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Abstract

TCP/IP, the protocol suite powering the Internet, owes its name to its two foundational pro-

tocols: IP, which ensures each packet is routed over the network to its destination, and TCP,

which deals with end-to-end recovery, reordering, flow and congestion control.

The TCP/IP architecture, however, makes a few assumptions which do not apply to all net-

works. In particular, it presumes an end-to-end communication link with minimal disruption,

a sufficiently low error rate and small, consistent latency. Networks that cannot satisfy these

assumptions, and thus cannot support the TCP/IP architecture, are called challenged networks.

The first studied case of a network that exhibits these characteristics is that of InterPlanetary

Networks (IPN); however, similar conditions were later found in other scenarios, such as sen-

sor, satellite, underwater and military tactical networks, as well as any sufficiently isolated

environments, such as emergency networks.

The DTN architecture (Delay/Disruption-Tolerant Networking) derives from an extension of the

scope of Interplanetary Networking to all challenged networks. Its objective is exactly that of

relaxing the implicit requirements of the TCP/IP architecture in order to guarantee efficient

communication in such networks.

The DTN architecture is described in RFC 4838, which introduces a new protocol layer, the

Bundle Layer, located between Application and Transport. The protocol that operates at this

layer is the Bundle Protocol, described in detail in IRTF RFC 5050 (version 6) and recently

standardized by IETF in RFC 9171 (version 7); its role is to enable applications to transmit self-

contained messages (bundles) over a challenged network. While Internet protocols assume

that when a router receives a packet it is able to immediately send it to the next node, the

Bundle Protocol relies on a store-and-forward mechanism, where each bundle is stored locally

(normally in persistent memory) until the link to the next node becomes available.

The protocol used by a DTN node to transfer a bundle to the next DTN node (forming a single

DTN hop) is independent of those used on other hops. For example, DTN hops that traverse

Internet-like networks can use TCP, while DTN hops in deep space must use the LTP proto-

col, designed exactly for this purpose. The protocol stack used to send a bundle is called Con-
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vergence Layer in its entirety. The protocol concerned with sending bundles over a specific

convergence layer is called Convergence Layer Adapter (CLA). The TCP Convergence Layer

Adapter (TCPCL), which transfers bundles over a TCP connection, was described in 2014 in

RFC 7242 (version 3) and standardized in RFC 9174 (version 4).

In 2012, TCP’s perceived limitations prompted Google to design and develop a new transport

protocol called QUIC, meant to replace TCP in HTTP communications. Although the project

was initially controlled by Google, a QUIC working group was established in 2016, and the

protocol was later standardized by IETF in 2021, with the RFCs 8999–2002.

The objective of this thesis is to design QUICCL, a Convergence Layer Adapter that transfers

bundles over a QUIC connection, and develop an implementation for the Unibo-BP implemen-

tation of the Bundle Protocol. The QUICCL specification is partly based on that of TCPCLv4,

with due modifications, while the implementation makes use of Picoquic, a QUIC implemen-

tation widely used in research.

This document also includes insights into the development of a Wireshark dissector for the

newly designed protocol to support its functional evaluation.

This work has been carried out at the Institute of Communication and Navigation of the Ger-

man Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR) located in Oberp-

faffenhofen, Munich, in cooperation with the University of Bologna, in parallel with two com-

panion theses by fellow students Luca Andreetti and Valentino Cavallotti. The three theses

constitute a larger research project aimed at exploring the usefulness of QUIC in satellite net-

works and challenged networks in general.

All developed software was released as free software under the GNU GPLv3 license and is

freely downloadable from Git repositories.
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Chapter 1 Introduction

1.1 DTN

The Internet is a global system, conceived at the end of the 1970s, that allows a large number

of heterogeneous computer networks to communicate through the use of TCP/IP, a packet-

switching protocol suite named after its two most important protocols, TCP (Transmission

Control Protocol) and IP (Internet Protocol).

The Internet architecture makes a number of assumptions which cannot be satisfied in certain

environments, namely:

• that there is a continuous, uninterrupted path between source and destination for the

entire duration of the communication;

• that retransmissions based on end-to-end feedback are an effective means for repairing

errors;

• that end-to-end loss is relatively rare;

• that all routers and stations support TCP/IP;

• that applications need not worry about communication performance;

• that endpoint-based security mechanisms are sufficient for meeting most security con-

cerns;

• that packet switching is the most appropriate abstraction for interoperability and per-

formance;

• that selecting a single route between sender and receiver is sufficient for achieving ac-

ceptable communication performance.

Networks which do not satisfy at least one of these assumptions are called challenged networks.

The DTN architecture defines an infrastructure which relaxes most of these constraints in

order to allow communication in such networks, by adopting certain design principles:

• Variably sized, potentially long messages as a base abstraction, replacing streams (TCP)

and datagrams of limited size (UDP, IP);

• A new node identification syntax that supports a wide range of naming and addressing
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CHAPTER 1. INTRODUCTION

conventions in order to increase interoperability;

• Network nodes capable of long-term storage in order to allow communication between

entities which lack a continuous end-to-end path;

• Security measures that protect the infrastructure from unauthorized use by discarding

illegitimate traffic as quickly as possible;

• Greater ability for applications to control quality of service, delivery options and exten-

sion of data lifetimes, which allows the network to better fulfill their needs.

In order to follow these principles, the new Bundle Protocol (often shortened to BP) was intro-

duced, which occupies a new layer in the protocol stack called the Bundle Layer. The messages

exchanged by means of the Bundle Protocol are called bundles.

The Bundle Protocol was initially described in 2007 as version 6 (bpv6) by the Internet Research

Task Force [RFC5050] and later standardized in January 2022 as version 7 (bpv7 ) by the Inter-

net Engineering Task Force [RFC9171]. Version 6 was also standardized by the Consultative

Committee for Space Data Systems (CCSDS) in a Blue Book [CCSDS-734.2-B-1].

In the same way that the Internet Protocol is tasked with routing datagrams through multiple

LANs (Local Area Networks), and thus acts as an overlay on the Link and Physical layers of

each specific hop, the Bundle Protocol routes bundles throughmultiple networks, as an overlay

on the Transport, Network, Link and Physical layers that each of these networks operates on.

The stack that lies beneath the Bundle Layer in its entirety is called Convergence Layer.

A DTN hop is therefore defined as the macro-hop between two DTN nodes, which might in-

clude multiple lower-level (e.g. IP) hops, depending on the nature of the Convergence Layer

in use for that specific DTN hop.

As the Bundle Layer is meant to operate on top of multiple Convergence Layers, another

protocol is added between the Bundle Layer and the Convergence Layer, called theConvergence

Layer Adapter (CLA), the purpose of which is to deliver bundles to the next DTN hop by

using the corresponding Convergence Layer. Each Convergence Layer is required to have a

Convergence Layer Adapter implemented for it in order to be used with the Bundle Protocol.
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Figure 1.1: Example of operation of the Bundle Protocol over different Convergence Layers in different
DTN hops.

Some existing, standardized Convergence Layer Adapters are:

• the TCPCLA, for the typical TCP/IP stack, useful on non-challenged DTN hops, such as

those between two nodes on the same planet;

• the LTPCLA, for the Licklider Transmission Protocol, aimed at reliable transmission in

interplanetary space.

The usefulness of this architecture lies in the fact that, since challenged networks are usually

characterized by intermittent links, a store-and-forward approach is necessary, in which each

node along the route is capable of keeping bundles in (preferably persistent) memory for long

periods of time, until a link to the next node is available. For example, one may want to

exchange a bundle between two nodes on two separate planets employing two relays, such as

two satellites, each orbiting one of the two planets; due to the movement of the planets and the

satellites, it is not always possible to establish an uninterrupted path between the endpoints.

Thanks to the DTN architecture, each node can store the bundle until a link to the next node

is available, instead of waiting for an end-to-end path that may not ever exist.

Nodes in the DTN network are identified by DTN Node Identifiers (Endpoint Identifiers in Bun-

dle Protocol version 6), which follow the URI (Uniform Resource Identifier) syntax [RFC3986].

Two different formats have emerged for these identifiers:

• The ipn schema (supported by NASA’s Jet Propulsion Laboratory) uses a pair of integers,

3
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the first of which (node number) identifies the node the application resides on and the

second of which (service number) identifies the application within the node (example:

ipn:6.2000). Including a service number is mandatory: in order to indicate the node’s

Bundle Protocol Agent (i.e. the daemon that implements the bundle protocol), a service

number of 0 is used. There is currently a proposed update to the IPN schema [Draft-

IPN-update] which would introduce new features, including:

– a null node ID to be interpreted as “nowhere” (ipn:0.0);

– a node number of 232 − 1 to identify the local node, which can alternatively be

shortened as ! in the textual representation (e.g. ipn:!.2000);

– an optional allocator prefix to identify the organization that assigned the node

number (e.g. ipn:12.6.2000), which defaults to 0, i.e. IANA, when unspecified;

• The DTN schema (supported by other entities) uses a string (node name) to identify

the node and another string (demux token) to identify the application (example: dtn://

machine-26/dtnperf); in this case, the demux token can be omitted to refer to the Bun-

dle Protocol Agent.

1.2 Unibo-DTN and Unibo-BP

Unibo-DTN is an implementation of the DTN architecture by the University of Bologna, orig-

inally developed to facilitate DTN research without having to rely on third-party projects

[Unibo-DTN]. It includes the core project Unibo-BP [Unibo-BP] (an implementation of Bundle

Protocol version 7), Unibo-CGR (an implementation of Contact Graph Routing) andUnibo-LTP

(an implementation of the Licklider Transport Protocol, to be used as a convergence layer).

Unibo-BP includes a TCP Convergence Layer version 3 implementation and some basic ap-

plications, such as unibo-bp-ping, unibo-bp-echo, unibo-bp-send and unibo-bp-sink. It is

written in C++ 20, but it offers a C public API, and it is licensed under the GNU GPLv3 license.

The Unibo-BP ecosystem is represented in Figure 1.2.
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Figure 1.2: The Unibo-BP ecosystem.

Unibo-BP is structured as a set of separate processes that communicate by means of Unix

sockets. This modular design enables the addition of new modules without having to alter

the core Unibo-BP implementation. One example of this is Unibo-LTP, which is a completely

separate project that was originally meant for ION (another implementation of the Bundle

Protocol, by the NASA Jet Propulsion Laboratory).

Unibo-BP is composed by several libraries (see Figure 1.3):

• BP contains the core implementation of BPv7;

• IPC and Client/Server contain auxiliary features for Inter-Process Communication via

Unix stream sockets;

• CLA contains a client/server implementation useful for the addition of new convergence

layer adapters, together with the included TCPCLA implementation;

• API contains the public API of Unibo-BP, which is composed of C wrappers of internal

C++ functions, to be used by external programs;

• IO, storage, time and math are additional utility libraries.
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Figure 1.3: The Unibo-BP libraries.

Some peculiarities of Unibo-BP are the following:

• It supports remote administration: a client can send commands to the Bundle Protocol

Agent in the form of bundles. Other popular BP implementations, such as DTNME

and µD3TN, offer a similar feature through the use of TCP connections, which is more

limited in that it requires the client and the server to reside in the same well-connected

(non-challenged) portion of the network.

• Its local configuration is done by means of IPC commands rather than configuration

files; an administration program, called unibo-bp-admin, is included to issue them. The

result is that configuration is not done in a traditional configuration file, but rather in a

shell script, which is much more powerful, and additional configuration commands can

be issued at any time after the initial launch.

• It is able to simulate multiple DTN nodes on a single machine, without the need to

use virtual machines; this can be particularly useful for development and evaluation

purposes.

• It is supported by the Unified API, another project by the University of Bologna with

the aim to provide a single API for the most important DTN implementations (including

ION, DTNME, µD3TN, IBR-DTN and Unibo-BP) [UnifiedAPI]. This means that a BP

applicationwritten for the UnifiedAPI can be compiled toworkwith any of these Bundle

Protocol implementations.
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1.3 QUIC

QUIC is a connection-oriented transport protocol initially introduced by Google in 2012 as a

replacement for TCP with the goal of improving the performance of HTTP applications. Later,

in 2021, it was standardized by IETF in [RFC9000], devoted to the protocol itself, [RFC9001],

devoted to the integrated TLS security mechanisms, and [RFC9002], related to congestion

control. QUIC is designed to be used on top of UDP,mainly to allow compatibilitywith existing

network infrastructure (e.g. routers and firewalls), which may block IP datagrams that carry

unrecognized transport protocol data, and to simplify the use of existing user space operating

system APIs, which are better equipped to handle TCP and UDP than raw IP sockets.

From the Application Layer’s point of view, the main peculiarity of QUIC compared to TCP

is the availability of multiple data streams per connection. While same-order delivery is pre-

served within each stream, data sent in separate streams are not necessarily delivered in or-

der. In HTTP’s case, the main advantage of this feature is its effectiveness against head-of-line

blocking, which occurs when one or more HTTP requests received out of order are forced to

wait for the delivery of earlier requests before being handed over to the application. Losses

may aggravate the issue even further. The only solution that can be employed with TCP is

the use of multiple connections between the same two nodes, which is however not ideal due

to the limited number of connections available to the browser and due to the fairness prob-

lem that would cause: multiple TCP connections would be influenced by separate congestion

control parameters and thus take up the network’s fair share multiple times.

Among the advantages over TCP offered by QUIC are also the following:

• Establishing a TCP connection that employs Transport Layer Security involves a typical

TCP three-way handshake followed by a TLS handshake, resulting in a delay of three

round-trip times before any application data can be sent. QUIC, on the other hand, em-

beds the TLS handshake in the transport handshake, allowing data to be sent after as

little as one round-trip. In addition, QUIC allows the applications to send data immedi-

ately during the handshake itself, provided the client possesses a session ticket issued

by the server during a previous QUIC connection between the two. This feature is com-

monly referred to as 0-RTT.
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• In TCP, network switching events (such as a mobile device moving from a mobile net-

work to a WiFi hotspot) are handled very inefficiently: since each connection is iden-

tified by the IP address and port of each endpoint, they all become invalid and have

to time out before the application can manually react and establish new connections.

QUIC, on the other hand, identifies connections through IDs that uniquely identify a

specific connection independently from the network path, allowing it to perform con-

nection migrations between different paths.

QUIC is currently implemented in all major web browsers, including all Chromium-based

browsers, Mozilla Firefox and Apple Safari, and on numerous web servers and load balancers.

Though QUIC’s usage has gone hand-in-hand with HTTP/3 since its conception, it is designed

as a general-purpose transport protocol and its applications extend beyond HTTP. These in-

clude secure VPN tunneling, voice over IP, media streaming and gaming.

One particularly relevant application for the purposes of this thesis is that of satellite commu-

nication:

• GEO (Geostationary Earth Orbit) satellites orbit at an altitude of 35 786 km, maintaining

a fixed position relative to the Earth’s surface by matching the planet’s rotational pe-

riod; this ensures continuous coverage and minimal link intermittency. However, due to

the high altitude, GEO links are often characterized by a high RTT latency (around 600

milliseconds). TCP’s three-way handshake can often represent a non-negligible perfor-

mance overhead in this situation, especially for short-lived connections and when TLS

is also required. QUIC’s single transport/security handshake model and 0-RTT data can

greatly reduce the impact of this limitation.

• LEO (Low Earth Orbit) satellites orbit at much lower altitudes (500 to 2000 km), resulting

in a considerably smaller RTT latency (around 40–50 milliseconds). Their low altitude,

however, forces them to orbit atmuch higher speeds than the Earth’s rotation; as a result,

LEO links are often characterized by high intermittency. The network migration feature

of QUIC can partly mitigate the issue, because a recipient that is no longer accessible

over a particular LEO network might become accessible over a different one.

It is worth mentioning that QUIC congestion control is designed to be independent of the main

8
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protocol; in other words, although RFC 9002 presents a possible congestion control algorithm

for QUIC based on TCP New Reno, its adoption is not mandatory, thus paving the way to a

possible adoption of other solutions derived from TCP congestion control algorithms (Cubic,

BBR etc.). Given its good performance on GEO links, in a companion thesis a modified version

of TCP Hybla has been developed for QUIC [Cavallotti-2025]. However, it is expected that

solutions based on QUIC may not be as effective as those provided by DTN in the presence

of channel disruptions, as QUIC, when used end-to-end, i.e. in a TCP/IP architecture, cannot

take advantage of the store-and-forward approach of the DTN architecture. That said, it is

also true that QUIC could be integrated in a DTN architecture if used as a convergence layer,

which is actually what was done in this thesis, as will be shown later.

1.4 Picoquic

Picoquic is a minimalist open-source implementation of the QUIC protocol licensed under

the MIT license [Picoquic]. It was developed by Christian Huitema in order to be able to

participate more effectively in the standardization of QUIC, and therefore it closely follows

the IETF specification [Picoquic-Huitema]. It also includes several extensions to QUIC, such

as multipath, i.e. the ability to utilize multiple network paths simultaneously for a single

connection, and a minimal HTTP/3 implementation. It is written in C, but it also provides

Rust bindings, and it uses the TLS implementation provided by a separate project called picotls,

which in turn depends on OpenSSL cryptographic functions.

The C API offered by Picoquic is asynchronous: instead of providing a socket-like interface,

it is based on an application-provided stream data callback. While TCP implementations typ-

ically buffer inbound data and let the application receive such data on-demand by means of

a read or receive function, Picoquic may call the stream data callback at any time to inform

about new data. In the same way, TCP implementations typically buffer outbound data and

let the application write on the buffer by means of a write or send function, while Picoquic

calls the stream data callback to request new data to send. This approach is advantageous for

certain types of applications, especially those that send and receive unstructured streams of

data (such as files), or for performance analysis; however, implementing a more socket-like

(blocking) interface is convenient in other cases, such as in application protocols with struc-

9
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tured packets, which cannot easily be split at any given offset while retaining some meaning

and therefore require buffering.

Picoquic can operate in two modes:

• In foreground mode, the application directly calls the function picoquic_packet_loop

– or a variation of it – which enters the Picoquic packet loop, effectively surrendering

control of the current thread to Picoquic. This is useful:

– for simple applications which only need to react to Picoquic events without per-

forming any other operations in parallel;

– for applications which manually create the threads they wish Picoquic to use.

• In background mode, the application calls the function picoquic_start_network_

thread, which starts a separate network thread fully managed by Picoquic. Inside this

thread, Picoquic will call picoquic_packet_loop.

Both in foreground and background mode, a function pointer to a packet loop callback must be

provided by the application. This will be called when certain low-level, connection-indepen-

dent events occur, such as when the Picoquic packet loop is fully started and active, or after a

UDP send/receive. This callback is separate from the stream data callback described above,

which is connection specific – rather than packet loop specific – and is called when higher-

level events occur.

It is important to note that Picoquic is not thread-safe: Picoquic functions must not be called

outside of the Picoquic-managed thread. As a result, any operation that influences the packet

loop can only be executed from the packet loop callback or from the stream data callback

when they are called by Picoquic. In background mode, it is possible to explicitly trigger a

call of the packet loop callback from outside the thread through the function picoquic_wake_

up_network_thread. In foreground mode, a mechanism to do so does not exist, hence the

background mode is more advantageous for most applications.

Picoquic also includes a few command-line programs, such as picoquicdemo, a performance

evaluation tool like Iperf [Iperf], albeit slightly more limited, and picoquic_sample, a file

transfer application provided as an example to show the use of the C interface of Picoquic.

Picoquic is also capable of producing qlog binary files [Draft-qlog] which record the full QUIC
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activity in a particular connection. These files can be analyzed and graphically rendered by

external applications, such as qvis [qvis], which is an invaluable advantage of Picoquic for

functionality and performance evaluation.

1.5 Scope of this thesis

The objective of this thesis is to develop a QUIC Convergence Layer Adapter for Unibo-BP,

making use of Picoquic as the underlying QUIC implementation. This is a necessary step

towards the study of QUIC suitability in DTN networks, which will start with this thesis.

QUICCL has been implemented as a part of the Unibo-BP core, like TCPCLv3, rather than as

a separate module, like LTP. This allows QUICCL to make use of Unibo-BP’s internal C++

IPC libraries, instead of having to use the public C API. QUICCL is designed after the Unibo-

BP implementation of TCPCLv3, as their role is similar. However, as QUICCL introduces a

dependency on an external project, Picoquic, the compilation of QUICCL can be disabled, if

preferred by the user.

In addition to the QUICCL implementation itself, this thesis also covers the implementation

of a QUICCL dissector for the Wireshark packet analyzer, which is especially useful for de-

bugging purposes.

This thesis has been developed in parallel with two other companion theses by fellow students

Valentino Cavallotti and Luca Andreetti [Cavallotti-2025; Andreetti-2025]. The three theses,

all developed at the German Aerospace Center (DLR) in cooperation with the University of

Bologna, compose a larger project with the ambitious goal of researching the possible usage of

QUIC in satellite and interplanetary networks, either “alone”, i.e. end-to-end in an IP network,

or as a convergence layer in a DTN network:

• Cavallotti’s thesis consists in the implementation of TCP’s Hybla congestion control

algorithm within Picoquic. Hybla was first designed in 2004 by Prof. Carlo Caini and

Dr. Rosario Firrincieli to provide a possible solution to the RTT unfairness problem,

which greatly penalizes connections with large delays, such as those via a GEO satellite

[Caini-2004].

• Andreetti’s thesis consists in the development of an advanced version of picoquicdemo,

11
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in analyzing the performance of the other two projects and in offering support to them

(all three have Picoquic in common).

The rest of this thesis is organized as follows:

• Chapter 2 describes the two currently standardized versions of the TCP Convergence

Layer Adapter (3 and 4), which have been used as a base for the definition of the QUIC

Convergence Layer Adapter;

• Chapter 3 describes the QUIC Convergence Layer Adapter protocol in detail and how it

varies from the TCPCL;

• Chapter 4 describes the QUICCL implementation that has been developed for Unibo-BP;

• Chapter 5 describes the environments used to test the functionality of the QUICCL and

the implementation of its dissector for Wireshark and briefly touches on the perfor-

mance analysis results;

• Chapter 6 is devoted to conclusions.
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Chapter 2 The TCP Convergence Layer Adapter

As the design of the QUIC Convergence Layer Adapter is largely inspired by that of its TCP

equivalent, it is useful to examine the latter before moving on to the former in the next chapter.

The TCP Convergence Layer Adapter, usually indicated as TCPCL (by omitting the A for

Adapter) allows TCP to be used as a transport protocol below the Bundle Protocol layer. As

the end-to-end role of the Transport Layer is redefined by the DTN architecture, the TCP con-

nection managed by the TCPCL links two adjacent DTN nodes (a DTN hop) instead of the

endpoints as in Internet. TCP can effectively be used between DTN nodes that belong to a

non-challenged subset of the interplanetary network, such as the Internet on Earth or any

TCP/IP network on different planets. Note that in both cases many non-DTN IP nodes can

exist between the two TCP endpoints, i.e. inside one DTN hop.

The TCPCL protocol exists in two versions:

• TCPCL version 3, defined in 2014 by the Internet Research Task Force [RFC7242] with

BPv6 in mind; it provides basic features for transferring bundles between two nodes;

• TCPCL version 4, defined in 2022 by the Internet Engineering Task Force [RFC9174]

with BPv7 in mind; it resolves some implementation issues present in version 3, in

addition to supporting optional authentication and encryption via TLS and providing

extensibility mechanisms.

Since the two versions are incompatible, and as only few Bundle Protocol implementations

supported version 4 when Unibo-BP was developed in 2023, its author decided to favor com-

patibility by preferring version 3 and leaving the possible development of version 4 to future

theses. In brief, at present the only version supported by Unibo-BP is version 3.

Both versions of the TCPCL are correctly dissected byWireshark by the same dissector, which

distinguishes between the two versions.
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2.1 SDNV and CBOR

SDNV (Self-Delimiting Numeric Values), first defined in 2007 together with the Bundle Proto-

col in [RFC5050], and later clarified in [RFC6256], is an encoding method capable of represent-

ing arbitrary-length unsigned integers or bit strings, thus overcoming the limitations posed by

traditional fixed-length fields in network protocols. Two examples where such limitations had

negative consequences are the IPv4 Address Length and the TCP Advertised Receive Window.

Both were worked around afterwards, but the solutions adopted (in particular NAT and IPv6

for the former) still have considerable drawbacks.

An SDNV-encoded unsigned integer consists of a series of one or more bytes, where each byte

can be broken down as follows:

• The most significant bit, which is zero if this is the last byte of the sequence, or one

otherwise;

• The remaining seven bits, which represent actual number data.

For example, all numbers from 0 to 127 are represented with one byte (127 → 01111111), as

usual, while the number 128 is represented as 10000001 00000000.

SDNV is used to represent all arbitrary-length integer numbers in version 6 of the Bundle

Protocol and in most related protocols, including TCPCLv3.

Version 7 of the Bundle Protocol replaced SDNVwith CBOR (Concise Binary Object Represen-

tation) [RFC8949], a more general-purpose format based on the JSON data model [RFC8259];

it can represent objects of any complexity, such as arrays, key-value maps or floating point

numbers.

TCPCLv4 abandoned SDNV as well, but instead of adopting CBOR it simply replaced all uses

of SDNV with fixed-length integers. This solution is motivated by the fact that there is no

integer field in TCPCL that would realistically ever require an arbitrarily large size.

2.2 TCPCLv3

This section describes version 3 of the TCPCL [RFC7242] in more detail.
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The protocol initially requires the following procedure to establish a TCPCL session:

• One node (the TCPCL client) establishes a TCP connection with the other (the TCPCL

server);

• Each node sends a contact header to the other, which is used to negotiate parameters

for the TCPCL session with the peer and to exchange DTN EIDs (Endpoint Identifiers),

which are handed over to the respective Bundle Protocol Agents. Note that this may

cause a problem when a node has two EIDs, one following the dtn scheme and one

following the ipn scheme, as only one EID can be declared. Some implementations,

such as DTNME, allow the user to set the scheme to be used, which is sensible but does

not solve the problem of a possible mismatch between client and server, such as a server

expecting a dtn EID to be advertised while the client offers its ipn EID. However, in IPN

the CCSDS standard mandates the use of the sole ipn scheme, thus avoiding the problem

(at least in IPN).

The contact header is composed of the following fields:

• A four-octet magic number, which is the ASCII representation of the string dtn!;

• A one-octet version number (set to 3 for TCPCLv3);

• Eight bits of flags, of which only the four most significant ones are used and the other

four must be set to zero. The four available flags, from the least to the most significant

bit, have the following meanings:

– Request acknowledgments;

– Request reactive fragmentation;

– Indicate support for bundle refusal (requires the first flag to be enabled);

– Request LENGTH messages;

• A two-byte keepalive interval, which proposes a number of seconds between exchanges

of KEEPALIVE messages; this can be zero to request disabling keepalives;

• The SDNV-encoded EID length, followed by the EID of the sender of the contat header.

Once the contact headers have been exchanged, each of the two nodes independently com-

putes the actual session parameters based on the following rules:

• Each of the first three flags is enabled if and only if it was enabled in both contact
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headers;

• The LENGTH flag applies unilaterally for the peer(s) that enabled it (see below);

• The chosen keepalive interval is the minimum of the ones chosen by the two peers; if

at least one peer requested disabling keepalives, then they are disabled.

After this, the TCPCL session is established and bundles can be transferred between the two

nodes in both directions – the roles of “client” and “server” stop being meaningful at this point.

All TCPCL messages start with a one-octet message header, which is composed of:

• four bits which identify the type of message (DATA_SEGMENT, ACK_SEGMENT, REFUSE_

BUNDLE, KEEPALIVE, SHUTDOWN, LENGTH);

• four bits which specify flags whose meaning depends on the message type.

In order to send a bundle, a node must send one or more DATA_SEGMENTs, all of which contain a

header and a payload with a part of the bundle data. The header contains two flags, start and

end, which are set respectively on the first and on the last segment of the bundle. Naturally, if

the bundle is sent in a single segment, both flags must be set in that segment. A DATA_SEGMENT

message contains the 8-bit header, followed by the SDNV-encoded payload length and the

actual payload.

It is not possible to interleave data segments that belong to different bundles on the same

TCPCL session: each bundle must wait that all segments of the previous bundle are sent be-

fore its transmission can begin. The only way to interleave bundles is to fragment them in

advance at the Bundle Layer, resulting in each fragment being treated as a separate bundle.

It is worth noting that multiple TCPCL sessions can be established between two nodes (each

either initiated by one node or the other). Once established, all the underlying TCP connec-

tions can be used in both directions. By this approach, it is possible to simultaneously send

multiple bundles between the same two nodes on parallel TCP connections. From the TCPCL

perspective, however, they will belong to independent TCPCL sessions.

Before commencing a bundle transfer, and if the LENGTH flag was set in the contact header, the

sender may send a LENGTH message to specify the full length of the bundle that will be sent

right after, allowing the recipient to refuse it if too big or to prepare storage space. LENGTH

messages simply contain the 8-bit header followed by the SDNV-encoded bundle length.
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If negotiated through the contact headers, the receiving node sends acknowledgments to data

segments (ACK_SEGMENTs), so that the sender is aware of which parts of the bundle have been

received and can perform reactive fragmentation at the Bundle Layer [RFC4838] if the connec-

tion is disrupted. An ACK_SEGMENT contains the 8-bit header followed by the SDNV-encoded

length up to which the bundle is being acknowledged.

If negotiated through the contact headers, the receiver can request to interrupt the transmis-

sion of a bundle at any time with a REFUSE_BUNDLE message. This is useful, for example, if it

detects that it has already received the bundle, or if the bundle is too big. A REFUSE_BUNDLE

message contains the usual 8-bit header followed by a 4-bit reason code. The available reason

codes are:

• Unknown or unspecified;

• The receiver already has the complete bundle;

• The receiver’s resources are exhausted and the sender should apply reactive bundle frag-

mentation before retrying;

• The receiver has encountered a problem that requires the bundle to be retransmitted in

its entirety.

KEEPALIVE messages can optionally be sent at a negotiated interval in order to detect con-

nection interruptions during idle periods. This feature is especially useful in the presence of

disruption. A KEEPALIVE message is only composed of the 8-bit header alone.

Before closing its side of the connection, a node must send a SHUTDOWN message, after which

it is no longer allowed to send bundles, but can still send acknowledgments and refusals.

SHUTDOWN messages can optionally contain an 8-bit reason (Idle Timeout, Version Mismatch

or Busy) and/or an SDNV-encoded reconnection delay in seconds, to indicate to the peer how

long to wait before attempting another connection. The presence of each of these two optional

fields can be indicated through a corresponding flag in the header. SHUTDOWNmessages can also

be used to refuse a contact header and close the connection during session establishment.
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2.3 TCPCLv4

Version 4 of the TCPCL [RFC9174] makes several modifications to version 3 to solve some

implementation issues, add features and make it more future-proof.

The session establishment procedure works as follows:

• The active node establishes a TCP connection with the passive node.

• As in version 3, the nodes exchange contact headers, but these are exclusively used to

negotiate the TCPCL version and TLS support. The contact headers are in fact reduced to

the 4-byte magic number (dtn!), an 8-bit version field (to be set to 4) and 8 bits of flags.

The only available flag is CAN_TLS, which each node can enable or disable to indicate

whether it is capable of using TLS on top of TCP:

– If both nodes support TLS, the TLS handshake takes place after the contact headers

are exchanged; subsequently, all connection data is authenticated and encrypted.

The specification also contemplates the potential existence of DTN-aware certifi-

cate authorities, which issue certificates that authenticate DTN Node Identifiers in

addition to DNS hostnames and/or IP addresses. This approach will be necessary

in large-scale, particularly dynamic deployments of the DTN architecture, as with-

out Node ID authentication a rogue DTN node which can successfully authenticate

its IP address could potentially impersonate another DTN node.

– Otherwise, if both nodes deem it acceptable according to their policies, the con-

nection continues over raw TCP.

After the procedure above, TCPCLv4 messages can be sent on the TCPCL connection. Each

message begins with a one-octet message header which only encodes the message type, as

opposed to TCPCLv3 which embeds the message type and the flags in the same octet. Table

2.1 contains a comparison between message types for version 4 and version 3, together with

brief comments.
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Table 2.1: Comparison of TCPCLv3 and TCPCLv4 message types.

V4 name V3 name Code Description

SESS_INIT (No equivalent) 0x07 Contains the session parameter inputs.

SESS_TERM SHUTDOWN 0x05 Indicates a wish to terminate the session.

XFER_SEGMENT DATA_SEGMENT 0x01 Transmits a segment of bundle data.

XFER_ACK ACK_SEGMENT 0x02 Acknowledges the reception of a segment of

bundle data.

XFER_REFUSE REFUSE_BUNDLE 0x03 Indicates that the transmission of the current

bundle shall be stopped.

KEEPALIVE KEEPALIVE 0x04 Used to keep the TCPCL session active.

MSG_REJECT (No equivalent) 0x06 Contains a TCPCL message rejection. Version

3 lacks this feature.

(No equivalent) LENGTH 0x06 Contains the length (in bytes) of the next bun-

dle. Version 4 moved this information to the

Transfer Length Extension, which is included

in the first XFER_SEGMENT of a transfer.

It can be observed that TCPCLv4 mostly kept the same message codes as version 3.

The very first message to be sent by both peers immediately after the contact headers (and

optionally the TLS handshake) is SESS_INIT, which takes over most of the roles of the contact

header in TCPCLv3. A SESS_INIT message contains the following fields:

• The one-octet message header;

• The keepalive interval, as a 16-bit unsigned integer;

• The segment maximum receive unit, which represents the maximum payload size of a

single XFER_SEGMENT to be received, as a 64-bit unsigned integer;

• The transfer maximum receive unit, which represents the maximum size of a bundle

(including the BP headers), as a 64-bit unsigned integer;

• The Node ID length, as a 16-bit unsigned integer, followed by the Node ID of the sender

(version 3 used an SDNV for this, but 64KiB seem more than adequate even for worst

case variable-length “dtn” node identifiers);
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• The number of octets dedicated to session extension items, as a 32-bit unsigned integer,

followed by a sequence of session extension items, i.e. optional extensions to the SESS_

INIT message, none of which have been defined yet as of TCPCLv4; each item has the

following structure:

– 8 bits of flags; the only available flag is CRITICAL, which indicates whether the

recipient’s inability to handle this extension item should be treated as a failure and

cause a termination of the TCPCL session;

– 16 bits which represent the item type;

– 16 bits which represent the item length, followed by the actual contents.

Note that TCPCLv4, differently from TCPCLv3, does not include flags to specify whether seg-

ment acknowledgments, reactive fragmentation and bundle refusal should be enabled, because

these features are mandatory in version 4.

After the SESS_INITmessages are exchanged, the session parameters are negotiated similarly

to TCPCLv3:

• The chosen keepalive interval is the minimum between the two;

• The segment and transfer maximum transmission unit for each peer are the respective

maximum receive units of the other peer.

After this procedure, the session is established and messages can be sent both ways.

In order to send a bundle, a node must send one or more XFER_SEGMENT messages, which are

the TCPCLv4 equivalent of TCPCLv3’s DATA_SEGMENTs and mostly work in the same way. A

XFER_SEGMENT contains the following fields:

• The one-octet message header;

• 8 bits of flags; the only available flags are START and END, and they have the same roles

as their TCPCLv3 counterparts;

• A 64-bit unsigned integer for the transfer ID; a transfer ID identifies a bundle transfer,

i.e. all the consecutive XFER_SEGMENTs used to transfer a specific bundle will use the

same transfer ID;

• Only if this is the first XFER_SEGMENT of a bundle (i.e. the START flag is set), the number of

octets dedicated to transfer extension items, followed by a sequence of transfer extension
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items; these have the same function and structure as session extension items, but they

apply to a specific bundle transfer.

The only available transfer extension item is the Transfer Length Extension; its content

is a 64-bit unsigned integer containing the full length of the bundle that is being trans-

ferred. This replaces TCPCLv3’s LENGTH messages.

• A 64-bit unsigned integer encoding the payload length, followed by the payload.

TCPCLv3’s ACK_SEGMENTs are replaced by XFER_ACKs, which work in the same way. They

contain the 8-bit message header, followed by 8 bits of flags (which must have the same values

as those in the XFER_SEGMENT that is being acknowledged), the 64-bit transfer ID and the 64-bit

acknowledged length.

XFER_REFUSEmessages are the equivalent of TCPCLv3’s REFUSE_BUNDLE; they contain the 8-bit

message header, followed by an 8-bit reason code and the 64-bit transfer ID.

KEEPALIVE messages are the same as in TCPCLv3, and they only contain the message header.

MSG_REJECT messages are a new type of message that is used for troubleshooting purposes; a

node sends this message as a response to an unknown or unexpected message from its peer. A

MSG_REJECT message contains the 8-bit message header, followed by an 8-bit reason code and

the 8-bit message header of the message being rejected.

Session termination is initiated by one of the two peers by sending a SESS_TERMmessage with

the REPLY flag set to 0, which the other peer must respond to with an identical message, but

with the REPLY flag set to 1. Afterwards, both endpoints may finish any in-progress bundle

transfers, but must not begin or accept any new ones. A SESS_TERMmessage contains the 8-bit

message header followed by 8 bits of flags (the only one of which is REPLY) followed by an 8-bit

reason code. The ability to request a specific reconnection delay is not available in TCPCLv4;

choosing a reconnection delay is instead left to implementations on the basis of the reason

code.
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This chapter is dedicated to a formal description of the QUIC Convergence Layer Adapter

protocol. From this point onward, the protocol will be referred to as QUICCL (omitting the A

for Adapter), except when referring to implementation details.

An effort to define a QUIC Convergence Layer Adapter has already been made in 2023 at the

University of Marburg, Germany [QUICL-Marburg]. The protocol described here, however,

has been designed from scratch based on TCPCLv4 and is completely independent.

3.1 Improvements to TCPCLv4

Although the protocol has been designed to be as similar as possible to TCPCL version 4, there

are some important differences, listed below.

3.1.1 Removal of contact headers

The main function of the TCPCLv4 contact header is to negotiate the usage of Transport Layer

Security. Once that phase is completed, the peers exchange SESS_INIT messages, which are

used to negotiate all other session parameters. On the other hand, TLS is mandatory in QUIC,

and as a matter of fact its handshake is encapsulated within the transport handshake: once

the connection is established, the secure session is already active, making TLS negotiation

unnecessary.

The “dtn!” magic number and the version field from the contact headers are also not needed,

as QUIC makes use of TLS’s Application-Layer Protocol Negotiation extension (usually short-

ened to ALPN) [RFC7301]. For these reasons, contact headers have been completely stripped

from the QUICCL protocol, and the only message exchange necessary for session establish-

ment is the pair of SESS_INITs.
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3.1.2 Bundle multiplexing

Similarly to HTTP requests, bundle transfers suffer from head-of-line blockingwhen serialized

onto a single TCP connection: in case of losses or out-of-order TCP segments, data from a later

bundle may be forced to wait for the reception of data from a previous bundle before being

delivered to the TCPCL.

As there is no requirement to deliver distinct bundles in order (although it may be desirable

for certain applications), QUICCL can take advantage of the multi-stream capability of QUIC

mentioned in the introduction. In particular, the QUICCL sender is allowed to send different

bundles in parallel on as many QUIC streams as it deems necessary, the only restriction being

that segments and acknowledgments of the same bundle must all be sent on the same stream.

By sending N bundles in parallel on N streams, the delivery of one bundle becomes almost

independent from the problems that affect other bundles, but not completely, because QUIC

congestion control covers all streams, thus a loss on one stream will reduce the aggregate

transfer speed of all streams.

That said, it is expected that we can generally benefit from parallel bundle transmission. As

this benefit could however be counterbalanced by the introduction of disordered bundle de-

livery, which, although allowed, is detrimental in some applications, parallelism should be

configurable in QUICCL. The way in which this is accomplished is left to implementations.

More information on how streams are used by QUICCL is provided in 3.6.1.

3.2 QUICCL session overview

QUICCL uses the same seven message types used by TCPCLv4, namely: SESS_INIT, SESS_

TERM, XFER_SEGMENT, XFER_ACK, XFER_REFUSE, KEEPALIVE and MSG_REJECT. However, while

TCPCLv4 kept message codes identical to those in TCPCLv3, QUICCL adopts a different en-

coding based on the session logic.

A normal, error-free QUICCL session comprises the following phases:

• The active node initiates a secure QUIC connection with the passive node;

• Each node sends a SESS_INIT message on stream 0 to negotiate session parameters;
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• At this point, the session is established and both nodes can send XFER_SEGMENT, XFER_ACK

or XFER_REFUSEmessages on any bidirectional QUIC stream from 1 onwards, according

to the semantics described later, or KEEPALIVE messages on stream 0;

• One of the two nodes sends a SESS_TERM message on stream 0, to which the other re-

sponds with another SESS_TERM message;

• Any unfinished bundle transfers are completed;

• Both nodes close the QUIC connection.

QUIC connection
establishment

START

SESS_INIT
exchange

QUIC connected

Transfer begins

SESS_TERM
exchange

Session idle

All transfers
done SESS_TERM

exchange

Session active

Transfer begins

QUIC immediate close

Session complete
All transfers

done
Session completing

END

Figure 3.1: Overview of the states of a QUICCL session.

3.3 Message type header

All messages transmitted over the QUICCL session begin with a one-octetMessage Type field.

The possible values are given in Table 3.1.
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Table 3.1: Available QUICCL message types.

Name Code Description

0x00 Reserved

SESS_INIT 0x01 Contains the session parameter inputs from one of the entities (see

3.4)

XFER_SEGMENT 0x02 Contains a segment of bundle data (see 3.6.2)

XFER_ACK 0x03 Acknowledges a segment of bundle data (see 3.6.3)

XFER_REFUSE 0x04 Refuses a bundle transfer initiated by the peer (see 3.6.4)

KEEPALIVE 0x05 Used to keep the QUICCL session active (see 3.5.1)

SESS_TERM 0x06 Indicates a wish to terminate the session (see 3.7)

MSG_REJECT 0x07 Indicates that a message sent by the peer was not expected or un-

derstood (see 3.5.2)

The structure of each message after this field depends on the message type.

3.4 Session establishment (SESS_INIT)

As QUICCL is a connection-oriented protocol, a session must be established between the two

peers before the actual exchange of bundle data. It is up to the implementation to decide when

and how to trigger session establishment, however in usual cases it is expected that a DTN

node which implements QUICCL should continually listen for QUICCL connections (acting as

the passive node) and initiate new ones according to its configuration, as with TCPCL. A node

may choose to either initiate a new session for each bundle transfer or keep sessions open for

as long as possible, using them when necessary. In the former case, it is convenient to make

use of QUIC’s 0-RTT feature [RFC9000; RFC9308], if available.

In order to establish a QUICCL session, the active node must first establish a QUIC connection

with the passive node using an appropriate QUIC implementation. We suggest using UDP

port 4560 for QUICCL, but any other port can be used. The TLS Application-Layer Protocol

Negotiation identifier to be used by the peers is quicclav1.

Once the QUIC connection is established, both peers must send a SESS_INIT message on
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stream 0. Since stream 0 is client-initiated according to the QUIC specification, the passive

peer must receive the active peer’s SESS_INIT before sending its own.

Each SESS_INIT message has the following structure, identical to its TCPCLv4 counterpart:

Name Type

Message Type 8-bit enumeration

Keepalive Interval 16-bit unsigned integer

Segment MRU 64-bit unsigned integer

Transfer MRU 64-bit unsigned integer

Node ID Length 16-bit unsigned integer

Node ID Data Variable-length UTF-8 string

Session Extension Items Length 32-bit unsigned integer

Session Extension Items Octet sequence

These fields have the following meanings:

• Message Type: contains the value 0x01.

• Keepalive Interval: contains the minimum keepalive interval, in seconds, to negotiate

as the session’s keepalive. It can be set to zero to indicate that no keepalive is required.

• Segment MRU (Maximum Receive Unit): contains the largest single-segment payload

size to be received in this session.

• Transfer MRU: contains the largest bundle full size (i.e. bundle headers and payload) to

be received in this session.

• Node ID Length: indicates the length, in octets, of the Node ID Data field.

• Node ID Data: contains the UTF-8 encoded DTN Node ID of the peer who sent this

message. Must not be empty.

• Session Extension Items Length: indicates the length, in octets, of the Session Extension

Items field.

• Session Extension Items: contains a sequence of extensions to this message which per-

tain to this QUICCL session. Each extension must follow the format defined in 3.4.1.
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3.4.1 Session Extension Items

Each session extension item contained in a SESS_INIT message has the following structure:

Name Type

Flags 8-bit bitmask

Type 16-bit enumeration

Length 16-bit unsigned integer

Value Octet sequence

These fields have the following meanings:

• Flags: contains flags related to this Session Extension Item. The only flag defined is

CRITICAL (0x01); the other fields must be set to zero by the sender and ignored by the

receiver. If CRITICAL is set and this Session Extension Item cannot be decoded by the

receiver, the QUICCL session must be terminated with a reason code of Initialization

Failure (see 3.7). If the CRITICAL flag is not set and the item cannot be decoded, it must

be ignored.

• Type: encodes the extension type. As no extensions have been defined in this version

of QUICCL, there is no valid type.

• Length: encodes the length, in octets, of the Value field.

• Value: contains the actual extension data.

3.4.2 Session parameter negotiation

Once the SESS_INIT messages have been exchanged, each entity calculates internal session

parameters using the following rules:

• The Segment MTU (Maximum Transfer Unit), which contains the largest segment pay-

load size to be sent in this session, is set to the peer’s Segment MRU field.

• The Transfer MTU, which contains the largest bundle full size to be sent in this session,

is set to the peer’s Transfer MRU field.

• TheKeepalive Interval is set to theminimumbetween theKeepalive Interval fields in the

two SESS_INITmessages. If at least one of them is set to zero, the keepalive functionality
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is disabled for this session.

If any of these parameters turn out to be unacceptable, the entity must terminate the session

with a reason code of Initialization Failure (see 3.7).

After the exchange of SESS_INITmessages, the session is fully established and other messages

can be sent.

3.5 Session maintenance and status messages

3.5.1 KEEPALIVE

As mentioned in the previous section, the QUICCL protocol includes a keepalive mechanism,

which an entity can use to determine whether the QUIC connection has been disrupted.

As QUIC is based on UDP, the issue of idle sessions is particularly important, because NATs

and firewalls tend to drop rules for UDP ports after short intervals of inactivity, in particular

much faster than for TCP, where normal rule cancellation is performed after spoofing the

FIN exchange, while inactivity is only a backup measure. Although in certain situations QUIC

connections themselves can survive NAT rebinding thanks to their reliance on connection IDs

rather than on IP addresses and UDP ports, network infrastructure (e.g. load balancers) along

the path may still rely on the address/port 4-tuple. [RFC9308] contains recommendations

about the management of idle QUIC connections and proposes two possible solutions:

• Close a connection after an idle timeout and open it again when needed, using 0-RTT;

• Use a keepalive mechanism.

QUIC provides its own keepalive mechanism, by means of PING frames. Depending on the

QUIC implementation, however, these may not be controllable by the application. For this

reason, it was decided to keep TCPCLv4’s KEEPALIVE messages available in QUICCL, but this

feature can be safely disabled through the corresponding field in SESS_INITs if the connection

is kept alive through other means.

When enabled, there is no minimum value for the QUICCL keepalive interval, but it should

not be too short.
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KEEPALIVE messages consist of a single one-octet message header of type 0x05, with no addi-

tional data. Both sides must send a KEEPALIVE when no message has been transmitted for the

negotiated keepalive interval.

KEEPALIVE messages must be sent on stream 0.

If no message of any type is received for some implementation-defined time duration, the

entity must terminate the QUICCL session with a reason code of Idle Timeout (see 3.7). If con-

figurable, this duration must be no less than twice the keepalive interval; if not configurable,

it must be equal to twice the keepalive interval.

3.5.2 MSG_REJECT

MSG_REJECT messages must be sent by a peer when it receives a message that is either:

• unknown, i.e. with a message type that is deemed to be incorrect according to the im-

plemented specification, for example due to an unhandled protocol version mismatch

or an extension which adds a new message type;

• unsupported, i.e. with a message type that is known, but inappropriate for the negoti-

ated session parameters, such as due to an incorrectly negotiated session extension; for

example, entity A may send a session extension item without the CRITICAL flag which

changes session parameters in some way; if entity B does not understand this extension,

it will ignore it and send/receive invalid messages (instead, the CRITICAL flag should be

set in these situations);

• unexpected, i.e. known and supported, but inappropriate for the current session state,

for example a SESS_INITwhen the session is already established, or a XFER_ACKwith an

unknown transfer ID.

A MSG_REJECT message must be sent on the same QUIC stream as the message it is referring

to.

Each MSG_REJECT message has the following structure:
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Name Type

Message Type 8-bit enumeration

Reason Code 8-bit enumeration

Rejected Message Type 8-bit enumeration

These fields have the following meanings:

• Message Type: contains the value 0x07.

• Reason Code: contains one of the values in Table 3.2.

• Rejected Message Type: contains the Message Type header of the message being re-

jected.

Table 3.2: Possible values for the Reason code field.

Value Description

0x01 Message Type unknown

0x02 Message unsupported

0x03 Message unexpected

3.6 Bundle transfer

Bundle transfers involve the exchange of messages of three types:

• XFER_SEGMENT: contains a segment of bundle data;

• XFER_ACK: acknowledges a XFER_SEGMENT message;

• XFER_REFUSE: refuses a bundle transfer.

Each transfer may consist of one or more XFER_SEGMENT messages, with sizes depending on

the sender’s implementation and on the Segment MTU negotiated for the session.

Each bundle transfer is identified by an unsigned 64-bit Transfer ID field, which is contained in

all XFER_SEGMENT, XFER_ACK and XFER_REFUSE messages pertaining to that particular transfer.

Transfer IDs from each entity shall be unique within a single QUICCL session. Upon exhaus-

tion of the 64-bit Transfer ID space, an entity must terminate the session with a reason code

of Resource Exhaustion (see 3.7).

30



CHAPTER 3. THE QUIC CONVERGENCE LAYER ADAPTER

Transfer IDs can be freely chosen by the sender, as long as they follow the constraint specified

above.

3.6.1 QUIC stream usage

A QUIC connection organizes data into streams, which are virtually not constrained in num-

ber (they are identified by a 64-bit integer) and can be either unidirectional or bidirectional.

QUICCL makes use of bidirectional streams only, but in a peculiar way, which could be called

logically unidirectional: data are sent only in the forward direction (i.e. from the stream ini-

tiator to the other peer), while the return direction is reserved to acknowledgments and other

signaling information related to data. Incidentally, this is the same behavior as LTP sessions,

thus it is not surprising at all to DTN researchers. Stream 0 is reserved to QUICCL signals

concerning session initiation and management, such as SESS_INIT, KEEPALIVE and SESS_TERM,

and cannot be used for data. Bundle transfers from the active entity to the passive entity must

take place on client-initiated QUIC streams (i.e. 4, 8, 12 etc.); bundle transfers from the pas-

sive entity to the active entity must take place on server-initiated QUIC streams (i.e. 1, 5, 9,

13 etc.). XFER_SEGMENT messages related to the same bundle transfer must all be sent on the

same stream. XFER_ACK and XFER_REFUSE messages must be sent on the same stream used by

the bundle transfer they refer to, but in the reverse direction.

A bundle transfer is considered completed by its initiator when either:

• all XFER_SEGMENTs have been sent and all the corresponding XFER_ACKs have been re-

ceived, or

• a XFER_REFUSE has been received.

Multiple transfers can be pipelined on the same stream: it is not necessary for a bundle transfer

to be fully acknowledged or refused before a new one is initiated on the same stream – it is

enough that all XFER_SEGMENTs belonging to the previous transfer have been sent.

Entities are allowed to send a QUIC FIN on a stream to indicate that they will not use it to send

bundles anymore.

We believe it should be left to the implementation of the sending entity to decide how many

streams to use and which stream to assign each transfer to, as the receiver should be able to
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de-multiplex the data in any case. The only requirement is that streams should not be wasted,

to preserve resources. For example, if stream 5 exists and is currently idle, while stream 9 does

not exist yet, for a new transfer the sender should prefer the reuse of stream 5 to the creation

of stream 9.

Three possible modes of operation have been considered so far in this thesis, although more

could be conceived in the future. These are presented below.

• Single stream mode: every bundle is sent on the same stream (e.g. stream 1 for the

passive entity, stream 4 for the active entity); a new bundle transfer can begin as soon

as all the XFER_SEGMENTs for the previous transfer have been sent.

This mode does not exploit the possibility offered by streams to send bundles in parallel,

thus it suffers from the same head-of-line blocking of TCPCL; on the other hand, it

accomplishes ordered delivery of bundles, which, although not compulsory, is often

desired by multimedia applications.

• N-limited multi-stream mode: multiple streams can be used to send bundles, but their

number is limited to a given integer N; every time a new bundle must be sent, one of

the streams in the pool is chosen, following some policy, and the bundle is sent on it.

A new bundle transfer can begin on the same stream as soon as all the XFER_SEGMENTs

for the current transfer have been sent (different streams do not influence each other in

this sense).

This mode suffers from head-of-line blocking too, but to a lesser extent, as this phe-

nomenon is limited to bundles sent on the same blocked stream (the others are obviously

not blocked). On the other hand, it only accomplishes ordered delivery for bundles sent

on the same stream. An implementation could take advantage of this by using the same

stream for all bundles belonging to the same “flow” (an experimental characteristic of-

fered by the ECOS bundle extension [Draft-ECOS]).

• Unlimited multi-stream mode: here the number of streams in the pool is not bounded.

In contrast to the previous case, until a transfer is completed on a stream (i.e. all XFER_

ACKs have been received or a XFER_REFUSE has been received), that stream is considered

busy and cannot be reused for other transfers. When choosing a stream to use for a new
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transfer, any non-busy one can be chosen according to some policy (e.g. the lowest-

numbered one). If all existing streams are busy, a new one is created.

The goal of this last strategy is to fully prevent head-of-line blocking by sending a bundle

on a stream only when the last transfer on that stream, if any, has been completed (fully

acknowledged or refused by the other peer).

Like the previous one, this mode accomplishes ordered delivery only for bundles sent

on the same stream. It is however not suitable for sending bundle flows, because each

bundle should wait for the previous one to be fully acknowledged before being sent – a

difference that can be especially relevant if the round-trip time is long.

In order to have the best of two worlds, i.e. to accomplish ordered delivery for bundle

flows, while avoiding head-of-line blocking for ordinary bundles, the use of a hybrid

mode may be envisaged, where N streams are reserved to the N-limited multi-stream

mode and used preferentially by bundle flows, while ordinary bundles are processed in

the unlimited mode.

Let us stress once again that the policies shown here are only examples and are not exhaustive:

the strategy adopted by the sending entity does not matter on the receiver’s side, because all a

receiver has to do is to read incoming data from all streams and respond to every XFER_SEGMENT

with a XFER_ACK or a XFER_REFUSE on the same stream.

The receiver must forward bundles to the Bundle Protocol Agent in the same order it receives

them, if they belong to the same stream.

3.6.2 Data transmission (XFER_SEGMENT)

A sequence of XFER_SEGMENT messages is used to transfer the data of a full bundle, i.e. the

primary block followed by any other blocks which form the bundle.

A single XFER_SEGMENT message contains a header followed by a payload, which contains a

fragment of the bundle data described above.

Each XFER_SEGMENT message has the following structure:

33



CHAPTER 3. THE QUIC CONVERGENCE LAYER ADAPTER

Name Type

Message Type 8-bit enumeration

Message Flags 64-bit unsigned integer

Transfer ID 64-bit unsigned integer

Transfer Extension Items Length 32-bit unsigned integer (optional)

Transfer Extension Items Octet sequence (optional)

Data Length 64-bit unsigned integer

Data Contents Octet sequence

These fields have the following meanings:

• Message Type: contains the value 0x02.

• Message Flags: contains flags as laid out in table 3.3. Reserved flags must be set to zero

by the sender and ignored by the receiver.

• Transfer ID: contains the unique identifier of this transfer.

• Transfer Extension Items Length: only present if the START flag is active, i.e. if this is

the first segment for this transfer; contains the length, in octets, of the Transfer Extension

Items field.

• Transfer Extension Items: only present if the START flag is active; contains a sequence

of extensions which pertain to this bundle transfer. Each extension must follow the

format defined in 3.6.2.1.

• Data Length: contains the length, in octets, of the Data Contents field of this segment

(not the full bundle size).

• Data Contents: contains the payload of this segment.

Table 3.3: Possible XFER_SEGMENT flags.

Value Name Description

0x01 END This is the last segment of this transfer.

0x02 START This is the first segment of this transfer.

Others Reserved
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3.6.2.1 Transfer Extension Items

Each Transfer Extension Item contained in a XFER_SEGMENT message with the flag START has

the following structure:

Name Type

Flags 8-bit bitmask

Type 16-bit enumeration

Length 16-bit unsigned integer

Value Octet sequence

These fields have meanings identical to those of Session Extension Items:

• Flags: contains flags related to this Transfer Extension Item. The only flag defined is

CRITICAL (0x01); the other fields must be set to zero by the sender and ignored by the

receiver. If CRITICAL is set and this Transfer Extension Item cannot be decoded by the

receiver, the transfer must be refused with a reason code of Extension Failure (see 3.6.4).

If the CRITICAL flag is not set and the item cannot be decoded, it must be ignored.

• Type: encodes the extension type. The only valid type in this QUICCL version is 0x0001,

which represents the Transfer Length Extension, described in 3.6.2.2.

• Length: encodes the length, in octets, of the Value field.

• Value: contains the actual extension data.

3.6.2.2 Transfer Length Extension

The Transfer Length Extension is the only transfer extension defined by this QUICCL version.

Its purpose is for the sender to include the full bundle size in the first segment of a transfer, so

as to allow the receiver to allocate resources for the bundle that is about to be transferred, or

to refuse it in case it is too large.

To include this extension, the sender must include a Transfer Extension Item with the Type

field set to 0x0001, the Length field set to 8 and the Value field set to an unsigned 64-bit integer

containing the full bundle length.
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3.6.3 Data acknowledgments (XFER_ACK)

Although the QUIC protocol provides reliable transfer of data between peers by including

Transport Layer acknowledgments, it is not common for QUIC implementations to inform the

application (which is represented by the QUICCL implementation in this case) of when the

receiver has processed transmitted data; in other words, QUIC acknowledgments are internal

to QUIC. Moreover, as a general rule, it is always preferable to have confirmations sent by the

peer entity, instead of relying on those provided by the underlying protocol.

For this reason, the QUICCL protocol includes its own feedback system through XFER_ACK

messages, which have two main purposes:

• to let the peer which initiated a bundle transfer know when the whole bundle has been

successfully received, and thus when the associated QUIC stream becomes free and can

be reused for a new transfer without incurring into head-of-line blocking;

• in case of a connection disruption, to let the Bundle Protocol Agent knowwhich portion

of the bundle has been successfully sent, so that it can apply reactive bundle fragmen-

tation [RFC4838].

Each XFER_ACK segment has the following structure:

Name Type

Message Type 8-bit enumeration

Message Flags 8-bit bitmask

Transfer ID 64-bit unsigned integer

Acknowledged Length 64-bit unsigned integer

These fields have the following meanings:

• Message Type: contains the value 0x03.

• Message Flags: contains the exact same value as the Message Flags field in the XFER_

SEGMENT that is being acknowledged.

• Transfer ID: contains the unique identifier for this transfer.

• Acknowledged Length: contains the cumulative payload length that is being acknowl-
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edged for this transfer.

Each time an entity receives a XFER_SEGMENT, it must send a corresponding XFER_ACK after the

segment has been fully processed.

The Acknowledged Length field must contain the sum of the Data Length fields of all XFER_

SEGMENTs belonging to this transfer received until now, i.e. it is cumulative. For example,

suppose the sending entity transmits four XFER_SEGMENT messages with lengths 100, 200, 500

and 1000. The receiving entity shall send four XFER_ACK messages with lengths 100, 300,

800 and 1800 respectively, each after processing one of the XFER_SEGMENTs. Note that XFER_

SEGMENTs from the same transfer, and therefore from the same stream, are delivered in order

to QUICCL by QUIC (the same way as TCP does with TCPCL).

3.6.4 Transfer refusal (XFER_REFUSE)

QUICCL allows a peer to refuse the reception of a bundle before the bundle has been fully

received. The choice of when to refuse a bundle is left to the implementation, and usually

involves communication between the QUICCL Layer and the Bundle Layer. For example, a

bundle may be refused when the Bundle Protocol Agent’s bundle storage is temporarily con-

strained, or if a bundle header is considered unacceptable.

A XFER_REFUSE message may be sent in response to any XFER_SEGMENT message (even if the

XFER_SEGMENT has not been fully received yet), as long as it has not been acknowledged. At

its arrival, the sender associates it to the correct ongoing transfer via the Transfer ID field and

informs the Bundle Protocol Agent of the refusal. If the reason code cannot be decoded, it

should be treated as Unknown.

Each XFER_REFUSE message has the following structure:

Name Type

Message Type 8-bit enumeration

Reason Code 8-bit enumeration

Transfer ID 64-bit unsigned integer

These fields have the following meanings:
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• Message Type: contains the value 0x04.

• Reason Code: contains one of the values in Table 3.4.

• Transfer ID: contains the unique identifier for this transfer.

Table 3.4: Possible values for the Reason Code field.

Value Name Description

0x00 Unknown The reason is unknown or unspecified.

0x01 Completed The receiver already has the complete bundle. The sender

may consider the bundle as fully received.

0x02 No Resources The receiver’s resources are exhausted. The sender should

apply reactive fragmentation before retrying.

0x03 Retransmit The receiver has encountered a problem that requires the

bundle to be retransmitted in its entirety.

0x04 Not Acceptable Some issue with the bundle data or the transfer extension

data was encountered. The sender should not retry the same

bundle with the same extensions.

0x05 Extension Failure A failure processing the Transfer Extension Items has oc-

curred.

0x06 Session Terminating The receiving entity is in the process of terminating the ses-

sion. The sender may retry the same bundle in a different

session.

When sending a XFER_REFUSE message, the receiving entity must have either acknowledged

all previous segments pertaining to the transfer, or already refused the transfer.

After receiving a XFER_REFUSEmessage, the sender must stop sending XFER_SEGMENTmessages

for the same transfer (i.e. other parts of the same bundle), but partially sent messages must be

completed before stopping.

On the other side, after sending a refusal the receiver should be ready to receive further XFER_

SEGMENT messages for the same transfer, since these may cross “on the wire” with the refusal.

In this case, the receiver should respond to each new segment with another XFER_REFUSE

message.
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3.7 Session termination (SESS_TERM)

Rather than directly closing the QUIC connection, a QUICCL entity should gracefully indicate

its desire to do so to the peer. The purpose of this is to allow any existing transfers to be

completed, while preventing new transfers.

To terminate a session, a peer must send a SESS_TERMmessage on stream 0with the REPLY flag

unset. Upon receiving the SESS_TERM message, the other peer must respond with an identical

message, but with the REPLY flag set.

Each SESS_TERM message has the following structure:

Name Type

Message Type 8-bit enumeration

Message Flags 8-bit bitmask

Reason Code 8-bit enumeration

These fields have the following meanings:

• Message Type: contains the value 0x06.

• Message Flags: the only flag defined is REPLY (0x01), which has the meaning described

above; all other fields must be set to zero by the sender and ignored by the receiver.

• Reason Code: contains one of the values in table 3.5.

Table 3.5: Possible values for the Reason Code field.

Value Name Description

0x00 Unknown The reason is unknown or unspecified.

0x01 Idle Timeout The session is being terminated due to idleness.

0x02 Busy The entity is too busy to handle the current session.

0x03 Initialization Failure The entity cannot interpret or negotiate a SESS_INIT op-

tion.

0x04 Resource Exhaustion The entity has run into some resource limit and cannot con-

tinue the session.
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A SESS_TERM message can be sent at any point in the session lifetime, but not before sending

the SESS_INIT message.

Once either peer has sent a SESS_TERM message, the session is in the Completing state. In this

state, a peer may finish any in-progress transfers, but must not initiate or accept new ones. If

a transfer is received, it must be refused with a reason code of Session Terminating.

Once all transfers are completed, the session enters the Complete state. In this state, no further

messages must be sent and the connection must be closed via a QUIC immediate close.

There are circumstances where an entity might wish to close the QUIC connection immedi-

ately, without waiting for transfers to complete. In this case, it must transmit a SESS_TERM

message and acknowledge all XFER_SEGMENTs received until now, so as to avoid unnecessary

bundle retransmissions, before closing the QUIC connection directly.

If the QUIC connection is closed uncleanly at any point during the session, any initiated trans-

fers must be considered failed and the Bundle Protocol Agent must be notified of it. Note that

[RFC9171] leaves the implementation free of reacting to this failure by resending the bundle

or not. Unibo-BP, ION and other implementations do this. This, however, does not imply that

the bundle is retransmitted to the same node, or by means of the same Convergence Layer, as

the bundle is rerouted (e.g. by CGR/SABR) before being resent.
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4.1 Unibo-BP’s convergence layer architecture

Unibo-BP [Unibo-BP; Persampieri-2023] has been briefly presented in the Introduction. Here

we will focus on the aspects of interest in building a QUIC-based Convergence Layer Adapter,

i.e. QUICCL.

Unibo-BP is a highly distributed application, both multi-threaded and multi-process. The

Bundle Protocol Agent is represented by a single multi-threaded process, unibo-bp, which

communicates to other processes in the infrastructure, such as convergence layers below or

applications above, via Unix sockets. Each of these processes can consist of multiple threads.

The code of Unibo-BP is organized into multiple libraries, which are accessible to all programs

that form the core of Unibo-BP’s architecture. One of these libraries is the CLA library, which

implements a server running on the BPA and a client that represents a particular convergence

layer. Each convergence layer internal to Unibo-BP (at present only TCPCLv3) canmake direct

use of the client part of the library; external convergence layers, such as Unibo-LTP, instead

have to make use of Unibo-BP’s C API. QUICCL is part of Unibo-BP (although not compiled

by default so as not to introduce dependencies on Picoquic when not necessary), thus it can

take advantage of the C++ API like TCPCLv3.

4.1.1 CLA server

The CLA server is tasked with communicating with all convergence layers and implement-

ing the interface between the CLA and the BPA on the BPA’s side. It allows the two entities

to exchange inbound/outbound bundles and information on contacts, ranges and link open-

ings/closures. The Bundle Protocol’s ECOS fields [Draft-ECOS] are also passed from the BPA

to the CLA, in order to allow the CLA to make delivery choices based on ECOS preferences.

For example:
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• the QUICCL could use bundle flow information to send bundles from the same flow on

the same stream, as mentioned in 3.6.1;

• Unibo-LTP can select a session color (green or red) based on the ECOS 0x0008 bit, which

requests reliability; more elaborate policies are also possible by considering other ECOS

flags, bundle lifetimes and number of retransmissions, which are also passed to the CLA

by Unibo-BP [Persampieri-2023].

The CLA server consists of a few C++ classes.

The Link class contains information about an outgoing link to a specific neighbor. As multiple

links to the same neighbor could exist, each link has a unique identifier, used in all communi-

cations between the CLA client and the CLA server to refer to it.

The Peer class manages all links to a given neighbor. This class handles the extraction of

bundles directed to the neighbor from the BP queue and directs them to one of the existing

links towards the peer, assuming a contact is open. The way the link is selected when there

are multiple possibilities is at present round-robin, but more adequate solutions are under

study. The Peer class also applies flow control according to the data rate specified (in bytes

per second) by the current contact to the neighbor.

The CLA class handles communication to a specific CLA client; each instance of this class is

associated with an identifier that corresponds to the CLA client being handled.

4.1.2 CLA client

The Bundle Protocol’s CLA library provides a CLAOverIPC class which abstracts the IPCmech-

anisms. In particular, it listens for IPC messages sent by the server (e.g. “send a bundle” or

“initiate a new connection”) and forwards them to the convergence layer by calling methods

of the BPToCLAController interface, which is implemented and possibly extended by the CLA

client according to its needs. Two types of requests are contemplated:

• passthrough requests: configuration inputs issued by the unibo-bp-admin command,

e.g. to create an induct (i.e. start listening for incoming connections) or an outduct (i.e.

initiate a new outgoing connection);

• send_pdu: a request by the BP to send a bundle.
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4.2 QUICCL architecture

The QUICCL has been implemented after the existing TCPCL implementation. It consists of

the following components, all included in Unibo-BP’s CLA module:

• quiccla_manager: a singleton that acts as the coordinator between the Bundle Protocol

Agent and the QUICCL sessions;

• BPToQUICCLAController: implements the BPToCLAController interface already men-

tioned, forwarding BP requests to the quiccla_manager;

• quiccla_command: contains utility methods to encode and decode IPC configuration

messages sent by unibo-bp-admin;

• quiccla_opportunistic_neighbor: listens for incoming QUICCL sessions and initiates

them; note that a QUICCL session initiated by a peer is bidirectional, thus it can be used

“opportunistically” also in the reverse direction;

• quiccla_planned_neighbor: initiates new outgoing QUICCL sessions;

• quicclav1_session: handles all communication that pertains to a specific session, after

it has been initiated via either quiccla_opportunistic_neighbor or quiccla_planned_

neighbor;

• quicclav1_util: contains utility methods to encode and decode QUICCL messages for

communications with the peer.

In addition to the QUICCL implementation itself, a Picoquic wrapper has been added to the

iomodule to abstract the interface between the QUICCL and Picoquic. This wrapper contains

three classes:

• PicoQUICContext: manages the lifetime of a Picoquic network thread and makes it pos-

sible to easily execute code within it, which is necessary to avoid data races when calling

Picoquic-related functions;

• PicoQUICSocket: acts as an abstraction which makes Picoquic’s asynchronous interface

accessible via a send/recv interface similar to traditional Unix sockets;

• PicoQUICServerSocket: listens for incoming QUIC connections and implements an

accept function which blocks until a connection is initiated, at which point it spawns a

new PicoQUICSocket and continues listening for more connections.
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4.3 Synchronous C++ adapter for Picoquic

Before discussing the implementation of the QUICCL protocol per se, it is appropriate to de-

scribe in detail the wrapper that was implemented for it to interact with Picoquic.

4.3.1 Picoquic’s application interface

As already mentioned in the Introduction, Picoquic’s interface with the application (QUICCL

in this case) is asynchronous. Picoquic manages its own thread, which it has full control of,

and uses it to run its packet loop, which repeatedly sends and receives QUIC packets. When

the application starts the packet loop, it has to provide a pointer to a packet loop callback

function, which is later called by Picoquic at each new event related to the packet loop. These

are low-level events, independent of connections and mainly related to the management of

the packet loop or to specific Picoquic configurations.

The packet loop callback also returns a value which Picoquic reacts to; the value 0 indicates

that no error has occurred and Picoquic can proceed normally. Another possible value is

PICOQUIC_NO_ERROR_TERMINATE_PACKET_LOOP, which requests the termination of the packet

loop.

The possible data callback events are summarized in the following table.

Name Description

ready The packet loop is fully started and ready to receive packets.

after_receive The packet loop has just received one or more UDP data-

grams.

after_send The packet loop has just sent one or more UDP datagrams.

port_update The packet loop has opened the UDP socket and is informing

the application of the local port being used.

time_check Upon request, it is raised at every iteration of the packet loop;

it provides information about the current time and the time

elapsed since the previous iteration.
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system_call_duration Upon request, it is raised at every iteration of the packet loop;

it provides the duration of the select system call (or another

operating system’s equivalent), used by Picoquic to wait for

events.

wake_up picoquic_wake_up_network_thread has been called.

alt_port In case extra sockets were required to test multi-

path/migration, it provides the port of the second (i.e.

alternative) socket that was created.

In addition to the packet loop callback, the application can (but does not have to) provide the

pointer to a connection-specific stream data callback, which Picoquic will call when events

related to that connection occur. A default stream data callback can be set when initializing a

Picoquic handle; later, it can be set to a different function for a particular connection by calling

picoquic_set_callback.

The following table summarizes some of the events that trigger a stream data callback call;

those not relevant to this thesis have been omitted for brevity.

Name Description

stream_data Data has been received on a stream.

stream_fin A FIN has been received on a stream, optionally with data.

stream_reset A RESET_STREAM frame has been received for a stream, which

indicates an abrupt termination of the sending side of a

stream.

stop_sending A STOP_SENDING frame has been received for a stream, which

indicates that any data sent on that stream will be discarded

and no more data should be sent on it.

stateless_reset Indicates that the connection has been terminated through a

stateless reset.

close Indicates that the connection has been cleanly terminated or

terminated due to a QUIC error.
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application_close Indicates that the connection has been terminated due to an

application error.

prepare_to_send Represents a request by Picoquic to provide new data to send

on a stream, after the application indicated its desire to do so

by calling picoquic_mark_active_stream.

almost_ready Indicates that the connection is not fully established, but data

can already be sent.

ready Indicates that the connection is fully established (i.e. data can

be sent and received and connection migration is possible).

4.3.2 PicoQUICContext

PicoQUICContext is a C++ class that manages the lifetime of a Picoquic network thread. The

following listing shows its declaration.

extern "C" int picoquic_context_packet_loop_callback(
picoquic_quic_t *,
picoquic_packet_loop_cb_enum cb_mode,
void *_callback_ctx,
void *callback_arg

);
class PicoQUICContext {

public:
PicoQUICContext(

picoquic_quic_t *quic,
std::unique_ptr<picoquic_packet_loop_param_t> packet_loop_param,
int &ret

);
~PicoQUICContext();

void run_in_network_thread(std::function<int()> func);
private:

std::mutex mutex;
picoquic_quic_t *quic{};
picoquic_network_thread_ctx_t *thread_ctx{};
std::unique_ptr<picoquic_packet_loop_param_t> packet_loop_param;
std::queue<std::function<int()>> thread_queue{};
bool thread_woken_up = false;

void run_in_network_thread_unsafe(std::function<int()> func);
int packet_loop_callback(
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picoquic_packet_loop_cb_enum cb_mode,
void *callback_arg

);
friend int picoquic_context_packet_loop_callback(...);

};

When an instance of PicoQUICContext is constructed, it spawns the network thread by calling

picoquic_start_network_thread, providing the Picoquic handle and the packet loop param-

eters chosen by the caller and setting the packet loop callback to picoquic_context_packet_

loop_callback. this is passed as the callback context, to make sure that the callback has

access to the PicoQUICContext itself.

PicoQUICContext::PicoQUICContext(
picoquic_quic_t *quic,
std::unique_ptr<picoquic_packet_loop_param_t> packet_loop_param,
int &ret

) {
this->quic = quic;
this->packet_loop_param = std::move(packet_loop_param);
this->thread_ctx = picoquic_start_network_thread(

quic,
this->packet_loop_param.get(),
picoquic_context_packet_loop_callback,
this,
&ret

);
if (!this->thread_ctx) {

THROW_UNIBO_BP_GENERIC("Failed to create picoquic network thread");
}

}

After the context has been constructed, any thread can call run_in_network_thread with

a function pointer; this method wakes up the Picoquic network thread, which executes the

pointed function once it is awoken. To do this, the function pointer is added to a queue

(thread_queue) and picoquic_wake_up_network_thread is called if the thread has not been

woken up already.

void PicoQUICContext::run_in_network_thread_unsafe(std::function<int()> func) {
thread_queue.push(func);
if (!thread_woken_up) {

picoquic_wake_up_network_thread(thread_ctx);
thread_woken_up = true;

}
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}
void PicoQUICContext::run_in_network_thread(std::function<int()> func) {

std::unique_lock lock(mutex);
run_in_network_thread_unsafe(std::move(func));

}

The only role of the packet loop callback is to run any function pointers in the queue when

it is woken up. If one of these functions returns an error (i.e. a non-zero value), that value is

returned so that Picoquic may react accordingly.

extern "C" int picoquic_context_packet_loop_callback(
picoquic_quic_t *, picoquic_packet_loop_cb_enum cb_mode,
void *_callback_ctx, [[maybe_unused]] void *callback_arg

) {
auto ctx = static_cast<PicoQUICContext *>(_callback_ctx);
if (cb_mode == picoquic_packet_loop_wake_up) {

// Execute functions requested via run_in_network_thread()
std::unique_lock lock(ctx->mutex);
ctx->thread_woken_up = false;
while (!ctx->thread_queue.empty()) {

auto func = ctx->thread_queue.front();
ctx->thread_queue.pop();
lock.unlock();
if (int ret; (ret = func()) != 0)
return ret;
lock.lock();

}
}
return 0;

}

When it is destructed, the PicoQUICContext terminates the network thread and deallocates

the Picoquic handle.

PicoQUICContext::~PicoQUICContext() {
std::unique_lock lock(mutex);

/* picoquic_delete_network_thread internally terminates the thread
before deleting the context */

picoquic_delete_network_thread(thread_ctx);
picoquic_free(quic);

}

The classes PicoQUICSocket and PicoQUICServerSocket, described below, wrap the PicoQUIC-

Context in an std::shared_ptr. In this way, the network thread is automatically terminated
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once all references to the context are released, i.e. once it is not being used for any active

sessions (PicoQUICSocket) or to listen for incoming ones (PicoQUICServerSocket).

4.3.3 PicoQUICServerSocket

PicoQUICServerSocket listens on a specified UDP port for new QUIC connections. To ac-

complish this, it creates a PicoQUICContext (this starts a network thread), setting the de-

fault stream data callback for new connections to a function it manages, picoquic_server_

socket_stream_data_callback. This function reacts to each new connection by creating a

PicoQUICSocket for it, bound to the same network thread.

The stream data callback and the accept method are given below. The callback detects a new

connection when it is called with the event picoquic_callback_almost_ready; when this

occurs, it creates a new PicoQUICSocket and adds it to a queue of inbound connections. The

accept method blocks until the queue is non-empty, then it extracts the first socket and returns

it.

extern "C" int picoquic_server_socket_stream_data_callback(
picoquic_cnx_t *cnx, uint64_t stream_id, uint8_t *bytes,
size_t length, picoquic_call_back_event_t event,
void *callback_ctx, void *stream_ctx

) {
const auto server_socket = static_cast<PicoQUICServerSocket *>(callback_ctx);
if (event == picoquic_callback_almost_ready) {

// Got a new connection: create I/O socket and add it to accept queue
std::unique_lock lock(server_socket->mutex);
auto socket = std::make_unique<PicoQUICSocket>(

server_socket->quic_ctx, cnx, server_socket->stoken
);
server_socket->inbound_cnx.push(std::move(socket));
server_socket->inbound_cnx_cond.notify_one();

}
return 0;

}

std::unique_ptr<PicoQUICSocket> PicoQUICServerSocket::accept() {
std::unique_lock lock(mutex);
inbound_cnx_cond.wait(

lock,
[this] { return !inbound_cnx.empty() || _is_shutdown; }

);
if (_is_shutdown)

THROW_UNIBO_BP_GENERIC("shutdown has been called on this server socket");
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auto socket = std::move(inbound_cnx.front());
inbound_cnx.pop();
return socket;

}

4.3.4 PicoQUICSocket

The PicoQUICSocket class is tasked with managing a specific QUIC connection. Its instances

may be created in two different ways:

• Passively, i.e. by a PicoQUICServerSocket when a new connection is established; in

this case, the connection’s stream data callback is changed from the one managed by

PicoQUICServerSocket to a different one managed by PicoQUICSocket, so that every

new event related to the connection is handled by the latter rather than the former;

• Actively, via the connect static method, which initiates a new connection to a specified

server address/port pair; in this case, the connectmethod creates a new PicoQUICContext

(which starts a network thread) and sets the stream data callback to the one managed

by PicoQUICSocket.

It is important to note that, in the passive case, the same network thread is used for all

PicoQUICSockets created by the same PicoQUICServerSocket. Due to how Picoquic is im-

plemented, this is the only option – it is not possible to make Picoquic listen for connections

on a listener thread and start a dedicated thread for each new connection. By contrast, in the

active case a dedicated network thread is used for each socket.

Once the connection is established, the application can interactwith a PicoQUICSocket through

several methods. The most relevant ones are listed below.

• send: sends data on a particular stream, taking in the stream ID and the source buffer

as parameters.

• recv: receives data from a particular stream, taking in the stream ID and the destination

buffer as parameters. If no data is available on the indicated stream, it blocks until some

data is received.

• recv_any: it works similarly to recv, but it receives data on any stream; its parameters

are a reference the stream ID will be written on and the destination buffer. If no data is
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available on any stream, it blocks until some data is received on some stream.

• wait_inbound: waits for data to be available on the indicated stream IDwithout actually

reading it.

• wait_inbound_any: waits for data to be available on any streamwithout actually reading

it, and informs the caller about the stream ID.

• send_fin: sends a FIN on the indicated stream ID to inform the peer that no more data

will be sent on it.

• close: terminates the connection through a QUIC immediate close.

The socket internally maintains one outbound and one inbound buffer for each stream. These

buffers are implemented as C++ std::deques (double-ended queues), which are dynamically

sized data structures optimized for insertion and removal of data both at the beginning and at

the end.

When data is sent through the send method, it is written on the outbound buffer and the

stream is marked as active via picoquic_mark_active_stream. This causes Picoquic to call

the stream data callback with a picoquic_callback_prepare_to_send event. The callback

then extracts the data from the outbound buffer and sends it.

Similarly, when data is received, Picoquic calls the streamdata callbackwith the event picoquic_

callback_stream_data or picoquic_callback_stream_fin. The callback reacts by copying

the received data into the inbound buffer for the affected stream. When the recv method is

called and the inbound buffer contains data, that data is returned; otherwise, recv waits until

something is received.

4.4 Command-line interface

Unibo-BP shifts the burden of command-line argument parsing to the CLI11 library, which

provides a simple yet powerful environment to configure command-line interfaces [CLI11].

This library is used by all programs within Unibo-BP, from the Bundle Protocol Agent itself

to its convergence layers and included applications; as a consequence, it has been used for the

QUIC Convergence Layer as well.

The command-line interface of the QUICCL is very similar to that of Unibo-BP’s TCPCL; more

51



CHAPTER 4. QUIC CONVERGENCE LAYER ADAPTER IMPLEMENTATION

specifically, a user of Unibo-BP interacts with QUICCL in two ways:

• First through the unibo-bp-quiccl executable, to start the QUICCL process;

• Once started, through the quiccl sub-command of the unibo-bp-admin command (i.e.

unibo-bp-admin quiccl), to communicate with the running QUICCL process, for ex-

ample with the goal of configuring it or stopping it.

The unibo-bp-quiccl command supports the following options:

• --daemon: runs QUICCL as a daemon rather than in the current terminal. When this

option is used, the PID (process identifier) of the daemon is printed to the standard

output at its start.

• --cla-id <id>: allows the user to choose a different identification number for the CLA.

This may be useful if multiple CLAs use the same identifier by coincidence; in addition,

it allows running multiple QUICCL instances on the same machine, though this latter

scenario is not particularly useful, as one can start multiple QUICCL sessions on the

same instance regardless.

--cla-id is also an option of the quiccl subcommand of unibo-bp-admin; in this case, it

allows the user to select the CLA to administer.

In addition to this, unibo-bp-admin quiccl supports the following command tree:

• induct: this command is used to administer inducts. An induct (the term has been

borrowed from ION’s terminology) is a server listening on a UDP port for incoming

connections; typically, a node does not require more than one induct, but adding mul-

tiple ones can be useful to listen on multiple ports. The only subcommand of induct

is add, which is used to start an induct. Hence, the full command to be used to start

an induct is unibo-bp-admin quiccl induct add. The --port option can be used to

specify the UDP port to listen on.

• outduct: this command is used to administer outducts. An outduct (again, borrowed

from ION’s terminology) is a client that connects to an induct located on another DTN

node, thus creating a DTN hop between them. The only subcommands of outduct are

add and remove; add requires the following options to identify the peer to connect to:

– --hostname <ip_address>, where ip_address is an IPv4/IPv6 address in the typ-
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ical ASCII notation;

– --port <port>, where port is the UDP port the peer’s induct is listening on (the

default is 4560);

– --peer <node_id>, where node_id is the DTN Node ID of the peer.

For example, the command to be used to start a QUICCL session with the node ipn:6.0

located at the IP address 10.0.3.6 is:

unibo-bp-admin quiccl outduct add --peer ipn:6.0 --hostname 10.0.3.6

The remove command only requires the --peer option to identify the outduct to be

removed.

• stop: this command stops the QUICCL process.

In addition to those listed above, the induct and outduct commands both accept the following

options to tweak their behavior:

• --single-stream: instructs the QUICCL to send all bundles on a single QUIC stream;

the default is to work in an unlimited multi-stream mode (see 3.6.1 for details);

• --congestion-control <id>: instructs Picoquic to use a specific congestion control

algorithm among the ones it supports (e.g. bbr, reno, cubic, hybla, etc.); the default is

bbr;

• --qlog <path>: instructs Picoquic to output qlog files in the specified directory, record-

ing QUIC activity on connections used by the QUICCL;

• --textlog <path>: instructs Picoquic to output a text log file at the specified path,

useful for debugging purposes;

• --keylog <path>: instructs Picoquic to output a TLS secret log at the specified path,

necessary to decrypt QUIC traffic on packet analyzers like Wireshark (see 5.1.2).

When adding an outduct, these options affect the QUIC connection that will be used for that

outduct; when adding an induct, they affect all QUIC connections initiated by peers towards

that induct. It is important to note that the --single-stream flag is unidirectional, i.e. it only

affects how the local node sends bundles, not the peer. Tomake both nodes in a link use a single

stream, both the induct and the outduct that connects to it must have the --single-stream

flag enabled.
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4.5 QUICCLA manager

quiccla_manager is the class that manages all existing QUICCL sessions, handling requests

coming from the Bundle Protocol Agent and from the sessions themselves. In particular,

when the BPA makes a request via inter-process communication, it is received by the class

BPToQUICCLAController, which in turn calls a function in the QUICCLA manager; by con-

trast, QUICCLA sessions call QUICCLA manager methods directly.

The commands that can be issued by the BPA are the following:

• register_planned_neighbor: corresponds to the addition of a new outduct and results

in the creation of a quiccla_planned_neighbor (see 4.6);

• deregister_planned_neighbor: corresponds to the removal of an existing outduct;

• spawn_inducts: corresponds to the addition of a new induct and results in the creation

of a quic_listener_thread (see 4.6);

• send_pdu: corresponds to a request to send a bundle using a specific QUICCL session;

• stop: corresponds to a request to stop the QUICCL.

QUICCLA sessions make use of the following methods to retrieve information or to inform

the manager and/or the BPA of certain events:

• get_administrative_endpoint: retrieves the Node ID of this node;

• insert_session: informs the manager and BPA that a new session has been started –

either actively through an outduct or passively through an induct – and can be used to

send bundles;

• remove_session: informs the manager and the BPA that a previously existing session

no longer exists and cannot be used to send bundles;

• notify_transmission_success: informs the BPA that a bundle has been sent success-

fully, i.e. completely acknowledged by the peer;

• notify_transmission_failure: informs the BPA that a bundle has not been sent suc-

cessfully;

• notify_inbound_pdu: informs the BPA that a new bundle has been received and delivers

it accordingly.
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4.6 Planned and opportunistic neighbors

The terms planned neighbor and opportunistic neighbor refer to QUICCL sessions where the

local node is active and passive respectively. The rationale is that, while an active node knows

in advance when it is going to start a session, a passive node waits for inbound sessions with

no prior knowledge of when they are going to be initiated.

At its construction, the quiccla_planned_neighbor class starts a new thread that actively ini-

tiates a QUICCL session (using a PicoQUICSocket) andwaits until it is terminated. Afterwards,

it assesses whether it is appropriate to try initiating the session again; if not, it terminates.

The quiccla_opportunistic_neighbor module contains the quic_listener_thread func-

tion, which continually listens for new connections (using a PicoQUICServerSocket) and pas-

sively initiates a QUICCL session whenever an inbound connection is detected.

Both the quiccla_planned_neighbor and the quiccla_opportunistic_neighbor are respon-

sible for the entire QUICCL session establishment procedure, i.e. the initiation of a QUIC con-

nection followed by the SESS_INIT message exchange and the computation of the resulting

session parameters. After the session is established, in order to deal with its normal operation,

they both start a new quicclav1_session (for QUICCL version 1) and add it to the manager.

In case future QUICCL versions are designed and implemented in Unibo-BP, during session

establishment the planned neighbor and the opportunistic neighbor should detect the version

in order to select the appropriate implementation.

4.7 QUICCLAv1 session

The quicclav1_session class manages a specific QUICCL session after it has been initiated.

Since QUICCL sessions are almost symmetrical after they are established (the only asymmet-

rical aspect being stream numbering), it is not necessary to handle active and passive connec-

tions separately.

Whenever the BPA requests to send a bundle, the manager’s send_pdumethod is called, which

in turn calls send_pdu on the appropriate QUICCL session. This method adds the bundle to a

queue of outbound PDUs for that session.
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At its creation, a QUICCLA session starts one sender thread and one receiver thread. The

sender thread repeatedly waits for new bundles in the outbound queue and sends them, while

the receiver thread repeatedly receives messages from the peer and reacts to them accordingly.

Depending on whether the --single-stream command-line flag is enabled, the sender thread

may adopt either the “single stream” or the “unlimited multi-stream” policy, both described in

3.6.1:

• If the single stream flag is enabled, the first stream allowed by the QUICCL protocol is

always chosen, thus if the local node is the active peer it always sends on stream 4, while

if it is the passive peer it always sends on stream 1.

• Otherwise, multiple streams are used: each stream has a boolean busy state associated

to it; when sending, the lowest-numbered non-busy stream is chosen and marked as

busy (if none exists, a new one is created); once the bundle is fully acknowledged or

refused by the peer, the receiver thread marks the stream as non-busy, so it can be used

by the sender for a new bundle.

When a bundle is sent, a new entry is added to a per-stream acknowledgment queue, which

is shared between the sender and the receiver. This entry contains information about ac-

knowledgments related to that bundle, most importantly its full length, the sent length and

the acknowledged length. When the receiver thread receives an ACK_SEGMENT, it updates the

acknowledged length, and once the bundle is fully acknowledged the entry is removed.

The receiver thread, on the other hand, always reads inbound data from all streams, as the

protocol requires.

4.8 Build system

The build tool used by Unibo-BP is CMake [CMake], which facilitates cross-platform com-

pilation. On the basis of platform-agnostic rules, declared by a project’s developers in files

called CMakeLists.txt, CMake automatically configures platform-specific build tools, which

in turn build the source code. This allows a project’s codebase to be built onmultiple platforms

without writing platform-specific rules.
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For example, the default native tool used by CMake on GNU/Linux is GNU Make [Make],

which builds a project’s codebase according to the rules written in a Makefile. When CMake is

invoked on a project, it reads the CMakeLists.txt files and generates a Makefile accordingly,

so that the project can then be built with Make. On Windows, one can instruct CMake to

generate Visual Studio project files instead, without changing the CMakeLists.txt files at all.

As mentioned in the introduction, QUICCL has been implemented as an optional module in

Unibo-BP, because it requires Picoquic as a dependency, a useless overhead at compile time

if the user is not interested in QUICCL. When the CMake variable ENABLE_QUICCL, which is

off by default, is enabled, QUICCL source files and code blocks are added to their respective

CMake targets. For example, the source files in src/io/socket/quic are only compiled if the

flag is enabled.

In order to download and compile Picoquic from its Git repository in a way that is transparent

to the user, we took advantage of the CMake module FetchContent [CMake-FetchContent].

This is particularly effortless in Picoquic’s case, because it also uses CMake.

Picoquic in turn depends on the picotls library, but it is also capable of using FetchContent

internally to obtain it if the CMake flag PICOQUIC_FETCH_PTLS is enabled.

The following listing shows the CMakeLists.txt file used to fetch Picoquic.

if (WITH_QUICCL)
include(FetchContent)
FetchContent_Declare(picoquic

GIT_REPOSITORY https://github.com/MAC-Projects/picoquic.git
GIT_TAG origin/master

)

# Make sure Picoquic fetches picotls:
set(PICOQUIC_FETCH_PTLS ON CACHE BOOL "" FORCE)
FetchContent_MakeAvailable(picoquic)

set(pico_targets picoquic-core picoquic-log picotls-core picotls-fusion
picotls-minicrypto picotls-openssl)

foreach(target IN LISTS pico_targets)
set_target_properties(${target} PROPERTIES POSITION_INDEPENDENT_CODE ON)

endforeach()

find_package(OpenSSL REQUIRED)
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add_library(third-party-picoquic INTERFACE)
target_include_directories(third-party-picoquic INTERFACE

${picoquic_SOURCE_DIR}/picoquic ${picoquic_SOURCE_DIR}/loglib)
target_link_libraries(third-party-picoquic INTERFACE

${pico_targets}
OpenSSL::SSL OpenSSL::Crypto

)
endif()

This code performs the following actions:

• It declares the Picoquic Git repository, specifying a branch. If necessary, it is also pos-

sible to fetch a specific commit – this is generally advised, because changes in the de-

pendency would otherwise require changes in the dependent code; on the other hand,

if both projects are in development and moving quickly, it is convenient to directly use

a Git branch.

• It sets the flag PICOQUIC_FETCH_PTLS, so that Picoquic will in turn fetch the picotls li-

brary, which is its own dependency.

• It makes the Picoquic library (and, by extension, picotls) available to the project.

• It declares an array (pico_targets) which contains a list of the libraries that compose

Picoquic and picotls and enables position independent code on all of them, which is

generally necessary for libraries.

• It finds the OpenSSL package, which is required by Picoquic as well.

• It creates a new CMake library, called third-party-picoquic, in INTERFACE mode,

meaning that it is not a library per se, rather it is only a container for compile-time

information.

• It configures third-party-picoquic so that it is associated with Picoquic’s include di-

rectories, then it links third-party-picoquic to Picoquic’s and its dependencies’ library

files.

In this way, a CMake target can be linked to Picoquic and made to use its include directo-

ries with a single CMake command. The only Unibo-BP target where this has been neces-

sary is the io library, which contains the classes PicoQUICSocket, PicoQUICServerSocket

and PicoQUICContext, the only ones using Picoquic directly:

if(WITH_QUICCL)
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target_link_libraries(io PUBLIC third-party-picoquic)
endif()
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Chapter 5 Wireshark dissector and functional
evaluation

5.1 Wireshark dissector

In order to make it easy to debug and analyze packets containing QUICCL traffic, a Wireshark

dissector for the QUIC Convergence Layer protocol has been developed [QUICCL-Wireshark].

This section is dedicated to a description ofWireshark, its plugin system and how the QUICCL

dissector was implemented.

5.1.1 Wireshark

Wireshark is a cross-platform, free and open-source graphical packet analyzer written in C++,

licensed under the GNU GPLv2 [Wireshark]. A packet analyzer is a tool that can read packet

capture files, that is, files that record network frames that traverse a particular interface over a

defined period. These files can be generated by Wireshark itself (in this case the tool can also

analyze them in real time) or by external packet capturers or analyzers like tcpdump [tcpdump].

More specifically, Wireshark reads the full content of each frame and shows it in a human-

readable form, separating headers that belong to different encapsulated protocols and describ-

ing the fields they contain. The packets are shown in a list, and clicking on one displays its

details on the bottom-left of the window.

For example, imagine a packet containing a non-encrypted HTTP response has been captured.

When it is selected, Wireshark displays a series of expandable menus, each representing a

different network layer. Expanding these menus reveals detailed information extracted from

the corresponding headers. In this case, the resulting sequence of menus might look like the

following:

• Raw frame contents, with general information about the frame that is not held inside it,

such as its arrival timestamp;

• Ethernet header (e.g. source and destination MAC addresses);
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• IPv4 header (e.g. source and destination IP addresses);

• TCP header (e.g. source and destination port, sequence number);

• HTTP header (e.g. status code, content type);

• HTTP payload.

Figure 5.1: Wireshark dissection of an HTTP response: notice the protocol tree on the bottom left.

The components of Wireshark responsible for reading header contents and generating this

human-readable information are called dissectors. There is a Wireshark dissector for nearly

every standardized network protocol, including QUIC and the Bundle Protocol.

Each dissector is responsible for decoding the header of a particular protocol, after which

it may call another dissector to decode the encapsulated protocol, or offer a mechanism for

dissectors to register based on matching rules (for example, dissectors can indicate to the TCP

dissector that they should be used for connections directed to a specific port). This creates a

call stack, where each dissector outputs the information it retrieves, optionally calls another

dissector and then returns to the caller. For each network frame, the first dissector that is

called is always the frame dissector, which displays general information about the frame and

calls an appropriate Data-Link dissector (e.g. Ethernet) on the basis of the frame contents.

A very large number of dissectors is included by default in Wireshark, under the path epan/
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dissectors of the source tree; usually, a dissector is a simple C source file which includes the

following functions, where protoname stands for an identifier of the protocol being dissected:

• dissect_protoname(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void

*data): dissects the frame portion which contains data of the protocol at hand; the pa-

rameters have the following meaning:

– tvb: a testy, virtual buffer containing the protocol data (testy means that it checks

for out-of-bounds errors; virtual means that its data is not necessarily physically

contiguous in memory);

– pinfo: general information about the packet, shared between all dissectors in the

stack;

– tree: a handle to theGUI treewhere information about the packet should be added;

– data: optional data received from the dissector of the protocol which encapsulates

this protocol;

• proto_register_protoname(void): is responsible for registering the protocol and the

dissecting function in Wireshark’s internal data structures;

• proto_reg_handoff_protoname(void): defines under which circumstances this dissec-

tor should be called; for example, an HTTP dissector should be called when a TCP con-

nection on port 80 is captured.

To add a new dissector to the Wireshark code, one should call its implementation file packet-

protoname.c, place it into the Wireshark source tree under epan/dissectors, and add it to

epan/dissectors/CMakeLists.txt. Then one should recompileWireshark, resulting in a sep-

arate Wireshark build with the new dissector.

Unless the goal is for the dissector to be included in the official Wireshark distribution, one

might prefer to write a dissector in the form of a Wireshark plugin, to avoid the recompilation

of Wireshark (it takes several minutes on a fast, modern PC) and to be able to distribute the

client standalone. In addition to the functions listed above, a pluginmust contain the following

ones:

• uint32_t plugin_describe(void): returns an enumeration value describing the type

of plugin; in the case of a dissector, it simply has to return WS_PLUGIN_DESC_DISSECTOR;

• void plugin_register(void): calls proto_register_plugin passing in a proto_plugin
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structure, which contains function pointers to the proto_register_protoname and proto_

reg_handoff_protoname functions.

When building a plugin, the result is a shared object file (.so on Linux, .dll on Windows,

.dylib on macOS), which can be distributed to users, who must then include it in their

global or user-specific Wireshark plugin directory. The default global location is /usr/lib/

wireshark/plugins/<wireshark_version>, while the default local one is /.local/lib/wire-

shark/plugins/<wireshark_version>.

There are two ways to make a Wireshark plugin:

• The more traditional way is to insert the plugin source file directly in the Wireshark

tree, under plugins/epan/<plugin_name>. Although the built plugin will be a shared

object file separate from the mainWireshark build, this solution still requires rebuilding

Wireshark to build the plugin.

• An alternative approach, which has become available more recently, is to create the

plugin out-of-tree as a separate project, so that it can be compiled by itself. This requires

the Wireshark development files to be installed on the system, either through a Linux

distribution package manager or by installing them from the Wireshark source code via

CMake.

The QUICCL dissector, described in the following subsection, has been implemented in this

second way.

5.1.2 The QUICCL dissector

For the QUICCL protocol to be recognized correctly by Wireshark, it has to be properly regis-

tered in the function proto_register_quiccl:

void proto_register_quiccl(void) {
proto_quiccl = proto_register_protocol(

"DTN QUIC Convergence Layer Protocol",
"QUICCL",
"quiccl"

);
proto_register_field_array(proto_quiccl, hf_quiccl, array_length(hf_quiccl));
proto_register_subtree_array(ett, array_length(ett));

[...]
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quiccl_handle = register_dissector("quiccl", dissect_quiccl, proto_quiccl);

[...]
}

Similarly to how dissectors above TCP can register based on a port, dissectors above QUIC

can register based on a TLS Application-Layer Protocol Negotiation Identifier. The following

code, placed in proto_reg_handoff_quiccl, binds the QUICCL dissector to connections with

ALPN IDs equal to quicclav1:

dissector_add_string("quic.proto", "quicclav1", quiccl_handle);

This, together with the previous listing, ensures that, whenever a QUIC frame containing

QUICCL data is found, the QUICCL portion of it is passed to the function dissect_quiccl.

Starting from this foundation, two factors need to be taken into consideration:

• Depending on the policy adopted by the QUIC implementation when sending packets,

a single QUIC frame may contain one or more QUICCL messages, or, conversely, a

QUICCL message may be split into multiple QUIC frames;

• Bundles are usually spread into multiple QUICCL messages, unless they are very small.

This means a reassembly mechanism has to be implemented in multiple layers: on the lower

layer, to reassemble QUICCL messages; on the upper layer, to reassemble bundles which will

later be handed over to the Bundle Protocol dissector. Both problems can be solved by using

features offered directly by Wireshark.

In order to reassemble QUICCL messages, the QUICCL dissector can communicate with the

QUIC dissector by setting the desegment_offset and desegment_lenfields of the pinfo (packet

info) structure. When dissect_quiccl is called for the first packet in a connection, it tries to

detect the length of the first QUICCL message:

• If the length cannot be determined because the segment is too short, the QUICCL dis-

sector sets pinfo->desegment_offset to the offset of the beginning of the message in

the frame and pinfo->desegment_len to DESEGMENT_ONE_MORE_SEGMENT. By doing this,

the QUIC dissector will call the QUICCL dissector again at the next QUIC frame of the

64



CHAPTER 5. WIRESHARK DISSECTOR AND FUNCTIONAL EVALUATION

same stream, providing a buffer that contains the previous frame’s data followed by

the new frame’s data, in hope that the message length can now be determined; if not,

the QUICCL dissector keeps responding with DESEGMENT_ONE_MORE_SEGMENT until the

length can be determined.

• If the length can be determined, but the current frame does not contain the full QUICCL

message (i.e. the message length is larger than the frame length), the dissector sets

pinfo->desegment_offset to the beginning of the message and pinfo->desegment_

len to the message length that was determined. By doing this, the QUIC dissector will

call the QUICCL dissector again when the full message has been received.

• If the length can be determined and the current frame contains the full QUICCLmessage,

the dissector dissects the message. If a new QUICCL message is contained after the

dissected one in the same frame, the length check is performed again for that message;

otherwise, the dissector will be called again with the next frame and the length check

will be performed then.

This safely ensures that the QUICCL dissector reassembles full QUICCL messages and can

dissect them one by one. Once amessage has been reassembled, the function dissect_quiccl_

message is called, which takes care of the dissection itself.

Dissecting data in Wireshark is essentially a repetition of the following steps:

• Read a field from the testy virtual buffer at a certain offset;

• Create an item for that field in the protocol tree and/or modify other items;

• Potentially add information to the Info column in the packet list, or so-called expert info,

which is highlighted in the tree, to signal exceptions or other inferred information.

Below an example of reading the Transfer ID (a 64-bit unsigned integer) from a QUICCL XFER_

SEGMENT and adding it to the protocol tree:

uint64_t transfer_id = tvb_get_uint64(tvb, offset, ENC_BIG_ENDIAN);
proto_tree_add_uint64(message_tree, hf_transfer_id, tvb, offset, 8, transfer_id);
offset += 8;

In order to reassemble a bundle frommultiple XFER_SEGMENTs, every time the QUICCL finishes

dissecting the header of a XFER_SEGMENT, it uses the Wireshark functions fragment_add_seq_
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next and process_reassembled_data, providing a unique identifier tomake sure that segment

payloads belonging to the same bundle are associated to each other:

uint32_t reassembly_transfer_id = (uint32_t)transfer_id * 2 +
((ctx->tx_peer == ctx->convo->active) ? 1 : 0);

fragment_head *frag_msg = fragment_add_seq_next(
&transfer_reassembly_table, tvb, data_offset, pinfo,
reassembly_transfer_id, &transfer_id, data_length_clamp,
!(flags & QUICCL_TRANSFER_END_FLAG)

);
ctx->transfer_payload = process_reassembled_data(

tvb, data_offset, pinfo, "Reassembled QUICCL transfer", frag_msg,
&transfer_fragment_items, NULL, message_tree

);

The last parameter of fragment_add_seq_next informs Wireshark about whether this is the

segment of this bundle. Once the full bundle is received, ctx->transfer_payloadwill contain

a testy virtual buffer with the full bundle to be passed to the Bundle Protocol dissector, which

can then add its own dissection results to the protocol tree:

call_dissector(bundle_handle, ctx->transfer_payload, pinfo, proto_tree);

As QUIC integrates TLS security, for the QUICCL dissector to function properly the QUIC

dissector has to be able to decrypt traffic. To configure this, the user should navigate to Edit ->

Preferences -> Protocols -> TLS and choose an appropriate method to provideWireshark

with the session keys. The QUICCL implementation in Unibo-BP can be configured to output a

Master-Secret log file by using the --keylog parameter when creating an induct or an outduct

(see 4.4).

An example of the QUICCL dissector in use is shown in Figure 5.2.

66



CHAPTER 5. WIRESHARK DISSECTOR AND FUNCTIONAL EVALUATION

Figure 5.2: The QUICCL dissector in use. The selected frame contains the end of a bundle transfer,
thus the Bundle Protocol dissector was called.

5.2 Functional evaluation

In order to test the functionality of the QUICCL implementation included in Unibo-BP, two

environments have been used:

• A single-machine environment, taking advantage of Unibo-BP’s feature that allowsmul-

tiple DTN nodes to be hosted on the same node;

• A virtual testbed created by using Virtualbricks, a virtualization tool specialized in the

arrangement of virtual networks.

This section is devoted to a description of these environments.

5.2.1 Single-machine environment

The Unibo-BP daemon relies on a few Unix sockets written under the .unibo-bp subdirectory

of the directory fromwhich it is started. DTN applications that want to connect to this daemon

must either be started in this directory or configured to use a different directory by means

of the UNIBO_BP environment variable. The default mechanism makes it very easy to create

multiple nodes on the same machine; firstly it is necessary to create a subdirectory for each
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node; then a daemon must be started in each directory; lastly, applications started in one of

these directories automatically connect to the daemon started in the same directory.

In Unibo-BP’s Git repository [Unibo-BP], the config_scripts/n_nodes directory contains

some configuration files to start local testing environments that use an arbitrary number of

nodes. These environments are controlled by the use of four scripts with self-explanatory

names: start-scenario, stop-scenario, force-stop-scenario and cleanup-scenario. Each

of these scripts takes one argument: the path to the scenario’s configuration directory. This

directory is structured as follows:

• It contains a subdirectory for each node, each with the following scripts, which are run

when starting the scenario:

– start-deamon.sh: starts the Unibo-BP daemon;

– induct.sh: configures CLA inducts;

– outduct.sh: configures CLA outducts;

– service.sh: starts necessary application-layer programs;

• It contains a nodes.txt file with a list of the node directories, one per line;

• It contains a common directory with the following scripts, which are run in each node

when starting the scenario:

– cla.sh: starts the necessary CLAs;

– region.sh: configures regions;

– extension.sh: if needed, configures Unibo-BP extensions such as RGR and CGRR;

– routing.sh: if needed, configures routing parameters;

– contact-plan.sh: configures contacts.

At present, the only preconfigured environment, sc-2-hops, uses three nodes connected to

each other in a row, forming two DTN hops. The convergence layer used in this environment

is TCPCL. In order to perform simple QUICCL tests, an environment named sc-2-hops-quic

was created.

This scenario is identical to the previous one, the sole difference being the convergence layer.

As a consequence, the only configuration worth showing is that related to convergence layers.

The cla.sh script simply starts QUICCL and adds its PID to the pids file, used by other scripts
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to stop the scenario afterwards:

#!/bin/bash
unibo-bp-quiccl --daemon | awk '{print $2}' >> pids

The induct.sh script is identical in each node (except for the UDP port), and simply starts an

induct:

#!/bin/bash
unibo-bp-admin quiccl induct add --port 4561

The outduct.sh script for the first node starts an outduct towards the second node, logging

TLS keys for potential Wireshark dissection:

#!/bin/bash
unibo-bp-admin quiccl outduct add \

--peer ipn:2.0 --hostname localhost --port 4562 --keylog keys.log

The outduct.sh script for the second node starts an outduct towards the third node:

#!/bin/bash
unibo-bp-admin quiccl outduct add \

--peer ipn:3.0 --hostname localhost --port 4563 --keylog keys.log

Since QUICCL sessions are bidirectional, with this configuration it is possible to send bundles

between any pair of these nodes in either direction, using the second node as a DTN router

for communications between the first and the third.

This testing environment has certain benefits and drawbacks:

• On the one hand, it is easy to deploy and to configure, making it an ideal option to verify

proper operation of QUICCL during development;

• On the other hand, it is quite limited: all traffic is effectively looped back on the network

layer, making it almost impossible to emulate real-world channels (e.g. channels with a

low bandwidth or high delay).

5.2.2 Virtual testbed

Virtualbricks [Virtualbricks] is a free software tool for Linux machines that makes it possible

to configure virtual testbeds composed by an arbitrary number of virtual machines connected
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in a network configuration. Virtualbricks mainly uses two technologies under the hood:

• QEMU: a very well-known virtualization ecosystem, which also supports hardware vir-

tualization, making it capable of reaching near-native speeds;

• VDE: a set of programs, developed by Prof. RenzoDavoli from theUniversity of Bologna,

which provide virtual Ethernet controllers; these are used by Virtualbricks to connect

the virtual machines to each other by setting up switches and channel emulators.

Depending on the configuration, Virtualbricks machines can be accessed by SSH, but the usual

graphical output is also supported.

Virtualbricks testbeds can be saved as “projects”, which can be copied and deployed on a differ-

ent machine in a very easy way. For these tests, a testbed named DTN3hops was specifically

created; it can be freely downloaded from [CNRL].

The layout of this testbed, shown in Figure 5.3, contains four machines in line (VM1, VM2,

VM4, VM6), forming three hops, and a fifth machine (VM3) in the same network as VM1 and

VM2. VM5 is omitted because older versions of the testbed had four machines with two hops

and the fifth machine was represented by the host.
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Figure 5.3: Layout of the DTN3hops testbed.

Unibo-BP with QUICCLwas installed and configured on all of these machines, using a number
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of DTN configurations over time, including but not limited to the following:

• The only two DTN nodes are VM1 and VM6, while VM2 and VM4 act as simple IP nodes,

resulting in a single DTN hop;

• VM1, VM2, VM4 and VM6 are all DTN nodes, resulting in three DTN hops;

• VM1, VM3 and VM6 are DTN nodes and the DTN hops are formed by the pairs VM1–

VM3 and VM3–VM6.

Unibo-BP is configured on each of these machines by means of a single file named start.sh.

A possible configuration for VM2 is the following (configurations irrelevant to QUICCL have

been omitted):

#!/bin/bash

unibo-bp start --set-storage-size 2000000000 \
--dtn-admin dtn://vm2.dtn --ipn-admin ipn:2.0 \
--daemon

[...]

unibo-bp-tcpcl --daemon
unibo-bp-quiccl --daemon

[...]

unibo-bp-admin tcpcl induct add
unibo-bp-admin quiccl induct add

unibo-bp-admin quiccl outduct add --peer ipn:1.0 --hostname 10.0.1.1
unibo-bp-admin quiccl outduct add --peer ipn:3.0 --hostname 10.0.1.3
unibo-bp-admin quiccl outduct add --peer ipn:4.0 --hostname 10.0.2.4

This file makes VM2 open three outducts towards VM1, VM3 and VM4, resulting in three bidi-

rectional QUICCL sessions (those machines can send bundles to VM2 as well). An alternative

configuration could involve outducts from VM1, VM3 and VM4 to VM2 instead, with similar

results.

After a problem with the bandwidth limitation features of the channel emulator of Virtual-

bricks (vde-netemu) was discovered (it introduced disorder on frames), we decided to use the

network emulator included in Linux, tc netem [tc-netem], to emulate real-world properties.

The netem emulator allows the user to apply a series of challenges to outbound packets on a
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certain interface, such as limited rate, delay, loss, duplication and corruption. For example,

the following command sets a rate of 10Mb/s, a delay of 500ms and a 1% packet loss on the

interface eth0, replacing any existing netem rules:

tc qdisc replace dev eth0 root netem rate 10Mbit delay 500ms loss 1% limit 10000

The limit parameter specifies how many packets netem should be able to hold in its queue,

dropping incoming ones when the queue is full (drop tail policy).

A virtualized testing environment like this complements the testbed based on a single machine

used during QUICCL development, as it is able to emulate a real-world scenario much better,

but at the price of a higher complexity.

5.3 Performance analysis

TheVirtualbricks testbed just describedwas used to carry out a thorough performance analysis

of QUICCL in conjunction with Luca Andreetti. This section contains a brief introduction

to the scenarios and some results for demonstration purposes only; for a more exhaustive

treatment, the reader is referred to Luca Andreetti’s thesis [Andreetti-2025].

Following the suggestion of our co-supervisor, we considered scenarios where a spacecraft

sends data to a ground station, with the following characteristics:

• Data rate: 100Mb/s;

• Round-trip time: 10ms, 125ms, 2s;

• Packet error rate: 10%, 1%, 0.1%, 0.01%;

• Contact duration: persistent and with interruptions of duration 10ms, 50ms, 100ms, 1s,

10s, 100s, 200s; the first four are considered unplanned interruptions (i.e. the link is

down, but the contact is up), the last three are planned (i.e. both the link and the contact

are down).

• Number of streams: single stream, unlimited streams;

• Configurations:

– For all scenarios: no data can be sent to the ground station during the interruption;

– In addition to the configuration above, only for scenarios with planned interrup-

72



CHAPTER 5. WIRESHARK DISSECTOR AND FUNCTIONAL EVALUATION

tions: during the interruption, the ground station is reachable by routing the bun-

dles through another spacecraft.

The performance tests themselves were conducted using the tool DTNperf [DTNperf], an

Iperf-like performance evaluation tool for the Bundle Protocol developed at the University

of Bologna. DTNperf also supports bundle status reports, which have been used to log infor-

mation about each test.

The graphs in Figures 5.4 and 5.5 show comparisons of single-stream andmulti-streamQUICCL

when sending a burst of 10 bundles in two different environments: in both cases the channel

has a bandwidth of 100Mb/s, but while in the first case the transmission rate is artificially

limited to 10Mb/s, in the second case it is constrained by competing UDP traffic at 90Mb/s.

In both environments, the difference between single-stream and multi-stream QUICCL can

be clearly observed: when a single stream is used, the bandwidth is fully dedicated to one

bundle at a time, allowing the bundles to reach the destination gradually and in order. In

contrast, with multiple streams, the entire burst is delivered nearly simultaneously, leading to

a longer average delivery time and potential disorder (the latter did occur in these experiments,

though not visually obvious). Note that in the second graph the time axis is in a different scale,

highlighting the impact of losses introduced by competing traffic, which cause severe latency

in bundle delivery.
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Figure 5.4: Bundle transmission and reception – comparison of single-stream and multi-stream
QUICCL on a channel with 100Mb/s bandwidth and 25ms RTT, sending at 10Mb/s.
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Figure 5.5: Bundle transmission and reception – comparison of single-stream and multi-stream
QUICCL on a channel with 100Mb/s bandwidth and 25ms RTT, competing with UDP traffic at 90Mb/s.
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Chapter 6 Conclusions

The objective of this thesis was to design and implement a new protocol, theQUIC Convergence

Layer Adapter, to enable communication between two Delay-Tolerant Network (DTN) nodes

over a QUIC connection. This document presented the complete process of research, design

and implementation of the protocol. The project was carried out at the German Aerospace

Center (DLR) in cooperation with the University of Bologna, addressing topics of interest to

both institutions.

Thework beganwith an in-depth study of the existing TCPConvergence Layer Adapter, which

solves a similar problem, analyzing both of its versions. The focus then shifted to the QUIC

protocol, with particular attention to its distinguishing features compared to TCP. Based on

this research, the QUICCL protocol was designed as an adaptation of TCPCL that leverages

the full capabilities of QUIC.

Following the design phase, the internal mechanisms of the Unibo-BP and Picoquic libraries

were examined in detail to make the most of the implementation environment. QUICCL was

developed on the basis of the existing TCPCL implementation, following common software

engineering principles.

To facilitate analysis of the developed product, a dedicatedWireshark dissector was developed.

This required preliminary research into existing dissectors followed by an implementation

phase.

Finally, the product was evaluated in terms of functionality and performance, utilizing both

built-in features of Unibo-BP and external tools. The results confirmed that the implementa-

tion meets its initial objectives: QUICCL operates correctly and its performance is in line with

expectations.

The program has been released as part of Unibo-BP under the GNU GPLv3 license, in hope

that it will be useful for future research.
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