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Abstract

Biases and discriminations are present in several Artificial Intelligence (AI) sys-
tems as much as they are rooted in the society. Fairness in AI refers to the
development of software systems that do not exhibit biases or systematic discrim-
inations against specific individuals or groups. Addressing fairness is particularly
challenging because it requires balancing ethical, social, legal, and technical ex-
pertises. This thesis proposes a meta-methodology for building fair AI systems,
offering both a conceptual framework and a concrete software tool implement-
ing the methodology. Instead of a single solution for all kinds of AI systems,
this meta-methodology provides a flexible, adaptable approach that can be tai-
lored to different domains and cultural contexts. The methodology is based on a
Question–Answering mechanism, which guides the users through a structured flow
of questions and answers, automating – behind the scenes – technical steps to build
eventually a fair AI system. By leveraging a questionnaire, the system gathers con-
textual and domain-specific information, applying related socio-legal constraints
to ensure fairness. This form of interaction allows making well-informed decisions,
even without deep technical knowledge, consequently increasing the fairness prob-
lem awareness. The proposed approach is easily adaptable and evolvable, in order
to keep up with the changes in the domain of the system under design, and to
refine the methodology over time.
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To my insecure, unskilled, and determined past self.
And to all the people who believed in him.
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Chapter 1

Introduction

Fairness is a fundamental ethical and social principle that ensures impartiality,

equity, and justice in decision-making processes. In the context of Artificial In-

telligence (AI), fairness pertains to the development of software systems that do

not demonstrate biases or systematic discriminations against specific individuals

or groups. Achieving fairness in AI is a complex challenge, as many AI systems

reflect historical societal biases and discriminations present in the data they are

trained on. Moreover, the multidisciplinary nature of fairness requires integrating

insights from computer science, ethics, law, and social sciences, making this chal-

lenge further complicated. Addressing these issues is essential to prevent damaging

consequences in high-stakes domains such as hiring, criminal justice, healthcare,

and finance.

The implications of unfair AI are pervasive and far-reaching. Discriminatory

algorithms can reinforce existing societal inequalities, disproportionately impact-

ing marginalized communities. For instance, biased AI models in dermatology

have led to incorrect diagnoses for skin diseases in black individuals due to train-

ing data lacking diverse skin tones [DVN+22]. Similarly, AI-driven loan approval

systems have been documented to deny home loans to black people based on his-

torical biases embedded in financial datasets [WYBM20]. Despite these examples,

many people are not even aware of the fairness problem and consequences that can

arise. For these reasons, lots of effort in research has been put in the last years to

address this critical field.
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Since AI capabilities and use cases have significantly increased in short time,

there is a lack of engineering methodologies to develop fair AI systems. The objec-

tive of this thesis is to provide a (meta-)methodology to build fair AI systems. The

methodology should assist both stakeholders and engineers in addressing fairness

during AI systems creation. It has no ambition to be a one-size-fits-all solution, but

rather a flexible and adaptable framework that can be tailored to different contexts

and applications. The complementary objective is to reify the methodology into a

software system, creating a practical tool easy to use and accessible also to non-

technical people. The core of the methodology is a Question–Answering (Q/A)

mechanism, that guides users through a structured flow of questions and answers.

During this flow, the software system collects information about the system do-

main, rationalizes fairness-related issues, and automates technical steps in order to

train and build—in background—a fair AI system. This work acts on the whole AI

lifecycle, taking into account fairness considerations since the beginning of the pro-

cess, reducing the presence of biases in the system. The methodology is designed

to facilitate the translation of socio-legal requirements into technical constraints,

because this represents one of the main challenges in the field.

It is worth highlighting that the contribution of this thesis is a central outcome

of the Horizon Europe project “Assessment and Engineering of eQuitable, Un-

biased, Impartial and Trustworthy Ai Systems” (Aequitas, G.A. 101070363)1,

which aims to promote fairness, accountability, and transparency in AI-driven sys-

tems, by involving a consortium of academic and industrial partners from different

countries. Furthermore, a preliminary version of the work presented in this thesis

has been accepted for publication in the Proceedings of the 58th Hawaii Interna-

tional Conference on System Sciences (HICSS) [CMS+25]. For all these reasons,

our contributions have undergone a thorough validation process, involving not

only the anonymous reviewers of the conference, but also the Aequitas consor-

tium partners, which validated our work from both a conceptual and technical

perspective. The practical software tool has been tested and validated through a

series of focus groups involving experts and unprivileged groups. In addition, the

methodology and its software implementation have been validated through project

reviews, receiving positive feedback from external reviewers. Feedbacks have been

1https://cordis.europa.eu/project/id/101070363
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used to improve and evolve the methodology and the corresponding to technology

to their present form, and will contribute to their future development.

Structure of the Thesis. Chapter 1 introduces the topic of fairness in AI

and outlines the objectives of the thesis. Chapter 2 provides a comprehensive

overview of fairness, its significance nowadays, and the challenges associated with

achieving it in AI systems. Chapter 3 presents the conceptual contribution to this

thesis: a meta-methodology aiming to address fairness in AI systems. Chapter 4

illustrates the design of the produced software artifact that implements the meta-

methodology. Chapter 5 goes deeper into the software implementation details,

providing low-level and technical choices. Chapter 6 discusses the validation of the

meta-methodology, highlighting strengths and limitations. Chapter 7 concludes

the thesis, summarizing the core of the contribution and describing future research

directions.
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Chapter 2

Background

2.1 What is Fairness?

Fairness, from an ethical and social perspective, is the principle of treating in-

dividuals and groups equitably, ensuring that no one is unjustly advantaged or

disadvantaged due to biases, discrimination, or arbitrary distinctions. It is deeply

rooted in moral philosophy, legal systems, and societal norms, aiming to promote

justice, equality, and inclusion. A just society requires reducing social inequali-

ties, and ensuring that opportunities and resources are distributed in a way that

acknowledges both individual merit and systemic disadvantages. The concept of

fairness evolves based on cultural, historical, and contextual factors, reflecting a

society’s commitment to ethical treatment and social cohesion.

Fairness in AI. From a technical point of view, fairness in AI refers to the devel-

opment and deployment of AI systems that minimize biases and prevent discrim-

inatory outcomes. It involves designing systems that ensure equitable treatment

across different demographic groups, particularly those historically marginalized

or disadvantaged [JMCB22]. The main challenges in this field are building fair-

by-design systems—in which fairness is addressed since the very beginning of the

process—and detecting biases in already existing systems, mitigating them if pos-

sible [KBP+24].

Before the advent of fairness, AI systems were developed with the primary

CHAPTER 2. BACKGROUND 5
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goal of optimizing performance metrics, such as accuracy. Nowadays, that fairness

is becoming a crucial aspect to consider, accuracy is no more the only metric to

optimize. It is necessary to find a balance between accuracy and fairness. Besides

that, fairness can also be in contrast with the performance of the model, making

difficult to find a good trade-off between these two aspects.

Fairness is becoming crucial because AI systems increasingly influence decision-

making processes in various sectors of society, including hiring [RFV24], lend-

ing [EPL23], and healthcare [UKF+24]. If AI models are biased, they can perpet-

uate and even amplify existing societal inequalities, leading to unjust outcomes

and dangerous effects on individuals and communities [Fer24]. Ensuring fairness

in AI enhances trust, transparency, and accountability, making AI systems more

ethical, reliable, and beneficial for society.

AI has undergone significant advancements over the past few decades, caus-

ing an enormous increase in its adoption across various domains, until becoming

pervasive in the daily life of people [Fer24]. This also caused a growing of biases

in AI systems, as discriminations are intrinsically part of the human history, and

consequently of the data that AI systems are trained on [Fer24].

AI is now widely used in critical domains, as previously mentioned, where bi-

ased decisions can have life-altering consequences [Fer24]. For instance, in health-

care, biased algorithms may lead to misdiagnosis or unequal treatment recom-

mendations for different demographic groups; in finance, AI-driven credit scoring

models can reinforce discriminatory lending practices, limiting access to finan-

cial resources [EPL23]; in the criminal justice system, biased predictive policing

and risk assessment tools can disproportionately target marginalized communi-

ties [Jos24]. Given these risks, ensuring fairness in AI is essential to preventing

discrimination, maintaining ethical standards, and safeguarding people.

On Multidisciplinarity. Achieving fairness in AI requires a multidisciplinary

approach that integrates insights from computer science, ethics, law and social

sciences. Technical methods alone cannot fully address fairness, as it is deeply

tied to societal values, human rights, and legal frameworks. Socio-legal experts

help define fairness principles, ensure compliance with anti-discrimination laws

and analyze the societal impact. The intersection of these fields highlights that AI
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fairness is not merely a technical challenge but a complex, multidimensional issue

requiring collective effort and interdisciplinary research and collaboration.

An impactful example regarding the work of legal experts in the field of Arti-

ficial Intelligence is the AI Act [Mad21]. The AI Act, proposed by the European

Union, is a comprehensive regulatory framework designed to ensure that AI sys-

tems are safe, transparent, and aligned with fundamental rights. It categorizes AI

applications into different risk levels—unacceptable risk, high risk, limited risk,

and minimal risk—imposing stricter requirements on higher-risk systems, such as

those used in hiring, law enforcement, and healthcare. These requirements include

transparency, human oversight, and bias mitigation. However, translating these

legal constraints into practical technical steps is not trivial.

Concepts like fairness, accountability, and explainability are difficult to quan-

tify, and AI models often operate as black boxes, making compliance complex.

While the AI Act sets an important precedent for AI governance, its effective im-

plementation requires further collaboration between policymakers, legal experts,

and computer scientist to bridge the gap between regulation and technical feasi-

bility.

Measuring Fairness. At one point, in order to assess the fairness of an AI

system, is important to have a way to “measure” how much the system is fair and

in what terms. Remarking what said before, fairness is very context-dependent,

and there is not a single method to measure it.

The need to cover multiple aspects of fairness has led to the introduction of

various fairness metrics—statistical formulas that quantify fairness in different

ways, each capturing a slightly different aspect of fairness. These fairness metrics,

are a set of indexes that can be used to detect biases in AI systems, and they can

be used indeed to evaluate the fairness of a model.

In the following, are listed two of the most common fairness metrics used in

the literature [IML23]:

� Statistical Parity Difference (SPD) [DHP+11] measures the difference be-

tween the probability of the privileged and unprivileged classes receiving a

favorable outcome. This measure should be equal to 0 to be fair.
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Formally it is defined as SPD = P (Ŷ = 1|A = a)− P (Ŷ = 1|A = b) where

A is the sensitive attribute, Ŷ is the predicted outcome, and a and b are the

privileged and unprivileged groups, respectively.

� Disparate Impact (DI) [FFM+15] compares the proportion of individuals

that receive a favorable outcome for two groups, a privileged group and an

unprivileged group. This measure should be equal to 1 to be fair.

Formally it is defined as DI = P (Ŷ = 1|A = a)/P (Ŷ = 1|A = b) where A

is the sensitive attribute, Ŷ is the predicted outcome, and a and b are the

privileged and unprivileged groups, respectively.

2.2 AI Lifecycle

Since the very beginning of the AI era, the standard lifecycle consists of the fol-

lowing “traditional” steps: (i) data collection and processing, (ii) model training,

(iii) system evaluation. Obviously, this workflow in the latest years have increased

in complexity and now, with the newer innovations and powerful models and ar-

chitectures, it may appear even almost minimalistic, but it still represents the core

of all AI systems. However, when fairness is taken into account, each step needs

to be revisited in order to obtain an equitable, impartial, and fair AI system.

To achieve this goal, the technical perspective is not enough. Fairness is a mul-

tidisciplinary concept that involves social, legal, and ethical aspects. Therefore,

the AI lifecycle needs to be constrained by socio-legal requirements that engineers

must consider during the development process. This includes understanding the

societal impact of AI systems, ensuring compliance with legal standards, and ad-

hering to ethical guidelines.

There are also many differences between the socio-legal and technical perspec-

tives. Regarding the AI lifecycle, engineers tend to focus on technical aspects

and few development phases, in fact the major part of the literature speaks only

about pre-processing, in-processing and post-processing (Figure 2.1). Respectively,

pre-processing involves data collection and preparation, in-processing refers to the

model training phase, and post-processing deals with the fair evaluation of the AI

system.

8 CHAPTER 2. BACKGROUND



2.3. PRACTICAL ISSUES

Figure 2.1: Fair AI lifecycle from [CCMO23]

Often engineers adopt reductionist approaches addressing a field that is not

their own, discarding the big picture of social, economic, and institutional con-

straints. On the other hand, socio-legal experts consider a broader range of ac-

tivities and phases. They focus on “building blocks” for fair AI such as risk as-

sessment, stakeholder identification, regulatory analysis, and fundamental human

rights impact assessment. In particular, with respect to fundamental rights impact

assessments, these will be legally required for some AI systems, yet no standard

for implementing them has emerged so far.

2.3 Practical Issues

2.3.1 What is (un)fair?

Fairness in AI (and beyond) is inherently subjective, shaped by cultural values,

ethical theories, and individual perspectives. What one group considers fair may

not align with other people’s understanding, leading to debates about determin-

ing what is just and what is not [JMCB22]. This subjectivity and variation in

viewpoints complicates efforts to develop standardized fairness metrics, as no sin-

gle approach can universally capture the diverse and often conflicting notions of
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fairness present across different social, legal, and institutional contexts.

Beyond its subjectivity, fairness is also highly context-dependent. The same

algorithm might be considered fair in one application but biased in another, de-

pending on the societal, legal, and institutional constraints surrounding it. For

instance, fairness considerations in hiring algorithms differ from those in criminal

justice risk assessments, necessitating tailored approaches rather than generic so-

lutions. Moving forward, privileged and unprivileged groups change depending on

the application domain, as well as the fairness criteria that are taken into account.

2.3.2 Bridging Perspectives

Bridging the socio-legal and technical perspectives on fairness is a significant chal-

lenge. Guidelines and descriptive methodologies exist to address fairness compli-

ance from a social-legal perspective, but their approach offer broad guidelines with-

out defining practical steps, leaving interpretation to technical experts [CMS+25].

The lack of alignment between these viewpoints makes it difficult to translate ab-

stract fairness principles into concrete computational methods. This also leads

to a proliferation of metrics, each measuring slightly different aspects of fairness,

reflecting the diverse priorities and domain perspectives.

A fundamental obstacle to this integration is the differing language used by

socio-legal experts and technical people. It is difficult to reach an agreement if even

a concept or term can assume different meanings depending on the perspective.

This linguistic division creates a barrier to interdisciplinary collaboration, leading

to misunderstandings even when working towards shared goals.

These perspectives are shaped also by distinct academic and methodological

backgrounds. Legal and ethical frameworks tend to be verbose and highly context-

specific, relying on various interpretations and case-by-case analyses. In contrast,

technical disciplines prioritize concrete steps and pragmatic aspects.

In literature, there is a lack of methodologies regarding the building of fair

AI systems. The lack is not just related to the technical perspective, but also

to the socio-legal one. This is enhanced by the fact that design and develop a

single methodology fitting all kinds of AI systems is not feasible, as the system

requirements and constraints change depending on the context and the applica-
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tion domain. Of course, the creation of such methodology is complicated by the

multidisciplinary complexity of the problem, and should involve expertises across

all the relevant fields.
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Chapter 3

The Meta-Methodology

A methodology is a structured framework that outlines the principles, processes,

techniques and best practices used to conduct research or develop systems in a

systematic and reproducible manner. In this context, a well-defined methodology

would be essential for ensuring fairness, as it would provide a rigorous approach

to (i) translating socio-legal requirements into technical steps, (ii) identifying and

mitigating biases, and possibly (iii) building fair-by-design systems.

Having a rigorous methodology would positively impact the development of fair

AI systems. It would represent a clear path to follow, encapsulating the already

existing unclear guidelines provided by the socio-legal frameworks. Unfortunately,

factors such as multidisciplinarity, complexity, and context-dependency make it

difficult to design a single methodology that fits all contexts and applications.

Therefore, this contribution proposes a meta-methodology that provides a flex-

ible and adaptable framework for design and develop multiple methodologies in-

stead of a single one. The idea of such meta-methodology comes from the sessions

of brainstorming and discussions between experts of different fields, where troubles

have emerged in reaching an agreement and proceeding with clear technical steps

relying on the legal requirements.
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3.1 Desiderata

In the following, are listed the requirements that the meta-methodology should

satisfy.

R1 Requirements Translation: The methodology should assist experts in

translating the socio-legal requirements into practice.

A big challenge in this field, is to understand how legal constraints can be

applied, and how technical steps can adhere to the requirements. That’s why

the methodology should provide a mechanism assisting this phase.

R2 Context and Domain Awareness: The methodology should consider the

cultural context and the domain of AI system under design.

AI systems have been applied in several (and critical) use cases. For each of

them, the constraints and requirements change, hence, through the method-

ology, it should be possible to understand the system domain and be context-

aware.

R3 Adaptability: The methodology should adapt to any change in the cultural

context as it evolves.

Some context could be volatile in terms of societal norms and cultural changes,

so the methodology should be able to adjust and align to new constraints.

R4 Building the AI System: The methodology should not just provide a

theoretical guideline, but also assist the AI system creation.

This means that it is necessary a software reification of the methodology

permitting to be applied practically, obtaining eventually, a fair AI system.

3.2 Concepts

The Roles. In the proposed methodology process, there are two main roles

involved:

1. Business User (BU), who is the person commissioning the AI system.

14 CHAPTER 3. THE META-METHODOLOGY
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2. Technical User (TU), who is the person with technical background, as-

sisting the BU in the development of the AI system.

With respect to BU, it is assumed that he or she may have limited or no

technical knowledge. This is a common scenario in the real world, where often

BUs are people with a specific domain expertise, but not necessarily with technical

skills. One of the goal of the methodology, is to provide a way to assist the BU

in the development of the AI system, without requiring necessarily deep technical

knowledge. Potentially, BU could even build a fair AI system without the need of

a TU.

On the other hand, the Technical User, despite is the person with technical

background, is not the responsible for the entire system development. Firstly, TU

must be able to assist BU during the process to clarify any technicalities that

may arise, and secondly, they must have some knowledge about statistics, and AI

fairness.

Finally, TU may contribute to the system development through the implemen-

tation of scripts/computational processes involved in the building of the system

and integrated in the methodology. In fact, the software reification of the method-

ology will be a tool providing APIs for technical people, in order to permit them

to attach their scripts.

Questionnaire. Discussions among experts from involved fields highlighted the

need for a practical understanding of the domain of the system being designed,

ensuring that it is accessible and comprehensible to people of any background.

The proposed approach relies on a straightforward questionnaire, which directly

engages the Business User with questions regarding the system’s domain.

The questionnaire serves as a structured flow of questions and answers designed

to gather essential contextual information. Depending on that, it provides practical

steps to guide the development of a fair AI system. Questionnaire is not just used

to collect information, it also acts as a tool to assist the BU in making well-

informed decisions. At the same time, questions represent also technical steps to

be taken, addressing the socio-legal constraints in a comprehensible way. This

approach is central to the methodology, owing to its simplicity and versatility in

CHAPTER 3. THE META-METHODOLOGY 15
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Figure 3.1: Concept of the proposed approach to fairness engineering
from [CMS+25].

capturing constraints and supporting multiple use cases. The overall concept is

shown in fig. 3.1.

The pool of questions and answers should be designed ad-hoc from a team of

multidisciplinary experts. This is a crucial, and non-trivial, step in the methodol-

ogy, as the questions should be able to capture the constraints and requirements

from legal frameworks, but also to provide technicalities to be addressed in the

proper way and at the right time in the process.

Examples of questions that could be asked are:

� “In what area will the AI system be applied?” (Healthcare, Finance, Hiring,

etc.)

� “Do you have some AI system already in place, or are you developing an AI

system?”

� “Is the dataset sufficiently representative of the population where the system

will be used?”
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But also more technical questions like:

� “What are the fairness metrics that should be considered?” (Statistical Par-

ity Difference, Disparate Impact, etc.)

� “Which are the proxies for the sensitive features?”

� “Which data mitigation algorithm do you want to use?” (Disparate Impact

Remover, Learned Fair Representations, etc.)

Order of Questions. As mentioned in the previous paragraph, the flow of ques-

tions comprises both generic and technical questions. The questionnaire should

follow a structured approach, beginning with general questions before and grad-

ually introducing more technical aspects. Initially, broad and non-technical ques-

tions are asked to establish a clear understanding of system’s domain, purpose,

and the cultural or business context in which it operates. As the questionnaire

progresses, questions become more specific and technical. At one point it becomes

mandatory to introduce technical aspects because, in the end, questionnaire has

to converge to the effective building of the fair AI system.

There is another important concept related to the order of questions: the

answer to a question can influence the following ones. This feature is to enable

the methodology to adapt to the context and asking later more tailored questions

based on the previous answers. Moreover, it is also useful to enrich the part of

system development, as it should be possible to follow multiple paths to make an

AI system fair. For instance, the Business User could decide to preprocess the

dataset, or choose to perform just in-processing mitigation. These mechanisms

lead to a more flexible and adaptable questionnaire, capable of addressing a wide

range of contexts and applications, enabling also branching and joining paths in

the flow.

Decision Support. The methodology includes—alongside the Q/A—a Decision

Support Mechanism, aiming to simplify the process of making decisions regarding

fairness-related or complex questions. Fairness problem should be taken into ac-

count not just by experts in the field, but also by BUs, as this problem is becoming
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more and more important. Therefore, an important goal of the methodology is

to make the BU aware of the fairness problem, and to assist him/her in making

well-informed decisions. In this way, BU can gain a deeper understanding of the

topic, and can proceed with the development of the system more responsibly. Im-

portantly, the mechanism does not impose decisions but rather suggests to the

BU the answer he or she probably should give.

In addition to showing questions, any software reification of our methodology

should provide supplementary information and resources, like charts and tables,

helping the BU to gain a better insight of what he is doing and to assess the

fairness of the system more effectively.

3.3 The Q/A Mechanism

The Question–Answering (Q/A) mechanism represents the core of this method-

ology. It has been the starting point to bridge the gap between socio-legal and

technical perspectives and provides a structured way to “translate” the legal con-

straints into technical steps, contextualizing them in the application domain. Be-

hind the scenes, the Q/A mechanism is a directed graph that represents the

decision-making process.

About the Graph. Formally, the graph is defined as G = (V,E), where V is

the set of nodes and E is the set of directed edges. Nodes consist of two distinct

types: question nodes and answer nodes. Each question node contains a natural

language sentence expressing an inquiry, plus an identifier (unique within the whole

graph) such as Q1, Q2, etc. They can also contain other arbitrary information, like

the type of question (single or multiple choice), a brief description, and so on.

Answer nodes, similarly, contain a natural language sentence expressing a possible

answer to a question, an identifier (unique within the whole graph) such as Q1-A1,

Q1-A2, etc., and other arbitrary useful information. Edges are of two sorts too:

either question-to-answer edges, denoted by Q → A, or answer-to-question edges,

denoted by A → Q. Edges of the first type (Q → A) indicate that question Q has

as a possible answer A, whereas edges of the second type (A → Q) represent that

next question to be asked is Q if the selected answer to the previous question was
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A.

These statements assume that there cannot exist links between two question

nodes or two answer nodes. It is also assumed that each question must have at

least one outgoing edge leading to an answer node, and each answer node must

have exactly one outgoing edge towards a question node. Moreover, at the current

state, if a question is of multiple choice, it is assumed that each possible answer

leads to the same next question.

Proceeding with the graph details, the root node is the first question to be

asked to each BU, while leaves represent the answers to the last question, which

are, technically speaking, answer nodes with no outgoing edges.

Finally, it is assumed that the graph is connected : each questionnaire is guar-

anteed to have a beginning and an end, meaning that there is at least one path

from the root to each leaf.

Why a Graph? This structure ensures that the graph alternates between ques-

tions and answers, forming a coherent flow of a typical Q/A session. Moreover,

this type of graph is particularly suitable for representing decision-making pro-

cesses, as it allows for a structured flow of questions and answers, guiding the user

through a series of steps. The graph may contain cycles, allowing the repetition

of some questions (and steps), giving even more flexibility to the process.

With the branching feature, it is possible to follow multiple paths, depending

on the answers given by the BU (and so depending on the context). Remarking

the order of questions, the graph effectively encodes a deterministic, yet non-

sequential, flow of questions and answers, where each answer directly influences

the next question to be asked.

The graph is a data structure that can evolve and change easily over time, as

the methodology actually is a meta-methodology, it is possible to create multi-

ple versions of the graph. For instance, it is possible to design different pools of

questions and answers, and indeed different graphs, each one tailored to a specific

context or application domain. Furthermore, this flexibility enables also the possi-

bility to adapt to any change in the cultural context taken into account, leading to

a possible “methodology versioning”. In fact, changing the graph structure means

creating a “new version” of the methodology. New version denotes a graph with
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Figure 3.2: A graphical representation of the Q/A mechanism, viewed as a
graph by experts and as a sequential path by business and technical users
(from [CMS+25]).

different paths of questions and answers, which obviously, addresses diverse needs.

Hence, the methodology can adapt to evolvable cultural contexts, creating new

graphs for each needed change in the application domain.

General Graph vs Project-Related Graph. So far, it has been described the

general blueprint of the Q/A: how to represent questions and answers, how the

graph is structured, how the questionnaire and all its features look like. However,

from the Business User (and Technical User) perspective, the sequence of questions

seems a linear path. It is intentioned that, the person involved in the process, has

the feeling of just compiling a questionnaire, where all the complexity is kept out

of sight. In fig. 3.2 is shown a graphical representation of the Q/A mechanism,

where the flow of questions from users’ perspective is defined by a path in the

graph.

The end user can navigate freely through the questionnaire, answering ques-

tions and returning to previous ones in case of need. Of course in this way it is

possible to change the path, and so the flow of future questions.
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3.4 Automation

At this stage, it is yet vague how the proposed methodology can inject fairness

measures and technical steps into the development process. Here is the point

where TU contributes to the process, by implementing scripts and computational

operations that are eventually integrated into the final system. Said that, TUs

play an important role because, regardless of the complexity and variety of the

needed scripts, such scripts can change case by case. Moreover, TU is still useful

as source of technical knowledge and assistance for the BU.

However, while many activities performed by technical users are specific to

their respective organizations, certain tasks are generalizable enough to be auto-

mated directly by the implemented methodology. Relevant examples of this, are

the computation of fairness metrics and the identification of biases in datasets.

These, in fact, are enough consolidated to be automated and integrated into the

methodology. Rather than requiring individual technical users to develop their own

solutions from scratch, the system itself can integrate these capabilities as built-

in system-level functions, ensuring consistency, efficiency, and reliability across

different projects.

The reification of the meta-methodology should be purposefully designed to fa-

cilitate this progression toward greater automation. When certain actions–—such

as evaluating responses or detecting biases–—are widely applicable rather than

organization-specific, they can be implemented as reusable system-level solutions.

This eliminates redundancy, reducing the need for technical users to repeatedly

address the same challenges independently.

These scripts, designed to be injected into the methodology, can be provided

by the software implementation of the methodology itself, developed by technical

users within organizations, or contributed by third-party developers. This flexible

approach ensures that automation capabilities can expand over time, adapting to

emerging best practices. In the early stages of system adoption, technical users

may handle certain tasks manually, but as the methodology matures, these tasks

can gradually be automated.

Technically, these scripts can be attached easily to the software implementation

of such methodology, and they can be triggered whenever some kind of events
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occur, like the answer to a question, or termination of another computation.
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Chapter 4

Software Design

The goal of this chapter is to design a software artifact that reifies the meta-

methodology proposed in Chapter 3, in order to make it usable by BUs to develop

fair AI systems. Software design must be flexible and adaptable, as the method-

ology is intended to be subject to changes and improvements over time.

The final product is designed to be used by BUs through an intuitive web

interface. Hence, frontend will interact with the underlying backend which handles

the Q/A mechanism and automates technical steps.

4.1 Architecture

The software adopts an event-driven architecture (fig. 4.1), as events are used to

handle part of the communications between the components. This design choice is

motivated by the need to trigger automation scripts at specific points, for instance,

when a question is answered or when a computation is completed.

The entire system is composed of the following components:

1. Backend: the core of the system, managing the Q/A mechanism and the

automation of technical steps.

2. Database: component handling persistency of questions, answers, and other

relevant information.
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Figure 4.1: The overall software architecture of the proposed software system.

3. Automation Scripts: a set of pluggable scripts that automate technical

steps, such as computing fairness metrics and mitigating biases.

4. Event Broker: component responsible for event handling in the whole sys-

tem.

5. Frontend: the web application that allows BUs to interact with the system.

Clean Architecture. Backend component is the core of the system, it is a web

service encapsulating the business logic managing the Q/A mechanism. It has been

designed using Clean Architecture [Mar17], in order to separate the business logic

from technical details, making the system flexible and technology-agnostic. This

means that high-level business logics do not depend on low-level implementation

details. And besides, it improves the separation of concerns, separating clearly

core concepts, business rules, and technical details.

Therefore, backend is divided into the following layers:

1. Domain: the layer containing the core domain entities.

2. Application: the application-specific business logic.

3. Presentation: the interface between domain entities and the external tech-

nologies.
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4. Infrastructure: the outermost layer, containing the implementation details

technology-specific.

The dependency flow is unidirectional, from the outermost layer (Infrastruc-

ture) to the innermost one (Domain). So, for instance, Application layer and

Presentation layer can depend on Domain layer, but not vice versa.

4.2 Structure

The considered design choices follow the principles of Domain Driven Design

(DDD) [MT15], a software design philosophy that emphasizes the importance of

domain model in the development process. The main goal of DDD is to align the

software system with the domain model, ensuring that the software reflects the

real-world domain as closely as possible. Although the focus of this contribution

is not on the software design phase in itself, the adoption of DDD is motivated

by the volatile nature of the methodology, which is expected to evolve through

contributions and improvements from multiple people.

Projects. In order to introduce the main Q/A entities, it is necessary to define

the concept of Project, which is the association with the AI system that the BU

wants to build. In fact, each ProjectQuestion is related to (and also identified

by) a specific Project. This is not just a way to distinguish multiple AI systems

creations, but also to encode and store project-specific information in a “store”

called ProjectContext (or only Context). This store is essential because each AI

system has its own dataset, features, algorithm, and so on. Since these data can

be of any nature, and are strongly volatile, the idea is to set up a key-value store,

without any kind of constraints, where arbitrary (encoded) information can be

stored. For instance, at some point it will be useful to store a key-value pair where

the key is the name of the dataset, and the value is the encoded dataset itself.

These data then will be available and useful to automation scripts and backend

business logic.

Q/A mechanism. Q/A mechanism can be intuitively mapped to two main

domain entities: Question and Answer. However, it is necessary to distinguish
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Figure 4.2: UML class diagram of main Q/A entities.

between questions and answers that are part of the general graph and those that

are project-related. Therefore, in the domain model are present the related entities

as shown in fig. 4.2.

GraphQuestion represents an extension of the general Question entity, con-

taining a set of answer ids that are meant to “enable” such question in the graph.

In other words, a GraphQuestion is a question that is part of the general graph,

and the set of answer ids is needed to encode the answer-to-question edge (A → Q)

(see section 3.3). With regard to admissible answers, for the GraphQuestion is

sufficient to rely on the general Answer entity because it doesn’t need to have more

information.
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On the other hand, ProjectQuestions are part of the project-related graph,

and each of them is related to (and also identified by) a specific Project. The main

difference between GraphQuestion and ProjectQuestion is that the latter has

the possibility to “select” a certain answer (in the case of single choice questions)

or multiple answers (in the case of multiple choice questions). Indeed, in this

case, answers must have a state representing whether they are selected or not.

ProjectAnswer entity, in fact, is intended to fulfill this need, as it contains a

boolean field, and a SelectionStrategy handling the logics behind the selection.

For each domain entity, other DDD building blocks are defined:

� Factories: to facilitate the creation of new instances.

� Repositories: to manage the persistence of the entities.

� Services: to handle the business logic related to the entities.

From the structural view point, factories and repositories reside in the Domain

layer, as they are intended to simplify the management of domain entities. Services

instead, are part of the Application layer, since they compose the entire business

logic of the system. However, the persistence of the entities strongly depends

on technological details, so, while contracts are defined in the Domain layer, the

actual implementations are pushed away to the Infrastructure layer (as shown in

fig. 4.3).

The same applies to the EventsService, which is a particular service han-

dling the event production and consumption. The reason is that an event-driven

architecture can be achieved using different technological solutions, and business

logic should remain technology-independent. Furthermore, due to this layer orga-

nization, it is possible to easily interchange the underlying technologies without

affecting business logic and core domain entities (for instance using a relational

database instead of a NoSQL one).
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Figure 4.3: Representation of packages structure.

4.3 Behavior

The system behavior is mainly concentrated inBackend andAutomation Scripts

components.

4.3.1 Backend

Backend component is a web service that exposes a REST API, enabling clients

to interact with questions graph and questionnaires. Its primary functionalities

include modifying the questions graph structure (adding, removing, modifying

questions) and managing project-related questionnaires compilations. It is also

possible to create new projects, and, for each of them, starting a new questionnaire

session. Summarizing, backend is a simple listening web server, that manages

requests and trigger events when relevant actions occur.

An important aspect to notice in this component behavior, is the Context

update of various projects. Context updates are essential to the correct business

logic functioning, because the major part of fairness-related computations strongly
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depends on the specific data stored in the Context. For example, all data mitiga-

tion algorithms require the actual dataset, or the computation of fairness metrics

needs the dataset and the selected output and sensitive features. Such computa-

tions, can be executed by both backend and automation scripts, for this reason

Context updates represent a key point in the system behavior.

4.3.2 Automation Scripts

Automation Scripts are responsible for responding to specific domain events, per-

forming necessary (fairness-related) computations, and updating system state.

These scripts act as event-driven processes that listen for predefined triggers, such

as selecting an answer to a question, creation of a new dataset, or completion of a

fairness metric computation. Once the processing is completed, they send relevant

updates back to the backend via API requests, ensuring that the system remains

up-to-date and operates seamlessly without requiring manual intervention.

4.4 Interaction

The starting point of interactions is BU, engaging with the system through the

Frontend component. Frontend is in charge of presenting questions to the BU, col-

lecting answers, and sending them to the backend service. Backend, in turn, pro-

cesses the requests and updates the questionnaire state accordingly. At this point,

backend service triggers an event for each relevant action undertaken, which is

caught by all Automation Scripts previously subscribed to the Broker. Each script

performs its computation, and eventually sends back the results to the backend,

which updates the system state and notifies the frontend to display the results (if

there are any) to the BU. It is also possible that, during computations, are trig-

gered other events for other relevant actions, like the processing of a new dataset.

The entire interaction flow is shown in fig. 4.4.
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Figure 4.4: Generic sequence diagram showing the interactions between main com-
ponents.

4.5 API

4.5.1 Rest

Backend service exposes an API used to interact with the three main entities:

projects, questions graph, and questionnaires. Resources are organized fol-

lowing the REST principles, and each resource is identified by a unique URI. Since

questionnaires are project-related, such resource is under the Project hierarchy.

In fig. 4.5 are shown the main endpoints of the API.

4.5.2 Events

The other method available to interact with the system, which powers also internal

communications, is the event-driven one. This represents an API slightly different

from the classic REST one. Here, API endpoints are channels on which operations

of type send and receive are performed. This type of API enables asynchronous

communication between system components, in this case, the backend and au-
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(a) API for Question opera-
tions

(b) API for Project operations (c) API for Questionnaire op-
erations

Figure 4.5: Backend REST API endpoints.

tomation scripts. That’s fundamental because computations are intended to be

non-blocking in order to allow BU to proceed in the questionnaire compilation.

A documentation example of such API is shown in fig. 4.6 using Async API

specification1. The main concepts in this are:

� Channels: Specific topics where events are published. Each topic corre-

sponds to a particular type of event.

� Operations: Primarily send (publish), to publish events on the channel,

and receive (performing if subscribed to channel), to receive messages

when events are published.

� Messages: Schemas of the objects published on channels.

This API is highly flexible, in fact, when an automation script is created, it

can be attached to a new channel created ad hoc for the script specific purpose.

For instance, a new script can be plugged in simply creating a new channel and

subscribing at it.

1https://www.asyncapi.com
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(a) Publish operation for a channel

(b) Receive operation for a channel

Figure 4.6: Async API channels example.
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Chapter 5

Implementation

This chapter delves into technical details of the software implementation which

reifies the proposed meta-methodology. It provides an overview of the deployed

architecture, and, basing on the design choices made in the previous chapter, it

explains how the various components are actually implemented. The software

implementation can be found on Github1.

5.1 Components

Backend. Backend component is implemented as a web service in Python. The

choice aims to reduce the abstraction gap because python comes with consolidated

frameworks that facilitate development of AI systems. Python represents also a

good choice thanks to its readability and simplicity, which make it easier to be

maintained and extended by developers who were not originally involved in the

project. Flask-restful2 framework has been used to ease the development of the

web service, as it allows the creation of a RESTful API with few lines of code

(listing 5.1).

1https://github.com/aequitas-aod/aequitas-backend and https://github.com/

aequitas-aod/aequitas-frontend
2https://flask-restful.readthedocs.io/en/latest/
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Listing 5.1: Example resource creation with Flask-restful.�
1 questions_bp = Blueprint("questions", __name__)

2 api = Api(questions_bp)

3

4

5 class QuestionResource(Resource):

6

7 def get(self , question_code=None):

8 # ...

9

10 def post(self):

11 # ...

12

13 api.add_resource(

14 QuestionResource ,

15 "/questions",

16 "/questions/<string:question_code >"

17 )
� �
Listing 5.2: Events Service implementation using Kafka in Infrastructure layer.�

1 from application.events import EventsService

2 from infrastructure.events import Producer , Consumer

3

4

5 class KafkaEventsService(EventsService):

6

7 def __init__(self):

8 self._producer = None

9

10 def publish_message(self , topic: str , message: str):

11 if self._producer is None:

12 self._producer = Producer ()

13 self._producer.produce(topic , message)

14

15 def start_consuming(self , topics: List[str], handler):

16 Consumer(topics , handler).start_consuming ()
� �

Event Broker. Apache Kafka3 is used as the event broker to implement the

event-driven architecture. Kafka is a distributed streaming platform that provides

high throughput, scalability, and fault tolerance. The python client of Kafka has

been used to interact with the broker, allowing backend and automation scripts to

publish and subscribe to events. This is achieved by an ad hoc service implemented

in the infrastructure layer (listing 5.2).

3https://kafka.apache.org/
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Figure 5.1: Visual representation of data in the graph database.

Database. For the persistency, the choice fell on a graph database, as it fits well

with the graph structure of the Q/A mechanism (described in section 3.3). The

technical implementation chosen is Neo4j4. It allows for efficient traversal and

querying of the graph, making it easier to manage operations on questions and

answers.

Entities are mapped to the database as nodes and relationships (see fig. 5.1).

In particular, questions graph is mapped as the following: questions and an-

swers are represented as nodes, while relationships between them are represented

as edges. More precisely, let’s consider QG is the node representation of ques-

tion Q and AG is the node representation of answer A (both in general graph).

Edges in Neo4j are associated with a label, so edges of type Q → A are stored

as QG
HAS ANSWER−−−−−−−−−→ AG, while edges of type A → Q are actually stored as

AG
ENABLED BY−−−−−−−−→ QG.

With respect to Project, let’s consider P as its node representation. Key-value

4https://neo4j.com/
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pairs of its Context are stored in P . This is straightforward because each node

in Neo4j can store arbitrary key-value pairs, making it easy and flexible to save

context data. In order to save space, context data that are common to all projects

are stored in a separate node named PublicContext, which is referred if a key is

not found in the specific project node on which the context data is requested.

Eventually, each questionnaire (if exists) is linked to a specific project P

through a relationship P
QUESTIONNAIRE−−−−−−−−−−−→ QP , where QP is the root of the ques-

tionnaire graph (the first question asked), and it is created upon the root of the

general graph. Next questions in the questionnaire path are linked to the previous

ones through relationships of kind Q′
P

NEXT−−−→ Q′′
P . To keep track of the answers

given by the BU, each answer is linked to the corresponding question through a

relationship QP
HES SELECTED−−−−−−−−−−→ AP , where AP is the node representation of the

answer given by the BU.

Automation Scripts. Automation scripts are processes created ad hoc to per-

form specific computations. They just need to adhere to the Async API specifica-

tion to be seamlessly integrated into the system.

These scripts can actually be implemented in any language, but the ones cre-

ated so far are written in Python. One motivation is that this allows scripts to

share backend code, benefiting from reusability. Python is also recommended due

to its extensive support for machine learning libraries and frameworks. At the mo-

ment, the main events identified are: (i) questions.answered, triggered when a

question is answered; (ii) datasets.created, triggered when a new dataset is cre-

ated; (iii) features.created, triggered when features of a dataset are analyzed;

(iv) processing.requested, triggered when a processing request is made.

In fig. 5.2 are shown detailed sequence diagrams of these events.

Frontend. Frontend is implemented as a Single Page Application (SPA) using

React5 and Next.js6. This choice leverages the component-based architecture of

React, which promotes reusability and maintainability of the code. Next.js en-

hances the development experience by providing server-side rendering and static

5https://react.dev/
6https://nextjs.org/
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(a) Sequence diagram of dataset creation. (b) Sequence diagram of mitigation algo-
rithms.

(c) Sequence diagram of answering a question.

Figure 5.2: Detailed sequence diagrams describing interactions between system
components when main domain events occur.
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site generation. The component-based architecture fits well because the question-

naire can evolve, and the frontend must be arranged to be changed accordingly. A

web-based technology has been chosen for several reasons: (i) cross-platform com-

patibility, (ii) ease deployment and maintenance, (iii) accessibility, (iv) powerful

features offered by modern frameworks.

5.2 Testing

Testing is a fundamental part of the software development process, in this research-

oriented software project it has been conducted following the philosophy of Test

Driven Development (TDD) [Bec22]. This approach ensures that each im-

plemented feature is tested thoroughly, having one or more tests that verify its

correctness. Essentially, it consists of writing the tests for a feature before its

actual implementation, followed by writing the implementation to make the tests

pass. The entire testing environment has been set up using the unittest7 framework

in Python.

Unit Testing. Unit tests have been used to test backend main features such

as general questions graph, project contexts modifications, and answer selection.

These tests also cover serialization methods for domain entities and the correctness

of main automation scripts. In fact, fairness computation performed by such

scripts, are tested using mocked components. This testing environment ensures

that the scripts work correctly regardless they are already integrated into the whole

system or not.

Integration Testing. Integration tests helped to verify correctness of the whole

system, ensuring that all components work together as expected. Primarily, the

interaction between API, business logic, and database has been tested. Each end-

point has more than one test case, covering different scenarios and edge cases. The

starting point is an HTTP request, that triggers business logic. The major part

of these tests, involve database operations, for this reason, during test executions,

a container with a Neo4j instance is started, and the database is initialized with

7https://docs.python.org/3/library/unittest.html
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Package Statements Missed Coverage

application 984 71 93%
domain 421 52 88%
infrastructure 801 69 91%
presentation 23 1 96%
resources 19 0 100%
utils 127 10 92%

TOTAL 2375 203 91%

Table 5.1: Test coverage report aggregated by main packages.

test data. When test suite execution is completed, the container is stopped and

removed.

Integration tests do not involve just Rest API, but also the event-driven one.

Indeed, interactions between automation scripts and backend have been tested

too. These tests require a running Kafka instance, so, similarly to the database, a

container with Kafka is started and stopped during tests execution.

Test Coverage. In table 5.1 is shown a report of the test coverage of the project.

Test coverage is useful to understand how much code of a software artifact is

actually covered by tests. Of course, the higher the coverage percentage, the better.

Despite 100% of coverage is almost utopian, the 91% reached in the project is still

a good result for a research-oriented software project.

5.3 Deployment

All components previously described are containerized and deployed using Docker8.

In figure fig. 5.3 is shown the deployment diagram of the system. The configuration

is set up to be easily deployed using one command line instruction with Docker

Compose.

Persistence of data is guaranteed by volumes mounted in the containers, so

data is not lost when containers are stopped.

8https://www.docker.com/
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Figure 5.3: Deployment diagram of the system.

Finally, the system release deployed is the artifact produced through a Continuous

Delivery (CD) pipeline which is successfully completed after all tests are passed.
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Chapter 6

Validation

A contribution of this nature, in which are present both conceptual (the meta-

methodology) and technical (the software artifact) parts requires a multi-faceted

validation process. Validation is further complicated by the critical topic treated

in this work, which is fairness in AI. This, in fact, makes it necessary to involve

different stakeholders, such as ethicists, legal experts, and representatives of vul-

nerable groups, to ensure that the system is aligned with the principles of fairness.

6.1 Requirements Satisfaction

First, it is important to remark the requirements defined in section 3.1 and how

they have been satisfied.

R1—Requirements Translation→Q/A Mechanism: the methodology

involves socio-legal requirements translation into a simple and structured set

of questions. A set of question designed for non-techcnical and non-legal

people are more comprehensive than a set of legal constraints. Through

this mechanism, it is also possible to practically constrain the development

process depending on the paths designed in the questions graph.

R2—Context and Domain Awareness → Questions Design: through

a well-designed set of questions, it is possible to incrementally collect infor-

mation about the application domain and the cultural context in which the
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system operates. Depending on the answers given by the BU, the system can

adapt the flow of questions branching at the right points, providing tailored

questions based on the context.

For instance, the answer to the question “In which area of application will

the system be used?” will influence the following questions, leading to a

questionnaire customization based on the application domain.

R3—Adaptability→Questions Graph: adaptability is intrinsically achieved

by using a graph structure to represent the Q/A mechanism. In fact, it is

possible to change the graph structure easily, adding, removing, or modifying

questions and answers, creating new paths, and so on. This also enables a

“versioning” mechanism, which effectively addresses a possible volatile con-

text.

R4—Building the AI System → Software Reification: this contribu-

tion, rather than providing just an abstract specification of the methodol-

ogy, provides also a guideline-provisioning software system usable directly

by BUs. In the workflow, BU interacting with the system, can compile the

questionnaire but at the same time, behind the scenes, backend processes

operate to automate technical steps such as training and mitigation. In the

end, the system will provide an AI system that has been subject to fairness

considerations since the beginning of the development process.

6.2 Quality Assurance

From a technical point of view, the validation of development process is achieved

by using DevOps practices. The constant develop of tests alongside core features

(with TDD), allows applying Continuous Integration (CI) and Continuous Delivery

(CD), benefiting of all the advantages that these practices bring.

Test Driven Development: The system has been developed following the

TDD approach. TDD is a software development approach that emphasizes

writing tests before writing the actual code. In this way, the developer is

forced to think about the expected outcomes of the code before writing it.
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By defining expected outcomes in advance, TDD helps prevent defects early,

promotes cleaner and more modular code, and facilitates easier refactoring.

CI/CD: The system is continuously integrated and tested to ensure the

codebase remains in a working state. A CI pipeline runs tests on each repos-

itory push, merging the code into the main branch if successful. This prac-

tice keeps the codebase stable, preventing new features from breaking exist-

ing ones. The system is automatically deployed once all tests pass. A CD

pipeline builds the application, runs tests, and deploys it to production. This

ensures the application remains up-to-date, making new features available

as soon as they are developed.

Code Quality: To improve code quality, CI pipeline also runs code qual-

ity checks. These are performed using Black Formatter1. Black is a code

formatter that automatically formats Python code according to a particular

strict set of rules, without subjective style options.

6.3 Participatory Sessions

Fairness is one of the four “Ethical Principles in the Context of AI System” as out-

lined in the Ethics Guidelines for Trustworthy Artificial Intelligence (EGTAI) [EC19].

This principle is deeply interwoven with the other three—respect for human au-

tonomy, prevention of harm, and explicability. A key pillar of EGTAI is lawfulness,

and fairness is integral to numerous fundamental rights, laws, and governing prin-

ciples, such as the European Pillar of Social Rights. This pillar serves as a guiding

light for a fair and inclusive Europe, advocating for gender equality, equal oppor-

tunities, and access to essential services.

For these reasons, the validation of technologies and methodologies aimed at

addressing fairness issues in AI must adopt a validation approach that begins

with the co-creation and co-design phases of the methodologies and technologies

themselves, using participatory design approaches. This approach was employed

in the Aequitas process. Specifically, co-design and co-creation sessions were

1https://black.readthedocs.io/en/stable/index.html
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conducted to embody socio-legal requirements within the technology. This led to

the development of a meta-methodology presented in chapter 3, which was then

validated in iterative co-creation sessions. The participatory approach involves

setting up various focus groups, where diverse stakeholders convene to discuss,

challenge, and refine the AI’s requirements and functionalities. These stakeholders

include AI developers, companies, representatives from vulnerable groups, legal

experts, ethicists, and end-users. The objective is to incorporate a broad spectrum

of perspectives to ensure the AI system is not only technically sound but also

ethically aligned and socially beneficial. During these focus group interactions,

each participant offers their expertise and insight, which are crucial for identifying

potential biases and ensuring the AI system upholds fairness principles. Ethicists

might highlight ethical dilemmas overlooked by developers, while legal experts

ensure compliance with relevant data protection and anti-discrimination laws. The

iterative nature of these co-creation sessions facilitates continuous feedback and

enhancements, thereby fortifying the AI system against biases and aligning it more

closely with the principles enshrined in the European Pillar of Social Rights. This

method of validation through participatory design is essential for tackling the

complex issues of fairness in AI, ensuring that the technology positively impacts

society without perpetuating existing inequalities.

The feedback collected in the different workshops and focus group can be parsed

to gather insights that are relevant to the scope of the Aequitas platform and

what are the considerations it should be built upon. In particular, we analyzed the

input provided by the underrepresented groups to extract desiderata and potential

actions (technical and non-technical) that can guide the design and development

of the tools and methodologies created throughout the project. These insights are

collected in section 6.3.1.

6.3.1 Detailed Feedbacks

AI: Collaboration vs. Conflict.

Feedback: The relationship between humans and AIs can be either one of collab-

oration or conflict.

Insights: Clearly state that AI techniques are a tool in the hands of humans.
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During the design process, stress that the user will be in charge of developing and

deploying the AI systems, with the possibility of taking granular decisions concern-

ing how the AI systems will be implemented and used. Do not build exceedingly

automatized tools; in any case, provide a transparent description of the steps that

have been automated.

Societal biases.

Feedback: Algorithms reflect societal biases.

Insights: Take bias into consideration during the design phase of new algorithms

(development phases must be interspersed with bias detection actions applied to

the data used as input and to the output of the developed tools). Provide bias

detection mechanisms for both datasets and algorithms.

Diversity in the teams of programmers.

Feedback: It is important to diversify the team of programmers in charge of the

AI system development and educate them to an inclusive mindset.

Insights: The design phase of the AI algorithm should involve people with a

diversified technical/expertise background; this requirement is addressed by the

meta-methodology presented in chapter 3, that explicitly asks for the inclusion of

a diverse set of experts during the design process.

Dataset’s Cleaning.

Feedback: Datasets should be cleaned, and content should be constantly con-

trolled.

Insights: Great emphasis should be put on the bias analysis techniques, which

should be easy to use and produce an output as easy to interpret as possible.

Intersectionality and Inclusivity.

Feedback: It is fundamental to consider intersectionality; and get out of one’s

own context and “privileged” situation.
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Insights: Create diverse developing teams and involve people with different back-

grounds. Explicitly include considerations of intersectionality during the devel-

opment of new AI tools; this is aligned with the Q/A mechanism described in

chapter 3—the key part is to include questions about intersectionality at the be-

ginning of the questionnaire.

Awareness.

Feedback: Awareness among citizens is pretty low.

Insights: This is more a dissemination action; however, the system developed

should be transparent and publicly available, thus allowing greater awareness.

AI Governance and Transparency.

Feedback: They are essential aspects of the process.

Insights: Use a transparent developing and deploying methodology. Strive to

make as much code as possible public and well-documented, in order to increase

transparency and auditability by government bodies.

Human oversight.

Feedback: Maintain human accountability for decisions made by AI systems; AI

should assist, not replace, human judgment.

Insights: Enhance the feeling of user empowerment by developing a clear and

transparent UI. During the design phase do not exceed with automated process

but involve humans’ feedback at every phase; explicitly foresee that the decision

points will have to be taken care of by a human.

Recognition of Individual Normalcy.

Feedback: AI systems should not assume a statistical “normality” but instead

recognize the normality of the individual. This involves understanding how AI

might affect different minorities.

Insights: Move away from broad, one-size-fits-all statistical models and instead
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develop models that take into account individual variability; implement personal-

ized models. Incorporate sensitive attribute awareness where the AI model identi-

fies different demographic groups (e.g., race, gender, disability status) and treats

these attributes as critical factors in decision-making. Provide clear outputs for the

bias detection and mitigation mechanism, to allow users or auditors to understand

how specific features (e.g., minority status) influence the outcomes.

Data Disaggregation.

Feedback: Data should be disaggregated to consider all relevant aspects, such

as ethnicity, migratory background, age, etc., rather than treating groups (e.g.,

women) as homogeneous.

Insights: The tools provided by Aequitas will allow measuring bias present

in the data—and write clear and easy-to-understand reports. During the design

phase, careful attention will be place on the selection of the right data to be used

to train AI model, via explicit questions asked to developers to force them to

consider if the data should be disaggregated of could be used as is (bias detection

methods can be used to perform statistical test as well). Again, during the design

phase, special care will be devoted in identifying users and other people and groups

potentially affected by the AI system in development; the questionnaire pipeline

serves to make sure that all relevant aspects will be considered.

Methodological Standards.

Feedback: There should be methodological standards, where AI is tested and

refined based on real-world feedback.

Insights: Develop Aequitas tools using well-proven standard and well-known

technologies. Aim at producing as much open-source code as possible. Clearly

document all the methods developed and the underlying code to facilitate audition

and evaluation.

All these requirements have been embodied in both the methodology and the ex-

perimental environment (for example, the experimental setting allows for data

analysis and checks on distributions). Additional validation sessions that follow
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participatory approaches and co-design methodologies have started, and the col-

lection of incremental feedback is ongoing to continuously refine and enhance the

methodologies and the experimental setup. These sessions utilize participatory

approaches and co-design principles as well, ensuring comprehensive involvement

from all stakeholders throughout the iterative development process. Feedback is

collected from diverse sources, including real-time user interactions, expert reviews,

and automated system analytics. This feedback is essential for identifying any po-

tential issues related to data handling, algorithmic fairness, and overall system

usability.

6.4 Software Assessment

A preliminary validation of the software has been achieved through its successful

evaluation in the latest review of Aequitas project. During this assessment,

positive feedback was received by reviewers regarding both the user experience

and the underlying methodology, confirming their alignment with the project’s

objectives on AI fairness. This is an important outcome because provides an initial

indication of the software’s effectiveness in its objectives. Further validation steps

will be pursued in future project reviews, where the software will represent a core

deliverable of the project.

A usage example shown during the review, is a scenario where a BU wants to

mitigate the Adult dataset2 (see chapter A).

6.5 Limitations

With respect to the satisfaction of R1, it is defined what translated socio-legal re-

quirements should be, but not exactly how to translate them. This still represents

a complex collaborative challenge by a multidisciplinary team of experts, and it is

not automatically addressed by the methodology. However, the methodology sim-

plifies the process by providing itself some constraints. In other words, it forces

the subjects involved in the requirements engineering to think about laws and legal

2https://www.openml.org/search?type=data&sort=runs&id=179&status=active
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constraints in a pragmatic way, in order to translate them into a set of questions

that can be answered by a person with no expertise.

Flexibility of questions graph, which satisfies R3, enables a versioning mecha-

nism (see section 3.3) because changing the graph structure means creating a “new

version” of the methodology. Thus, questions graph is open to changes and easily

evolvable.

Conversely, questionnaires already started or completed, are affected by a ver-

sion change, and it makes it difficult to adapt to new versions. The reason is

due to the strong dependency between questionnaire (project-related graph) and

general questions graph. In fact, each update to the questionnaire relies on the

general graph, and so, general graph changes will lead to inconsistencies in the

questionnaire. Therefore, in case of a version change, it is necessary to keep the

oldest version to not break the support for the already started questionnaires. At

the moment, the only way to adapt to new versions, is starting a new project (and

relative questionnaire) from scratch.

A possible limitation respect to R4, is regarding the variety of AI systems that

can be built. Indeed, software allows uploading datasets of any dimensions, and

this could lead to possible issues in terms of computational resources. Theoreti-

cally, the methodology does not impose any constraint on the size of dataset or

the complexity of the model, but in practice (using the software provided), it is

necessary to consider the computational power available to the system.

Another important aspect is the time needed to perform fairness computations

and model training, which can be a bottleneck in the system. This problem not

only influences the backend system, but also affects the user experience, as the

BU has to wait for the system to proceed correctly the questionnaire. Actually,

computations performed by backend service and automation scripts are designed

to be asynchronous to improves the user experience, but with the assumption that

eventually—in a reasonable time—computations will terminate and user will be

able to proceed with updated information. If computations take too long, BU

could proceed with missing or outdated information, leading to possible misuses

of the system.
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Conclusions

This thesis proposes a (meta-)methodology for building fair AI systems. The

methodology does not offer a direct solution to all kinds of AI systems, but it

provides a pragmatic way to define a custom development process for each spe-

cific system. The methodology is based on a Q/A mechanism, which helps to:

(i) translate socio-legal requirements into a comprehensive set of questions, (ii) in-

crementally collect information about the application domain and the cultural

context, (iii) adapt the development process to the specific needs of the system,

(iv) build the fair AI system in the end. The methodology is designed to be flex-

ible and adaptable, allowing itself to evolve and be refined over time, enabling

the development of fair AI systems in different contexts. In addition, changes in

the application domain can be easily addressed by creating new “versions” of the

methodology, in other words, revisiting the questions graph structure modifying

existing paths or creating new ones.

The methodology is reified into a software system, which provides a practical

way to exploit the methodology in the development process. In particular, the

software system is intended to be used by BUs, to guide them through the devel-

opment process. In this way, BU can interact with the system answering questions

while, at the same time, the system automates technical steps such as training and

mitigation.

Finally, the entire work has been validated considering both conceptual and

technical aspects. For the technical aspect, the software system has been con-
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stantly validated through DevOps practices including automated testing, release

management, and code quality checks. For the conceptual side, the methodol-

ogy has been validated through participatory design sessions, project reviews, and

feedback from stakeholders and unprivileged groups.

7.1 Future Works

Future research will focus on both enhancing the software tool and refining the

methodology. In particular, the topics require further improvements are outlined

below.

� Coverage of more use cases: the methodology should account for both

pre-existing and new AI systems. It is reasonable that the methodology

should be able to be applied to new software systems, but it would be a big

lack if it could not be applied to already existing systems, remembering that

there are a lot of deployed systems that, probably, are not fair.

� Research on the socio-legal requirements translation: questions de-

sign has been conducted in a pragmatic way, but a more structured approach

could be beneficial. A more structured approach could be based on a set of

rules or guidelines to follow when translating requirements into questions.

� Improve automation scripts: at the moment, automation scripts perform

consolidated computations such as fairness metrics and mitigation. In future

works, it will be necessary to add new scripts to cover more technical steps

and to improve the user experience.

52 CHAPTER 7. CONCLUSIONS



Appendix A

Graphical User Interface

Images reported in this appendix, refer to the graphical user interface provided

by frontend component described in chapters 4 and 5. These, are the main views

showed to the BU when he interfaces to the software tool to create an AI system.

Note that this is just one of the possible sequences of images (paths of questions),

as explained in chapter 3. In this case, the flow is representing the use case of a

dataset mitigation.
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Figure A.1: Dataset selection view.

Figure A.2: Dataset view.
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Figure A.3: Features selection view.

Figure A.4: Proxies view.
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Figure A.5: Detection view.

Figure A.6: Data mitigation algorithms selection.
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Figure A.7: Data mitigation results.
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