Regarding instruction tuning, the model is

fine-tuned on a dataset containing a diverse set of tasks formatted as natural

language prompts. This approach enhances the model’s ability to follow ex-

plicit instructions and generalize to unseen tasks, improving its zero-shot and

few-shot learning capabilities. By training on a broad range of prompts and re-

sponses, instruction-tuned models learn not only task-specific patterns but also

general strategies for understanding and executing various instructions. This

method has been shown to significantly improve performance across multiple

benchmarks, sometimes enabling smaller models to match or even surpass the

performance of much larger models trained without instruction tuning.

2.2 Data

Understanding the type of data used in the AI-legal domain requires distin-

guishing between data employed for pre-training models and data used to

evaluate their performance. The same source of data can be used to build

both a corpus used for training and a benchmark dataset later submitted to the

trained model to evaluate its functionality. Moreover, when it comes to LLMs,

it may be hard to determine the extent and the quality of the legal knowledge

that trickled into the model as pretraining corpora are often proprietary and

not publicly disclosed. Nonetheless, several documented datasets and bench-

marks recur in academic literature and merit a brief description. This section

distinguishes between corpora used for model training and datasets typically

utilized for specific evaluation tasks, although as stated before these two as-

pects may overlap in some cases.

2.2 Data 23

2.2.1 Corpora

The legal domain inherently generates extensive documentation, with entities

such as the European Court of Justice and the Supreme Court of the United

States publishing vast amounts of information through dedicated databases

[19][68]. Consequently, it is feasible to compile sufficiently large corpora for

training or fine-tuning AI models.

• Eurlex57K [19] contains 57,000 EU legislative documents extracted

from the EUR-Lex database [19].

• ECHR [62] includes approximately 11,500 cases from the European

Court of Human Rights.

• The Caselaw Access Project [42] provides over 160,000 U.S. court

cases, available for research purposes.

• Pile of Law[29] compiles data from 35 diverse sources to build an

heterogeneous5 open-source dataset with legal and administrative data

from different jurisdictions, totaling ∼ 10M documents.

• OPP-115 [79] instead focus on website privacy policies with 115 doc-

uments, while CLAUDETTE contains 142 terms of service of some of

the major players across 10 different market sectors. Being the corpus

used in this work, CLAUDETTE will be further analyzed in chapter

3.1.

2.2.2 Benchmarks

Benchmarks are essential for evaluating AI model performance as they pro-

vide standardized tasks and metrics, enabling consistent comparison and track-

ing of progress across models.
5It encompasses: legal analyses, court opinions and filings, government agency publica-

tions, contracts, statutes, regulations, casebooks, and more.

2.3 Why AI in the legal field ? 24

• LexGLUE (Legal General Language Understanding Evaluation) [7] is

a benchmark comprising seven legal-domain-specific tasks designed to

evaluate models on legal text comprehension. It spans multiple jurisdic-

tions (EU and U.S. law) and application domains (e.g., laws, contracts),

with the aim of advancing foundation models capable of addressing di-

verse legal natural language understanding tasks.

• LegalBench [27] features 162 tasks covering six categories of legal rea-

soning6 drawing heavily from the American body of law. It supports

various task formats, including binary classification, multiple-choice

questions, open-ended generation, and multi-class/multi-label classifi-

cation.

2.3 Why AI in the legal field ?

The judiciary system plays a pivotal role in maintaining justice and societal

order in modern nations. However, it faces numerous challenges that hinder its

ability to achieve a fair and efficient system. Several critical problems affect

nearly every justice system, regardless of whether it follows Common or Civil

law traditions or the specific legal frameworks employed by individual states.

One of the most recurring and significant issues can be summarized by

the maxim: ”too many cases, too few people”. Traditional judiciary systems

are overwhelmed by an ever-increasing volume of cases, resulting in back-

logs with delays that can span years or even decades. This backlog arises

primarily from a shortage of legal professionals, insufficient resources, and

the inherently repetitive nature of certain judicial tasks, such as document re-

view, evidence analysis, and drafting legal opinions. While these challenges

are often framed as a matter of efficiency, they also have broader implications

for the fairness of the system and represent a substantial economic burden. In
6Issue-spotting, rule-recall, rule-application, rule-conclusion, interpretation and

rhetorical-understanding

2.3 Why AI in the legal field ? 25

addressing these inefficiencies, legal AI tools offer significant potential, par-

ticularly in automating repetitive and time-intensive tasks. For instance, the

transcription of judicial proceedings can be effectively performed by speech-

to-text systems, which, in their current state, can transcribe entire hearings

with high accuracy and reliable speaker diarization [52]. Another recurring

task in legal practice is legal case retrieval, which involves searching large

databases for relevant cases based on specific queries, legal principles, statutes

or keywords. Although modern systems are not yet optimal [20], this remains

an active area of research, exemplified by annual competitions such as COL-

IEE [26].

Looking further ahead, systems capable of automating the decision-making

process in legal cases could significantly alleviate judges’ workloads. How-

ever, this is a highly sensitive area that necessitates an interdisciplinary ap-

proach, as such tools could have widespread and potentially detrimental soci-

etal impacts. Nevertheless, legal judgment prediction is an active research

topic [21][11], with increasing focus on developing approaches that produce

interpretable and consistent outcomes.

Finally, engaging with legal materials is often challenging for individuals

without a legal background. In this context, AI applications have the poten-

tial to democratize access to legal information. For example, tools for legal

question answering (e.g. LLeQA and Lawyer LLaMA [49, 31]) enable indi-

viduals to address legal queries independently and with an accessible jargon.

Similarly, automatic summarization of legal documents can benefit both le-

gal professionals and the general public by distilling lengthy and intricate legal

texts into concise, digestible summaries [34].

2.3.1 EU Law on unfair terms in contracts

For what concern unfair contractual clauses, European consumers are pro-

tected by the directive 93/13[10] that establishes a legal framework aimed at

2.3 Why AI in the legal field ? 26

protecting consumers from unfair contractual provisions in agreements con-

cluded between businesses and consumers. This directive is particularly rel-

evant in contexts where standard contractual terms are pre-drafted by busi-

nesses and offered on a take-it-or-leave-it basis, leaving consumers with no

opportunity to negotiate. The primary objective of the directive is to ensure

that such terms are fair, transparent, and do not create a significant imbalance

between the rights and obligations of the contracting parties. The directive ap-

plies broadly to consumer contracts across various sectors, including goods,

services, and digital transactions. The core principle underpinning the direc-

tive is the fairness test, which establishes that a contractual term is deemed

unfair if it causes a substantial imbalance to the detriment of the consumer,

contrary to the principle of good faith. Furthermore, contractual terms must

be drafted in plain and intelligible language, ensuring that consumers can fully

understand their rights and obligations. Any ambiguities in the contract are to

be interpreted in favor of the consumer. The directive also provides a non-

exhaustive list of unfair terms (Annex 1), which includes provisions that grant

the business excessive discretion over contract performance, such as the uni-

lateral right to modify terms without valid justification. If a contractual clause

is found to be unfair, it is deemed non-binding on the consumer, while the

remainder of the contract remains in force, provided that its validity is not

compromised. A consumer can take a dispute to court to challenge the unfair-

ness of a contract, this is referred as individual control of fairness. Abstract

control, on the other hand, is performed by consumer protection organizations

which have the competence to initiate judicial or administrative proceedings.

In this case, each member states may have different implementations.

2.4 CLAUDETTE 27

2.4 CLAUDETTE

CLAUDETTE[45] (Automated CLAUse DETeCTEr) is an international re-

search project that attempts to empower consumers and nongovernmental or-

ganizations with a machine learning tool to automate unfair clause detection in

terms of service and privacy policies. It relies on supervised learning methods

and on a source corpus of 142 ToS documents manually annotated by legal

experts, grounding on the EU Directive 93/13 and the GDPR. More details on

the whole corpus are given in section 3.1. The Unfair Contract Terms Direc-

tive sets the minimum standard of consumer protection with regard to contract

terms and it deems a clause as unfair if ”contrary to the requirement of good

faith, it causes a significant imbalance in the parties rights and obligations

arising under the contract, to the detriment of the consumer”. In its first itera-

tion [45] the CLAUDETTE system was tested with different machine learning

techniques over a dataset of 50 documents for a total of ∼ 12000 sentences.

The task is a multi-label classification over 8 categories of unfairness, mean-

ing each sentence can be assigned to 0 or more categories, however the first

experiments were formulated as a binary classification task. The ML tech-

niques employed included Support Vector Machines (SVM), Convolutional

Neural Networks (CNN) and Long-Short Term Memory Networks (LSTM),

the sentence was represented in 3 different modalities, namely the bag-of-

words model, parse tree and word embeddings. The best approach was the

combination of 8 different SVM-HMMs7 (one per category) using n-gram

features with a macro-F1 of 0.805 on the binary task. The project continued

[64] by exploring the use of legal rationales to both improve the classifica-

tion accuracy and to offer useful natural language explanation to the classifier

output by using memory-augmented neural networks[67]. Since the project

is strictly related to the European Union area, a multi-lingual approach was

considered by experimenting with different techniques to project annotations
7Support vector machine with Hidden Markov models [76]

2.5 LLMs for Legal Tasks 28

between documents written in different languages[22]. Strictly related to this,

the problem of detecting unfair clauses in ToS was extended across multiple

languages, comparing several strategies to extend a classifier from English to

other lower-resources languages[23]. In this setting, directly translating the

test set directly to English rather than training on a novel corpus for the source

language resulted in the best performances (0.66 vs 0.62 F1). On top of this,

working on these matters gave valuable insights and supplementary details

about the relationship between users and digital platforms [40][16][33]. Re-

lated to the CLAUDETTE project, the corpus of 100 ToS[16] employed in

several works, is also included in the LexGLUE benchmark[7].

2.5 LLMs for Legal Tasks

This section provides an overview of the application of large language mod-

els (LLMs) across various legal tasks first focusing on surveys which offers

a bird’s-eye view of the techniques and systems employed and then delving

deeper into notable studies that utilize prompting techniques for legal appli-

cations.

Lai et al. [41] conducted a literature review on the use of LLMs in the

judicial field, including an analysis of their role in assisting judges. The study

identifies several fine-tuned legal LLMs, primarily based on the Chinese le-

gal system, and examines AI-assisted decision-support systems implemented

in courts. The authors highlight how such systems can enhance judicial ef-

ficiency by expediting case processing, improving the accuracy and consis-

tency of decisions, and providing legal advice. However, these systems face

significant challenges, including limited processing capabilities for long texts,

inadequate adaptability to individual cases, and privacy and ethical concerns.

The study concludes with recommendations for future research, including im-

proving data quality and privacy protection, enhancing long-text processing

capabilities, and establishing ethical and regulatory frameworks for legal AI

2.5 LLMs for Legal Tasks 29

applications.

Padiu et al. [41] provide a comprehensive survey of legal LLMs, ana-

lyzing their advancements, applications across different legal systems, and

practical limitations. Their findings indicate that standalone LLMs, such as

GPT-3 and LawyerLLaMA, struggle with complex legal reasoning tasks due

to hallucination issues and insufficient legal knowledge grounding. However,

approaches that integrate external legal knowledge, vector databases, and re-

trieval systems demonstrate superior performance, even surpassing human ex-

perts on certain multiple-choice legal tasks. Additionally, the study highlights

the difficulties AI models face in adapting to multicultural and multilingual le-

gal environments, as well as the challenge of keeping pace with the evolving

nature of legal systems.

Several studies have explored the use of LLMs for different legal tasks,

though relatively few have focused specifically on contract classification. Tang

et al. [69] evaluated multiple LLMs on two datasets containing privacy poli-

cies from websites (OPP-115 [79]) and mobile applications (PPGDPR [46]).

They designed a zero-shot prompting framework comprising three sections:

(1) background context, (2) a list of privacy-related categories along with their

description, and (3) the task description. Their results indicate that GPT-4

achieved the highest performance, outperforming all other approaches.

Hakimi Parizi et al. [28] experimented with various prompting strategies

for legal document classification, including zero-shot and few-shot learning,

chain-of-thought (CoT) prompting, activation fine-tuning, and prompt ensem-

bling. They evaluated these techniques on the ECHR (binary classification)

and SCOTUS (multi-class classification) datasets, using the OPT language

model family8. Their results indicate that activation fine-tuning performed

best, while CoT prompting was ineffective, likely because the models were

not instruction-tuned.

Trautman [74] employed a chaining approach to break down complex legal
8OPT-6B and OPT-175B

2.5 LLMs for Legal Tasks 30

classification tasks into smaller subtasks for evaluation on ECHR and SCO-

TUS datasets. In this framework, the output of each prompt serves as input

for the next, beginning with generating a summary of the legal case. A few-

shot prompt is then constructed by retrieving the eight most semantically sim-

ilar cases to the input summary. Finally, the initial summary, combined with

the eight retrieved cases, is used for label prediction. This chained prompting

strategy significantly improved performance over zero-shot prompting and en-

abled smaller models to outperform larger ones in terms of micro-F1 score.

Yu et al. [80] explored prompting techniques to guide LLMs in develop-

ing structured reasoning strategies for the legal entailment task in the COLIEE

competition. This task requires determining whether a legal statement is true

or false based on a given set of legal articles. Their best-performing approach

explicitly instructed the model to employ legal reasoning frameworks such as

IRAC (Issue, Rule, Application, Conclusion). Similarly, Nguyen et al. [60]

compared GPT-3.5 and GPT-4 on the same task, finding that performance var-

ied significantly depending on the context and the nature of the legal question.

Their study raises concerns about the generalization capabilities of LLMs in

adapting to diverse legal scenarios.

Finally, Trautman et al. [75] conducted an extensive benchmark evalua-

tion to assess the groundedness of legal Q&A systems. Here, groundedness

refers to the extent to which AI-generated responses are aligned with the input

legal sources. The dataset included legal queries, AI-generated responses9,

and supporting legal texts (e.g., case law, statutes, and regulations). Their

findings indicate that prompt chaining [74] achieved the highest performance,

followed by direct prompting to GPT-4o.
9Verified by legal experts to ensure they adhered to legal sources.

2.6 LLMs Limitations 31

2.6 LLMs Limitations

Despite the promising applications of LLMs in the legal field, several studies

highlight their limitations and potential risks.

Dahl et al. [12] conducted an extensive study on LLM hallucinations, test-

ing four models across 14 different tasks with varying levels of complexity.

They evaluated the accuracy of LLM-generated responses over 5,000 judicial

cases spanning different court hierarchies. Their results show that GPT-4 ex-

hibited the highest hallucination rate, generating incorrect information in at

least 58% of cases. The study attributes these hallucinations to two key fac-

tors: (1) the models’ inability to handle misleading inputs, and (2) their lack

of self-awareness regarding the certainty of their outputs, which undermines

their reliability in legal contexts.

Martinez [56] critically assessed GPT-4’s performance on the Uniform Bar

Exam (UBE), challenging OpenAI’s claim that it ranks in the top 10% of test-

takers. The study finds that GPT-4’s actual percentile rank is closer to the

62nd percentile overall and the 42nd percentile in essay sections, with perfor-

mance declining further when compared to licensed attorneys. Concerns are

also raised about the validity of OpenAI’s essay grading methodology, em-

phasizing the need for rigorous independent evaluations before integrating AI

into legal decision-making.

Chalkidis [6] evaluated GPT-3.5 on the LexGLUE benchmark [7], report-

ing an average micro-F1 score of 49 across various legal tasks in zero-shot

and few-shot settings. One subtask consits of unfair clause detection over the

CLAUDETTE dataset10, it resulted in micro-F1 and macro-F1 scores of 64.7

and 32.5, respectively, further highlighting the limitations of LLMs in legal

text classification.

10An older version of the dataset consisting of 100 documents.

Chapter 3

Method

3.1 Dataset

The corpus consists of 142 online consumer contracts, Terms of Service (ToS),

relying on the previous work by Lippi et al. [45], Ruggeri et al. [67] and

Jablonowska et al. [33]. The annotation is performed by legal expert and

marked in XML as described in [45] where, including the following revisions,

9 different categories of unfairness are identified. Each category has its own

scope definition and the conditions that make such clause unfair.

Jurisdiction ⟨j⟩: The jurisdiction clause specifies what courts have the com-

petence to adjudicate disputes. A clause is (potentially) unfair whenever it

states that judicial proceeding takes a residence away (i.e., in a different city,

different country from the consumer place of residence).

Choice of Law ⟨law⟩: The choice of law clause specifies what law will govern

the contract and be applied in potential disputes. A clause is (potentially)

unfair whenever it states that the applicable law is different from the law of

the consumer’s place of residence the clause is unfair.

Limitation of Liability ⟨ltd⟩: The limitation of liability clause specifies for

what actions/events and under what circumstances the providers exclude, limit

or reduce their liability, the duty to compensate damages and/or when contains

a blanket phrase like ”to the fullest extent permissible by law”. Such clause is

3.1 Dataset 33

always (potentially) unfair, unless it is a force majeure case.

Unilateral Change ⟨ch⟩: The unilateral change clause specifies if and under

what conditions the provider can unilaterally change and modify the contract

and/or the service. Such clause is always (potentially) unfair.

Unilateral Termination ⟨ter⟩: The unilateral termination clause states that

the provider has the right to suspend and/or terminate the service and/or the

contract and/or the consumer’s account, due to some reasons, or at any time,

for any or no reasons with or without notice. Such clause is always (poten-

tially) unfair.

Contract by Using ⟨use⟩: The contract by using clause states that the con-

sumer is bound by the terms of use/service simply by using the service, down-

loading the app or visiting the website. Such clause is always (potentially)

unfair.

Content Removal ⟨cr⟩: The content removal clause gives the provider a right

to modify, delete or remove the user’s content, including in-app purchases,

under specific conditions or at any time, in his full discretion, for any or no

reasons, with or without notice or the possibility to retrieve the content. Such

clause is always (potentially) unfair.

Arbitration ⟨a⟩: The arbitration clause requires or allows the parties to re-

solve their disputes through the arbitration, before the case could go to court.

A clause is (potentially) unfair whenever the arbitration is binding and not

optional and/or should take place in a country different from the consumer’s

place of residence and/or be based not on law but on other arbitration rules

and/or arbiter’s discretion.

Privacy Included ⟨pinc⟩: Identify clauses (a) explicitly stating that, simply

by using the service, the consumer consents to the processing of personal data

as described in privacy policy; and/or (b) that the privacy policy is incorpo-

rated into and form part of the terms and it is preceded by a content by using

clause to such terms. These clauses are always (potentially) unfair.

Is worth to note how each clause is described as potentially unfair. From a

3.1 Dataset 34

strictly legal point of view, a clause is unfair with absolute certainty only if a

competent institution expressed itself in that sense. Moreover, the unfairness

may depend on the context of application of the clause.

All the analyzed ToS are standard terms available on the provider’s website

for review by potential consumers and since contract may vary by jurisdiction,

only those concerning European customers were selected. Each contract is

divided sentence-wise and each sentence can be classified as (1) clearly fair,

(2) potentially unfair and (3) clearly unfair with the numeric value appended

to the corresponding XML tag. A single sentence can have 0 or more tags

assigned, moreover, those that does not concern any legal matter, i.e. ”Please

read these terms of service”, don’t have an assigned tag and are treated as

clearly fair clauses.

3.1.1 Corpus statistics

The corpus contains 37,895 clauses for a total of 38,230 labels, out of these

3375 are unfair corresponding to 3049 (∼ 8%) clauses containing at least

1 unfair tag. The dataset is unbalanced since most of the sentences are fair

(34,846), also the distribution of unfair clauses is not balanced with ⟨ltd⟩ and

⟨ter⟩ taking almost half (47.3%) of all potentially unfair clauses. Most of the

unfair clauses1 are tagged with just one class (2746), while clauses containing

2 (285) or 3 (25) tags are much less frequent. The distribution of categories

across documents is reported in Table 3.1. Arbitration and privacy included

are the least commons categories, found respectively in 53 and 80 documents,

while all the other categories appear in at least 102 documents out of 142 with

limitation of liability appearing in almost all the documents (139).
1Meaning the ones that contains at least 1 unfair tag

3.2 Methodology 35

Figure 3.1: Distribution of unfair clauses

3.2 Methodology

The unfair clause detection task addressed in this work can be formally de-

scribed as a multi-label sentence classification problem. In a multi-label clas-

sification task, each input instance can be associated with multiple labels si-

multaneously. Given a dataset of sentences, our goal is to assign one or

Type of clause Tag #Clauses #Unfair #Documents
Arbitration < a > 165 156 53
Unilateral Change < ch > 506 506 138
Content Removal < cr > 261 261 102
Jurisdiction < j > 218 180 110
Choice of Law < law > 225 192 130
Limitation of Liability < ltd> 1072 971 139
Unilateral Termination < ter> 624 624 134
Consent by Using < use> 370 370 129
Privacy Included < pinc > 115 115 80

Table 3.1: Composition of the final corpus. The number of unfair clauses
groups both potentially unfair and clearly unfair.

3.2 Methodology 36

more labels from a predefined set of unfair categories to each sentence. For-

mally, let S = {s1, s2, . . . , sN} be a collection of N sentences, and let L =

{ℓ1, ℓ2, . . . , ℓM} be a set of M possible labels. Each sentence si is associated

with a subset of labelsLi ⊆ L. A common way to represent label assignments

is through a binary vector yi = [yi1, yi2, . . . , yiM] ∈ {0, 1}M , where each ele-

ment yij indicates the presence (yij = 1) or absence (yij = 0) of the label ℓj

for sentence si. The goal is to learn a function f : S → {0, 1}M that maps

each sentence to its corresponding binary label vector. The function f can be

learned, in principle, with any supervised classifier provided that the training

dataset completely represents the event that f tries to approximate.

Existing approaches achieve state-of-the-art performance for unfair clause

detection using transformers model such as Legal-BERT and DeBERTa [7].

The assessment over this type of models is repeated by using the new dataset

of 142 documents which include also the additional <pinc> category, then,

the same task is addressed with LLMs. Three different approaches are tested

within the zero-shot and few-shot settings in order to evaluate what strategy

is better to undertake this task.

3.2.1 Transformer-based

The setting to assess transformer models is the same used in the LexGLUE

benchmark [7]. In general, these models are pre-trained on large-scale unla-

beled corpora in a self-supervised manner, where they learn to predict masked

tokens. After pre-training, these models are fine-tuned on task-specific anno-

tated datasets by specific layers and optimizing performance through super-

vised learning. In this case, the input clause is fed to the model which returns

its high-level representation h, this is then processed by a linear layer L fol-

lowed by a sigmoid activation. The output of this process is a 1 × k vector,

where k is the number of labels, containing a probability for each of the k

labels. Since the fair label is explicitly included in the classification, the total

3.2 Methodology 37

number of labels is k = 9 + 1. Since the task is a multi-label classification a

binary cross-entropy (BCE) loss function is used to independently evaluates

each label as a separate binary classification problem. The BCE loss is a spe-

cial case of the cross-entropy (eq. 2.8), specifically applied when there are

only two possible classes (positive or negative) for each label. For a single

sample, the BCE is defined as follows:

LBCE(x, y) = −
k∑

i=1
[yi log (xi) + (1− yi) log(1− xi)] (3.1)

where x is the output probability vector of the model classification head and

y is a one-hot encoded vector of the true label.

3.2.2 LLMs

There are several ways in which the unfair clause detection task can be formu-

lated for LLMs. Since it is well-known that the performance of LLMs heavily

depends on the adopted prompt, we experimented with different prompts. In

all cases, we define prompts that are mostly based on the annotation guide-

lines, i.e., on the definitions of the nine categories of clauses and the condi-

tions of their unfairness, as detailed in section 3.1. Indeed, the category def-

initions provide fundamental information, since the categories’ names may

not be informative enough. For defining prompts three strategies are imple-

mented, which differ in how they address the tasks of detecting (i.e., recogniz-

ing whether a clause is potentially unfair) and classifying it (i.e., identifying

the category of unfairness). We name the three strategies single-prompt,multi-

prompt, and pipeline. They will be described in detail in the next subsections.

When the proposed strategy allows for it, we experimented both with zero-shot

and few-shot learning settings.

3.2 Methodology 38

Single-prompt approach

In this approach, both detection and classification are performed simultane-

ously over a clause, with a single prompt. The prompt uses a comprehensive

template that includes all necessary information: the tasks description, the def-

inition of the nine categories as given in Section 3.1, and detailed instructions

for output formatting. The expected output from this prompt is a list con-

taining all the unfairness categories for each input clause. While adequate to

zero-shot scenarios, this approach would become cumbersome in a few-shot

setting, as it would require incorporating several examples for each category

into a single prompt. Incorporating n examples for each of the nine categories

leads to an input prompt containing n × 9 examples, alongside the template

structure, making it less scalable.

Multi-prompt approach

To address the scalability issues of the single-prompt approach, we decompose

the problem into several subtasks. Differently from the previous method each

category is addressed separately. Given an input clause, the model is queried

with 9 separate prompts, one for each category, so that it focuses exclusively

on one category at a time. This design minimizes the risk of misinterpreting

the task requirements or the formatting instructions. In this way, the multi-

label classification task is effectively transformed into a set of nine binary

classification tasks. This approach supports both the zero-shot and few-shot

learning settings, and the prompt template is the following:2

Evaluate the following clause from a terms of service based on

the provided definition of unfairness:

Definition: {category definition}

If the clause is unfair according to the definition respond with

'yes' otherwise respond with 'no'. Provide only 'yes' or 'no'

as the output. Do not include any explanations or additional

2At execution time, text within brackets is replaced with the corresponding entities.

3.2 Methodology 39

text.

Examples: {examples}3

Test Input:

Clause: {clause}

Response:

Pipeline approach

The third methodology builds on the multi-prompt approach and further de-

composes the task into two distinct phases of a pipeline. During the first phase,

i.e., category identification, the model determines whether a clause belongs to

a specific category. To this aim, we perform one query for each category,

using the same definitions of the previous approaches, but omitting the part

describing the unfairness conditions. Similarly to the single-prompt approach,

this phase is always performed in a zero-shot setting for scalability reasons.

If all prompts respond negatively (i.e., the clause belongs to none of the cat-

egories) the clause is deemed fair. This phase can also be implemented in a

few-shot learning mode, requiring a dedicated set of examples for each cate-

gory. To ensure balance, these examples should include both fair and unfair

clauses within the target category, as well as clauses from other categories.

However, in this study, the initial prompt is designed for zero-shot learning to

avoid increasing inference time. The prompt template for this first stage is the

following:

You are analyzing terms of service. Please, tell whether the

clause talks about the subject specified in the definition.

Definition: {category definition}

Please answer only with 'yes' or 'no'. Do not include any explanations

or additional text.

Test Input:

Clause: {clause}

Response:

3This line is not present in the zero-shot setting.

3.2 Methodology 40

The definitions used in this case are the same as before but without the sen-

tence describing the unfairness conditions. If a clause is positively identified

in this first step, a second query assesses its unfairness. For clauses associ-

ated with one or more categories, we proceed with the second phase, i.e. the

unfairness assessment. Specifically, if in the first phase a clause is positively

identified as belonging to a category, in the second phase, a second query as-

sesses its unfairness for that category. The unfairness conditions corresponds

to the second sentence of the category definitions (??), with the exception of

those that only state “Such clause is always unfair”, in order to minimize po-

tential bias in the model. The prompt for the second phase is always performed

in a few-shot setting. The template is the following:

You are analyzing terms of service. Please, tell whether the

input clause is unfair. {unfairness conditions}. If the clause

is unfair respond with 'yes' otherwise respond with 'no'. Provide

only 'yes' or 'no' as the output. Do not include any explanations

or additional text.

Examples: {examples}

Test Input:

Clause: {clause}

Response:

Both phases use one prompt per category, for a total of 9 to 18 prompts per

sentence.

3.2.3 Selection of examples for few-shot setting

The multi-prompt and the pipeline approaches are designed to support the few-

shot learning settings. In these settings, for each category, the prompt includes

8 examples of unfair clauses. These examples, extracted from the training set,

are hand–selected according to the following criteria: (i) coverage of different

market sectors; (ii) coverage of diverse types of unfair contracting practices,

within each unfair-clause category; (iii) length of clauses. Long sentences

3.3 Experiments 41

usually offer several advantages. As noted, they encapsulate a wide range and

different combinations of unfair practices, thus providing a richer and more

detailed context. This may help the models to capture complex relationships

and generalize across diverse scenarios. However, they also come with disad-

vantages. Small-scale language models may struggle with processing lengthy

sentences, due to input length constraints or difficulty in capturing long-range

dependencies. Furthermore, the dense nature of long sentences can lead to in-

creased ambiguity, potentially hindering the models’ ability to focus on spe-

cific features.

Given these limitations also shorter sentence are considered by identifing

8 new examples. A key advantage of this approach is that short sentences are

simpler to process and reduce the risk of truncation. This approach may allow

models to focus on specific patterns. However, it comes with potential is-

sues. Indeed, there is a risk of oversimplification. Relying on short sentences

may reduce cohesiveness and create a misalignment with real world contrac-

tual language, since ToS often contains long and complex sentences. Fur-

thermore, models may lose the broader context necessary to fully understand

the relationships between different elements. Thus, practices that depend on

interconnected factors may not be fully captured.

3.3 Experiments

For the experimental evaluation, the dataset considered is described in Sec-

tion 3.1, using the methodology illustrated in Section 3.2. Following the set-

ting of LexGLUE [7], the 142 documents are split into three sets: 85 docu-

ments for training, 35 for validation, and 22 for test. To address class imbal-

ance, all the approaches are evaluated by measuring micro-F1 and macro-F1.

As for LLMs, we consider 9 different models (Table 3.2): namely, Gemma2-

2B,Gemma2-9B, Llama3-8B,Mistral-7B, Law-Chat, MistralNemo-12B, Phi3-

14B, Codestral-22B, Qwen-32B. All the experiments have been executed on

3.3 Experiments 42

two RTX 2080 Ti for a total of 22GB of VRAM. Quantization was employed

when necessary, i.e., when the chosen model did not fit in the available VRAM.

The 8-bit integer quantization consists of a mixed-precision decomposition

where most of the values (≈ 99.9%) are quantized in 8-bit precision, while

outlier features are quantized to 16-bit [13]. Concerning 4-bit quantization,

the QLoRA [14] method is employed.

3.3.1 Experimental Setting

All the LLMs are instruction-tuned models between 2 and 32 billion parame-

ters (Table 3.2). The input prompt for each model is pre-processed using the

recommended template for that particular model. Specific tokens to the input

prompt (e.g., [INST]) are appended and pre-pended, ensuring alignment with

the model’s native requirements. Temperature is set to 1, sampling is disabled,

and the greedy search decoding method is employed to ensure reproducible re-

sults. The model weights are quantized to 8-bit or 4-bit integers, depending

on the size of the model as indicated in Table 3.2, to meet the computational

resources at disposal.

Model #Params Context Length Quantization

Qwen [32] 32B 128k 4 bit
Codestral [71] 22B 32k 4 bit
Phi3 [70] 14B 128k 8 bit
Nemo [72] 12B 128k 8 bit
Gemma2 [25] 9B 4k 8 bit
Llama3 [17] 8B 128k 8 bit
Mistral [37] 7B 32k 8 bit
Law-Chat [8] 7B 128k 8 bit
Gemma2 [25] 2B 4k 8 bit

Table 3.2: Details of the large language models.

The LLMs are compared against a linear SVM and 7 pre-trained trans-

formers, as used in the LexGLUE benchmark [7]. The SVM is the same used

3.3 Experiments 43

in the original CLAUDETTE system [45]: it employs TF-IDF features us-

ing n-grams with n ∈ [1, 2, 3], with hyperparameters4 optimized through grid

search.

All pre-trained models are fine-tuned for up to 20 epochs with early stop-

ping on development data, using the Adam optimizer with a starting learning

rate of 3e−5. Mixed precision (fp16) is used to reduce memory requirements,

with a batch size of 8 across all experiments. Each setup is repeated five times

with different random seeds, reporting test scores based on the seed yielding

the best test performance.

3.3.2 Model Ensemble

Combining predictions from multiple models generally leads to improved per-

formance compared to relying on a single model. This is because different

models may excel in distinct regions of the solution space, compensating for

each other’s weaknesses. The ensemble method proposed in this study in-

volves constructing a meta-model that aggregates predictions from multiple

models. For a given model m its prediction is represented as a one-hot vector

y(m) where y
(m)
i = 1 if the i-th class is positively predicted. Given n models

then their respective one-hot vectors are summed to obtain a single aggregated

vector ŷ which represents the combined predictions across all models. Based

on this framework, three different ensemble strategies are proposed to deter-

mine the final output of the meta-model.

Majority Voting

In majority voting, a class is predicted as positive if the majority of models

agree on that class, meaning ŷi > t where t is a threshold equals to ⌊n/2⌋+ 1.

This ensures that a class is selected only if more than half of the models predict

it.
4Number of features, regularization strength and loss function

3.3 Experiments 44

Weighted Voting

Unlike majority voting, where all models contribute equally, weighted voting

assigns greater importance to models that demonstrate superior performance.

Each model contributes to the final aggregated vector ŷ bbased on a normal-

ized weight, which is determined by a performance metric. In this case, the

average macro-F1 score is used as the weighting factor, moreover the final

prediction threshold can be adjusted based on the desired confidence level of

the meta-model.

Softmax Voting

In softmax voting, the aggregated vector ŷ is transformed into a probability

distribution by applying a softmax function (Eq. 2.5). Again, the final output

for a class i is positive if the score for that class is greater than a threshold.

In the experimental evaluation, these three strategies are tested by consid-

ering the 4 best models, based on the macro F1, resulting from the previous

evaluation. The threshold for the weighted voting scheme is set to 0.5 while

for the softmax scheme it is derived by running a grid search over the ensemble

and testing different level of thresholds.

Chapter 4

Discussion

Model Validation Test
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Macro Acc. Macro Rec.

Bert-base-uncased 95.8 ± 0.1 74.8 ± 0.8 95.6 75.3 80.5 71.2
Roberta-base 94.6 ± 1.5 49.8 ± 25.7 95.6 70.2 72.4 68.8
Deberta-base 95.8 ± 0.1 73.7 ± 0.2 95.8 77.8 82.5 74.6
Longformer-base-4096 93.5 ± 1.5 32.4 ± 20.7 95.5 62.7 70.3 57.6
Bigbird-Roberta-base 95.7 ± 0.0 72.6 ± 2.3 95.3 75.3 77.3 74.9
Legal-Bert-base-uncased 96.0 ± 0.1 76.0 ± 1.4 95.6 76.9 78.5 77.1
Custom-Legalbert 95.9 ± 0.1 75.4 ± 0.3 95.9 77.9 81.2 75.6
TFIDF+SVM 95.0 ± 0.0 62.0 ± 0.0 94.9 61.0 80.7 52.4

Table 4.1: Evaluation of baseline methods on the validation and the test split.
For validation, we report the average score over 5 training and the variance.
For test, we report the result of the best model.

4.1 Transformer-based

Table 4.1 shows the results obtained by baseline approaches, which are those

used also within the LexGLUE benchmark [7]. Results are similar to those re-

ported in LexGLUE, although we are hereby using a larger dataset of 142 doc-

uments, which are more diverse in terms of market sectors, and thus more chal-

lenging. Furthermore, the privacy included category utilized in this dataset

was not part of the LexGLUE benchmark. Custom-LegalBERT is the best

performing approach, with 95.9/77.9 of micro/macro-F1, respectively.

4.2 Comparison of prompt strategies 46

4.2 Comparison of prompt strategies

Table 4.2 shows the results obtained with the three different prompt strategies

described in Section 3.2. When using few-shot learning, the results obtained

with both short and long examples are also reported.

It is straightforward to observe that the performance of LLMs is signif-

icantly lower than those obtained by the baselines. The pipeline strategy is

the one that consistently performs better than the others, for all the considered

LLMs. This is probably due to the fact that LLMs tend to consider unfair

also clauses that are totally unrelated to any unfairness category. Therefore,

splitting the task into two subsequent stages, and first filtering out the clauses

that are unrelated to unfairness categories, greatly simplifies the problem for

LLMs (each of the two prompts is much simpler to address).

Regarding the complexity of examples provided in the few-shot setting,

there is no huge difference in adopting short or long examples, with a slight

advantage in using the latter. While small-size LLMs do not produce satisfy-

ing results, it is evident that performance increases with model size: Qwen-

32B, although quantized with 4 bits only, achieves results that are not far from

the best-performing BERT-based baselines. On the other hand, Codestral-22B

is underperforming even smaller LLMs. These suboptimal performances can

be attributed to its pre-training on a corpus predominantly composed of code,

which significantly diverges from the linguistic and conceptual characteristics

of legal texts required for the task at hand.

4.2.1 Per-category evaluation

Table 4.3 presents the F1 scores of the best models across all the unfairness

categories. In particular, the comparison is between the transformer-based

models, i.e., Legalbert and Deberta-base, with small (Gemma2-2B, Gemma2-

9B, Phi3-14B, Llama3-8B, Law-Chat-7B, Mistral-7B, Nemo-12B) and large

LLMs (Codestral 22B and Qwen 32B). For each model, only the setting that

4.2 Comparison of prompt strategies 47

Model Technique Examples Metrics
Micro-F1 Macro-F1 Macro Acc. Macro Rec.

Gemma2-2B Single-prompt / 0.72 0.26 0.43 0.42
Llama3-8B Single-prompt / 0.71 0.37 0.38 0.61
Mistral-7B Single-prompt / 0.55 0.23 0.25 0.42
Law-Chat Single-prompt / 0.22 0.09 0.17 0.07
Gemma2-9B Single-prompt / 0.84 0.45 0.39 0.61
Nemo-12B Single-prompt / 0.72 0.39 0.42 0.57
Phi3-14B Single-prompt / 0.60 0.33 0.30 0.58
Codestral-22B Single-prompt / 0.15 0.19 0.37 0.17
Qwen-32B Single-prompt / 0.87 0.49 0.43 0.64

Gemma2 Multi-prompt - Zero shot / 0.64 0.28 0.22 0.70
LLama3-8B Multi-prompt - Zero shot / 0.88 0.47 0.43 0.57
Mistral-7B Multi-prompt - Zero shot / 0.41 0.16 0.14 0.80
Law-Chat Multi-prompt - Zero shot / 0.83 0.39 0.33 0.62
Gemma2-9B Multi-prompt - Zero shot / 0.58 0.43 0.35 0.78
Nemo-12B Multi-prompt - Zero shot / 0.61 0.26 0.20 0.81
Phi3-14B Multi-prompt - Zero shot / 0.79 0.41 0.31 0.77
Codestral-22B Multi-prompt - Zero shot / 0.34 0.21 0.19 0.86
Qwen-32B Multi-prompt - Zero shot / 0.88 0.61 0.56 0.75

Gemma2-2B Multi-prompt - Few shot Long 0.41 0.20 0.17 0.87
Short 0.57 0.30 0.24 0.86

Llama3-8B Multi-prompt - Few shot Long 0.79 0.40 0.30 0.84
Short 0.78 0.40 0.31 0.78

Mistral-7B Multi-prompt - Few shot Long 0.53 0.24 0.20 0.85
Short 0.52 0.22 0.18 0.87

Law-Chat Multi-prompt - Few shot Long 0.51 0.31 0.26 0.71
Short 0.71 0.43 0.41 0.62

Gemma2-9B Multi-prompt - Few shot Long 0.85 0.53 0.42 0.83
Short 0.89 0.58 0.47 0.85

Nemo-12B Multi-prompt - Few shot Long 0.32 0.15 0.15 0.86
Short 0.31 0.14 0.14 0.87

Phi3-14B Multi-prompt - Few shot Long 0.72 0.43 0.34 0.85
Short 0.80 0.52 0.40 0.80

Codestral-22B Multi-prompt - Few shot Long 0.41 0.24 0.21 0.87
Short 0.44 0.26 0.21 0.89

Qwen-32B Multi-prompt - Few shot Long 0.90 0.59 0.47 0.84
Short 0.88 0.61 0.51 0.85

Gemma2-2B Pipeline Long 0.89 0.56 0.49 0.72
Short 0.90 0.57 0.52 0.69

Llama3-8B Pipeline Long 0.90 0.58 0.51 0.71
Short 0.91 0.55 0.54 0.61

Mistral-7B Pipeline Long 0.74 0.29 0.24 0.70
Short 0.59 0.24 0.19 0.87

Law-Chat Pipeline Long 0.43 0.20 0.17 0.87
Short 0.46 0.22 0.18 0.85

Gemma2-9B Pipeline Long 0.84 0.51 0.40 0.83
Short 0.85 0.52 0.41 0.84

Nemo-12B Pipeline Long 0.92 0.62 0.57 0.72
Short 0.92 0.60 0.55 0.71

Phi3-14B Pipeline Long 0.87 0.56 0.44 0.84
Short 0.87 0.57 0.46 0.82

Codestral-22B Pipeline Long 0.80 0.45 0.35 0.85
Short 0.80 0.47 0.36 0.85

Qwen-32B Pipeline Long 0.95 0.72 0.77 0.71
Short 0.94 0.71 0.77 0.71

Table 4.2: Evaluation of LLMs over the test set. For each column, we report
the best result in bold.

4.2 Comparison of prompt strategies 48

Model Technique Category F1

fair a ch cr j law ltd ter use pinc

Baselines
Custom-Legalbert Fine tuned 0.97 0.56 0.78 0.67 0.96 0.93 0.70 0.75 0.79 0.67
Deberta-base Fine tuned 0.98 0.67 0.76 0.70 0.90 0.93 0.71 0.73 0.82 0.57

Small LLMs
Gemma2-2B Pipeline-Short 0.95 0.45 0.58 0.58 0.64 0.61 0.48 0.58 0.52 0.29
Mistral-7B Pipeline-Long 0.85 0.07 0.19 0.08 0.12 0.1 0.3 0.38 0.14 0.20
LawChat Multi Few-Short 0.87 0.36 0.32 0.08 0.65 0.24 0.19 0.55 0.62 0.38
Gemma2-9B Multi Few-Short 0.95 0.35 0.51 0.41 0.68 0.71 0.52 0.59 0.68 0.44
Phi3-14B Pipeline-Short 0.93 0.33 0.52 0.45 0.74 0.71 0.46 0.61 0.55 0.44
Llama3-8B Pipeline-Long 0.95 0.49 0.64 0.55 0.68 0.54 0.55 0.58 0.42 0.36
Nemo-12B Pipeline-Long 0.96 0.33 0.58 0.56 0.72 0.79 0.62 0.63 0.51 0.48

Large LLMs
Qwen-32B Pipeline-Long 0.98 0.48 0.70 0.64 0.91 0.93 0.67 0.57 0.65 0.69
Codestral-22B Pipeline-Short 0.90 0.19 0.54 0.37 0.53 0.47 0.54 0.47 0.18 0.47

Table 4.3: Evaluation of models for each category of unfairness. For each
column, it is reported the best results in bold and underline the best result of
small LLMs.

yields the best result are considered. The fine-tuned transformer-based mod-

els, Legalbert and Deberta-base, outperform other techniques across most cat-

egories, thus highlighting the benefits of tailoring models to legal datasets

and corpora. As for the aggregate results presented in Table 4.2, small LLMs

perform significantly worse both than large LLMs and than BERT-based ap-

proaches. In particular, Legalbert achieves the highest F1 scores for unilateral

change (0.78 vs 0.76), jurisdiction (0.96 vs 0.90), and unilateral termination

(0.75 vs 0.73). Conversely, Deberta-base surpasses Legalbert in arbitration

(0.67 vs. 0.56), content removal (0.70 vs 0.67), limitation of liability (0.71 vs

0.70), and contract by using clauses (0.82 vs. 0.79). The two models achieve

an equal F1 score for choice of law (0.93). Even the per-category results con-

firm that the pipeline strategy is the one achieving the best results. As noted

above, Nemo-12B is the best performing LLM among the small-sized ones,

in particular as regard to content removal (0.64), choice of law (0.80) and

privacy included (0.45) for pipeline short. Similarly, Llama3-8B reports the

best results for arbitration (0.49), unilateral change (0.64) and limitation of

liability (0.55) for pipeline long. Phi3-14B outperforms in assessing jurisdic-

tion (0.74) and unilateral termination clauses (0.61) in pipeline short. The full

4.2 Comparison of prompt strategies 49

comparison between the short and long examples confirms the observation

made for aggregate results (Table 4.2), i.e., that that the selection of exam-

ples does not strongly influence the performance of small LLMs within the

pipeline approach. Differently, Gemma2-9B achieves the best results under

the Multi-prompt short approach as regards consent by using (0.62). The best

performing strategy for Mistral-7B is using Pipeline-long, but its results are

significantly worse than those of other small LLMs. Gemma2-2B, despite be-

ing the smallest among the tested LLMs, delivers performance comparable to

larger models, including its bigger counterpart, Gemma2-9B.

The frequency and unfairness distribution of clauses in the dataset corre-

late with the performance trends of small-size LLMs. Categories with higher

clause frequencies, such as Limitation of Liability and Unilateral Termination,

generally see better performance from fine-tuned models, reflecting their abil-

ity to adapt to well-represented clause types. Conversely, less frequent cate-

gories like Privacy Included and Arbitration highlight the limitations of few-

shot and pipeline methods and the need for extensive domain-specific training.

4.2.2 Error analysis

Figure 4.1 and 4.2 presents the per-label confusion matrices for the two best

performing LLMs, namely Qwen-32B and Nemo-12B both using the pipeline

approach with longer examples. It is worth to highlight how even in the cat-

egories where they performs similarly (fair, cr and ter) they make differ-

ent mistakes. For both ter and cr, Qwen has more false negatives (FN) than

Nemo, while for the fair category is the opposite, with Qwen making more

false positive (FP) mistakes. In the law category Qwen performs on par with

the fine-tuned models, here the two false negatives errors are the followings:

these terms shall be governed by and construed in accordance with the

laws of the state of california.

4.2 Comparison of prompt strategies 50

Figure 4.1: Per-label confusion matrix for the Qwen-32B model on the
Pipeline-Long approach. All elements are normalized along the rows, also
the number of FP and FN errors over the total error count are displayed.

the licensee’s use of the service may also be subject to other local, state,

national or international laws.

which should be fairly easy to identify given the definition of unfairness used

in the prompt for the Choice of Law category. The arbitration category is the

most arduous for both small and large LLMs, in this case both Qwen and Nemo

performs the same type of mistakes with an higher number of false positive, the

same can be noticed for Llama3 (15 FP vs 6 FN) which is the best performing

LLM in general on arbitration. For what strictly concern Qwen, almost all

the false positives clauses are instead fair clauses that contains terms such

as ”arbitration”, ”arbitrator” or a derivation of the verb ”arbitrate”, meaning

4.2 Comparison of prompt strategies 51

Figure 4.2: Per-label confusion matrix for the Nemo-12B model on the
Pipeline-Long approach. All elements are normalized along the rows, also
the number of FP and FN errors over the total error count are displayed.

that the model is simply elicited by the presence of such terms and not by the

conditions specified in the arbitration definition. The test dataset include 41

clause that are relevant for more than one unfair category1. Table 4.4 shows the

comparison for this subset of the dataset for both Qwen and Nemo, opposite

to the average macro F1 in this case the smaller model performs better on

identifying clauses with more than one unfairness.
1Respectively 36 clauses for 2 unfair categories and 5 clauses for 3

4.2 Comparison of prompt strategies 52

Model Technique Category F1
a ch cr j law ltd ter use pinc Micro-F1 Macro-F1

Support 1 16 17 2 2 5 27 10 7

Nemo-12B Pipeline-Long 0.0 0.85 0.69 1 1 1 0.79 0.82 0.44 0.76 0.66
Qwen-32B Pipeline-Long 0.0 0.77 0.62 1 1 0.33 0.67 0.89 0.92 0.69 0.62

Table 4.4: Comparison of Nemo-12B and Qwen32B on clauses containing
more than one unfairness.

4.2.3 Ensembling

Table 4.5 presents the experimental results for the ensembled models applied

to the Pipeline approach for both long and short examples. The meta-models

are constructed in two ways: 4 mix, which combines the four best models

overall, and 4 small, which selects the four best smaller models based on macro

F1. In the 4 mix ensemble, the models used are Gemma2-2B, Llama3, Nemo,

and Qwen, whereas in the 4 small ensemble, Phi3 replaces Qwen among the

selected models.

As expected, ensembling generally improves performance compared to

individual models, though the extent of improvement varies across different

ensemble strategies. The best-performing approach is the 4 mix meta-model

applied to the Pipeline-Long setting using both the hard and weighted vot-

ing schemes, achieving a macro F1 of 0.73. However, the improvement over

Qwen-32B (0.72 macro F1) is minimal, likely because the smaller models

contribute little to the final prediction, with Qwen dominating the ensemble’s

decision-making.

The advantage of ensembling becomes more apparent when considering

the 4 small meta-model, which achieves a macro F1 of 0.71 with the weighted

voting scheme on the Pipeline-Short approach. This result consistently out-

performs the best individual small model (Nemo-12B), highlighting the effec-

tiveness of ensembling in this setting.

Regarding the three voting strategies, the hard scheme performs best among

the smaller model ensembles, while the weighted scheme yields the best re-

sults for both 4 mix meta-models. However, the differences between the three

4.2 Comparison of prompt strategies 53

strategies are minor, with no single approach standing out as clearly superior.

That said, the hard voting scheme appears to be the most stable across all

tested settings.

Technique Models Ensemble Strategy Metrics
Micro-F1 Macro-F1 Macro Acc. Macro Rec.

Pipeline-Long 4 mix Softmax 0.94 0.72 0.79 0.66
Hard 0.94 0.73 0.80 0.69

Weighted 0.95 0.73 0.76 0.73

Pipeline-Short 4 mix Softmax 0.93 0.69 0.62 0.80
Hard 0.93 0.71 0.73 0.71

Weighted 0.94 0.72 0.72 0.75

Pipeline-Long 4 small Softmax 0.92 0.70 0.72 0.69
Hard 0.92 0.71 0.70 0.74

Weighted 0.92 0.67 0.60 0.78

Pipeline-Short 4 small Softmax 0.92 0.67 0.73 0.64
Hard 0.92 0.69 0.71 0.68

Weighted 0.92 0.66 0.61 0.75

Table 4.5: Results of the ensembled models for all the three modes over the
Pipeline approach. The 4 mix model consists of the 4 best model overall
(Gemma2-2B, Llama3, Nemo, Qwen) while 4 small comprehends the 4 best
models among the smaller ones (Gemma2-2B, Llama3, Nemo, Phi3).

Chapter 5

Conclusions

In this work, an extensive evaluation is performed on the capabilities of LLMs

compared to BERT-based models in detecting unfair clauses in ToS. Identify-

ing the optimal prompt for an LLM on a given task is a challenging problem,

since LLMs are sensitive to context and phrasing in ways that are often un-

predictable and difficult to fully explain [50, 24, 66]. Thus, several prompting

strategies are tested across 7 small LLMs, and two larger LLMs, against the

state-of-the-art transformer models. Small LLMs could provide an attractive

alternative to the supervised systems, including reduced dependency on exten-

sive training data, lower resource requirements, and a smaller environmental

footprint compared to larger models. Despite these benefits, the experiments

results show that small LLMs currently fall short of delivering satisfactory

performance in unfair clause detection. Among small models, Nemo-12B

emerges as the best-performing one, with a pipeline approach, that decom-

poses the task into category identification and unfairness assessment, yielding

the best results. However, no significant differences are observed between

short and long example prompts. A larger model, Qwen-32B, demonstrates

promising performance, with potential for further enhancement through fine-

tuning. Conversely, Codestral-22B shows poor results across all the several

approaches. Based on these findings, at this stage, BERT-based models remain

superior for detecting and classifying unfair clauses in consumer contracts. In

Conclusions 55

conclusion, the experimental results show that small LLMs face significant

limitations in processing the complex and varied language structures of legal

contracts even when provided with relevant examples.

Regarding the possible directions for future research, one important next

step is to test these models on multilingual datasets to see how well they adapt

across different legal systems and languages. Additionally, experimenting

with alternative prompting techniques, such as chain-of-thought prompting,

could improve both the interpretability and accuracy of the models. Another

key challenge is keeping up with changes in legal language and regulations.

Exploring continual learning approaches could help ensure that these models

remain reliable and effective as laws evolve over time.

Bibliography

[1] Àlex R. Atrio and Andrei Popescu-Belis. Small batch sizes improve

training of low-resource neuralMT.CoRR, abs/2203.10579, 2022. DOI:

10.48550/ARXIV.2203.10579. arXiv: 2203.10579. URL: https:

//doi.org/10.48550/arXiv.2203.10579.

[2] J. Baker. The dragon system–an overview. IEEETransactions on Acous-

tics, Speech, and Signal Processing, 23(1):24–29, 1975. DOI: 10.1109/

TASSP.1975.1162650.

[3] Alberto Barrón-Cedeño and Paolo Rosso. On automatic plagiarism de-

tection based on n-grams comparison. In Mohand Boughanem, Cather-

ine Berrut, Josiane Mothe, and Chantal Soule-Dupuy, editors,Advances

in Information Retrieval, pages 696–700, Berlin, Heidelberg. Springer

Berlin Heidelberg, 2009. ISBN: 978-3-642-00958-7.

[4] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jan-

vin. A neural probabilistic languagemodel. J.Mach. Learn. Res., 3(null):1137–

1155, March 2003. ISSN: 1532-4435.

[5] Aindrila Chakraborty, Ramesh Shankar, and James R. Marsden. An

empirical analysis of consumer-unfriendly e-commerce terms of ser-

vice agreements: implications for customer satisfaction and business

survival. Electronic Commerce Research and Applications, 53:101151,

2022. ISSN: 1567-4223. DOI: https : / / doi . org / 10 . 1016 / j .

elerap.2022.101151. URL: https://www.sciencedirect.com/

science/article/pii/S1567422322000357.

BIBLIOGRAPHY 57

[6] Ilias Chalkidis. Chatgpt may pass the bar exam soon, but has a long

way to go for the lexglue benchmark. CoRR, abs/2304.12202, 2023.

DOI: 10.48550/ARXIV.2304.12202. arXiv: 2304.12202. URL:

https://doi.org/10.48550/arXiv.2304.12202.

[7] Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael J. Bommarito II, Ion

Androutsopoulos, Daniel Martin Katz, and Nikolaos Aletras. Lexglue:

A benchmark dataset for legal language understanding in english. In

Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors,

Proceedings of the 60th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin,

Ireland, May 22-27, 2022, pages 4310–4330. Association for Compu-

tational Linguistics, 2022. DOI: 10.18653/V1/2022.ACL-LONG.297.

URL: https://doi.org/10.18653/v1/2022.acl-long.297.

[8] Daixuan Cheng, Shaohan Huang, and Furu Wei. Adapting large lan-

guagemodels to domains via reading comprehension, 2024. arXiv: 2309.

09530 [cs.CL]. URL: https://arxiv.org/abs/2309.09530.

[9] Noam Chomsky. Three models for the description of language. IRE

Trans. Inf. Theory, 2(3):113–124, 1956. DOI: 10.1109/TIT.1956.

1056813. URL: https://doi.org/10.1109/TIT.1956.1056813.

[10] Council directive 93/13/eec of 5 april 1993 on unfair terms in consumer

contracts. URL: https://eur-lex.europa.eu/eli/dir/1993/

13/oj/eng.

[11] Junyun Cui, Xiaoyu Shen, and Shaochun Wen. A survey on legal judg-

ment prediction: datasets, metrics, models and challenges. IEEE Ac-

cess, 11:102050–102071, 2023. DOI: 10.1109/ACCESS.2023.3317083.

URL: https://doi.org/10.1109/ACCESS.2023.3317083.

[12] Matthew Dahl, Varun Magesh, Mirac Suzgun, and Daniel E. Ho. Large

legal fictions: profiling legal hallucinations in large language models.

CoRR, abs/2401.01301, 2024. DOI: 10.48550/ARXIV.2401.01301.

BIBLIOGRAPHY 58

arXiv: 2401.01301. URL: https://doi.org/10.48550/arXiv.

2401.01301.

[13] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer.

Llm.int8(): 8-bit matrix multiplication for transformers at scale. CoRR,

abs/2208.07339, 2022. DOI: 10.48550/ARXIV.2208.07339. arXiv:

2208.07339. URL: https://doi.org/10.48550/arXiv.2208.

07339.

[14] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer.

Qlora: efficient finetuning of quantized llms. CoRR, abs/2305.14314,

2023. DOI: 10.48550/ARXIV.2305.14314. arXiv: 2305.14314.

URL: https://doi.org/10.48550/arXiv.2305.14314.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

BERT: pre-training of deep bidirectional transformers for language un-

derstanding. In Jill Burstein, Christy Doran, and Thamar Solorio, edi-

tors, Proceedings of the 2019 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Human Language

Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,

2019, Volume 1 (Long and Short Papers), pages 4171–4186. Associa-

tion for Computational Linguistics, 2019. DOI: 10.18653/V1/N19-

1423. URL: https://doi.org/10.18653/v1/n19-1423.

[16] Kasper Drawzeski, Andrea Galassi, Agnieszka Jablonowska, Francesca

Lagioia, Marco Lippi, Hans Wolfgang Micklitz, Giovanni Sartor, Gi-

acomo Tagiuri, and Paolo Torroni. A corpus for multilingual analy-

sis of online terms of service. In Nikolaos Aletras, Ion Androutsopou-

los, Leslie Barrett, Catalina Goanta, and Daniel Preotiuc-Pietro, ed-

itors, Proceedings of the Natural Legal Language Processing Work-

shop 2021, pages 1–8, Punta Cana, Dominican Republic. Association

for Computational Linguistics, November 2021. DOI: 10.18653/v1/

BIBLIOGRAPHY 59

2021.nllp-1.1. URL: https://aclanthology.org/2021.nllp-

1.1/.

[17] Abhimanyu Dubey and Abhinav Jauhri et al. The llama 3 herd of mod-

els. CoRR, abs/2407.21783, 2024. DOI: 10 . 48550 / ARXIV . 2407 .

21783. arXiv: 2407.21783. URL: https://doi.org/10.48550/

arXiv.2407.21783.

[18] Jeffrey L. Elman. Finding structure in time. Cogn. Sci., 14(2):179–211,

1990. DOI: 10.1207/S15516709COG1402_1. URL: https://doi.

org/10.1207/s15516709cog1402%5C_1.

[19] Eur-lex. URL: https://eur-lex.europa.eu/homepage.html.

[20] Yi Feng, Chuanyi Li, and Vincent Ng. Legal case retrieval: A survey of

the state of the art. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar,

editors, Proceedings of the 62nd Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), ACL 2024,

Bangkok, Thailand, August 11-16, 2024, pages 6472–6485. Association

for Computational Linguistics, 2024. DOI: 10.18653/V1/2024.ACL-

LONG.350. URL: https://doi.org/10.18653/v1/2024.acl-

long.350.

[21] Yi Feng, Chuanyi Li, and Vincent Ng. Legal judgment prediction: A

survey of the state of the art. In Luc De Raedt, editor,Proceedings of the

Thirty-First International Joint Conference on Artificial Intelligence,

IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages 5461–5469. ij-

cai.org, 2022. DOI: 10 . 24963 / IJCAI . 2022 / 765. URL: https :

//doi.org/10.24963/ijcai.2022/765.

[22] Andrea Galassi, Kasper Drazewski, Marco Lippi, and Paolo Torroni.

Cross-lingual annotation projection in legal texts. In Donia Scott, Nuria

Bel, and Chengqing Zong, editors, Proceedings of the 28th Interna-

tional Conference onComputational Linguistics, pages 915–926, Barcelona,

Spain (Online). International Committee on Computational Linguistics,

BIBLIOGRAPHY 60

December 2020. DOI: 10.18653/v1/2020.coling-main.79. URL:

https://aclanthology.org/2020.coling-main.79/.

[23] AndreaGalassi, Francesca Lagioia, Agnieszka Jabłonowska, and Marco

Lippi. Unfair clause detection in terms of service across multiple lan-

guages. Artificial Intelligence and Law, 2024. URL: https://api.

semanticscholar.org/CorpusID:268912855.

[24] Chengguang Gan and Tatsunori Mori. Sensitivity and robustness of

large language models to prompt template in japanese text classification

tasks. In PACLIC, pages 1–11. Association for Computational Linguis-

tics, 2023.

[25] Google DeepMind Gemma Team. Gemma 2: improving open language

models at a practical size. CoRR, abs/2408.00118, 2024. DOI: 10 .

48550/ARXIV.2408.00118. arXiv: 2408.00118. URL: https://

doi.org/10.48550/arXiv.2408.00118.

[26] Randy Goebel, Yoshinobu Kano, Mi-Young Kim, Juliano Rabelo, Ken

Satoh, and Masaharu Yoshioka. Overview and discussion of the compe-

tition on legal information, extraction/entailment (COLIEE) 2023. Rev.

Socionetwork Strateg., 18(1):27–47, 2024. DOI: 10.1007/S12626-

023-00152-0. URL: https://doi.org/10.1007/s12626-023-

00152-0.

[27] Neel Guha, Julian Nyarko, Daniel E. Ho, Christopher Ré, AdamChilton,

K.Aditya, Alex Chohlas-Wood,Austin Peters, Brandon Waldon, Daniel

N. Rockmore, Diego Zambrano, Dmitry Talisman, Enam Hoque, Faiz

Surani, Frank Fagan, Galit Sarfaty, Gregory M. Dickinson, Haggai Po-

rat, Jason Hegland, Jessica Wu, Joe Nudell, Joel Niklaus, John J. Nay,

Jonathan H. Choi, Kevin Tobia, Margaret Hagan, Megan Ma, Michael

A. Livermore, Nikon Rasumov-Rahe, Nils Holzenberger, Noam Kolt,

Peter Henderson, Sean Rehaag, SharadGoel, Shang Gao, Spencer Williams,

BIBLIOGRAPHY 61

Sunny Gandhi, Tom Zur, Varun Iyer, and Zehua Li. Legalbench: A col-

laboratively built benchmark for measuring legal reasoning in large lan-

guage models. In Alice Oh, Tristan Naumann, Amir Globerson, Kate

Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in Neural

Information Processing Systems 36: Annual Conference on Neural In-

formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA,

USA, December 10 - 16, 2023, 2023. URL: http://papers.nips.

cc/paper%5C_files/paper/2023/hash/89e44582fd28ddfea1ea4dcb0ebbf4b0-

Abstract-Datasets%5C_and%5C_Benchmarks.html.

[28] Ali Hakimi Parizi, Yuyang Liu, Prudhvi Nokku, Sina Gholamian, and

David Emerson. A comparative study of prompting strategies for legal

text classification. In Daniel Preo�iuc-Pietro, Catalina Goanta, Ilias

Chalkidis, Leslie Barrett, Gerasimos Spanakis, and Nikolaos Aletras,

editors, Proceedings of the Natural Legal Language Processing Work-

shop 2023, pages 258–265, Singapore. Association for Computational

Linguistics, December 2023. DOI: 10.18653/v1/2023.nllp-1.25.

URL: https://aclanthology.org/2023.nllp-1.25/.

[29] Peter Henderson, Mark S. Krass, Lucia Zheng, Neel Guha, Christopher

D. Manning, Dan Jurafsky, and Daniel E. Ho. Pile of law: learning re-

sponsible data filtering from the law and a 256gb open-source legal

dataset. CoRR, abs/2207.00220, 2022. DOI: 10.48550/ARXIV.2207.

00220. arXiv: 2207.00220. URL: https://doi.org/10.48550/

arXiv.2207.00220.

[30] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural Computation, 9(8):1735–1780, November 1997. ISSN: 0899-

7667. DOI: 10.1162/neco.1997.9.8.1735. eprint: https://

direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.

1997.9.8.1735.pdf. URL: https://doi.org/10.1162/neco.

1997.9.8.1735.

BIBLIOGRAPHY 62

[31] Quzhe Huang, Mingxu Tao, Zhenwei An, Chen Zhang, Cong Jiang,

Zhibin Chen, Zirui Wu, and Yansong Feng. Lawyer llama technical re-

port. CoRR, abs/2305.15062, 2023. DOI: 10.48550/ARXIV.2305.

15062. arXiv: 2305.15062. URL: https://doi.org/10.48550/

arXiv.2305.15062.

[32] BinyuanHui, Jian Yang, ZeyuCui, Jiaxi Yang, Dayiheng Liu, Lei Zhang,

Tianyu Liu, Jiajun Zhang, Bowen Yu, Kai Dang, An Yang, Rui Men, Fei

Huang, Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and Junyang

Lin. Qwen2.5-coder technical report.CoRR, abs/2409.12186, 2024. DOI:

10.48550/ARXIV.2409.12186. arXiv: 2409.12186. URL: https:

//doi.org/10.48550/arXiv.2409.12186.

[33] Agnieszka Jablonowska, Francesca Lagioia, Marco Lippi, Hans-Wolfgang

Micklitz, Giovanni Sartor, and Giacomo Tagiuri. Assessing the cross-

market generalization capability of the CLAUDETTE system. In Erich

Schweighofer, editor, Legal Knowledge and Information Systems - JU-

RIX 2021: The Thirty-fourth Annual Conference, Vilnius, Lithuania, 8-

10 December 2021, volume 346 of Frontiers in Artificial Intelligence

and Applications, pages 62–67. IOS Press, 2021. DOI: 10.3233/FAIA210318.

URL: https://doi.org/10.3233/FAIA210318.

[34] Deepali Jain, Malaya Dutta Borah, and Anupam Biswas. Summariza-

tion of legal documents: where are we now and the way forward. Com-

puter Science Review, 40:100388, 2021. ISSN: 1574-0137. DOI: https:

//doi.org/10.1016/j.cosrev.2021.100388. URL: https://

www.sciencedirect.com/science/article/pii/S1574013721000289.

[35] Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. What does BERT

learn about the structure of language? In Anna Korhonen, David Traum,

and Lluís Màrquez, editors, Proceedings of the 57th Annual Meeting

of the Association for Computational Linguistics, pages 3651–3657,

Florence, Italy. Association for Computational Linguistics, July 2019.

BIBLIOGRAPHY 63

DOI: 10.18653/v1/P19- 1356. URL: https://aclanthology.

org/P19-1356/.

[36] F. Jelinek. Self-organized language modeling for speech recognition.

In Readings in Speech Recognition. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1990, pages 450–506. ISBN: 1558601244.

[37] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bam-

ford, Devendra Singh Chaplot, Diego de Las Casas, Florian Bressand,

Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,

Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,

Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b.

CoRR, abs/2310.06825, 2023. DOI: 10.48550/ARXIV.2310.06825.

arXiv: 2310.06825. URL: https://doi.org/10.48550/arXiv.

2310.06825.

[38] Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A

survey of reinforcement learning from human feedback.CoRR, abs/2312.14925,

2023. DOI: 10.48550/ARXIV.2312.14925. arXiv: 2312.14925.

URL: https://doi.org/10.48550/arXiv.2312.14925.

[39] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-

tional Conference on Learning Representations, ICLR 2015, SanDiego,

CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL:

http://arxiv.org/abs/1412.6980.

[40] Francesca Lagioia, Agnieszka Jabłonowska, Rūta Liepiņa, and Kasper

Drazewski. Ai in search of unfairness in consumer contracts: the terms

of service landscape. Journal of Consumer Policy, 45:481–536, 2022.

URL: https://api.semanticscholar.org/CorpusID:250657710.

[41] Jinqi Lai, Wensheng Gan, Jiayang Wu, Zhenlian Qi, and Philip S. Yu.

Large language models in law: A survey. AI Open, 5:181–196, 2024.

BIBLIOGRAPHY 64

DOI: 10.1016/J.AIOPEN.2024.09.002. URL: https://doi.org/

10.1016/j.aiopen.2024.09.002.

[42] Harvard law school. Caselaw access project. URL: https://case.

law/.

[43] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Ab-

delrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettle-

moyer. BART: denoising sequence-to-sequence pre-training for natural

language generation, translation, and comprehension. In Dan Jurafsky,

Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceed-

ings of the 58th Annual Meeting of the Association for Computational

Linguistics, ACL 2020, Online, July 5-10, 2020, pages 7871–7880. As-

sociation for Computational Linguistics, 2020. DOI: 10.18653/V1/

2020.ACL-MAIN.703. URL: https://doi.org/10.18653/v1/

2020.acl-main.703.

[44] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein.

Visualizing the loss landscape of neural nets. In Samy Bengio, Hanna

M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi,

and Roman Garnett, editors, Advances in Neural Information Process-

ing Systems 31: Annual Conference on Neural Information Processing

Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,

pages 6391–6401, 2018. URL: https://proceedings.neurips.

cc / paper / 2018 / hash / a41b3bb3e6b050b6c9067c67f663b915 -

Abstract.html.

[45] Marco Lippi, Przemysław Pałka, GiuseppeContissa, Francesca Lagioia,

Hans-WolfgangMicklitz, Giovanni Sartor, and Paolo Torroni. Claudette:

an automated detector of potentially unfair clauses in online terms of

service.Artif. Intell. Law, 27(2):117–139, June 2019. ISSN: 0924-8463.

DOI: 10.1007/s10506-019-09243-2. URL: https://doi.org/

10.1007/s10506-019-09243-2.

BIBLIOGRAPHY 65

[46] Shuang Liu, Baiyang Zhao, Renjie Guo, Guozhu Meng, Fan Zhang,

and Meishan Zhang. Have you been properly notified? automatic com-

pliance analysis of privacy policy text with GDPR article 13. In Jure

Leskovec, Marko Grobelnik, Marc Najork, Jie Tang, and Leila Zia, ed-

itors, WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana,

Slovenia, April 19-23, 2021, pages 2154–2164. ACM / IW3C2, 2021.

DOI: 10.1145/3442381.3450022. URL: https://doi.org/10.

1145/3442381.3450022.

[47] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi

Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-

anov. Roberta: A robustly optimized BERTpretraining approach.CoRR,

abs/1907.11692, 2019. arXiv: 1907.11692. URL: http://arxiv.

org/abs/1907.11692.

[48] Zhu Liu, Cunliang Kong, Ying Liu, and Maosong Sun. Fantastic se-

mantics and where to find them: investigating which layers of genera-

tive llms reflect lexical semantics. In Lun-Wei Ku, Andre Martins, and

Vivek Srikumar, editors, Findings of the Association for Computational

Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August

11-16, 2024, pages 14551–14558. Association for Computational Lin-

guistics, 2024. DOI: 10.18653/V1/2024.FINDINGS-ACL.866. URL:

https://doi.org/10.18653/v1/2024.findings-acl.866.

[49] Antoine Louis, Gijs van Dijck, and Gerasimos Spanakis. Interpretable

long-form legal question answering with retrieval-augmented large lan-

guage models. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam

Natarajan, editors, Thirty-Eighth AAAI Conference on Artificial Intelli-

gence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications

of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Edu-

cational Advances in Artificial Intelligence, EAAI 2014, February 20-

27, 2024, Vancouver, Canada, pages 22266–22275. AAAI Press, 2024.

BIBLIOGRAPHY 66

DOI: 10.1609/AAAI.V38I20.30232. URL: https://doi.org/10.

1609/aaai.v38i20.30232.

[50] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus

Stenetorp. Fantastically ordered prompts and where to find them: over-

coming few-shot prompt order sensitivity. In ACL (1), pages 8086–

8098. Association for Computational Linguistics, 2022.

[51] Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat.

Estimating the carbon footprint of bloom, a 176b parameter language

model. J. Mach. Learn. Res., 24:253:1–253:15, 2023. URL: https:

//jmlr.org/papers/v24/23-0069.html.

[52] Alan Lyra, Carlos Barbosa, Herbert Salazar,Matheus Argôlo, Yuri Lima,

Rebeca Motta, and Jano Moreira de Souza. Automatic transcription sys-

tems: a game changer for court hearings. In Proceedings of the 16th

International Joint Conference on Knowledge Discovery, Knowledge

Engineering and Knowledge Management - KMIS, pages 163–174. IN-

STICC, SciTePress, 2024. ISBN: 978-989-758-716-0. DOI: 10.5220/

0012891400003838.

[53] José B. Mariño, Rafael E. Banchs, Josep M. Crego, Adrià de Gispert,

Patrik Lambert, José A. R. Fonollosa, and Marta R. Costa-jussà. N-

gram-basedmachine translation.Computational Linguistics, 32(4):527–

549, December 2006. ISSN: 0891-2017. DOI: 10.1162/coli.2006.

32.4.527. URL: https://doi.org/10.1162/coli.2006.32.4.

527.

[54] Andrey Andreyevich Markov. An example of statistical investigation of

the text eugene onegin concerning the connection of samples in chains.

Bulletin de l’Académie Impériale des Sciences de St.-Pétersbourg:153–

162, 1913.

BIBLIOGRAPHY 67

[55] Thomas J. Maronick. Do consumers read terms of service agreements

when installing software? - a two-study empirical analysis. Interna-

tional Journal of Business and Social Research, 4(6):137–145, 2014.

URL: https://EconPapers.repec.org/RePEc:mir:mirbus:v:

4:y:2014:i:6:p:137-145.

[56] Eric Martinez. Re-evaluating gpt-4’s bar exam performance. Artificial

Intelligence and Law, 2024. DOI: 10.1007/s10506-024-09396-9.

URL: https://doi.org/10.1007/s10506-024-09396-9.

[57] Aleecia M. McDonald and Lorrie Faith Cranor. The cost of reading

privacy policies. In 2009. URL: https://api.semanticscholar.

org/CorpusID:197633124.

[58] Hans Wolfgang Micklitz, Przemyslaw Palka, and Yannis Panagis. The

empire strikes back: digital control of unfair terms of online services.

Journal of Consumer Policy, 40:367–388, 2017. URL: https://api.

semanticscholar.org/CorpusID:157362840.

[59] Kensuke Nakamura, Stefano Soatto, and Byung-Woo Hong. Stochas-

tic batch size for adaptive regularization in deep network optimization.

Pattern Recognit., 129:108776, 2022. DOI: 10 . 1016 / J . PATCOG .

2022.108776. URL: https://doi.org/10.1016/j.patcog.

2022.108776.

[60] Ha-Thanh Nguyen, Randy Goebel, Francesca Toni, Kostas Stathis, and

Ken Satoh. Black-box analysis: gpts across time in legal textual en-

tailment task. CoRR, abs/2309.05501, 2023. DOI: 10.48550/ARXIV.

2309.05501. arXiv: 2309.05501. URL: https://doi.org/10.

48550/arXiv.2309.05501.

[61] Jonathan A. Obar and Anne Oeldorf-Hirsch. The biggest lie on the

internet: ignoring the privacy policies and terms of service policies

of social networking services. Information, Communication & Society,

23(1):128–147, 2020. DOI: 10 . 1080 / 1369118X . 2018 . 1486870.

BIBLIOGRAPHY 68

eprint: https://doi.org/10.1080/1369118X.2018.1486870.

URL: https://doi.org/10.1080/1369118X.2018.1486870.

[62] Alexandre Quemy and Robert Wrembel. Echr-od: on building an in-

tegrated open repository of legal documents for machine learning ap-

plications. Information Systems:101822, 2021. ISSN: 0306-4379. DOI:

https://doi.org/10.1016/j.is.2021.101822. URL: https://

www.sciencedirect.com/science/article/pii/S0306437921000636.

[63] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and

Ilya Sutskever. Language models are unsupervised multitask learners.

In 2019. URL: https://api.semanticscholar.org/CorpusID:

160025533.

[64] Federico Ruggeri, Francesca Lagioia, Marco Lippi, and Paolo Torroni.

Detecting and explaining unfairness in consumer contracts through mem-

ory networks. Artificial Intelligence and Law, 30:59–92, 2021. URL:

https://api.semanticscholar.org/CorpusID:235408382.

[65] David E. Rumelhart, Geoffrey E.Hinton, and Ronald J.Williams. Learn-

ing representations by back-propagating errors. Nature, 323:533–536,

1986. URL: https : / / api . semanticscholar . org / CorpusID :

205001834.

[66] Abel Salinas and FredMorstatter. The butterfly effect of altering prompts:

how small changes and jailbreaks affect large language model perfor-

mance. CoRR, abs/2401.03729, 2024.

[67] Sainbayar Sukhbaatar, arthur szlam arthur, Jason Weston, and Rob Fer-

gus. End-to-end memory networks. In C. Cortes, N. Lawrence, D. Lee,

M. Sugiyama, and R. Garnett, editors, Advances in Neural Information

Processing Systems, volume 28. Curran Associates, Inc., 2015. URL:

https://proceedings.neurips.cc/paper_files/paper/2015/

file/8fb21ee7a2207526da55a679f0332de2-Paper.pdf.

[68] Supreme court database. URL: http://scdb.wustl.edu/.

BIBLIOGRAPHY 69

[69] Chenhao Tang, Zhengliang Liu, Chong Ma, Zihao Wu, Yiwei Li, Wei

Liu, Dajiang Zhu, Quanzheng Li, Xiang Li, Tianming Liu, and Lei Fan.

Policygpt: automated analysis of privacy policies with large language

models. CoRR, abs/2309.10238, 2023. DOI: 10.48550/ARXIV.2309.

10238. arXiv: 2309.10238. URL: https://doi.org/10.48550/

arXiv.2309.10238.

[70] Microsoft Phi-3 team. Phi-3 technical report: A highly capable lan-

guagemodel locally on your phone.CoRR, abs/2404.14219, 2024. DOI:

10.48550/ARXIV.2404.14219. arXiv: 2404.14219. URL: https:

//doi.org/10.48550/arXiv.2404.14219.

[71] Mistral AI team. Codestral, 2024. URL: https://mistral.ai/news/

codestral/.

[72] Mistral AI team. Mistral nemo, 2024. URL: https://mistral.ai/

news/mistral-nemo/.

[73] Terms of service; didn’t read. URL: https://tosdr.org/en.

[74] Dietrich Trautmann. Large language model prompt chaining for long

legal document classification. CoRR, abs/2308.04138, 2023. DOI: 10.

48550/ARXIV.2308.04138. arXiv: 2308.04138. URL: https://

doi.org/10.48550/arXiv.2308.04138.

[75] Dietrich Trautmann, Natalia Ostapuk, Quentin Grail, Adrian Alan Pol,

GuglielmoBonifazi, Shang Gao, andMartin Gajek. Measuring the ground-

edness of legal question-answering systems. CoRR, abs/2410.08764,

2024. DOI: 10.48550/ARXIV.2410.08764. arXiv: 2410.08764.

URL: https://doi.org/10.48550/arXiv.2410.08764.

[76] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin

Altun, and Yoram Singer. Large margin methods for structured and in-

terdependent output variables. Journal of machine learning research,

6(9), 2005.

BIBLIOGRAPHY 70

[77] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention

is all you need. In Isabelle Guyon, Ulrike von Luxburg, Samy Ben-

gio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Ro-

man Garnett, editors, Advances in Neural Information Processing Sys-

tems 30: Annual Conference on Neural Information Processing Systems

2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008,

2017. URL: https://proceedings.neurips.cc/paper/2017/

hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[78] Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng,

Jie Zhou, and Xu Sun. Label words are anchors: an information flow

perspective for understanding in-context learning. In Houda Bouamor,

Juan Pino, and Kalika Bali, editors,Proceedings of the 2023Conference

on Empirical Methods in Natural Language Processing, EMNLP 2023,

Singapore, December 6-10, 2023, pages 9840–9855. Association for

Computational Linguistics, 2023. DOI: 10.18653/V1/2023.EMNLP-

MAIN.609. URL: https://doi.org/10.18653/v1/2023.emnlp-

main.609.

[79] Shomir Wilson, Florian Schaub, Aswarth Abhilash Dara, Frederick Liu,

Sushain Cherivirala, Pedro Giovanni Leon, Mads Schaarup Andersen,

Sebastian Zimmeck, Kanthashree Mysore Sathyendra, N. Cameron Rus-

sell, Thomas B. Norton, Eduard H. Hovy, Joel R. Reidenberg, and Nor-

man M. Sadeh. The creation and analysis of a website privacy policy

corpus. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin,

Germany, Volume 1: Long Papers. The Association for Computer Lin-

guistics, 2016. DOI: 10.18653/V1/P16-1126. URL: https://doi.

org/10.18653/v1/p16-1126.

BIBLIOGRAPHY 71

[80] Fangyi Yu, Lee Quartey, and Frank Schilder. Exploring the effective-

ness of prompt engineering for legal reasoning tasks. In Anna Rogers,

Jordan L. Boyd-Graber, and Naoaki Okazaki, editors, Findings of the

Association for Computational Linguistics: ACL 2023, Toronto, Canada,

July 9-14, 2023, pages 13582–13596. Association for Computational

Linguistics, 2023. DOI: 10.18653/V1/2023.FINDINGS-ACL.858.

URL: https://doi.org/10.18653/v1/2023.findings-acl.858.

