
Alma Mater Studiorum
Università di Bologna

Campus di Cesena

DIPARTIMENTO DI INFORMATICA – SCIENZA E INGEGNERIA

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

ANONSHARD:
A PEER-TO-PEER NETWORK

FOR ANONYMOUS AND
DECENTRALIZED
COMPUTATION

Elaborato in:

CYBERSECURITY

Relatore:
D’Angelo Gabriele

Presentata da:
Paganelli Alberto

Sessione IV
Anno Accademico 2023-2024

“Study after study has show that human behavior

changes when we know we’re being watched.

Under observation, we act less free,

which means we effectively are less free.”

Edward Snowden

Abstract

In today’s digital era, privacy has become an increasingly rare and valu-

able resource. With the rapid expansion of data collection practices, in-

dividuals’ personal information has become a highly sought-after resource,

often traded in legal and illegal markets. Motivated by a commitment to

privacy and cybersecurity, this thesis presents AnonShard, a decentralized

peer-to-peer system prototype designed to execute computational tasks in

an anonymous environment. The system aims to provide the foundation for

building an anonymous computing infrastructure, expanding into a broader

vision of a privacy and innovation based ecosystem. The research explores

the principles of anonymity, the motivations behind anonymous computing,

and the technical challenges associated with building such a system. The

thesis details the system’s design, architecture, implementation choices, and

the trade-offs made during development due to time constraints and com-

plexity. Additionally, evaluations and scalability tests are conducted with a

secondary prototype used to analyze the Tor network’s behavior. This work

aims to deliver a functional and flexible prototype that can be the foundation

for developing a privacy-preserving computing ecosystem. At the end of the

thesis, the implementation of a reward system, the introduction of different

node typologies, and other features aimed at incentivizing participation and

enhancing the sustainability of the system are discussed.

i

Contents

1 Introduction 1

2 Introduction to Anonymity 1

2.1 Definition and Evolution of Anonymity 1

2.2 The Value of Anonymity . 4

2.3 Social Considerations . 5

2.4 Controversies . 7

2.5 Conclusion . 8

3 Motivations 9

3.1 Anonymous Computing . 9

3.1.1 Existing Solutions . 11

3.2 Background . 12

3.2.1 Decentralization . 12

3.2.2 The Tor Network . 13

3.2.3 SOCKS Proxy . 14

3.2.4 IPFS as Storage Layer 14

3.3 Prototype . 15

3.3.1 Nodes . 16

3.3.2 Interactions . 16

3.4 Analyzer Prototype . 20

4 Design and Implementation 23

4.1 Scenarios . 23

4.1.1 Secure Data Processing 23

4.1.2 Censored Regions . 24

4.1.3 General Scenarios . 25

4.2 Business Requirements . 25

iii

iv ABSTRACT

4.2.1 Provider . 26

4.2.2 Consumer . 29

4.3 Functional Requirements . 30

4.3.1 Provider . 30

4.3.2 Consumer . 32

4.4 Quality Attributes . 32

4.4.1 Runtime Quality Attributes 33

4.4.2 Development Time Quality Attributes 33

4.4.3 Quality Scenarios . 34

4.5 Architecture . 36

4.5.1 Components . 37

4.5.2 Other considered alternatives 39

4.5.3 Patterns . 40

4.6 Detailed Design . 43

4.6.1 Packages . 43

4.6.2 Domain Events . 43

4.6.3 UML Diagrams . 46

4.6.4 Provider Node . 46

4.6.5 Consumer Node . 48

4.7 Implementation . 48

4.7.1 Dependency Inversion Principle 48

4.7.2 Technologies . 49

4.7.3 Transport Layer . 54

4.8 DevOps . 56

4.8.1 Build Automation . 56

4.8.2 Version control . 57

4.8.3 Quality Assurance . 58

4.8.4 Continuous Integration and Delivery 58

4.9 Deployment . 59

4.9.1 Containerization . 59

4.9.2 Docker Compose . 62

4.9.3 Sample Scripts . 63

4.10 Running System . 65

5 Testing and evalutation 67

5.1 Scalability Test . 68

5.1.1 Encountered problems 69

INDEX v

5.2 Average RTT Test . 72

5.2.1 Process . 72

5.2.2 Countries Configuration 75

5.2.3 Detailed analysis . 77

5.2.4 Encountered problems 82

5.2.5 Limitations . 83

5.3 Future Test Extensions . 84

Conclusions 87

Future Extensions . 88

Bibliography 91

List of Figures

3.1 Discovery Mechanism Kademlia inspired 17

3.2 Task Submission Flow . 18

3.3 Analyzer Prototype . 21

4.1 Clean Architecture . 37

4.2 Components and connectors 38

4.3 Gossip Pub Sub Mechanism 39

4.4 Packages Structure . 43

4.5 Provider Domain Events . 44

4.6 Consumer Domain Events . 44

4.7 Documentation Example . 45

4.8 Handlers Example . 45

4.9 Payload Example . 45

4.10 Provider Discovery Service . 46

4.11 Provider Metric Service . 47

4.12 Provider Task Service . 47

4.13 Provider Task Evaluator . 47

4.14 Consumer Task Service . 48

4.15 Mapped Exit node . 51

4.16 CI/CD Pipeline . 59

4.17 Provider Node Dashboard . 65

4.18 Provider Node Metric Consultation 65

4.19 Metric in the Backend . 66

4.20 Consumer Node Dashboard 66

4.21 Pending Task in the Consumer Node 66

4.22 Sample Task Result in the Consumer Node 66

5.1 Bucket Size 50 reaching saturation 71

vii

viii LIST OF FIGURES

5.2 Bucket Size 70 saturated . 72

5.3 AVG Italy-Italy . 77

5.4 AVG Italy—Italy . 78

5.5 AVG Italy—Bulgary . 78

5.6 AVG Italy-Mexico . 79

5.7 AVG Russia-USA . 79

5.8 AVG USA-India . 81

5.9 AVG Japan-France . 82

Chapter 1

Introduction

In this section, my thesis project will be introduced, explaining the con-

text in which it is placed, what led me to choose this topic and the objectives

I wanted to achieve.

The structure of the document will be presented, to provide the reader with

an overview of the document.

Since I was a child, I have always considered privacy as a fundamental right

of the individual, I have always tried to protect it and to be aware of the

information I share.

Today and with an eye to the future, I consider privacy an increasingly rare

commodity, which is increasingly challenging to protect.

This has led me to the world of cybersecurity, combining my passion for

technology and my desire to protect privacy.

In this thesis project, I tried to contribute to this huge challenge, trying to

imagine an ecosystem in which anonymity and privacy are guaranteed.

In recent years, there has been a huge and ever-increasing interest in com-

paring data obtained from people, generating real markets, legal or illegal, in

which people’s preferences, such as products, are sold to the highest bidder.

Not to mention the fact that personal data is increasingly the subject of

theft and violations, as evidenced by the numerous cyber-attacks that have

hit large companies and institutions.

With this scenario in mind, I decided to deepen this project.

Anonymous Shard consists of a decentralized peer-to-peer system to which

it is possible to submit generic work units called Tasks, to execute them in a

protected and anonymous environment leading to the creation of an Anony-

1

2 INTRODUCTION

mous Computing system.

My goal was to create a working and easily extensible prototype that could

be used as a basis for future developments and research.

A brief overview of the document structure is presented below.

1. Chapter 2—Introduction to the concept of anonymity: the ori-

gins of anonymity and its evolution over time. Furthermore, anonymity

is a very vast and controversial theme; the value of anonymity is ana-

lyzed.

Historical and social aspects of anonymity are analyzed, to better un-

derstand the context in which the project is placed.

2. Chapter 3—Motivations: Concept of anonymous computing at the

base of the system. The absence of such a system is underlined.

Analysis of the main functionalities, interactions between nodes and

possible extensions to obtain a generic anonymous computing system.

The proposed prototype and job units flows are explained with a more

in-depth analysis to better understand the basic operation of the sys-

tem.

Furthermore, a second prototype created to perform measurements on

the Tor network is also analyzed.

3. Chapter 4—Design and implementation of the system: techni-

cal details of the system and design choices are analyzed.

There are some usage scenarios, use cases and diagrams to understand

how the system has been designed.

Within this chapter, there are also the motivations that led me to

choose certain technologies and the difficulties encountered during de-

velopment.

Design choices, architectures and all that were partially explored or

analyzed in detail and later discarded due to time constraints and com-

plexity will also be examined, as it could be implemented in the future.

Everything that has been implemented at a technical level, the method-

ology followed and how the system will have to be distributed and

INTRODUCTION 3

tested, is analyzed in this chapter.

4. Chapter 5—Testing and evaluation of the system: the tests car-

ried out on the system, and the metrics used to evaluate the system

are analyzed.

In particular, how the system can easily scale, what components can

be improved or added considering a huge number of nodes and a real

use situation.

The measurements made with the second prototype will also be ana-

lyzed in this chapter.

5. Conclusions: finally, the process for creating the system, the system

itself and the results obtained at a high level are analyzed, with a crit-

ical analysis towards the goal and the next possible extensions.

Chapter 2

Introduction to Anonymity

2.1 Definition and Evolution of Anonymity

Anonymity is a fundamental concept in human interactions and commu-

nications. Different individuals may define anonymity in various ways, evok-

ing different emotions and interpretations. The definition of this term can be

broad, ranging from the absence of personal identification to the concealment

of specific traits or actions. Different visions of anonymity have evolved over

time, reflecting changes in technology, society, and human values.

Without focussing directly on the technical aspect, the concept of anonymity

has deep roots in human history, philosophy and psychology. A relevant as-

pect is the contextual nature of anonymity. Nissenbaum emphasizes that

anonymity is context-dependent [15], meaning an individual may be anony-

mous in one specific environment but identifiable in another. This highlights

the complexity of the topic, as it is not an absolute state but a relative one,

influenced by different factors.

A definition that I found particularly interesting is the one by Wallace,

who describes anonymity as the non-coordinatability of traits in a given re-

spect [11]. This means an individual is anonymous when certain characteris-

tics or actions cannot be linked to identifiable traits such as name, location,

or social identity, introducing also the difference between anonymity and

identifiability.

This definition, declined in this digital age, where online interactions and

data collection pose significant challenges to anonymity, adhere perfectly.

Furthermore, differentiating between anonymity and identifiability is essen-

tial, as the latter impact directly on anonymity and privacy. Anonymity,

1

2 ANONYMITY

therefore, is not only about being nameless or hidden; it involves preventing

the coordination of distinct features that could lead to identification. This,

combined with technological advancements, social norms, and ethical consid-

erations, shapes the evolving concept of anonymity. Adapting the definition

to a technological prospective, anonymity can be seen as the ability to conceal

one’s identity in digital environments. Digital footprints, including IP ad-

dresses, cookies, metadata, and other tracking technologies, pose significant

challenges to this concept.

Returning to the contextual nature of anonymity, it is essential to con-

sider the multiple layers of identifiability in digital interactions. For instance,

someone using a pseudonym in an online forum may remain anonymous

within the platform (first context) but could be identified through other

digital traces by service providers or authorities (other context). But the

same logic applies to social structures and behavioral patterns, which can be

used to identify individuals even in a non-technical context.

In this case, and particularly in the digital declination, the definition of

anonymity is therefore more complex and multifaceted. It involves multiple

degrees of identifiability, de-anonymization risks, and the interplay between

privacy and security.

For the concept of anonymity to be meaningful, it must be considered

in a broader context, encompassing technological, social, and ethical dimen-

sions. This nature of anonymity raises ethical and legal considerations. While

the ability to identify individuals is necessary in cases of harmful actions, the

exploitation of personal data for surveillance, censorship, and behavioral pre-

diction by governments and agencies remains a significant concern.

In this context, the issue revolves around the misuse of personal data for

unethical purposes, going beyond the mere technical aspect of anonymity

to the privacy and security implications. However, by shifting the perspec-

tive from the individual level to a broader market-driven approach, aligning

more with Andrew Grove’s vision [28], it becomes even cleaner how vast and

delicate this issue truly is and how “defensive paranoia” can be beneficial.

The power of data aggregation can lead to discrimination, manipula-

tion, and large-scale privacy violations. Furthermore, information can be

weaponized to influence public opinion, as demonstrated in the Cambridge

Analytica scandal [23]. However, the risk is to mesh the concept of anonymity

with the one of privacy. Privacy is about control over personal information,

while anonymity is about concealing identity. Anonymity, therefore, is a

ANONYMITY 3

tool for preserving privacy, enabling individuals to communicate and express

themselves without fear of persecution.

The United Nations reaffirms privacy as a fundamental human right, em-

phasizing the abuses as highly intrusive acts and the importance of protecting

individuals from unwarranted and unlawful surveillance permitting to express

themselves freely both offline and online [29]. Also, at an American Associ-

ation for the Advancement of Science (AAAS) conference, experts acknowl-

edged anonymous communication as a fundamental human right, affirming

that individuals and organizations should have the discretion to determine

their level of anonymity [17].

In particular, I agree to define it a right, since its vital role in enabling

free expression, protecting activists, researchers, and individuals living under

oppressive regimes. It must safeguard privacy in sensitive discussions and

shield people from discrimination, repression, and surveillance. Moreover,

as a tool, it can ensure that no data is made available to third parties,

protecting against data aggregation and profiling. However, as mentioned, it

presents challenges in accountability, as bad actors may exploit anonymity to

evade consequences. More on this aspect can be found in the Controversies

Section 2.4.

The evolution of anonymity reflects the tension between privacy, security,

and accountability resulting in more complex and challenging scenarios. The

science of cryptography and modern techniques plays a crucial role in preserv-

ing anonymity. At the same time, tension between anonymity and regulation

persists, with governments and corporations seeking to limit anonymity for

security purposes, while excessive restrictions risk undermining civil liberties.

End-to-End Encryption (E2EE) is a quite actual example of this con-

flict. Governments often view E2EE as a security risk, as it prevents access

to communication contents even for law enforcement. In November 2020,

the European Council proposed a resolution addressing the use of E2EE in

messaging applications, highlighting the challenge of balancing privacy pro-

tection with investigative needs [16].

Yet another example from just these days related to E2EE is the Apple

and the United Kingdom government dispute. Apple disabled Advanced

Data Protection (ADP: feature that encrypts iCloud backups) in the UK

after government pressure to create a global backdoor for law enforcement,

grounding the request on the Online Safety Act. Apple refused and instead

disabled ADP for the UK users, making users’ backups potentially available

https://www.washingtonpost.com/technology/2025/02/07/apple-encryption-backdoor-uk/
https://www.gov.uk/government/publications/online-safety-act-explainer/online-safety-act-explainer

4 ANONYMITY

upon legal request. This choice to disable the feature instead of creating

a backdoor might not deter other nations. Governments could push tech

companies to comply, making privacy compromises in exchange for avoiding

legal conflicts. Beyond the ambiguity of the request itself, it set a precedent

and highlighted also how tech companies are becoming increasingly strategic

players in the privacy and security landscape.

The resolution reflects the balance between protecting citizens’ funda-

mental rights and enabling authorities to investigate criminal activities in

case of need.

2.2 The Value of Anonymity

As introduced in the Definition Section, anonymity is a multifaceted con-

cept that plays a crucial role in preserving freedom of expression and privacy.

It enables individuals to voice opinions without fear of retaliation, serving

as a shield for whistleblowers, journalists, and activists [21]. This value on

fostering privacy and free expression is undeniable. It allows individuals to

engage in sensitive discussions without the risk of discrimination or repres-

sion.

The Cypherpunk movement, born in the early 1990s, recognized this long

before the actual digital age. Rooted in the belief that privacy is a funda-

mental right, cypherpunks advocate for the use of cryptography for a free

and open society. As David Chaum discussed, cryptographic tools enable

individuals to participate in digital interactions without exposing their iden-

tities, preventing surveillance and censorship [24]. Anonymity is not about

hiding wrongdoing; it is about preserving freedom. In a world where gov-

ernments and corporations track, analyze, and monetize every online ac-

tion, anonymity safeguards individuals from oppression, discrimination, and

unwarranted scrutiny. May, described how cryptographic anonymity could

create a world where individuals could interact without centralized control,

ensuring freedom from coercion and oppression [12,22].

Anonymity can bring to true autonomy. Without it, individuals are pres-

sured to conform to societal expectations, limiting creativity, innovation,

and dissenting opinions. How also Christopherson highlighted, anonymity

can favor also mental well-being, offering spaces where individuals can ex-

press themselves freely and with no fear of judgment [20]. Assange also

highlighted how cryptography is not just a tool for privacy but a weapon

ANONYMITY 5

against authoritarianism, ensuring individuals retain power over their own

information [25].

This prospective may seem idealistic, but it is a vision that has inspired

many and continues to drive the development of Privacy-Enhancing Tech-

nologies (PETs). Another fundamental work is Untraceable Electronic Mail,

Return Addresses, and Digital Pseudonyms by Chaum, who introduced the

concept of Mix Networks (or MixNets), enabling anonymous communication

by shuffling and re-encrypting messages [13]. This laid the foundation for

modern technologies like Tor, anonymous remailers and others. However,

anonymity is constantly under attack. Governments impose regulations, so-

cial platforms push real-name policies, and financial systems attempt to erode

private transactions. The Cypherpunk movement reminds us that without

proactive resistance, privacy will be eroded. True digital freedom lies in

our ability to communicate, transact, and express ourselves without external

interference, and it is not an option for an open and liberated society.

2.3 Social Considerations

Anonymity is also inherently tied to social contexts. This section ex-

plores its social implications, trying also to analyze the actual social attitude

towards anonymity and privacy preservation. In this way, it is possible to

better understand the context in which the project is placed. An emphasis is

on the need to reintroduce anonymity-preserving tools into everyday life to

safeguard privacy and freedom of expression. Additionally, the discussion ex-

tends to the inherently non-anonymous nature of social networks and digital

platforms, highlighting how these systems shape users’ online identities giv-

ing rise to privacy concerns. Finally, the importance of education on privacy

and data protection is considered essential for fostering a culture of privacy

awareness.

Maintaining a high level of privacy through anonymity tools is crucial in

this digital age but requires a conscious effort. Even individuals, who are

often labeled as “paranoid” or accused of “overreacting” in their concerns

about privacy sometimes, need to choose to trade privacy for convenience,

sharing personal information on digital platforms or social media. A key

point here is that privacy, like security, is frequently a “trade-off”: these

privacy-conscious individuals make an active choice to share their data to

use a service or platform. But the risk is that sometimes, only the usage

https://en.wikipedia.org/wiki/Mix_network

6 ANONYMITY

of certain technologies can lead to unintended data exposure, without the

average user being aware of it.

Another fundamental issue is that many users often disclose personal

information without fully considering the consequences, ingenuously. Even

when not directly identifiable, digital footprints, metadata, and behavioral

patterns, as mentioned in the Definition and Evolution Section 2.1, can still

reveal their identity. The problem is that who is not technically prepared

cannot understand if not educated. This problem is exacerbated by the

modern surveillance landscape, where industries and government agencies

systematically collect vast amounts of data for profiling and monitoring.

A particularly pressing concern today is therefore the widespread lack

of awareness regarding privacy risks, further aggravated by the absence of

proper education on the subject. This knowledge gap is especially critical in

digital environments, where individuals frequently expose sensitive personal

information without grasping the potential repercussions. As Solove argues

in [14], the common argument “I’ve got nothing to hide” is misleading and

oversimplified. Privacy is not merely about secrecy but about control and

autonomy over one’s personal information. This vision is supported also by

Snowden, a former NSA employee turned whistleblower, who highlighted this

sentiment in his book [27].

The rise of social media and digital platforms has further complicated

anonymity. While these spaces provide opportunities for self-expression and

connectivity, they also collect a lot of user data for targeted advertising

and content personalization. Furthermore, they gradually introduce new

requirements to access their services, continuously refining their datasets. A

significant amount of information can be inferred from such data, including

political affiliations, health conditions, and personal preferences, details that

even those who claim to have “nothing to hide” maybe would likely prefer

to keep private. The absence of anonymity in digital systems is not merely

a technical issue but a deliberate choice that fuels market models based on

user identifiability and preferences.

The debate on anonymity and privacy remains ongoing, reflecting the

complex interplay between individual rights, societal norms, and technologi-

cal advancements. The development of privacy-enhancing technologies, such

as Tor or Signal, represents a step toward mitigating these concerns. How-

ever, these tools are often insufficient on their own and must be used with

caution and awareness of their limitations, otherwise the problem should be

https://www.torproject.org/
https://signal.org/it/

ANONYMITY 7

slightly mitigated but not solved. In particular, the risk is that the usage

of these tools can lead to a false sense of security, as users may not fully

understand the risks and limitations of these technologies, reinforcing the

concerns raised by Ohm [26]. This problem is exacerbated by the lack of

awareness and education on these issues, not just in terms of privacy but

cybersecurity as a whole. Users often also lack the knowledge of accessible

tools that can help protect their privacy and anonymity, or if they do, they

may not understand how to use them effectively. In general, there is a lack of

awareness regarding the information that is shared, even through seemingly

simple actions such as performing a web search at a particular time or using a

Wi-Fi connection rather than a mobile one. I believe that education on these

issues would constitute a significant step forward in addressing this gap.

2.4 Controversies

After establishing that anonymity is a fundamental right and a tool for

preserving privacy and freedom of expression, it is essential to address the

controversies and present ethical dilemmas. Studies suggest that anonymity

can encourage antisocial behaviors [18], and the main concern is that simulta-

neously with the benefits, the missing accountability potentially shields bad

actors from repercussions. In this case, therefore leading to concerns about

public safety and law enforcement’s ability to monitor and prevent harmful

actions.

As introduced in previous sections, also regulamentation and oversight

are controversial aspects. Specifically, it’s still a problem of accountabil-

ity for actions taken behind anonymous identities and in particular for the

potential misuse of anonymity for malicious purposes. Suler, in his work,

highlighted the phenomenon of online disinhibition, concluding identifying

both beneficial and toxic aspects of disinhibition [19].

The balance between privacy, security, and accountability is delicate, and

the misuse of anonymity can have severe consequences, it’s clear. The point

here is that the benefits of anonymity must be weighed against the risks, and

moreover, it’s not new that technology, in general, can be used for both good

and bad purposes.

Thinking about the possible power imbalances that can arise from the

erosion of anonymity or the ethical dilemmas that can emerge from its pro-

tection is essential, and the societal impact of anonymity remains a point of

8 ANONYMITY

contention. This duality fuels ongoing debates about anonymity, and as men-

tioned, this trade-off is not new; similar debates have emerged throughout

history with nearly all transformative technologies. In my view, anonymity

is a powerful tool that must be protected and preserved. While it should be

continually assessed for its ethical and social implications, it must also be

maintained in a balanced system.

2.5 Conclusion

The concept of anonymity as understood is multifaceted, evolving along-

side technological and societal changes. While anonymity enables freedom of

expression and protects individuals in various contexts, it also raises ethical

and legal challenges.

In the following chapters, one prototype of anonymous tool inspired more

to the Cypherpunk Movement vision will be presented, focusing on the value

of anonymity. This thesis emphasizes therefore the anonymity as a right and

the importance of preserving it in this current context. The need of a stable

ecosystem that can be used and supported by everyone, without the need

of a central authority overseeing it, which is a significant strength, will be

highlighted. The usage of innovative technologies and the usage of privacy-

enhancing tools will be discussed, trying to keep the research on this topic

alive.

Chapter 3

Motivations

In this chapter, the concept of anonymous computing at the base of the

system is analyzed. The absence of such a system is underlined and the need

for implementation is discussed. The relevance of anonymous computing,

the proposed prototypes and various data flows are explained with a more

in-depth analysis.

3.1 Anonymous Computing

Anonymous computing refers to a paradigm that prioritizes privacy, anonymity,

and resistance to surveillance or censorship. It enables users to perform com-

putational tasks or job units without revealing their identity, location, or data

to untrusted or unwanted parties.

The foundation of anonymous computing is built on cryptographic proto-

cols, peer-to-peer networks, and privacy-enhancing technologies (PETs), such

as onion routing. As privacy becomes increasingly rare in today’s world, the

demand for systems that prioritize anonymity and security continues to grow.

It has become common to promote software by highlighting its security, lack

of data collection, or privacy-preserving features. In these last years, a key

realization has emerged: so-called “free” software often treats users as the

product: a practice that raises serious concerns.

By following this paradigm and increasing decentralization, a peer-to-

peer ecosystem can be created, enabling unrestricted computation without

the risk of surveillance, censorship, or external control. This, also, minimizes

risks associated with data breaches ensuring that no single entity has absolute

9

10 Motivations

control over job details information and computational resources. While such

a system may sound utopian or even intimidating, its necessity is becoming

increasingly clear in today’s world.

This approach is particularly crucial in environments where privacy is

essential. While some societies may take privacy for granted, there are re-

gions where government overreach and censorship pose serious threats to

personal freedom. For those who believe such systems are unnecessary to-

day, it’s important to remember that the need for privacy and anonymity

can arise unexpectedly. Preparing in advance may seem paranoid, but as

Andrew Grove said, “Only the paranoid survive”. While Grove’s statement

was originally aimed at businesses and strategic market changes, the prin-

ciple can be applied here. Vigilance against threats to individual freedom

is equally necessary. In a world where the balance between personal liberty

and governmental control is constantly shifting, expecting potential risks to

privacy is not just prudent, but essential for safeguarding freedom.

Anonymous computing from this point of view can be a life-saving tech-

nology. Furthermore, beyond ensuring privacy, this system can foster a col-

laborative environment where resources are shared securely and efficiently.

By integrating decentralization and opening the system, the computa-

tional resources within it would belong to individuals or volunteers willing

to share their capacity, making it fundamentally different from traditional

cloud services. This ensures that, even in extreme scenarios of heavy censor-

ship, people always have a reliable platform to operate freely without fear of

surveillance.

Imagine a cloud computing service similar to AWS, but instead of relying

on centralized data centers, the computing power comes from privately owned

machines within an open and free ecosystem. While achieving this level of

decentralization is challenging, it is becoming increasingly necessary in a

world where privacy is under constant threat.

Naturally, like any powerful technology, anonymous computing could be

misused for illegal activities. However, its core purpose is to empower in-

dividuals with privacy-preserving tools rather than to facilitate wrongdoing.

Ethical considerations are crucial when developing such a system, but its

potential to serve the common good concerns about potential misuse. The

focus should be on ensuring that this technology remains a force for positive

change, enabling freedom and security for those who need it most, as said

also in the Introduction to the Anonymity Chapter 1.

Motivations 11

3.1.1 Existing Solutions

In this section, some main technologies that can bring to an anonymous

computing system and some existing solutions are analyzed.

Actual cloud providers offer a wide range of services, from Infrastruc-

ture as a Service (IaaS) to Software as a Service (SaaS), but they lack a

fully anonymous computing environment. In certain cloud environments,

users can deploy anonymous virtual machines (VMs) or containers to run

workloads in isolated and private environments. These VMs are designed

to prevent cloud providers from accessing or monitoring their contents. If

correctly integrated, privacy-enhancing technology can obfuscate users’ iden-

tities and network traffic. Some providers offer privacy-preserving solutions

that allow data anonymization before cloud processing. However, they focus

solely on data privacy, lacking customization options for users to control the

execution environment or enhancing anonymization beyond the data one.

One particular actual solution provided by cloud services is also the use

of Trusted Execution Environments (TEEs) to secure data processing. These

technologies enable secure processing by isolating sensitive data in trusted

enclaves in a way that neither the cloud provider nor other external parties

can access it, by using hardware-based security mechanisms in this case.

It is an extra layer of security that can be used to enhance privacy and

confidentiality in cloud environments, but as mentioned, the communication

if not properly secured can still be detected and traced.

An actual solution to ensure secure communication is the use of the Tor

or I2P network that exploits encryption to anonymize users’ traffic.

One older analyzed solution that exploits the Tor network is the Anony-

mousCloud system. In this application, the Tor onion routing has been

exploited for customers to anonymously communicate job units and data to

the system. An anonymous authentication system based on public-key cryp-

tography facilitates billing of anonymous customers without linking their

private data to their identities. In this case, it has been demonstrated that

the system provides superior data ownership privacy even when a large per-

centage of the cloud is malicious [1]. A possible con in this system is the lack

of transparency for internal cloud resources due to its architecture beyond

the centralized nature. The architecture is master-slave, where the master is

responsible for the management of the system, and the slaves are responsi-

ble for the computation of the tasks. Another limitation is the inability to

12 Motivations

extend or enhance the system. As a result, it remains a standalone system

rather than evolving into an ecosystem of nodes that can share resources and

computation, while ensuring anonymity for users as base requirement.

One always good solution to enhance privacy if a simple OS and not an

infrastructure is needed, is the use of a particular OS: Tails. It is designed

to be booted as a live OS from a USB stick, and routes all internet traffic

through the Tor network.

What is missing in the current state is a fully decentralized system that,

exploiting all the available technologies, can guarantee the user the highest

level of anonymity and can compute general tasks in a secure and private

environment. Furthermore, nodes in the distributed system can leverage

processors with TEE-like capabilities or exploit the one-shot feature idea,

similar to Tails, providing layers of protection. This possible enhancement

will be analyzed in the Future Development section 5.3.

3.2 Background

This section introduces the key technologies and components that are

essential for understanding the prototype and to provide a clearer insight into

the system. At the end of the Design and Implementation Chapter 4, another

more in-depth analysis of the involved technologies is done. This overview

aims to clarify the rationale behind the choices made and enhance the reader’s

overall understanding of the system. This prototype, as the main idea, is a

commitment to freedom and openness, with a focus on decentralization rather

than centralization, preferring technologies that empower users and promote

autonomy.

3.2.1 Decentralization

An important choice taken during the analysis phase has been the de-

centralization of the system, influencing and posing constraint to the entire

system architecture. What brings to a decentralized system is the fact that

no single entity with absolute control over the system is wanted. Some ben-

efits are:

1. No Single Point of Failure: A centralized system relies on a single

authority or infrastructure, making it a prime target for surveillance,

Motivations 13

censorship, or data breaches. If the central server is compromised, the

anonymity and security of all tasks are compromised.

2. Censorship Resistance: A centralized system can be controlled,

blocked, or shutdown by authorities, limiting access and making the

system vulnerable to political or legal restrictions.

3. Trust-less Architecture: In a centralized system, users must trust

the provider to act ethically and protect their privacy. However, history

has shown that centralized services can be subject to data leaks, insider

threats, or compliance with surveillance programs.

4. Increased Security Against Attacks: Centralized systems are at-

tractive targets for hackers since a single breach can expose a large

amount of data. In a decentralized system, data and processing are

distributed, making it more difficult for attackers to gain access to

sensitive information. A downside in this case is that all attacks on de-

centralized systems are possible, but no system is immune to attacks.

5. Community-Driven and Self-Sustaining: This decentralized net-

work is released as open-source and possibly maintained by a com-

munity devs rather than a corporation. This ensures transparency,

adaptability, and long-term sustainability without reliance on a single

company’s policies, funding, or business interests. In this case, the

concept of decentralization is crucial for the system.

3.2.2 The Tor Network

The Onion Router (Tor) network is a decentralized protocol that uses

onion routing to enable anonymous communication over the internet. Tor

routes internet traffic through a series of volunteer-operated relays to obscure

the user’s location and usage patterns, providing anonymity and preventing

traffic analysis. In the context of this system, Tor is employed to ensure that

communications remain secure and private. By leveraging the Tor network,

the system fosters a high degree of privacy and security, aligning with its

goal of decentralization and anonymity. How Tor has been exploited and

an explanation of the services offered by it can be found in the Design and

Implementation Chapter 4.7.2.

14 Motivations

3.2.3 SOCKS Proxy

To protect the privacy of users in the network, the system uses a SOCKS5

proxy. It is a general purpose proxy that sits at layer 5 of the OSI model

and uses the tunneling method. The usage ensures that interactions between

nodes remain confidential, particularly important in a decentralized envi-

ronment, where maintaining anonymity and safeguarding communication is

essential. The integration of a SOCKS5 proxy, precisely, is necessary to route

traffic to the Tor network.

This type of proxy also provides greater flexibility to the system, as it

allows traffic to be routed through different networks with varying protocols

(I2P or VPNs). Additionally, it can be bypassed in certain cases to get

a balance between performance and security when security is not a primary

concern. A list of pros, how can be enabled or disabled in this system, and the

snippet of code to enable it can be found in the Design and Implementation

Chapter, specifically in the SOCKS5 Proxy Section 4.7.2.

3.2.4 IPFS as Storage Layer

The InterPlanetary File System (IPFS) is used as the storage solution,

providing a decentralized repository for files and data. Unlike traditional

centralized storage, IPFS distributes files across a network of nodes, where

each file is divided into chunks and referenced by a unique cryptographic

hash. It is designed to be resistant to censorship and single points of failure,

making it an ideal choice for a decentralized system that values security

and user autonomy. A problem derived and then discussed from the use of

IPFS, not depending on the current system but for IPFS itself, is the lack of

encryption for the stored data. Basically, whoever has the content-identifier

can access the data. This can be a problem if the data is stored in clear

because sensitive information can be exposed but can be solved by encrypting

the data before storing. A deep analysis of IPFS and the tool exploited

by the system to interact with it, Pinata, can be found in the Design and

Implementation Chapter 4. Instead, the used technique to guarantee data

confidentiality can be deepened in the Security Patterns Section 3.2.3.

https://geti2p.net/it/

Motivations 15

3.3 Prototype

In this section, the proposed prototype and job units flows are explained.

In particular, the analysis of the main functionalities, interactions between

nodes and possible extensions to get a generic anonymous computing system.

Only in the conclusion chapter the future work and the possible extensions

will be discussed, here only some hints will be given.

The goal since the early stage of the project was to create a working and

easily extensible prototype that could be used as a base for future develop-

ments and research about Anonymous Computing. The biggest constraint in

this case was the time, so the focus was on the basic functionalities and the

interactions between main parts to provide a proof of concept. To anonymize

communications, the system exploits the Tor network between nodes while

work to guarantee anonymity also for the computation itself needs to be

done, but some hints are present.

As mentioned, the software is not something really mature that can be

directly used in production.

The design choices focus on finding a good balance on the system design,

to ensure that every subcomponent could be easily replaced or extended. But,

due to the anonymity requirement, the system is not so simple to design and

implement, so the focus was basically on the security beyond the design.

The implemented main abstractions are the following:

1. Node: a single entity in the network that can be of two different types:

a Provider or a Consumer.

2. Discovery Mechanism: a component that allows nodes to discover

each other and communicate.

3. Task: a generic work unit that can be submitted to the network for

execution.

4. Executor: a component that executes tasks on a node.

5. Evaluator: a component that decides if a node is suitable to execute

a task.

Every technical detail can be found in the Design and Implementation

Chapter 4. What is important to understand here are the data flows and the

main functionalities of the system.

16 Motivations

Starting from the nodes, their interactions, the task flow analysis to the

storage of the result for a generic task, the system will be analyzed from a

high level point of view.

3.3.1 Nodes

To introduce the concept of nodes, it is important to understand the two

main types of nodes in the system: Providers and Consumers. A node is a

generic participant in the network, and a categorization in active and passive

nodes in terms of network engagement has been done. While the consumer

is a passive participant, the provider is active. In this sense, I would like

to underline the fact that the provider knows part of the network, while the

consumer might know even just one node to which submit the tasks being a

more passive participant.

As understood, providers are nodes that offer computational resources to

execute tasks, while Consumers are nodes that submit tasks to be executed.

Moreover, only these two types of nodes have been implemented, but

the system can be easily extended to include other types of nodes, such as

Verifiers or Maintainers, to enhance the system’s overall capabilities. The

concept of peer discovery, task submission and execution will be analyzed in

the Future development Section 5.3.

3.3.2 Interactions

Once main roles for the nodes are defined, the interactions between them

are analyzed. Now, the discovery mechanism used by the providers and the

task submission flow for both consumers and providers will be analyzed.

Discovery Mechanism

During the discovery phase, providers need to find other nodes in the

network to establish connections and offer their services. This is a crucial step

in the system, as it allows nodes to communicate, collaborate and exchange

resource metrics and capabilities. The discovery mechanism is responsible for

facilitating this process, ensuring that nodes can find each other efficiently

and securely. Moreover, it should handle potential faults. This mechanism

is based on a Distributed Hash Table (DHT) and inspired by the Kademlia

Motivations 17

Figure 3.1: Discovery Mechanism Kademlia inspired

protocol [3]. Each node maintains a routing table that contains information

about other nodes (neighbors) in the network.

By using DHTs, nodes can discover and connect to other nodes without

relying on a central server or authority. Another pro is that nodes do not

need to know the entire network topology, but only a subset of nodes to

establish connections. This approach ensures that the system is scalable,

fault-tolerant, and quite resistant in case malicious nodes have been intro-

duced.

What is missing in this case and needs to be implemented is the establish-

ment of a distance metric between nodes, to ensure that nodes with similar

capabilities or situated nearby are connected. Following this direction, a full

Kademlia protocol implementation can be done. A possible solution is to

use metrics based on the latency between nodes or, since the system is based

on the Tor network, to use the Tor circuit establishment time as a metric.

Also, the exploitation of Entry and Exit nodes in the Tor network can be

used 4.7.2. A lot of work needs to be done in this area, but it is a good

starting point for future developments. More on this can be found in the

Future Development Section 5.3.

18 Motivations

Figure 3.2: Task Submission Flow

Task Submission Flow

The task submission flow is another important aspect of the system, as it

allows consumers to submit tasks to the network for execution. This process

involves several steps, including task creation, submission, evaluation, exe-

cution, storage, and result retrieval. What is important to underline here is

that in the analysis phase the focus was on building a structured and secure

flow, but the system can be easily extended to support more complex tasks.

Moreover, the workflow itself can be improved, for example, by introduc-

ing a task validation and not only the evaluation phase to ensure that the

task is valid and safe to execute for the hardware.

As the figure 3.2 shows, since the beginning, the focus has been on build-

ing a structured and secure flow. In this case, a generated key pair for each

task is used to add an extra layer of security to the task result storage en-

suring confidentiality.

Two more components are needed to complete the flow: the Evalua-

tor 4.13 and the Executor. The Evaluator is responsible for deciding if a

node is suitable to execute a task, based on its capabilities and available re-

source metrics. Another particular step to note is the redirection of the task

Motivations 19

that will be analyzed and discussed in the Testing and Evaluation Chapter 5.

The Executor, instead, is responsible for executing the task on the node.

While for this prototype, the provided executor is basic, in the future, more

advanced executors can be implemented to support different types of tasks

and computations. Imagine a scenario where the system supports scientific

computing, AI, or privacy-preserving analytics, each requiring specialized

executors to handle specific workloads or a community of devs that can con-

tribute to the system creating general purpose executors.

Another aspect that can be deepened is the creation of a specific DSL

(Domain-Specific Language) to allow users to define custom tasks, computa-

tions or scheduling policies.

Selection algorithm

The selection algorithm is another main part of the system, as it deter-

mines which node is suitable to execute a task. It is part of the business

logic of the Evaluator. In this case, like for the Executor, a basic selection

algorithm has been implemented, but more advanced algorithms can be de-

veloped to support different use cases or scenarios. Specifically, this evaluator

checks who are the node with the lowest load and the highest capabilities to

execute the task to ensure that the task is executed efficiently.

A potential issue that may arise in the system when a provider node,

responsible for evaluating a task (i.e., determining whether it can execute

it), possesses outdated knowledge about other nodes in the network. If this

inconsistency is not properly managed, it could lead to inefficient task exe-

cution.

Several solutions can address this problem, ranging from reducing the up-

date interval (high latency problem) to introducing a dedicated node, referred

to as the Maintainer, responsible for ensuring network-wide consistency of

node states.

Adopting this more structured and elegant approach enhances system

efficiency, particularly during peak loads or heavy task execution scenarios.

Furthermore, this solution improves scalability by allowing a higher number

of concurrent tasks to be processed effectively.

Further discussion on this topic, along with a possible reward mecha-

nism to transition towards a broader ecosystem, can be found in Section 5.3.

Anyway, in the next chapter, these concepts will be revisited and explained

20 Design and Implementation

technically.

3.4 Analyzer Prototype

The second prototype developed in parallel with the main one is the

Analyzer. This prototype has been developed to perform measurements on

the Tor network and analyze the performance of the system. Since Tor is the

network exploited to guarantee the anonymity of the system, it is important

to understand how it behaves in different scenarios 4.7.2.

The Analyzer prototype is a simple tool that allows users to measure the

latency between nodes communicating through the Tor network. This choice

has been made to understand how this network behaves in different scenarios

and to measure performances of the system as can be seen in the Testing and

Evaluation Chapter 5.

In this section only the main functionalities are explained, but no deep

analysis of the implementation is done. I was interested specifically in the

Round Trip Time (RTT) between geographically distant nodes, as this metric

is fundamental for understanding the network’s performance and latency.

This is not a primary problem in the system but is something affecting the

performance in its overall and needs to be analyzed. So, to estimate the

latency between nodes, the Analyzer prototype has been developed. In the

Figure 3.3 the main actions done by the Analyzer are shown.

The average Round Trip Time (RTT) is determined by transmitting a

series of packets between two nodes, with different Exit and Entry nodes

specified in the torrc (Tor configuration) file. This approach has proven

valuable in assessing task submissions within the system and analyzing how

Tor network latency varies across different time periods and regions. A de-

tailed analysis of how the average RTT is calculated and worst-case scenarios

can be found in the Testing and Evaluation Chapter 5.

It is important to note that the actual computation time of the task is

not considered in this analysis.

Design and Implementation 21

Figure 3.3: Analyzer Prototype

22 Design and Implementation

Chapter 4

Design and Implementation

As mentioned in the previous chapter, the main goal of this thesis is to

design and implement a system that enables the anonymous computation

paradigm. In this section, it is described the design and implementation of

the prototype system, focusing on the main parts, the used technologies and

the design choices made. Moreover, at the end of this chapter, a description

for a second prototype developed to measure the performance of the system

is provided.

Before starting with the technical details, it is important to establish

a glossary of terms that will be used in the following section. To avoid

misunderstandings, the ubiquitous language [4] is reported in Table 4.1.

4.1 Scenarios

The last section before starting with the very technical details is dedicated

to the scenarios in which the system can be used to create an idea of the

possible applications of the system.

4.1.1 Secure Data Processing

An example can be investigative journalists that often analyze leaked

documents containing sensitive information. Using traditional cloud services

or personal infrastructure risks exposing sources and data to surveillance,

censorship, or retaliation. In this case, a user can be a journalist, a whistle-

blower, a researcher or a citizen that wants to analyze some data without

revealing their identity.

23

24 Design and Implementation

Terms Meaning Synonymous

Node A participant in the network Peer

Bootstrap Node A node that helps other nodes to join Seed

Provider Node A node that performs computations Worker

Consumer Node A node that submits tasks Client, Submitter

Domain Event A significant occurrence in the system Event

Task A computation to be performed Job

Task Result The output of a computation Output

Task Type A category of computations or jobs Job Type

Submission The act of sending a task to the network Request

Force Submission A task that must be completed Mandatory Task

Result The output of a computation Output

Executor A component that performs specific task type —

Evaluator A task evaluator based on some criteria —

Metric Resource usage or performance indicator Resource Metric

Discovery The process of finding nodes in the network Lookup

Encryptor A component that encrypts or decrypts data —

Table 4.1: Glossary of Terms for the System

Splitting the entire job in different tasks and distributing them to different

nodes in the network, the user can be sure that no single node has access to

the entire dataset and that the results will be returned securely. The involved

actor retrieves the results without revealing their identity, location or being

censored.

4.1.2 Censored Regions

Activists, researchers, and citizens in restrictive regions face heavy in-

ternet censorship and surveillance, preventing them from running computa-

tional tasks related to encrypted messaging, digital forensics, or decentralized

finance. In this way, a real community can be created, where users can share

their computational power and use the network to run their tasks without

any censorship.

Design and Implementation 25

4.1.3 General Scenarios

Anonymous computing enables a lot of different scenarios, and it can be

used in various contexts.

1. Investigative Journalism: Journalists can analyze sensitive data

without revealing their identity.

2. Secure Collaboration: Whistleblowers and researchers can collabo-

rate safely in hostile environments.

3. Censorship Resistance: Activists can process and analyze encrypted

communications freely.

4. Secure Data Sharing: Users can share sensitive data without reveal-

ing their identity.

5. Free Speech: Users can analyze and process data without censorship

or create new applications that cannot be censored.

6. Decentralized Financial Computation: Users can run specific tasks

to deploy some smart contracts or to analyze some financial data with-

out revealing their identity.

This system can be used in various scenarios, and it can be easily extended

to support new use cases.

4.2 Business Requirements

Now that with the scenarios the ideas in which the system can be used

have been clarified, it is time to define the business requirements that the

system must satisfy.

Since the idea behind the system is new, the design should consider ease

of extensibility and scalability, allowing changes and improvements to be

made without affecting the core functionalities. In this specific case, writing

some good business requirements that include all software engineering best

practices keeping in mind the security, anonymity and decentralization nature

of the system has been challenging.

The problem encountered during the analysis phase was to find a balance

between an open and easy-to-extend system and a concrete proof of concept

26 Design and Implementation

that could be implemented in a reasonable amount of time. This has been

done following the best practices of software engineering and a Dev/Ops

approach to the development as described in the following sections.

The section has been divided into provider and consumer parts, and the

use cases formalism has been used to describe the requirements [5].

4.2.1 Provider

A provider node is a node that performs computations and returns the

results to the consumer node who has submitted the task, but before it has

to join the network and be able to receive tasks.

1. Joining the network:

(a) Actor: Provider Node

(b) Precondition: The provider node has been started and is ready

to join the network knowing the address of a bootstrap node.

(c) Post condition: The provider node is part of the network and

can receive tasks.

(d) Flow: The provider node sends an event message to the bootstrap

node to join the network.

(e) Main Success Scenario: The provider node receives a response

from the bootstrap node with some random selected peers and is

part of the network.

(f) Extensions: The provider node cannot join the network because

the bootstrap node is not reachable. It tries again after a certain

amount of time or try to join through another bootstrap node.

2. Discover Nodes:

(a) Actor: Provider Node

(b) Precondition: The provider node is part of the network.

(c) Post condition: The provider node knows some peers in the

network.

(d) Flow: The provider node sends a Discover Event to the network

to discover some peers with a specific interval (according to Dis-

tributed Hash Table (DHT) principles).

Design and Implementation 27

(e) Main Success Scenario: The provider node receives a response

from some peers in the network.

(f) Extensions: The provider node cannot discover any peers in the

network.

3. Metric Sharing:

(a) Actor: Provider Node

(b) Precondition: The provider node is part of the network.

(c) Post condition: The provider node has shared its metrics with

the network.

(d) Flow: The provider node sends a Metric Available Event Message

to the network to share its metrics with the network.

(e) Main Success Scenario: The provider node receives a response

with an acknowledgment and the other (if known) peer metrics.

(f) Extensions: The provider node cannot share its metrics with the

network. It retries after a certain amount of time.

4. Task Receiving:

(a) Actor: Provider Node

(b) Precondition: The provider node is part of the network.

(c) Post condition: The provider node has received a task from the

network.

(d) Flow: The provider node receives a Task Event from a Consumer

Node.

(e) Main Success Scenario: The provider node receives the task

and starts the evaluation.

(f) Extensions: Something is failed during the task receiving. The

task is considered failed.

5. Task Evaluation:

(a) Actor: Provider Node

(b) Precondition: The provider node is part of the network and has

received a task.

28 Design and Implementation

(c) Post condition: The provider knows if can execute the task or

not.

(d) Flow: The provider node evaluates the task with a specific Task

Evaluator, based on a defined algorithm.

(e) Main Success Scenario: The provider node can execute the

task and start the computation.

(f) Extensions: The provider node cannot execute that task because

some other peers have better metrics. It redirects the task to the

other provider node forcing it to execute the task.

6. Task Execution:

(a) Actor: Provider Node

(b) Precondition: The provider node has received a task from the

network and has evaluated it.

(c) Post condition: The provider node has executed the task, stored

the result and returned the content identifier to the consumer

node.

(d) Flow: The provider node executes the task, stores the result on

IPFS and sends the content identifier to the consumer node.

(e) Main Success Scenario: The provider node starts the compu-

tation.

(f) Extensions: The task execution fails, and an error is sent to the

consumer node.

7. Task Result Storage:

(a) Actor: Provider Node

(b) Precondition: The provider node has executed the task and has

the result.

(c) Post condition: The result is encrypted and stored on IPFS.

(d) Flow: The result is available, and the provider node stores it on

IPFS only after encrypting it with a consumer-provided public

key.

(e) Main Success Scenario: The result is stored securely on IPFS,

and the content identifier is sent to the consumer node.

Design and Implementation 29

(f) Extensions: The result cannot be stored on IPFS, and the task

is considered failed.

4.2.2 Consumer

A consumer node is a node that can submit tasks to the network and

retrieve the results. Before submitting a task, the consumer node has to

know some peers in the network, potentially even a single one.

1. Submit a Task:

(a) Actor: Consumer Node

(b) Precondition: The consumer node has a task to submit, a gen-

erated key pair to encrypt/decrypt the result and a provider node

address.

(c) Post condition: The consumer node has submitted the task to

the network.

(d) Flow: The consumer node sends a Task Submission Event to the

network containing the task details and the public key that has

to be used to encrypt the result.

(e) Main Success Scenario: The consumer node receives a response

with an acknowledgment and the content identifier of the task.

(f) Extensions: The consumer node cannot submit the task to the

network. It tries again after a certain amount of time.

2. Consult Task State:

(a) Actor: Consumer Node

(b) Precondition: The consumer node has submitted a task to the

network.

(c) Post condition: The consumer node knows the state of the task.

(d) Flow: The consumer consults the state of the task in the network.

(e) Main Success Scenario: The consumer node receives a response

with the state of the task.

3. Consult Task Result:

30 Design and Implementation

(a) Actor: Consumer Node

(b) Precondition: The consumer node has submitted a task, the

task has been completed, and the content identifier for that task

has been received.

(c) Post condition: The consumer node has the decrypted result of

the task.

(d) Flow: The consumer node retrieves the task result from IPFS

with the content identifier received by a provider node.

(e) Main Success Scenario: The consumer node receives the result

of the task from IPFS and decrypts it with the private key.

(f) Extensions: The consumer node cannot retrieve the result from

IPFS. It retries after a certain amount of time.

4. Task Result Storage Locally:

(a) Actor: Consumer Node

(b) Precondition: The consumer node has retrieved and decrypted

the result of the task.

(c) Post condition: The consumer node has stored the result locally.

(d) Flow: The consumer node stores the result locally in a secure

way.

(e) Main Success Scenario: The consumer node has stored the

result locally.

4.3 Functional Requirements

The functional requirements are the main part of the system that has to

be implemented to satisfy the business requirements. For the same reason as

above, they are split into provider and consumer sections.

The functional requirements are written exploiting the user story format,

which is a way to describe the requirements in a more human-readable way.

4.3.1 Provider

1. Discover:

Design and Implementation 31

(a) As a Provider

I want to be able to join the network.

So that I can receive and send domain events.

(b) As a Provider

I want to be able to discover some peers in the network.

So that I can know some peers in the network.

2. Task:

(a) As a Provider

I want to be able to receive a task from the network.

So that I can execute it and return the result to the consumer

node.

(b) As a Provider

I want to be able to execute some type of tasks.

So that I can execute them and support most types of tasks.

(c) As a Provider

I want to be able to evaluate a task.

So that I can decide if I can execute it or not.

(d) As a Provider

I want to be able to redirect a task to another provider node.

So that I can forward the task to another provider node that can

execute it.

3. Result:

(a) As a Provider

I want to be able to store the result of a task on IPFS.

So that I can return the content identifier to the consumer node.

32 Design and Implementation

(b) As a Provider

I want to be able to share my metrics with the network.

So that I can choose and be chosen to execute a task by a busy

provider.

4.3.2 Consumer

1. Task:

(a) As a Consumer

I want to be able to submit a task to the network.

So that providers can elaborate the result, and I can receive it

from the network.

(b) As a Consumer

I want to be able to consult the state of a task.

So that I can know if the task has been completed or not.

2. Result:

(a) As a Consumer

I want to be able to consult the result of a task.

So that I can retrieve the result from IPFS and decrypt it.

(b) As a Consumer

I want to be able to store the result of a task locally.

So that I can analyze it later.

4.4 Quality Attributes

The quality attributes are the non-functional requirements that the sys-

tem must satisfy to be considered a good system. In this case, the most

important quality attributes are security, anonymity, and decentralization.

Design and Implementation 33

Moreover, fault tolerance and scalability are also important to make the sys-

tem reliable and usable in real scenarios.

In the first part of this section, the quality attributes are divided in two

sections, one for the runtime and one for the development time.

4.4.1 Runtime Quality Attributes

1. Reliability: The system should be modular and reliable. The system

should work even though some peers are faulty or not deployed.

2. Scalability: The system should be scalable and should support many

peers.

3. Anonymity: The system should be anonymous, preventing data leak-

age.

4. Observability: Due to the decentralized nature and no point of con-

trol, each provider or consumer should be observable from only the

involved peers.

5. Lightweight: The system should be minimal and lightweight to be

deployed on commodity hardware (requiring no specific hardware).

4.4.2 Development Time Quality Attributes

1. Usability: The system should be usable with a user-friendly and min-

imal interface.

2. Maintainability: The system should be maintainable, with the pos-

sibility to fix bugs and add new features without affecting the system’s

overall functionality.

3. Deployability: New versions of the software should be deployed with

minimal downtime.

4. Modifiability: The system should be modifiable, with the possibil-

ity to add new features or modify existing ones without affecting all

modules or the overall system functionality.

5. Isolation: The components composing the system should be isolated

and independent from each other, to avoid cascading failures or bugs.

34 Design and Implementation

4.4.3 Quality Scenarios

In this section, quality attributes scenarios are presented following the

Stimulus-Response formalism. This model is used to describe the system’s

behavior in different scenarios and to understand how the system should

behave in real situations [2].

1. Scalability:

(a) Stimulus: An unexpected increase in the number of providers

and consumers in the network.

(b) Stimulus Source: Many users join the network simultaneously.

(c) Environment: During peak usage hours or when a new feature

is released.

(d) Artifact: The discovery system.

(e) Response: The discovery mechanism should support the increased

load without generating too much traffic that can slow down the

network.

(f) Response Measure: The system should be able to discover new

peers in a reasonable amount of time and without overloading.

2. Availability:

(a) Stimulus: A critical failure occurs, and a service becomes un-

available.

(b) Stimulus Source: A hardware failure or a network outage.

(c) Environment: The system is in its normal operational state.

(d) Artifact: The peer that becomes unavailable.

(e) Response: The system automatically detects the failure and

retry the communication with the peer for a certain amount of

time with increasing intervals.

(f) Response Measure: The system recognizes the failure after the

retries and the peer is considered unavailable.

3. Reliability:

(a) Stimulus: A software fault occurs in one of the system’s services.

Design and Implementation 35

(b) Stimulus Source: An unexpected software bug causes a service

to fail.

(c) Environment: The system is running in a production environ-

ment in its normal operational state.

(d) Artifact: The affected peer(s).

(e) Response: The system automatically detects the failure and

restarts or blocks itself, depending on the user choice and trying

to maintain overall network stability.

4. Observability:

(a) Stimulus: I want to check the discovery state of a provider or a

state of a submitted task from a consumer.

(b) Stimulus Source: The monitoring system of each peer or some-

thing unexpected in the system.

(c) Environment: The system is running in a production environ-

ment in its normal operational state.

(d) Artifact: The peer’s monitoring infrastructure.

(e) Response: The system provides real-time dashboards for check-

ing discovery state or task state.

5. Maintainability:

(a) Stimulus: A vulnerability is reported.

(b) Stimulus Source: A user submits a vulnerability report or au-

tomated tools detect a vulnerability.

(c) Environment: The system is running in a production environ-

ment in its normal operational state.

(d) Artifact: The affected component.

(e) Response: New fix, if possible, is applied to the affected compo-

nent.

(f) Response Measure: The fix is applied and deployed to produc-

tion following the gravity of the issue.

6. Deployability:

36 Design and Implementation

(a) Stimulus: A new version of the software is ready for deployment.

(b) Stimulus Source: The development of the new release has been

completed.

(c) Environment: The system is in its normal operational state and

a new version is ready for deployment.

(d) Artifact: The peer that has to be updated.

(e) Response: The new version is deployed minimizing downtime

and without affecting other peers.

7. Modularity:

(a) Stimulus: A new feature to a module or an entire module needs

to be added to the system.

(b) Stimulus Source: A product enhancement, a change in require-

ments, a bug fix or a new feature.

(c) Environment: The system is in its normal operational state, and

the new part of the system is ready for deployment.

(d) Artifact: The specific module that will be modified and their

dependencies.

(e) Response: New feature without affecting other modules or the

overall system functionality.

In this case, the quality attributes scenarios can be considered too much

for a simple prototype, but they are useful to understand the desired system’s

behavior in real scenarios. They represent a base for the system’s testing and

validation, and they can be used to expand the system in the future. Some of

them, like the scalability and the availability, are fundamental for this type of

system, and they have been considered during the development phase. More

in the testing chapter can be found about how these scenarios have been

tested.

4.5 Architecture

Every node of the system is composed of different components that inter-

act with each other to provide the functionalities described in the previous

Design and Implementation 37

sections. To guarantee the system’s quality attributes, the system has been

designed following the Clean Architecture principles [6]. It is a software

design methodology that separates the software into different layers, each

with its own responsibility, with the main goal of making the software inde-

pendent of the frameworks and libraries used to develop it.

Figure 4.1: Clean Architecture

This architecture favors the separation of concerns and helps to follow

the Dependency Inversion Principle (DIP) [7] during the implementation

phase (Section 4.7.1). Another fundamental aspect is the independence of

the layers that helps to maintain a core business logic that can be used in

different contexts abstracting away from possible technical issues.

4.5.1 Components

Each node typology has different components that interact with each

other to provide the core functionalities [8]. They are different because of

the different roles that the nodes have in the network.

Provider Node Components

Each provider node has some subcomponents, one foreach of the main

functionalities. As understood, the provider has three main jobs: discovering

peers, sharing metrics and executing tasks.

38 Design and Implementation

Figure 4.2: Components and connectors

For this reason and for separation of concerns, three different services have

been created: the Discovery Service, the Metric Service and the Task

Service. Each one inside keeps the specific business logic, and the main

component, the Node Service, uses them to interact with the network.

The connectors are just a little bit more complex, but what is important

to understand here is that they are three: the Event Broker to interact

with the network, the Repository Connector to interact with the storage

layer (IPFS in this case), and the REST API to let the user monitor the

node. The APIs in this case are exposed only internally for security reasons.

Consumer Node Components

The structure of the consumer node is very similar to the provider one

considering the connector part but very different in the components. In

particular, the components are the same without the Discovery Service

Component and the Metric Service Component that are not needed in

this case. Also, these components share only the same names because they

have naturally different business logic, simplifying the overall structure of

this typology of node.

In this case, the responsibility of the Node Service is to interact with

the network using the Task Service to handle task submission and result

retrieval, and the Event Broker to facilitate network interactions. This is

significantly less work compared to the provider’s responsibilities (network

discovery, metric sharing, and task execution mechanisms).

Design and Implementation 39

Event Broker

Event broker in a decentralized system represents a challenging compo-

nent. Gossip-based publish-subscribe is the decentralized messaging paradigm

that leverages gossip protocols for disseminating events across a network that

has been exploited [9]. Unlike traditional broker-based pub-sub systems,

where a central broker manages subscriptions and message delivery, gossip-

based pub-sub distributes messages in a Peer-to-Peer (P2P) fashion. Nodes

periodically exchange information with a subset of their peers, ensuring that

events propagate throughout the network in an eventually consistent manner.

This approach enhances fault tolerance, scalability, and resilience against

failures, making it well-suited for large-scale distributed systems. However,

the con in this case is the redundant message transmission that combined

with high latency network like Tor can introduces challenges compared to

structured pub-sub models.

Figure 4.3: Gossip Pub Sub Mechanism

4.5.2 Other considered alternatives

While the Event-Driven Model has been chosen for the system, other

alternatives were evaluated, in particular the Actor Model.

This model aligns well with the system’s requirements. However, its com-

plexity and steep learning curve were considered significant drawbacks look-

ing at the system’s future vision of being adopted by a developer community

and the need for a prototype to be developed in a reasonable amount of

time. Moreover, the Event-Driven Model has been considered more suitable

because of its Loose Coupling and Flexibility, while an Actor Model tends

to be more Tightly Coupled because of the because of the direct commu-

nication between actors (messages), which often requires them to maintain

40 Design and Implementation

knowledge of one another’s state and behavior. This tight interaction can in-

troduce dependencies that reduce the system’s ability to scale independently

and adapt to changes in the environment.

From an ecosystem perspective, the Event-Driven Model was pre-

ferred because of its key advantages:

1. Loose Coupling & Flexibility: Components remain independent,

making modifications and integrations easier.

2. Stateless and Scalable by Design: Enables effortless scaling.

3. Lower Learning Curve: More accessible to developers already fa-

miliar with standard messaging protocols.

4. Better for Asynchronous Workflows: Naturally integrates with

async/await patterns and reactive programming.

TheActor Model, however, remains a powerful alternative that provides

provide fault tolerance and resilient state management.

4.5.3 Patterns

Communication

There are multiple types of communication patterns that are used in

this system. Specifically, when a user needs to communicate with its node

(or peer) backend to exchange essential information required for complet-

ing a business operation, the Remote Procedure Invocation (request/re-

sponse) pattern will be the preferred approach.

This type of communication follows a one-to-one model. On the other

hand, the Asynchronous Messaging pattern (publish/subscribe) will be

used in scenarios where a peer needs to notify other components about the

occurrence of an event, a state change, or an action taken by a user.

In this case, the communication can be either one-to-one or one-to-

many, depending on the business requirements and the business action to

perform.

1. In the case of RPC, communication will be implemented using the

REST mechanism over the HTTP protocol.

Design and Implementation 41

2. In the case of asynchronous messaging, the communication will be

event-driven.

All events components and event brokers rely on socket-based mecha-

nisms. Moreover, the system is designed to operate in either anonymous

or non-anonymous mode, depending on the specific run and user require-

ments. To ensure flexible and secure routing of network traffic over Tor, in

case of anonymous mode, the system uses the SOCKS5 proxy to provide a

secure communication channel between peers. More on the technical details

can be found in the Section 4.7.2.

Deployment

1. Node as a Container: Each node is deployed as a container, ensur-

ing isolation and enabling independent scaling. Container images

are lightweight, fast to build, and quick to start. For containeriza-

tion,Docker has been chosen as the primary containerization platform.

More details in the Containerization Section 4.9.1.

2. Externalized Configuration: Instead of hard-coding configuration

values for a specific environment, configuration properties are supplied

at runtime. The Push model approach has been adopted, where con-

figuration values are passed to services through environment vari-

ables or configuration files, ensuring flexibility and adaptability

across different deployment environments and demos.

Security

1. Token Authentication: The system uses token-based authentica-

tion as an additional security layer, even though the API is accessible

only within the peer network and is not exposed externally. Each

request must include a Bearer Token in the Authorization header.

For now, the token is only passed to the node as environment variable

during the deployment phase, but in the future, it can be generated

by an authentication service and passed to the node during the boot-

strap phase. When a request is received, the system verifies the token

validating it, preventing unauthorized access and reinforcing security

within the peer network.

42 Design and Implementation

2. IPFS encryption: Since the system exploits IPFS for storage, and as

introduced in the Background Section 3.2 no default encryption layer is

provided, a custom encryption mechanism to guarantee data confiden-

tiality has been implemented exploiting the Asymmetric Encryp-

tion. By generating a unique key pair for each task, the private key

is kept secure and only accessible by the submitter, while the public

key, sent with the task details, is used for encryption before the data

(task result or whatever) is stored on the public repository. Formally,

the process works as follows:

(a) A public-private key pair is generated when preparing to submit

a task.

(b) The public key is sent with the task to encrypt the result before

storing it on IPFS.

(c) The private key, not shared by the submitter, is the only key by

which the encrypted result can be decrypted, following the basic

concept of the asymmetric encryption.

(d) Since only the submitter holds the private key, it is the only entity

that can decrypt the result and access the data.

This design ensures that no third party, including other participants

in the system or malicious actors can access or modify the data after

its storage without the submitters’ private key. It is a simple but

effective mechanism to add an additional (in this case necessary) layer

of security to the storage system. In the Future Extension Section 5.3

an improvement to this mechanism is proposed.

3. Secrets: During the CI/CD pipeline, secrets are passed to the GitHub

runner exploiting the GitHub Secrets feature. In this case, a fine-

grained token (minimum permissions required) is passed to the runner

to automate some GitHub Actions job, like for example the release

of a new version of the software. This type of feature is useful to

avoid hardcoding secrets in the codebase and to keep them secure also

in a CI/CD pipeline for a public repository. The same feature has

been exploited to automate the Docker image push to the Docker Hub

Registry.

https://docs.github.com/en/codespaces/managing-codespaces-for-your-organization/managing-development-environment-secrets-for-your-repository-or-organization

Design and Implementation 43

4.6 Detailed Design

In this section, the detailed design of the system is presented.

4.6.1 Packages

Each provider and consumer node is composed of different packages,

structured basing on the clean architecture principles.

Figure 4.4: Packages Structure

4.6.2 Domain Events

The system follows an event-driven model, and some events likeTaskEvent

are shared between the provider and consumer nodes. In this case, a Shared

Kernel has been created to store the domain events that are shared between

the two nodes. Here a particular design choice that has been made was to cre-

ate interfaces for basic abstraction, such as DomainEvent, to make event

management within the domain even more flexible and modular, keeping

clear the concept also for new features or devs.

44 Design and Implementation

Provider Events:

Figure 4.5: Provider Domain Events

Consumer Events:

Figure 4.6: Consumer Domain Events

These events are documented using the Async API specification. As

can be read in the Dev/Ops Section 4.8, the documentation is automatically

generated and published on the GitHub Pages of the repository. In this case

accepted payloads, examples, and responses are documented to make the

system more understandable for possible new developers and to make the

system more usable for the user.

The same approach has been used to document the REST API (following

OpenAPI specification). The documentation is available on the GitHub

Pages of the repository that can be found here. Direct link to AsyncAPI and

OpenAPI (provider, consumer) documentation.

https://paga16-hash.github.io/anonymous-shard/
https://paga16-hash.github.io/anonymous-shard/asyncapi/
https://paga16-hash.github.io/anonymous-shard/openapi/provider-node/
https://paga16-hash.github.io/anonymous-shard/openapi/consumer-node/

Design and Implementation 45

Figure 4.7: Documentation Example

Figure 4.8: Handlers

Example

Figure 4.9: Payload Example

46 Design and Implementation

4.6.3 UML Diagrams

In the next sections some UML diagrams are presented to show the struc-

ture of the provider and consumer node respectively. In particular, every

subsystem is described with a class diagram with some notes to explain the

main functionalities. Some implementation of the main interfaces does not

repeat all the methods for simplicity, but they are all implemented in the

code.

4.6.4 Provider Node

Discovery Service

Figure 4.10: Provider Discovery Service

Design and Implementation 47

Metric Service

Figure 4.11: Provider Metric Service

Task Service

Figure 4.12: Provider Task Service

An important note here is the definition of the Evaluator that is used

to evaluate the task and to understand if the node can execute it or has to

redirect it to another node. As seen in the Task Service diagram Figure 4.12,

the Task Evaluator is a component used by it. It is a simple interface that

has to be implemented by the user to define the evaluation logic, supporting

extensibility but fixing the business logic.

Figure 4.13: Provider Task Evaluator

48 Design and Implementation

4.6.5 Consumer Node

Consumer Task Service:

Figure 4.14: Consumer Task Service

As seen in the Consumer Task Service diagram Figure 4.14, the Task

Service is the main component of the consumer node used by the Node

Service to interact with the network. In this case, the service is more sim-

ple than the provider one, and it has complementary functionalities. An

important design choice that fixed the business logic is the Encryptor that

can be used only to decrypt the task result.

4.7 Implementation

4.7.1 Dependency Inversion Principle

From the detailed design section, the system exploits a lot of interfaces

fixing the business logic and the separation of concerns also before the real

implementation. One of the principles that have been followed is the De-

pendency Inversion Principle that is a key principle of the Clean Archi-

tecture.

It is a concept in software design that helps keep different parts of a system

loosely coupled. It states that high-level modules (which define business

logic) should not directly depend on low-level modules (such as databases or

network connections). Instead, both should rely on abstractions.

Improving flexibility and maintainability without impacting the core

logic. Another pro is that this principle makes it easier to test the codebase as

Design and Implementation 49

it allows for the use of mock objects to simulate dependencies during testing,

a feature that is particularly useful in possible future testing phases.

4.7.2 Technologies

Programming Language

The programming language chosen for the implementation isTypeScript,

a superset of JavaScript that adds static typing to the language. This choice

has been made to ensure a more robust codebase and to leverage the ben-

efits of static typing during the development phase. Moreover, TypeScript

is widely used in the industry and has a large community, making it eas-

ier to find resources and support, especially for a project that aims to be

open-source.

Some cons of TypeScript are the learning curve and the compilation time

that can be longer than JavaScript, but the benefits in terms of code quality

and maintainability outweigh the cons. In this case I was also familiar with

TypeScript, so the choice was natural. This choice is not a constraint for the

possible creation of other typologies of nodes because once the interfaces and

communication patterns are defined, the implementation can be done in any

language.

Express

Express is a minimal and flexible Node.js web application framework

that provides a robust set of features for web apps. In this project, Express

is used to create the REST API layer that exposes the system monitoring

functionalities to the user. The choice of Express was made because of its

simplicity, making it ideal but not for any particular constraint.

Tor

Tor (The Onion Router) is a privacy-focused network that enables anony-

mous communication by routing traffic through a series of encrypted relays.

It adds an extra layer of security by encrypting data multiple times, en-

suring that the data inside the network remains hidden. In this system,

Tor is used to anonymize communications between nodes, ensuring that the

identity and location of participants remain undisclosed. Tor offers Hidden

https://expressjs.com/
https://www.torproject.org/

50 Design and Implementation

Services that allow services to be hosted on the tor network. The choice of

Tor was made due to its strong anonymity guarantees.

An Hidden Service is a service that is only accessible through the Tor

network. It is a server that is configured to receive inbound connections only

through the Tor network, ensuring that the server’s location remains hidden.

It offers a series of advantages that are fundamental for this system:

1. Anonymity: The IP address of an onion service remains hidden, pro-

tecting both users and operators.

2. Encryption: All traffic between users and the onion service is en-

crypted at the network level. However, it is important to note that

this encryption applies only to the transport layer within the Tor net-

work. In general, once the data reaches the onion service, its security

depends on how the service processes and stores it. If the service does

not implement additional encryption or security mechanisms, sensitive

information could still be exposed or vulnerable to attacks on the server

side.

3. Automatic Address Generation: Users do not need to buy domain

names; onion addresses are cryptographically generated.

4. Integrity Assurance: The .onion URL itself ensures users connect to

the correct service without risk of tampering.

To access an onion service, users must know its .onion address, which

consists of 56 alphanumeric characters followed by .onion. Additionally,

websites can implement the Onion-Location header, allowing automatic

redirection to their onion counterpart.

A possible enhancement involves authenticated onion services, which re-

quire users to provide an authentication token before gaining access. This

strengthens security by restricting access to authorized users only. Tor

Browser supports this mechanism, allowing users to enter a private key when

prompted. An encountered problem while the containerization process of the

system inherent to how Hidden Services are managed by Tor can be found

in the Deployment Chapter 4.9.1.

Entry Nodes (or Guard Nodes) are the first relay point your traffic passes

through when connecting to Tor. They are responsible for establishing the

https://tb-manual.torproject.org/onion-services/
https://support.torproject.org/about/entry-guards/

Design and Implementation 51

Figure 4.15: Mapped Exit node

connection between your device and the Tor network, providing anonymity

by masking your real IP address.

Exit Nodes are the last relay in the Tor network that your traffic passes

through before reaching its final destination. They are responsible for sending

the encrypted traffic and decrypting the final layer of encryption. However,

the exit node can see your traffic’s destination but not its source (IP ad-

dress). An updated list of the Tor Relays and a lot of interesting metrics

can be found here. The link to the full Tor technical documentation can be

found here. Each process like the circuit creation, the connection to the net-

work, and the hidden service creation is explained in detail in the technical

documentation. More on how circuits are exploited for the system can be

found in the Testing and Evaluation Chapter 5.

IPFS

IPFS (InterPlanetary File System) is a distributed, peer-to-peer network

for storing and sharing data in a decentralized manner. Instead of relying on

a central server, IPFS uses content-addressing, where each file is identified

by its cryptographic hash, ensuring immutability and resistance to censor-

ship. In this system, it is used to store and retrieve data efficiently avoiding

reliance on centralized storage solutions. This choice was made because of

its decentralized architecture and data persistence.

The problem encountered here is that, as mentioned, this technology ex-

https://blog.torproject.org/tips-running-exit-node/
https://metrics.torproject.org/rs.html
https://spec.torproject.org/
https://ipfs.tech/

52 Design and Implementation

ploits content-addressing, so once the data are stored on IPFS they became

immutable. Moreover, the stored data are not encrypted by default, so it is

necessary to encrypt them before storing to ensure privacy and confidential-

ity. In this system, it is used to persist the info about tasks and tasks results.

The design choice to avoid the storage of clear data on IPFS is the generation

of a key pair by the consumer node that is used to encrypt the result before

the storage. Mechanism deepened in Security Patter Section 4.5.3.

Pinata is a cloud-based service that simplifies storing and managing files

on IPFS (InterPlanetary File System). It has been used for simplicity and to

avoid the need to run a self-hosted IPFS node, considered time consuming

for a prototype. It provides a web interface, API access, and pinning services

and some technical documentation that helps the developing process.

Unlike self-hosted IPFS nodes, Pinata is ideal for who don’t want to

maintain their own infrastructure. In this case, besides the fact that the

system is a prototype and a self-hosted IPFS node would be excessive, it was

very interesting to understand how it works. This technology is widely used

in NFTs, Web3 applications, and decentralized storage solutions, offering

scalability, access control, and analytics.

Beyond this, however, the main purpose of the system would require one

or more independent nodes to maintain the system decentralized.

SOCKS5 Proxy

SOCKS5 is a networking protocol that routes network packets between

a client and a server through a proxy server. In this system, every com-

munication is tunneled through a SOCKS5 proxy to ensure anonymity and

privacy when Anonymous Mode is enabled. As mentioned in the Background

Section 3.2 the choice of SOCKS5 was made because of the Tor network’s

support for this protocol, making it ideal for routing network traffic through

that network. Moreover, this type of proxy supports various protocols, and

with this fifth version, also the UDP, that is a nice feature. The problem is

that the UDP protocol is not supported by the Tor network, so it is not used

in this system.

Briefly, this proxy mechanism is very powerful; it allows the system

to transparently route packets through an intermediate relay, preserving

anonymity while maintaining efficient communication.

https://support.torproject.org/glossary/socks5/

Design and Implementation 53

General key advantages of using this proxy include:

1. Anonymity and Privacy: When running in anonymous mode, all

network traffic is routed through the SOCKS5 proxy.

2. Protocol Agnosticism: Unlike HTTP proxies, SOCKS5 supports

various protocols.

3. Flexible Traffic Routing: The system can dynamically switch be-

tween direct connections and proxy-based routing, depending on whether

anonymity is required.

4. Reliability in Restricted Environments: SOCKS5 helps bypass

network restrictions, making it possible to maintain peer communica-

tion even in constrained environments.

With its 5h version, instead, the resolution of DNS queries is possible at

the proxy level. In this specific case, the system uses the Tor network, which

already provides DNS resolution, so this feature is not exploited. In general,

this feature can enhance anonymity and can bypass DNS censorship or avoid

DNS leaks.

An interesting feature, according to the Tor Documentation, is that adding

the SafeSocks 1 directive in the torrc file prevents DNS leaks by ensuring

that all DNS requests are routed through the Tor network. This config-

uration rejects any connection attempting to resolve DNS outside of Tor,

safeguarding the user.

In the implementation, all peer communications for event-driven mes-

saging are transparently tunneled through the SOCKS5 proxy when oper-

ating in anonymous mode. In this system the proxy is provided directly by

the Tor installation. Below, a code snippet shows how the system establishes

a connection to a peer through the proxy.�
1 await SocksClient.createConnection ({

2 proxy: {

3 host: socksHost ,

4 port: socksPort ,

5 type: 5

6 },

7 command: ’connect ’,

https://support.torproject.org/it/misc/check-socks-dns-leaks/

54 Design and Implementation

8 destination: {

9 host: ’{address.onion}’,

10 port: {port}

11 }

12 })
� �
To use the SOCKS5h version, the type field in the proxy configuration

object must still be set to the value 5 but a Lookup Function must be provided

to set the DNS lookup to the proxy server. This depends on the library

used to establish the connection, in this case the socks modules has been

exploited.

Docker

Docker is a containerization platform that allows applications to run

in isolated environments, ensuring consistency across different systems. It

enables the packaging of software and its dependencies into lightweight con-

tainers, making deployment more efficient and reproducible. In this system,

Docker is used to encapsulate various components, ensuring that they run in

a controlled and consistent manner across different machines. The choice of

Docker was made to simplify deployment, enhance portability, and manage

dependencies efficiently.

In this particular system, the exploitation of Docker Volumes brings the

possibility to store the data outside the container, ensuring data persistence

also for a consumer that want to submit a tasks always using different dif-

ferent Hidden Service onion address. This is possible because the system is

configured to store the hidden service private key in a volume that is shared

with the container. For more explanations about job unit submissions return

to the Data Flow Analysis Figure 3.2 while for the specific containerization

process, where this feature is exploited, continue to the Deployment Chap-

ter 4.9.

4.7.3 Transport Layer

One of the main challenge in this system was to ensure secure and anony-

mous communication between peers. In the early stage of the implementa-

tion, after fixing the business logic, architecture and the main components,

the focus was on searching some good library that can help to achieve this

https://www.npmjs.com/package/socks
https://www.docker.com/

Design and Implementation 55

prototype. The attention was in particular to libp2p.io, a modular network

stack that can be used to build peer-to-peer applications. This library has

gained popularity and is now used and affirmed in the peer-to-peer com-

munity. This modular and extensible framework adapted across many pro-

gramming languages (JavaScript,Go, Rust, C++, Nim, Java/Kotlin, Python,

Swift, . . .) has facilitated its integration into numerous high-profile projects.

For example Ethereum blockchain, IPFS, Filecoin, Polkadot and many

others are using libp2p to build their network stack.

The ongoing development and adoption of libp2p underscore its critical

role in decentralized technologies, making it an ideal choice for this system.

The learning curve of this library I think is the only con. While for simple

project the library can be easily introduced and used, for complex projects

it can be difficult to manipulate and understand all the features to reach the

desired result.

Moreover, in this case, the library is not designed to be used on top of

the Tor network so it necessitates some additional workaround to make it

feasible.

The initial tries aimed to use this library in a “hacky” way (modifying

directly the library code, not considered correct from the design point of

view) were aborted because of the multiaddr 1 resolution. Furthermore for

each update or fix of the library it was necessary to manually modify involved

files or keep a fork of the library with all security implications. This goes

against all good security and software engineering best practices and for this

reason this line of development was abandoned.

So, after discarding this possibility, an analysis and a feasibility study

was conducted to implement a new module for the library that could extend

the functionalities to support communications over the Tor network.

What emerged is that theTransport Interface needs to be implemented

to make a new compliant module (like js-libp2p-websockets). In this case

I would have liked to contribute to the library, but the time was limited

and the complexity of the task was high. I should have investigated better

where the library uses the UDP protocol to generate similar components

that encapsulate this UDP traffic in TCP, possible on Tor. Moreover, given

the different nature of the two networks, it would have been necessary to

1Multiaddr is a flexible and multi-protocol address format used for identifying peers

in a decentralized, peer-to-peer network. It allows a single identifier to represent a peer

using multiple transport protocols and addresses.

https://libp2p.io/
https://www.npmjs.com/package/@libp2p/interface-transport
https://github.com/libp2p/js-libp2p-websockets

56 Design and Implementation

implement a mechanism to manage the different latencies, timeouts, name

resolution mechanism and others in a cascading way. Given the limited time

and the fact that this development line could not yet lead to a concrete result,

the decision taken was, with regret, to continue discarding also this possibility

and using native sockets for communication between peers. Anyway, this

has been a very interesting part of the development, and it has been a great

opportunity to understand better how the library works and how it can be

extended. Surely, more work and study are needed to make this library (or

at least some components) work on top of the Tor network, but the potential

I think is very high.

Another consideration regarding this possible development is that if I

could have used the library I could have focused on an even more complex

system, moving towards an ecosystem concept. This however I think is nor-

mal in a prototype, where the focus is on the main abstractions and the

quality of the architecture, and not on the complexity of the system.

Native Sockets

The communication between peers is managed through native sockets.

The system uses the Node.js net module to establish connections between

peers. Also in this case, the transport layer is changed accordingly to the op-

erating mode of the system, in particular the usage of the SOCKS5 Proxy

to ensure anonymity and privacy or not. To do that, the DIP principle has

been followed another time, creating an interface that abstracts the commu-

nication layer and implementing two different classes, one foreach mode.

The main problem encountered, in the anonymous mode, is the manage-

ment of the different latencies or network instability that can be introduced

by the Tor network. To solve this problem a retry mechanism has been

implemented.

4.8 DevOps

4.8.1 Build Automation

Gradle is used as the build automation tool for the project. It allows for

the automation of the build process, including compiling, testing, and pack-

aging the application. The build process is defined in the build.gradle file,

Design and Implementation 57

which specifies the project’s dependencies, tasks, and configurations foreach

node. Also the tasks for the code quality check are defined in the build file.

In this case, I tried to keep the codebase with only necessary dependencies,

so the build process is not something complex.

4.8.2 Version control

DVCS workflow

The project uses Git as the version control system, and my workflow

is based on updating the main branch with new features or fixes through

dedicated branches. In this way, the main branch always contains the latest

stable code. New changes or fixes are introduced through dedicated branches

(feature/name, fix/name, chore/description, etc.), ensuring a structured ap-

proach to development and a clear history. Releases are directly managed

from the main branch when merging a feature (or fix) branch.

Moreover, to ensure consistency and quality, every commit is associated

with a meaningful message that describes the changes introduced following

the Conventional Commits standard.

Semantic Versioning and Release

Both software, the provider node and the consumer one, follow Semantic

Versioning, with version numbers automatically determined by the CI/CD

pipeline. The Semantic Release plugin automates this process. By analyzing

conventional commit messages, the plugin determines the next version based

on the changes introduced. Additionally, it generates a changelog and creates

a new release on GitHub.

This setup can result difficult to understand for a new developer, but

it ensures consistency and quality in the release process, making it easier

to track changes and manage versions. Potentially, to let the system be

more accessible, a more traditional release process could be adopted, but the

current setup is more suitable for an open-source project. The only change

to do should be the Release process triggered only when a new Pull Request

is merged in the main branch and after at least some code reviews.

https://www.conventionalcommits.org/en/v1.0.0/
https://semver.org/
https://semver.org/

58 Design and Implementation

4.8.3 Quality Assurance

To maintain the quality of the system, some quality assurance practices

have been adopted, exploiting these tools:

1. Prettier: A code formatter to ensure consistent code style.

2. ESLint: A static code analysis tool to identify problematic patterns

in the code.

Surely, the system can be improved with more tools and practices, but

for a prototype and the fact that I’m the only developer, these are enough

to ensure a good code quality and maintainability.

4.8.4 Continuous Integration and Delivery

The CI/CD pipeline is an essential part of the development process, en-

suring that the code is continuously integrated, that does not break the build,

and that new features are delivered.

1. Build: Compiles the project, ensures functionality across Linux, and

macOS platforms.

2. Style Check: Verifies code formatting and consistency using linters

and formatters.

3. Generate Documentation: Builds the documentation website and

stores it as an artifact for future releases.

4. Version Calculation: Determines the next version number for the

project based on commit history.

5. Release Management: Analyzes commit messages to determine if

a new release is required, and if CI/CD file determined conditions are

met, tags the repository with the new version number.

6. Deploy Documentation: Retrieves the pre-built documentation and

publishes it to GitHub Pages.

7. Docker Image Deployment: Builds Docker images for all nodes

upon release trigger and pushes the new images to Docker Hub with

the latest tag.

Design and Implementation 59

Figure 4.16: CI/CD Pipeline

4.9 Deployment

This section provides a brief overview of the deployment process and the

necessary steps to deploy the system but before that, the containerization

process is explained.

4.9.1 Containerization

The containerization process is fundamental to ensure a good deployment

process. In this case, Docker is used to containerize the system, encapsulating

each node in a separate container. Source code of the frontend and the

backend are in different project module to keep the system more modular but

are packaged together in the same image. This approach has been followed for

simplicity and to ensure that every node, including a monitoring dashboard,

is encapsulated in a single container. A possible con can be the fact that

if some structural or architectural changes are done on thee frontend, the

entire docker image needs to be rebuilt.

Dockerfile

The created Dockerfile, as mentioned, builds the application with two

main parts: the core of the node and the relative frontend. In this case, a

multi-stage build is used to optimize the image size and ensure that only the

necessary dependencies are included in the final image.

60 Design and Implementation

1. Base Image: The build starts from the node:23-slim image. This

image provides a lightweight Node.js environment.

2. Step 1: Application Setup: In this phase, the dependencies are

installed, and the application is built.

3. Step 2: Final Image with Tor Installation: The final image is

created with built files, and Tor is installed and configured.

4. Step 3: Combining Startup Commands: The startup scripts are

copied, and the startup command is defined.

An important step here is the configuration of Tor, that in this case defines

the Hidden Service port for each node. Also the proxy port is defined to

ensure that the communication between the nodes is tunneled through the

relative network.

Multiple improvements can be done in the future, like the creation of a

specific user for the application and the definition of a health check for the

container.

A problem encountered was that during the first run of the container,

the Tor service had not started, and therefore the hidden service address was

not defined. This issue was resolved by modifying the startup scripts and

the Dockerfile, which now set an environment variable containing the hidden

service address.

I said that this problem occurs only the first time, but there is a reason

for that. The reason is that the folder in which the hidden service address is

stored is a volume, so the data is persisted even if the container is stopped.

This design choice ensures that the hidden service address remains consistent

across container restarts. However, if the corresponding volume is removed,

the hidden service address will change each time the container is started.

Default Port Mapping

Since with this configuration, all the nodes run in the same host machine,

a default port mapping was needed. The mapping is done in the Docker

Compose file, and it is defined as follows.

Providers (ANONYMOUS MODE)

1. All providers use an internal PORT: 3000.

Design and Implementation 61

2. Their API PORT values start at 4001 and increase sequentially, with

mappings formatted as <API PORT>:4000. This ports refers to the port

used by the frontend to communicate with the backend. It is important

to specify this port, because when thee frontend is served, the requests

starrt from outside the container obviously.

3. Frontend ports are assigned sequentially beginning at 8081 (mapped

as <frontend port>:8080). This ports refers to the port used by the

user to access the monitoring dashboard.

4. An environment variable BOOTSTRAP NODE is set to “true” for the first n

providers (where n equals bootstrap count) and to “false” for the re-

mainder. In this case, address of bootstrap node, through thee starting

scripts, are shared with the other nodes.

Container names follow the pattern tor-provider-i .

Consumers (ANONYMOUS MODE)

1. All consumers use an internal PORT of 3000.

2. Their API PORT values start at 4901 and increase sequentially, with

mappings as <API PORT>:4000.

3. Frontend ports are assigned sequentially beginning at 8181 (mapped

as <frontend port>:8080).

Container names follow the pattern tor-consumer-i .

Providers (LOCAL MODE)

1. Each provider receives a unique internal PORT starting at 3000 (e.g.,

provider-1 gets 3000, provider-2 gets 3001, . . .).

2. Their API PORT values begin at 4000 (e.g., provider-1: 4000, provider-

2: 4001, . . .) and are mapped directly (e.g., "4000:4000").

3. Frontend ports are assigned sequentially starting at 8080 (e.g., provider-

1: "8080:8080", provider-2: "8081:8080", etc.).

Container names follow the pattern local-provider-i , and note that in

this case the bootstrap node variables are prefixed with LOCAL .

62 Design and Implementation

Consumers (LOCAL MODE)

1. Each consumer receives a unique internal PORT starting at 3900 (e.g.,

consumer-1: 3900, consumer-2: 3901, . . .).

2. Their API PORT values begin at 4900 (e.g., consumer-1: 4900, consumer-

2: 4901, . . .) and are mapped directly (e.g., "4900:4900").

3. Frontend ports are assigned sequentially starting at 8085 (e.g., consumer-

1: "8085:8080", consumer-2: "8086:8080", etc.).

Container names follow the pattern local-consumer-i .

It is a little bit complex to understand initially, but the main idea is to

have a default port mapping that can be easily changed. Another important

aspect is the exploitation of the Docker internal DNS that permits to have

a communication between the containers using the container name as the

address.

N.B. The scripts deepened in the next section follows this logic.

4.9.2 Docker Compose

The most convenient deployment mode of the system is to use Docker

containers, in particular exploiting Docker Compose to manage the orches-

tration of the different services. In this way, another isolation layer is added,

and the system can be deployed on any machine that supports Docker. This

method brings a lot of advantages, in the development phase, the system can

be tested on different machines without any problem, and in the production

phase, the deployment is simplified and the system can be easily scaled.

Prerequisite

Docker is the only prerequisite to deploy the system. Keeping the system

lightweight and easy to deploy was a key design goal, and Docker was chosen

for its simplicity and portability. Moreover, a Docker feature that adapts

well to this system is that containers are one-shot, in the sense that they

are temporary and can be easily replaced. In this system, this is very useful

thinking about Consumer Nodes. A consumer node can be deployed, get a

task result, store it locally and then be destroyed, without any problem and

only deleting the linked volume. In this way, one shot containers can be used

Design and Implementation 63

to improve the system’s security. A reference to the deep explanation of this

mechanism can be found in the Containerization Section 4.9.1.

4.9.3 Sample Scripts

To streamline the deployment process, several sample bash scripts are

provided. Given the decentralized nature of this system, deploying multiple

nodes on the same machine is not a logical approach. Considering that this

system is a prototype, the scripts are primarily intended for the development

phase, where the system can be tested on a single machine. During the

production phase, no scripts are required, as the system can be deployed

across different machines by simply running the appropriate containers.

While various scripts are available for review and use, the key script for

running a demo on your local computer is the anonymous-shard.sh script.

This script facilitates the creation and execution of a series of containers rep-

resenting the system’s nodes. Once the containers are running, interactions

can be made from the Docker host through the corresponding frontend to

observe and evaluate the system’s behavior.

Usages

To use the script, follow these steps:

1. Clone: Clone the repository or download the scripts folder from the

repository. Source code is not needed due to Docker images already

available on Docker Hub and the externalized configuration that per-

mits to run the system without any code modification. Reference to

Containerization Pattern Section 4.5.3 for details.�
1 git clone https :// github.com/paga16 -hash/

anonymous -shard.git
� �
2. Generate: From the folder, after giving execute permissions to the

script, run the following command to generate a test docker compose

file with specified number of nodes. With these scripts, the system

can be deployed specifying the ANON MODE parameter to false if

you want to run the system in non-anonymous mode. What is needed

https://github.com/paga16-hash/anonymous-shard

64 Design and Implementation

to run the system and in particular to pin files on the IPFS filesys-

tem is a PINATA API KEY and a PINATA API SECRET that can

be obtained from the Pinata website for free.�
1 chmod +x ./anonymous -shard.sh

2 ./anonymous -shard.sh generate <ANONYMOUS_MODE >

3 <PINATA_API_KEY > <PINATA_API_SECRET >

4 <DEV_API_KEY > <NUMBER_OF_BOOTSTRAP_NODES >

5 <NUMBER_OF_PROVIDERS > <NUMBER_OF_CONSUMERS >
� �
3. Start: Start the system with the following command. After this com-

mand, you can see docker containers running and you can interact with

the docker demon or access the frontend to interact with the system.�
1 ./anonymous -shard.sh start
� �
4. Stop: Stop the system with the following command.�
1 ./anonymous -shard.sh stop
� �
To interact with the system, you can access the frontend by opening a

browser and navigating to http://localhost:<FRONTEND PORT>. Since the

script follows the defined port mapping, every node can be accessed using

the localhost address and the relative port because of the Docker port

forwarding. While the system is running, you can submit tasks, monitor the

network, and view the results through the frontend.

Other Scripts Since other scripts have been created to automate or sim-

plify the development process, I found useful to provide a brief explanation

of them without going into details.

1. make-requests.sh: To automate the process of submitting tasks to

the system, used to simulate the user interaction with the system and

different loads as analyzed in the Testing and Evaluation Chapter 5.

2. evaluate.sh: To measure average RTT time between blocks of re-

quests.

These scripts can be found in the scripts/other folder of the reposi-

tory and can be used to automate some processes and to test the system in

different scenarios.

https://pinata.cloud/
https://github.com/paga16-hash/anonymous-shard
https://github.com/paga16-hash/anonymous-shard

Testing and evalutation 65

4.10 Running System

This section provides only some screenshots of the system running, to

give an idea of how the system works.

Figure 4.17: Provider Node Dashboard

Figure 4.18: Provider Node Metric Consultation

66 Testing and evalutation

Figure 4.19: Metric in the Backend

Figure 4.20: Consumer Node Dashboard

Figure 4.21: Pending Task in the Consumer Node

Figure 4.22: Sample Task Result in the Consumer Node

Chapter 5

Testing and evalutation

In this chapter, the tests conducted on the system and the metrics used

to evaluate its performance are analyzed. The system has been tested under

different configurations to assess various scenarios.

For the first prototype, the tests are mainly focused on evaluating the

system’s functionalities. In contrast, the second prototype is designed specif-

ically to assess the performance of the Tor network in terms of latency. More

important, the second prototype was developed to make general measure-

ments on the Tor network, in this case the following presented measurements

are used to understand how the first prototype can behave.

Specifically, the tests aim to determine the effectiveness of the system’s

scalability, identify potential improvements, or evaluate additional compo-

nents to handle a large number of nodes. More in general, to assess the

feasibility or understand the areas that need further development.

Multiple scalability scenarios have been tested, ranging from a small num-

ber of nodes to a large-scale network to observe system behavior in different

conditions.

Other tests have been conducted to measure the Round Trip Time (RTT)

between nodes in the network. This factor can have a significant impact on

message delivery and so on task execution time, specifically within the Tor

network. Knowing approximately this value is crucial for evaluating system

performance since every or action possibly involves multiple nodes.

Furthermore, all tests are conducted in anonymous mode, as perform-

ing tests in a non-anonymous mode would not provide meaningful insights

given the nature of the system.

More efforts can be made to enhance and refine this evaluation phase as

67

68 Testing and evalutation

discussed in the Limitations Section 5.2.5 and in the Future Test Extensions

Section 5.3.

5.1 Scalability Test

This test aims to evaluate how the system behaves as the number of nodes

increases. The primary focus is to determine the scalability of the network

and assess whether an efficient discovery algorithm, such as Kademlia, en-

ables effective scaling. The discovery (explained in Section 3.3.2) and task

processing mechanism has been verified for networks of up to 100 producer

nodes and 30 consumer nodes on the same machine. The number of submit-

ted task requests was set to 200, and the system was able to handle them

without any issues.

A key factor influencing system performance is the tuning of specific

parameters. Specifically, since the discovery mechanism uses a hash table,

the number of nodes neighbors each node can store in its routing table is

one of them. This parameter is crucial, as it directly impacts the number of

hops a message must take to reach its destination. Additionally, it affects

the time required for node discovery and the overall network stability.

To analyze these effects, the routing table bucket size has been varied

from 10 to 70 nodes, observing the system’s behavior under different config-

urations. A frontend view from the point of the Producers can be seen in

Figure 5.1 and Figure 5.2 where different bucket sizes have been tested.

Another critical aspect that emerged from this test is the importance

of the Metric-Sharing interval, which determines how frequently nodes

exchange resource metrics. This parameter represents a trade-off:

1. If the interval is too long, metric propagation slows down, potentially

delaying decision-making and task execution.

2. If the interval is too short, the network may become flooded with mes-

sages, leading to unnecessary overhead.

A high Metric-Sharing interval can degrade system performance by in-

creasing task execution times and reducing overall efficiency. As discussed in

previous chapters, the component responsible for evaluating task execution

feasibility relies on up-to-date resource metrics to make informed decisions.

Testing and evalutation 69

Since the current Evaluator logic as analyzed in the Design and Implementa-

tion Chapter 4.6.4 is straightforward and selects the best node for execution

based solely on available metrics, outdated information may lead to subop-

timal decisions.

The worst-case scenario occurs when the selected provider lacks updated

knowledge. If this provider appears to have the best metrics for executing the

task but the system is unaware of it, the task is redirected to a suboptimal

provider. This introduces a delay due to the need for the task redirection,

and since the new provider is not the most suitable, a double additional

execution delays occur.

Ultimately, network consistency is crucial: nodes must maintain an up-

dated view of the system’s state to ensure efficient resource sharing. If metric

propagation is too slow, task execution performance will suffer. To analyze

the time needed for specific task execution and the time needed to send a

message to another node, a series of tests analyzed in the Average RTT Test

Section 5.2 were conducted.

Briefly, important aspects that only regard the network are:

1. The number of nodes in the network.

2. The physical distance between nodes.

3. The number of hops a message must traverse to reach its destination.

Other problems can derive from the execution of the task itself, but in

this case where the system is tested in a controlled environment and the tasks

were simple, the focus was on the network itself.

5.1.1 Encountered problems

No significant problems were encountered during the scalability tests, as

the system was able to handle a large number of nodes efficiently, but some

considerations regarding the latency introduced by the Tor network need

to be made. The network latency is not a problem of the system itself,

and as mentioned, this network, is designed to provide anonymity by routing

messages through multiple relays (adding encryption layers), so this behavior

is expected. However, it poses a challenge for our system, as it increases the

time required for message delivery.

70 Testing and evalutation

One key observation is that, due to the way the Tor network operates,

a new circuit is needed when the previous one is closed due to expiration,

inactivity, or other problems. The creation and switching of circuits con-

tribute to the overall latency. This is something to consider when evaluating

system performance, as it can introduce significant delays in task execution.

In particular, it could justify that cases in which, apparently for no reason,

the task execution time is higher than expected.

In this case and in general, if some messages fail to be delivered, or

something in the network happens, the retry mechanism is triggered and

the communication is re-established. This mechanism is essential to ensure

the system’s robustness and reliability, as it allows the system to recover

from errors and continue functioning correctly. The interval of the retry

mechanism is a parameter that can be tuned to balance performance and

reliability, or it can be multiplied by the number of retries to avoid network

flooding.

Another secondary issue encountered is related to an implementation de-

tail. As the network grows in size, nodes exchange larger packets about

metrics or neighbors, as discussed in the Discovery Mechanism Section 3.3.2.

The problem, which has been promptly resolved, was related to the recon-

struction of the packet at the destination node when a packet was fragmented.

This issue was solved by prefixing the packet length at the beginning of the

packet, allowing the receiver to determine when the packet was fully received

and ready for processing allowing for its reconstruction or not.

The problem has been encountered only when scalability tests were per-

formed because before the local network (so the neighbor packet size) was

too small to encounter this problem.

Apart from these two issues, the tests were satisfactory because the sys-

tem was able to handle a large number of nodes and tasks efficiently. Also, in

cases where nodes are manually turned off, the system was able to continue

functioning correctly, demonstrating its robustness. In this case, what could

clearly be improved and analyzed is the behavior of the network when these

nodes are really distributed worldwide. This is a problem that will be ad-

dressed in the future and discussed in the Future Test Extensions Section 5.3.

The average time for message delivery will be analyzed in the Detailed Anal-

ysis Section 5.2.3.

Testing and evalutation 71

Figure 5.1: Bucket Size 50 reaching saturation

72 Testing and evalutation

Figure 5.2: Bucket Size 70 saturated

5.2 Average RTT Test

A series of tests were conducted to measure the average Round Trip Time

between nodes in the network with the final goal of estimating possible mes-

sage delivery time values when dealing with a real-world scenario. RTT is a

critical metric for evaluating system performance, as it directly impacts on

message delivery and so on task execution time. For this test, the specially

created Analyzer prototype was used.

5.2.1 Process

In this experiment, Entry and Exit nodes were used to measure the time

taken for a message to traverse the Tor network. The Analyzer sends a

message to the Entry node, which then forwards it to the Exit node. The total

time taken for the message to reach its destination and return is recorded.

A recap on what are Entry and Exit nodes is provided in the Design and

Implementation Chapter 4.7.2. To get a quite accurate average RTT value,

Testing and evalutation 73

a set of 50 requests was repeated each hour of the day with a total of 1200

requests per configuration. The number of requests is a tunable parameter

that can be increased to have a more accurate average value if needed or if

the experiment needs to be repeated for any reason.

At the end of the process, the measurements were averaged per hour, and

charts were generated to visualize the results clearly and provide a compre-

hensive view. Moreover, the standard deviation was calculated to understand

the variance in RTT values and identify potential outliers or noteworthy time

spans.

Considerations

Before analyzing the results or taking a look at the configurations, it

is essential to consider how the measurements are obtained and the factors

that can influence them. The tests have been conducted using a Docker-

ized environment, where two containers simulated the client and the server

respectively.

To better explain and understand the internal mechanisms, an example

is examined. In the Russia-USA case, the client was explicitly configured to

use an entry node in Russia (EntryNodes ru) and an exit node in the United

States (ExitNodes us). The server was only configured to use an exit node

in the United States (ExitNodes us). This setup ensured that all traffic was

routed through the specified locations.

Although both the client and the server have been hosted on a machine

in Italy, which may introduce slight bias in the results. This setup effectively

simulates a controlled observer-based measurement; however, it does not fully

replicate a globally distributed scenario. Still, it offers valuable insights into

Tor network performance across different geographic configurations.

The experiment was repeated with different entry-exit node pairs across

the various countries configurations.

The results revealed significant differences in RTT depending on the ge-

ographic distance between the nodes and the specific countries involved as

expected. Circuits spanning longer distances generally exhibited higher la-

tency, while those confined to geographically closer nodes showed lower RTT

values. Time-based variations also highlighted the impact of network con-

gestion, with peak latency periods aligning with high-traffic hours in certain

regions.

74 Testing and evalutation

Specific Measurement Process

The total RTT consists of the time taken for a message to travel from

the client to the server through the Tor network and back, but as mentioned,

the client and the server were hosted in Italy. So, the RTT is not a simple

client-server ping but involves a multistep process.

The measurement, keeping the example of the USA-Russia configuration,

can be divided into three main phases:

Request: Steps involved from the client to reach the server through the

Tor network.

1. Client to Entry Node: Italy → RU.

2. Entry Node to Relay Nodes: RU → Relays.

3. Relay Nodes to Exit Node: Relays → US.

4. Exit Node forwards to Server: US → Italy.

Response: In this phase, the response is sent back to the client via the

same Tor path.

1. Server forward through Exit Node: Italy → US.

2. Exit Node to Relay Nodes: US → Relays.

3. Relay Nodes to Entry Node: Relays → RU.

4. Entry Node to Client: RU → Italy.

Note that Tor circuit routing time, relay selection, and forwarding are in-

cluded in the measurements. Same for the relay processing delay and network

propagation delay between relays.

Other Latency Factors: Several other elements impact RTT measure-

ments.

Testing and evalutation 75

1. Tor Network Congestion: Congestion within the Tor network can

introduce additional delays, particularly when relays become overloaded

due to high traffic volume at specific times or on certain routes. An-

other contributing factor is the limited bandwidth of exit nodes, which

can further slow down data transmission when handling large amounts

of traffic.

2. Operating System and Docker Overhead: Although not directly

related to the Tor network, system-level factors such as Docker con-

tainer networking overhead and OS-related processing delays can con-

tribute to additional latency. While these factors are generally minor,

they should still be considered in performance evaluations.

Note that the Tor Circuit Setup Time is not included in the RTT mea-

surements, as it is a separate factor that can vary depending also on relay

availability. This setup time can be a significant factor in countries where

the Tor network is either unavailable or rarely used, and some considerations

about this phase can be found in the Encountered Problem Section 5.2.4.

Final RTT Computation: The total is the sum of all contributing factors.

TRequest = (TClient→Entry + TEntry→Relays + TRelays→Exit + TExit→Server)

TResponse = (TServer→Exit + TExit→Relays + TRelays→Entry + TEntry→Client)

RTT = TRequest + TResponse

Where each term includes network latency, encryption/decryption over-

head, relay processing time, and congestion delays.

5.2.2 Countries Configuration

These tests were conducted using different country configurations trying

to evaluate the system’s message delivery time across various geographic

locations.

1. Italy-Italy: This configuration serves as a baseline to understand the

behavior of the system in a controlled environment. By testing within

the same country, we can minimize the effects of network congestion

76 Testing and evalutation

and routing complexity, providing a reference to comparing other, more

geographically spread configurations. In the following sections, this

configuration will be called the basecase.

2. Italy-Bulgaria: The Italy-Bulgaria pair helps us analyze the impact

of geographical distance and network congestion in the case of a longer,

but still European, distance. This test will highlight how the system

performs when routing through different countries within Europe, and

how the performance changes as moving away from the baseline (Italy-

Italy) configuration. What should be noted are timings similar to the

basecase with a slight increase in the values due to the increased dis-

tance between the two countries.

3. Italy-Mexico: By introducing a significant transcontinental distance,

the Italy-Mexico configuration will allow us to evaluate the system’s

performance under different routing conditions. This test explores how

the system behaves when traversing multiple international networks

with potential bandwidth limitations and routing inefficiencies.

4. Russia-USA: A test spanning the continents of Europe and North

America will evaluate the system’s performance over long distances.

The results will help assess the impact of both physical distance and

network congestion, which could vary due to differing levels of infras-

tructure and routing mechanisms across countries.

5. USA-India: This configuration tests a long-distance route between

North America and Asia, which often experiences significant network

congestion due to the amount of traffic routed through these regions.

The USA-India test will offer insights into how well the system handles

latency and congestion in the context of transoceanic connections, often

influenced by both infrastructural limitations and geopolitical factors.

6. Japan-France: A test between Japan and France evaluates intercon-

tinental network performance between Asia and Europe. This route

often involves different network backbones and potential bottlenecks.

This configuration will help understand how the system copes with

varying network performance influenced by different regional routing

schemes.

Testing and evalutation 77

Figure 5.3: AVG Italy-Italy

Each tested country configuration is represented in the figures below in

the Detailed Analysis Section 5.2.3, where the average RTT for each location

is displayed.

5.2.3 Detailed analysis

This section presents an analysis of the results obtained following the

methodology described earlier. As introduced, a chart for each country con-

figuration is provided to offer a comprehensive view of network latency.

The analysis begins with the baseline configuration and gradually extends

to other setups, depending on the geographic distance covered by the tests.

The baseline configuration refers to the scenario where the client, server, and

both the entry and exit nodes are located in Italy. This setup serves also

as a reference for comparison, as it represents the minimum latency in these

tests.

Figure 5.3 illustrates the average RTT for the Italy-Italy configuration.

From the chart in Figure 5.3, it can be observed that the average RTT

over time is approximately 710 ms, with a standard deviation of 170 ms. The

relatively low standard deviation indicates that the network remains fairly

stable throughout the day. However, as expected, there is a slight increase in

RTT during the morning and evening, while the lowest latency is recorded

78 Testing and evalutation

at night. The impact of the Tor network on RTT is clear from this baseline

case.

A more interesting comparison emerges in the Italy-Bulgaria configura-

tion, as shown in Figure 5.2.3. In this scenario, as described in Section 5.2.2,

the physical distance between the nodes increases. Consequently, the average

RTT rises to approximately 760 ms, with a standard deviation of 245 ms.

This result is noteworthy because, while an increase in RTT was expected

due to the longer distance, the difference remains moderate, as both countries

are within Europe. Additionally, the standard deviation grows slightly more

than the RTT itself. This observation suggests that as the geographical

distance increases and additional network routes are involved, not only RTT

rises, but the variability in network performance also increases. The growing

standard deviation indicates a degree of network instability over time, but it

still remains within acceptable limits.

Figure 5.4: AVG Italy—Italy Figure 5.5: AVG Italy—Bulgary

An even more significant variation is observed in the Italy-Mexico config-

uration in Figure 5.6. In this case, the distance increases considerably, and

the network infrastructure differs more significantly. The average RTT in

this setup is approximately 815 ms, with a standard deviation of about 300

ms. As expected, both RTT and standard deviation increase with distance,

confirming the correlation between geographical separation and network per-

formance variability.

Examining all three charts, it becomes clear that between 05:00 PM and

07:00 PM, the RTT values are higher. This pattern, unlike the European

or intra-Italy measurements and averages, represents the peak hours during

which network congestion is more pronounced.

The Russia-USA configuration, shown in Figure 5.7, exhibits different

results compared to the previous configurations.

Testing and evalutation 79

Figure 5.6: AVG Italy-Mexico

Figure 5.7: AVG Russia-USA

80 Testing and evalutation

An interesting aspect of this configuration is that the average RTT is

approximately 820 ms, with a standard deviation of 320 ms. More than the

increase in RTT, which remains consistent with the expected latency increase

due to the greater distance between the nodes, what stands out is its simi-

larity to the Italy-Mexico case. This similarity may be attributed to various

factors, particularly the choice of the circuit. Since Tor selects nodes based

only on the specified country, the actual nodes chosen in Russia and the

USA significantly impact the results. A possible explanation is that the Tor

network does not select nodes randomly within a country but rather uses

an algorithm that balances multiple parameters, such as latency, network

capacity, and load. In this case, despite the greater geographical distance,

the RTT values are similar to those in the Italy-Mexico configuration, high-

lighting the crucial role of circuit selection. Additionally, this result suggests

that, due to the high availability of nodes in the USA, the network includes

significantly more high-performance nodes compared to Mexico. This is clear

from the current number of available relays: 9 in Mexico of which only one

Entry (or Guard) and one Exit versus the USA where there are a total of

almost 1700 relays1. Tor does not randomly choose nodes within a country

but instead optimizes the selection based on network conditions. As a result,

the bandwidth and latency of the nodes in the USA are generally better than

those in Mexico, leading to similar RTT values despite the greater distance.

This result is particularly relevant as it demonstrates how circuit selection

can significantly influence system performance. Furthermore, an observation

is that a peak in RTT was recorded, not during a specific time window, but

rather at 09:00 PM, causing RTT spikes of nearly 2000 ms.

The USA-India configuration, shown in Figure 5.8, shows an even more

pronounced increase in RTT compared to the previous configurations. In this

case, the measurements aim to analyze how the network handles transoceanic

traffic routing and to assess whether infrastructural limitations or other fac-

tors influence performance. The average RTT is approximately 850 ms, with

a standard deviation of 440 ms.

A notable aspect of this configuration is the significant peak in RTT

values, which exceed 2500 ms around 06:00 PM. The difference between

this time period and other hours is significant. Further investigation could

help determine whether this peak is an isolated event or a recurring pattern.

Conducting measurements over weeks or months would provide insights into

1According to Tor Metrics website at the time of testing

https://metrics.torproject.org/rs.html##search

Testing and evalutation 81

Figure 5.8: AVG USA-India

whether this behavior is consistent or specific to that particular day.

Aside from this peak, the measurements are generally consistent with the

expected increase in RTT due to the increased distance between the nodes.

However, the high standard deviation, over 400 ms, indicates significant vari-

ability in network performance. While this value is influenced by the extreme

peak observed, it remains a noteworthy finding in itself.

The measurement about the Japan-France configuration has been done

to evaluate the system over intercontinental network performance between

Europe and Asia. The average RTT is approximately 740 ms, with a standard

deviation of 290 ms, as shown in Figure 5.9. The results are consistent

and no bottlenecks, but three possible peaks that reached the maximum

of about 1500 ms are noted. They are isolated, so they can be considered

situations in which the network was a little bit more congested but, like

in the USA-India configurations, further investigation could help determine

whether these peaks are recurring patterns or not.

In summary, these tests provide valuable insights into the system’s per-

formance across different geographic configurations. The results highlight

the impact of physical distance, network congestion, and circuit selection on

network latency. Moreover, the standard deviation values offer insights into

network stability and variability over time.

The prototype is available in this GitHub repository, and the configu-

https://github.com/paga16-hash/tor-net-analyzer

82 Testing and evalutation

Figure 5.9: AVG Japan-France

ration file can be easily modified to include new countries or to change the

entry and exit nodes. A list of available relays available in different countries

and interesting metrics can be found in the Tor Metrics website.

5.2.4 Encountered problems

One of the first issues encountered during this phase was the time re-

quired for the Tor network’s bootstrap process. Initially, I assumed this was

influenced by the choice of entry or exit nodes, as the Tor network could also

have no running relays in the specified country. So, selecting an entry or

exit node in such locations could lead to long bootstrap times, and in some

cases, if the UseStrictNodes 1 line is present in the torrc configuration file 2,

the bootstrap process could fail. This occurred when there were no suitable

entry or exit nodes available in the specified region, preventing the bootstrap

process from completing.

Another observed issue was the variation in bootstrap performance de-

pending on the network environment. For instance, when connecting from

my home network, the process is completed quickly with valid entry and exit

nodes. However, when using the University network, the bootstrap process

was noticeably slower. A possible explanation for this discrepancy is that

2This option force Tor to use Entry or Exit node if set to 1, failing if no node is available

https://hackertarget.com/tor-exit-node-visualization/

Testing and evalutation 83

different ISPs have varying agreements with networks that route Tor traffic

or more specifically a firewall rule that tries to perform Deep Packet Inspec-

tion (DIP) slowing down the entire process. Additionally, network policies

may prioritize certain types of traffic over others.

A potential solution to mitigate these issues is the use of Tor Bridges

to bypass network-level throttling or censorship. Tor bridges are private,

unlisted entry points into the Tor network that help circumvent restrictions

imposed by ISPs.

5.2.5 Limitations

The limitations of this testing phase are primarily related to the con-

trolled environment in which the tests were conducted. The setup did not

present some issues, in the sense that the tests were successfully completed.

The primary limitation is that the tests were conducted in a local environ-

ment deploying the client and server on the same machine. Measuring the

round-trip time (RTT) between nodes in a real-world scenario, where nodes

should be distributed globally, would provide more accurate and relevant re-

sults. Additionally, in a real scenario, the locations of peers are not known,

meaning the RTT can vary significantly depending on the physical distance

between nodes. The tests were conducted in a controlled environment, and

the results may not accurately reflect the exact system performance in a

real-world setting but can give an idea of how the system can behave with

different configurations. Moreover, since the Tor network is a shared net-

work, the results are influenced by other users’ activities and overall network

congestion.

The task execution could be subject to redirection before execution and

completion, introducing additional delays that depend on the physical loca-

tion of the new selected provider. This limitation can be addressed in future

tests by deploying instances worldwide to evaluate system performance in a

real-world setting, and by completing the Kademlia full discovery algorithm

creating a way to represent coherently the distance between nodes. Other

improvements to mitigate these limitations are discussed in the Future Test

Extensions Section 5.3.

Furthermore, to get significant results and generate charts representing

the average RTT over time, the tests should be conducted over an extended

period (e.g., several months) to calculate a more accurate average RTT over

https://bridges.torproject.org/

84 Testing and evalutation

really worldwide distributed nodes. In particular, a subset of nodes could

execute these tests continuously to provide a more comprehensive view of

network latency and performance at each task submission.

An additional factor that could affect the measurements in a real-world

scenario is the limited number of Tor nodes in certain countries. In this case,

the bootstrap process could fail, as discussed in the Encountered Problems

section 5.2.4.

5.3 Future Test Extensions

To improve the testing phase and get more comprehensive results, some

extensions to the current methodology can be considered. Moreover, the

limitations encountered during the tests can be addressed by implementing

additional features and conducting more extensive evaluations. Additionally,

metrics such as bandwidth and available relays can be considered to assess

the system’s performance. Measuring other aspects of the network, such as

Circuit Setup Time, can also provide insights into network behavior under

different configurations.

Beyond this approach, other improvements that can be explored:

1. Mocking: Mocking particular components of the system to simulate

different conditions and evaluate system behavior under various scenar-

ios. This approach could be a valuable tool for testing edge cases and

assessing system robustness or to probe specific behaviors for feasibility

checks.

2. Real-World Scenario: Setting up instances worldwide exploiting

cloud services to analyze the system’s performance in a truly dis-

tributed setting, allowing for realistic measurements and better in-

sights.

3. Network: Evaluating the system’s performance in various configura-

tions, including fully connected networks, trying hierarchical structures

(maybe more to adapt the system for other uses), and other sparse

peer-to-peer topologies.

4. Robustness: Assessing the system’s fault tolerance by simulating

node failures, abrupt disconnections, and high-load scenarios. In this

Testing and evalutation 85

case, retry mechanisms and fault tolerance mechanisms have been tested

manually to ensure that the system can recover from errors and con-

tinue functioning correctly, but a more structured approach is for sure

beneficial.

5. Security: Simulating network attacks, such as Sybil Attacks [10] and

traffic correlation attempts, to evaluate the resilience of the system

against potential threats.

6. Optimization: Testing and comparing different routing mechanisms

to determine the most efficient strategy for task distribution and peer

discovery, including the full Kademlia discovery algorithm.

By incorporating these extensions, the testing phase can be significantly

improved, leading to more meaningful performance evaluations.

Conclusions

Concluding this thesis project has been a challenging and rewarding ex-

perience. Since it was a project that I started from scratch and with no

clear boundaries, difficulties and challenges to face were numerous, but the

satisfaction of having a prototype is huge. At the beginning of the project,

the difficulties were mainly non-technical, such as defining the scope of the

project and the objectives to be achieved. When a good trade-off between

basic abstraction and complexity was found, the idea of the project was clear.

After the initial phase, the technical challenges were numerous. My ini-

tial intention was to focus on high-level solutions, leveraging libraries like

Libp2p to build the network layer and concentrate on the business logic.

However, the issues encountered with the network layer were more complex

as explained in the Transport Layer Section 4.7.3 and some goals could not

be achieved with certainty. As a result, trade-off were made to ensure the

project’s completion within the constraints by deciding to build a simple

yet effective network management layer to allow nodes to communicate. Al-

though this approach was more time-consuming and not much time was spent

on expanding the business logic, I believe the goal of spreading the idea that

an innovative and anonymous ecosystem is necessary was achieved.

What is needed in this age is a globally recognized and widely used sys-

tem that ensures privacy and anonymity, while maintaining a high level of

decentralization and censorship resistance. The concept behind this proto-

type is to build towards such an ecosystem, where users own computational

resources and can use them to perform tasks in a secure and anonymous

environment. The ultimate goal is to create a stable ecosystem that can

be accessed and used by anyone, without the need for a central authority

overseeing the system, which is a significant strength.

This prototype serves as a foundation for expanding this concept or cre-

ating something new with the same underlying principles. The next Future

87

88 CONCLUSIONS

Directions Section will further explore this ecosystem concept and analyze

potential future extensions of the project.

Additionally, the second prototype presents a strong concept: introducing

new nodes into the system to support its overall functionality. While the re-

sults are currently analyzed manually, envisioning an automated mechanism

to monitor and analyze the network status could be a very nice feature.

Future Extensions

In this section, possible future extensions of the project are analyzed.

Since this prototype is just the beginning of a larger vision for an anonymous

computing ecosystem, the possibilities for future improvements are huge.

For first, enhance the network layer by leveraging tested and reliable

libraries, such as Libp2p, while refining the business logic.

If, for any reason, contributing to these libraries proves to be unsuccess-

ful, the fallback plan is to build a custom network layer starting from the

developed one for this prototype. It would be costly but very effective.

In addition to improving the network layer, expanding the business logic

is essential. There are many opportunities for improvement in this regard,

beginning with the expansion of the core node types and the introduction of

new node typologies. The system is designed to be modular, enabling easy

adaptations to meet new possible specific requirements.

If the need for task executors with specialized functionality arises, new

node types could be created to handle those tasks. This flexibility ensures

the system’s adaptability and scalability. Furthermore, building a small but

active community could greatly enhance the growth of such a system. Open-

source executors or evaluators packages could be released based on the com-

munity’s needs and requests. Moreover, for example, developers can create

custom node types with their own business logic and integrate them into the

system.

The system could be enhanced by incorporating advanced cryptographic

techniques, such as Homomorphic Encryption for some operations and Trusted

Execution Environments (TEEs) to ensure the integrity of the system. In

general, privacy-enhancing technologies can be evaluated to improve the sys-

tem’s security and privacy on different levels.

Another important aspect to consider is the sustainability and attrac-

tiveness of the system to users, and for this purpose, a reward system could

https://en.wikipedia.org/wiki/Homomorphic_encryption

CONCLUSIONS 89

be introduced. This system could be implemented using Monero or Z-Cash

as a cryptocurrency to ensure and keep high anonymity level. From an ini-

tial analysis, Monero could be a better choice, as it does not allow public

transactions, while Z-Cash permits the choice between public and private.

This mechanism not only permits the system to be self-sustainable but also

incentivizes users to participate and contribute to the network. Moreover, it

allows thinking beyond the simple reward for task execution or processing. In

particular, new types of nodes, designed solely to support the network, could

be introduced. These supporter nodes would help maintain system consis-

tency and ensure its continuous operation. While the rewards for these nodes

would be lower than those for processing nodes, their resource requirements

would also be less demanding, making them more accessible to a broader

range of participants.

A reconsideration of the peer selection process and the task redirection

mechanism is also necessary. To optimize task routing, a more efficient rout-

ing mechanism could be implemented, possibly leveraging new metrics pro-

vided by the Tor network or by supporters. This would allow tasks to be

directed to the most optimal nodes, gaining clear improvements in the sys-

tem’s performances. In this case, a task classification mechanism could be

introduced to weigh tasks based on their complexity and importance, intro-

ducing the concept of task priority also possibly linked to the reward system.

More metrics regarding the nodes could be provided to identify malicious

nodes or sparsity in the network trying to better address the network status

and the nodes’ decentralization level.

An alternative approach, for which the software is not designed, could be

to introduce de-anonymization mechanisms. This is the case in which the

system is used for other purposes, and the involved parties need a mech-

anism to de-anonymize results in case of disputes or other reasons. The

system should be revisited, and some secret sharing, threshold cryptography

or similar techniques could be introduced to achieve this result. These tech-

niques involve trusted parties that can de-anonymize the results, but only if

a certain number of parties agree. While this is not something I would like

to see in the system, it is a possibility that should be considered for other

declinations.

What I believe it could be interesting to integrate the system with a

Decentralized Autonomous Organization (DAO), where participants can vote

on the future directions. This integration could be interesting, but it requires

https://www.getmonero.org/get-started/what-is-monero/
https://z.cash/
https://en.wikipedia.org/wiki/Secret_sharing
https://en.wikipedia.org/wiki/Threshold_cryptosystem
https://it.wikipedia.org/wiki/Decentralized_autonomous_organization

90 CONCLUSIONS

a deeper analysis, as it could also present potential risks, making it a double-

edged sword keeping in mind the more complex is the system, the more

vulnerabilities it could have. In this case, not only in the technical sense but

also in the governance one.

Finally, after these considerations, I would like to underline that continu-

ous research and development are essential for the growth and sustainability

of any technology, enabling people to adapt to emerging challenges and stay

safe. Through R&D and innovative solutions, it should be fundamental to

ensure that systems can operate effectively in restrictive environments, such

as censored countries or other challenging circumstances. I’m not sure if this

system will help anyone, but I’m really proud to have thought about this

topic and contributed today, as I will in my future.

Bibliography

[1] Safwan Mahmud Khan and Kevin W. Hamlen. AnonymousCloud: A

Data Ownership Privacy Provider Framework in Cloud Computing. In

2012 IEEE 11th International Conference on Trust, Security and Pri-

vacy in Computing and Communications (TrustCom), pages 170–176,

2012. IEEE. 10.1109/TrustCom.2012.94. Url: https://doi.org/10.

1109/TrustCom.2012.94

[2] Len Bass, Paul Clements, and Rick Kazman. Quality Attribute Scenarios

and Tactics. In Software Architecture in Practice, 3rd edition, chapter 4,

pages 69–94. Addison-Wesley, 2012. ISBN 978-0-321-81573-6.

[3] Petar Maymounkov and David Mazieres. Kademlia: A Peer-to-Peer In-

formation System Based on the XOR Metric. In Proceedings of the 1st

International Workshop on Peer-to-Peer Systems (IPTPS), pages 53–65,

2002. Springer, Cambridge, MA, USA. https://dl.acm.org/doi/10.

5555/646334.687801.

[4] Martin Fowler. Ubiquitous Language. 2006. https://martinfowler.

com/bliki/UbiquitousLanguage.html.

[5] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley Profes-

sional, 2000. ISBN 978-0201702255.

[6] Robert C. Martin. Clean Architecture: A Craftsman’s Guide to Software

Structure and Design. Prentice Hall, 2017. ISBN 978-0134494166.

[7] Robert C. Martin. The Dependency Inversion Principle. C++ Report,

8(6):61–66, 1996. https://web.archive.org/web/20110723210920/

http://www.objectmentor.com/resources/articles/dip.pdf.

91

https://doi.org/10.1109/TrustCom.2012.94
https://doi.org/10.1109/TrustCom.2012.94
https://dl.acm.org/doi/10.5555/646334.687801
https://dl.acm.org/doi/10.5555/646334.687801
https://martinfowler.com/bliki/UbiquitousLanguage.html
https://martinfowler.com/bliki/UbiquitousLanguage.html
https://web.archive.org/web/20110723210920/http://www.objectmentor.com/resources/articles/dip.pdf
https://web.archive.org/web/20110723210920/http://www.objectmentor.com/resources/articles/dip.pdf

92 BIBLIOGRAPHY

[8] David Garlan, Robert Allen, and John Ockerbloom. Architectural Mis-

match: Why Reuse Is So Hard. In Proceedings of the 17th Interna-

tional Conference on Software Engineering (ICSE), pages 179–185, 1995.

ACM. 10.1145/225014.225031. Url: https://dl.acm.org/doi/10.1145/

225014.225031

[9] Dimitris Vyzovitis, Yusef Napora, Dirk McCormick, David Dias, and

Yiannis Psaras. GossipSub: Attack-Resilient Message Propagation in the

Filecoin and ETH2.0 Networks. arXiv preprint arXiv:2007.02754, 2020.

https://arxiv.org/abs/2007.02754.

[10] John R. Douceur. The Sybil Attack. In Proceedings of the 1st Interna-

tional Workshop on Peer-to-Peer Systems (IPTPS), pages 251–260, 2002.

Springer. ISBN: 978-3-540-45748-0

[11] Kathleen A. Wallace. Anonymity. Ethics and Information Technology,

1(1):23–35, 1999. Kluwer Academic Publishers. 10.1023/A:1010076217393.

Url: https://doi.org/10.1023/A:1010066509278

[12] Timothy C. May. The Crypto Anarchist Manifesto. https://

nakamotoinstitute.org/authors/timothy-c-may/.

[13] David Chaum. Untraceable Electronic Mail, Return Addresses, and

Digital Pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

ACM. 10.1145/358549.358563. Url: https://doi.org/10.1145/358549.

358563

[14] Daniel J. Solove. ’I’ve Got Nothing to Hide’ and Other Misunder-

standings of Privacy. San Diego Law Review, 44:745–772, 2007. https:

//ssrn.com/abstract=998565.

[15] Helen Nissenbaum. Privacy in Context: Technology, Policy, and

the Integrity of Social Life. Stanford University Press, Redwood City,

2009. ISBN 9780804772891. https://doi.org/10.1515/9780804772891. Url:

https://doi.org/10.1515/9780804772891

[16] Commission services. End-to-end encryption in criminal investigations

and prosecution. Note from the Commission services, September 18,

2020. Brussels. https://data.consilium.europa.eu/doc/document/

ST-10730-2020-INIT/en/pdf.

https://dl.acm.org/doi/10.1145/225014.225031
https://dl.acm.org/doi/10.1145/225014.225031
https://arxiv.org/abs/2007.02754
https://doi.org/10.1023/A:1010066509278
https://nakamotoinstitute.org/authors/timothy-c-may/
https://nakamotoinstitute.org/authors/timothy-c-may/
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://ssrn.com/abstract=998565
https://ssrn.com/abstract=998565
https://doi.org/10.1515/9780804772891
https://data.consilium.europa.eu/doc/document/ST-10730-2020-INIT/en/pdf
https://data.consilium.europa.eu/doc/document/ST-10730-2020-INIT/en/pdf

BIBLIOGRAPHY 93

[17] Albert Teich, Mark S. Frankel, Rob Kling, and Ya-Ching Lee.

Anonymous Communication Policies for the Internet: Results and Rec-

ommendations of the AAAS Conference. The Information Society,

15(2):71–77, 1999. Taylor & Francis. Url: https://doi.org/10.1080/

019722499128538.

[18] Leon Mann. The Baiting Crowd in Episodes of Threatened Sui-

cide. Journal of Personality and Social Psychology, 41(4):703–709, 1981.

American Psychological Association. Url: https://doi.org/10.1037/

/0022-3514.41.4.703.

[19] John Suler. The Online Disinhibition Effect. Cyberpsychology & Behav-

ior, 7(3):321–326, 2004. Mary Ann Liebert, Inc. Url: http://dx.doi.

org/10.1089/1094931041291295

[20] Kimberly M. Christopherson. The Positive and Negative Implications

of Anonymity in Internet Social Interactions: ’On the Internet, Nobody

Knows You’re a Dog’. Computers in Human Behavior, 23(6):3038–3056,

2007. Elsevier. Url: http://dx.doi.org/10.1016/j.chb.2006.09.001

[21] Eric Hughes. A Cypherpunk’s Manifesto. 1993. https://www.

activism.net/cypherpunk/manifesto.html. Accessed: 2025-02-20.

[22] Timothy C. May, “The Cyphernomicon: Cypherpunks FAQ and More,”

1994. [Online document]. Available: https://cdn.nakamotoinstitute.

org/docs/cyphernomicon.txt.

[23] Carole Cadwalladr and Emma Graham-Harrison. Revealed:

50 million Facebook profiles harvested for Cambridge An-

alytica in major data breach. The Guardian, March 17,

2018. Url: https://www.theguardian.com/news/2018/mar/17/

cambridge-analytica-facebook-influence-us-election.

[24] David Chaum, “Security Without Identification: Transaction Systems

to Make Big Brother Obsolete,” Communications of the ACM, vol. 28,

no. 10, pp. 1030–1044, 1985, doi: 10.1145/4372.4373. Url: https://doi.

org/10.1145/4372.4373

[25] Julian Assange, Jacob Appelbaum, Andy Müller-Maguhn, and Jérémie

Zimmermann, Cypherpunks: Freedom and the Future of the Internet, New

York: OR Books, 2012, ISBN 978-1-939293-00-8.

https://doi.org/10.1080/019722499128538
https://doi.org/10.1080/019722499128538
https://doi.org/10.1037//0022-3514.41.4.703
https://doi.org/10.1037//0022-3514.41.4.703
http://dx.doi.org/10.1089/1094931041291295
http://dx.doi.org/10.1089/1094931041291295
http://dx.doi.org/10.1016/j.chb.2006.09.001
https://www.activism.net/cypherpunk/manifesto.html
https://www.activism.net/cypherpunk/manifesto.html
https://cdn.nakamotoinstitute.org/docs/cyphernomicon.txt
https://cdn.nakamotoinstitute.org/docs/cyphernomicon.txt
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://doi.org/10.1145/4372.4373
https://doi.org/10.1145/4372.4373

94 BIBLIOGRAPHY

[26] Paul Ohm. Broken promises of privacy: Responding to the surprising

failure of anonymization. UCLA Law Review, 57:1701–1777, 2010. https:

//ssrn.com/abstract=1450006.

[27] Edward Snowden. Permanent Record. Metropolitan Books, 2019. ISBN

978-1-250-23123-8.

[28] Andrew S. Grove. Only the Paranoid Survive: How to Exploit the Crisis

Points That Challenge Every Company and Career. Currency Doubleday,

1996. ISBN 978-0-385-48258-2.

[29] United Nations General Assembly. Resolution 68/167: The right to

privacy in the digital age. United Nations, 2013. https://docs.un.org/

en/A/RES/68/167.

https://ssrn.com/abstract=1450006
https://ssrn.com/abstract=1450006
https://docs.un.org/en/A/RES/68/167
https://docs.un.org/en/A/RES/68/167

	Introduction
	Introduction to Anonymity
	Definition and Evolution of Anonymity
	The Value of Anonymity
	Social Considerations
	Controversies
	Conclusion

	Motivations
	Anonymous Computing
	Existing Solutions

	Background
	Decentralization
	The Tor Network
	SOCKS Proxy
	IPFS as Storage Layer

	Prototype
	Nodes
	Interactions

	Analyzer Prototype

	Design and Implementation
	Scenarios
	Secure Data Processing
	Censored Regions
	General Scenarios

	Business Requirements
	Provider
	Consumer

	Functional Requirements
	Provider
	Consumer

	Quality Attributes
	Runtime Quality Attributes
	Development Time Quality Attributes
	Quality Scenarios

	Architecture
	Components
	Other considered alternatives
	Patterns

	Detailed Design
	Packages
	Domain Events
	UML Diagrams
	Provider Node
	Consumer Node

	Implementation
	Dependency Inversion Principle
	Technologies
	Transport Layer

	DevOps
	Build Automation
	Version control
	Quality Assurance
	Continuous Integration and Delivery

	Deployment
	Containerization
	Docker Compose
	Sample Scripts

	Running System

	Testing and evalutation
	Scalability Test
	Encountered problems

	Average RTT Test
	Process
	Countries Configuration
	Detailed analysis
	Encountered problems
	Limitations

	Future Test Extensions

	Conclusions
	Future Extensions

	Bibliography

