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Abstract

3D reconstruction is a fundamental task in computer vision that aims to gener-

ate accurate digital representations of real-world objects from 2D images. Tra-

ditional approaches, such as theDUSt3Rmethod, rely on RGB images as input

data, utilizing massive datasets to achieve significant results in reconstructing

a wide variety of objects without the need of camera parameters information.

Despite achieving excellent coverage of the original object’s surface, these

models still struggle to capture fine-level details. The proposed solution ad-

dress this weakness by using a different kind of data for training the architec-

ture. Normal maps are images that encode surface orientation vectors using

colors and this work explores their potential as an alternative to traditional

RGB-based datasets. The goal is to use the additional geometric information

contained in normal maps to improve the performance of theDUSt3Rmethod,

enhancing 3D reconstruction accuracy for small surface details. While syn-

thetic data is used for training, evaluation is conducted using real data, specif-

ically from the DiLiGenT-MV dataset. Results indicate that when the model

is trained with normal maps, the reconstruction accuracy of facial features,

robe folds and other small surface details improves while maintaining good

shape coverage of the entire object. These findings highlight the potential to

overcome the limitations of previous approaches by incorporating richer geo-

metric cues during model training. At the same time, opportunities for further

improvements remain, such as modifying the training objective introducing

normal-specific losses or using a combination of RGB and normal data for

training.



Chapter 1

Introduction

In the field of Computer Vision, the process of capturing the shape and struc-

ture of real objects through computational methods is referred to as 3D Re-

construction. Any related methodology involves interpreting 2D visual data,

such as images or videos, to create a digital representation of the 3D world.

These processes are of fundamental use in numerous applications, including

virtual or augmented reality, medical imaging, and robotics. The ultimate goal

of 3D reconstruction is to generate accurate and detailed models of the envi-

ronment, enabling machines to perceive and interact with the world in three

dimensions, much like humans do. Multi-View Stereo (MVS) is a computer

vision technique used to reconstruct a 3D model of an object or scene from

multiple 2D images taken from different viewpoints. It extends the concept of

stereo vision, which typically uses two cameras, to multiple images in order

to improve depth estimation and reconstruction accuracy. Traditional MVS

approaches have primarily focused on using RGB images of a scene and face

a key limitation: RGB images fail to accurately reconstruct fine level details

of a surface leading to model with good shape coverage but suboptimal recon-

struction accuracy. In recent years, with the availability of massive amounts

of data, a shift in focus from architecture structure to data quality and quantity

took place. It was noted that the quality and the amount of input data plays a

more critical role than the choice of architecture, suggesting that high-quality



Introduction 2

input can enhance 3D reconstruction results. A clear example of this can be

observed with the Dust3r method [13], presented during the 2024 Conference

on Computer Vision and Pattern Recognition. The most remarkable result of

this work is its ability to achieve good results in several 3D computer vision

tasks without introducing architectural innovation. The network was able to

show significant performance in the following tasks:

• Absolute pose estimation: the process of determining the position and

orientation (pose) of a camera in a global coordinate system.

• 2D-2D pixel matching: identifying and matching corresponding fea-

ture points between two or more images to establish geometric relation-

ships.

• Multi-view pose estimation: estimating the camera pose across multi-

ple views by analyzing correspondences between images.

• Monocular depth estimation: predicting scene depth from a single

image.

• Multi-view depth estimation: estimating depth by analyzing multiple

images of the same scene from different viewpoints.

• 3D reconstruction: the process of generating a 3D model of a scene or

object from 2D images, depth maps, or point clouds.

The contribution of DUSt3R is best described by the fact that the model was

able to reach a good performance in the above downstream tasks without be-

ing explicitly fine tuned for them. The fact that no architectural innovation

was introduced leads logically to focus on the data the model was trained on.

The training set was comprised of multiple publicly available datasets, such as

Co3d [10] andMegadepth [7] . This massive amount of data was able to help

the architecture to generalize on many different domains, making it suitable

for being used as a general purpose model. The aim of this dissertation is to
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explore the possibility of using a new synthetic dataset, composed by images

with a different information content than usual RGB ones, on the assumption

that a successful method like DUSt3R would be able to extract meaningful

information from it. The key idea is to leverage normal maps, a particular

kind of images that encodes information about surface orientation vectors,

to demonstrate that they contain information for 3D reconstruction and can

potentially improve model performance. Normal maps contains valuable in-

formation about the orientation of object’s surface, giving the model a chance

to increase its performance on small level details, solving the weaknesses of

previous approaches.



Chapter 2

Background

2.1 Camera Parameters

The transformation between a 3D scene and its 2D projection is governed by

two types of camera parameters, extrinsic and intrinsic. The intrinsic param-

eters define the internal characteristics of the camera, which relate the 3D

coordinates in camera frame to 2D pixel coordinates in the image domain.

In practice, an intrinsic matrix maps 3D points in the camera coordinate sys-

tem to 2D image points in pixel coordinates. The intrinsic matrix is typically

represented as K, and can be expressed as:

K =


fx γ cx

0 fy cy

0 0 1


where:

• fx and fy are the focal lengths (in pixels) along the x and y axes,

• cx and cy are the pixel coordinates of the principal point,

• γ is the skew coefficient.

The extrinsic parameters describe the transformation between the camera’s
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coordinate system and the world coordinate system. They determine the cam-

era’s position and orientation in 3D space. The camera’s extrinsic parameters

can be represented by a single 3 × 4 transformation matrix:

[R | T ] =


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3


where:

• R is a 3 × 3 rotation matrix that describes the orientation of the camera

relative to the world coordinate system.

• T is a 3 × 1 translation vector that specifies the position of the camera

in the world coordinate system.

Together, R and t define the rigid-body transformation from world coor-

dinates to camera coordinates. The transformation is expressed as:

Xc = RXw + T (2.1)

where Xc and Xw are the points in camera and world coordinates, respec-

tively. The overall transformation from world coordinates to image coordi-

nates can be expressed as:

x = K
[
R t

]
Xw (2.2)

2.2 Blender

Blender [8] is a popular computer modeling software widely used in both aca-

demic research and business for game development. In Blender, understand-

ing the concepts of global and local coordinate systems is essential for accu-

rately positioning objects, cameras, and vertices in 3D space. These reference
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systems define how coordinates and transformations are interpreted, and they

directly impact how vertices, objects, and rendered scenes are represented.

Figure 2.1: Object positioned in default Blender coordinate system

The global reference system (or world coordinate system) is the default

coordinate system in Blender. It serves as a universal origin for positioning

all objects, cameras, and lights in the 3D scene. It is comprised by the X, Y, Z

axis and when something, like a vertex, is inserted somewhere in the scene, its

position is definedwith respect to the global origin. The local reference system

(or object coordinate system) is specific to each individual object, including

cameras. It is defined relative to the object’s origin, which usually differs from

the global origin. Every object in Blender has its own local X , Y , and Z axes

that can be aligned, rotated, or translated independently of the global axes.

As an example, if a vertex is positioned at (1, 0, 0) in local coordinates the

actual location of it is one unit along the local X-axis of the object to which

the vertex belongs, regardless of where the object is in the global space.

2.3 Normal maps

A normal map is a textured representation of an object that encodes surface

normals using RGB colors. The color of the rendered surface encodes the

information relative to the orientation vectors of the surface itself. Aligning

normal maps images consists in ensuring that surface normal vectors are ori-

ented correctly and consistently across different views, which are the source

from where the normal maps are obtained. Alignment with respect to a certain
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coordinate system is reflected by a change in surface’s color. A normal map

rendered in the global coordinate system will be observed with the same sur-

face orientation vector from any viewpoint. For example, in the case of the left

side of a cube, captured from two different cameras, if normal values are ex-

pressed in the global coordinate system surfaces orientation vectors have the

same global direction and the observed surface color will remain the same. In

contrast, if we are observing the same cube from a different perspective, but

this time the normal values are expressed in local coordinate system, the ori-

entation of the surfaces vectors, and subsequently the color appearance of the

object, will differ between each local system. Given two local normal maps

of an object, obtained from two cameras with a different orientation and local

coordinate system, we will define the relative rotation and translation between

Camera 1 and global coordinate system as R1, t1, while the relative rotation

and translation for Camera 2 and the global coordinate system will be denoted

as R2 and t2. The transformation that allows us to obtain global coordinate

system values for each pixel is:

NGLB,i(u, v) = Ri · NLCL,i(u, v) + Ti (2.3)

Where:

• NGLB,i andNLCL,i are normal images rendered from the i-th camera with

shape (H,W,3).

• Ri is the rotation matrix for the i-th camera.

• Ti: is the translation term for the i-th camera.

The inverse process, transforming a global normal map into local one, can

be applied in the following way:

NLCL,i(u, v) = RT
i (NGLB,i(u, v) − Ti) (2.4)
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Figure 2.2: First view of a global normal map

Figure 2.3: Second view of a global normal map
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Figure 2.4: First view of a local normal map with identity rotation with respect
to the world coordinate system

Figure 2.5: Second view of a local normal map, the color values are not com-
pletely coherent with the first view due to the application of camera rotation.
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2.4 Point Clouds and Point Maps

A point cloud is a collection of points in a three-dimensional space. Each

point is defined by its 3D coordinates (x, y, z), which specify its precise po-

sition in space. Point clouds have an unstructured nature: the points are not

arranged in a regular grid or connected in any predefined way. This lack of

structure allows point clouds to capture detailed geometric information, such

as surface boundaries and fine features. The drawback is that processing a

point cloud can be a complex and more transformation needs to be applied

if a structured representation is needed. Furthermore, each point in the cloud

may carry additional attributes like color, intensity or surface normal vector

direction values. In contrast to point clouds, a point map is a structured rep-

resentation in which the 3D points are organized in correspondence with the

pixels of a 2D image. Each pixel in the point map is directly associated with

a specific 3D point, preserving the spatial layout of the original image while

keeping depth information. This structured mapping offers the advantage of

a direct Pixel To 3D point association.

2.5 3D Unprojection

In computer vision, 3D unprojection refers to the process of converting 2D

image coordinates back into 3D world coordinates using depth information.

Given a depth map D obtained from a camera with known intrinsic matrix,

rotation matrix and translation vector, K, R and T , for each pixel (u, v) the

corresponding 3D point in camera coordinates is computed as:

pcamera = D(u, v) · K−1 · [u, v, 1]T (2.5)
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whereD(u, v) is the depth value at that pixel location. The point is then trans-

formed into world coordinates by means of the following transformation:

pworld = RT (pcamera − T) (2.6)

Depth values at infinity are discarded, and the resulting 3D points are stored

in a structured point map that preserves spatial relationships. To obtain a point

cloud from it we can just simply discard the structure of the point map object,

flattening it in a 2D vector, where the first dimension represent the number of

points in the cloud and the second dimension contains the X,Y and Z coordi-

nates of each point.

2.6 Iterative Closest Point

Given a predicted and target point cloud, it is possible to employ the Iterative

Closest Point (ICP) algorithm [17] to align them. ICP is a method for rigidly

aligning two point clouds by iteratively minimizing the distance between cor-

responding points. Being P the predicted point cloud and Q the ground truth

one, the following steps are applied:

• Correspondence matching: Find the closest points between P and Q

using a nearest-neighbor search.

• Transformation estimation: Compute the optimal rigid transformation

(rotation and translation) thatminimizes the error betweenmatched points.

• Update: Apply the transformation to P and iterate until convergence.

ICP stops iterating when one of the following conditions is met:

• The change in alignment error falls below a predefined threshold.

• The maximum number of iterations is reached.
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Since point clouds generated from a 3D unprojection step may exhibit

small spatial variations, ICP ensures that comparisons between predicted and

ground truth point clouds are performed in a consistent reference frame.

This alignment step is crucial for obtaining meaningful reconstruction ac-

curacy values, especially in cases where the compared point clouds are ob-

tained through different procedures. For example, in the case of DUSt3R, the

output point maps can be transformed into a point cloud but may be generated

in an arbitrary coordinate system. Since the architecture does not receive any

information about the input coordinate system, ICP is necessary to align the

predicted point cloud with the reference ground truth ones.

2.7 Hemispherical sampling

Hemispherical sampling [2] is a technique used in computer graphics to dis-

tribute points uniformly over a hemisphere. In this case, it is applied to deter-

mine camera positions, in each view and scene, for ensuring uniform cover-

age across the upper hemisphere. The polar angle θ is determined using the

inverse cosine of the square root of a uniform random variable r, ensuring a

cosine-weighted distribution:

θ = arccos(
√

r), where r ∼ U(0, 1) (2.7)

The azimuthal angle ϕ is sampled uniformly from the interval [0, 2π]:

ϕ = U(0, 2π) (2.8)

The sampled angles are then converted into Cartesian coordinates to determine

the camera position. Given a camera perspective distance d, the coordinates

are computed as follows:
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
x

y

z

 = d


cos(θ) sin(ϕ)

cos(θ) cos(ϕ)

sin(θ)

 (2.9)

This approach ensures that the camera positions are distributed uniformly

over the upper hemisphere.

2.8 Euler angles

Euler angles [16] are a set of three parameters used to describe the orientation

of a rigid body in three-dimensional space. These angles represent a sequence

of rotations around the principal axes of a coordinate system. The convention

involves three consecutive rotations:

• Yaw: rotation around the vertical axis,

• Pitch: rotation around the horizontal axis,

• Roll: rotation around the axis perpendicular to the other two.



Chapter 3

Methodology

3.1 DUSt3R Architecture

DUSt3R (Dense and Unconstrained Stereo 3D Reconstruction) is an inno-

vative framework designed to reconstruct 3D models from arbitrary image

collections without requiring prior information about camera calibration or

viewpoint positions. Traditional MVS methods must rely on known camera

parameters to triangulate corresponding pixels in 3D space whileDUSt3R op-

erates directly on image content, estimating image depths and viewpoint poses

to generate complete 3D reconstructions in the first view coordinate system.

3.1.1 Overall Design

Before feeding the data to the network, it is first passed through a pre-processing

pipeline. All the data files are transformed into the correct format. Each data

sample is structured in a main folder composed of:

• Images subfolder: contains camera poses, the intrinsic matrix, as well

as images.

• Depths subfolder: with depth maps for each view.

• Masks subfolder: with masking information for each view.
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During this step data augmentation techniques are applied , such as ran-

domized change in resolution and RGB values. If necessary, images are re-

sized or cropped to match the expected resolution, ensuring uniformity across

training samples. Once preprocessed, the data is passed through a Transformer-

based feature extractor, leveraging CrocoNet [14]. The input is first encoded

and then processed by the decoder. Once the output is extracted from the de-

coder, it is fed into a regression head that functions as a downstream model.

There is the possibility to use already implemented heads, namely:

• Dense Prediction Transformer (DPT) [9]: a transformer-based head op-

timized for dense output predictions.

• Linear: a simpler, fully connected head used for direct point cloud pre-

dictions.

These heads are directly trained to output a point map that represents the

scene. The Linear head is simpler and allows the user to reduce memory

consumption due to the lower number of parameters, while the DPT head is

more powerful but much more computationally expensive. A series of post-

processing steps and normalization approaches can be performed on the out-

put. For a complete list of the features, refer to the DUSt3R paper.

3.1.2 New Input Data

Unlike the standardDUSt3R framework, which receive RGB images as input,

the version presented in this work receive instead normal maps. The dataset

structure remains the same as in the original pipeline, except that normal maps

replace RGB images in the images folder, and for each training sample we feed

two views into the network. This means that we have two normal maps, two

depth maps, two camera information files, and two masks. The first view

is both a local and global normal as it was rendered with a camera aligned

with the global coordinate system. In contrast, the second view normal map
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is purely local. During inference, the network predicts depth and structure

information in the first camera coordinate system, aligning the output point

clouds accordingly. Additionally, the network incorporates a global alignment

strategy to aggregate multiple output point maps into a common reference

frame. This allows us to train DUSt3R using only two views while enabling

it to process an arbitrary number of views during inference. This alignment

procedure facilitates the integration ofmultiple images into a unified 3Dmodel

while also recovering pixel correspondences and camera poses.

3.1.3 Training Objective

The training objective is based on a 3D regression loss as well as a confidence-

weighted loss, which is computed to refine predictions. The loss function is

designed to enforce accurate 3D reconstruction and is expressed as:

LRegr3D = ∥Ppred − Pgt∥2 (3.1)

where Ppred and Pgt represent the predicted and ground-truth 3D point

maps in the first view camera reference system, and the aim is to minimize

the Euclidean distance between them. The Confidence-Weighted Loss (Lγ),

instead, allows the model to place more importance on predictions with higher

confidence and less on those with lower confidence, helping it to focus on

more reliable areas of the input images. The actual implementation introduces

a confidence-based weighting mechanism that adjusts the contributions to the

total loss:

Lγ = LRegr3D · γ − α log(γ) (3.2)

where:

• LRegr3D is the per-pixel regression loss.

• γ represents the confidence map, where there is a value associated at
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each pixel.

• α is a hyperparameter that controls confidence weighting.

The total loss is obtained as the sum of each individual confidence loss for

each input view:

Lconf = Lγ,1 + Lγ,2 (3.3)

During training, the model also shows validation loss values, this is fun-

damental for understanding how the model is performing on an unseen set of

data. For doing this, considering the raw output prediction of the network is

unfeasible, because the scale and coordinate system are completely random-

ized by the DUSt3R inner processes. The authors address this problem by in-

troducing validation loss invariant to shifts and scale. The Regr3D_ShiftInv,

based on the 3D regression loss, removes sensitivity to depth shifts by nor-

malizing point depths relative to the median scene depth. Each point maps is

normalized as follows:

Pnormalized = (Px, Py, Pz − median(Pz)) (3.4)

where:

• P represents the point map.

• Pz is the depth (or z-coordinate) of the point map.

The Regr3D_ScaleInv loss, instead, normalizes point maps to a common

scale to prevent scale dependency:

Pnormalized = P
scale(P)

(3.5)

where:

• scale(P) calculates a scale factor for the 3D points.

These two losses are combined to obtain a final one invariant to both shift

and scale, allowing for a fair comparison during validation.
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3.2 MoGe

MoGe [12] is a method for estimating 3D geometry from a single image. Un-

like traditional approaches that first estimate depth and then infer camera in-

trinsics, MoGe directly predicts 3D point maps. MoGe’s training objective

includes a normal reconstruction function component, which is applied to the

output point map in order to obtain a predicted normal map. This is espe-

cially useful in the case of DUSt3R, as it allows leveraging the output point

maps to reconstruct the input normals and assess accuracy. The process of

computing normal vectors from the point map involves calculating local sur-

face differences and aggregating them using cross-product operations. Given

a point map P, the differences are computed for each pixel coordinate (u,v) as

follows:

up(u, v) = P (u − 1, v) − P (u, v) (3.6)

left(u, v) = P (u, v − 1) − P (u, v) (3.7)

down(u, v) = P (u + 1, v) − P (u, v) (3.8)

right(u, v) = P (u, v + 1) − P (u, v) (3.9)

Four normal vector components are predicted for each (u, v) coordinate:

[
up × left, left × down, down × right, right × up

]
(3.10)

The final direction at each pixel coordinate is obtained as the weighted

sum of these four components, given an input validity mask already present

in the training data. The resulting normals are constrained to the range [−1, 1]

by normalizing them. The computation of the positive direction follows the

convention of the OpenGL [5] coordinate system.
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Experimental Result

4.1 Data

4.1.1 Data Generation Setup

To create a large-scale training dataset a customBlender-based data generation

pipeline was used. The script was configured to produce around 50 000 image-

geometry pairs, ensuring a diverse set of samples for robust model training.

The rendering pipeline was set up to leverage GPU acceleration for efficient

processing. Specifically, a NVIDIA GeForce RTX 4090 GPU was used for

generating the data. To ensure realistic and diverse object rendering, high-

quality 3D models, materials, and environment maps were sourced from the

Adobe Stock 3D asset library [1]. The script dynamically loads these assets

from the source directory, retrieving random objects, assigning a material to

them as well as applying a random light source to the scene. Each generated

scene is composed of multiple randomized objects with varying positions, ori-

entations, and materials. For a complete overview of the generation parame-

ters refer to appendix A. As explained in Section 2.7, the camera positions

for rendering each view were obtained from the application of hemispherical

sampling on the upper hemisphere. Using Blender, a constraint was applied

to keep the camera facing the object in any position, ensuring that the object
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was always observed. In the figure 4.1, the Euler rotation angles associated

with each position can be observed. The skewing toward the center in all three

distributions is due to the fact that the first camera was always positioned on

the Z-axis, looking towards the global origin, resulting in a zero rotation for

all three pitch, yaw, and roll angles in half of the total camera poses. For each

scene only two views are generated, meaning two camera angles per sample.

Figure 4.1: Distribution of rotation for Pitch, Yaw and Roll angles

4.1.2 Structure of generated data

Figure 4.2: Random sample first view RGB and normal image

Figure 4.3: Random sample second view RGB and normal image
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Figure 4.4: Merged ground truth point clouds of the scene

The generated data consists of rendered images, depth maps, and corre-

sponding camera metadata, in particular we have:

• First normal: represents the normalmap obtained from the first view of

the scene. The first view is captured by a camera in Blender, perfectly

aligned with the global coordinate system. Since the camera’s local

reference system matches the world reference system, the normal map

values are effective both global and local.

• Second normal: represents a normal map captured from a second cam-

era at a different angle. The values in this normal map are oriented with

respect to the world reference system, which this time is not aligned

with the camera local one, making the values only global.

• First perspective projection matrix : contains the rotation matrix,

translation vector and intrinsic matrix. Since the first view camera is

aligned with the world reference system, this rotation matrix is simply

the identity matrix.

• Second perspective projection matrix : contains the rotation matrix,

translation vector and intrinsics matrix for the second view.

• RGB image of the first view

• RGB image of the second view
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• Depth map of the first view

• Depth map of the second view

4.1.3 Pre-processing

Three main pre-processing steps were applied to the generated data. The first

step involved converting the second view from global to local coordinates us-

ing the camera information obtained from Blender, as described in Section

2.3. The second step involved applying the procedure outlined in Section

3.1.1, with some minor modifications. Augmentation cropping was deacti-

vated as it introduced aliasing artifacts in the normal map. Additionally, the

color jittering process was disabled. While this augmentation technique im-

proves generalization for RGB images, it is less suitable for normal maps,

where color encodes crucial geometric information. Altering these values

could introduce inconsistencies during training, potentially impacting model

performance. The third and final adjustment was reducing the precision of

stored normal maps, changing from 16-bit to 8-bit precision. This modifica-

tion was introduced for two main reasons:

• Lower precision reduces memory consumption and speeds up training

time.

• Converting normal maps from TIFF to JPEG format was observed to

introduce artifacts when using higher bit depths.

4.2 Training Objective

Two different loss functions were used during training. In the first case the

confidence loss, as outlined in Section 3.1.3, is used. In the second case in-

stead a combined loss is utilized: the idea is to apply a MoGe-inspired nor-

mal reconstruction loss to reconstruct a predicted normal map from the output



4.2 Training Objective 23

point map of DUSt3R as well as the confidence loss of the original training.

The predicted normal map, obtained from the output point map of the model,

is compared to the input normal map using the Euclidean distance between

the corresponding normal vectors at each position. The reconstructed normal

maps are predicted in global space and compared within the same reference

system as the input. In the case of the first view, it can be both local and global,

whereas in the second view, it is only local. Therefore, the comparison of the

second predicted normal is performed after applying a change in the reference

system from global to local. The comparison can be expressed as:

LNormal = ∥Npred − Ngt∥2 (4.1)

where:

• Npred is the predicted normal map in the same reference frame as the

input one.

• Ngt is the ground truth input normal map.

This process is repeated for both views, ensuring the normal map predic-

tion is compared for each camera perspective. The final equation is:

Lfinal = LConf + λ · LNormal1 + λ · LNormal2 (4.2)

where:

• LConf is the confidence loss, as defined earlier.

• LNormal is the normal reconstruction loss, calculated as the Euclidean

distance between the predicted and ground truth normal maps.

• λ is a hyperparameter that balances the relative importance of the two

losses.
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The implementation allows for flexibility in choosing whether to use only

the confidence loss or the combined loss, as well as specifying the values of

the weight parameters.

4.3 Evaluation Dataset

A suitable candidate dataset for the evaluation of our version of DUSt3R was

identified as theDiLiGenT-MV dataset [6]. It extends the original single-view

DiLiGenT [11] dataset to a multi-view setting, consisting of images of five ob-

jects with complex Bidirectional Reflectance Distribution Functions (BRDFs)

[15], captured from 20 different viewpoints. The BRDF describes how light

is reflected at a surface, defining the relationship between the incident and

reflected light directions. It plays a crucial role in accurately modeling the

appearance of real-world materials. For each view, 96 calibrated point light

sources are used, ensuring controlled and consistent lighting conditions. Some

example of samples taken from the the dataset can be observed from figure 4.5

to 4.8.

Figure 4.5: Ground truth normal for a random view of the bear object
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Figure 4.6: Ground truth point cloud for a random view of the bear object

Figure 4.7: Ground truth point cloud for a random view of the reading object

Figure 4.8: Ground truth normal for a random view of the reading object
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Additionally, the dataset includes ground truth shape information, allow-

ing for a quantitative evaluation of 3D reconstruction accuracy. The decision

to use this dataset was guided by the necessity of having ground truth for both

normal maps and RGB images. This is because the baseline model, to which

the final model will be compared, was trained with RGB images, making it

unfair to feed it with normal maps directly. Furthermore, the dataset provides

camera calibration and pose information. Depth maps are not directly given

in the dataset, but they are essential for ground truth point cloud generation.

To obtain the missing depth maps, the original DiLiGenT-MV setup was re-

constructed in Blender, and depth images were rendered from each camera

viewpoint for every object. Using these depth images, 3D unprojection pro-

cedure described in Section 2.5 was applied to generate ground truth point

clouds for each view.

4.3.1 Data Preparation

The custom evaluation dataset, based on DiLiGenT files has a specific struc-

ture. Each sample in the evaluation dataset have the following elements:

• Depth maps for each view

• GT point cloud (a combination of individual point clouds from both

views)

• Normal maps for each view

• Foreground masks for each view

• RGB image for each view

For each scene, 8 samples are extracted from DiLiGenT. Each sample is

obtained with a pair of views with a difference of at most two angles. This

means that we can have view 1 and view 3 sample but not view 1 and view 4.
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4.4 Evaluation Procedure

The evaluation procedure involves comparing the originalDUSt3Rmodelwith

a modified version that incorporates the changes described in the experimental

setup. The two models are as follows:

• Baseline: the original DUSt3Rmodel, pretrained using the final check-

point from the official training. Specifically, theViTLarge_BaseDecoder_dpt

checkpoint from the official DUSt3R GitHub repository is used. This

baseline model takes RGB images from the evaluation dataset as input.

• Modified version (N-DUSt3R): a version of DUSt3R that includes the

modifications described in the experimental setup section. Instead of

RGB images, this version takes normal maps from each view as input.

Once the output pointmaps are generated by eachmodel, two post-processing

steps are applied. In the first step, the predicted point maps are converted into

point clouds and normalized based on the scale factor difference relative to

the ground truth. The scale factor is computed using an axis-aligned bound-

ing box, which is obtained using the corresponding function from the Open3D

[3] library. An axis-aligned bounding box is computed for each point cloud,

defined as the smallest rectangular box, aligned with the coordinate axes, that

fully encloses all the points in the cloud. The size of a bounding box refers

to its largest dimension, which could be its width, height, or depth. By com-

paring the largest dimension of the ground truth bounding box with that of

the predicted bounding box, a scale factor is determined. The predicted point

cloud values are then scaled based on the computed scale factor. In the sec-

ond step, the ICP algorithm, as described in Section 2.6, is applied to align

the predicted point clouds with the ground truth.

The resulting point clouds are compared usingChamferDistance [4] which

is a commonly used metric for measuring the similarity between two point
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clouds. Given two sets of points, P (predicted) and Q (ground truth), the

Chamfer Distance is defined as:

dChamfer(P, Q) =
∑
p∈P

min
q∈Q

∥p − q∥2
2 +

∑
q∈Q

min
p∈P

∥q − p∥2
2 (4.3)

This metric calculates the sum of squared distances from each point in

one set to the nearest point in the other set, providing a bidirectional measure

of similarity. A lower Chamfer Distance indicates a closer geometric match

between the two point clouds.

4.5 Experiments and Results

A series of experiments were carried out to explore potential research direc-

tions. These research directions aimed to investigate the quality of the model

output under different training conditions. They can be summarized as fol-

lows:

• Over fitting analysis

• Analysis on resolution influence

• Analysis on loss function choice

• Final training

For each training configuration refer to appendix B. The final training was

conducted using four NVidia H100 GPUs.

4.5.1 Overfitting Analysis

In this case, DUSt3R was trained and evaluated on a dataset containing only

one sample. The primary goal of this experiment was to confirm that the mod-

ifications to the model, the data loader, and the input data were correctly im-

plemented. If the model was unable to learn from even a single sample, it
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would indicate an underlying issue in the training pipeline. The overfitting

test was conducted on a simple cube, whose views can be observed in figure

4.9 and 4.10. Be noted that since the views don’t cover the full shape, only the

observed part can be reconstructed, leading to an incomplete cube. In figure

4.11 and 4.12, the reconstruction visual result can be observed, respectively

from the N-DUSt3R model and baseline DUSt3R.

Figure 4.9: First view of the cube

Figure 4.10: Second view of the cube
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Figure 4.11: Reconstructed cube from overfitted model

Figure 4.12: Reconstructed cube from baseline model
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4.5.2 Resolution Influence

This series of training experiments revealed that the target resolution enforced

by the data loader has a significant impact on the model’s performance, even

in the overfitting case. The target resolution should be divisible by 16, as

DUSt3R processes images in 16 × 16 patches. In general, higher image res-

olutions lead to increased memory consumption, longer training times, and

improved reconstruction accuracy. The objective was to determine the opti-

mal balance between these factors, and the final choice led to a 512 resolution.

The following images, from figure 4.13 to 4.15, illustrate the visual change in

output’s quality with respect to resolution.

Figure 4.13: Output quality of overfitted model with 224 x 224 input image
resolution



4.5 Experiments and Results 32

Figure 4.14: Output quality of overfitted model with 400 x 400 input image
resolution

Figure 4.15: Output quality of overfitted model with 512 x 512 input image
resolution
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4.5.3 Loss Function Choice

As it can be observed from figure 4.16 and 4.17, the combined loss function

convergence speed is around 4 times slower than the simple confidence loss.

This was observed in every subsequent training and rendered more difficult

the use of the combined loss due to increased training time.

Figure 4.16: Iteration convergence speed in the case of simple confidence loss
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Figure 4.17: Iteration convergence speed in the case of combined normal loss

However, another issue emerged during the final testing phase of themodel.

From 4.17 it can be noted that the normal loss decrease is extremely slow and

noisy: even if training appeared successful, during debugging of the loss func-

tion, a subtle inaccuracy was observed in the reconstruction of normal maps

from point maps. Ideally, using ground truth point maps should produce a

reconstruction nearly identical to the input image. However, when analyzing

the disparity between the predicted normals and the GT normals, it became

evident that the R and G channels behaved as expected, while the B channel

exhibited an unexpected disparity that could not be attributed to simple nu-

merical inaccuracies. An example of this behavior can be observed in figure

4.18, 4.19 and 4.20 The unclear effect of this phenomenon to the reconstruc-

tion result led to abandon the use of the combined loss for the final training.
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Figure 4.18: R channel disparity

Figure 4.19: G channel disparity

Figure 4.20: B channel disparity
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4.6 Final Training

Figure 4.21: Bear

Figure 4.22: Cow
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Figure 4.23: Reading

Figure 4.24: Pot

Figure 4.25: Buddha
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In this section, the results of the final training are presented. For the testing

images, refer to figures from 4.21 top 4.25. The baseline is a challenging

architecture to surpass, howeverN-DUSt3R achieves comparable performance

in most cases. Specifically, the baseline excels when handling complex shape

objects because it can incorporate prior knowledge derived from the extensive

variety of data it has seen during training. When the object features numerous

spikes and intricate details, the information content increases, allowing the

baseline to effectively reconstruct most views with high quality. However,

this advantage diminishes when applied to particularly smooth objects, such

as the cow model. The cow object is predominantly smooth, with minimal

details other than the head and upper back. As a result, the baseline output

quality is reduced when this informative details are missing. In contrast, N-

DUSt3R excels in this scenario, as it can leverage on the information content of

normal maps, which is significant even in the case of smooth surface because

of color encoding. By observing table 4.3 it can be seen that N-DUSt3R beats

the baseline in any situation. This can be clearly observed visually in image

4.26, 4.27 and 4.28.

Figure 4.26: Cow object ground truth for sample 2
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Figure 4.27: Baseline model prediction

Figure 4.28: N-DUSt3R model prediction



4.6 Final Training 40

It must be noted that N-DUSt3R was trained with synthetic data, and was

evaluated on real data making it clear that the training data was diverse enough

to make the model generalize. Additionally the model sacrifices some of the

encapsulated knowledge from RGB images, from which instead the baseline

benefits from, in order to learn new reconstruction patterns. Another impor-

tant observation is that the level of detail in the reconstruction is lower in the

baseline, even when the Chamfer distance is smaller than that of N-DUSt3R.

This is particularly evident in the case of Buddha, a highly complex object. By

examining the values in Sample 2 of the Buddha object table, we notice that

in theory the baseline appears to perform much better than N-DUSt3R, since

it has a lower Chamfer distance value. This example highlights a key limita-

tion of models trained on RGB input images, as they often struggle to capture

fine details effectively. Furthermore, it demonstrates that relying solely on

quantitative metrics such as Chamfer distance is insufficient. Visual inspec-

tion is also essential for accurately assessing performance. The results can be

observed in image 4.29, 4.30 and 4.31.

Figure 4.29: Buddha object ground truth for sample 2
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Figure 4.30: Baseline model prediction

Figure 4.31: N-DUSt3R model prediction
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The above behavior is repeated for any detailed view, such as in the ones

related to the reading object. The performance of both the baseline and N-

DUSt3Rmodel is reported for each scene and each sample in tables 4.1 to 4.5.

A star symbol next to a Chamfer distance value indicates that the predicted

reconstruction quality was already quite low, making it difficult for the ICP

algorithm to align it with the ground truth, further increasing the real Chamfer

distance with alignment error.

Exhibit Baseline N-DUSt3R
1 0.0451 0.0679
2 0.0858 0.1028
3 0.0824 0.1149
4 0.0961 0.0890
5 0.0917 0.0751
6 0.0647 0.0724
7 0.0552 0.0811
8 0.0332 0.0693

Table 4.1: Chamfer distance comparison for Bear object

Exhibit Baseline N-DUSt3R
1 0.0324 0.1042∗

2 0.0303 0.0621
3 0.0398 0.0715
4 0.0299 0.0578
5 0.1130 0.1077
6 0.0486 0.0685
7 0.0529 0.0565
8 0.0452 0.0435

Table 4.2: Chamfer distance comparison for Buddha object
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Exhibit Baseline N-DUSt3R
1 0.0569 0.0164
2 0.0287 0.0167
3 0.0362 0.0162
4 0.0656 0.0251
5 0.0340 0.0234
6 0.0849 0.0709
7 0.0470 0.0451
8 0.0249 0.0185

Table 4.3: Chamfer distance comparison for Cow object

Exhibit Baseline N-DUSt3R
1 0.0275 0.0339
2 0.1875 0.0637
3 0.0534 0.0888
4 0.1091∗ 0.0870
5 0.0573 0.0928
6 0.0758 0.1127∗

7 0.0628 0.2089∗

8 0.0367 0.1178∗

Table 4.4: Chamfer distance comparison for Pot2 object

Exhibit Baseline N-DUSt3R
1 0.1773∗ 0.0577
2 0.1078 0.1500
3 0.0503 0.1265∗

4 0.0441 0.0283
5 0.0391 0.0275
6 0.1452∗ 0.0377
7 0.1653∗ 0.0477
8 0.0839 0.0859

Table 4.5: Chamfer distance comparison for Reading object
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Conclusion

As expected, a versatile architecture like DUSt3R successfully integrated nor-

mal map information from the newly introduced synthetic dataset. This out-

come was anticipated, given that DUSt3R model size and training procedure

are well-documented and have not exhibited any fundamental flaws. The re-

sults highlight a strong baseline performance that remains challenging to sur-

pass with the modified model. However, the new model still achieves com-

petitive results, demonstrating its potential. There remains significant room

for future research and improvements. One key observation during training

was a slight residual shift error in the normal reconstruction loss. This is-

sue led to the eventual abandonment of the combined loss function, as its ef-

fects on training remained unclear. Addressing this problem in future work

could allow for the correct reintegration of the combined loss function into

theDUSt3R pipeline, potentially enhancing performance. Another avenue for

improvement involves expanding the training dataset. It is uncertain whether

integrating larger datasets, similar to the original DUSt3R training set, would

yield improved results. However, with proper preprocessing of these datasets,

it may be possible to extract the necessary normal information and enhance

the model’s generalization capabilities. Another possibility would be to use a

joint representation of RGB images and normal maps as input to the model,

enabling it to learn representations for both data modalities’ informational
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content simultaneously. Additionally, architectural modifications to DUSt3R

could be explored, leveraging advancements in deep learning architectures

that emerge each year. However, such modifications present challenges, as

their impact on training dynamics and overall performance would be uncer-

tain and require extensive experimentation.
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Rendering Parameters

• Number of views: 2 per scene

• Number of objects: 2 per scene

• Lens focal length range: 20mm - 60mm (randomized)

• Shading mode: flat shading

• Rendering device: NVIDIA GeForce RTX 4090

• Rendering engine: Cycles

• Image resolution: 512x512 pixels

• Scene lighting: environment-based illumination using HDRI maps

• Object rotation: random for each local axis

• Measurement unit: Metric

• Resolution: (512, 512)

• Frame rate: 24

• Start frame: 1

• End frame: 250
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• Camera type: Perspective

• Focal length: 25.0

• Sensor size: 35.0

• Field of view: 1.2214518785476685

• World background color: Color (r=0.0500, g=0.0500, b=0.0500)

• Output normal format: TIFF

• Output depth format: exr

• Light count: 1

• Material count: 2
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Training Configurations

B.1 Baseline DUSt3R

For the baseline, the official DUSt3R training hyperparameters and the avail-

able DPT checkpoint was used.

B.2 Overfitting DUSt3R with Confidence Loss

The training with confidence loss was performed using the following config-

uration:

• Model architecture: AsymmetricCroCo3DStereo

• Training criterion: ConfLoss(Regr3D(L21, norm_mode='avg_dis'),

alpha=0.2)

• Testing criterion: Regr3D_ScaleShiftInv(L21, gt_scale=True)

• Pretrained model: CroCo_V2_ViTLarge_BaseDecoder.pth

• Learning rate (lr): 0.0001

• Minimum learning rate (min_lr): 1e-06

• Warmup epochs: 0
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• Total epochs: 40

• Batch size: 1

• Accumulation iterations (accum_iter): 1

B.3 Overfitting DUSt3R with Combined Loss

The training with combined loss was performed using the following configu-

ration:

• Model architecture: AsymmetricCroCo3DStereo

• Training criterion: Normal_loss(ConfLoss(Regr3D(L21, norm_mode='avg_dis'),

alpha=0.2), PtNloss(L21), beta=0.7)

• Testing criterion: Regr3D_ScaleShiftInv(L21, gt_scale=True)

• Pretrained model: CroCo_V2_ViTLarge_BaseDecoder.pth

• Learning rate (lr): 0.0001

• Minimum learning rate (min_lr): 1e-06

• Warmup epochs: 0

• Total epochs: 40

• Batch size: 1

• Accumulation iterations (accum_iter): 1

B.4 Final Configuration

For the final run, based on insights from previous trials, the parameters were

slightly adjusted to achieve better performance. The final configuration is as

follows:
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• Model architecture: AsymmetricCroCo3DStereo

• Training criterion: ConfLoss(Regr3D(L21, norm_mode='avg_dis'),

alpha=0.2)

• Testing criterion: Regr3D_ScaleShiftInv(L21, gt_scale=True)

• Pretrained model: DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth

• Learning rate (lr): 0.0001

• Minimum learning rate (min_lr): 1e-06

• Warmup epochs: 10

• Total epochs: 1000

• Batch size: 4

• Accumulation iterations (accum_iter): 8
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