
ALMA MATER STUDIORUM – UNIVERSITY OF BOLOGNA

Department of Computer Science and Engineering

Second Cycle Degree in Computer Science and Engineering

Clustering Analysis of Windows
Malware using Static Features and

Concept Drift Detection

Supervisor
Dr. Melis Andrea

Co-Supervisors
Prof. Aonzo Simone
Dr. Dambra Savino
Dr. Han Yufei

Candidate
Fabri Luca

Graduation Session IV

Academic Year 2023-2024

ii

Abstract

Machine learning for malware classification shows promising results in terms of
performance, but models are prone to degradation due to malware evolution. New
malware families emerge every year, and attackers continually adapt techniques
to evade detection by these systems. Given its critical application, it is essential
to keep these models up to date and maintain their performance, despite the
fast evolution and broad nature of malware. This challenge can be linked in
the machine learning literature to concept drift, a phenomenon that leads to the
degradation of classifiers’ performances over time.

Parallely, while classification is widely used for malware detection, clustering
methods provide a complementary approach by uncovering hidden structures in
the data and identifying emerging malware families. More importantly, clustering
can serve as a tool to track changes in malware feature distributions over time,
offering a way to detect and analyze data distribution shifts.

This thesis explores different ML techniques for data mining malware samples
based on static features. First, after an initial phase of dataset creation, clus-
tering approaches are assessed for identifying groups of Windows malware. The
features that characterize each cluster are computed leveraging hierarchical clus-
tering algorithms and XAI techniques. Empirical experiments are conducted to
study the relationship between these clusters and current family labeling systems
and packing algorithms.

Additionally, concept drift detection is applied with respect to malware family
labels leveraging a state-of-the-art technique, proposing some modifications to the
existing project. This analysis enables the study of temporal changes in family
assignments and highlights how malware families evolve, reveals potential incon-
sistencies in existing labeling systems, and provides a deeper understanding of the
dynamics of malware ecosystems over time.

iii

iv

To my family.

v

vi

Acknowledgements

First of all, I would like to thank Prof. Simone (Eurecom), Dr. Yufei (Inria), and
Dr. Savino (NortonLifeLock) for the great opportunity they gave me to carry out
an internship at Eurecom and to deeply study these research topics. It has been a
wonderful experience filled with lots of challenges and very gratifying. Their advice
has been essential in helping me conduct this thesis, and I am deeply grateful.

Secondly, I would like to thank my supervisor, Dr. Andrea Melis for agreeing
to supervise this work.

I would like to thank all the people I met during my internship abroad in
France, in particular: Readh, Medhi, and Andrea. I had a very good time with
them, enjoying and exploring Côte d’Azur. I hope to see you soon. Also thanks
to all the other people who made this internship possible: both UniBo, UniCA,
and Eurecom offices.

This thesis is just the last piece of the puzzle of these university years. They
have been years filled with both joy and sorrow, and I will never forget them. Most
importantly, I would do it all over again.

A big thanks to my family, who supported me every day on my journey to
achieving this goal, and to Elisa, who helped me through difficult times and stood
by me in every choice I made.

Finally, thanks to all my university friends: Giovanni, Mattia, Alberto, Luca,
Davide, Simone, Riccardo (and many others), and all my lifelong friends from my
hometown, Senigallia.

vii

viii

Contents

Abstract iii

1 Introduction 1

2 Motivation, Background, and Related Work 3
2.1 Malware Analysis . 3

2.1.1 Static analysis . 3
2.1.2 Dynamic analysis . 8

2.2 Machine Learning for Malware Analysis 9
2.2.1 Malware detection and family classification 9
2.2.2 Clustering malware . 13
2.2.3 Issues of ML-based malware detection 14

2.3 Concept drift . 15
2.3.1 Concept drift in malware domain 15
2.3.2 Mathematical formulation 16
2.3.3 Concept drift types . 16
2.3.4 Concept drift detection . 18

2.4 Hypothesis testing . 22
2.4.1 p-value . 23
2.4.2 Statistical hypothesis tests 25

2.5 Conformal Evaluation . 32
2.5.1 Conformal Prediction theory 32
2.5.2 Non-Conformity Measure . 32
2.5.3 Statistical decision assessment 34
2.5.4 Transcend Framework . 34
2.5.5 Practical Conformal Evaluation 35

2.6 Related Work - Workplan, Tasks and Milestones 38
2.6.1 Overview . 38
2.6.2 Tasks . 39
2.6.3 Milestones . 41

CONTENTS ix

CONTENTS

3 Static Features Extraction 43
3.1 Introduction . 43
3.2 Training/Test split . 44

3.2.1 Time-based split . 44
3.3 Data collection and preparation . 48

3.3.1 Static features . 49
3.4 Design and implementation . 52

4 Clustering Windows Malware 55
4.1 Introduction . 55
4.2 Pipeline . 56

4.2.1 Preprocessing . 56
4.2.2 Dimensionality Reduction 57
4.2.3 Hierarchical clustering . 58

4.3 Results . 59
4.3.1 Clustering quality assessment 59
4.3.2 Optimal number of clusters 63
4.3.3 Other ground “truth” analysis 64

5 XAI for Cluster Analysis 69
5.1 Introduction . 69
5.2 Two two-step approaches . 70

5.2.1 Random Forest method based on Gini importance 70
5.2.2 Local Explanations method 71

5.3 Experiments . 72
5.4 Results and Conclusions . 79

6 Concept drift detection 81
6.1 Introduction . 81
6.2 Multiclass Non-Conformity Measure (NCM) 82

6.2.1 Random Forest Proximities 82
6.3 Pipeline Overview . 83
6.4 Results and Analysis . 84

6.4.1 Alpha assessment . 84
6.4.2 Global threshold . 85
6.4.3 Concept drift . 86

7 Conclusions 91
7.1 Future work . 92

x CONTENTS

CONTENTS

92

Bibliography 92

CONTENTS xi

CONTENTS

xii CONTENTS

List of Figures

2.1 Create reverse shell rule from capa-rules 6
2.2 PE 32-bit format . 11
2.3 Concept drift detection methods [BAK22] 18
2.4 Performance-based detector [BAK22] 19
2.5 [Lam22] . 21
2.7 Figure of one-sample K-S test inspired by [Mas51]. The continuous

curve represents the theoretical distribution, and the dashed curves
are at distance ±dα(N). Reject unless the step-function lies entirely
between the broken curves. 31

2.8 Two sample K-S test . 31
2.9 CE approaches . 37

3.1 Report 51.1% − 48.9% Train-Test split. 45
3.2 Report 70% − 30% Train-Test split. 46
3.3 Report 62.33%-37.67% (optimal) Train-Test split. 47
3.4 Malware submission date distribution 48
3.5 Objective function visualizations . 48
3.6 Top Feature Extractor UML . 53
3.7 Static Feature Extractor UML . 53
3.8 Static Feature Extraction Process UML 54

4.2 AgglomerativeClustering over MiniBatchSparsePCA dimension-
ality reduction . 60

4.3 AgglomerativeClustering over UMAP dimensionality reduction . . 61
4.4 AgglUMAP quality assessment - Unbalanced clusters in terms of num-

ber of samples . 62
4.5 AgglMbsPCA quality assessment - Supervised scores tendency over

the number of clusters . 63
4.6 Packing analysis: Top 20 clusters by Jaccard index for increasing

dendrogram levels, Jaccard index distribution along packing algo-
rithms. 66

LIST OF FIGURES xiii

https://github.com/mandiant/capa-rules

LIST OF FIGURES

4.7 Malware family analysis: Top 30 clusters by Jaccard index for in-
creasing dendrogram levels, Jaccard index distribution along mal-
ware families. 68

5.1 Random Forest-based two-step method based on Gini importance. . 71
5.2 Two-step method based on local explanations. 72
5.3 Feature importance distribution grouped per feature type and cluster 75
5.4 Cumulative distribution function of feature contribution per cluster 76
5.5 Feature contribution distribution per feature type (absolute and

normalized). 77
5.6 Feature importances grouped for the whole dendrogram cut (n. 1500

clusters). 78

6.1 Alpha assessment: credibility score (p-value) distribution of the cal-
ibration set . 84

6.2 Confidence score distribution of calibration set 86
6.3 Thresholding information: average credibility and confidence com-

parison, CDF of p-values for incorrect predictions 86
6.4 Credibility score distribution of testing samples from seen families . 87
6.5 Families with all drifting samples in the testing set 88
6.6 Credibility score distribution of testing samples from unseen families 89
6.7 Credibility score distribution for testing samples from emerging fam-

ilies with average and 100% credibility above the threshold, respec-
tively, grouped by predicted family. 89

xiv LIST OF FIGURES

Chapter 1

Introduction

Modern Windows malware analysis has to deal with the enormous amount of data

samples that every year are collected. In 2023, Kaspersky registered over 411,000

malicious files daily [Kas23], while AV Test more than 104 million new malware

over the year [Ins23]. Due to the limitations of pure signature-based systems,

and the general human effort required to maintain up-to-date databases of known

malicious patterns, machine learning started to grow also in this area.

With its ability to learn from data and make predictions, emerged as a promis-

ing solution that can support automatic systems such as anti-viruses both for

malware detection and family classification.

Supervised methods have been proven effective for both tasks, achieving almost

perfect accuracy. On the opposite, due to the complex nature of malware, very

few works were presented about clustering, and it’s still considered an open field

to investigate by the research community.

While previous signature-based systems had to cope with polymorphic mal-

ware, attackers in the ML domain also tried to bypass systems. By altering the

structure of the code, attackers can avoid detection by ML classifiers, successfully

infecting machines. Evolving malware of a known family or new malware families

introduced by attackers links to a known problem in machine learning referred to

as concept drift.

The scope of this thesis is to shed light on the problem of concept drift in

malware classification. Experiments using real-world data have been carried out

CHAPTER 1. INTRODUCTION 1

and, leveraging state-of-the-art solutions, techniques are explored for detecting

concept drift across malware families.

Parallely, the thesis explores clustering algorithms applied to malware samples

using static features. Using XAI techniques, distinguishing features that char-

acterize the clusters are also extracted to provide interpretable insights into the

underlying patterns of malware.

Structure of the Thesis Chapter 2 provides a state-of-the-art overview of mal-

ware analysis, with a deeper focus on applied ML and the reasons behind its adop-

tion. Issues on ML malware detection and classification are then explored and

linked to the concept drift phenomenon. Starting from its mathematical formula-

tion, the chapter elucidates the different solutions available in the literature for its

detection.

Chapter 3 describes in depth the data extraction process that has been exe-

cuted, listing the static features that were considered important by linking them

to previous works done in the field. Chapter 4 experiments with clustering algo-

rithms for grouping malware samples, and 5 applies XAI techniques for making

the results interpretable.

Chapter, 6 applies an existing solution for concept drift detection with respect

to malware families.

Finally, 7 draws the conclusions about the overall work, highlighting the key

findings and discussing potential directions for future research and improvements.

2 CHAPTER 1. INTRODUCTION

Chapter 2

Motivation, Background, and

Related Work

2.1 Malware Analysis

Malware analysis is a critical process in cybersecurity that involves dissecting and

understanding malicious software to mitigate its impact and prevent future in-

fections. This process can be broadly categorized into two methodologies: static

and dynamic analysis. Both the two have strengths and weaknesses, making them

complementary activities in the comprehensive analysis of malware.

2.1.1 Static analysis

Static analysis involves examining the malware without executing its code. This

approach focuses on understanding the structure and composition of the malware

by inspecting its code, control flow, as well as file format descriptions, such as

binary sections, imports, strings, and APIs.

Static malware analysis uses a signature-based approach, which involves ex-

tracting code digital footprints and comparing them to a known list of malicious

patterns.

Malware researchers can also leverage decompilation and disassembly. Tools

like IDA Pro, Ghidra or Radare2 allow to convert the binary code into higher-

level programming language, allowing analysts to study the malware’s logic and

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 3

https://hex-rays.com/ida-pro
https://github.com/NationalSecurityAgency/ghidra
https://github.com/radareorg/radare2

2.1. MALWARE ANALYSIS

functionality.

As static analysis doesn’t consist of running the program, it has the advantage

of being a relatively fast way to detect malicious activity.

On the other hand, to foil the analysis of anti-malware systems and evade

detection, malware uses packing and other forms of obfuscation, which makes

static analysis even more challenging.

Signature-based detection

A ‘signature’ in signature-based detection is commonly known as a pattern asso-

ciated with a malware sample. This pattern can be a sequence of bytes inside a

file or inside network traffic that is mainly known as an attempt to evade security

mechanisms, perform privilege escalation, and do some unauthorized action.

Current anti-virus technologies, among others, rely on this approach to detect

malicious programs. They scan for malware by searching for patterns that match

some signature contained in a database.

Signatures are usually described as YARA rules (as well as other formats like

OpenIOC or Snort rules - to identify malicious network activity), that consist of

a set of strings and a boolean expression through which one can determine the

matching criteria for a specific malware family.

AV engines that include signature-based detection techniques include ClamAV

[Cla24] and Kaspersky [Kas24].

Also, two other types of software useful for malware analysis that rely on

signatures to detect anomalies are Capa and Suricata.

Capa

Capa is a tool developed by the FLARE’s team to automatically identify malware

capabilities.

It mainly consists of two components: first, a feature analysis engine that

extracts features from executable files, such as strings, disassembly, and control

flow, and second, a logic engine, which searches for predefined matching rules,

expressed as a combination of features.

4 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

https://virustotal.github.io/yara/
https://cloud.google.com/blog/topics/threat-intelligence/openioc-basics/
https://www.snort.org/
https://cloud.google.com/blog/topics/threat-intelligence/capa-automatically-identify-malware-capabilities/
https://suricata.io/

2.1. MALWARE ANALYSIS

The feature analysis engine, in particular, extracts features from multiple

scopes, starting from the most specific such instructions, and towards the most

general (file/global).

Scope Features
File (sub)string, function-name, section, export, namespace, class,

import, forwarded export, embedded pe, mixed mode
Function loop, recursivecall, calls from, calls to
Basic Block tight loop, stack string
Instruction namespace, class, api, property, nzxor, peb access, (sub)string,

bytes, offset, cross section flow, indirect call, call $+5, operand,
number, mnemonic, fs access, gs access, unmanagedcall

(Global) os, format, arch

Table 2.1: Extracted Static features from Capa

Once the features are extracted, they are passed as input to the logic engine.

The latter is based on Capa rules, each one representing a specific executable

capability considered important to recognize a malware sample. A Capa rule is

a logical expression whose terms are one or more extracted features. They are

encoded in a YAML document that contains its metadata and a tree of statements

to express its logic.

Thanks to the use of FLIRT signatures, Capa can automatically differentiate

between programmer code and library functions code, allowing it to focus only on

the logic written by the programmer.

In figure 2.1, the rule “Create a reverse shell” is shown, comprising the name

and namespace, which allows associating the capability to a technique or analysis

category, and the logical tree with the necessary features and parameter values

that have to match.

Capa is a useful tool for malware analysts, it supports 570 capability detection

rules that can easily be integrated into common disassemblers like Ghidra and

IDA pro as a plugin. By adhering to the rule YAML format, capabilities can be

added from the database, allowing the community to contribute as new ones are

discovered. Furthermore, in the recent versions, Capa supports dynamic analysis

as well by processing CAPE sandbox reports.

Here there’s a high-level overview of capabilities Capa 2.0 currently captures:

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 5

https://github.com/mandiant/capa/blob/master/doc/capa_quickstart.pdf
https://github.com/Maktm/FLIRTDB
https://github.com/kevoreilly/CAPEv2
https://cloud.google.com/blog/topics/threat-intelligence/capa-2-better-stronger-faster/

2.1. MALWARE ANALYSIS

1 rule:

2 meta:

3 name: create reverse shell

4 namespace: communication/c2/shell

5 authors:

6 - moritz.raabe@mandiant.com

7 scopes:

8 static: function

9 dynamic: thread

10 att\&ck:

11 - Execution::Command and Scripting Interpreter::Windows Command

Shell [T1059.003]↪→

12 mbc:

13 - Impact::Remote Access::Reverse Shell [B0022.001]

14 examples:

15 - C91887D861D9BD4A5872249B641BC9F9:0x401A77

16 features:

17 - or:

18 - and:

19 - match: create pipe

20 - api: kernel32.PeekNamedPipe

21 - api: kernel32.CreateProcess

22 - api: kernel32.ReadFile

23 - api: kernel32.WriteFile

24 - and:

25 - match: host-interaction/process/create

26 - match: read pipe

27 - match: write pipe

28 - and:

29 - match: create pipe

30 - match: host-interaction/process/create

31 - or:

32 - basic block:

33 - and:

34 - count(api(SetHandleInformation)): 2 or more

35 - number: 1 = HANDLE_FLAG_INHERIT

36 - call:

37 - and:

38 - count(api(SetHandleInformation)): 2 or more

39 - number: 1 = HANDLE_FLAG_INHERIT

40

Figure 2.1: Create reverse shell rule from capa-rules

6 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

https://github.com/mandiant/capa-rules

2.1. MALWARE ANALYSIS

1. Host Interaction describes program functionality to interact with the file

system, processes, and the registry;

2. Anti-Analysis describes packers, Anti-VM, Anti-Debugging, and other re-

lated techniques;

3. Collection describes functionality used to steal data such as credentials or

credit card information;

4. Data Manipulation describes capabilities to encrypt, decrypt, and hash data

Communication describes data transfer techniques such as HTTP, DNS, and

TCP.

Limitations of signature-based detection

While signature-based methods detect similar versions of known malware families

with a small error rate, they become insufficient as an ever-increasing number of

new malware samples are being identified [VB18]:

1. They are relatively easy to bypass, as attackers can alter some parts of the

program. To do so, malware writers invented techniques like server-side

polymorphism [Kas21]. Polymorphic malware utilizes dead-code insertion,

subroutine reordering, encryption, and additional mechanisms for automati-

cally transforming a file’s content (while retaining its functionality) in order

not to match any AV signature [CH18];

2. They are generally specific and cannot detect malware even if it uses the

same functionality;

3. They don’t protect against new threats whose signatures are not listed in

the database;

4. The signature database has to be maintained up to date, requiring human

effort.

These are some of the motivations that pushed researchers to investigate machine-

learning techniques for malware detection and malware family classification.

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 7

2.1. MALWARE ANALYSIS

2.1.2 Dynamic analysis

Dynamic analysis, as opposed to static, requires the program to be executed.

Typically, the execution is done inside a controller environment such as sandboxes,

and their activity is monitored to study their runtime behaviour.

Dynamic analysis overcomes the limitations of static analysis on packing, as

if the malware is packed the unpacking procedure is carried out before it gets

executed. On the other hand, dynamic analysis is an expensive process as it

requires building a controlled environment and monitoring the program activity

for a significant amount of time.

Furthermore, recent works have measured that 40%–80% of modern malware

use at least one evasive technique to detect and thwart instrumented environments

(e.g., debuggers and virtual machines) [MNK+21, BKB17]. In these cases evasion

techniques must be handled as well to increase the likelihood of the malware det-

onating, increasing the difficulty of dynamic analysis.

Since dynamic analysis involves identifying malware behaviours, it is particu-

larly helpful for uncovering threats not previously documented, such as zero-day

threats. These threats are not usually found using static malware analysis, which

is why it is so crucial to keep organizations secure [Jon23].

Dynamic analysis involves:

• Monitoring system calls, such as operations to create or modify a file, open

network connections or write specific registries. Also, they include analysis

of process/thread creation, or mutexes used;

• Network analysis. Malware often contacts remote servers to send and receive

data, such as for exfiltrating data;

• Dynamic code analysis, which involves tracing the execution flow of the

program;

• Memory analysis. Researchers trace memory during the program execution

to identify hidden activities.

8 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

2.2. MACHINE LEARNING FOR MALWARE ANALYSIS

2.2 Machine Learning for Malware Analysis

Modern Windows malware analysis has to deal with the enormous amount of data

samples that every year are collected. In 2023, Kaspersky registered over 411,000

malicious files daily [Kas23], while AV Test more than 104 million new malware

over the year [Ins23].

Due to the limitations of pure signature-based systems listed in 2.1.1, and the

general human effort required to maintain up-to-date databases of known malicious

patterns, it is clear that these solutions do not scale well.

Given these motivations machine learning started to grow also in this area.

With its ability to learn from data and make predictions, emerged as a promising

solution that can support automatic systems like anti-viruses both for malware

detection and family classification.

Both supervised and unsupervised methods are currently being investigated by

the research community.

2.2.1 Malware detection and family classification

In the Windows OS, supervised methods have been proven effective for both binary

and multi-class classification problems, achieving almost perfect accuracy.

In [SS15], they applied binary classification using a set of 997 virus files and 490

benign executables, by comparing models using only static features, only dynamic

ones, and both types of features. Using as static features some printable strings

and as dynamic sequences of API calls, using the integrated static and dynamic

method they could reach an accuracy of 98.7%.

In [SS15], they trained a Random Forest model using the Malimg Dataset,

consisting of 9,342 malware samples of 25 different malware families. The dataset

has been split into 80% training and 20% testing, and 10-fold cross-validation is

performed, achieving an overall accuracy on the testing set equal to 95.26%.

In [MLJ+21] they categorized learning-based PE malware family classification

techniques into three classes based on the executable format. The first category

groups methods that involve converting the executable into an image format and

then applying image classification. The second one makes use of sequential models

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 9

2.2. MACHINE LEARNING FOR MALWARE ANALYSIS

from NLP applied to a sequence of binary code. The third one consists of the

decompilation of the malware and adopting graph structure analysis on the control

flow graph (CFG) of the assembly code.

Also in [GSCK23], a taxonomy of the diverse machine learning algorithms is

given. Ten machine learning algorithms for malware detection were considered,

based on the analysis of 77 selected studies. They found that SVM is the most

widespread malware detection algorithm, with 24%, followed by DT, with a per-

centage of 15%. Other algorithms include Näıve Bayes, KNN, Linear and Logistic

regression.

Static features

Static features in the WindowsOS consist of parsed and format-agnostic features.

The former includes information gathered from PE executables, while the latter

consists of general features that are not specific to PE files, and can be extracted

from any file.

PE format is a data structure that encapsulates the information necessary for

the Windows OS loader to manage the wrapped executable code. This includes

dynamic library references for linking, API export and import tables, resource

management data, and thread-local storage (TLS) data.

Analogous formats to PE are ELF (used in Linux and most other versions of

Unix) and Mach-O (used in macOS and iOS).

The PE data structures include DOS Header, DOS Stub, PE File Header,

Image Optional Header, Section Table, Data Dictionaries, and Sections.

10 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

2.2. MACHINE LEARNING FOR MALWARE ANALYSIS

Figure 2.2: PE 32-bit format

Public datasets

The EMBER dataset [AR18] is an example of a dataset that includes PE file

information. It is an extensively used dataset used by the research community in

many works, composed of static features only. In this work, PE file information

includes:

• General file information. They are contained in the PE File Header and

consist for example of the virtual size of the file and the number of import-

ed/exported functions;

• Header information from the COFF header. Some features contained in this

part of the PE standard are timestamp in the header, the target machine

(string), and a list of image characteristics (list of strings);

• Imported and exported functions, the former ones extracted from the import

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 11

2.2. MACHINE LEARNING FOR MALWARE ANALYSIS

address table;

• Section information, which contains properties of each single section.

EMBER dataset also includes agnostic features, such as raw byte histogram,

byte entropy histogram, and strings. All these features have been proven effec-

tive for binary and/or family classification. For example, strings have been used

in [SMdlR+14] to perform family classification. They first created two groups of

printable strings, one extracted using the term frequency-inverse document fre-

quency (tf-idf) function and the other using the prominent strings extracted from

the vocabulary. They achieved an accuracy of 91.02% by considering the entire

vocabulary and an accuracy of 80.52% by considering the top 20 strings from tf-idf

for each malware family.

In terms of agnostic features, also binary n-grams have been extensively used for

both binary and family classification. They were originally proposed in [JM11], but

have been subject to some criticism [RZC+16] later. In the latter paper, they show

that previous studies on n-gram features have flows that lead to an overestimation

of classification accuracy, that most of the n-grams stem from string features and

lastly that n-gram features promote overfitting.

In [DHA+23] they proposed another dataset based on PE malware samples.

It is the most diverse labeled malware dataset in terms of families to date. It

comprises an equal amount of samples for each malware family so that no one is

under-represented or over-represented. The balanced dataset is composed of 67000

samples, each of which belongs to one of 670 malware families.

The malware were collected from VirusTotal [Vir]. Above the others, its API

allows to retrieve a real-time stream of all files submitted. The dataset samples

were recorded from 83-non consecutive days between August 2021 and March 2022.

The work focuses on the extraction of both static and dynamic features ac-

cording to those provided by the literature and experiments are done in order to

compare the classification performance of different between these different groups

of features: only static, only dynamic and combined.

The study shows that for binary and family classification the F1 score is higher

for only using static features compared to only dynamic ones. The combination

of static and dynamic features brings marginal improvement in the scores, but the

12 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

2.2. MACHINE LEARNING FOR MALWARE ANALYSIS

number of perfectly classified families nearly duplicates.

Experiments are done to study the impact of packers and protectors. Indeed,

they did not clear the dataset from packed malware but instead used this informa-

tion to analyze the results. These latter show that there isn’t a relevant decrease

in accuracy on the classification of those samples. This means that although

these technologies function well to deter static analysis (in particular reverse en-

gineering), they do not significantly affect ML classifiers, which are still able to

successfully identify byte-level signatures.

They also tested the model using data which includes new families and has

a different distribution from the training data. This scenario is known as OOD

(Out-Of-Distribution) test.

• The accuracy of binary classification using only static or dynamic features

deteriorates significantly;

• The accuracy deterioration is more significant in the non-uniform training

setting than that in the uniform setting: classifiers built on very unbalanced

datasets perform equally well when tested on data with the same unbalanced

distribution, but generalize poorly on other datasets, likely because many

families are underrepresented in the training and thus the model fail to proper

capture them.

• Static features generalize poorly to unseen families, while dynamic performs

better: “This is due to the nature of the features themselves: static informa-

tion can precisely pinpoint only known samples, while dynamic behaviour

can better generalize also to unknown ones.”

2.2.2 Clustering malware

Clustering is an unsupervised ML method that makes use of distance metrics to

identify clusters of data.

In the malware analysis literature, few works exist in this area, focusing on

identifying clusters of malware based on either their behaviours (dynamic features)

or static features.

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 13

2.2. MACHINE LEARNING FOR MALWARE ANALYSIS

Such an example is [BOA+07]. In this study, the researchers developed a

dynamic method that runs malware within a virtual environment to record its

behavioural fingerprints. These fingerprints document all malicious activities car-

ried out by the malware, such as file modifications and process creation. The

recorded behaviours were then compared using single-linkage hierarchical clus-

tering with normalized compress distance (NCD) as the distance metric. This

innovative approach at that time offered a novel perspective on the relationships

between different malware samples. Additionally, it proved effective in enhancing

the understanding and categorization of existing malware.

In [BCH+09], they developed a novel clustering technique based on dynamic

analysis.

The system monitors the execution of a malware sample in a controlled envi-

ronment and builds a malware behaviour profile. This profile contains information

about the OS objects that the program operates on, as well as the type of op-

erations and dependencies. Then, leveraging LSH clustering, they were able to

compute an approximate, single-linkage hierarchical clustering from a set of be-

havioural profiles such that samples that exhibit similar behaviour are combined

in the same cluster.

The proposed technique overcomes the one of the previous paper ([BOA+07]).

As they state, a clustering approach that uses those profiles either produce results

that are significantly less precise (by using the Jaccard index and LSH), or it does

not scale to real-world datasets (when using NCD).

2.2.3 Issues of ML-based malware detection

While malware detection and classification methods using machine learning have

been proven to have great accuracy, problems started to rise in this area too, where

attackers try to modify programs to bypass detection.

This phenomenon is known in the literature as concept drift. This drift arises

due to the continuous evolution of malware techniques, such as obfuscation, poly-

morphism, and the development of new attack vectors. Additionally, legitimate

software updates and changes in user behaviour can alter the patterns these mod-

els rely on for accurate detection. Consequently, as the characteristics of malware

14 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

2.3. CONCEPT DRIFT

and benign software evolve, the effectiveness of static models degrades, leading to

increased false positives and false negatives. Addressing concept drift requires on-

going model updates and adaptive learning strategies to maintain robust malware

detection capabilities.

2.3 Concept drift

Concept drift refers to the fact that the underlying posterior probability distribu-

tion of a target variable of a classification problem changes over time. Initially

proposed by [SG04] in 1986, concept drift can occur due to various reasons such

as evolving user preferences, seasonal effects, changes in the environment, or new

patterns emerging in the data. When concept drift occurs, a model trained on his-

torical data may become less accurate or even obsolete, as the patterns it learned

no longer reflect the current state of the data.

Managing concept drift requires techniques such as online learning, ensemble

methods, drift detection, and windowing techniques to ensure models remain ac-

curate and relevant in dynamic environments.

This section starts by describing the role of concept drift in the malware do-

main, then its definition is given as well as its categorization. Then, state-of-the-art

techniques for concept drift detection are introduced.

2.3.1 Concept drift in malware domain

In the malware domain, concept drift is well known and it’s an effective problem

that anti-virus systems have to assess. As stated in the previous sections, malware

can indeed evolve to bypass systems, even machine learning-based solutions. One

example is adversarial attacks.

Existing solutions aim to periodically retrain the model whenever drift is de-

tected. However, if the model is retrained too frequently, there will be little novelty

in the information obtained to enrich the classifier. On the other hand, a loose

retraining frequency leads to periods of time where the model performance cannot

be trusted [JSD+17].

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 15

2.3. CONCEPT DRIFT

2.3.2 Mathematical formulation

Concept drift 1. Assuming that Pt represents the joint probability distribution

between input variable x and target variable y at time t0 and Pt+w represents the

joint probability distribution between x and y at time t+w, then concept drift will

occur if the following equation holds:

∃x : Pt(x, y) ̸= Pt+w(x, y) (2.1)

Also, authors presented an additional constraint to the definition in 2.1 which

states that the new concept should be valid in at least two time periods:

w = τd(i + 1) − τd(i) > 1,∀i (2.2)

where τ ∈ Z+ is the time point, and d(i) denotes the time point order of the i-th

concept drift appeared in the system. This rule ensures that the identified concept

is rather a real pattern and not detected by chance. That’s to say: constraint in 2.2

allows to differentiate between a new pattern and outliers that last momentarily

[BAK22].

According to the Bayesian decision theory, the joint distribution P (x, y) in

equation 2.1 can be rewritten as:

Pt(X, y) = Pt(y|X) ∗ Pt(X) = Pt(X|y) ∗ Pt(y) (2.3)

2.3.3 Concept drift types

Concept drift can be categorized by the probabilistic source of change and the

pattern of arrival:

Probabilistic source of change

According to the characteristics of joint distribution described in equation 2.3,

concept drift can have multiple causes to occur, based on the probabilistic source:

• Pt(y|X) denotes the posterior probability distribution of the target labels.

Here the statistical properties of the target variable change over time. In

16 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

2.3. CONCEPT DRIFT

other terms, the relationship between the input and target variable that a

model learnt no longer holds and therefore it cannot make valid predictions

anymore;

• Pt(X) is the input data probability distribution. Also referred to refers to

covariate shift : the distribution of input data that an ML model was trained

on differs from the distribution of the data the model is deployed to;

• Pt(y) denotes the prior probability distribution of the target labels. Also

known as prior-probability shift is the change of the distribution of the classes

over time.

Note that using the Bayes rule it’s possible to state that if one probability source

changes, it also leads at least another one to differ. For example, if Pt(y|X) ̸=
Pt+w(y|X):

Pt(X|y)Pt(y)

Pt(X)
=

Pt+w(X|y)Pt+w(y)

Pt+w(X)
(2.4)

Transition of change

Concept drift can be categorized based on the pattern of how the drift evolves in

the system [BAK22]:

• Sudden. Occurs when the target distribution changes from one concept to

another abruptly at a point in time; An example of this type of drift is the

start of the COVID-19 lockdown in March 2020, which drastically changed

population behaviors all over the world;

• Gradual. Occurs when the target distribution changes progressively from

one concept to another;

• Recurring. Occurs when a precedently-seen concept reappears again after

a time interval. A typical example of this kind of fluctuation is the yearly

change in seasons, which pushes consumers to purchase warm coats during

the colder months, reduces demand as temperatures increase in the spring,

and then resumes in the fall. The difference with the gradual drift is that

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 17

2.3. CONCEPT DRIFT

in this case, the old concept reoccurs periodically, while in gradual drift the

old concept fades out;

• Incremental. Occurs when a new concept replaces the old one slowly in a

continuous manner. It is considered a subtype of gradual drift, but here

there is no obvious boundary that separates the occurrence of the different

concepts;

2.3.4 Concept drift detection

Concept drift detection refers to the methodology that helps to determine the

time instant when a change arises in the properties of the target object. It is a

component of the concept drift handling framework that triggers the adaptation

pipeline, whose purpose is to maintain up to date the current machine learning

model in order to avoid its degradation.

In [BAK22] they categorized concept drift detectors into different approaches:

Data distribution-based, performance-based, error rate-based, hybrid and contextual-

based approaches.

Figure 2.3: Concept drift detection methods [BAK22]

Performance-aware drift detectors

Performance-aware drift detectors are the most adopted ones and typically trace

deviations in the online learner’s output error to detect changes.

18 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

2.3. CONCEPT DRIFT

In particular, performance-based detectors are based on the PAC (Probability

Approximately Correct) learning model. In a stationary distribution context, the

error rate is expected to decrease as the learner encounters more examples. There-

fore, if the error rate stops decreasing, it indicates that the learned relationship

has become obsolete, signalling concept drift.

Figure 2.4: Performance-based detector [BAK22]

These methods can be grouped according to the strategy used to detect per-

formance drops: statistical process control, windowing techniques, and ensemble

learning.

• Statistical process control (SPC). They monitor the quality of the model

based on the evolution of its online error rate. Typically a threshold is set and

drift is detected if the model exceeds this significant test level. An example

of such detectors is the DDM (Drift Detection Method) [GMCR04].

In DDM, whenever a change in the error rate is detected, either drift is

signalled to the user or the algorithm is warning him that a change may

occur in the near future. DDM approach is based on the idea that the

probability of misclassification (error rate) at any time can be monitored to

detect significant changes.

The error rate in particular is modeled as a Bernoulli random variable with

Binomial distribution. It monitors pt , its probability at time t, and the

standard deviation st as: st =
√
pt(1 − pt)/i.

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 19

2.3. CONCEPT DRIFT

The detection threshold is computed in the function of two statistics, ob-

tained when pi + si is minimum:

– pmin: minimum recorded error rate;

– smin: minimum recorded standard deviation

At instant t, the algorithm computes:

– pi: error rate at instant i;

– si: standard deviation at instant i

Then:

– If pi + si ≥ pmin + 2 ∗ smin warning zone is notified;

– If pi + si ≥ pmin + 3 ∗ smin drift is detected.

There are multiple extensions of DDM that enhance its performance to solve

more general tasks. In the following figure, other types of drift detectors

based on SPC are shown.

20 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

2.3. CONCEPT DRIFT

Figure 2.5: [Lam22]

• Windowing techniques divide the data stream into sliding windows based on

the size of the data or the time interval, monitoring the performance of the

latest window introduced in the system and comparing it with a reference

one.

An example of a windowing technique is ADaptive WINdowing (ADWIN)

[ASLP07]. ADWIN manages a dynamic window of recent data assuming

stability in distribution. It splits this window into two sub-ones (W0,W1)

to detect changes, comparing their averages. When distribution change is

detected, ADWIN replaces W0 with W1 and initializes a new W1.

In particular, when processing a stream data point, ADWIN first adds the

tuple to the adaptive window. Then, it iterates over all possible combina-

tions of two sliding subwindows W0 and W1. If drift is detected from two

subwindows, the oldest data point from the adaptive window is deleted.

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 21

2.4. HYPOTHESIS TESTING

ADWIN is based on Hoeffding bound to measure the change between two

means µ0, µ1 of two ’sufficiently’ large windows W0,W1:

|µ0 − µ1| > 2ϵcut

where ϵcut is the optimal cut:

ϵcut =

√
1

2m
ln

4|W |
δ

m is the harmonic mean of the two windows, δ pre-defined confidence pa-

rameter.

Then, the algorithm analyzes the con- tent of the adaptive window to identify

concept drifts. To that end, Adwin iterates over all possible combinations

of two large enough sliding subwindows, as shown in Figure 1. If the value

distributions of the two subwindows are different enough, Adwin detects a

concept drift and removes the oldest tuple from the

Drift detection using autoencoders

In [JRA20], they proposed a drift detector based on autoencoder architecture.

Autoencoders are neural networks that are trained to reconstruct the input data

from a latent representation with lower dimensionality. If properly trained i.e. they

are able to capture the hidden patterns of the data, changes in their cost function

might occur if a sample is drifted from the training ones. Two cost functions are

applied in this paper, the cross-entropy and the reconstruction error. Preliminary

experiments show that autoencoders can both detect gradual and sudden concept

drift.

2.4 Hypothesis testing

Hypothesis testing is a fundamental statistical method that allows to make infer-

ences about the population with a sample. It provides a structured process for

22 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

2.4. HYPOTHESIS TESTING

determining whether there is enough evidence in a sample to support a particular

belief or hypothesis about the population.

More generally, hypothesis tests help to determine the effect of an independent

variable on a dependent variable.

For example, suppose one wants to see if there is a difference in age between

people who use different programming languages: Python, Java, C++. The inde-

pendent variables are the programming languages, while the dependent the age.

Statistical hypotheses then allow us to assess the following, i.e. either accept:

• Null Hypothesis H0: there’s no relationship between the independent and

dependent variables. In other words, the differences in the populations occur

by chance rather than an actual effect, implying that there is no significant

underlying cause for the differences observed between the groups.

In the example it reflects that the difference in ages between the programming

languages is not significant;

• Alternative Hypothesis Ha or H1. Conversely, there is a statistically signifi-

cant relationship between independent and dependent variables.

In the literature, there exists a bunch of statistical hypothesis tests, each of

which has a different measure to assess the difference in the distributions and

might be suitable for different kinds of data. Each measure is then combined with

the p-value.

2.4.1 p-value

Concept drift 2. In statistical significance testing, the p-value is defined as the

probability under the null hypothesis to obtain a real-valued statistic equal to or

more extreme than what was actually obtained. That is:

• p = Pr(T ≥ t|H0) for a one-sided right-tail test-statistic distribution;

• p = Pr(T ≤ t|H0) for a one-sided left-tail test-statistic distribution;

• p = 2 min{Pr(T ≥ t|H0), P r(T ≤ t|H0)} for double tail event.

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 23

2.4. HYPOTHESIS TESTING

−8 −6 −4 −2 2 4 6 8

Rejection
Region

(a) Rejection region for one-sided
right-tail

−8 −6 −4 −2 2 4 6 8

H0 H1

(b) Type II error

The smaller the p-value the more the statistic is dissimilar to the already ob-

served ones and most likely the data comes from a different distribution. The null

hypothesis H0 is then rejected if any of these probabilities is less than or equal to

a small, fixed, but arbitrarily pre-defined, threshold value α, which is referred to

as the level of significance.

Supposing that the data follows a normal distribution, an example of rejection

area is shown in 2.6a. As the threshold is decreasing as we most likely capture

rare observations.

The threshold value α is determined on the consensus of the research commu-

nity that the investigator is working in, and it’s usually fixed to 0.05(5%). Some

explanations about the choice of this value are given in [MAS14, GP94].

Other two important things to mention are Type I and Type II errors. If we

have a decision rule that says to reject H0 whenever an observation falls in the

highest 5% of the distribution, and we do accordingly for a testing sample, we’ll

have 5% chance of erroneously rejecting the null hypothesis. This kind of error

(rejecting when in fact it is true) is called a Type I error (false positive) [How07].

One might argue that a 5% chance of error is too risky and recommend tight-

ening our criteria significantly, like rejecting only the lowest 1% of the distribution.

While this is a valid approach, it’s crucial to recognize that the more stringent the

criteria, the greater the chance of committing the opposite i.e. failing to reject

24 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

2.4. HYPOTHESIS TESTING

a false claim that is actually true. This error is known as a Type II error (false

negative), symbolized by β.

Type I and II errors are shown in figure 2.6a and 2.6b respectively. In the

first one the rejection region of 5% threshold is shown, stating that there’s 5%

probability of Type I error to occur. In the second one, it’s possible to see that the

too stringent threshold is actually causing the null hypothesis to be accepted, even

if the data that eventually will come up is sampled from a different distribution.

2.4.2 Statistical hypothesis tests

There exist multiple statistical tests in the literature, each of which produces

in output a measure of how two or more distributions differ from each other.

Their value is then combined with the p-value, whose definition was given in the

previous section. This section is instead focused on the different types of statistical

hypotheses: the definitions of some of them are introduced, their pros and cons

are discussed as well as their application in the machine learning area.

ANOVA test

ANOVA (Analysis of Variance) is a parametric statistical test used to determine

if there are significant differences between the means of two or more groups.

The test compares the means across the groups and calculates an F -statistic

and p-value to determine if the differences are statistically significant.

Analysis of variance is the extension of the T-test for independent samples

where there are more than 2 groups. There exist three types of ANOVA tests: One-

Way Analysis of Variance, Two-Way Analysis of Variance and N-Way Analysis of

Variance (MANOVA).

The F -statistic is defined as the ratio of the variance between group means to

the variance within the same group.

If the group means are drawn from populations with the same mean values,

the variance between the group means should be lower than the variance of the

samples, following the central limit theorem. A higher ratio therefore implies that

the samples were drawn from populations with different mean values [SSD].

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 25

2.4. HYPOTHESIS TESTING

F =
between-group variability

within-group variability

In particular: F = MBS/MSE where MBS = Mean sum of squares between the

groups, MSE = Mean squares of errors. MSB = SSB/(k–1), MSE = SSE/(n–k)

where SSB is the sum of squares between groups and SSE sum of square errors

within groups.

k − 1 and n − k are the normalization terms of SSB and SSE respectively.

They account for the fact that the row dispersion values depend on the number

of samples n and number of groups k, so the overall measure would be misleading

for increasing number of groups. As k increases:

• SSE tends to decrease because more groups generally lead to smaller within-

group variability;

• Conversely, SSB might increase because more group means to consider results

in a higher between-group sum of squares.

In summary, the term k−1
n−k

adjusts these dispersion measures, allowing a fair

comparison.

There are two methods of concluding the ANOVA hypothesis test, both of

which produce the same result:

• The textbook method is to compare the observed value of F with the critical

value of F determined from tables. The critical value of F is a function of the

degrees of freedom of the numerator and the denominator and the significance

level (α). If F ≥ FCritical, the null hypothesis is rejected;

• The computer method using p-value.

The ANOVA test, as it’s a parametric test, makes some assumptions about the

underlying data. Consequently, if the following criteria are not satisfied, the test

is deemed unsuitable for application:

• Normality: the data distribution of each group should be normally dis-

tributed;

26 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

2.4. HYPOTHESIS TESTING

• Homogeneity of variance: The variance of the data within each group should

be equal;

• Independence: the observations within each group should be independent;

• Random sampling: the observations should be sampled randomly and are

independent of each other;

ANOVA finds multiple applications in machine learning. Some examples are:

• Feature selection: ANOVA helps identify whether there are significant dif-

ferences between the means of the target variable for different values of a

categorical feature. If the null hypothesis is rejected, it means the variable

is helpful in discriminating between different values of the target variable;

• Cross-validation: CV-ANOVA combines the principles of cross-validation

and ANOVA to assess the statistical significance of differences in predictive

performance among models or parameter settings evaluated across multiple

folds of the data;

• Data drift: ANOVA can be used to assess if there’s a data drift between the

training and testing set. If present, it may be the cause of bad performances

of machine learning models. However, ANOVA cannot be used in such cases

where one wants to determine if an incoming data point comes from the same

distribution the model was trained on, as it only compares the difference

between groups.

Chi-squared test (χ2-test)

The Chi-squared test (also known as the Pearson Chi-square test) is a non-parametric

test for categorical variables. As such, it is distribution-free, meaning that it

doesn’t make assumptions about the underlying data distribution.

In particular, non-parametric tests should be used when any one of the following

conditions pertains to the data [McH13]:

• The level of measurement of all the variables is nominal or ordinal;

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 27

2.4. HYPOTHESIS TESTING

• The sample sizes of the study groups are unequal (some parametric tests

require groups of equal or approximately equal size);

• The original data were measured at an interval or ratio level, but violate one

of the following assumptions of a parametric test:

– The distribution of the data was seriously skewed or kurtotic (paramet-

ric tests assume an approximately normal distribution of the dependent

variable);

– The data violate the assumptions of equal variance, also known as ho-

moscedasticity;

– For any of a number of reasons, the continuous data were collapsed into

a small number of categories, and thus the data are no longer interval

or ratio.

Concept drift 3. Chi-square is a measure of how far the observed counts are from

the expected counts. In particular, it’s defined as:

χ2 =
∑ (O − E)2

E

Where O is the actual count of cases in each cell of the table, E is the expected

value and the sum is over all the possible values of the categorical variable.

The test is used to determine if there is a statistically significant difference

between the counts of the observed and expected values.

There are two types of Pearson Chi-square test:

• Chi-square goodness of fit: it’s used whether one wants to test whether

the observed frequency distribution of a categorical variable differs from the

expected frequency distribution;

• Chi-square test of independence: mainly used when one wants to test if two

categorical variables are related to each other.

Frequency distribution is usually built through a frequency distribution table,

commonly known as contingency table.

28 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

2.4. HYPOTHESIS TESTING

As with all tests, Chi-square makes assumptions about the underlying data,

some important ones are[McH13]:

• The data in the cells should be frequencies, or counts of cases rather than

percentages or some other transformation of the data;

• The categories of the variables are mutually exclusive;

• Each subject may contribute data to one and only one cell in the χ2. If for

example the subject is tested multiple times over time, χ2 cannot be used;

• The study groups must be independent. This means that a different test

must be used if the two groups are related;

• A very large number of cells (over 20) can make it difficult to meet the

assumption below and to interpret the meaning of the results;

• The value of the cell expected should be 5 or more in at least 80% of the

cells, and no cell should have an expected of less than one.

Kolmogorov-Smirnov (KS) test

The Kolmogorov-Smirnov (K-S) test is a non-parametric statistical test used to

determine whether a sample comes from a specified distribution or to compare two

samples to assess if they come from the same distribution.

The one-sample K-S test, also known as the Kolmogorov-Smirnov Test

for Goodness of Fit is based on the maximum distance between the empirical

distribution function (EDF) of the sample and the cumulative distribution function

(CDF) of the reference distribution.

The main idea is the following: suppose that a population is thought to have

some cumulative frequency distribution function, F . The cumulative step function

of a random sample (that is the empirical distribution function associated with

the empirical measure of the random sample) of N observations is expected to be

fairly close to F . If it’s not close enough this is evidence that the hypothetical

distribution is not the correct one [Mas51].

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 29

2.4. HYPOTHESIS TESTING

The inner workings of two-sample K-S test are somewhat similar, with

the difference that the distance being measured is between both the empirical

distribution functions of the two samples.

The K-S test is particularly useful because it makes no assumptions about the

underlying distribution of the data, making it a versatile tool in statistical analysis.

The test statistic, known as the D-statistic, measures the largest absolute difference

between the EDF and the CDF, or between the EDFs, and its significance is

assessed using critical values or p-values.

Concept drift 4 (K-S Test for Goodness of Fit (One-sample K-S test)). Given the

population cumulative distribution function F , and the cumulative step-function of

n i.i.d. observations Fn(x) = k/n where k is the number of observations less than

or equal to x, the Kolmogorov–Smirnov statistic is defined as:

Dn = sup
x

|Fn(x) − F (x)|

To determine whether the observed D-statistic is significant, it is compared to

a critical value: for the one-sample K–S test, the null hypothesis is rejected at level

α if Dn >

√
− 1

2n
ln
(α

2

)
where n is the size of the sample.

Concept drift 5 (Two-sample K-S test). Given the cumulative step-functions of

n i.i.d. observations of two variables X1 and X2, the Kolmogorov–Smirnov statistic

is defined as:

Dn,m = sup
x

|F1,n(x) − F2,n(x)|

For the two-sample K–S test, the null hypothesis is rejected at level α if Dn,m >

c(α)

√
n + m

nm
where n and m are the sizes of first and second sample respectively

and c(α) is a constant that depends on the significance level α.

Due to its sensitivity to differences in both the location and shape of the em-

pirical cumulative distributions, the K-S test is widely applied in goodness-of-fit

testing, model validation, and comparison of sample distributions across various

scientific disciplines.

30 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

2.4. HYPOTHESIS TESTING

0

1
F (X)

dα

Reject Fn(x) = F (x)

X

F
(X

)

Figure 2.7: Figure of one-sample K-S test inspired by [Mas51]. The continuous
curve represents the theoretical distribution, and the dashed curves are at distance
±dα(N). Reject unless the step-function lies entirely between the broken curves.

0

1
ECDF 1

ECDF 2

dα

X

F
(X

)

Figure 2.8: Two sample K-S test

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 31

2.5. CONFORMAL EVALUATION

2.5 Conformal Evaluation

In Transcend [JSD+17], they proposed a concept drift detection technique based

on Conformal Prediction theory, known as Conformal Evaluation.

Well-known approaches for qualitative assessment of decisions of a learning

model are based on the probability of a data sample fitting in a candidate class.

However, since probabilities need to sum up to 1, it is likely that for previously un-

seen samples not belonging to any known class, the probability may be artificially

skewed and the sample will be classified as a known class.

The approach proposed in this paper is instead based on statistical techniques

to measure the model performance, showing that it outperforms the probabilistic

ones.

2.5.1 Conformal Prediction theory

Conformal evaluator design is grounded in the theory of Conformal Prediction, a

method for providing predictions that are correct with some guaranteed confidence.

Concept drift 6 (Conformal Prediction). Given a classifier g, a new example

z = (x, y), and a significance level ϵ, a conformal predictor produces a prediction

region: a set of labels in the label space Y that is guaranteed to contain the correct

label y with probability no more than 1 − ϵ.

To calculate this label set, the conformal predictor relies on a nonconformity

measure (NCM) derived from g, used to generate scores representing how dissimilar

each example is from previous examples of each class.

To quantify this relative dissimilarity, p-values are computed by comparing the

nonconformity scores between examples.

2.5.2 Non-Conformity Measure

Rather than making predictions, conformal evaluators borrow the same statistical

tools (i.e., nonconformity measures and p-values) but use them to evaluate the

quality of the prediction made by the underlying classifier g.

32 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

2.5. CONFORMAL EVALUATION

To be able to detect a drifting sample a measure to assess the dissimilarity of

a new point to the previously encountered point is needed.

The non-conformity measure is derived from classifiers, meaning that they mea-

sure how “strange” a prediction is according to the different possibilities available.

The more strange the prediction is, the more the data point is different to the

previously encountered points of that class.

Concept drift 7 (Non-Conformity Measure). Non-conformity measure (NCM) is

a real-valued function that expresses how different a point z is to a bag of points

B = Hz1, z2, . . . , znI:
αz = A(B, z)

In the literature, for each type of classifier, there exist multiple Non-Conformity

Measures. Some examples are:

• In case of Nearest Cluster Centroid classifier, A(B, z) is the euclidian

distance from z to the data centroid of the points in B:

A(B, z) = d(z′(B), z)

• In case of SVM, A(B, z) is the negated absolute distance from z to the learnt

hyperplane. The more the point z is near the decision boundary, the more is

dissimilar to the other points of that class and most likely be misclassified;

• Using Random forest classifiers, the NCM is defined as the percentage

of decision trees giving a discordant prediction.

Once the NCM for each training point is computed, the p-value of an in-

coming point z aims to assess the proportion of training points that are more

non-conformal compared to z:

S = {A(B\{z}, z) : z ∈ B}

pz =
|α ∈ S : α ≥ αz|

|S|
If pz falls above a given significance level the null hypothesis is disproved and

ŷz is accepted as a valid prediction. As stated before, p-values offer significant

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 33

2.5. CONFORMAL EVALUATION

advantages compared to probabilities. Assume that test object has p-values of

p1z, p
2
z, . . . , p

k
z and probabilities r1z , r

2
z , . . . , r

k
z of belonging to a class l1, l2, . . . , lk. In

the case of probability,
∑

i r
i
z must be sum up to 1.

For example, supposing k = 2: if z does not belong to either one of these classes

and r1z ∼ 0 then r2z will artificially tend to 1. This means that probability-based

assessments might reach an incorrect solution for previously unseen samples.

2.5.3 Statistical decision assessment

The decision assessment of a new incoming point is carried out through the use of

two evaluation metrics: Algorithm Confidence and Algorithm Credibility.

• Algorithm Credibility Acred(z
∗) is defined as the p-value of the test object

z∗. A high credibility means that the test object is very similar to the object

in the class chosen by the classifier. High credibility values however only tell

a partial story: between all classes there may be multiple ones with high

credibility, meaning that multiple labels are matching. This further aspect

is captured by Algorithm Confidence;

• Algorithm Confidence tells how certain the evaluated algorithm is to the

choice. The highest value of confidence is reached when the algorithm cred-

ibility is the highest p-value. Low algorithm confidence indicates that the

given object is similar to other classes as well.

Concept drift 8 (Algorithm Confidence).

Aconf (z∗) = 1 −max(P (z∗)\Acred(z
∗))

P (z∗) = {pliz∗ : li ∈ L}

2.5.4 Transcend Framework

Given the notions of NCM and evaluation metrics (Algorithm Credibility and

Confidence), it’s now possible to describe Transcend’s core. Overall, Transcend

uses two types of assessment to be able to evaluate the quality of an algorithm

employed on a given dataset:

34 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

2.5. CONFORMAL EVALUATION

• Decision Assessment: Algorithm Credibility and Confidence allows to under-

stand if the choice made by the underlying classifier is supported by statistical

evidence. The best case would be to have high Credibility and Confidence,

while low Credibility and high Confidence in the worst one;

• Alpha Assessment: It evaluates the quality of the NCM in terms of its ability

to discriminate between correct and incorrect predictions. p-value distribu-

tion for each class is plotted, further splitting the chart between correct and

incorrect predictions. If a threshold can be identified between the two, it can

be used at test time to discard drifted points.

2.5.5 Practical Conformal Evaluation

Transcend uses Confidence Estimators (CE) based on NCM to spot and reject new

samples. Although effective, this approach faces issues with experimental bias and

is highly resource-intensive. The paper Transcending Transcend [BPPC24] aims

to fill this gap by proposing some Conformal Evaluation implementations that can

be used in real-world scenarios.

Transductive Conformal Evaluator (TCE)

In assessing the quality of the prediction of a new test point, there is the question

of which previously encountered points the new point should be compared to.

Typically, the new test point is compared against a set of calibration points. In

Transcend they proposed TCE.

1. With a TCE, every training point is also used as a calibration point;

2. To generate the p-value of a calibration point, it is first removed from the

set of training points and the underlying classifier trained on the remaining

points;

3. Using a given NCM, its p-value is computed with respect to the points whose

ground truth label matches its predicted label;

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 35

2.5. CONFORMAL EVALUATION

4. This procedure is repeated for every training point. Following this, Tran-

scend’s thresholding mechanism operates on the calculated p-values to de-

termine per-class rejection thresholds;

While this solution produces very accurate results, it’s extremely inefficient, as

a new classifier should be trained for each training point.

Approx-TCE

In approx-TCE, calibration points are left out in batches, rather than individually.

The training set is randomly partitioned into k folds of equal size. From the k

folds, one is used as the target of the calibration and the remaining k− 1 folds are

used as the bag to which those points are compared to.

The approximation grows more accurate as k increases until k equals the car-

dinality of the training set at which point the approx-TCE and the TCE are

equivalent. In this sense, the approx-TCE can be viewed as a generalization of the

TCE.

Inductive CE (ICE)

The ICE splits the dataset in two non-empty partitions:

• the proper training set

• the calibration set

Unlike the TCE, p-values are not calculated for every training point, but only

for examples in the calibration set, with the proper training set having no role in

the calibration at all.

ICE is informationally inefficient. Only a small proportion of the training data

is used to calibrate the conformal evaluator when ideally we would use all of it.

The performance of the evaluator depends on the quality of the split, so the ability

of the calibration set to generalize well.

36 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

2.5. CONFORMAL EVALUATION

Cross-CE (CCE)

The training set is partitioned into k folds of equal size. So that a p-value is

obtained for every training example, each fold is treated as the calibration set

in turn, with p-values calculated as with an ICE, using the union of the k − 1

remaining folds as the proper training set to fit the underlying classifier.

When a new point arrives, the prediction from each classifier is evaluated

against the corresponding calibration set. The final result is the majority vote

over the k folds, i.e., the prediction of a particular class is accepted if the number

of accepted classifications is greater than k/2, and rejected otherwise.

Note that this problem is embarrassingly parallel: parallelization and can be

exploited to reduce computational time.

Figure 2.9: CE approaches

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 37

2.6. RELATED WORK - WORKPLAN, TASKS AND MILESTONES

2.6 Related Work - Workplan, Tasks and Mile-

stones

2.6.1 Overview

During the internship abroad for the final examination (at EURECOM), the work

was performed using an incremental approach. In each cycle, corresponding to one

week of work:

1. The focus is on one task of the project/research, with the goal of producing

an increment;

2. After the week of work, the increment is reported and discussed with the

supervisor and the research team during the scheduled week review. Then

back to 1.

The project is broken down into four main phases:

• Literature review on malware static analysis, concept drift definition and

taxonomy, concept drift detection techniques, as well as XAI tools. The

primary goal is to select candidate algorithms to assess concept drift;

• Dataset train/test split. Preliminary phase whose goal is to build an adequate

environment that supports the study of concept drift.

• Static features extraction from malware. Working on an already existing

project, the goal is to produce a dataset that will be used in for next phases;

• Clustering. Using the built dataset, experiment with state-of-the-art hierar-

chical clustering algorithms to eventually find clusters of malware;

• XAI for Cluster Analysis. Use XAI techniques to study what are the main

features that characterize each cluster;

• Malware classification and concept drift detection. Evaluate existing projects

for concept drift detection and implement the missing parts. Detect an

eventual concept drift with respect malware family in the testing set. Finally,

collect and interpret the results.

38 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

2.6. RELATED WORK - WORKPLAN, TASKS AND MILESTONES

2.6.2 Tasks

Each phase listed above is further split into one or more tasks:

• Phase 1: Literature review

– Task 1.1: Previous research

The goal of this task is to acquire a deep understanding of the paper

”Decoding the Secrets of Machine Learning in Malware Classification: A

Deep Dive into Datasets, Feature Extraction, and Model Performance”

[DHA+23], which I needed to work on;

– Task 1.2: Review on Concept drift as well as XAI

The goal is the understanding of Concept drift definition and taxonomy,

as well as the initial identification of candidate detection algorithms

useful for the study.

• Phase 2: Train/Test split

Using the previously collected executables from VirusTotal reports, define a

time-based train/test split suitable for the study of malware concept drift.

– Task 2.1: Day/Month split

Analyze train/test splits using time windows of k days or n months.

– Task 2.2: Timestamp split

Compute a timestamp t, designating data before t as the training set

and data at and after t as the testing set.

• Phase 3: Static features extraction from malware

– Task 3.1: Project understanding

Coordinate with the project members to understand the inner workings

of the existing project;

– Task 3.2: Project cleaning and re-design

Clean and re-design the project to support code readability and main-

tainability;

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 39

2.6. RELATED WORK - WORKPLAN, TASKS AND MILESTONES

– Task 3.3: Optimize n-gram extraction and pipeline run

Optimize n-grams extraction for getting the results in practical times,

as well as to reduce memory footprint. Perform the full pipeline run to

ultimately get the final dataset;

• Phase 4: Clustering

– Task 4.1: Preprocessing

Perform data preprocessing

– Task 4.2: Dimensionality reduction

Use state-of-the-art techniques for dimensionality reduction: both linear

and non-linear methods;

– Task 4.3: Hierarchical clustering

Perform hierarchical clustering and evaluate cluster quality using unsu-

pervised and supervised scores.

– Task 4.4: Use ground truth labels for assessing the relationship of pack-

ing algorithms and malware families tags (provided by AVClass2) with

clusters;

– Task 4.5: Draw conclusions;

• Phase 5: XAI for Cluster Analysis

– Task 5.1: Study and evaluate different XAI techniques for cluster anal-

ysis, choosing the best one for the case study;

– Task 5.2: Implement and experiment with the selected solution, lever-

aging the clustering labels found from the clustering phase;

– Task 5.3: Draw conclusions;

• Phase 6: Concept drift detection with respect of AVClass2 labels

– Task 6.1: Choose the best method for addressing concept drift;

– Task 6.2: Assess what are the missing parts to implement;

– Task 6.3: Implement the Non-Conformity measure

40 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

2.6. RELATED WORK - WORKPLAN, TASKS AND MILESTONES

– Task 6.4: Concept drift detection

Use concept drift detector grounded on Conformal Evaluation to sta-

tistically assess Concept drift

– Task 6.5: Conclusions

Interpret the results and conclude concept drift

• Phase 7: Draw the conclusions of the thesis and propose future works.

2.6.3 Milestones

Project milestones include the successful creation of the dataset based on the time

train/test split, the identification of clusters of malware with reasonable quality

results, the experimentation of XAI techniques based on clustering results and the

identification of concept drift with respect to malware families.

CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK 41

2.6. RELATED WORK - WORKPLAN, TASKS AND MILESTONES

42 CHAPTER 2. MOTIVATION, BACKGROUND, AND RELATED WORK

Chapter 3

Static Features Extraction

This chapter details the project for the static features extraction process. The first

section provides an introduction and explains the motivation behind the creation

of a new dataset. Then, the chosen dataset train/test split is exposed and the

listing and description of the extracted features are outlined. Finally, the chapter

ends with a section on design and implementation. The project code is available

on GitHub in the Malware Static Features Engine repository.

3.1 Introduction

This project builds directly on the work presented in the paper [DHA+23], which

was discussed in the previous chapter.

The primary motivation to recreate the entire dataset of malware static features

relies on how the data extraction process works itself. Indeed, the pipeline passes

through an initial stage where the most important features are identified and

selected, using the training dataset only. Since the training/testing split will be a

time-based split to further experiment concept drift, it will be different from the

chosen one in the previous work.

The full pipeline is then re-run, and code optimization is achieved for practical

purposes. For these reasons, part of the personal work involved gaining a deep

understanding of the existing project’s inner workings.

The process began with an initial code cleanup, followed by a partial redesign.

CHAPTER 3. STATIC FEATURES EXTRACTION 43

https://github.com/w-disaster/malware-static-features-engine

3.2. TRAINING/TEST SPLIT

The implementation of the feature extraction process from the individual files,

however, remained unchanged to ensure consistency with the previous work.

3.2 Training/Test split

The malware samples used for the static feature extraction process are the same

ones selected for the original work. The set comprises 67000 malware, obtained

from VirusTotal reports, each one belonging to one of 670 malware families. The

malware, in their turn, was submitted to VirusTotal between 2006 and 2022. The

submission date distribution can be visualized in the figure 3.4.

As malware family labels, those provided by AVClass2 [SC20] were used. AV-

Class2 is an automatic malware tagging tool that given the AV labels for a number

of samples (VirusTotal JSON reports), extracts for each one a clean set of tags

that capture properties, including the malware family.

The dataset has been previously chosen to be balanced in terms of families

so that no one was underrepresented. For each family in particular there are 100

samples. More details of the chosen malware can be found in the dataset section

of the background chapter.

Given the malware samples and their respective family, the training/test split

is computed in order to extract the features subsequently.

3.2.1 Time-based split

On one side, the train/test split will determine indirectly what features will be

extracted, but at the same time concept drift is also studied in a later phase.

This implies that the split has to be time-based. Ultimately, at this stage, a

timestamp t is calculated, designating data before t as the training set and data

at and after t as the testing set.

While on one side the split has to favour the majority of the samples to belong

to the training dataset, a good environment to study concept drift would be to

have as many new appearing families as possible, i.e. malware families never seen

in the training dataset.

Given these considerations, three settings were identified, to best grasp the

44 CHAPTER 3. STATIC FEATURES EXTRACTION

3.2. TRAINING/TEST SPLIT

study: 50% − 50%, 70% − 30%, and 62.33% − 37.67% Train-Test, built using an

objective function.

1. 50%-50% Train-Test

50% − 50% Training-Test split was considered the one with the minimum

amount of training data.

The number of appearing families in the testing set is the maximum com-

pared to the other following splits.

Given this minimum threshold, the time t can be incremented as long as the

number of appearing families in the testing set remains the same, but does

not exceed a ratio of 70% − 30%.

From the actual experiments, The training set in this setting is ultimately

composed of 51.1% of data points.

To compute the time-based split the bisection method was implemented to

find the timestamp t that satisfies the train-test proportion. Moreover, we

want to analyze the number of appearing malware families in the testing set.

Split at 2021-08-26 12:40:17

Training set length: 34240, (51.1%)

Testing set length: 32760, (48.9%)

Num families in training: 650

Num families in testing: 650

Common families: 630

Families in training but not in testing: 20 (2.99%)

Families in testing but not in training: 20 (2.99%)

Figure 3.1: Report 51.1% − 48.9% Train-Test split.

2. 70%-30% Train-Test

In this split, a significant percentage of the training set is favoured, with less

concern about the number of new appearing families in the testing set.

CHAPTER 3. STATIC FEATURES EXTRACTION 45

3.2. TRAINING/TEST SPLIT

Split at 2021-12-09 08:48:58

Training set length: 46900, (70.0%)

Testing set length: 20100, (30.0%)

Num families in training: 663

Num families in testing: 606

Common families: 599

Families in training but not in testing: 64 (9.55%)

Families in testing but not in training: 7 (1.04%)

Figure 3.2: Report 70% − 30% Train-Test split.

3. 62.33%-37.67% Train-Test

This time-based Train-Test split was computed by implementing an objective

function.

The function to maximize linearly favours splits based on two criteria, that

weigh the same to the function value:

(a) The training set length in proportion approaches 70%;

(b) The percentage of appearing families in the testing set increases;

The identified split represents a trade-off between these two scores.

This split has been considered the optimal one, as the size ratio is still

appropriate, as well as the number of appearing families, 16(2.39%) gives

some margin to study their effect in the classification context.

46 CHAPTER 3. STATIC FEATURES EXTRACTION

3.2. TRAINING/TEST SPLIT

Split at 2021-09-03 13:47:49

Training set length: 41763, (62.33%)

Testing set length: 25237, (37.67%)

Num families in training: 654

Num families in testing: 632

Common families: 616

Families in training but not in testing: 38 (5.67%)

Families in testing but not in training: 16 (2.39%)

Figure 3.3: Report 62.33%-37.67% (optimal) Train-Test split.

In figure 3.5, two objective function visualizations are displayed, along with

the distribution of the submission date of malware.

The two plots show the same information. The first one highlights the func-

tion’s values at varying date split indexes: the unique submission dates are

treated as equidistant values. The second one, instead, puts the submission

date timestamp in the x-axis: since the submission date distribution is not

uniform, the visualization gets stretched. The plots evaluate the functions

in the time window defined between 50%-50% split and 70%-30% only, as

they were considered the lower bound and upper bound, respectively.

CHAPTER 3. STATIC FEATURES EXTRACTION 47

3.3. DATA COLLECTION AND PREPARATION

Figure 3.4: Malware submission date distribution

Figure 3.5: Objective function visualizations

3.3 Data collection and preparation

In this study, the data extraction process is exclusively focused on Portable Ex-

ecutable (PE) files. The PE format is a data structure that encapsulates the

48 CHAPTER 3. STATIC FEATURES EXTRACTION

3.3. DATA COLLECTION AND PREPARATION

information necessary for the Windows OS loader to manage the wrapped ex-

ecutable code. This includes dynamic library references for linking, API export

and import tables, resource management data and thread-local storage (TLS) data

(more details in the background chapter).

Due to the high number of features that can be extracted from PE files, the

dataset creation has to pass between two stages:

1. First, the top static features are extracted from the malware. The top static

features are computed using the malware in the training dataset and refer to

those ones that are considered more significant for a subsequent classification

phase.

Based on the feature type, Information Gain or tf-idf functions are computed

in order to estimate their importance in the classification. In the end, the

best ones are selected to form the dataset features.

2. Using the One-Hot encoding approach, all the malware are then reprocessed

to check the presence of some top features. With respect to the present

feature value, the malware feature is set to true, false otherwise.

The following sections describe what static features are taken into consid-

eration. Motivation for their importance is also given by linking them to

already existing evidence of their effectiveness in the classification context.

Finally, explanation is given on how the best ones are filtered out.

3.3.1 Static features

PE file header [RMH21, VB18]

The main PE Header is a structure of type IMAGE NT HEADERS and mainly

contains SIGNATURE, IMAGE FILE HEADER, and IMAGE OPTIONAL HEADER.

From IMAGE OPTIONAL HEADER some features have been extracted:

- SizeOfHeaders

- AddressOfEntryPoint

CHAPTER 3. STATIC FEATURES EXTRACTION 49

3.3. DATA COLLECTION AND PREPARATION

- ImageBase

- SizeOfImage

- SizeOfCode

- SizeOfInitializedData

- SizeOfUninitializedData

- BaseOfCode

- BaseOfData

- SectionAlignment

- FileAlignment

From IMAGE FILE HEADER:

- NumberOfSections

- SizeOfOptionalHeader

- Characteristics

Imports [VB18]

• To list the imported DLLs by each malware, it’s necessary to iterate the data

directory DIRECTORY ENTRY IMPORT. For each DLL is then possible to list its

imported APIs;

• Once extracted, APIs and DLLs are filtered by excluding the ones that ap-

pear less than 0.1% or more than 99.9% of the overall set, respectively;

• For the top imports, DLLs aren’t filtered while top 4500 APIs are selected

based on the Information Gain.

Generics

Generic features comprise:

• The file size in bytes;

• The Shannon Entropy of byte value frequencies of the file.

50 CHAPTER 3. STATIC FEATURES EXTRACTION

3.3. DATA COLLECTION AND PREPARATION

n-grams [RZC+16]

n-grams of byte sequences consist of sequences of n bytes from a given sample of

binary files.

• 4-grams and 6-grams are extracted, representing 4 and 6 consecutive bytes

respectively. To get them, a sliding window is set up that iteratively shifts

of one byte and in the end, the set is built to get the unique values;

• For practical issues, they are computed from 1000 of randomly chosen mal-

ware samples;

• The most relevant n-grams are computed by filtering the ones that appears

less than 1% or more than 99% of the overall 1000 samples;

• Top 13000 n-grams are chosen, based on their Information Gain.

Opcodes sequences [KYMS16]

Operation code sequences are a set of consecutive assembly-level operations.

• Opcodes of 1, 2, 3 consecutive operations are extracted;

• To compute the relevance of each opcode n-gram tf-idf (term frequency-

inverse document frequency) function is used:

tf-idf is a type of information retrieval function that proportionally increases

as the term appears in the dataset, but inversely proportionally increases by

its frequency.

The main idea of this function is to prioritize terms that appear in the

dataset, but that are less frequent;

• As done for the imports (APIs and DLLs), opcodes that appear less than

0.1% or more than 99.9% of the overall training set length are filtered;

• The top 2500 opcodes are selected, based on the Information Gain metric.

CHAPTER 3. STATIC FEATURES EXTRACTION 51

3.4. DESIGN AND IMPLEMENTATION

Strings [SMdlR+14]

Printable strings refer to sequences of ASCII characters of an executable that are

human-readable. These strings can often include text such as error messages, log

entries, function names, or other meaningful content embedded within the binary

code.

In the extraction process:

• Only strings of more than 3 characters are considered;

• Once getting all the strings, the top ones are selected from the top 0.01% in

terms of frequency.

3.4 Design and implementation

The application’s design is rather minimal. It consists of an interface and relative

implementations for each extraction phase listed in the previous section.

• TopFeatureExtractor interface exposes a method to compute the top fea-

tures and whose side effect is in the file system: top() implementation should

save a file with the correspondent top features;

• StaticFeatureExtractor, whose implementation should contain the code

for re-scanning all the malware samples for the top features, and for applying

One hot encoding to the categorical variables.

The project has been implemented in Python3, mostly because of the versa-

tility of the pefile library, which allows to extract PE file information easily.

Multiprocessing has been also exploited to parallelize the tasks, using the Pool

object from the multiprocessing module. Pool’s map is the parallel equivalent of

the builtin map function: tasks are scheduled to the specified number of processes

and their return values are saved. The function blocks until all tasks succeed.

After applying One Hot Encoding to the categorical variables, the dataset

comprises 46351 features.

In the following figure 3.8 is shown the activity UML diagram about the static

feature extraction process.

52 CHAPTER 3. STATIC FEATURES EXTRACTION

https://github.com/erocarrera/pefile

3.4. DESIGN AND IMPLEMENTATION

Figure 3.6: Top Feature Extractor UML

Figure 3.7: Static Feature Extractor UML

CHAPTER 3. STATIC FEATURES EXTRACTION 53

3.4. DESIGN AND IMPLEMENTATION

Figure 3.8: Static Feature Extraction Process UML

54 CHAPTER 3. STATIC FEATURES EXTRACTION

Chapter 4

Clustering Windows Malware

4.1 Introduction

This chapter builds upon the feature extraction project from malware highlighted

in the previous chapter and the successful execution of the corresponding pipeline.

It focuses on the clustering phase, where experiments are conducted to explore

and evaluate different hierarchical clustering algorithms. The primary goal is to

determine whether underlying relationships exist among various malware samples

based on shared features.

By creating a hierarchical structure, the algorithms allow for the identification

of clusters of malware at different levels of granularity, allowing a deeper under-

standing of how these samples relate to one another across different scales.

After assessing clustering quality at different dendrogram levels, the optimal

cut is selected for further analysis.

The chapter also focuses on the relationship between the defined clusters and

current labeling systems such as AVClass2 for family labels and off-the-shelf pack-

ers and protectors by using the signature-based Detect It Easy (DIE) tool, and the

Yara rules of Avast RetDec. Both labels were previously extracted for the paper

“Decoding the Secrets of Machine Learning in Malware Classification: A Deep

Dive into Datasets, Feature Extraction, and Model Performance” [DHA+23].

All the clustering-related code is developed using GitHub and can be found in

the Clustering Windows Malware repository.

CHAPTER 4. CLUSTERING WINDOWS MALWARE 55

https://github.com/horsicq/Detect-It-Easy
https://github.com/avast/retdec/tree/master/support/yara_patterns
https://github.com/w-disaster/clustering-windows-malware/tree/main

4.2. PIPELINE

4.2 Pipeline

This section elucidates the overall pipeline involved in the clustering phase. From

an initial preprocessing stage, different dimensionality reduction techniques are ap-

plied and evaluated, as well as different hierarchical clustering algorithms. Finally,

results are outlined leveraging common unsupervised and supervised scores.

4.2.1 Preprocessing

Data cleaning

The first preprocessing stage involves data cleaning. Given the initial dataset of

shape (67000, 44731), instances belonging to truncated files are deleted: these

samples are corrupted and may have invalid values on a subset of features. More

precisely, all samples belonging to a family are deleted if at least 7% of them are

truncated. This number is chosen by applying the elbow method, in such a way

that not an excessive amount of families are discarded, as well as still providing

a valid train/test split in terms of the ratio of samples. Decreasing it drastically

would result in too many deleted families. On the other hand, a ‘high’ percentage

would result in data with too much noise.

After the data cleaning stage, the dataset is cleaned from 72 families, which

results in a final shape of (59800, 44731).

Split at 2021-09-03 13:47:49

Training set length: 37428, (62.59%)

Testing set length: 22372, (37.41%)

Num families in training: 572

Num families in testing: 560

Common families: 534

Families in training but not in testing: 38 (6.35%)

Families in testing but not in training: 26 (4.35%)

(a) Dataset report after data cleaning (b) Truncated sample filtering

56 CHAPTER 4. CLUSTERING WINDOWS MALWARE

4.2. PIPELINE

One Hot Encoding

One Hot Encoding is carried out in the static feature extraction pipeline, but only

on the features belonging to the top ones. Another round of One Hot Encoding is

applied to the remaining categorical features.

Only the categorical variable pesectionProcessed entrypointSection name

is left, comprising 1622 different values. The final dataset shape after this stage

and by setting SHA256 as the index is (59800, 46351).

Feature selection

Feature selection is applied as well in order to remove zero variance features.

Indeed, they don’t provide any information for ML models to predict a target

variable, as well as for clustering.

A total of 255 features are deleted.

Data normalization

Finally, the last preprocessing phase involves data normalization. Min-Max nor-

malization is applied in order to scale all the features to the range [0, 1].

4.2.2 Dimensionality Reduction

Due to the high dimensional nature of the feature space built in the previous

stages, there are practical issues concerning the performance of both clustering

and supervised ML algorithms. Dimensionality reduction techniques are needed

for faster computations. Indeed, they allow for the reduction of computational

load, improving their efficiency and speed. Furthermore, they help to reduce the

amount of noise present in the data by extracting relevant information.

Different dimensionality reduction techniques are applied during the experi-

ments, and their effect on clustering is subsequently assessed by computing qual-

ity scores. All these implementations are provided by the scikit-learn [PVG+11]

library. The reduced feature space has been chosen to comprise 1000 columns.

• MiniBatchSparsePCA. It is a faster, but less accurate variant of Sparse PCA,

a dimensionality reduction algorithm based on Principal Components Anal-

CHAPTER 4. CLUSTERING WINDOWS MALWARE 57

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.MiniBatchSparsePCA.html

4.2. PIPELINE

ysis. It is a linear reduction algorithm characterized by sparse components

i.e. components that can have zero coefficients, and it is beneficial for ex-

plainability purposes;

• SpectralEmbedding. It’s a non-linear dimensionality reduction technique

based on spectral graph theory. It builds the transformation by finding the

eigenvectors and corresponding eigenvalues of the Laplacian matrix;

• Autoencoder. The autoencoder is a type of neural network architecture

whose goal is to learn a latent representation of the input data. It is composed

of an encoder and decoder part: while the first one constructs a compressed

representation of the input (capturing the main patterns in the data), the

latter in turn serves to reconstruct it back to the original dimension. The

learning procedure guarantees a minimal reconstruction loss, thus forcing the

latent space to contain the core information;

• UMAP (Uniform Manifold Approximation and Projection). It is a non-linear

dimensionality reduction algorithm that can directly run on sparse matrices.

Due to the sparsity of the input dataset, caused by the one hot encoding

procedure (from the others), this method has been also considered a good

candidate algorithm.

4.2.3 Hierarchical clustering

Two hierarchical clustering algorithms are experimented over the dimensionality-

reduced feature space: agglomerative clustering and HDBSCAN. Scores are ana-

lyzed to finally choose the best method.

• AgglomerativeClustering. Using a bottom-up approach, it starts by con-

sidering single points as different clusters. The clusters are then merged

based on the linkage criteria: ward, average, complete, and single are exam-

ples of linkage that are commonly used.

Ward distance has been considered more appropriate for our problem, as it

generates more balanced clusters in terms of the number of samples. scikit-

58 CHAPTER 4. CLUSTERING WINDOWS MALWARE

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.SpectralEmbedding.html
https://umap-learn.readthedocs.io/en/latest/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html

4.3. RESULTS

learn and scipy [VGO+20] libraries also help with the creation of the den-

drogram tree and extraction of the cluster labels at different heights.

• HDBSCAN. It is an extended version of DBSCAN and is particularly useful

when clusters have different densities. It automatically finds the best number

of clusters, without the need to specify it beforehand to the user.

In this case, HDBSCAN python implementation provided by the hdbscan is

used. The library allows us to get the cluster labels at the different levels

of the generated dendrogram, the Single linkage tree. Experiments showed

that the generated clusters are very unbalanced: data is, most of the time,

merged into the same cluster. The result is the presence of a big cluster and

very small ones with few samples (≈ 1 sample per cluster).

4.3 Results

4.3.1 Clustering quality assessment

Unsupervised scores

The following two figures present clustering quality scores obtained using the ag-

glomerative clustering algorithm. In the first figure, MiniBatchSparsePCA imple-

mentation is used for the dimensionality reduction, while in the second UMAP. Only

those two techniques are assessed in this section, as spectral embedding and au-

toencoder show very similar tendencies as the PCA variant. Both figures show

plots on three unsupervised scores, computed by cutting the dendrogram at dif-

ferent levels by extracting the cluster labels:

• Davies-Bouldin score. The minimum score is zero, with lower values

indicating better clustering;

• Silhouette Score. Highest average Silhouette score means better-defined

clusters;

• Calinski-Harabasz index, also known as variance ratio criterion. A higher

score relates to a model with better-defined clusters.

CHAPTER 4. CLUSTERING WINDOWS MALWARE 59

https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://hdbscan.readthedocs.io/en/latest/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.davies_bouldin_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.calinski_harabasz_score.html

4.3. RESULTS

These three unsupervised scores are commonly used in the literature for hi-

erarchical clustering to assess cluster quality without the need for ground truth

labels. Since the Silhouette Score complexity is O(n2), applying it to large datasets

becomes impractical. Thus, the plots show the scores at 50 clusters offset between

two samples, allowing to restrict the analysis to core points. More precisely, cluster

labels range from 2 clusters to 3702, corresponding to an upper bound of 10 sam-

ples per cluster. Next to the Silhouette score, the DB score and CH score are more

lightweight in terms of complexity, so they are considered practical for assessing

clustering quality.

Figure 4.2: AgglomerativeClustering over MiniBatchSparsePCA dimensionality
reduction

60 CHAPTER 4. CLUSTERING WINDOWS MALWARE

4.3. RESULTS

Figure 4.3: AgglomerativeClustering over UMAP dimensionality reduction

• Agglomerative Clustering over MiniBatch Sparse PCA. From now

on, we will refer to this version as AgglMbsPCA. Unsupervised clustering

scores (figure 4.2) show conflicting results. While Silhouette score and DB

scores decrease by raising the number of clusters, CH, after the initial levels

of the dendrogram tree, drastically decreases and remains stable afterwards.

Silhouette and DB indicate increasing cluster quality over the number of clus-

ters. Silhouette score, in particular, exceeds 0.5 after some point, which

generally indicates reasonable cluster definition.

The dendrogram tree plot gives a visual glimpse of how the hierarchical

clusters are distanced from each other. Longer vertical lines mean more

distanced clusters: two big clusters can be identified at the highest level,

CHAPTER 4. CLUSTERING WINDOWS MALWARE 61

4.3. RESULTS

while deeper levels of the dendrogram show less separated clusters. Moreover,

at level 5 the resulting clusters are visually balanced;

• Agglomerative Clustering over UMAP. Going forward, we will refer

to this version as AgglUMAP. Unsupervised scores (figure 4.3) show similar

tendencies as the first approach, with the difference of CH score that incre-

ments in the latest levels of the dendrogram. Further analysis shows that

this result is due to the unbalanced nature of clusters: the same big cluster

is being split, generating clusters of single points. The resulting clusters are

either relatively small (≈ 1 point) or relatively big. In figure 4.4, the Cumu-

lative Distribution function of the number of samples per cluster is shown,

as well as the box plot of the distribution. Both show the unbalanced nature

of clusters, focusing on the dendrogram cut comprising 1500 clusters.

For this reason, AgglUMAP has not been considered appropriate for further

analysis.

Figure 4.4: AgglUMAP quality assessment - Unbalanced clusters in terms of number
of samples

Supervised scores - Cluster relationship with malware families

As ground truth labels, malware family labels provided by AVClass2 [SC20] were

used.

62 CHAPTER 4. CLUSTERING WINDOWS MALWARE

4.3. RESULTS

Since its classification process is probabilistic and relies on heuristics, the re-

sulting labels may contain uncertainties and inconsistencies. Treating these labels

as absolute ground truth can introduce biases in evaluating clustering performance.

Furthermore, family labels may be also aliases of one another: in a perfect situation

a single cluster would appear with all these families grouped together. Such aliases

however are not available in the literature, so this analysis has been excluded.

In this work, AVClass2 labels are used for comparison purposes while acknowl-

edging their probabilistic nature and potential limitations in accurately reflecting

true malware family assignments.

Three supervised scores are leveraged: Normalized Mutual Info (NMI), Adjusted

Mutual Info (AMI), and Adjusted random score (ARI). The first two range between

0 and 1, while ARI is between -0.5 and 1. In all the cases, higher values represent

increasing correlation. ARI has the lower bound of −0.5, and assumes negative

values to indicate especially discordant clustering.

The following figures display the supervised scores focusing on the first clus-

tering version (AgglMbsPCA).

Figure 4.5: AgglMbsPCA quality assessment - Supervised scores tendency over the
number of clusters

The supervised scores show that there is some relationship between the gener-

ated clusters and AVClass2 labels. All of them remain constant afterward a certain

height of the dendrogram tree.

4.3.2 Optimal number of clusters

The optimal number of clusters in AgglMbsPCA is chosen to achieve good perfor-

mance on both unsupervised and supervised scores. In unsupervised scores, good

CHAPTER 4. CLUSTERING WINDOWS MALWARE 63

4.3. RESULTS

Silhouette and DB are preferred over CH. Also, Silhouette score ⪆ 0.5 is suggested.

An initial 2500 cluster may be appropriate in the first instance, but supervised

scores show that there is no improvement starting from 1500 clusters.

This latter number is still appropriate as the Silhouette score and DB score

don’t decrease significantly, so it has been chosen to be the optimal number of

clusters. Thus, future analysis that will be conducted on this thesis, regarding

cluster relationship with ground truth labels and explainability, will focus on this

dendrogram level.

The final scores at 1500 clusters have the following values:

Score Value

Silhouette 0.48

DB 1.45

CH 325.73

NMI 0.78

AMI 0.66

ARI 0.44

Table 4.1: Optimal number of clusters - AgglMbsPCA scores

4.3.3 Other ground “truth” analysis

Given the AVClass2 labels and packing information about the malware, other

experiments are undertaken to study their relationship with the generated clusters.

Following the same methodology, labels are compared to clusters along the

dendrogram, and the best overlapping score is outputted. This analysis may re-

veal clusters of samples packed with the same algorithm, or clusters of samples

belonging to the same malware family.

More specifically, referring to the packing analysis (equivalent to the family

one):

1. The dendrogram is cut at multiple levels: from a lower bound of 10 clusters

to an upper bound that equivalently corresponds to an average of 10 samples

per cluster, using an offset of 100 clusters (levels);

64 CHAPTER 4. CLUSTERING WINDOWS MALWARE

4.3. RESULTS

2. For each level:

(a) One cluster at a time is selected, considering the samples in it as true

label, the others as false;

(b) One packing algorithm is picked and all the samples packed with it are

set as true label, false otherwise;

(c) The Jaccard index is applied to investigate the relationship between a

specific cluster and packing algorithm. The Jaccard index measures the

similarity between two sets A and B: J(A,B) =
|A ∩B|
|A ∪B|

;

(d) For each packing algorithm, save the cluster with the highest Jaccard

index;

3. For each packing algorithm, output the cluster along the dendrogram with

the highest Jaccard index.

Packing algorithm - Cluster relationship

Packing executables refers to the process of compressing an executable file in order

to reduce its size. While packing can be used for legitimate purposes, such as

software protection and anti-tampering, it is also used for malicious purposes, as

attackers use it to obfuscate the content of the malware, evading detection by

security tools and hindering reverse engineering.

As stated in the introduction, information about packed malware collected by

[DHA+23] is used. Packed malware detected in the training dataset comprises

23.78% of the samples, each one packed to one of 155 distinct algorithms.

Overall, 12 (8.0%) packing algorithms are associated with a cluster at some

point along the dendrogram (J ≥ 0.8).

CHAPTER 4. CLUSTERING WINDOWS MALWARE 65

4.3. RESULTS

Figure 4.6: Packing analysis: Top 20 clusters by Jaccard index for increasing
dendrogram levels, Jaccard index distribution along packing algorithms.

66 CHAPTER 4. CLUSTERING WINDOWS MALWARE

4.3. RESULTS

Packing Algorithm Jaccard
Index J

Cluster
Index

Dendrogram
Level

Training Set
Samples

petite 0.84 396 610 157
ezip 1.00 138 3310 2
.net reactor 0.98 101 210 62
spoon studio 1.00 871 2610 3
telock;vmprotect 1.00 1361 2410 8
dotfix

niceprotect;upx

0.85 837 1210 73

dxpack 1.00 718 1010 43
flash player 0.80 1223 1710 4
molebox;upx 0.80 1141 1510 10
confuser 1.00 1153 1510 5
eziriz .net reactor 1.00 2609 3710 1
execryptor;petite;upx 0.93 2259 2310 13

Table 4.2: Packers with high relationship - J ≥ 0.8.

Malware family - Cluster relationship

Malware family analysis follows the same pipeline as the packing one.

Compared to the packing algorithms, malware families overlap with clusters

starting from the initial levels of the dendrogram, as empirically shown in the

following images (figure 4.7).

Results show that 129 (23.0%) malware families (AVClass2 labels) belonging

to the training dataset are associated with a cluster at some point along the den-

drogram (J ≥ 0.8).

CHAPTER 4. CLUSTERING WINDOWS MALWARE 67

4.3. RESULTS

Figure 4.7: Malware family analysis: Top 30 clusters by Jaccard index for increas-
ing dendrogram levels, Jaccard index distribution along malware families.

68 CHAPTER 4. CLUSTERING WINDOWS MALWARE

Chapter 5

XAI for Cluster Analysis

5.1 Introduction

Clustering is a valuable technique to study the relationship between data samples,

due to its ability to group samples together based on some shared features. While

intrinsically interpretable, clustering research before the advent of eXplainable AI

was focused on improving performance metrics, such as scalability and accuracy,

leaving interpretability out of scope.

The research in XAI has begun in recent years mainly in the classification

field, while in cluster analysis just in the last few years. XAI in cluster analysis is

currently divided into two philosophies, one focusing on the creation of cluster-

ing algorithms interpretable by design, while the other involves a two-step

approach [Can20].

As the name suggests, the first approach focuses on creating new clustering al-

gorithms specifically for explainability purposes. In contrast, the second approach

consists of the usage of two models: one for clustering and another for classifica-

tion. By training a classifier on the generated clustering labels, it is possible to

apply supervised XAI techniques to generate explanations.

While a survey and a comparison of these approaches may be interesting for

research purposes, it is not the scope of this thesis to investigate and experiment

with all the state-of-the-art solutions.

In the context of Windows malware (under the adoption of static features),

CHAPTER 5. XAI FOR CLUSTER ANALYSIS 69

5.2. TWO TWO-STEP APPROACHES

understanding why executables are clustered together plays an important role

though, as it may reveal a set of features that correspond to an attack technique or

evasion strategy. Without explainability, clusters may contain arbitrary groupings

that lack practical significance.

Given the optimal number of clusters computed in the previous chapter (n.

1500 clusters), this one elucidates the explainable clustering pipeline that has been

implemented, giving the motivations behind its adoption concerning two different

two-step solutions.

5.2 Two two-step approaches

Two different two-step approaches were taken into consideration for assessing the

features that characterize each generated cluster.

The first approach is a model-dependent method that leverages global explana-

tions, i.e., explanations that offer a comprehensive understanding of how the model

makes decisions across all data points. In contrast, the second approach is model-

agnostic and relies on local explanations, which provide insights into individual

predictions.

5.2.1 Random Forest method based on Gini importance

The first solution is based on Random Forest classification models.

Random Forest is a type of ML classifier that is interpretable by default, as

each Decision Tree composing the Random Forest follows a simple, rule-based

structure. There, decisions are made by splitting features at various thresholds.

This intrinsic structure allows for straightforward interpretation by extracting the

feature-level contribution for the splitting process.

Feature importances provide global insights about their overall contribution.

In scikit-learn Random Forest implementation, they can be easily extracted. As

stated in the documentation, the approach is impurity-based, and it is also referred

to as Gini Importance (Mean Decrease in Impurity (MDI)). The Gini importance

measures each feature’s importance as the sum over the number of splits (across all

trees) that include the feature, proportionally to the number of samples it splits.

70 CHAPTER 5. XAI FOR CLUSTER ANALYSIS

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

5.2. TWO TWO-STEP APPROACHES

The overall pipeline consists of training a separate Random Forest model for

each revealed cluster. More specifically, each Random Forest is trained to a new

set of labels, where samples belonging to the cluster under consideration are set as

true labels, false label otherwise. Finally, by computing the feature importances,

one can extract the features that characterize that specific cluster.

While computing the feature importances is relatively fast in Random Forest

models, this method doesn’t scale well. Indeed, it has been considered impractical

for this case study, as 1500 different classifiers should be trained. Thus, it is

excluded from experiments.

Figure 5.1: Random Forest-based two-step method based on Gini importance.

5.2.2 Local Explanations method

The second solution, unlike the first one, is model-agnostic and based on local

explanations.

A single ML classifier is trained on the produced clustering labels, alongside a

local explainer, such as LIME or SHAP.

For practical purposes, a percentage of instances is randomly sampled from each

cluster, and their local explanations are produced. Providing local explanations

CHAPTER 5. XAI FOR CLUSTER ANALYSIS 71

https://github.com/marcotcr/lime
https://shap.readthedocs.io/en/latest/

5.3. EXPERIMENTS

for a subset of the points is a more practical way of extracting cluster explanations,

but it is informally inefficient: the computed explanations depend on the quality of

the chosen points. While approximation is introduced, this method may be faster

for large training sets or serve as a useful way to gain initial insights into feature

contributions, with full computation reserved for later analysis.

Once local explanations are generated for every instance in the subset, we can

average the feature contributions per cluster.

This method has been chosen for experimentation purposes, as it provides a

more practical approach for extracting explanations with a large number of clusters

(n. 1500).

Figure 5.2: Two-step method based on local explanations.

5.3 Experiments

As stated in the previous section, experiments are conducted using the two-step

method based on local explanations. The trained ML classifier is a Random For-

est, as it can perfectly discriminate the clusters i.e. it has 100% accuracy over

the training set. For the local explainer, LIME is exploited, as it offers a more

lightweight method for extracting explanations compared to SHAP.

A LimeTabularExplainer object was created and used in the first instance

72 CHAPTER 5. XAI FOR CLUSTER ANALYSIS

https://lime-ml.readthedocs.io/en/latest/lime.html#lime.lime_tabular.LimeTabularExplainer

5.3. EXPERIMENTS

to compute the local explanations of 25% of points for each cluster. After an

initial analysis, the explainer has been utilized to produce explanations of every

point in the training set (comprising 37428 instances). We can get them by calling

explain instance method.

explain instance takes as argument the sample whose prediction we want

to explain, the classifier prediction probability function, the maximum number

of features present in the explanation (that should be equal to the number of

features), the size of the neighborhood to learn the linear model (num samples)

and the top labels, indicating the top k labels with highest prediction probabilities

we want to produce explanations (in this case set to 1 as we want the one with

the highest prediction probability).

Still, here num samples is set to 1000, with a default value of 5000, so approx-

imation increases.

In Listing 1 is briefly shown the implemented code to extract sample explana-

tions. Also here, a Pool of processes are created to enable multiprocessing. Each

sample explanation is saved to a file for saving RAM space, that would rather be

occupied by the join operation.

The features that characterize each cluster are then computed by averaging the

feature importances for the samples within it. In figure 5.5 the top 50 features

by contribution are shown for clusters of labels 0, 250, 1000, 1250. Figures 5.3

and 5.4 display information for clusters of labels 0, 250, 500, 750, 1000 and 1250.

The first one shows a box plot of the feature contribution grouped per cluster and

type, and the second is the Cumulative distribution function (CDF) of the feature

contribution averaged per cluster.

Finally, the last two plots in 5.6 summarize feature importance distribution

grouped per type, but for all training instances. These plots indicate the features

that mostly weigh for characterizing the clusters at the optimal dendrogram cut

(n. 1500 clusters). The plot 5.6a displays the sum of the feature importances per

type, while 5.6b is the mean.

CHAPTER 5. XAI FOR CLUSTER ANALYSIS 73

5.3. EXPERIMENTS

�
1 from multiprocessing import Pool

2 import pickle

3 import lime

4

5 def get_explanations(idx):

6 expl_map = explainer.explain_instance(

7 X_train[idx],

8 predict_fn=clf.predict_proba ,

9 num_features=X_train.shape[1],

10 num_samples =1000 ,

11 top_labels =1,

12).as_map ()

13

14 # Save explanations to file instead of returning it to save ram

15 with open(f'models/expl_{idx}.pkl', 'wb') as f:

16 pickle.dump(expl_map , f)

17

18 explainer = lime.lime_tabular.LimeTabularExplainer(

19 X_train.values ,

20 feature_names=list(X_train.columns),

21 class_names=clf.classes_ ,

22 random_state =42,

23 mode="classification"

24)

25

26 n_proc = 16

27 with Pool(n_proc) as p:

28 p.map(get_explanations , list(range(X_train.shape [0])))
� �
Listing 1: Explanations extraction using LimeTabularExplainer implementation.

74 CHAPTER 5. XAI FOR CLUSTER ANALYSIS

5.3. EXPERIMENTS

Figure 5.3: Feature importance distribution grouped per feature type and cluster

CHAPTER 5. XAI FOR CLUSTER ANALYSIS 75

5.3. EXPERIMENTS

Figure 5.4: Cumulative distribution function of feature contribution per cluster

76 CHAPTER 5. XAI FOR CLUSTER ANALYSIS

5.3. EXPERIMENTS

Figure 5.5: Feature contribution distribution per feature type (absolute and nor-
malized).

CHAPTER 5. XAI FOR CLUSTER ANALYSIS 77

5.3. EXPERIMENTS

(a) Total feature importance per type, averaged by cluster

(b) Average feature importance per type, averaged by cluster

Figure 5.6: Feature importances grouped for the whole dendrogram cut (n. 1500
clusters).

78 CHAPTER 5. XAI FOR CLUSTER ANALYSIS

5.4. RESULTS AND CONCLUSIONS

5.4 Results and Conclusions

From the generated plots we can draw several conclusions. The majority of features

within each chosen cluster have near-zero contributions (≈ 60% of the features)

while only a few exhibit high contributions, varying from top 1% to 10%.

Overall, when considering all the clusters from the dendrogram cut, string

features have the highest contribution, in absolute terms. However, when the

contribution is normalized by the number of features per type (i.e. average contri-

bution per type), this number drastically drops. This suggests that the relatively

high importance of string features is primarily due to their large quantity rather

than their individual importance.

On the other hand, imports have relatively high contributions both in absolute

terms and on average.

Furthermore, n-grams and opcodes — 13000 and 2500 features, respectively

— have low absolute and average contributions. This indicates that despite the

high number of present features, low-level information of malware isn’t useful for

characterizing clusters at this level of the dendrogram.

One possible explanation is that fine-grained representations such as n-grams

and opcodes capture micro-level variations that do not strongly influence the

broader structural similarities captured by clustering. Instead, higher-level se-

mantic features, such as API imports and DLLs, play a more dominant role in

identifying meaningful relationships among malware samples.

CHAPTER 5. XAI FOR CLUSTER ANALYSIS 79

5.4. RESULTS AND CONCLUSIONS

80 CHAPTER 5. XAI FOR CLUSTER ANALYSIS

Chapter 6

Concept drift detection

6.1 Introduction

This chapter assesses concept drift detection in the context of AVClass2 family la-

bels. Given the initial time-based train/test split, a concept drift detection pipeline

was executed to identify drifting families and examine the impact of emerging ones,

unseen in the training set.

This work directly builds on the foundation established by the Transcendent

project [BPPC24], which leverages Conformal Evaluation. The open-source

code hosted on GitHub was modified to support multiclass problems.

The Transcendent project originally supports binary classification only. How-

ever, as the authors noted in their publication, the code can be extended to mul-

ticlass scenarios using a one-vs-all ensemble of Conformal Evaluators. Given the

dataset’s hundreds of labels, this approach was considered impractical.

To address this, a multiclass Non-Conformity Measure (NCM) was im-

plemented, and the code was adapted to work with the ICE (Inductive Conformal

Evaluator) solution. Although ICE is the least formally efficient, it is the most

computationally viable option and is recommended by the authors (next to CCE).

While this work extends the Transcendent framework, the thresholding mech-

anism was temporarily disabled due to time constraints, with adjustments left for

future work. Instead of using per-class thresholds, a global threshold was derived

for all classes using a simplified criterion.

CHAPTER 6. CONCEPT DRIFT DETECTION 81

https://github.com/s2labres/transcendent-release/tree/main

6.2. MULTICLASS NON-CONFORMITY MEASURE (NCM)

This chapter outlines the concept drift detection pipeline, emphasizing the

design of the NCM and the experiments that have been carried out. The updated

code is publicly available in a personal Transcendent fork.

6.2 Multiclass Non-Conformity Measure (NCM)

The first step in choosing the multiclass NCM is to define the ML model that will

be used to classify malware samples into families, as the NCM should be derived

accordingly.

While deep learning models may be an interesting way of classifying malware,

they don’t suit this dataset, as too few samples for each family are provided (100

per family, specifically). In the context of malware family classification, Random

Forest model has proven in many works to be an effective solution though, as it

achieves good performances. Thus, it has been chosen as a candidate algorithm

for investigating concept drift.

From the literature, there exists a bunch of RF NCMs, mainly built for Con-

formal Predictors. The one chosen for this project is based on Random Forest

proximities, presented in [DN10], and whose Conformal Evaluator solution is re-

ferred to CP-RF-kNN. The NCM, which from now on we will name RF-kNN ,

has been proven to be valid and efficient, based on conducted experiments applied

to Conformal Prediction.

“The nonconformity measure is the ratio of the average proximity of

the example with examples of other classes to the average proximity

of the example to examples of the same class. In both averages we

consider only proximities of those k examples that have the greatest

values of proximities among examples of the same class y and among

all the other examples.”

6.2.1 Random Forest Proximities

Random Forest Proximities is a method to measure the similarity between two

samples using a pre-trained Random Forest model. Proposed by the author of the

82 CHAPTER 6. CONCEPT DRIFT DETECTION

https://github.com/w-disaster/transcendent-release

6.3. PIPELINE OVERVIEW

RF algorithm, Leo Breiman, he considers them “one of the most useful tools in

random forests” 1.

The measure comes from the idea that if two samples i and j activate the same

leaves across the Decision Trees composing the Random Forest, they are similar

as they share feature values.

That being said, proximities in Random Forest measure the similarity of two

samples by the proportion of shared activated leaves. Formally, given samples i

and j:

prox(i, j) = prox(j, i) =
1

|Trees|
∑

t∈Trees

[leaf(i, t) == leaf(j, t)] (6.1)

where leaf(i, t) is the index of the activated leaf for sample i and Decision Tree

t.

RF proximities can be computed leveraging code available on Proximities and

Prototypes with Random Forests guide. This implementation is adopted for this

project.

6.3 Pipeline Overview

As mentioned in the introduction, experiments are carried out using the ICE so-

lution (without thresholding). The pipeline consists of several sequential phases:

1. Prelude: the dataset is prepared, and any necessary preprocessing is per-

formed. Additionally, the training dataset is further split into a proper train-

ing set and a calibration set, using random partitioning. The calibration set

represents 34% of the full training set;

2. Calibration: The Random Forest model is trained on the proper training set

and, leveraging RF-5NN NCM, the calibration points’ p-values are computed

to assess the algorithm’s Credibility and Confidence. These two metrics are

essential for the Alpha assessment phase, determining whether the NCM

can effectively distinguish between correct and incorrect predictions using

statistical evidence.
1https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#prox

CHAPTER 6. CONCEPT DRIFT DETECTION 83

https://www.tensorflow.org/decision_forests/tutorials/proximities_colab
https://www.tensorflow.org/decision_forests/tutorials/proximities_colab
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#prox

6.4. RESULTS AND ANALYSIS

3. Deployment : The classifier is trained on the full training set, and Credibility

and Confidence scores are calculated for the test set. Leveraging the global

threshold identified in the previous step, concept drift is eventually detected.

6.4 Results and Analysis

6.4.1 Alpha assessment

The alpha assessment can be used to empirically investigate the quality of the

underlying NCM. In Transcend [JSD+17], this is done by plotting the distribution

of p-values for each class, further splitting it by correct vs incorrect predictions. If

a viable threshold can be derived, with incorrect predictions having low p-values,

it means the NCM can effectively capture predictions with low credibility and can

be used to statistically support the decisions.

Rather than plotting the distribution for each class, in this project, the alpha

assessment is carried out by simply splitting the distributions of correct vs incorrect

predictions, as we have a high number of classes.

As shown in the following figure (6.1), the two distributions differ. This implies

that the NCM RF-5NN is a good metric for discriminating whether the prediction

is valid, providing statistical evidence.

Figure 6.1: Alpha assessment: credibility score (p-value) distribution of the cali-
bration set

84 CHAPTER 6. CONCEPT DRIFT DETECTION

6.4. RESULTS AND ANALYSIS

6.4.2 Global threshold

The information provided by alpha assessment is also used for computing the

global threshold t. Calibration points’ p-values, or equivalently credibility values,

are combined with the confidence score, which assesses whether the predicted point

is also similar to other classes: it may happen that the choice made by the classifier

is not linked to the highest p-value, suggesting that the confidence is sub-optimal.

Using the same criteria, the confidence score distribution is plotted, by splitting

it by correct vs incorrect predictions.

The results show that both correct and incorrect predictions have high confi-

dence scores, meaning that algorithm credibility is the highest p-value. The con-

clusion is that the algorithm can uniquely identify the classes and that calibration

objects are not similar to two or more classes.

Since high algorithm confidence is reached in both cases, the global threshold

t is derived using algorithm credibility only, with p-values < t delineating drifted

points, and credible prediction vice-versa.

By plotting the CDF of the credibility score from incorrect predictions, it’s

possible to see that there’s a huge elbow after p-value 0. While this number may

be a viable threshold, in concept drift detection applied to malware samples, pri-

oritizing the detection of false positives over false negatives is generally preferred.

Thus, we further analyze the conventional threshold of 0, 05. Using this thresh-

old, we can see that it covers 98, 88% of incorrect choices. This threshold has been

considered acceptable for the problem, as it covers even more incorrect predictions.

CHAPTER 6. CONCEPT DRIFT DETECTION 85

6.4. RESULTS AND ANALYSIS

Figure 6.2: Confidence score distribution of calibration set

Figure 6.3: Thresholding information: average credibility and confidence compar-
ison, CDF of p-values for incorrect predictions

6.4.3 Concept drift

Once the threshold is defined, the testing set is checked for concept drift. The

Random Forest model is trained on the full training set and the same scores are

computed: points whose credibility scores fall below the threshold are signalled

as drifted. The analysis in this section is split into two cases: family evolution

and unseen families analysis. The first one assesses whether already-seen families

86 CHAPTER 6. CONCEPT DRIFT DETECTION

6.4. RESULTS AND ANALYSIS

in the training set have some form of evolution while the latter studies how new

families are categorized between the known ones.

Malware family evolution

By considering testing set samples belonging to known malware families:

• The Random Forest model has 66, 47% accuracy;

• A total of 7648 points are drifting (38, 68%), belonging to 451 different fam-

ilies (84, 46% of seen families);

• The number of known families that have all drifting testing points is 45.

Most of them (31 - 68, 89%), have less than 20% of the points in the testing

dataset (see figure 6.5);

• 1573 (7, 96%) of them have incorrect predictions but high credibility scores.

These samples belong to 191 distinct families;

• On average, each true family is predicted to 1, 83 different families.

Figure 6.4: Credibility score distribution of testing samples from seen families

CHAPTER 6. CONCEPT DRIFT DETECTION 87

6.4. RESULTS AND ANALYSIS

Figure 6.5: Families with all drifting samples in the testing set

Unseen malware families

For families not present in the training set, one possible experiment is to assess

which ones are considered to be drifting and, conversely, check which known family

they are classified to when most of their samples have high-credibility predictions.

In the latter case, a high-credibility classification next to a single family prediction

might suggest that the unseen family is an alias of a known one.

The number of families unseen in the training set is 26. By considering these

families, some of them have a high credibility score. Specifically, 4 families have

an average credibility score above the threshold. 3 of them 100% of its samples

with high credibility. In figure 6.7 is shown the boxplot of the credibility score

for these families, further splitting it by predicted families. As it’s possible to see,

these families are classified to one or a maximum of 2 families. These families

share similar signatures and suggest they are aliases of predicted ones.

88 CHAPTER 6. CONCEPT DRIFT DETECTION

6.4. RESULTS AND ANALYSIS

Figure 6.6: Credibility score distribution of testing samples from unseen families

Figure 6.7: Credibility score distribution for testing samples from emerging families
with average and 100% credibility above the threshold, respectively, grouped by
predicted family.

CHAPTER 6. CONCEPT DRIFT DETECTION 89

6.4. RESULTS AND ANALYSIS

90 CHAPTER 6. CONCEPT DRIFT DETECTION

Chapter 7

Conclusions

The work conducted in this thesis has resulted in the experimentation of multiple

ML algorithms to address and shed light on the problem of malware clustering

and concept drift.

Project milestones have been successfully completed. After redesigning and

optimizing some phases, the dataset based on malware static features was built

leveraging existing work. Different clustering solutions were evaluated, mostly re-

garding hierarchical algorithms, finally identifying the optimal number of clusters,

which demonstrated good quality scores.

By combining clustering and XAI methods, insights into why samples are

grouped together were revealed.

Even if not strictly interpretable, these static features may be useful to better

understand the intrinsic relationship of malware, getting what are those features

that are shared across samples and global information. For example, whenever

clustering has optimal quality scores, we were able to see that higher-level infor-

mation prevails over fine-grained features.

Furthermore, current labeling systems provide insights into malware families,

but these algorithms are inherently probabilistic and cannot be used as perfect

ground truth. Also, the fast evolution and heterogeneous nature of malware make

the analysis more challenging. Clustering algorithms may be useful to address

these problems, providing an automated data-driven tagging mechanism to verify

the relationship between new and existing samples.

CHAPTER 7. CONCLUSIONS 91

7.1. FUTURE WORK

Parallel to malware clustering, concept drift definition and detection techniques

are reviewed in the first instance, specifically taking into consideration state-of-

the-art techniques for malware detection.

Through the injection of adversarial samples or the emergence of attack tech-

niques, attackers can indeed alter the performance of ML classifiers. Leveraging

concept drift detection, performance degradation can be identified in the early

stages (either with respect to clustering results or another tagging mechanism) to

trigger model retraining, preventing the machine from being infected by new types

of malware.

By using AVClass2 labels, the last chapter of this thesis focused on addressing

concept drift. Transcendent was applied with some modifications to the available

project. Using the determined time-based split, we were able to conclude that the

testing set appears to have drifted points.

7.1 Future work

This thesis experimented in two parallel lines with different missing points about

malware analysis using static features.

First of all, the clustering results may serve as a preliminary analysis for fur-

ther development. The hierarchical definition of clusters could be a method for

addressing whether a new data point can be classified into one of the existing

clusters, providing the user with the main features the sample shares with other

malicious samples.

Moreover, clustering labels can be used to address concept drift concerning

the found clusters, which could give deeper insights into changes from a data

perspective.

This latter detection method, combined with data drift and outlier detection

techniques, not only can be used to identify new emerging families but also new

obfuscation techniques or polymorphic modifications designed to evade detection.

Lastly, future work should focus on integrating these labels (either clustering

labels or other tags from known tools) with explainable drift detection techniques,

to better interpret what are the main features that caused the drift and change

over time.

92 CHAPTER 7. CONCLUSIONS

Bibliography

[AR18] Hyrum S. Anderson and Phil Roth. Ember: An open dataset for

training static pe malware machine learning models, 2018.

[ASLP07] Chid Apte, David Skillicorn, Bing Liu, and Srinivasan Parthasarathy.

Proceedings of the 2007 SIAM International Conference on Data

Mining (SDM). Society for Industrial and Applied Mathematics,

Philadelphia, PA, 2007.

[BAK22] Firas Bayram, Bestoun S. Ahmed, and Andreas Kassler. From con-

cept drift to model degradation: An overview on performance-aware

drift detectors. Knowledge-Based Systems, 245:108632, 2022.

[BCH+09] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christo-

pher Kruegel, and Engin Kirda. Scalable, behavior-based malware

clustering. In ISOC, editor, NDSS 2009, 16th Annual Network and

Distributed System Security Symposium, February 8-11, 2009, San

Diego, USA, San Diego, 2009. © ISOC. Personal use of this material

is permitted. The definitive version of this paper was published in

NDSS 2009, 16th Annual Network and Distributed System Security

Symposium, February 8-11, 2009, San Diego, USA.

[BKB17] Osbert Bastani, Carolyn Kim, and Hamsa Bastani. Interpreting

blackbox models via model extraction. CoRR, abs/1705.08504, 2017.

[BOA+07] Michael Bailey, Jon Oberheide, Jon Andersen, Z. Morley Mao, Far-

nam Jahanian, and Jose Nazario. Automated classification and anal-

ysis of internet malware. In Christopher Kruegel, Richard Lippmann,

BIBLIOGRAPHY 93

BIBLIOGRAPHY

and Andrew Clark, editors, Recent Advances in Intrusion Detection,

pages 178–197, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[BPPC24] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo

Cavallaro. Transcending transcend: Revisiting malware classification

in the presence of concept drift, 2024.

[Can20] Marcello Cannone. Explainable ai for clustering algorithms. Master’s

thesis, Politecnico di Torino, Corso di laurea magistrale in Ingegneria

Informatica (Computer Engineering), 2020.

[CH18] Yehonatan Cohen and Danny Hendler. Scalable detection of server-

side polymorphic malware. Knowledge-Based Systems, 156:113–128,

2018.

[Cla24] ClamAV. Clamav documentation, 2024.

[DHA+23] Savino Dambra, Yufei Han, Simone Aonzo, Platon Kotzias, Antonino

Vitale, Juan Caballero, Davide Balzarotti, and Leyla Bilge. Decoding

the secrets of machine learning in malware classification: A deep dive

into datasets, feature extraction, and model performance, 2023.

[DN10] Dmitry Devetyarov and Ilia Nouretdinov. Prediction with confidence

based on a random forest classifier. In Harris Papadopoulos, An-

dreas S. Andreou, and Max Bramer, editors, Artificial Intelligence

Applications and Innovations, pages 37–44, Berlin, Heidelberg, 2010.

Springer Berlin Heidelberg.

[GMCR04] João Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues.

Learning with drift detection. In Ana L. C. Bazzan and Sofiane

Labidi, editors, Advances in Artificial Intelligence – SBIA 2004, pages

286–295, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[GP94] Kimberlee Gauvreau and Marcello Pagano. Why 5%? Nutrition, 10

1:93–4, 1994.

94 BIBLIOGRAPHY

BIBLIOGRAPHY

[GSCK23] Nor Zakiah Gorment, Ali Selamat, Lim Kok Cheng, and Ondrej Kre-

jcar. Machine learning algorithm for malware detection: Taxonomy,

current challenges, and future directions. IEEE Access, 11:141045–

141089, 2023.

[How07] D.C. Howell. Statistical Methods for Psychology. Thomson

Wadsworth, 2007.

[Ins23] AV-TEST Institute. New malware, 2023.

[JM11] Sachin Jain and Yogesh Kumar Meena. Byte level n–gram analysis for

malware detection. In K. R. Venugopal and L. M. Patnaik, editors,

Computer Networks and Intelligent Computing, pages 51–59, Berlin,

Heidelberg, 2011. Springer Berlin Heidelberg.

[Jon23] Shanice Jones. What is dynamic malware analysis?

https://www.bitdefender.com/blog/businessinsights/

what-is-dynamic-malware-analysis/, 2023.

[JRA20] Maciej Jaworski, Leszek Rutkowski, and Plamen Angelov. Con-

cept drift detection using autoencoders in data streams processing.

In Leszek Rutkowski, Rafa l Scherer, Marcin Korytkowski, Witold

Pedrycz, Ryszard Tadeusiewicz, and Jacek M. Zurada, editors, Arti-

ficial Intelligence and Soft Computing, pages 124–133, Cham, 2020.

Springer International Publishing.

[JSD+17] Roberto Jordaney, Kumar Sharad, Santanu K. Dash, Zhi Wang, Da-

vide Papini, Ilia Nouretdinov, and Lorenzo Cavallaro. Transcend:

Detecting concept drift in malware classification models. In 26th

USENIX Security Symposium (USENIX Security 17), pages 625–642,

Vancouver, BC, August 2017. USENIX Association.

[Kas21] Kaspersky. Machine learning for malware detection. Technical report,

Kaspersky, 2021.

[Kas23] Kaspersky. Rising threats: cybercriminals unleash 411,000 malicious

files daily in 2023, 2023.

BIBLIOGRAPHY 95

https://www.bitdefender.com/blog/businessinsights/what-is-dynamic-malware-analysis/
https://www.bitdefender.com/blog/businessinsights/what-is-dynamic-malware-analysis/

BIBLIOGRAPHY

[Kas24] Kaspersky. Kaspersky scan engine detection technologies, april 2024.

[KYMS16] Boojoong Kang, Suleiman Y. Yerima, Kieran Mclaughlin, and Sakir

Sezer. N-opcode analysis for android malware classification and cate-

gorization. In 2016 International Conference On Cyber Security And

Protection Of Digital Services (Cyber Security), pages 1–7, 2016.

[Lam22] Thomas Lambart. Concept drift detection: An overview, 2022. Ac-

cessed: 2024-06-19.

[Mas51] Jr. Massey, Frank J. The kolmogorov-smirnov test for goodness of

fit, March 1951.

[MAS14] Mangesh Musale, Thomas H. Austin, and Mark Stamp. Hunting for

metamorphic javascript malware. Journal of Computer Virology and

Hacking Techniques, 11(2):89–102, September 2014.

[McH13] Mary L. McHugh. The chi-square test of independence, 2013.

[MLJ+21] Yixuan Ma, Shuang Liu, Jiajun Jiang, Guanhong Chen, and Keqiu

Li. A comprehensive study on learning-based PE malware family

classification methods. CoRR, abs/2110.15552, 2021.

[MNK+21] Lorenzo Maffia, Dario Nisi, Platon Kotzias, Giovanni Lagorio, Simone

Aonzo, and Davide Balzarotti. Longitudinal study of the prevalence

of malware evasive techniques. CoRR, abs/2112.11289, 2021.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-

derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay. Scikit-learn: Machine learning in Python. Journal

of Machine Learning Research, 12:2825–2830, 2011.

[RMH21] Tina Rezaei, Farnoush Manavi, and Ali Hamzeh. A pe header-

based method for malware detection using clustering and deep embed-

ding techniques. Journal of Information Security and Applications,

60:102876, 2021.

96 BIBLIOGRAPHY

BIBLIOGRAPHY

[RZC+16] Edward Raff, Richard Zak, Russell Cox, Jared Sylvester, Paul Yacci,

Rebecca Ward, Anna Tracy, Mark McLean, and Charles Nicholas.

An investigation of byte n-gram features for malware classification.

Journal of Computer Virology and Hacking Techniques, 14(1):1–20,

September 2016.

[SC20] Silvia Sebastián and Juan Caballero. Avclass2: Massive malware tag

extraction from av labels, 2020.

[SG04] Jeffrey C. Schlimmer and Richard Granger. Incremental learning

from noisy data. Machine Learning, 1:317–354, 2004.

[SMdlR+14] Prasha Shrestha, Suraj Maharjan, Gabriela Ramı́rez de la Rosa, Alan

Sprague, Thamar Solorio, and Gary Warner. Using string information

for malware family identification. In Ana L.C. Bazzan and Karim

Pichara, editors, Advances in Artificial Intelligence – IBERAMIA

2014, pages 686–697, Cham, 2014. Springer International Publishing.

[SS15] P.V. Shijo and A. Salim. Integrated static and dynamic analysis for

malware detection. Procedia Computer Science, 46:804–811, 2015.

Proceedings of the International Conference on Information and Com-

munication Technologies, ICICT 2014, 3-5 December 2014 at Bol-

gatty Palace & Island Resort, Kochi, India.

[SSD] SSDSI. One way anova.

[VB18] Giovanni Vigna and Davide Balzarotti. When malware is Packin’

heat. In Enigma 2018 (Enigma 2018), Santa Clara, CA, January

2018. USENIX Association.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,

Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,

Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew

Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew

R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan

Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,

BIBLIOGRAPHY 97

BIBLIOGRAPHY

Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,

Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian

Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy

1.0: Fundamental Algorithms for Scientific Computing in Python.

Nature Methods, 17:261–272, 2020.

[Vir] VirusTotal. Virustotal. [Online; accessed 27-July-2024].

98 BIBLIOGRAPHY

	Abstract
	Introduction
	Motivation, Background, and Related Work
	Malware Analysis
	Static analysis
	Dynamic analysis

	Machine Learning for Malware Analysis
	Malware detection and family classification
	Clustering malware
	Issues of ML-based malware detection

	Concept drift
	Concept drift in malware domain
	Mathematical formulation
	Concept drift types
	Concept drift detection

	Hypothesis testing
	p-value
	Statistical hypothesis tests

	Conformal Evaluation
	Conformal Prediction theory
	Non-Conformity Measure
	Statistical decision assessment
	Transcend Framework
	Practical Conformal Evaluation

	Related Work - Workplan, Tasks and Milestones
	Overview
	Tasks
	Milestones

	Static Features Extraction
	Introduction
	Training/Test split
	Time-based split

	Data collection and preparation
	Static features

	Design and implementation

	Clustering Windows Malware
	Introduction
	Pipeline
	Preprocessing
	Dimensionality Reduction
	Hierarchical clustering

	Results
	Clustering quality assessment
	Optimal number of clusters
	Other ground ``truth" analysis

	XAI for Cluster Analysis
	Introduction
	Two two-step approaches
	Random Forest method based on Gini importance
	Local Explanations method

	Experiments
	Results and Conclusions

	Concept drift detection
	Introduction
	Multiclass Non-Conformity Measure (NCM)
	Random Forest Proximities

	Pipeline Overview
	Results and Analysis
	Alpha assessment
	Global threshold
	Concept drift

	Conclusions
	Future work
	
	Bibliography

