
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Machine Learning for Computer Vision

AN EXPERIMENTAL STUDY ON
CONNECTING NEURAL RADIANCE FIELDS

TO IMAGES AND TEXT

CANDIDATE

Luca Torzi

SUPERVISOR CO-SUPERVISORS

Prof. Samuele Salti Dr. Francesco Ballerini

Dr. Pierluigi Zama

Ramirez

Academic year 2023-2024

Session 4th

Abstract

Being able to process 3D data is an important skill of a deep learning archi-

tecture, because it can unlock deeper understanding of the world around us,

but it is a complex goal to achieve due to the fragmentation of the methods

employed to store and save 3D data, that leads to the development of differ-

ent techniques specialized on each of them. In the last years, the computer

vision research field focused on learning 3D data implicitly, such that a neural

network could learn a continuous function that describes the properties of the

object of interest: this representation is called Implicit Neural Representation

or Neural Field. Between them, NeRF (Neural Radiance Field) was one of the

most promising methodologies for learning functions representing 3D objects

and scenes. Consequently, recent work proposed methodologies to process

neural network weights directly, in order to generate a compact embedding

that can be used to perform deep learning tasks efficiently. On top of this,

how to link this embedding space to spaces embedding images and texts has

been explored. The goal of this thesis is to expand the analysis performed in

the latter, investigating the use of contrastive losses during the training phase.

Moreover, we study which embedding space (the NeRF one or the image/text

one) is more effective to perform retrieval of NeRFs. Finally, a fine-tuning

of the NeRF embedding model is accomplished to explore the behavior of the

whole architecture after receiving influence from the joint image/text embed-

dings during training.

Contents

1 Introduction 1

2 Related works 4

2.1 Explicit representations of 3D data 4

2.2 Implicit neural representations 6

2.2.1 NeRF . 7

2.3 Deep learning on INRs . 10

2.4 Multi-Modal Models . 11

2.4.1 Link other modalities to CLIP 13

2.4.2 Connecting NeRFs to CLIP 14

3 Methodology 16

3.1 Dataset . 16

3.2 SigLIP loss to connect the embeddings 17

3.3 Zero-shot classification task 18

3.4 Retrieval methodology . 18

4 Experiments and results 21

4.1 Experiments in the zero-shot classification case study 21

4.2 Experiments in the retrieval case study 24

4.2.1 Analysis of the embedding spaces 25

4.2.2 Leveraging both the embedding spaces 27

4.2.3 Using the syn2real dataset 29

i

4.2.4 Using an augmented dataset 29

4.2.5 Analysis of the batch size increment 30

4.3 Fine-tuning nf2vec . 32

4.3.1 Analysis of the new NeRF embedding space 34

5 Conclusions 37

Bibliography 39

Acknowledgements 45

ii

List of Figures

2.1 Explicit representations of 3D data. 4

2.2 Example of DeepSDF data representation. 7

2.3 NeRF training methodology. 8

2.4 nf2vec encoder architcture. 11

2.5 CLIP architecture and training methodology. 13

2.6 nerf2clip and clip2nerf architectures. 15

3.1 Overview of the methodology used to perform the zero-shot

classification task. 18

3.2 Overview of the methodologies used to perform the retrieval. . 20

4.1 t-SNE plot of the retrieval gallery projected in the NeRF and

in the CLIP embedding spaces. 26

4.2 Overview of the methodology used to perform the retrieval

leveraging both the embedding spaces. 28

4.3 Overview of the fine-tuned architectures. 33

iii

List of Tables

4.1 Results about the zero-shot classification task using as label

“A 3d model of object_name”. 22

4.2 Results about the zero-shot classification task using as label

“A photo of object_name”. 23

4.3 Results of the CLIP baseline on the zero-shot classification task. 23

4.4 Results about the retrieval task on synthetic images. 25

4.5 Results about the retrieval task on real images. 26

4.6 Outcomes of the classification head trained on the two em-

bedding spaces, along with the one obtained by the ensemble

model. 27

4.7 Results about the retrieval task performed concatenating the

embedding spaces. 28

4.8 Results about the retrieval task on real images for the syn2real

models. 30

4.9 Results about the retrieval task of the model trained with the

augmented dataset. 31

4.10 Results obtained incrementing the batch size during the train-

ing with the SigLIP loss. 32

4.11 Results of the fine-tuned models. 35

4.12 Results of the clip2nerf model when trained on the fine-

tuned NeRF embedding space. 36

iv

Chapter 1

Introduction

The world around us has three dimensions, and we sense it in this way. In the

computer science field, different possible ways to depict 3D objects and scenes

have been presented (voxels, polygon meshes, point clouds), but a unique way

to depict 3D objects and scenes has still not emerged nonetheless.

Recently, a new promising methodology was developed, called Implicit Neu-

ral Representation (INR), with the aim of learning a function that can implic-

itly represent shapes or scenes using a neural network as a medium. Unlike

the explicit representations, whose detail richness (i.e. the resolution) is pro-

portional to the memory footprint, it allows for decoupling the latter and the

resolution, because the continuous function can be queried at any level of de-

tail during the explicit reconstruction of the object of interest. Therefore, this

data type is also called Neural Field, since a field is a quantity defined for all

spatial and/or temporal coordinates [1]. NeRF [2] is one of the most impor-

tant works in this field, in which a multilayer perceptron is trained to learn the

volume density and the directional emitted radiance at any point in the space.

Recent research, such as [3] and [4], focuses on extracting information directly

by processing the weights of the MLP in order to perform deep learning tasks

on the learned function. The first work presents inr2vec, an architecture that

focuses on process implicit neural representations of 3D shapes, and, as a step

Introduction 2

forward, the successive publication focuses on NeRFs, presenting the archi-

tecture nf2vec. An embedding is extracted from the neural network weights,

and it is used to perform a variety of downstream tasks, such as classification,

retrieval and generation.

Concurrently, another line of research directed its attention toward developing

Multi-Modal Models, i.e. deep learning architectures able to digest different

types of input data. A key contribution to this field is found in CLIP [5], an

architecture that connects images and text in a shared embedding space. The

authors demonstrated that the contrastive learning training methodology, em-

ployed to align the image embedding to the one that belongs to its own caption,

along with the huge amount of data used, generated a highly expressive latent

embedding space that can be used to perform a variety of downstream tasks.

Due to this discovery, follow-up research has tried to connect other types of in-

put data to this embedding space, in order to leverage its properties. Between

them, a framework for connecting NeRFs with it was proposed in the work of

Ballerini et alii [6], where they take advantage of the nf2vec architecture to

generate a compact embedding of the neural network weights and then link it

to the CLIP embedding space developing the twin architectures nerf2clip

and clip2nerf.

This thesis aims to expand the experiments performed in the last mentioned

work, in particular by focusing on the use of a different loss function (the

SigLIP loss [7]) to learn this mapping and compare its effectiveness in the

zero-shot classification and retrieval task. An intense effort is put into the

latter, analyzing the efficacy of performing it in the NeRF embedding space

(as proposed in [6]) or in the CLIP embedding space, which could guaran-

tee a more robust search space. Moreover, further analyses investigate this

methodology on augmented datasets and on changing the batch size. In addi-

tion, in the classification task, the use of different labels is tested to increase

Introduction 3

the accuracy of the models. Finally, after a fine-tuning of the nf2vec architec-

ture through the supervision of the CLIP model, the whole framework is again

analyzed to understand its behavior after receiving information from this ex-

pressive embedding space.

This thesis is organized as follows:

• Chapter 2 introduces all the related works, in order to give to the reader

the knowledge necessary to understand this work

• Chapter 3 explains the methodology employed to perform the two tasks

analyzed

• Chapter 4 lists and explains all the experiments done, along with the

results obtained

• in Chapter 5 the most important outcomes are wrapped up with the con-

cluding remarks.

Chapter 2

Related works

2.1 Explicit representations of 3D data

Finding a way to represent and save information without loss of detail and

quality has always been an important goal of the computer science field; in

particular, this operation is notably challenging if we take into account 3D

objects. In previous years, three main methodologies to store them emerged,

depicted in Figure 2.1, and they will be discussed in the following paragraphs,

along with the deep learning architectures employed to process them.

(a) (b) (c)

Figure 2.1: Explicit representations of 3D data: (a) voxel representation, (b)
polygon mesh, (c) point cloud. The depicted object is the Stanford bunny
model [8].

2.1 Explicit representations of 3D data 5

Voxel-based methods

The input object processed by these networks is made of voxels (Figure 2.1a),

the 3D counterpart of the pixels, used to represent 3D data. Due to the analogy

with images, these data representations can be processed using convolutional

neural networks (CNNs), a type of architecture that became famous for the

processing of 2D data taking advantage of their regular structure [9, 10]. A

first work that proposed to process a scene using a 3D CNN is VoxNet [11]: the

authors first “voxelize” the space in a volumetric occupancy grid and then they

apply a deep learning pipeline with the goal of performing shape classification.

The downside of these architectures is that they use a large amount of memory,

so in the following years researchers proposed a type of architecture (sparse

convolutional neural network [12]) that was able to process only non-empty

voxels.

Polygon meshes

The objects are represented by collections of vertices, edges and faces (Figure

2.1b) that define them, so different from the above-mentioned methodology,

they have an irregular structure. They could be seen as a particular type of

graph data [13], so different types of deployed models make use of graph

neural networks (GNNs) to process them, an architecture that processes and

connects information in the neighborhood of a vertex.

Point clouds

It is a methodology that has been deployed to represent 3D data and that has

gained attention in the last decade. The object is represented by sparse points

in the space (Figure 2.1c), and since it is an irregular structure, it was ini-

tially used only as an intermediate representation. Therefore, before proceed-

ing with the processing, the point clouds were transformed in a regular form

(such as a voxel grid or a collection of images). The pioneering works of Qi et

2.2 Implicit neural representations 6

alii [14, 15] were the first to propose two architectures, named PointNet and

PointNet++, that are able to perform deep learning tasks directly on the point

clouds themselves. They proposed the max pooling as the principal aggrega-

tion operator capable of respecting the permutation invariance of the input.

Successive works mainly focused their efforts on designing architectures in

order to process this structure, making use of different neural primitives such

as graph neural networks [16, 17] or the attention operator [18].

2.2 Implicit neural representations

The above-mentioned representation methodologies have their pros and cons,

but all of them tend to represent objects with a fixed size (the number of vox-

els, the number of points or the number of vertices and faces); moreover, the

increase of these quantities leads to the increase of the disk space needed to

store the file itself and, consequently, to an increment of the memory needed

while processing them with deep learning pipelines.

In the last few years, a new methodology emerged, named implicit neural

representation (INR). The concept behind it is grounded in the universal ap-

proximation theorem stating that multilayer perceptrons can approximate any

continuous function to any desired precision [19, 20]. Therefore, the objective

is to parameterize a neural network such that it learns a function containing

implicitly the information of interest, belonging to any type of complex and

high-dimensional data, for example audio, images, videos and, in particular,

3D shapes. After the training process, the neural network can be queried (giv-

ing in input the coordinates) to obtain in output the desired information and

reconstruct the object of interest by performing multiple queries. Moreover,

since the learned function is continuous, it is possible to acquire data at varying

levels of precision, overcoming the fragmentation of the discrete representa-

tions used so far, thereby guaranteeing a decoupling between the resolution of

2.2 Implicit neural representations 7

the reconstruction and the memory space occupied, that scales with the num-

ber of parameters of the neural network (the so-called network complexity)

[1].

The publication of Mescheder et alii [21] is one of the first research works

that proposed to learn 3D shapes through this methodology, in which an ar-

chitecture called Occupancy Network is defined, and it is able to learn 3D

shapes leveraging the so-called occupancy function o (Equation 2.1), which

defines if a point belongs or not to the object.

o : R3 → {0, 1} (2.1)

Simultaneously, Park at alii [22] proposed a different methodology that aims to

learn a neural field leveraging the Signed Distance Function (SDF): the values

of a point in the space is defined by its distance to the surface boundaries, as

shown in Figure 2.2.

Figure 2.2: DeepSDF data representation on the Stanford bunny model [22,
1].

2.2.1 NeRF

NeRF [2] is a method that achieves great results in novel view synthesis of

complex scenes: it represents a scene as the volume density and the direc-

tional emitted radiance at any point in the space. A NeRF learns an implicit

neural representation by fitting an MLP using multiple views of the scene as

2.2 Implicit neural representations 8

training data. Therefore, both the spatial (x, y, z) coordinates and the camera

view directions (θ, ϕ) are used as continuous input coordinates. The model re-

turns the volume density and the view-dependent RGB colors as output. The

model is optimized such that the output of the MLP corresponds to one of

the ground truth views and, to render the color of any ray passing through the

scene, they use principles from classical volume rendering. Figure 2.3 shows

a visual representation of the training methodology employed.

Since neural networks are biased toward learning lower frequency functions

[23], the authors proposed to encode the input using a positional encoding,

to enhance the performance of the model. Moreover, the use of hierarchical

volume sampling during the training process allowed efficient and faster con-

vergence.

Despite the fact that this methodology achieved state-of-the-art results, it has

downsides in the training time needed to fit theMLPs. So, in successive years,

researchers analyzed the feasibility of speed-up it focusing in particular on the

two innovations above-mentioned.

Figure 2.3: NeRF training methodology [2].

instant-ngp

This work [24] proposes to improve the training time speed of neural implicit

representations by reducing the number of floating point operations needed to

encode the input. In [2], the scalar positions x ∈ R are encoded as a sequence

of L ∈ N sine and cosine functions, with the same formulation proposed in

2.2 Implicit neural representations 9

[25] (Equation 2.2).

enc(x) =
(
sin(20x), ..., sin(2L−1x), cos(20x), ..., cos(2L−1x)

)
(2.2)

Therefore the encoding is a continuous function of the input. Instead, Muller

et alii deployed a multi-resolution hash encoding: the positional encoding is

composed as a concatenation of the features obtained from each resolution

encoding, computed as the interpolation of the features corresponding to the

corners around the exact point to be encoded. The features of each corner

are parameters that are learned through gradient descent optimization, but the

overhead added by this modification does not enlarge the computational com-

plexity; instead, the hash table lookup to obtain the encoding values guarantees

a reduced training time. In addition, due to the structure of the hash encoding,

there will be colliding gradients during training, leading to an optimization

process that will prioritize sparse areas with fine scale details.

NerfAcc

To perform a fast rendering, it is important to define a sampling technique

that prioritizes regions based on their importance. Since most of the works

related to this field develop systems using highly optimized implementations

that are tightly connected with the underline architecture, nerfAcc [26] tries

to create a Python framework that makes them interchangeable. They uni-

fied importance sampling under the mathematical formulation of transmit-

tance and tested various NeRF implementations using their framework and

different sampling techniques.

2.3 Deep learning on INRs 10

2.3 Deep learning on INRs

In the last few years, a new branch of study emerged, whose goal is to under-

stand if it is possible to perform directly deep learning tasks on INRs them-

selves. Since they encode the data using a single continuous function, per-

forming downstream tasks on them could enhance the quality of information

provided as input to the neural networks. Mostly, two different types of ap-

proach were presented, that differ on how the implicit neural representation is

encoded:

• define a shared base network, that can efficiently encode the shared

characteristics of a dataset, and then represent each datapoint as modu-

lation

• fit each object independently and perform deep learning tasks directly

on the multilayer perceptron weights.

Functa

Functa [27] is one of the first works attempting to carry out it on this type of

data representation. The goal of the authors is to be able to fit each object

in a few gradient steps and have a simple latent vector that could be used for

downstream tasks. In order to do so, they defined a base network, performing

a training process on the entire dataset, that can efficiently encode its shared

characteristics, and afterwards fit a latent modulation that is used to condi-

tion the base network to represent each datapoint (called in this work functa).

This framework was tested on different types of data, such as images, voxels,

NeRFs and manifolds.

nf2vec

In the previous approach, to define an embedding representing an object, the

entire dataset must be fit to create the shared base network. An alternative is

2.4 Multi-Modal Models 11

presented in [3], where the authors’ goal is to define a framework able to pro-

cess INRs that are fitted independently, without having to work on the entire

dataset. They define an encoder-decoder architecture that is able to gener-

ate a compact latent representation of the neural network weights, containing

all the information needed for the reconstruction of the object itself. With

the objective of having a simple encoder (Figure 2.4) with a small parameter

footprint, they stack the INR weights in a single matrix and process each row

separately with a model composed of a series of linear layers, batch normal-

izations [28] and ReLU non-linearities; at the end, they perform a global max

pooling column-wise to obtain the final embedding. Instead, the decoder is

designed to take in input this latent representation and the coordinates, with

the purpose of outputting the information needed to reconstruct the original

object. This framework was tested on INRs representing 3D shapes and, in

a successive extension [4], on NeRFs, showing that the embedding could be

used for tasks such as classification, part segmentation, retrieval and genera-

tion.

Figure 2.4: nf2vec encoder architcture.

2.4 Multi-Modal Models

Multi-Modal Models are neural architectures that aim to connect different in-

put data modalities, ensuring the opportunity to obtain information from mul-

tiple sources and take advantage of a shared embedding space.

2.4 Multi-Modal Models 12

CLIP

CLIP [5] is a large scale vision-language model and represents one of the most

important works in this field. The goal of the authors was to build an archi-

tecture capable of processing both images and text data, in order to direct the

learning process through text-guided supervision. To do so, they trained a text

encoder (composed of a stack of transformers blocks [25]) and an image en-

coder (Res-Net50 [29] or ViT [30]), and the objective of the training process

was to align the two embeddings related to the images and their own captions,

through the use of a contrastive loss function [31] (the pipeline is shown in

Figure 2.5).

− 1
2|B|

|B|∑
i=1

image→text softmax︷ ︸︸ ︷

log etxi·yi∑|B|
j=1 etxi·yj

+

text→image softmax︷ ︸︸ ︷
log etxi·yi∑|B|

j=1 etxj ·yi

 (2.3)

The loss objective is shown in Equation 2.3, where B is a mini-batch, xi is the

normalized image embedding, gi is the normalized text embedding and t is the

temperature. Radford et alii trained the CLIP model using a huge amount of

data (equal to 400 million of text-image pairs), that jointly with the effective

learning process, allowed this pre-trained model to learn a highly expressive

latent space, enabling zero-shot capabilities in downstream tasks, in particular

classification where the model showed to be robust to distribution shift.

SigLIP

SigLIP [7] is an extension to the CLIP model that proposes the use of a simple

pairwise Sigmoid loss, instead of the original contrastive loss function.

− 1
|B|

|B|∑
i=1

|B|∑
j=1

log 1
1 + ezij(−txi·yj+b)︸ ︷︷ ︸

Lij

(2.4)

2.4 Multi-Modal Models 13

Figure 2.5: CLIP architecture and training methodology [5].

The training objective is defined in Equation 2.4, whereB, xi, gi and t have the

same meaning of Equation 2.3, zij is the label for an input text-image couple

(equals to 1 if they are paired and −1 otherwise) and b is a learnable bias term.

This small yet effective modification is memory efficient and allows for better

scaling up of the performance, and, in addition, it even enhances the results

when the training is performed using smaller batch sizes.

2.4.1 Link other modalities to CLIP

AudioCLIP

AudioCLIP [32] is one of the first works which attempted to add another

modality on top of the CLIP model. The authors pre-trained a model in or-

der to process audible data and then they linked it to the CLIP embedding

space using a contrastive learning methodology. Afterward, a fine-tuning of

the whole architecture was done to slightly increase the performance. Finally,

the model is tested in the classification and retrieval tasks on audio signals,

achieving state-of-the-art results.

2.4 Multi-Modal Models 14

ImageBind

It is a work [33] that has its own root in the CLIP model, and it aims to expand

the type of input that, after a processing, can lie in its embedding space. The

authors aligned the embeddings of each modality (audio, depth map, thermal

map, and IMU data) to the one of the images and they observed emergent

behavior on tasks involving pairs on which the model is not directly trained,

such as zero-shot text-audio classification.

PointCLIP

In this work [34], for the first time, the CLIP model is used to perform tasks

on 3D data. Since a variety of applications relies on real-time processing of

them, Zhang at alii proposed to process directly views of the point cloud, with-

out additional pre-processing. These views are given in input to the CLIP im-

age encoder to obtain high level features, that, jointly with hand-crafted labels

processed by the CLIP text encoder, can be used to perform zero-shot classi-

fication. Since the performance of this model was far from the one obtained

by supervised classifiers (such as PointNet++ [15]), the authors developed an

inter-view adapter, that extracts global representations and generates view-

wise features. In addition, they find out that the feature learned by their model

is complementary with the one learned by supervised trained models, so they

concluded that multi-knowledge ensembling can enhance the performance.

2.4.2 Connecting NeRFs to CLIP

In a recent work [6], it is proposed to link the NeRF modality to images and

text, leveraging the CLIP model, in order to create a connection between them

and being able to perform different types of downstream tasks, taking advan-

tage of the pre-trained model and its highly expressive embedding space. To

do so, the authors used the nf2vec framework in order to obtain a NeRF em-

bedding and afterwards they created a bidirectional mapping using two twin

2.4 Multi-Modal Models 15

(a) nerf2clip architecture.

(b) clip2nerf architecture.

Figure 2.6: nerf2clip and clip2nerf architectures.

architectures composed by a multilayer perceptron (called clip2nerf and

nerf2clip) to link a CLIP embedding to the NeRF one and vice versa, maxi-

mizing the cosine similarity between the two latent representations during the

training phase. The nerf2clip architecture (Figure 2.6a) maps the NeRF em-

beddings to the CLIP embedding space, so it is possible to use these expressive

latent features to perform the task of NeRF zero-shot classification. Instead

the clip2nerf architecture (Figure 2.6b) learns to map the CLIP embeddings

to the NeRF embedding space, therefore this model is used to perform NeRF

retrieval from images or text and NeRF generation.

Chapter 3

Methodology

This thesis builds on top of thework by Ballerini at alii [6] and browses options

to enhance the framework. It explores the feasibility of using the SigLIP loss

[7] instead of the cosine similarity to train the architectures and tests the results

of these models comparing them to the original ones. Furthermore, it inspects

the benefits of unfreezing the nf2vec model, such that it could be possible to

learn embeddings that are directly mapped in the clip embedding space.

3.1 Dataset

To train the architecture, a set of NeRFs is needed, which will be the input

of the nf2vec model, along with a set of reference CLIP embeddings. The

NeRFs dataset, used to train the architecture and constructed by Ballerini et

alii, is build upon ShapenetRenders [35], which contains 36 image views of

33296 different objects. These objects come from the famous ShapeNetCore

dataset, a subset of the larger ShapeNet dataset [36] (a large-scale repository

of shapes represented by 3D CAD models of objects), but with single clean

3D models and manually verified categories and alignment annotations. The

ground truth views images, used to fit the NeRF multilayer perceptrons, are

also used to generate the reference CLIP embeddings that will be used during

the training phase to align the two latent representations. Alongside them, the

3.2 SigLIP loss to connect the embeddings 17

latent representations are also aligned to embeddings created from the images

rendered from the NeRF itself, in order to analyze the performance of the

model in the scenario where the ground truth images are not available.

Using a well established trainingmethodology, the dataset is divided into three

different sets:

• the training set, employed to update the model weights

• the validation set, employed to test the performance of the network dur-

ing the training process

• the test set, employed to execute the final tests on unseen data.

Moreover, to avoid the presence of data leakage, that could bring in incor-

rect results, these splits are equal to the one used to train and test the nf2vec

architecture, since the latter was built using the same dataset.

3.2 SigLIP loss to connect the embeddings

In [6], the two above-mentioned frameworks (Figure 2.6) were trainedwith the

objective of maximizing the cosine similarity, shown in Equation 3.1, where

xi and yi are the two vectors that must be aligned (i.e. the NeRF embedding

and the reference CLIP embedding).

1
|B|

|B|∑
i=1

(
1 − xi · yi

∥xi∥∥yi∥

)
(3.1)

Instead, I leverage the SigLIP loss (Equation 2.4) defined in [7], to try to en-

hance the performance of the model using a contrastive objective that allows

the model to learn embeddings that align to the CLIP embedding space, maxi-

mizing the log-sigmoid values of similar pairs, and in addition minimizing the

one of dissimilar pairs in order to keep them distinct. Similarly to what was

done in [6], I tested the trained models in the zero-shot classification and in

the retrieval tasks.

3.3 Zero-shot classification task 18

Figure 3.1: Overview of the methodology used to perform the zero-shot clas-
sification task.

3.3 Zero-shot classification task

It is a task to understand the performance of the model in classifying unseen

NeRF data, without being trained explicitly for the classification task, but

only leveraging the features of the CLIP embedding space. To do it, I used

a methodology similar to the one defined in [5] (Figure 3.1), which consists

of generating the embeddings related to the text labels using the CLIP text en-

coder and then finding the closest label in the CLIP embedding space using a

nearest neighbors search [37], querying it with a NeRF embedding projected

in the CLIP embedding space utilizing the nerf2clip model.

3.4 Retrieval methodology

The goal is to retrieve relevant NeRF data with respect to the image query;

two different types of images are used:

• synthetic images that come from ground truth images used to trainNeRFs

that belong to the test set

• real images from the DomainNet dataset [38].

3.4 Retrieval methodology 19

To perform this task, a gallery of embeddings must be constructed: in [6] it is

built using NeRF embeddings generated from the NeRFs in the test set. There-

fore, the image query is embedded using the CLIP image encoder and then pro-

jected into the NeRF embedding space leveraging the clip2nerf model (Fig-

ure 3.2a). Here also the inverse modality is tested: the one in which the gallery

is built using NeRF embeddings projected in the CLIP embedding space us-

ing the nerf2clip architecture and the query images are simply encoded with

the CLIP image encoder (Figure 3.2b). This new methodology is developed

in order to study the effectivity of these two embedding spaces in the retrieval

task, and to analyze which one is more suited and for which category of input

query.

3.4 Retrieval methodology 20

(a) Overview of the methodology used to perform the retrieval leveraging the
clip2nerf model. This is the methodology used in [6].

(b) Overview of the methodology used to perform the retrieval leveraging the
nerf2clip model. This is the inverse method, analyzed here for the first time.

Figure 3.2: Overview of the methodologies used to perform the retrieval.

Chapter 4

Experiments and results

4.1 Experiments in the zero-shot classification case

study

During the training of the nerf2clip architecture, used to perform the zero-

shot classification task, every NeRF embedding, generated with the nf2vec

encoder, is aligned to a reference CLIP embedding. The latter is generated

starting from two different types of images: either the ground truth one used

to train the NeRF itself or the rendering form the learned NeRF. It is computed

as the mean of the N different image embeddings: the number of images used

to generate it goes from 1 to 36, duplicating at every step except the last one,

such that it could be possible to verify the performance curve slope changing

this parameter. Finally, it is tested in the zero-shot classification task: Table

4.1 reports the results and we can see that, in this particular task, the use of the

SigLIP loss function is not beneficial.

In addition, differently from the original paper, I also tested the zero-shot ca-

pabilities using a different type of label (“A photo of object_name”, instead

of “A 3d model of object_name”), showed in Table 4.2, because the origi-

nal CLIP model was trained using this textual reference (to connect images to

text), so under my hypothesis the results might be better. Moreover, I analyzed

4.1 Experiments in the zero-shot classification case study 22

Accuracy using “A 3d model of”

Method Views Cosine
similarity

SigLIP
loss

Nerf2Clip
rendered

1 81.0 79.6
2 81.7 78.5
4 82.6 78.4
8 81.8 80.1
16 83.1 80.3
N 82.5 80.4

Nerf2Clip
GT

1 80.9 77.6
2 83.4 79.6
4 84.7 80.8
8 83.3 80.4
16 83.9 80.7
N 84.2 80.8

Table 4.1: Results about the zero-shot classification task using as label “A
3d model of object_name”. The best results for each methodology and loss
function are highlighted in bold, the best result overall is underlined.

the performance of the CLIP model, used as baseline in [6], to understand its

performances using this new type of label, since in the work of Ballerini et

alii the main label used is the one mentioned above. To obtain the results, the

model is queried with N different views of the rendered NeRF and, at the end,

the average embedding is computed and used to perform the classification. In

Table 4.2 we can see how the results increase due to the use of the new labels;

moreover, similarly in Table 4.3 the column on the right shows that the per-

formance of the CLIP model grows, due to the motivation above-mentioned;

furthermore, it obtains the highest result overall when using all the N views

in input. The disadvantage of this last methodology is that, to perform the

classification of a NeRF, its views must be rendered, and it is time consuming

with respect to doing the classification directly on the NeRF weights.

4.1 Experiments in the zero-shot classification case study 23

Accuracy using “A photo of”

Method Views Cosine
similarity

SigLIP
loss

Nerf2Clip
rendered

1 83.1 82.3
2 84.8 81.9
4 83.4 81.9
8 84.9 82.7
16 83.8 83.3
N 84.6 83.1

Nerf2Clip
GT

1 84.7 82.1
2 84.8 82.6
4 84.8 83.8
8 85.0 84.0
16 84.4 83.3
N 84.7 84.0

Table 4.2: Results about the zero-shot classification task using as label “A
photo of object_name”. The best results for eachmethodology and loss func-
tion are highlighted in bold, the best result overall is underlined.

Method Views Accuracy using
“A 3d model of”

Accuracy using
“A photo of”

Baseline
CLIP

1 74.9 78.3
2 78.9 82.3
4 81.9 84.9
8 82.9 85.7
16 83.2 86.3
N 83.6 86.7

Table 4.3: Results of the CLIP baseline on the zero-shot classification task.
The best result for each column are highlighted in bold.

4.2 Experiments in the retrieval case study 24

4.2 Experiments in the retrieval case study

Having in mind the retrieval methodology employed, explained in Section 3.4,

now I can illustrate how the training is performed and the results obtained in

the experiments. Two versions of the architectures are developed, one using

the cosine similarity and the other leveraging the SigLIP loss, in order to an-

alyze the differences in the results obtained. The architectures are trained to

create a mapping between a NeRF embedding and the 36 CLIP embeddings

of the different views obtained from the ground truth images used to train the

NeRF itself, so it is a N to 1 mapping in the case of the clip2nerf model

and vice versa in the other one. The model used as the baseline is still CLIP:

while performing the retrieval with it, the gallery is built using two different

methodologies, that differ in how the embeddings of a single NeRF are added

to the gallery itself: the mean CLIP embedding or all the 36 image embed-

dings independently.

Using this task as a point of reference, two other analysis are done on the

architectures. The first one is centered on understanding the performance of

the models after a training with an augmented dataset, with a size that is three

times larger than the original one, and the second analysis is performed chang-

ing the batch size used during the training while using the SigLIP loss, to be

able to state how this hyper parameter can influence the results.

The outcomes about the retrieval done on synthetic images are reported in

Table 4.4. Table 4.4a shows that the methodology presented in [6] is still the

best one in this case, because both the use of the SigLIP loss and the inversion

of the modality do not improve the results, except when considering the Re-

call@10 metrics, but the improvement is marginal. Instead, in the case of the

retrieval done on real images (Table 4.5a), oppositely to what happens in the

previous experiment, these two novelties produce better results, exceeding the

CLIP baseline (Table 4.5b). This outcomemay be due to the fact that the CLIP

4.2 Experiments in the retrieval case study 25

Method Recall
@1

Recall
@5

Recall
@10

clip2nerf cosine [6] 87.02 94.60 96.44
clip2nerf siglip 86.61 94.42 96.42
nerf2clip cosine 80.46 92.63 95.38
nerf2clip siglip 76.95 94.06 96.81

(a) Results of the clip2nerf and nerf2clip models.

Method Recall
@1

Recall
@5

Recall
@10

CLIP mean [6] 82.51 94.08 96.34
CLIP all [6] 84.74 93.17 95.64

(b) Results of the baseline models.

Table 4.4: Results about the retrieval task on synthetic images. The best results
are highlighted in bold.

embedding space was generated via a training on a large amount of data, so it

could be more expressive than the NeRF embedding space, especially when

the retrieval is performed on real images, that are a type of element never seen

in the training phase of the feature mapping networks.

To try to verify this hypothesis, I created a t-SNE plot [37, 39] of the gallery

projected in the two embedding spaces. Figure 4.1a shows the plot of the

NeRF embedding space obtained using the clip2nerf model trained with

the cosine similarity, instead Figure 4.1b shows the one of the nerf2clip

model trained with the SigLIP loss. However, the two plots are quite similar

and do not show high differences, except that in the CLIP embedding space

the clusters seem slightly better formed.

4.2.1 Analysis of the embedding spaces

To analyze the embedding spaces more in detail, to understand if their features

are similar or complementary, I decided to perform the same experiment de-

scribed in [34]. The authors that developed the PointCLIP architecture trained

4.2 Experiments in the retrieval case study 26

Method Recall
@1

Recall
@5

Recall
@10

clip2nerf cosine [6] 69.91 81.86 86.58
clip2nerf siglip 70.19 82.51 86.55
nerf2clip cosine 70.75 86.25 89.66
nerf2clip siglip 76.49 90.76 95.02

(a) Results of the clip2nerf and nerf2clip models.

Method Recall
@1

Recall
@5

Recall
@10

CLIP all [6] 73.87 89.36 93.27

(b) Result of the baseline model.

Table 4.5: Results about the retrieval task on real images. The best results are
highlighted in bold.

(a) t-SNE plot of the NeRF embedding
space obtained using the clip2nerf
model trained with the cosine similarity.

(b) t-SNE plot of the CLIP embedding
space obtained using the nerf2clip
model trained with the SigLIP loss.

Figure 4.1: t-SNE plot of the retrieval gallery projected in the NeRF and in
the CLIP embedding spaces.

4.2 Experiments in the retrieval case study 27

Method Accuracy
MLP trained on the

NeRF embedding space 92.55

MLP trained on the
CLIP embedding space 91.10

Ensembling 93.23

Table 4.6: Outcomes of the classification head trained on the two embedding
spaces, along with the one obtained by the ensemble model.

a classifier on top of the features learned by their model, and then summed the

final logits with the one belonging to a supervised trained model (PointNet++

[15]), in order to create an ensemble model. Their hypothesis (which is shown

to be true) was that the features learned by a vision-language self-supervised

model can be different from those learned by a model trained in a supervised

way.

To analyze the NeRF and the CLIP embedding spaces, I trained twomultilayer

perceptrons using the original NeRF embeddings and the CLIP embeddings

obtained projecting the NeRF ones, leveraging the nerf2clip architecture.

The outcomes are reported in the first two rows of Table 4.6 and the result

of the ensembling in the last one. The latter shows a higher result than the

base models (and +0.68% than the best performing one), highlighting that the

features of the two embedding spaces can be complementary.

4.2.2 Leveraging both the embedding spaces

From what emerged in the retrieval experiments, the NeRF embedding space

is more suited to perform retrieval on synthetic images, and the CLIP embed-

ding space can be more effective when using real images as query; therefore, I

tried to combine these two different embeddings and generate vectors as a con-

catenation of them (living in a dimension having 1536 features). To generate

the gallery, I concatenated the test set NeRF embeddings with their projec-

tion into the CLIP embedding space (done with the nerf2clip model trained

4.2 Experiments in the retrieval case study 28

Figure 4.2: Overview of the methodology used to perform the retrieval lever-
aging both the embedding spaces.

Query image
type

Recall
@1

Recall
@5

Recall
@10

synthetic 77.16 94.08 96.78
real 76.49 90.86 95.05

Table 4.7: Results about the retrieval task performed concatenating the em-
bedding spaces.

with the SigLIP loss); instead, to generate the queries, I concatenate the CLIP

image embeddings with their mapping into the NeRF embedding space (done

using the clip2nerf model trained with the cosine similarity): Figure 4.2

shows a visual picture. Although this methodology can exploit the features of

both the embedding spaces, Table 4.7 shows us that the outcomes obtained are

comparable to the one related to the only CLIP embedding space, indicating

that a pure concatenation of the embedding spaces is not beneficial to enhance

the performances.

4.2 Experiments in the retrieval case study 29

4.2.3 Using the syn2real dataset

In the work of Ballerini et alii, after the testing of their models in the real im-

age retrieval scenario, they highlighted a performance drop due to the domain-

shift problem (still present here too, even if with a smaller magnitude). So,

they generated a new synthetic to real dataset using ControlNet [40], and after-

wards they created an augmented dataset containing 7 synthetic random views

for each object and the same number of images generated using ControlNet. A

training of the clip2nerf architecture on this new dataset allowed it to learn

features that could be applied to real images: it is performed using all of the

14 different embeddings and the objective was to align them to the reference

NeRF embedding. For the sake of completeness, I re-trained this model us-

ing the SigLIP loss in order to highlight any differences in the results, and, in

addition, I analyzed the performance of the inverse retrieval modality training

the nerf2clip architecture using the same dataset.

Table 4.8 presents the results, wherewe can notice that the use of the nerf2clip

architecture and the inverse modality during the retrieval are beneficial, lead-

ing to improved results while using both the cosine similarity and the SigLIP

loss. With respect to Table 4.5, here the results are enhanced due to the use of

a larger dataset that can cover examples of real images, that allows the model

to learn a more precise feature mapping.

4.2.4 Using an augmented dataset

To try to improve the performances of the models trained with only synthetic

data, I tried to leverage the augmented dataset used to train the nf2vec ar-

chitecture. It is made up of three times the original size and it is built by

performing data augmentation on the objects from ShapeNetRenders [35]. I

trained the best performing architectures so far, i.e. the clip2nerf model

with the cosine similarity and the nerf2clip model with the SigLIP loss, and

4.2 Experiments in the retrieval case study 30

Method Recall
@1

Recall
@5

Recall
@10

syn2real cosine
(clip2nerf architecture) [6] 78.92 85.84 88.41

syn2real siglip
(clip2nerf architecture) 78.68 85.95 89.05

syn2real cosine
(nerf2clip architecture) 80.42 89.77 92.62

syn2real siglip
(nerf2clip architecture) 79.82 90.39 93.10

Table 4.8: Results about the retrieval task on real images for the syn2real
models. The best results are highlighted in bold.

Tables 4.9a and 4.9b show the results about the retrieval performed on syn-

thetic and real images respectively. Here we can see that the performances of

the models do not increase, but instead slightly decrease overall (with respect

to Tables 4.4a and 4.5a). A possible motivation for why this happens is that the

two feature spaces are already defined by the nf2vec and the CLIP models,

indeed the feature mapping networks are only creating a link between them.

Therefore, a data augmentation technique can only strengthen and make this

link more robust, but the final outcomes are influenced by the features that

belong to the embedding space used during the retrieval. Thus, in this case,

different from what happens in Section 4.2.3, the use of this larger dataset to

train the architectures could have added information that may be redundant or

create noise.

4.2.5 Analysis of the batch size increment

In the work that presented the SigLIP loss [7], the authors performed an anal-

ysis of the performance of their model by changing the batch size used for

training. Thanks to the high computational power that the authors had at their

disposal, the batch sizes tested ranged from 16 thousands elements to 240

thousands. Zhai at alii performed two tasks (zero-shot image classification

4.2 Experiments in the retrieval case study 31

Method Recall
@1

Recall
@5

Recall
@10

clip2nerf cosine 86.95 94.81 96.50
nerf2clip siglip 79.65 93.30 95.80

(a) Results about the retrieval performed on synthetic images.

Method Recall
@1

Recall
@5

Recall
@10

clip2nerf cosine 62.23 75.89 80.61
nerf2clip siglip 73.32 86.95 91.55

(b) Results about the retrieval performed on real images.

Table 4.9: Results about the retrieval task of the model trained with the aug-
mented dataset.

and text-to-image retrieval) and they observed that the best perfomances are

obtained while using a batch size of 32000 elements. They also highlighted

that the use of the SigLIP loss can scale better with the batch size increment and

that it performed well, if compared to the standard contrastive learning losses

that use the softmax, even when this hyper-parameter has a smaller magni-

tude. Due to the limits of the machine that I used, I reproduce this analysis

with smaller numbers. The results are reported in Table 4.10, where it is pos-

sible to notice that a particular trend does not emerge. In the retrieval done

on synthetic images (Table 4.10a) the outcomes are all more or less similar,

indicating that a change in the batch size does not influence it. Instead, in

the retrieval on real images (Table 4.10b) the outcomes are more subject to a

change when this hyper-parameter is modified, but there is no evident pattern,

since the best result on the Recall@1 metric is reached with a batch size of

128, but the best ones on the Recall@5 and Recall@10 are obtained with 512.

In general, the best results are achieved while using a batch size of 128, which

guarantees the best Recall@1 (that is the most important benchmark), but also

high results on the other two metrics.

4.3 Fine-tuning nf2vec 32

Method Recall
@1

Recall
@5

Recall
@10

nerf2clip siglip 64 79.65 93.30 95.80
nerf2clip siglip 128 79.29 94.03 96.42
nerf2clip siglip 256 78.56 93.75 96.55
nerf2clip siglip 512 78.25 93.38 96.39
nerf2clip siglip 1024 78.33 93.72 96.78
nerf2clip siglip 2048 79.73 93.93 96.78

(a) Results about the retrieval performed on synthetic images.

Method Recall
@1

Recall
@5

Recall
@10

nerf2clip siglip 64 73.32 86.95 91.55
nerf2clip siglip 128 77.34 89.98 93.77
nerf2clip siglip 256 70.75 87.15 92.57
nerf2clip siglip 512 75.19 90.67 94.73
nerf2clip siglip 1024 76.72 88.36 92.60
nerf2clip siglip 2048 72.28 89.40 94.14

(b) Results about the retrieval performed on real images.

Table 4.10: Results obtained incrementing the batch size during the training
with the SigLIP loss. The best results are highlighted in bold.

4.3 Fine-tuning nf2vec

A second part of the study explores the feasibility of fine-tuning directly the

nf2vec architecture in order to generate embeddings that align to the clip em-

bedding space. In order to preserve the integrity of the model and to have

results that can be comparable, the training process is done on an architecture

composed by a stacking of the nf2vec architecture and the nerf2clip multi-

layer perceptron.

A first experiment, whose setup is shown in Figure 4.3a, investigates the

fine-tuning of the encoder only, using as training objective the one defined by

the two types of losses analyzed above. Secondly, a further examination is

4.3 Fine-tuning nf2vec 33

done leveraging the entire encoder-decoder architecture, as described in Fig-

ure 4.3b. In this case, the architecture will output two different vectors: one

having a dimensionality of 1024 (related to the NeRF embedding space) and

the other of 512 (to match the number of features belonging to the CLIP em-

bedding space). These vectors will be used respectively by the cosine simi-

larity and the reconstruction loss in order to update the weights of the archi-

tecture. The addition of this second loss function is to maintain the original

purpose of the architecture, i.e. creating a compact embedding containing all

the information needed to reconstruct the input object, and to avoid that the

impact of the loss used to bring the latent representations closer could destroy

this property. The fine-tuning done with the complete nf2vec architecture,

is executed in two different modalities: with the decoder unfrozen and vice

(a) Architectures corresponding to the model trained with only the SigLIP loss or the
cosine similarity.

(b) Architectures corresponding to the model trained with the addition of the recon-
struction loss.

Figure 4.3: Overview of the fine-tuned architectures.

4.3 Fine-tuning nf2vec 34

versa. The reference embedding is the mean of the CLIP embeddings ob-

tained from the 36 images used to train the NeRF itself.

Finally, the trained models are tested both in the zero-shot classification task

and in the retrieval task, and Table 4.11 reports the results. In the latter, the

methodology applied is comparable to the one described in Figure 3.2b, since

the trained feature mapping network is nerf2clip. We can notice how the

fine-tuning of the nf2vec architecture does not enhance the performance in

the first two downstream tasks analyzed (Tables 4.11a and 4.11b), but, simi-

lar to what was highlighted before in Section 4.2, there is increased accuracy

in the retrieval with real images (Table 4.11c). However, if we consider the

information reported in Table 4.5a, and in particular the fourth row, it is pos-

sible to conclude that the majority of the gain is due to the inversion of the

retrieval methodology, and not to the fine-tuning of the nf2vec architecture,

which overall does not enhance the performance of the model.

4.3.1 Analysis of the new NeRF embedding space

During the original training of the nf2vec architecture [4], the loss function

used in the training phase was the reconstruction loss, in order to maximize the

amount of information related to the object itself that can be used to minimize

the error during the reconstruction while using the decoder. After fine-tuning

the architecture, the supervision of the CLIP embeddings could give to the

NeRF embedding space an increased amount of features that can be exploited

to reorganize the NeRF embedding space. Therefore, I performed an analysis

of this embedding space to perform the retrieval for a second time. The em-

ployed methodology is the one described in Figure 3.2a.

Table 4.12 shows the results. In the case of the retrieval done on synthetic

images (Table 4.12a), the results are similar to those obtained by the original

architecture; the same happens when the query image belongs to the “real”

set, with a small increase in the accuracy when using the embedding space

4.3 Fine-tuning nf2vec 35

Method Accuracy using
“A 3d model of”

Accuracy using
“A photo of ”

nerf2clip [6] 84.7 85.0
SigLIP loss 82.5 83.8

Cosine similarity 82.3 82.8
Cosine similarity +
reconstruction loss
(decoder unfrozen)

82.5 84.3

Cosine similarity +
reconstruction loss
(decoder frozen)

82.9 84.5

(a) Results about the zero-shot classification task.

Method Recall
@1

Recall
@5

Recall
@10

clip2nerf [6] 87.02 94.60 96.44
SigLIP loss 81.05 93.23 95.87

Cosine similarity 80.82 92.91 95.90
Cosine similarity + reconstruction loss

(decoder unfrozen) 81.68 93.90 96.39

Cosine similarity + reconstruction loss
(decoder frozen) 81.52 94.06 96.50

(b) Results about the retrieval task on synthetic images.

Method Recall
@1

Recall
@5

Recall
@10

clip2nerf [6] 69.91 81.86 86.58
SigLIP loss 68.52 83.20 89.10

Cosine similarity 73.62 87.50 91.18
Cosine similarity + reconstruction loss

(decoder unfrozen) 69.34 86.18 91.53

Cosine similarity + reconstruction loss
(decoder frozen) 72.58 88.33 93.98

(c) Results of the retrieval task on real images.

Table 4.11: Results of the fine-tunedmodels compared to the best one obtained
with the original clip2nerf architecture. The best outcomes are highlighted
in bold.

4.3 Fine-tuning nf2vec 36

Method Recall
@1

Recall
@5

Recall
@10

clip2nerf [6] 87.02 94.60 96.44
SigLIP loss 86.17 94.16 96.31

Cosine similarity 86.04 94.26 96.18
Cosine similarity + reconstruction loss

(decoder unfrozen) 86.84 94.55 96.42

Cosine similarity + reconstruction loss
(decoder frozen) 87.05 94.50 96.06

(a) Results about the retrieval task on synthetic images.

Method Recall
@1

Recall
@5

Recall
@10

clip2nerf [6] 69.91 81.86 86.58
SigLIP loss 68.94 82.25 86.85

Cosine similarity 68.57 82.62 87.06
Cosine similarity + reconstruction loss

(decoder unfrozen) 70.21 82.22 86.56

Cosine similarity + reconstruction loss
(decoder frozen) 70.22 82.94 86.78

(b) Results about the retrieval task on real images.

Table 4.12: Results of the clip2nerf model when trained on the fine-tuned
NeRF embedding space, compared to the best one obtained with the original
architecture. The best outcomes are highlighted in bold.

obtained from the training with the reconstruction loss and the decoder frozen,

but the performance is still inferior to those previously reported in Table 4.5.

Even when there is no restriction to the supervision of the CLIP model from

the reconstruction loss (second and third rows of the tables), the NeRF em-

bedding space seems to not be able to receive the features needed to amplify

its information richness, that is the key to increase the performance in this task

accordingly.

Chapter 5

Conclusions

In this thesis I analyzed the use of the SigLIP loss to train the nerf2clip and

clip2nerf architectures and I tested them in the zero-shot classification and

retrieval of NeRF data, comparing the results with the models trained with the

cosine similarity and analyzing the best configurations.

This research obtained two main achievements:

• one in the classification task, where the introduction of the new prompts,

used to classify in the CLIP space, can unlock an increase in the accu-

racy of both nerf2clip and the CLIP baseline

• the other in the retrieval task, where the analyses performed highlighted

how the robustness of the CLIP embedding space can be leveraged to

strengthen the results when the query image belongs to a distribution

different from the one used for training (i.e. real images).

In particular, it is possible to obtain benefits from the use of the SigLIP loss

in this last mentioned case, instead in other case studies the differences with

the cosine similarity are marginal or bring lower results.

This framework leverages the CLIP embedding space to perform the two above-

mentioned tasks; therefore, themain limitation is that the performance is bounded

by the expressiveness of its features. In order to be able to increase the results,

Conclusions 38

future works should consider the option of fine-tuning the CLIP architecture

together with the nf2vec framework. This operation is computationally costly

and should be done carefully in order to not destroy the robustness of the CLIP

embedding space; nevertheless, it can allow this space to learn more special-

ized features. Another limitation of the framework was already cited in the

work of Ballerini et alii., where they stated that the nf2vec model limits the

processing to synthetic data, so future works can explore training this system

on a larger dataset containing NeRF data from different sources.

In conclusion, this thesis was able to improve the outcomes obtained in the

previous work, in both the tasks analyzed, marking a step forward in bridging

the gap between NeRF representations and CLIP embeddings, contributing to

the advancement of neural scene understanding and retrieval.

Bibliography

[1] Y. Xie, T. Takikawa, S. Saito, O. Litany, S. Yan, N. Khan, F. Tombari,

J. Tompkin, V. Sitzmann, and S. Sridhar. Neural fields in visual com-

puting and beyond, 2022. arXiv: 2111.11426 [cs.CV]. URL: https:

//arxiv.org/abs/2111.11426.

[2] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-

thi, and R. Ng. Nerf: representing scenes as neural radiance fields for

view synthesis. Communications of the ACM, 65(1):99–106, 2021.

[3] L. D. Luigi, A. Cardace, R. Spezialetti, P. Z. Ramirez, S. Salti, and L. D.

Stefano. Deep learning on implicit neural representations of shapes,

2023. arXiv: 2302.05438 [cs.CV]. URL: https://arxiv.org/

abs/2302.05438.

[4] P. Z. Ramirez, L. De Luigi, D. Sirocchi, A. Cardace, R. Spezialetti, F.

Ballerini, S. Salti, and L. D. Stefano. Deep learning on object-centric

3d neural fields. IEEE Transactions on Pattern Analysis and Machine

Intelligence:1–17, 2024. DOI: 10.1109/TPAMI.2024.3430101.

[5] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G.

Sastry, A. Askell, P.Mishkin, J. Clark, et al. Learning transferable visual

models from natural language supervision. In International conference

on machine learning, pages 8748–8763. PMLR, 2021.

[6] F. Ballerini, P. Z. Ramirez, R. Mirabella, S. Salti, and L. Di Stefano.

Connecting nerfs, images, and text. In 2024 IEEE/CVF Conference

BIBLIOGRAPHY 40

on Computer Vision and Pattern Recognition Workshops (CVPRW),

pages 866–876, 2024. DOI: 10.1109/CVPRW63382.2024.00092.

[7] X. Zhai, B. Mustafa, A. Kolesnikov, and L. Beyer. Sigmoid loss for lan-

guage image pre-training, 2023. arXiv: 2303.15343 [cs.CV]. URL:

https://arxiv.org/abs/2303.15343.

[8] L. Hoang, S.-H. Lee, O.-H. Kwon, and K.-R. Kwon. A deep learning

method for 3d object classification using the wave kernel signature and

a center point of the 3d-triangle mesh. Electronics, 8(10), 2019. ISSN:

2079-9292. DOI: 10.3390/electronics8101196. URL: https://

www.mdpi.com/2079-9292/8/10/1196.

[9] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learn-

ing applied to document recognition.Proceedings of the IEEE, 86(11):2278–

2324, 1998. DOI: 10.1109/5.726791.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification

with deep convolutional neural networks. Advances in neural informa-

tion processing systems, 25, 2012.

[11] D. Maturana and S. Scherer. Voxnet: a 3d convolutional neural net-

work for real-time object recognition. In 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 922–928,

2015. DOI: 10.1109/IROS.2015.7353481.

[12] B. Graham,M. Engelcke, and L. Van DerMaaten. 3d semantic segmen-

tation with submanifold sparse convolutional networks. In Proceedings

of the IEEE conference on computer vision and pattern recognition,

pages 9224–9232, 2018.

[13] H. Wang and J. Zhang. A survey of deep learning-based mesh process-

ing. Communications in Mathematics and Statistics, 10(1):163–194,

2022.

BIBLIOGRAPHY 41

[14] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: deep learning on

point sets for 3d classification and segmentation, 2017. arXiv: 1612.

00593 [cs.CV]. URL: https://arxiv.org/abs/1612.00593.

[15] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: deep hierarchical

feature learning on point sets in a metric space, 2017. arXiv: 1706.

02413 [cs.CV]. URL: https://arxiv.org/abs/1706.02413.

[16] G. Li, M. Müller, A. Thabet, and B. Ghanem. Deepgcns: can gcns go

as deep as cnns? In 2019 IEEE/CVF International Conference on Com-

puter Vision (ICCV), pages 9266–9275, 2019. DOI: 10.1109/ICCV.

2019.00936.

[17] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.

Solomon. Dynamic graph cnn for learning on point clouds. ACMTrans.

Graph., 38(5), October 2019. ISSN: 0730-0301. DOI: 10.1145/3326362.

URL: https://doi.org/10.1145/3326362.

[18] H. Zhao, L. Jiang, J. Jia, P. Torr, and V. Koltun. Point transformer. In

2021 IEEE/CVF International Conference on Computer Vision (ICCV),

pages 16239–16248, 2021. DOI: 10.1109/ICCV48922.2021.01595.

[19] T. Kim and T. Adalı. Approximation by fully complex multilayer per-

ceptrons.Neural Computation, 15(7):1641–1666, 2003. DOI: 10.1162/

089976603321891846.

[20] M. Nielsen.Neural Networks and Deep Learning. Determination Press,

2015. Chapter 4. URL: https://books.google.it/books?id=

STDBswEACAAJ.

[21] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger.

Occupancy networks: learning 3d reconstruction in function space, 2019.

arXiv: 1812 . 03828 [cs.CV]. URL: https : / / arxiv . org / abs /

1812.03828.

BIBLIOGRAPHY 42

[22] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove.

Deepsdf: learning continuous signed distance functions for shape rep-

resentation, 2019. arXiv: 1901 . 05103 [cs.CV]. URL: https : / /

arxiv.org/abs/1901.05103.

[23] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y.

Bengio, and A. Courville. On the spectral bias of neural networks. In K.

Chaudhuri and R. Salakhutdinov, editors,Proceedings of the 36th Inter-

national Conference on Machine Learning, volume 97 of Proceedings

of Machine Learning Research, pages 5301–5310. PMLR, September

2019. URL: https://proceedings.mlr.press/v97/rahaman19a.

html.

[24] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics

primitives with a multiresolution hash encoding. ACM transactions on

graphics (TOG), 41(4):1–15, 2022.

[25] A.Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.Gomez,

L. Kaiser, and I. Polosukhin. Attention is all you need, 2023. arXiv:

1706 . 03762 [cs.CL]. URL: https : / / arxiv . org / abs / 1706 .

03762.

[26] R. Li, H. Gao, M. Tancik, and A. Kanazawa. Nerfacc: efficient sam-

pling accelerates nerfs. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 18537–18546, 2023.

[27] E. Dupont, H. Kim, S. Eslami, D. Rezende, and D. Rosenbaum. From

data to functa: your data point is a function and you can treat it like one.

arXiv preprint arXiv:2201.12204, 2022.

[28] S. Ioffe and C. Szegedy. Batch normalization: accelerating deep net-

work training by reducing internal covariate shift, 2015. arXiv: 1502.

03167 [cs.LG]. URL: https://arxiv.org/abs/1502.03167.

BIBLIOGRAPHY 43

[29] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 770–778, 2016. DOI: 10 . 1109 / CVPR .

2016.90.

[30] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,

T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J.

Uszkoreit, and N. Houlsby. An image is worth 16x16 words: transform-

ers for image recognition at scale, 2021. arXiv: 2010.11929 [cs.CV].

URL: https://arxiv.org/abs/2010.11929.

[31] A. van den Oord, Y. Li, and O. Vinyals. Representation learning with

contrastive predictive coding.ArXiv, abs/1807.03748, 2018. URL: https:

//api.semanticscholar.org/CorpusID:49670925.

[32] A. Guzhov, F. Raue, J. Hees, and A. Dengel. Audioclip: extending clip

to image, text and audio. In ICASSP 2022-2022 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 976–

980. IEEE, 2022.

[33] R. Girdhar, A. El-Nouby, Z. Liu, M. Singh, K. V. Alwala, A. Joulin,

and I. Misra. Imagebind: one embedding space to bind them all. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 15180–15190, 2023.

[34] R. Zhang, Z. Guo, W. Zhang, K. Li, X. Miao, B. Cui, Y. Qiao, P. Gao,

and H. Li. Pointclip: point cloud understanding by clip. In Proceedings

of the IEEE/CVF conference on computer vision and pattern recogni-

tion, pages 8552–8562, 2022.

[35] Q. Xu, W. Wang, D. Ceylan, R. Mech, and U. Neumann. Disn: deep

implicit surface network for high-quality single-view 3d reconstruction.

Advances in neural information processing systems, 32, 2019.

BIBLIOGRAPHY 44

[36] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,

S. Savarese, M. Savva, S. Song, H. Su, et al. Shapenet: an information-

rich 3d model repository. arXiv preprint arXiv:1512.03012, 2015.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.

Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-

learn: machine learning in python. Journal of machine learning re-

search, 12(Oct):2825–2830, 2011.

[38] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang. Moment

matching for multi-source domain adaptation. In Proceedings of the

IEEE/CVF international conference on computer vision, pages 1406–

1415, 2019.

[39] L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal

of machine learning research, 9(11), 2008.

[40] L. Zhang, A. Rao, andM. Agrawala. Adding conditional control to text-

to-image diffusion models. In Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, pages 3836–3847, 2023.

Acknowledgements

I am very grateful to my supervisor, Professor Samuele Salti, for the oppor-

tunity of working on this thesis, which allowed me to expand my knowledge

about bleeding-edge topics. I am thankful to Doctor Francesco Ballerini, who

has always been available to answer to my questions, and to Doctor Pierliugi

Zama Ramirez.

I would like to thank all the friends that I met during these long five years,

people with whom I have the opportunity to share passions and with which I

spent a lot of funny moments that I will never forget.

I want to thank with all my heart my family for the support they gave me

during all the years spent on the scholastic path.

