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Sommario

Questa tesi analizza la possibilità di ricostruire la temperatura del mare utilizzan-

do dati di temperatura dell’aria provenienti da stazioni meteorologiche costiere.

Modelli neural networks sono stati utilizzati per la loro capacità di modellare

relazioni non lineari. Lo studio si concentra sul Mar Adriatico settentrionale,

utilizzando i dati delle stazioni meteorologiche di Ancona, Venezia e Trieste per

ricostruire la temperatura del mare a diverse scale temporali e spaziali. L’inda-

gine comprende tre esperimenti principali: (1) ricostruzione di misure puntuali

dalla piattaforma oceanografica Acqua Alta utilizzando diversi approcci di ela-

borazione temporale (dati orari, orari filtrati e giornalieri), (2) ricostruzione di

temperature mediate spazialmente dai dati di rianalisi CMEMS su diversi li-

velli verticali e domini spaziali, e (3) ricostruzione puntuale dell’intero campo

di temperatura. Mentre l’analisi ha rivelato limitazioni nella ricostruzione del-

la temperatura misurata ad Acqua Alta, ulteriormente approfondita attraverso

l’analisi in frequenza, risultati più promettenti sono stati ottenuti nella rico-

struzione sia delle temperature mediate spazialmente che di quelle puntuali

dai dati di rianalisi CMEMS. I risultati sono stati analizzati in termini di di-

stribuzione spaziale e temporale delle metriche di performance, evidenziando

pattern sistematici nell’accuratezza della ricostruzione. Un’analisi comparativa

tra temperatura osservata da satellite, rianalisi e ricostruzione tramite neural

networks fornisce indicazioni sui punti di forza e le differenze relativi di questi

tre approcci alla stima della temperatura.



Abstract

This thesis investigates the feasibility of reconstructing sea temperature using

air temperature data from coastal weather stations. Neural networks have been

used for their capability of modelling non linear relationship. The study focuses

on the Northern Adriatic Sea, utilizing data from weather stations in Ancona,

Venezia, and Trieste to reconstruct SST at different temporal and spatial scales.

The investigation comprises three main experiments: (1) reconstruction of point

measurements from the Acqua Alta oceanographic tower using various tem-

poral processing approaches (hourly, filtered hourly, and daily data), (2) recon-

struction of spatially averaged temperatures from CMEMS reanalysis data with

different vertical levels and horizontal domains, and (3) pointwise reconstruc-

tion of the full temperature field. While the analysis revealed limitations in

reconstructing Acqua Alta measured temperature, further investigated through

coherence analysis, more promising results were achieved in reconstructing both

spatially averaged and pointwise temperature fields from the CMEMS reanal-

ysis. The results were analyzed through spatial and temporal distributions of

performance metrics, revealing systematic patterns in reconstruction accuracy.

A comparative analysis between satellite observed temperature, reanalysis and

neural networks reconstruction provides insights into the relative strengths and

differences of these three approaches to temperature estimation.
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Chapter 1

Introduction

The ocean plays a leading role shaping Earth’s weather and climate patterns. It

has strong influence on the distribution of rainfall, droughts, floods, regional

climate, and the development of storms, hurricanes, and typhoons [1]. The sea

surface temperature (SST) is a crucial parameter in physical oceanography, for

understanding, monitoring and predicting processes that happen at a variety

of temporal and spatial scales. SST governs complex interactions between the

atmosphere and oceans, such as fluxes of heat, momentum and gases, funda-

mentals for the understanding of atmosphere and ocean phenomena. It has been

defined by World Meteorological Organization (WMO) as one of the essential

climate variables (ECVs) contributing to the characterization of Earth’s climate.

SST serves as an indicator of the ocean’s capacity to store thermal energy. This

property is crucial in understanding climate dynamics, as a mere 3.5 meter

layer of ocean water holds an equivalent amount of heat energy to the entire

atmospheric column above it [2]. SST plays a vital role in climate science, of-

fering insights into climate change and variability while also impacting weather

systems, ocean currents, and the distribution of marine life. Monitoring this

parameter is therefore essential.

Starting in 1981, satellite observations of SST became available, and along

with in-situ measurements, formed the modern-era ocean observing system.

Over the years more and more applications and studies having needs of high

quality observations have been developed, while the existing data couldn’t sat-

isfy those needs. So minimum data specification for the use in ocean models has

been set by the Global Data Assimilation Experiment (GODAE): global coverage,

spatial resolution of 10 km or higher, accuracy of 0.2 ◦
C or better. The task of

achieving these requirements was taken over by the Group for High Resolution

Sea Surface Temperature (GHRSST), that over the past years has reached the

previously imposed specifications, with the exception of accuracy.

Despite all the improvements achieved in data quality, the continuous tech-
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Chapter 1 - Introduction

nological advances that allow increasingly precise and reliable measurements,

and the development of new techniques to study and evaluate those observa-

tions, the monitoring of SST is still facing the problems of lack of data, that

make difficult to study the ocean in some regions. Figure 1.1 shows the spatial

coverage of the major shipping lanes in the 1955-2012 period, as reported by the

World Ocean Atlas in 2013, along with the temporal distribution of SST. As can

be seen from the figure, in the high latitudes regions there is clear scarcity of

observations. This is true still today and caused by several issues that make,

both in-situ and satellite, measurements in those regions difficult, due to the

unique environmental conditions. In ice-free areas, in-situ measurements are

made using various methods as ships, Argo floats, surface drifters and gliders

(see Section 1.2) used also in other regions of the ocean. On the other hand

in ice-covered areas only instruments developed specifically for work in those

conditions can operate and transmit data in near real-time. These instruments

have high installation and maintenance costs, so only a limited number of such

measurement systems are available, causing wide gaps in the coverage of Arctic

ocean ice measurements. The scarcity of in-situ measurements and the often

lack of coincident atmospheric conditions observations affects also the satellite

SST retrieval, that use in-situ measurements for algorithm development. Rely-

ing on too sparse data, the algorithms introduce unknown errors in conditions

that differs from the relatively few observed ones. In addition there are the in-

herent limitations of remote sensing observations. Instruments operating in the

infrared (IR) are sensible to the presence of clouds, that invalidate the measure

of temperature and so they should masked. In the high latitudes this issues

is particularly evident, due to the persistent cloudiness, resulting in extended

gaps in the satellite products [4]. A complication, derives from the difficulty in

distinguishing clouds from snow and ice. This latter can form quickly over large

areas and may not be accurately mapped by daily sea ice maps. The instruments

operating in the microwaves (PMW) are not affected by the presence of clouds,

but most PWM missions lack a channel at 6.9 GHz, required in polar regions,

due to its sensitivity below 13
◦
C.

Other areas where measuring SST is challenging are the inland seas, lakes and

the coastal zones. The main reasons that makes difficult to estimate temperature

from satellites are the greater variability in atmospheric conditions, like water

vapor concentration, temperature and aerosol, than over the most of the ocean.

In addition, observations in those areas should account for land contamination,

due to the unresolved scales of SST sensors, water surface contamination and

turbidity, that could interact with cloud detection. This can lead to observation

bias, specially in the warming spring-summer period, when products face the

problem of over masking, due to the increased temperature difference between
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Chapter 1 - Introduction

Figure 1.1: Distribution of SST measurements and by method. (A) Shows the spatial

distribution of SST measurements as included in the World Ocean Atlas in 2013. (B)

Shows the temporal distribution of SST measurements in the World Ocean Atlas in 2013

(from Freeman et al., 2017). (C) How the measurement methods changed over time.

ERI are Engine Room Intake measurements, Buoy measurements include drifting and

moored buoys (from Rayner et al., 2018). Please note that the spatial and temporal

time lines are different, 1955–2012 for the spatial distribution shown in plate (A) and

1770–2014 for the temporal distribution shown in plate (B). After [3].
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Chapter 1 - Introduction

turbid warm water and cold clear one, possibly identifying the latter as clouds

[3].

In addition to area-specific issues, there is a global growing need of high

resolution SST measures due to the increasing effort of the physical oceanogra-

phy community in the study of sub-mesoscale dynamic, relevant for the large

scale dynamic and thus for weather and ocean variability. Those high resolution

fields can be provided by IR instruments in clear sky conditions, while the PMW

instruments, having lower spatial resolution, can be used to partially overcome

the cloud cover problem, along with multi-scale techniques or the use of high

resolution data within a larger time window. This techniques has still some lim-

itations as: over smoothed SST fields in both time and space, retrievals errors, or

errors in masking erroneous retrievals, as in the case of the presence of clouds,

rain, sea ice or radio frequency-interference [3].

The need of higher spatial resolution products is particularly important in

the Mediterranean Sea, where the high temporal and spatial variability of the

basin is characterized by fine-scale processes, that cannot be captured otherwise.

In addition the in-situ measurement network has significant gaps and asymme-

tries throughout the basin as can be seen by looking the catalog of observing

platforms offered by the Mediterranean Operational Network for the Global

Ocean Observing System (MONGOOS), which spatial distribution is shown in

Figure 1.2 and Figure 1.3. For example, on the western European Mediterranean

coast the number of tide gauges and wave buoys is sufficient for most of the

applications, while on the Eastern side sensors are scarce and along the African

coast measuring platform are almost completely absent, making not possible

estimating the mean sea level simply from tide gauges.

On the other hand there are some variables that are under sampled through-

out all the basin, like currents, temperature and salinity. For the these two latter

variables Argo and gliders provide additional data that mitigate the situation,

even though the number of platform are not able to provide a sufficient amount

of data to properly contribute to data assimilation in numerical models [5].

All these limitations and the increasing need for monitoring solutions moti-

vate the exploration of novel approaches.

The following sections will provide an overview of the Adriatic Sea’s charac-

teristics, discuss SST monitoring techniques, introduce the deep learning main

features, and a description of the motivation and structure of this study.
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Chapter 1 - Introduction

Figure 1.2: Map of sensors deployed in the Mediterranean Sea for monitoring purposes

(as in 2017): (A) waves, (B) sea level, (C) surface currents, and (D) sea surface tempera-

ture. After [5].
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Figure 1.3: Map of sensors deployed in the Mediterranean Sea for monitoring purposes:

(A) High Frequency radars, (B) Argo Floats as in 2018, and (C) Gliders. After [5].
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1.1 Adriatic Sea Chapter 1 - Introduction

1.1 Adriatic Sea
In a context where there is always a lack of observations, adding other source of

data is surely valuable. For this reason, in this study, a new way of monitoring

SST is investigated. This approach consists in the use of proxy air temperature

data from coastal weather stations to reconstruct sea temperature, through the

use of artificial neural networks.

The method is applied in the North Adriatic Sea region, due to the availability

of data and to the crucial importance of SST monitoring in this area, due to its

sensibility to climate change and its influence on weather patterns. In [6] SST

variations are studied over a period of 37 years, from 1982 to 2018, finding

that the Adriatic Sea is experiencing a more steep warming trend than the

rest of the Mediterranean. The study computed a trend of 0.041(6) ◦C yr
−1

in the

Mediterranean, sensibly higher compared to the trend found in the Northeastern

Atlantic, adiacent to the Mediterranean, of 0.027(80) ◦C yr
−1

. The study analyzes

also the different trends across different regions of the basin, finding the higher

values in the Levantine Sea and in the Adriatic Sea, with respective values of

0.048(60) ◦C yr
−1

and 0.045(70) ◦C yr
−1

. In [7] the study of a severe event that hit

Italy on 10 July 2019, causing heavy damage because of giant hailstones reaching

the ground, is conducted using numerical simulations. This study evidenced

the key role of the SST anomaly over the Adriatic, along with the topography,

in the development of the event, causing the instability of the environment, and

thus highlighting the importance of the monitoring of the sea temperaure, also

for its impact on regional weather.

The Adriatic Sea is a part of the eastern Mediterranean Sea located between

the Italian peninsula and the Balkan peninsula. It borders six countries: Italy,

Slovenia, Croatia, Bosnia and Herzegovina, Montenegro and Albania, and it’s

connected the Ionian Sea to the southeast, trough the Strait of Otranto. It has a

surface area of 138 600 km
2

, a volume of 35 000 km
3

[8], with an extreme length

of about 800 km and mean width of about 160 km [9], with its major axis in

the northwest–southeast direction. It constitutes the northernmost part of the

Mediterranean, extending as far North as 45
◦
47

′
N.

The Adriatic longitudinal variations in the bathymetry define three zones:

northern, middle and southern Adriatic. The northern part of the basin is very

shallow with an average bottom depth of about 30 m. Starting with a depth of

about 15 m along the Venice-Trieste coastline, increasing southward, it extends

till the 100 m isobath. The depth reach about 270 m in the middle Adriatic, in the

two depressions called the Pomo Pits [8]. To the South of this pit the bathymetry

rises in the Palagruža sill, separating the middle Adriatic from the southern

Adriatic. In the southern Adriatic there is the deepest part of the basin, with
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1.1 Adriatic Sea Chapter 1 - Introduction

a maximum depth of 1270 m. This depression is often referred as the South

Adriatic Pit. Further South, the bottom rises again, forming the Otranto Sill

(780 m), which separates the Adriatic from the Ionian Sea [9]. There are also

transversal variations in the bathymetry: western coastline is mostly regular and

smooth, with no islands and a gentle shelf, while the eastern side is characterized

by the presence of many islands and irregular bottom, with a steep shelf [8]. The

bathymetry is shown in Figure 1.4, along with the main currents.

Figure 1.4: Adriatic Sea surface circulation. After [10].

The dominant winds on the Adriatic Sea are the bora and sirocco, that char-

acterize winter wind regime. The name bora is generally used for the strong

northeasterly cold winds that enters the Adriatic Sea through the Trieste gap and

other gaps of the Dinaric Alps on the eastern shore of the Adriatic in the pres-
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1.1 Adriatic Sea Chapter 1 - Introduction

ence of strong pressure gradients between the two side of the mountain range.

This condition can happen in the presence of two primary weather patterns:

the anticyclonic pattern and the cyclonic pattern. In the anticyclonic pattern a

large high pressure center is present over central Europe without a weIl defined

low to the South. In the cyclonic pattern a low pressure center is present over

the Tyrrhenian Sea, the southern Adriatic Sea or the Ionian Sea. Bora winds

are most common during the cool season (November through March). On the

other hand, sirocco is the name commonly used for winds of continental trop-

ical origin when blowing over the Mediterranean Sea. Sirocco blows over the

Adriatic Sea, after originating from the deserts of North Africa and Arabia and

passing over the Ionian Sea. Therefore sirocco wind brings humid and warm

air, since the it has picked up moisture during its passage over the Ionian Sea,

often accompanied by Saharan dust. It tends to occur more frequently in the

southern regions of the Adriatic with a decrease in frequency northward.

During summer the prevalent winds are northwesterly winds, the etesian (or

meltemi) winds and the mistral. The former blow mostly over the Aegean Sea,

when there is the presence of a continental depression centered over southwester

Asia, but can extend to the southern Adriatic basin. The mistral is a strong wind

that originates in the rear of cold fronts. Along the coasts daily sea-breeze

variations prevails over those winds [8].

Being subjected to interaction with air masses of different origins, the Adriatic

Sea is characterized by substantial heat exchanges with the atmosphere. The total

heat flux 𝑄𝑇 (positive when it’s directed from the air to the sea) is the sum of

four components, namely

𝑄𝑇 = 𝑄𝑆 +𝑄𝐵 +𝑄𝐻 +𝑄𝐸 (1.1)

where 𝑄𝑆 is the incident solar radiation flux, 𝑄𝐵 the backward long-wave radi-

ation flux, 𝑄𝐻 the sensible heat flux, and 𝑄𝐸 the latent heat flux. The annual

climatological𝑄𝑇 over the Adriatic Sea is negative, so, on average, the basin loses

heat to the atmosphere, implying that, under steady-state conditions, it imports

heat from the Mediterranean Sea through the Strait of Otranto. Several studies

have been made to quantify the average annual heat loss, over different periods,

with values of 𝑄𝑇 = −22 W m
−2

for the period 1954-1988, 𝑄𝑇 = −19(10)W m
−2

for the period 1980-1988 [11], 𝑄𝑇 = −17 W m
−2

for the period 1991-1994 [12]

and 𝑄𝑇 = −26 W m
−2

in the 1998-2001 period [13]. In the latter two studies also

interannual variability has been investigated, and found a big variation in the

1991-1994 period, with an average value of −24 W m
−2

for 1991-1993 and a value

of 4 W m
−2

in the 1994.

The direct water exchange between sea and atmosphere consists of evapo-

ration and precipitation. Evaporation is related to the latent heat flux, which is

11



1.1 Adriatic Sea Chapter 1 - Introduction

maximum in autumn and winter and minimum in summer. The evaporation

rate, 𝐸, is usually estimated from the expression 𝐸 = 𝑄𝐸/𝐿𝑣 , where 𝑄𝐸 is the

latent heat flux and 𝐿𝑣 the latent heat of vaporization. Precipitation regimes

differs over the region: in the northern region, winter is the driest season and

maximum precipitation is observed in autumn, whereas in the remaining part

of the basin the precipitation minimum occurs in summer and maximum in

winter. Considering the basin average, precipitation maximum occur in late

autumn, while minimum is in summer.

The Adriatic Sea receives a significant portion of the Mediterranean’s fresh-

water inflow, accounting for up to one-third of the total. The major contributor

to this influx is the Po River that account for the 28% of the total freshwater

input. Flow rates are modulated by the precipitation and snow melting regimes

characterizing the different sections of the drainage basin. The primary flow

rate maximum is related to the precipitation maximum in autumn, while snow

melting contributes to the spring peak. The minimum flow rate is in summer,

except for the northern coast rivers, which exhibit a winter minimum.

The water budget is the net flux of water entering or leaving the basin. By

taking into account only evaporation (𝐸) and precipitations (𝑃) we can define

the surface water budget𝑊 ′ = 𝐸−𝑃 (positive for a water flux from the sea to the

atmosphere). The long-term annual surface water budget 𝑊 ′
is positive both in

the Adriatic and in the whole Mediterranean Sea. By taking into account also

the river runoff (𝑅) we define the total water budget

𝑊 = 𝑊 ′ − 𝑅 = 𝐸 − 𝑃 − 𝑅. (1.2)

The annual estimates of 𝑊 are negatives for the Adriatic Sea, denoting it as a

dilution basin. In [11] the water budget is estimated to be𝑊 = −1.14(20)m yr
−1

.

On the other hand annual values of 𝑊 for the whole Mediterranean Sea are

positive, making it a concentration basin [8].

The primary circulation pattern of the Adriatic Sea is characterized by ther-

mohaline dynamics, driven by buoyancy gain, due to river runoff, heating and

precipitation, and loss, caused by the evaporation and cooling. There are two

kind of thermohaline circulation in basins, depending on the density of water

in the basin with respect to the external water. When the density in the basin is

less that the outside, this is called positive thermohaline circulation, in the op-

posite case, negative thermohaline circulation. The Adriatic exhibits both types

of circulation [14]. The Norhern Adriatic receives substantial river water inflow

which promotes positive circulation. Simultaneously, strong winter evaporation

leads to the formation of denser water, responsible of the negative circulation.

The coexistence of the two phenomena is possible because riverine waters flow

mainly along the coast and only a small part mix with the interior waters, with-

out inhibiting the dense water production. The positive circulation occurs when
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1.2 Sea temperature monitoring Chapter 1 - Introduction

light water accumulates in the basin, leading to a rising of the sea level and a

consequent pressure gradient force directed outside the basin. As result of this

force, the geostrophic response leads to a convergence toward the boundary on

the right side (Italian coast), creating consequently a rise in the sea level along the

coast. The resulting current is called the Western Adriatic Current (WAC) and is

mainly confined on the shallow italian shelf. The negative circulation is driven

by the formation of dense water that sinks. Dense water induces a baroclinic

pressure gradient force that combined with the geostrophic response creates a

bottom current that flows outside the basin following the western boundary.

This current is called the Deep Water Outflow Current (DOWC). The outflowing

of the WAC and the DOWC causes a lowering of the sea level inside the basin

that in turn causes the formation of an inflowing current from the Ionian Sea

through the Strait of Otranto. Since both outflowing currents export water on

the western side, the inflowing current take place on the eastern side, and it’s

called the Eastern Adriatic Current (EAC). Differently from WAC, EAC is not

confined nearshore but it’s wider and it spread in the basin accordingly to the

sea level distribution. In addiction to these main currents, to this main currents,

observations have revailed the presence of gyres. A cyclonic gyre is present in

the northern Adriatic, with prevalence in the autumn. More extended gyres are

present also in the middle Adriatic and southern Adriatic.

A schematic representation of the circulation is shown in Figure 1.4

1.2 Sea temperature monitoring
Observations of the ocean can be divided in in-situ observations, that are direct

measurements of sea water properties made using a combination of sensors on

a wide range of platforms, and remote observations, made using remote sensing

techniques from satellites.

in-situ observations Measurements of sea surface temperature have been

made for over 200 years but they were very sparse until 1850’s when mea-

surements became more systematic [15]. First observations were made from

ships, by collecting sample of water in a bucket and measuring its temperature,

leading to various inaccuracies and inconsistencies, due to many factors as the

material and shape of the bucket and the atmospheric conditions. Figure 1.1B

shows the evolution of the measuring instruments over time as recorded by the

International Comprehensive OceanAtmosphere Data Set (ICOADS). Nowadays

ship-based measurements relies on measuring instruments that automatically

collect data, like thermosalinograph (TSG) and expendable bathythermograph
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1.2 Sea temperature monitoring Chapter 1 - Introduction

(XBT). TSG measures sea surface temperature and conductivity, used for com-

puting salinity, from a water intake, while also keeping track of GPS data. XBT

is a probe that dropped from a ship measures the temperature as it falls through

the water. The probe is designed to fall at a known rate, so that the depth of the

temperature profile can be inferred from the time since it enters the water.

The prevalent source of in-situ measurements comes from drifting buoys that

collect data following the ocean currents providing a dynamic and wide-ranging

view of surface conditions. Maintaining an evenly distribution is challenging,

due to the difficulty of deployment at high latitudes and the tendency to cluster

in the zones of ocean currents convergence.

On the other hand, moored buoys provide continuous, high-frequency mea-

surements at fixed locations, complementing the spatial coverage of drifting

buoys with long-term time series data at specific points of interest.

The Argo program further expanded oceanic monitoring capabilities with

an array of approximately 4,000 floats. These autonomous devices operate on

a 10-day cycle: drifting at 1,000 m depth for 9 days, then descending to 2,000

m before ascending to the surface while measuring temperature and salinity

throughout the water column. In the context of the Mediterranean Sea the Argo

program has been developed to adapt the characteristics of these devices to the

features of this basin, in the program called MedArgo. The profilers are thus

programmed to execute 5-day cycles, drifting at a modified parking depth of

350 m before to execute the vertical profiling, from either 700m or 2000m up to

the surface [16].

Complementing the Argo program are ocean gliders, which are autonomous

underwater vehicles, that can be equipped with various sensors to measure

temperature, salinity and ocean currents. They move through the water column,

ascending and descending with changes in buoyancy while they can also move

horizontally and be programmed to follow specific routes.

Since 2004 several hundred thousand of temperature and salinity profiles

have been collected by CTD (conductivity, temperature and depth) instruments

mounted on marine mammals. This data are very useful for ocean modeling

and sea ice verification in high latitudes [17].

In the Adriatic sea an important source of in-situ observations is the oceano-

graphic tower called Acqua Alta, located 8 nautical miles off the coast opposite

Venice. It has been operative since 1970 and it’s the world’s only offshore oper-

ating platform that allows researchers and technicians to remain on board for

extended periods during measurement campaigns.

Satellite observations Since the beginning of operational satellite SST in 1981

[17] satellite observations have provided data SST data on global scale, constitut-

14
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ing a crucial part of the ocean monitoring. The retrieval of SST from satellite is

made based on the Plank equation, that links the thermodynamic temperature

to the radiation emitted, for an ideal blackbody:

𝐵𝜆(𝑇) = 2ℎ𝑐2𝜆−5

(
𝑒

ℎ𝑐
𝜆𝑘𝑇 − 1

)−1

(1.3)

where ℎ is the Planck constant, 𝑐 is the speed of light in vacuum, 𝑘 is the Boltz-

mann’s constant, 𝜆 is the wavelength, and 𝑇 is the temperature in Kelvin. 𝐵𝜆(𝑇)
is the radiant energy flux for unit wavelength. The temperatures derived from

the radiance measurements of satellite radiometers, using Planck’s Function are

called brightness temperatures.

Even though ocean surface radiant energy flux is close to the blackbody one,

in particular at certain wavelength [18], its emissions are a fraction of 𝐵𝜆(𝑇). This

fraction is called emissivity 𝜖𝜆 and is wavelength dependent. The emitted radi-

ation interacts with the atmosphere, where it’s scattered or absorbed, and only

a fraction 𝑓𝜆 reach the top of the atmosphere. Also the atmosphere emissions

𝐿𝜆 should be taken into account, so the total radiation measured by the satellite

sensor is 𝐿𝜆 + 𝑓𝜆𝜖𝜆𝐵𝜆(𝑇).
There are two kind of satellite sensor for SST retrieval: infrared (IR) and

passive microwaves (PMW) radiometers. Infrared radiation is emitted from a

skin ocean layer with thickness less than 0.1 mm. This layer is cooler than

the water beneath, so IR radiometers derive temperature lower of 0.17 K on

average, with respect to the subskin layer [19]. SST retrieved from IR sensor has

a typical spatial resolution of from 0.75 to 4 km at nadir, higher than PMW based

observations.

The main issue of IR observations is that infrared radiation emitted from the

sea surface highly interact with atmosphere and this lead to several problems.

First of all the brightness temperature measured by a satellite is not the same

as would be measured by a radiometer of comparable accuracy just above the

sea surface. This is due to the high variability of the trasmissivity of clear-

sky atmosphere in the IR, both with wavelength and with concentration of

atmospheric gases. Thus SST retrieval in the IR band is it possible only in the so

called atmospheric windows, where the atmosphere is relatively transparent.

Another issue of the satellite measurements is that in the presence of clouds

the SST retrieval process can produce significant errors, so effective cloud screen-

ing algorithms are used to exclude cloudy pixels from the SST field [20] [21].

Also in clear sky conditions, atmosphere molecules absorb sea surface emission

and also emit radiation. Being at lower temperature than SST they have a cooling

effect on the brightness temperature at satellite height. A variety of algorithm

have been developed for retrieving SST, taking into account this effect [19].
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On the other hand PMW radiometer measures the temperature at the subskin

layer, at approximately 1 mm depth. As previous mentioned, they have coarser

spatial resolution of about 25 km [17]. A great advantage of PWM derived SST

measures is that they are largely insensitive to the presence of clouds, except

in the presence of heavy rainfall [3]. Microwave radiation from sea surface can

be contaminated by radio frequency interference from ground based sources,

geostationary satellites and communication satellites.

1.3 Deep learning
Deep learning is a subset of machine learning that employs artificial neural

networks models to find pattern in the data. One approach of machine learning

is the supervised learning, in which the aim is to infer the relationship between

inputs and targets in a set of labeled data. Let x ∈ R𝑀
be the vector of input

variables, called features and y ∈ R𝑁
the vector of the targets, the task of a

machine learning model is to find the mapping from features to targets, given

by the function 𝑓 (·) such as:

y = 𝑓 (x). (1.4)

Machine learning models doesn’t solve the problem analytically, instead they

find the best representation of 𝑓 (·), using a parameterized function 𝑓𝜃 where 𝜃
are the model’s parameters, such that the output of the model is:

ŷ = 𝑓𝜃(x). (1.5)

The model’s parameters 𝜃 are optimized by minimizing a loss function ℒ(y, ŷ),
that quantify the misfit between the true target y and the output of the model ŷ.

The parameters are not optimized in a single step, but instead the optimization

take place in a iterative way in which the parameters are updated at each step.

This process is the learning phase of the model, called training.

Artificial neural networks are mathematical models that mimics the infor-

mation processing in brain, where each of the billions of neurons is connected

to other neurons by thousand of synapses, forming a complex network with

around 10
14

connections [22]. The ancestor of the modern neural networks is

the perceptron, firstly introduced by the scientist Frank Rosemblatt in the 1950s

and 1960s [23]. The perceptron can be described as a model that takes in input a

set of input variables {𝑥1, . . . , 𝑥𝑀} and performs a linear combination, assigning

a weight 𝑤𝑖 to each variable, and adding also a constant value 𝑏 called bias.

The output of the perceptron is binary, and is given by the application of a step
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function to the sum of the linear combination and the bias:

output =

{
0, if

∑𝑀
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏 ≤ 0

1, if

∑𝑀
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏 > 0.
(1.6)

The perceptron is the basic unit of neural networks but its capabilities are lim-

ited. It’s possible to overcome this limitations by stacking together various

perceptron units, by forming the so called multi-layer perceptron (MLP). The

basic perceptron use the step function to mimic the biological neuron activation,

so if the neuron sends a signal or not. This function is then called activation
function and in artificial neural networks serves to introduce non linearity into

the network, which is crucial for learning complex patterns. Without activation

functions, neural networks would essentially be just a series of linear transforma-

tions, limiting their ability to learn and represent complex relationships in data.

In MLP activation functions other than the step function must be used. This

is primarily due to the use of gradient-based optimization techniques such as

gradient descent and backpropagation, which require differentiable activation

functions. The step function, being non-differentiable, is unsuitable for these

methods. Common activation function are the sigmoid 𝜎, the rectified linear

unit (ReLU), the hyperbolic tangent, defined as:

ReLU(𝑥) = max(0, 𝑥) (1.7)

𝜎(𝑥) = 1

1 + 𝑒−𝑥
(1.8)

tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(1.9)

A layer is formed by stacking in parallel 𝑁 units, each with their own weights

and biases. So a layer of this kind has 𝑀 inputs and 𝑁 outputs, with each of

the outputs being connected to all inputs, forming the so called fully connected

layer or dense layer. Layers are then concatenated, with the outputs of one layer

forming the input of the next one. Layers between the input and the output are

called hidden layers and a network with more than one hidden layer is called

deep network.

Modern deep learning has evolved developing several architectures like Con-

volutional Neural Networks (CNNs) for image processing and gridded data, Re-

current Neural Networks (RNNs) for sequential data, Transformers for natural

language processing, and Graph Neural Networks (GNNs) for graph structured

data.

In oceanography and environmental sciences, deep learning has shown his

results in several studies. Neural networks have found application in prediction,
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optimization of the remotely sensed data and improve spatial resolution of sea

surface variables, like temperature, salinity, currents, height. They have also

been used in the identification in the identification of sea ice, and track detection

and prediction of mesoscale eddies, fronts and internal waves [24].

1.4 Motivation and objective of the study
The aforementioned in-situ and satellite based methods for measuring sea tem-

perature give a very good description of this quantity and have significantly

advanced our understanding. However they still face some limitations as the

gaps in the data retrieved by satellite measures in the presence of clouds, and

the sparsity of in-situ measurements.

This study proposes an approach to sea temperature reconstruction using air

temperature data, from coastal weather stations. Neural networks are used to

achieve this, because of their ability to capture complex, nonlinear relationships

between inputs and targets. This approach has several advantages and can

potentially give some interesting insights.

• Neural networks can potentially fill gaps in satellite SST data where di-

rect measurements are unavailable or infrequent, particularly valuable for

regions frequently obscured by cloud cover.

• By leveraging the existing coastal weather stations network, this method

potentially allow for more comprehensive sea temperature monitoring

without significant increases in operational expenses.

• There may be longer historical records of air temperature from weather sta-

tions compared to sea temperature measurements, allowing for potential

reconstruction of historical data.

• Weather station data is often available in real-time, whereas satellite and

in-situ data may have longer processing and distribution delays.

The primary objective of this study is to develop and validate a neural net-

work model for reconstructing SST in the North Adriatic Sea using air temper-

ature data from three weather stations located at Ancona, Venezia and Trieste.

These stations were selected because of their strategic coastal locations and the

potential influence of local weather conditions on sea temperature.

Three experiments were conducted, varying the target spatial extension.
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Chapter 2

Literature review

Deep learning and neural networks have seen an increasing number of interest

in recent years and found applications in a variety of different fields. One of

these is oceanography, where the number of published paper that involve deep

learning in the oceanographic science is greatly increased in the last years [24],

as shown in Figure 2.1.

Figure 2.1: Trends in the number of papers published on the application of deep learning

in oceanography retrieved from the Web of Science each year since 2012. After [24].

Among hundred of publications in this section two of them are presented

that involve the use of neural networks in a data assimilation framework and

the implementation of a convolutional neural network for filling gaps in SST

satellite observations.
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2.1 Neural networks for filling gaps in satellite ob-
servations

One of the popular application of neural networks in oceanography is the recon-

struction of gaps in the satellite observations. In [25] and [26] a convolutional

neural network is used to fill missing data due to the presence of clouds or

gaps between tracks in satellite data. The architecture they used, called DIN-

CAE (Data INterpolating Convolutional Auto-Encoder), can handle non gridded

data in input, and provide gridded fields as output with also variances of the

reconstructed pixels. In order to do this, instead of using a standard L2 or L1

loss function they used the negative log-likelihood of a Gaussian with mean 𝑦̂

and variance 𝜎̂2
:

𝐽(𝑦̂𝑖 𝑗 , 𝜎̂2

𝑖 𝑗) =
1

2𝑁

∑
𝑖 𝑗

[(
𝑦𝑖 𝑗 − 𝑦̂𝑖 𝑗

𝜎̂𝑖 𝑗

)
2

+ log(𝜎̂2

𝑖 𝑗) + 2 log(
√

2𝜋)
]

(2.1)

where the sum runs over all grid points with valid values and N is the number

of these values. The first term of the right-hand side of the equation is the MSE,

but scaled by the estimated error standard deviation, the second term penalizes

any overestimation of the error standard deviation.

The structure of the network is constituted of two sequential Unet auto-

encoders, where the output of the first is concatenated to the inputs and passed

to the second auto-encoder. This approach is called refinement. An intermediate

loss funtion is computed with the output of the first auto-encoder and combined

with the loss function at the final auto-encoder. The final loss is therefore:

𝐽𝑟 = 𝛼𝐽(𝑦̂𝑖 𝑗 , 𝜎̂2

𝑖 𝑗) + 𝛼′𝐽(𝑦̂′𝑖 𝑗 , 𝜎′
2

𝑖 𝑗) (2.2)

Where 𝑦′ and 𝜎′ are the outputs of the second auto-encoder and the weights 𝛼
and 𝛼′

controls the importance given to the intermediate output.

Input data of the network are: the values of the variables divided by the

corresponding error variance and the inverse of the error variance. In this way

missing data are treated as data with infinitely large errors and therefore the

corresponding input is zero.

The final layer of the network produces a 3D array 𝑇𝑖 𝑗𝑘where the first two

dimensions represents the size of the grid and the third dimension contains

the output from which the values of the variable and their error variances are

derived as:

𝜎̂2

𝑖 𝑗 =
1

max(exp(min𝑇𝑖 𝑗1,𝛾)𝜇)
(2.3)

𝑦̂𝑖 𝑗 = 𝑇𝑖 𝑗2𝜎̂
2

𝑖 𝑗 (2.4)

20



2.2 Neural networks and data assimilation Chapter 2 - Literature review

where the parameters 𝛾 and 𝜇 and the max and min function are introduced

to prevent the division for a value close to zero or the exponentiation for a too

large number.

The problem of non gridded data arise from the convolutional layer of the

neural network, that requires data discretized on a rectangular grid. The ap-

proach to address this issue has been to compute the interpolation of the weights

of the first convolutional layer, discretized on a regular grid, to the data location

of the non gridded data. Instead of interpolating the weights directly, the adjoint

of the linear interpolation is applied to the non-gridded values. In this way the

convolution can be implemented using the optimized functions of the network

library.

This approach has been compared with a more classical method based on

empirical orthogonal function, proving an effective improvement of the score in

the reconstruction.

2.2 Neural networks and data assimilation
In [27] neural networks are used in a data assimilation experiment, that consist in

the assimilation of transmission loss (TL) data into an oceanic model. The study

compare the capability of both a neural network (NN) and canonical correlation

analysis (CCA) in the reconstruction of the TL profile using temperature data,

and use the relative models as observational operator in the cost function of the

data assimilation scheme. Namely, the two statistical methods aim to build the

operator such as:

y𝑇𝐿 = 𝐻𝐴𝐶(x) + 𝜖𝑇𝐿 (2.5)

where y𝑇𝐿
is the vector of the acoustic observations, x is the temperature field

and 𝜖𝑇𝐿 is the associated error. And

𝐻𝐴𝐶(x) − 𝐻𝐴𝐶(xb) ≃ H𝐴𝐶(x − xb) = H𝐴𝐶𝛿x (2.6)

where H𝐴𝐶
is the tangent-linear observational operator, linearized around the

background state xb
. The models are trained using an ensemble of NEMO model

simulations that provide the temperature fields for the input of the NN, while

sound speed fields have been used to run the acoustic model RAM and obtain

the transmission losses, used as output. The NN model implemented in the

study is composed of two dense layers, with ReLU activation function, and an

output layer without activation, and trained using root mean error loss function.

Since the assimilation scheme needs a linearized operator, the NN model had to

be linearized around the background fields xb
. The results of the reconstruction

of TL data from temperature data shown that NN outperform CCA in this task,
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also in the linearized version. In the assimilation experiment both methods

shown improvements compared to the control run, with better results for the

NN implementation in reducing the RMSE of temperature and mixed layer

depth. Another advantage of the NN approach is that it’s able to capture the

temporal changes of the covariations between input and output, while adapting

CCA to be flow dependent is unfeasible for real world applications.
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Chapter 3

Data

In order to obtain input features and target to train and evaluate the neural

network models we need historical atmospheric data and sea temperature data.

Coastal weather stations have been the source of air temperature, wind and

precipitation data, while sea temperatures have been obtained from two source:

Acqua Alta oceanographic tower for puntual observations and CMEMS reanal-

ysis for gridded data. In addition, satellite data are used to perform a cross

comparison between the results obtained from the model reconstruction, the

reanalysis data and satellite observations

3.1 Weather stations data
Atmospheric data have been obtained from weather stations located at Ancona,

Venezia and Trieste. Since those stations are located in three different regions,

data are stored in databases of the respective Protezione Civile and Arpa web-

sites, namely:

• Protezione Civile Marche, Sistema Informativo Regionale Meteo-Idro-

Pluviometrico (SIRMIP):http://app.protezionecivile.marche.it/sol/
indexjs.sol?lang=it.

• Arpa Veneto (ARPAV): https://www.ambienteveneto.it/datiorari/.

• Arpa Friuli Venezia Giulia, Osservatorio meteorologico regionale (OS-

MER): https://www.meteo.fvg.it/archivio.php?ln=&p=dati.

Ancona Regarding temperature measurements at Ancona, the measurement

station selected is “Ancona Regione”, located at 43.610
◦
N, 13.508

◦
E, at an ele-

vation of 91 m a.s.l and with sensor placed at 2 m from the ground [28]. Data
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from this weather station start from September 2003 and the frequency of mea-

surements depends on the variable selected: half hourly for temperature (T) and

wind (w), and every 15 minutes for precipitation (p). After selecting the sensor

and the kind of data, data can be downloaded by selecting the start and end

dates, in a maximum range of six months. To avoid manually selecting all dates

ranges, an automated script is adopted, using Selenium package for Python.

Venezia Regarding Venezia data, the station name is “Venezia - Istituto Ca-

vanis”. The station is located at 45.420
◦
N, 12.328

◦
E, at 18 m a.s.l., and the

temperature sensor is at 2 m from the ground. Accessing to the web portal, you

can select the stations and have access to all data measured by that station, at

hourly time steps. A maximum range of 365 days can be selected and data are

displayed in a table, and they can be visualized also in csv or xml format, in the

latter are showed also the station’s coordinates. Also in this case the process of

selecting dates and saving data to a single file has been automatized.

Trieste Data of Trieste has been collected by the OSMER portal, using data of

“Trieste molo F.lli Bandiera” station, located at 45.650
◦
N, 13.752

◦
E, at 1 m a.s.l.,

with temperature sensor at 10 m from ground [29]. Measurements are available

for download since 1993, but because other data’s start date is more recent, only

data since 2003 have been downloaded. OSMER provides hourly data from

weather station. Data can be visualized and downloaded only one day at a time,

so the process of download several years of data can be long and also in this

case has been automatized.

A summary of the weather stations’ features is presented in Table 3.1

Station name Coordinates Altitude a.s.l. Variable Sensor height Data frequency Start time End time

Ancona Regione (43.610
◦
N, 13.508

◦
E) 91 m

T 2 m 1/30 min

2003-09-17 2024-02-10w 1/30 min

p 1/15 min

Venezia -

Istituto Cavanis

(45.420
◦
N, 12.328

◦
E) 18 m

T 2 m 1/60 min

2010-01-01 2024-02-10w 1/60 min

p 1/60 min

Trieste molo

F.lli Bandiera

(45.650
◦
N, 13.752

◦
E) 1 m

T 10 m 1/60 min

2003-01-01 2024-02-10w 1/60 min

p 1/60 min

Table 3.1: Summary of weather stations data.

Locations of the three weather stations is shown in Figure 3.1, along with

position of Acqua Alta tower.
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Figure 3.1: Locations of the weather stations and of the Acqua Alta oceanographic

platform.

3.2 Acqua Alta oceanographic tower data
The Acqua Alta oceanographic tower (AAot), operated by Consiglio Nazionale

delle Ricerche (CNR), has been in operation in the northern Adriatic Sea since

March 1970 and it is the only open-sea platform in the world that allows re-

searchers and technicians to stay on board for extended periods, conducting

measurements even in adverse weather conditions. It is located about 8 nautical

miles off the coast of Venice, at 45.314
◦
N, 12.508

◦
E, in 16 meters of water. Lo-

cation of the tower is shown in Figure 3.1, along with locations of the weather

stations. The platform consists of a laboratory module and living quarters, sup-

ported by a steel structure embedded 22 meters into the seabed. It is equipped

with advanced meteorological and oceanographic instruments, with data being

both recorded onboard and transmitted in real time to shore. These instruments

continuously monitor essential variables such as sea level, sea temperature,

wind speed, wave direction, and other oceanographic and atmospheric param-

eters. AAot platform plays a critical role in operational forecasting for high

water (acqua alta) in Venice. Its long, uninterrupted time series of wave mea-

surements, dating back to 1978, is among the longest in the world, providing

extremely valuable data for climate change studies. The platform has also been
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used to calibrate satellite instruments, such as the ERS-1 altimeter and the Sea-

WiFS and OLTS optical sensors. Furthermore, it contributes to international

research networks like DANUBIUS-ESFRI and JERICO-RI and collaborates with

the European Commission’s Joint Research Centre. The platform is equipped

with sophisticated technologies, including a broadband wireless communica-

tion system that allows real-time data transfer and internet access for onboard

scientists. High-resolution webcams monitor sea conditions, and underwater

cameras provide continuous surveillance of marine life and ocean phenomena.

It also supports complex in-situ experiments, reducing the risk of instrument

loss due to the secure nature of the platform. Wave measurement campaigns

with on-board personnel and highly sophisticated instrumentation have clari-

fied unknown aspects of the dynamics of wave generation by the wind. This

has led to a marked improvement in operational sea forecasting worldwide. The

platform has been also essential in analyzing extreme events such as the Vaia

storm of 2018 and the exceptional high water event of November 12, 2019 [30]

[31].

Provided dataset include different variables like sea temperature, density,

salinity, at 3 m, 6 m, 14 m, 17 m depths and with various sampling frequencies

and time ranges:

• a long series of sea temperature (𝑇) measurements at 3 m depth, ranging

from the end of 2002 to beginning of 2024, with sampling frequency of 5

minutes;

• records of temperature (𝑇), conductivity (𝐶), salinity (𝑆), density anomaly

(𝜎), optical dissolved oxygen (DO), percentage of oxygen saturation (%

DO), chlorofylle (Chl) and turbidity (NTU) at 3 m, 6 m, 14 m depths, with

sampling frequency of 10 minutes, from 2020 to 2024.

• long series if records of temperature at sea bottom (17 m) from 2008 to

2019, recorded with various frequency

• measurements from 2019 to 2022 of temperature (𝑇) at sea bottom, pressure

(𝑃), sound speed (𝑐), heading (𝐻) and pitch (𝜃), from 2019 to 2022, recorded

every 30 minutes

A summary of various measurement available from AAot is reported in Table 3.2.
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Variables Sensor depth Data frequency Start time End time

𝑇 3 m 1/5 min 2002-12-04 2024-01-25

𝑇, 𝐶, 𝑆, DO, % DO, Chl, NTU 3, 6, 14 m 1/10 min 2020-08-07 2024-02-09

𝑇 17 m 1/30 min 2019-05-07 2022-06-29

𝑇, 𝑐, 𝐻, 𝜃 17 m various 2008-06-30 2019-04-11

Table 3.2: Summary of Acqua Alta platform data.

3.3 CMEMS data
The Copernicus Marine Environment Monitoring Service (CMEMS) is a key

component of the European Union’s Earth Observation Program, Copernicus,

aimed at providing regular and systematic information about the state of the

world’s oceans and seas. Its primary goal is to provide comprehensive, real-time,

and historical ocean data, including parameters like sea temperature, salinity,

currents, and chlorophyll concentration, at both global and European regional

levels. CMEMS integrates data from satellite observations, in-situ measure-

ments, and numerical models, offering a wide range of products and forecasts

that are indispensable for understanding ocean dynamics, marine resources,

and environmental changes. Its data products are freely available at CMEMS

website and they can be downloaded after registration.

3.3.1 Reanalysis data
The Mediterranean Sea Physical Reanalysis Product (MEDSEA_REANALYSIS_-

PHYS_006_004) [32], part of the CMEMS catalog, offers a comprehensive re-

analysis dataset for the Mediterranean Sea, spanning the period from 1987 to

July 2022. Even though data of reanalysis goes back to 1987, only temperature

data since 2010 have been downloaded, beacause of the availability of Venezia

weather station that start from 2010. A summary of temporal coverage of the

various temperature datasets is reported in Figure 3.2.

A detailed description of the product is given in [33]. The reanalysis system

is composed of three main components: an ocean model, that solves the hydro-

dynamic equations, a data assimilation scheme, to incorporate observations into

the model, and the assimilated data.

Model The ocean model is the Nucleus for European Modelling of the Ocean

(NEMO) v3.6 model, which has been implemented in the Mediterranean at a

spatial resolution of 1/24° (approximately 4.5 km) with 141 unevenly spaced

vertical levels, allowing for detailed simulations of the physical dynamics of the

27



3.3 CMEMS data Chapter 3 - Data

Mediterranean basin. The model also extends into the Atlantic in order to better

resolve the exchanges with the Atlantic Ocean at the Strait of Gibraltar.

Data Assimilation The data assimilation scheme is the OceanVar scheme [34].

This scheme uses the variational formulation of data assimilation where a cost

function has to be minimized in order to find the best estimation (analysis) of

the state variable x. The cost function quantify the distance between the analysis

and both the physical model output (background) and the observations:

𝐽(x) = 1

2

(x − x𝑏)𝑇B−1(x − x𝑏) +
1

2

(ℋ(x) − y)𝑇R−1(ℋ(x) − y) (3.1)

where x is the analysis state vector, x𝑏 is the background state vector, y is the

vector of the observations, B is the background error covariance matrix, R is

the observational error covariance matrix and 𝐻 is the non-linear observational

operator that maps the analysis state into the observational space. The first part

represents the distance between analysis and background, while the second part

measures the difference between analysis and observations. Eq. 3.1 is linearized

around the background state, obtaining:

𝐽(𝛿x) = 𝛿x𝑇B−1𝛿x + 1

2

(H𝛿x − d)𝑇R−1(H𝛿x − d) (3.2)

Where d = y −ℋ(x𝑏) is the innovation vector, H is the linearized observational

operator, evaluated at x𝑏 and 𝛿x = x− x𝑏 are the increments. In this formulation

the variables to be corrected are temperature (T), salinity (S) and sea surface

height (𝜂), so the state vector is x = (𝑇, 𝑆, 𝜂). In practice the fully non-linear

operator ℋ is used only once for computing the innovation vectors employing

the background fields closer to the observation time, using the so called First

Guess at Appropriate Time variation of 3DVar (FGAT-3DVar).

Assimilated data The system assimilates along track sea level anomalies (SLA)

from satellite altimetry (SEALEVEL_EUR_PHY_L3_REP_OBSERVATIONS_008_-

061 from CMEMS), in-situ temperature and salinity profiles, given by a combina-

tion of INSITU_GLO_NRT_OBSERVATIONS_013_030 from CMEMS and in-situ
dataset from SeaDataNet.

Domain of interest The domain of interest is the Northern Adriatic, where

the three selected coastal weather stations are located. So the domain of the

reanalysis data downloaded extends from (12E-17E, 42.52N-45.98N) for a total

of 84 × 121 grid points. The vertical levels considered are 5, from 1 m to 10.5 m.
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3.3.2 Satellite data
For the comparison with satellite temperatures the dataset used is the Repro-

cessed Mediterranean L4 dataset, SST_MED_SST_L4_REP_OBSERVATIONS_-

010_021 [35]. It provides a stable and consistent long-term SST time series over

the Mediterranean Sea and the adjacent North Atlantic box. This product con-

sists of daily (nighttime), optimally interpolated (L4), satellite-based estimates

of the foundation SST (namely, the temperature free, or nearly-free, of any diur-

nal cycle) at 0.05° resolution grid covering the period from January 1st 1982 to

present. In order to make the comparison with reconstructed temperature by

neural network models, in the test sets, only data in the period from 2020 to July

2022 have been downloaded.

Data processing The L4 SST product is obtained by processessing multiple

satellite data sources through various quality control and merging steps before

producing the final interpolated product. Input data are Level-3 Collated (L3C)

nighttime SST data from multiple sources:

• ESA CCI SST data (mid-1981 to 2016)

• C3S data (2017 to present)

• PFV53 data (late 1981 to 2014)

L3C data are selected based on the quality flags and confidence values asso-

ciated with each pixel. Additional cloud contamination masking is made by

flagging the pixels that result to be colder (by a fixed threshold) than the pre-

vious day value. The L3C data are used to build a single multi-sensor merged

(L3S) image per day by selecting only the highest quality measure available for

each grid point. The quality of the measurements is established by sensor val-

idation statistics that identify a hierarchy of sensors, performed by Met Office.

Large-scale biases are estimated and removed through comparison with already

merged data as reference. The final processing stage employs a space time op-

timal interpolation (OI) scheme using daily decadal climatology as first guess.

Input data are selected only within a limited sub-domain: temporal window of

ten days and a spatial influential radius ranging between 300 and 900 km. The

validation is based on a co-location procedure that operates on a daily basis,

identifying the nearest neighbor grid points in both L3S and L4 products to

each in-situ measurement. The temporal matching window spans from 21:00

local time of the previous day to 06:00 local time of the validation day, ensuring

appropriate temporal correspondence. This comprehensive validation covers

a substantial period from January 2005 to December 2021, providing robust

long-term performance assessment.
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Domain of interest Since reanalysis dataset and satellite dataset are not de-

fined on the same grid points, the domain considered for this latter is from

(11.96E-17.06E, 42.41N-46.03N)

Figure 3.2: Temporal coverage of temperature datasets from different sources: weather

stations (first three rows), Acqua Alta platform measurements at various depths (middle

rows), and CMEMS reanalysis data (bottom row).
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Chapter 4

Methods

This study is divided in three parts, that differ in data source, spatial extension

and data frequency:

• Single point: reconstruction of hourly sea temperature measured by Ac-

qua Alta oceanographic tower.

• Spatial average: reconstruction of daily spatially averaged sea temperature

obtained from reanalysis of Copernicus Marine Service (CMEMS).

• Gridded temperature: Reconstruction of monthly gridded temperature

obtained from CMEMS reanalysis.

For each of these parts, neural network models have been implemented and

trained.

4.1 Deep learning framework
The neural network models were implemented using TensorFlow 2.17.1 and

Keras 3.5.0 on Google Colab’s cloud computing platform. TensorFlow provides

high-level APIs for building and training neural networks, while Keras serves

as its primary interface for deep learning implementations.

4.1.1 Neural Network Layers
The model architectures incorporate several types of neural network layers:

• Dense layers: Fully connected layers implementing the operation:

y = 𝜙(Wx + b) (4.1)
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where x is the input vector, y is the output vector, W is the weights ma-

trix, b is the bias vector, and 𝜙 is the activation function. In the Keras

implementation the main parameters are:

– number of units: represents the dimension of the output vector 𝑦

– activation function

• Dropout layers: Regularization layers that randomly deactivate a fraction

of neurons during training according to:

y = m ⊙ x (4.2)

where m is a binary mask and ⊙ represents element-wise multiplication.

This layer serves to discourage overfitting during training. This operation

happen at train time, while at test time, no units are dropped out; instead,

the layer’s output values are scaled down by a factor equal to the dropout

rate, to balance for the fact that more units are active than at training time.

In the Keras implementation the main parameter is the rate, that indicates

the fraction of units to deactivate randomly.

• Conv2D layers: Two-dimensional convolutional layers performing:

𝑦𝑖 𝑗 =

𝑀∑
𝑚=1

𝑁∑
𝑛=1

𝑤𝑚𝑛𝑥𝑖+𝑚,𝑗+𝑛 + 𝑏 (4.3)

where 𝑤𝑚𝑛 are the learnable filter weights and 𝑏 is a bias term. An acti-

vation function is then applied to the result. The main parameters of the

Keras implementation are:

– filters: the dimension of the output space, i.e. the number of the

filters applied;

– kernel_size: the size of the filters

– stride: the step of the application of the filter

– padding: whether or not pad the input shape with zeros

• MaxPooling2D layers: Downsampling operations that reduce spatial di-

mensions:

𝑦𝑖 𝑗 = max

(𝑚,𝑛)∈𝑅𝑖 𝑗

𝑥𝑚𝑛 (4.4)

where 𝑅𝑖 𝑗 is a rectangular region centered at position (𝑖 , 𝑗). The main

parameter is the pool_size, determining the size of 𝑅𝑖 𝑗 .

• Conv2DTranspose layers: Transpose convolution layers for upsampling,

effectively performing the reverse operation of Conv2D layers.
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4.1.2 Optimization
To train artificial neural networks, i.e., to find an optimal set of parameters 𝜃 that

minimize the loss function ℒ, a fundamental technique called gradient descent

is employed. The basic idea of gradient descent is to iteratively update the pa-

rameters in the direction of steepest descent of the loss function. Mathematically,

this can be expressed as:

𝜃(𝜏+1) = 𝜃(𝜏) − 𝜂∇𝜃ℒ(𝜃𝜏) (4.5)

Where 𝜃(𝜏+1)
is the updated parameter vector, 𝜃(𝜏)

is the current parameter

vector, 𝜂 is the learning rate, a hyperparameter that controls the step size, ∇𝜃ℒ
is the gradient of the loss function with respect to the parameters. The gradient

∇𝜃ℒ provides the direction of steepest ascent, so we move in the opposite

direction to minimize the loss.

Evaluate the gradient can become extremely inefficient if there are many

data points in the training set because each error function or gradient evaluation

requires the entire data set to be processed. So the improve efficiency, the loss

function and the gradient are evaluated in small subset of data, called mini-

batches. A complete pass through the whole training set is known as a training

epoch.

The models were trained using the Adam (Adaptive Moment Estimation)

optimizer, which combines two approaches for gradient descent optimization:

momentum and RMSprop (Root Mean Square propagation). Momentum ap-

proach consists in adding a term to 4.5, made by the parameter update at the

previous step, −𝜂∇𝜃ℒ(𝜃(𝜏−1)), multiplied by a scaling factor 𝜇, 0 ≤ 𝜇 ≤ 1. This

term tend to accumulate, resulting in an effective increase of the learning rate

from 𝜂 to

𝜂
1−𝜇 , that help to speed up the convergence toward the minimum

of the loss function. In zones of high curvature of the loss function, as near

a minimum, the gradient sign tends to oscillate, so successive iterations lead

the momentum terms to cancel out and tending to the original learning rate.

RMSprop adapts the learning rate for each parameter by dividing the current

gradient by the square root of an exponentially decaying average of squared

gradients. This scaling helps handle parameters that have different scales of

gradients, preventing too large updates for frequently occurring features and

too small updates for infrequent ones.

The loss function employed is the Mean Squared Error (MSE):

MSE =
1

𝑁

𝑁∑
𝑖=1

(𝑦̂𝑖 − 𝑦𝑖)2 (4.6)

where 𝑦̂ and 𝑦 are the output of the network and the true value, respectively.
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To prevent overfitting, an Early Stopping callback monitored the validation loss

and halted training when no improvement was observed for a specified number

of epochs, called patience.

4.2 Preprocessing

4.2.1 Climatologies and Anomalies
In order to perform the analysis and the computations described in the next

sections, the periodic part of the signals has been taken out. This has the

aim of focusing on the underlying patterns by removing predictable seasonal

variations. Let’s define the key terminology used throughout the text:

• Climatology represents the expected or typical state of a variable for a

given time of year, calculated from historical data.

• Anomaly is the deviation from this expected state (actual value minus

climatology).

Two kind of climatologies have been used to perform this analysis: hourly and

daily climatology. Hourly climatology is is the average temperature for each

hour of the year, averaged over all available years. Let’s consider hourly data

and call 𝑇(𝑦, 𝑚, 𝑑, ℎ) the original time series of temperature and 𝑇(𝑚, 𝑑, ℎ) the

hourly climatology, where 𝑦, 𝑚, 𝑑, ℎ indicates respectively year, month, day

and hour. The hourly climatology doesn’t depend anymore from the year. In

formulae:

𝑇(𝑚, 𝑑, ℎ) = 1

𝑁𝑦

𝑁𝑦∑
𝑦=1

𝑇(𝑦, 𝑚, 𝑑, ℎ) (4.7)

where 𝑁𝑦 is the number of years considered. Daily climatology is the average

temperature for each calendar day of the year, averaged over all available years,

represented by 𝑇(𝑚, 𝑑) and depending only on the month and day. In formula:

𝑇(𝑚, 𝑑) = 1

𝑁𝑦 · 24

𝑁𝑦∑
𝑦=1

23∑
𝑖=0

𝑇(𝑦, 𝑚, 𝑑, ℎ) (4.8)

where 24 is the number of hours in a day. For daily data it is possible to define

only the daily climatology as:

𝑇(𝑚, 𝑑) = 1

𝑁𝑦

𝑁𝑦∑
𝑦=1

𝑇(𝑦, 𝑚, 𝑑). (4.9)
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The anomaly is computed by removing the climatology from the original value:

𝑇′ = 𝑇 − 𝑇 (4.10)

4.2.2 Acqua Alta data cleaning
By examining the plot of data collected from AAot (first panel of Figure 4.1),

several inconsistent values are evident. A systematic data cleaning procedure

was implemented through the following steps:

• Physical thresholding: data points were constrained to the physically rea-

sonable temperature range of 0
◦
C to 35

◦
C. The results of this initial

thresholding are displayed in the second panel of Figure 4.1.

• Statistical outlier removal: an iterative process was applied until conver-

gence (no further outliers detected):

– Construction of hourly climatology

– Calculation of hourly anomalies

– Computation of standardized anomalies (z-scores) using:

𝑧 =
𝑥 − 𝜇

𝜎
where 𝜇 represents the mean and 𝜎 the standard deviation

– Removal of extreme values exceeding three standard deviations:

|𝑧| ≤ 3

The results after the complete procedure are shown in Figure 4.1.

Data aligning

The temperature datasets of AAot, Ancona, Venezia, and Trieste were collected

at varying time intervals: 5 minutes, 30 minutes, 1 hour and 1 hour, respectively.

To ensure consistency in the analysis, it was necessary to align these datasets onto

a common temporal grid. Given that the lowest frequency data was collected

hourly, an hourly time step has been used for all datasets. This means that

data collected at higher frequencies (5-minute and 30-minute) were regridded

to hourly values. This it’s been made by using an hourly time grid and select

the nearest observation for each time step, in a range of 1 hour. The same

procedure is applied to Ancona wind data, originally sampled at 30 minutes.

For the Ancona precipitation data, sampled at 15 minutes intervals, aggregation

is made by summing the precipitation measured in the previous hour. Missing

data are replaced with nans.
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Figure 4.1: Acqua Alta temperature time series at different cleaning level. Top panel:

raw data. Middle panel: data thresholded in the the physical reasonable range. Bottom

panel: data after the cleaning procedure.
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4.3 Acqua Alta Temperature reconstruction
In this section a detailed description of the methods adopted to reconstruct

Acqua Alta temperature is provided.

Anomalies As mentioned before, the climatological part of the signal it has

been taken out, to focus on the anomalies. The results of the removal of the

hourly climatology is shown in Figure 4.2, for the air temperatures measured at

Venezia weather station and for the sea temperature measured by AAot. The

figure shows the original temperature observations, the power spectrum of the

original signal, the temperature anomalies (deviations from hourly climatology)

and the power spectrum of the anomalies. The power spectrum of the original

signal shows peaks at seasonal frequency (1 year period), at 1 day period and

at higher frequency, in both the air and sea temperatures. By computing the

anomalies great part of this signals should be taken out. It can be seen that in the

power spectrum of Venezia temperature anomalies, the main peaks are removed,

even though still remain some periodical signal, mainly at daily frequency. In

the sea temperature anomaly power spectrum, instead the peaks are attenuated

but are still well visible. The presence of these higher frequency signals led to

try using also filtered data and daily mean data.

Signal Processing Approaches Given the persistent high-frequency compo-

nents in the anomaly signals, three different temporal processing approaches

were investigated:

• Raw hourly data

• Filtered hourly data using a fourth-order Butterworth low-pass filter (im-

plemented via SciPy’s signal.filtfilt method that apply the filter by pro-

cessing the input data in both the forward and reverse directions to avoid

phase distortion)

• Daily averaged data. Daily mean air temperatures has been computed

excluding days with more than 4 hours of missing data, to reduce the

probability of having temperatures that are not representative of the entire

day.

The Butterworth filter, given its maximally flat frequency response in the pass-

band, it’s suitable for preserving the lower-frequency temperature variations of

interest while removing higher-frequency fluctuations. The cutoff frequency

used is 𝑓𝑐 =
1

26ℎ , to reduce all subdaily frequencies.

For each of the different temporal processing four different experiments have

been made, varying the model and the input features:
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(a) Venezia time series and spectrum.

(b) Acqua Alta time series and spectrum.

Figure 4.2: Observed temperature and anomaly time series of (a) Venezia and (b) Acqua

alta with their respective power spectra. Each subfigure is divided in four panels. Top

left: Original temperature observations. Bottom left: Power spectrum of the original

signal. Top right: Temperature anomalies (deviations from hourly climatology). Bottom

right: Power spectrum of the anomalies.
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Models The architectures employed are three:

• Linear model: A single Dense layer with one unit, and no activation func-

tion, thus performing a linear regression.

• Dense model: a succession of Dense and Dropout layers, with the following

parameters:

– Dense, 64 units, ReLU activation

– Dropout, rate=0.2

– Dense, 256 units, ReLU activation

– Dropout, rate=0.2

– Dense, 64 units, ReLU activation

– Dropout, rate=0.2

– Dense, 1 unit, no activation

• Linear+Dense, architecture combining linear and Dense pathways. The

final output is obtained by summing the outputs of the two paths.

These models are trained using Adam optimizer with learning rate of 10
−4

and MSE loss. Early stopping callback has been implemented with a patience of

10 epochs. The batch size used is 32.

Input features The main input features utilized are:

• air temperature anomaly for Ancona, Venezia, Trieste weather stations;

• discounted sum of the anomalies, defined as

𝑇′
𝑛 +

0∑
𝑖=𝑛−1

𝛼𝑛−𝑖𝑇′
𝑖 (4.11)

where 𝑇𝑛 is the temperature at time 𝑡𝑛 and the sum is performed over

all past temperature from 𝑖 = 𝑛 − 1 to 𝑖 = 0, scaled by the exponentially

decaying, with past observation, factor 𝛼𝑛−𝑖
. Missing values in the time

series are replaced with 0 for the calculation. This features serves in order

to take into account also past observations of air temperature that can have

influence to the sea temperature at the time step of reconstruction. Indeed

this value accumulate the anomalies in the past observations and grow if

they are of the same sign or tends to cancel out if the sign is varying. Two

different values are used for hourly and daily data:
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– 𝛼 = 0.99 for hourly data

– 𝛼 = 0.9 for daily data.

The smaller value of 𝛼 for daily values is chosen to account less for obser-

vations of previous days, compared to the previous hours.

• Time features encoded in sine and cosine. For hourly data it has been used

the hour of the year for representing time:

ℎsin = sin

(
2𝜋 · ℎ𝑦

24 · 365.25

)
(4.12)

ℎcos = cos

(
2𝜋 · ℎ𝑦

24 · 365.25

)
. (4.13)

with ℎ𝑦 representing hour of the year and 365.25 is the average number of

days in a year. For daily data, it has been used the calendar day of the year,

𝑑𝑦 :

ℎsin = sin

(
2𝜋 · 𝑑𝑦
365.25

)
(4.14)

ℎcos = cos

(
2𝜋 · 𝑑𝑦
365.25

)
. (4.15)

To explore the potential influence of additional weather variables, an experiment

has been conducted adding also wind and precipitation data, using the Dense

model. In particular the additional features are:

• wind speed at the three weather stations, measured in m s
−1

;

• wind direction at the three weather stations, give by the two components

of the versor, 𝑉𝑥 and 𝑉𝑦 ;

• cumulated precipitation, measured in mm;

Each feature has been normalized by removing its mean and dividing by the

standard deviation.

The number of experiments for each of temporal processing is four:

• Linear model - temperature data

• Dense model - temperature data

• Linear + Dense model - temperature data

• Dense model - temperature, wind and precipitation data
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Target The target for all experiments is the sea temperature anomaly measured

by AAot, with temporal processing according to the input features.

Evaluation The model evaluation strategy consisted of two phases: a cross-

validation procedure to assess model performance across various years and a

final evaluation on an independent test set.

The consistent period where all input variables and target data are available

spans from January 2010 to January 2024.

The cross-validation was performed using a leave-one-year-out approach on

the 2010-2021 period. For each iteration:

• One year was held out as the validation set

• The remaining 11 years were used as the training set

• The model was trained on the 11-year training period

• Performance was evaluated on the held-out validation year using RMSE

This process was repeated 12 times, with each year from 2010 to 2021 serving

once as the validation set, ensuring independence between training and vali-

dation data and assessment of the model’s ability to generalize across different

annual conditions.

For the final model evaluation, the dataset was partitioned as follows:

• Training period: 2010-2019 (10 years)

• Validation period: 2020-2021 (2 years)

• Test period: 2022-January 2024 (approximately 2 years)

The final model was trained on the 2010-2019 period, with 2020-2021 used for

validation and early stopping to prevent overfitting. Early stopping monitored

the model’s MSE on the validation set during training and stopped when no

improvement was observed for 10 epochs. The model weights that achieved the

best performance on the validation set were retained.

The test set (2022-January 2024) remained completely independent from both

the cross-validation procedure and the final model training, serving as an unbi-

ased evaluation of model performance on unseen data.
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Coherence analysis To investigate the reasons behind the model performance

limitations, coherence analysis has been performed between the input and target

time series. This analysis helps understand the frequency-dependent relation-

ships. The coherence analysis consists of three main components: coherence,

phase, and gain, derived from the cross-spectral analysis of two time series.

Given two time series 𝑥(𝑡) and 𝑦(𝑡), their power spectra 𝑃𝑥𝑥( 𝑓 ) and 𝑃𝑦𝑦( 𝑓 ), and

their cross-spectrum 𝑃𝑥𝑦( 𝑓 ), the coherence 𝐶𝑥𝑦( 𝑓 ) is defined as:

𝐶𝑥𝑦( 𝑓 ) =
|𝑃𝑥𝑦( 𝑓 )|2

𝑃𝑥𝑥( 𝑓 )𝑃𝑦𝑦( 𝑓 )
(4.16)

where 𝑓 is the frequency. The coherence ranges from 0 to 1, with 1 indicating

perfect linear correlation at that frequency and 0 indicating no correlation.

The phase spectrum 𝜙( 𝑓 ) represents the phase difference between the two

signals at each frequency:

𝜙( 𝑓 ) = arg(𝑃𝑥𝑦( 𝑓 )) (4.17)

where arg denotes the principal argument of the complex number. The phase

can be expressed in time, by dividing the phase in radians by 2𝜋 𝑓 , 𝜙𝑡 =
𝜙

rad

2𝜋 𝑓 .

The gain spectrum 𝐺( 𝑓 ) represents the amplitude ratio between the output

and input signals:

𝐺( 𝑓 ) =
|𝑃𝑥𝑦( 𝑓 )|
𝑃𝑥𝑥( 𝑓 )

(4.18)

The gain provides information about how the amplitude of oscillations at dif-

ferent frequencies in one time series relates to those in the other time series.

These spectral estimates were computed using SciPy’s signal.csd method for

computing the cross spectral density 𝑃𝑥𝑦 and signal.welch for computing the

power spectral densities. Both method use the Welch’s method and the Hann

window.

4.4 CMEMS averaged temperature reconstruction
This section presents the methodology adopted for the reconstruction of temper-

ature derived from CMEMS reanalysis data over the domain (12E-17E, 42.52N-

45.98N) and spatially averaged.

The target for the reconstruction are computed considering various vertical

levels, horizontal domains, and time lags. Since the CMEMS reanalysis dataset

provide daily data, as input for the models daily averaged air temperature data

have been used. Daily climatologies and anomalies has been calculated for both

air temperature and sea temperature at each grid point.
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The targets consist on spatial averages on the vertical levels and on the

horizontal domain; the dimensions considered are:

• Vertical levels

– Surface level (v0): at 1 m depth

– First three levels average (v02): from 1 m to 5.5 m

– First five levels average (v04): from 1 m to 10.5 m

• Horizontal domains

– Complete domain: entire study area

– Threshold-based domain: regions where mean correlation coefficient

exceeds 0.5

Also the following time lags between air and sea temperature are considered

• No lag (l0): same-day for air and sea temperatures

• One-day lag (l1): sea temperature response after 1 day

• Two-day lag (l2): sea temperature response after 2 days

Vertical averaging For the vertical levels average (v02 and v04), vertical means

were computed using the trapezoidal integration method. Let (ℎ0, ℎ1, . . . , ℎ𝑁 )
be the unevenly spaced vertical levels where sea temperature is defined, and

(𝑇′
0
, 𝑇′

1
, . . . , 𝑇′

𝑁
) the corresponding temperature anomalies. The vertical integral

is computed as: ∫ ℎ𝑁

ℎ0

𝑇′(𝑧)𝑑𝑧 ≈
𝑁−1∑
𝑖=0

1

2

(ℎ𝑖+1 − ℎ𝑖)(𝑇′
𝑖 + 𝑇′

𝑖+1
) (4.19)

And the vertical average as:

⟨𝑇⟩𝑁
0

=
1

ℎ𝑁 − ℎ0

𝑁−1∑
𝑖=0

1

2

(ℎ𝑖+1 − ℎ𝑖)(𝑇′
𝑖 + 𝑇′

𝑖+1
) (4.20)
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Horizontal domain selection Two approaches were used for spatial averaging:

• Complete domain averaging: including all grid points in the study area

• Threshold-based averaging: including only grid points where the mean

correlation coefficient (𝑟) exceeded 0.5, indicating strong air-sea tempera-

ture coupling. Those areas are shown in Figure 5.7.

For each combination of vertical level (v0, v02, v04) and time lag (l0, l1, l2),

correlation coefficients have been computed as follows:

• For each grid point (𝑥, 𝑦) in the CMEMS domain, Pearson correlation

coefficient has been computed between:

– The air temperature anomaly time series from each weather station:

𝑇′
𝑎𝑖𝑟,𝑠

(𝑡), where 𝑠 indicates the station (Ancona, Venezia, Trieste)

– The sea temperature anomaly time series at that grid point: 𝑇′
𝑠𝑒𝑎(𝑥, 𝑦, 𝑡)

This yields three correlation coefficients for each grid point: 𝑟𝑠(𝑥, 𝑦) where

𝑠 represents each station.

• The final correlation coefficient for each grid point is obtained by averaging

the correlation coefficients from the three stations:

𝑟(𝑥, 𝑦) = 1

3

3∑
𝑠=1

𝑟𝑠(𝑥, 𝑦) (4.21)

Model The model used is the same Dense model described in the previous

section, constituted of three Dense layers with 64, 256, and 64 units respectively,

each followed by a Dropout layer with a rate of 0.2, and the final Linear layer

with a single unit.

The model is trained using Adam with the same configuration: learning rate

of 10
−4

, MSE loss and batch size of 32. Early stopping is also implemented with

a patience of 10.

Input features Input features are:

• daily air temperature anomalies from the three weather stations

• discounted sum of the anomalies as defined before, with 𝛼 = 0.9

• sine and cosine of the day of year

Each feature has been normalized by removing its mean and dividing by the

standard deviation.
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Target One experiment has been run for each of the combination of vertical

domains, time lags and horizontal domain. The total number of targets is 18: 3

vertical domain, 3 time lags and 2 horizontal domains

Evaluation The evaluation procedure followed the same approach, based on

cross-validation, previously described, adapted to accommodate the shorter

data availability period (2010 to July 2022).

The leave-one-year-out cross-validation is done using data from 2010 to 2019.

For the final model assessment, the dataset has been split in:

• Training period (2010-2017): Eight years of data for model parameter op-

timization

• Validation period (2018-2019): Two years used for early stopping during

model training

• Test period (2020-2022): Approximately 2.5 years reserved for final model

evaluation

4.5 CMEMS pointwise temperature reconstruction
This section describes the methodology adopted to reconstruct sea temperature

at each individual grid point in the domain. This approach aims to capture the

full spatial variability of temperature patterns.

The input features remain consistent with our previous analysis, while the

output dimension expands to match the spatial resolution of the domain.

Models

Two neural network architectures are tested for this reconstruction task:

• Dense model, with the same structure as before, but with the output shape

adjusted: three Dense layers of 64-256-64 units, each followed by a Dropout

layer with rate of 0.2. The final layer is a Dense layer with no activation

function and 84 · 121 units, corresponding to the number of grid poibts in

the domain.

• Dense-Unet model. This second architecture combines Dense layers with

a Unet structure to potentially capture spatial relationships and temper-

ature patterns. The Unet architecture derives its name from its charac-

teristic U-shaped structure, consisting of a down-sampling path (encoder)

and an up-sampling path (decoder) connected by skip connections. This
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design make it particularly effective for tasks requiring both global con-

text and local detail preservation. The down-sampling path progressively

reduces spatial dimensions while increasing the number of feature chan-

nels, allowing the model to capture increasingly abstract representations.

The up-sampling path essentially mirrors the downsampling path path,

and the output from each down-sampling layer is concatenated with the

corresponding up-sampling layer, giving those layers access to higher-

resolution spatial information. The down-sampling path is composed of

down-sampling layers made as follow:

– Conv2D, 3 × 3, ReLU

– Conv2D, 3 × 3, ReLU

– MaxPooling2D, 2 × 2

The upsampling layers are made as

– Conv2DTranspose, 3 × 3

– Conv2D, 3 × 3, ReLU

– Conv2D, 3 × 3, ReLU

The number of filters in the convolutional layers is (64-128-256) for the

down-sampling path and the reverse for the upsampling path (256-128-64).

The two path are connected by a bottleneck composed of two Conv2D(3 ×
3)layers with 512 filters. The whole Unet architecture can be referred

synthetically using the number of his filters as (64-128-256-512). The Unet

takes in input the output of the Dense model described before.

Both models have been trained using Adam optimizer with learning rate di

10
−4

and early stopping callback has been implemented with a patience of 20

epochs. The batch size used is 32. Grid points with nan values in the target,

representing land points, have been handled by implementing a custom MSE

loss that mask those points, setting to zero the corresponding values.

Input Features

The input feature set remains consistent with the previous spatial averaging

approach:

• Daily air temperature anomalies from Ancona, Venezia, and Trieste weather

stations

• Discounted historical temperature sums with 𝛼 = 0.9
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• Annual cycle encoded through sine and cosine of the day of year

Each feature has been normalized by removing its mean and dividing by the

standard deviation.

Training and Evaluation

Given the increased complexity of the grid-point reconstruction task, a chrono-

logical split of the dataset is used:

• Training period: 2010-2017

• Validation period: 2018-2019

• Test period: 2020-2022

The performance of both models is evaluated not only through RMSE, but

also using derived metrics. Following [36], MSE can be decomposed as:

𝑀𝑆𝐸 =
1

𝑁

𝑁∑
𝑖=1

(𝑚𝑖 − 𝑜𝑖)2 = 𝑀𝐵2 + 𝑆𝐷𝐸2 + 2𝜎𝑚𝜎𝑜(1 − 𝐶𝐶) (4.22)

where 𝑚𝑖 and 𝑜𝑖 are respectively the 𝑖th modeled and observed variables, with

corresponding standard deviations 𝜎𝑚 and 𝜎𝑜 ; MB is the mean bias, SDE is the

standard deviation error and CC is the correlation coefficient, defined as:

𝑀𝐵 = 𝑚 − 𝑜 (4.23)

𝑆𝐷𝐸 = 𝜎𝑚 − 𝜎𝑜 (4.24)

𝐶𝐶 =
1

𝜎𝑜

1

𝜎𝑚

𝑁∑
𝑖=1

(𝑚𝑖 − 𝑚)(𝑜𝑖 − 𝑜) (4.25)

where 𝑚 and 𝑜 are the mean of the modeled and observed variables respectively.

In addiction also the unbiased RMSE (uRMSE) is evaluated:

𝑢𝑅𝑀𝑆𝐸 =

√√√
1

𝑁

𝑁∑
𝑖=1

(
(𝑚𝑖 − 𝑚)(𝑜𝑖 − 𝑜)

)
2

(4.26)

These metrics are used to evaluate the performance of the reconstruction both

spatially and temporally. Indeed each sum can be computed on the spatial
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dimension or in the time dimension. For spatial analysis, the statistics are

computed across all timestamps T for each spatial point (x,y), e.g.:

𝑚(𝑥, 𝑦) = 1

𝑇

𝑇∑
𝑡=1

𝑚(𝑥, 𝑦, 𝑡) (4.27)

Conversely, for temporal analysis, the statistics are computed across all spatial

points 𝑁 = 𝑋 · 𝑌 for each timestamp t, e.g.:

𝑚(𝑡) = 1

𝑁

𝑋∑
𝑥=1

𝑌∑
𝑦=1

𝑚(𝑥, 𝑦, 𝑡) (4.28)

Comparison with satellite observations

In order to quantify the differences present between reanalysis and satellite mea-

surement and between satellite and neural networks reconstrucion, spatial and

temporal analyses were performed using MB, SDE, CC, and uRMSE metrics to

evaluate the agreement between the datasets Since satellite data are defined on

a different spatial grid than reanalysis and model data, satellite observations

were linearly interpolated onto the reanalysis grid to enable comparison be-

tween the three temperature fields. To perform a consistent comparison, the

anomalies of satellite dataset are computed by removing to the observed values

its climatology.
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Chapter 5

Results

This chapter presents the findings of the experiments previously described. Each

experiment is designed to test the possibility of reconstructing sea temperature

from weather stations data, across different spatial and temporal resolution,

using neural networks models. For each experiment the performance of the

models is evaluated, along with an analysis of the strength and limitations of

the approach.

5.1 Acqua Alta temperature reconstruction
This section analyzes the reconstruction of temperature measurements from

AAot using three temporal processing approaches: hourly data, filtered hourly

data, and daily averages. The analysis aims to identify optimal methods for sea

surface temperature reconstruction and to study the sensitivity of the proposed

methodology to high frequency energy content in the input signals.

Hourly data

The first approach has been to use hourly data. The performance of the various

models has been assessed trough cross validation as described in Section 4.3.

Cross validation scores Figure 5.1a shows the results of this procedure, in the

years ranging from 2010 to 2021. On the x-axis there is the year of the validation

set, on which the performance of the model have been evaluated, and on the

y-axis the score, measured by the RMSE between the model’s prediction and the

actual values. The solid lines represents the performances of the different models

throughout the validation years, while the dashed light blue line represent the

standard deviation of the validation set on the individual years and the dashed
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(a) Hourly anomalies.

(b) Hourly anomalies filtered.

(c) Daily anomalies.

Figure 5.1: Results of the cross validation in the reconstruction of AAot temperature,

for the three different temporal processing approaches. Solid lines represent the RMSE

of the models on the validation year. Light blue dashed line is the standard deviation of

the anomalies. Orange dashed line is the RMSE of the anomaly from the climatology.
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orange the RMSE when using the climatology as prediction. The plot shows that

the performances fluctuates from year to year, roughly following the standard

deviation of the validation set. There isn’t a model that performs consistently

better than the others throughout the years, and also the mean RMSE are similar.

It’s interesting to note that even though the performances are not optimal all the

models reconstructions constitutes still an improvement from the climatology,

with exception for the year 2010.

Training history Figure 5.2 shows the RMSE history during the training phase.

Solid lines represents the RMSE computed on the training set while dashed lines

are the RMSE on the validation set; different colors represents the year of the

validation set. We can see that the Linear model RMSE on the training set

stabilizes quickly, reaching its stable value just at second epoch. The RMSE

on the validation set also stabilizes, but with small oscillations, that reset the

patience and make the training continue for some more epochs. For the other

models instead the RMSE on the training set keep decreasing over the epochs,

reaching lower values than the Linear model, while the validation RMSE oscillate

and in some cases increase. This indicate that the models learn quickly the

relevant patterns and then keep overfitting on the training data. It is possible

to note by looking at epoch 13, for example, that this behavior is even more

accentuated in the model using precipitation and wind data, where the RMSE

during training, decrease more rapidly. Thus the added features make the model

capable of capturing more non-linearity in the training data, but that it fails to

generalize to unseen data. The use of the early stopping, serves to prevent the

model to continue the training while no more improvements are made to the

validation set and and avoiding overfitting, saving the weights of the model’s

best performance. As additional confirmation is also possible to see that, for

each model, while training loss converge roughly to the same value for all train-

validation split, the validation RMSE vary a lot, as seen also in Figure 5.1a.

Results on test set In Figure 5.3 the output of the models (in orange) are

plotted against the true values (in blue), in the test period, from 2022 to 2024,

after being trained on the 2010-2019 period and being evaluated on the 2020-

2021 years, in order to met the conditions for early stopping. It can be noted

that the Linear model is the one that achieve better score in terms of RMSE.

By looking at the reconstructed temperatures (orange line) we can explain this

better performance, noting that the Linear model try to capture the general trend

of the data, without reproducing its high frequency variability, while the others

methods capture more variability of the data, but it’s not well reproduced. This

suggest that the target data may contain some patterns that are not explained
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Figure 5.2: RMSE history during epochs. Solid line is the RMSE on the training set.

Dashed lines is the RMSE on the validation set. Different colors represents the validation

year.

52



5.1 Acqua Alta temperature reconstruction Chapter 5 - Results

Figure 5.3: Results of the reconstruction on the test set. Top panel: Linear model.

Second panel: Dense model. Third panel: Linear+Dense model. Fourth panel: Dense

model with precipitation and wind features.
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by the input features. The aim of using a combination of the Linear and Dense

models is to let the linear path learn quickly the general trend while the dense

path learn the residual components; however Figure 5.2 suggest that the model

is capable to capture the non linear relationships in the training set, that are

not reproduced in the validation set. Figure 5.4 shows a zoom of Figure 5.3

on 13 days-window on the period from 15
th

to 27
th

of June 2022, where the

true and recostructed temperatures differs significantly, along with a plot of

the air temperatures in the same period. It can be observed that in both the

sea and air temperatures there is a periodicity of approximately one day. This

signals are also evident in Figure 4.2, by looking at the spectral components

of the temperature anomaly. The spectrum of the sea temperature anomaly

shows also higher-frequency components that persist even after subtracting the

climatology, indicating that some signals are not fully removed.

Filtered hourly data

These high-frequency signals could interfere with the models’ ability to repro-

duce the desired output accurately. To adress this a low-pass Butterworth filter

with a cutoff frequency 𝑓𝑐 = 1

26 h
is applied to both the inputs and outputs.

Figure 5.5 shows the results of the filtering in terms of the spectrum of the sea

temperature anomaly. The cross validation procedure has been repeated with

the filtered signals and the results are shown in Figure 5.1b. The RMSE trend

across cross-validation iterations remains similar to that observed with the non-

filtered data (Figure 5.1a), but there is a slight improvement in the models’ mean

performance. The average RMSE decreases from 1.25
◦
C with non-filtered data

to 1.21
◦
C with filtered data. However, despite this marginal improvement, the

results remain unsatisfactory, leading to the decision to try to use daily averages

instead.

Daily data

By using daily averages, we effectively ignore all intradaily variability, shifting

the focus entirely to longer-term trends and smoother patterns. This approach

aims to reduce the influence of short-term fluctuations, which the models may

struggle to capture accurately, and instead prioritize capturing the underlying

daily patterns that may be more stable and predictable.

As shown in Figure 5.1c, using daily averages yields a slight further im-

provement in performance, with the average RMSE decreasing to 1.08
◦
C. This

improvement suggests that the model is better able to generalize and capture

the broader patterns in sea temperature over daily timescales, rather than at-

tempting to follow rapid, intra-daily changes that may be influenced by factors
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(a) (b)

(c) (d)

Figure 5.4: Zoom on a 13-days window of the results on the test set.
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Figure 5.5: Power spectrum of hourly anomaly time series before and after the applica-

tion of the low-pass filter.

not accounted for in the input features.

Although there is an improvement, an average RMSE of 1.08
◦
C indicates that

the model is still not accurately capturing all the important dynamics of sea tem-

perature variability. This suggests that there are critical dynamics,particularly

at higher frequencies, that the model struggles to account for.

Coherence analysis

The coherence, phase, gain, and spectrum plots in Figure 5.6 between Venezia

air temperature and temperature of the sea at 3m depth measured by AAot, offer

additional insights into this performance limitation due the relationship between

air and sea temperature variability at different temporal scales. In Figure 5.6a,

which spans from high to seasonal frequencies, we observe a gradual increase

in coherence as the period lengthens. This trend indicates that the air and sea

temperatures are more strongly correlated at lower frequencies, particularly on

multi-day or seasonal scales. The gain plot in both figures further supports this

observation, showing that the influence of air temperature on sea temperature

becomes more pronounced over longer timescales. The phase plot shows that the

sea temperature signal is always delayed with respect to the air temperature, at

long periods. To further understand the coupling between the two temperatures

in Figure 5.6b the parameters of the coherence analysis have been optimized

to analyze higher frequency window component. The figure shows clearly

that the coherence decrease steeply as the signals period goes toward small
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periods indicating a weaker relationship between the two variables at these

scales, meaning the sea temperature fluctuations may be driven by other factors,

such as water advection processes, rather than by air temperature alone. This

lack of coherence implies that the model, which relies heavily on air temperature

as a predictor, may struggle to capture these sea temperature variations, resulting

in residual error even with daily averaging. A confirmation of this can be found

also by comparing air and sea temperature anomaly in Figure 5.4 and noting

that the two seem to be decoupled on a period of about two weeks.

Indeed the Northern Adriatic is an hot-spot for the dynamic of the Adiatic and

temperature measured by AAot can be influenced by the circulation patterns.

In fact, it is in this area that gives rise to two of the main currents of the Adriatic

Sea: the WAC and DWOC. The first is due to the rather strong positive water

balance due to the concentration of riverine discharge; the second is linked to

the formation of the Northern Adriatic dense water (NAdw) in winter, during

intense Bora winds. This cold, dry northeasterly winds are particularly effective

at dense water formation because they blow over the broad, shallow northern

shelf, where waters are isolated from the stored heat of deeper layers and can

thus cool more efficiently. The cooled waters become denser than surrounding

waters and sink, creating a pool. The accumulation of these dense waters

sustains a baroclinic pressure force outward of the basin. The geostrophic

response to this force creates a convergence against the western boundary that

develops into a vertically sheared, bottom boundary current flowing southward.

Additionally, a secondary cyclonic circulation frequently develops in the Gulf of

Venice. This secondary circulation forms due to the presence of remnant winter

dense water at the bottom that generates a local low in the sea surface height

distribution, creating a cyclonic circulation around it. The southern branch of

this cyclone transports freshened surface waters towards the Istrian coast [14].
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(a)

(b)

Figure 5.6: Coherence, phase, gain and power spectra of Venezia air temperature and

AAot sea temperature.
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5.2 CMEMS averaged temperature recontruction
As discussed in the previous section the issues arisen in the reconstruction of

temperature measured by AAot from air temperature data may reside in the pre-

dominantly dependence of temperature in that point from advection. To validate

this hypothesis spatially averaged temperatures have been used as target to train

the Dense model. In this section the results of the reconstruction of temperature

from CMEMS reanalysis on the domain (12E-20E, 36.02N-45.98N), averaged spa-

tially on different combination of vertical levels and horizontal extension of the

domain are reported. Also a combination of time lags is experimented. Three

vertical levels have been considered: 1m (the first model level), the average from

1 m to 5.5 m and the average from 1 m to 10.5 m. To indicate these level it will be

used the notation v0, v02, v04 respectively. Time lag experimented are from 0

to 2 days, indicated by the abbreviation l0, l1, and l2 respectively. The domains

considered for the horizontal averages are of two kind: the entire domain and

geographical subset based on a threshold conditon. The threshold is applied

to the mean correlation coefficient between the temperature measured from the

weather stations and the sea temperature, 𝑟 > 0.5. Since the latter is a threshold

criteria, the extension and shape of the horizontal area considered change with

the variation of the others parameter.

Horizontal domain These areas are represented in Figure 5.7, in red: from left

to right there are the three vertical domains considered and from top to bottom

there are the three time lags.

The area where 𝑟 > 0.5, varies with both the vertical domains and time lags,

and its extension decrease at the increase of vertical levels considered, and in the

top right panel it’s reduced to only few points. This is quite expected because

the correlation between air and sea temperatures reduces with the increasing

depth. On the other hand, the red area extension increase at the increase of the

time lag between air and sea temperatures. This can be due to the lag in the

water response to the changes in the air temperature, due to its greater thermal

capacity.

Cross validation scores The results of the cross validation for all the targets

are reported in Figure 5.8, in terms of distribution of the absolute errors and

RMSE. On the x-axis there are the various combination of vertical domains and

time lags, denoted with the previous mentioned abbreviations. The distinction

between the different horizontal areas considered is represented by the colors

blue and orange on the plots, blue for the average on the entire horizontal area,

and orange for the average on the area selected by the threshold 𝑟 > 0.5. The
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Figure 5.7: Domain considered for the spatial averaging. In red the areas where 𝑟 > 0.5.
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Figure 5.8: Results of the cross validation for the spatial averaged temperatures. First

panel: absolute error distribution over all cross validation splits. Second panel: mean

RMSE. Third panel: normalized RMSE. Fourth panel: standard deviation of the target.
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first panel of Figure 5.8 represents the distribution of the absolute errors across

all validation years, obtained during the cross validation procedure. For each

combination of vertical domain and time lag there is a violin plot with each side

for one of the horizontal domain considered. The inner bar of the distribution

shows a box-and-whiskers plot. The thicker bar represents the 1
th

and 3
th

quartiles, 𝑄1 and 𝑄3, and the white tick is the median. The thinner black line

represents the whiskers and extends from 𝑄1 to 𝑄1 − 1.5IQR and from 𝑄3 to

𝑄3+1.5IQR, where IQR is the interquartile range 𝑄3−𝑄1. Because the thin black

line should end at observed values, the extension at the two sides are different

and the lower boundary is zero. The median for all different targets is always

below 0.4 ◦
C and 𝑄3 is around 0.6 ◦

C. The interquartile range is pretty similar

between the various combinations, with some differences in the v0l0 and v04l0

between the two horizontal domains, with the domain with 𝑟 > 0.5 having a bit

larger 𝑄3, meaning that the absolute errors are a bit more spread toward bigger

values. In the v0 vertical levels there is an increasing trend in the maximum

absolute error and in the upper whiskers, with increasing time lag. In v02 there

isn’t a clear trend but there is a peak in the in the maximum error at 2 days time

lag in the 𝑟 > 0.5 area average, while in v04 the peak is at 0 days time lag.

The second panel in Figure 5.8 shows the mean RMSE across all validation

sets in cross validation. The RMSE on v0 has the same increasing trend, as

seen before, with the time lag. Same trend also in v02 in 𝑟 > 0.5 horizontal

domain, while the opposite is found in v04 entire horizontal domain. The

minimum values of RMSE are found for v02l0 and v04l1, with the values of

around 0.39
◦
C. Since the average temperature is computed on different spatial

domains, the variability of the data is different between the various domains. So

in order to compare score obtained in the reconstruction, the RMSE is normalized

by dividing it by the standard deviation of the specific target data. The third and

fourth panel in Figure 5.8 shows respectively the normalized RMSE, RMSE/𝜎,

and the standard deviation of the targets 𝜎. As expected the average temperature

on the entire horizontal domain average has a lower standard deviation that

the temperature averaged on the 𝑟 > 0.5 areas. Observing the normalized

RMSE, it’s possible to note a general increasing trend with the time lag, with

exception of v04 on the entire domain. The areas selected by the correlation

threshold (𝑟 > 0.5) consistently show lower normalized RMSE compared to the

full domain averages, indicating that these regions are better represented by

the air temperatures, without that spatial averaging compromise excessively the

variability .

The best score is achieved with v02l0 configuration in the 𝑟 > 0.5 domain,

yielding an RMSE of 0.48
◦
C, while for the entire domain, the best performance

is obtained with the surface-only configuration (v0l0) with an RMSE of 0.57
◦
C.
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(a) v0l0, entire domain horizontal average.

(b) v02l0, 𝑟 > 0.5 horizontal average.

Figure 5.9: Results of the reconstruction on the test set for the two best performing

target. v0l0 on the entire domain horizontal average and v02l0 on the 𝑟 > 0.5 area

average.
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Results on test set Figure 5.9 shows the result of the reconstruction in the test

period, for the best performing spatial domain average. Both reconstructions

show varying performance across season. There seems to be a tendency on

underestimate the temperature anomaly in v0l0 particularly evident in early

2020 and and early 2021. In the same period of early 2020 also v02l0 temperature

anomaly is underestimated, but there is also a long period in winter 2021-2022

in which there is overestimation of anomaly.

Coeherence Comparison To further investigate the significant difference in

performance when reconstructing the Acqua Alta (AAot) temperature compared

to the spatially averaged temperature, a coherence analysis was performed be-

tween the Venezia air temperature anomaly and both the AAot temperature and

the spatially averaged temperature. The best performance obtained in cross-

validation for the reconstruction of the AAot temperature was achieved using

daily data, resulting in an RMSE value of 1.04°C (see Figure 5.1). This RMSE is

significantly higher than the best RMSE score of 0.48°C obtained for the spatially

averaged temperature using the v02l0 dataset for the area with r>0.5 (Figure 5.8).

Figure 5.10 shows the coherence plot on period shorter than 30 days, comparing

the Venezia air temperature anomaly with the AAot temperature (left panel) and

the spatially averaged temperature v02l0 with r>0.5 (right panel). The coher-

ence plot reveals that the spatially averaged temperature (v02l0 r>0.5) exhibits

a higher coherence with the Venezia air temperature anomaly compared to the

AAot temperature. While the AAot temperature shows near zero coherence

for periodicity shorter than 3 days, the spatially averaged temperature demon-

strates stronger coherence (0.1) even at these short timescales. The difference

becomes more pronounced at increasing periods, where the v02l0 coherence

raches values over 0.6, while the AAot coherence remains confined under 0.3

This support the hypothesis of advective dominated processes in the AAot tem-

perature, that are less present in the v02l0 temperature, given the choice of the

domain, based on correlation coefficient with air temperature, and the effect of

the spatial averaging.
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Figure 5.10: Comparison of the coherence between Venezia-Acqua Alta temperature

and Venezia-v02l0 𝑟 > 0.5 spatially averaged temperature.

5.3 CMEMS pointwise temperature reconstruction
In this section are reported the results of the reconstruction of the reanalysis

temperature from CMEMS, pointwise in the domain (12E-20E, 36.02N-45.98N).

The performance of the reconstructions of the two models tested are compared.

5.3.1 Model Performances
Distribution of errors

Figure 5.11 shows the distribution of absolute errors and their corresponding

cumulative distributions across training, validation, and test sets for each model

architecture. Both architectures demonstrated comparable performance charac-

teristics, with the Dense model achieving training, validation, and test RMSE

values of of 0.56, 0.70, and 0.74
◦
C respectively, while the Unet model exhibited

RMSE values of 0.60, 0.70, and 0.71
◦
C. These metrics suggest similar generaliza-

tion capabilities between the two approaches, with only marginal differences in

their learning patterns. The absolute error distributions for both models exhibit

right-skewed patterns, with the highest density of errors concentrated in the

0.0-1.0 range. This asymmetric distribution indicates that while most predic-

tions maintain relatively low error, there exists a tail of bigger errors extending

beyond 2.0, as we can see in the cumulative plot. The maximum error in the

training and validation sets is slightly higher in the Dense model, while in the
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test is very similar. It can be also noted that around the 70% of all predictions

have a lower absolute error than the RMSE.

(a)

(b)

Figure 5.11: Absolute error distribution in the training, validation and test sets for the

Dense model and Unet model.

In both models the training set has the lowest RMSE and error rates, as

evidenced by the leftmost peaks in the distribution plots and the steeper rise

in cumulative distributions. The validation and test sets show slightly higher

RMSE, with highly similar error patterns. This suggest a slightly level of over-

fitting, but the similar performances on the validation and test sets, suggest a

stable capacity of generalization.
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Spatial distributions of model performances

The performances of both models (Dense and Unet) have evaluated on the

test set using the four statistical metrics: Mean Bias (MB), Standard Deviation

Error (SDE), Correlation Coefficient (CC), and unbiased Root Mean Square Error

(uRMSE). Spatial patterns of the metrics, are shown in Figure 5.12.

(a)

(b)

Figure 5.12: Comparison of the spatial distribution of the evaluation metrics (part 1).

Mean Bias (MB) Both models exhibit predominantly negative bias, with more

negative values southward. We can argue that this feature can be due to the

increasing distance from the meteorological stations and to the advective com-

ponent arriving from the southern part of the basin. The Unet model shows

generally reduced negative bias compared to the Dense model, as evidenced by

the lighter blue coloring across the domain. A distinct region of positive bias

appears at around 44
◦
-44.5◦N, 13

◦
-13.5◦E in both models and along the west-

ern coast, though the Unet model shows a more concentrated pattern of this
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(c)

(d)

Figure 5.12: Comparison of the spatial distribution of the evaluation metrics (part 2).
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MB SDE CC uRMSE

Dense −0.325 −0.300 0.104 0.468

Unet −0.264 −0.325 0.052 0.474

Table 5.1: Mean of temporal metrics. Comparison between Dense and Unet.

positive anomaly. This suggests that while both models tend to underestimate

sea temperatures, the Unet architecture partially mitigates this systematic error,

at the cost of slightly higher positive bias in these regions. Here the error is

probably related to the ocean dynamics and presence of the WAC. We know that

the intensity and extension of this current is poorly related to the atmospheric

temperature.

Standard Deviation Error (SDE) The SDE patterns are similar between both

models, with general underestimation of standard deviation. Smaller errors are

found in the North while larger negative SDE values are observed on the eastern

coast, under Istria peninsula. We can assume that this is due to the presence of

complex coastal geometry that can lead to sub-mesoscale processes and thus to

an enhanced variability, not directly driven by atmospheric temperature.

Correlation Coefficient (CC) Both models demonstrate generally good corre-

lation coefficients throughout the domain, with most of the values in the range

0.6-0.85. Regions with lower values are found in the region south of Istria and

around the Po mouth. In this latter the significant freshwater input can lead to

decorrelation with air temperatures. In the western coast is recognizable a pat-

tern with lower CC than the surrounding, that can be associated to the presence

of the WAC.

Unbiased RMSE (uRMSE) The uRMSE values range from approximately 0.5

to 1.1 for both models, with generalized slightly lower error for the Unet model.

Highest errors (in red) are observed in the eastern coast under Istria peninsula

where also the SDE is bigger, while lower errors (lighter orange) are present

in the central and southern regions. In the western coast there is a pattern of

higher uRMSE than the surrounding, similar to the the CC distribution. This

indicates that the model lack in the ability of capture both the sign of the temporal

fluctuations (CC) and the intensity (uRMSE), in these regions.
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Figure 5.13: Temporal distribution of evaluation metrics. Markers indicate the 17
th

April, day with optimal reconstruction scores.

Temporal Evolution of Models Performance

The temporal evolution of performance metrics for both Dense and Unet models

over the test period, is shown in Figure 5.13, providing insights into the models’

temporal behavior and consistency. Mean values of the metrics are shown in

Table 5.1.

Mean Bias (MB) Both models show temporal variability in bias, generally

fluctuating between -1°C and +0.5°C, with a tendency of the Dense model to-

ward lower values. The most extreme temperature biases occur during summer

months. During this period, positive biases can exceed +1°C, while negative

biases can drop below -1.5°C. In summer 2020 there is the worst performance in

terms of mean bias, with values exceeding -2°C.

Standard Deviation Error (SDE) The SDE values predominantly oscillate be-

tween −0.5°C and +0°C, denoting a constant underestimation of the standard

deviation, confirming a the tendency of the models to fail to capture well the

variability of the sea temperature, both spatially and temporally. Both mod-

els show similar temporal variability, with periodic fluctuations that might be
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related to seasonal patterns.

Correlation Coefficient (CC) The CC values for both models fluctuate consid-

erably over time, ranging from approximately -0.75 to +0.8, indicating varying

levels of spatial coherency between the true and reconstructed temperature.

Both models show similar temporal patterns in their correlation structure, with

periods of high (>0.5) low (<0.5) and negative correlation. This suggests that

the reconstruction skill varies significantly with time. In particular periods of

negative CC indicate that the models predict a positive anomaly where there

is a negative anomaly and vice versa, on most of the spatial domain. In some

periods there are slightly better performances of one model over the other, as

in May-September 2020, with Dense model, having higher CC, or in September-

December 2021, with Unet having better score.

Unbiased RMSE (uRMSE) The uRMSE values are significantly fluctuating,

with minimum values around 0.2°C and usually over 0.4°C. Values often exceed

0.8°C with a peak at 1.2°C between May and September 2020. A stagionality

seems to be present, with minimum values around May, and peaks in summer

and winter

Both models show similar temporal variability patterns, suggesting that their

performance is influenced by common underlying factors, possibly related to

specific ocean-atmosphere coupling. In particular the seasonal cycle, more evi-

dent in the SDE and uRMSE plots, can be due to the seasonality of the intensity

of sub-mesoscale processes.

Temperature fields visualization

Anomalies In Figure 5.14 the reconstruction results of the models are plotted

and compared to the true anomaly field. 17
th

of April 2021 has been selected

as it represents the day with the best overall model performance. This date

was identified by finding the minimum of a composite score that combines the

considered statistical metrics, for both models:

score = |𝑀𝐵| + |𝑆𝐷𝐸| − 𝐶𝐶 + 𝑢𝑅𝑀𝑆𝐸 (5.1)

The performance metrics can be visualized in Figure 5.13, marked with a blue

cross for the Dense model and with a red plus for the Unet. The good per-

formances of both models are confirmed by looking at Figure 5.14, where we

can see that the north-south gradient is well reproduced, with stronger negative

anomalies around -2°C in the north, progressively weakening to values around
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Figure 5.14: Temperature anomalies fields. Top: Dense model reconstruction. Center:

Unet reconstruction. Bottom: True anomalies field.
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-0.6°C towards the southern region. Of particular note is the approximate re-

construction of key features such as the cold pool (anomalies between -1.4°C

and -2°C) confined between the Po River delta and the Istrian peninsula, as

well as the meandering pattern that extends along the western coast down to

Ancona, even though the magnitude is overestimated. The Dense model shows

an overal better performance, characterized by the better representation of the

temperature ranges in both the northern and southern areas.

However, both models exhibits some limitations in reproducing finer-scale

structures present in the true field, this is because small structures are decoupled

from the atmospheric conditions. While the general magnitude of the anoma-

lies is well captured, the reconstruction tends to produce slightly more negative

values (by about 0.2-0.4°C) in the southern region. The most significant dis-

crepancies are observed in the archipelago area south of the Istrian peninsula.

This region consistently shows poor reconstruction quality, as confirmed by the

spatial distribution of evaluation metrics in Figure 5.12, where it is characterized

by elevated SDE and uRMSE values, along with reduced CC.

Full range Figure 5.15 presents the full-range temperature fields obtained by

adding back the climatology to both the reconstructed and true anomaly fields.

A comparison with the climatological field for that day is included to evaluate

the model’s improvement over this baseline reference. Both patterns look very

similar, with colder waters (11-12°C) in the northern Adriatic basin gradually

transitioning to warmer waters (14-15°C) in the central and southern regions. In

contrast, the climatological field shows a markedly different pattern with sub-

stantially warmer temperatures overall, particularly in the southern portion of

the domain where temperatures exceed 15°C. Of particular note is the consis-

tency between the observed and modeled fields in representing the cold pool in

the northern basin and the temperature front in the central Adriatic, features that

are absent in the climatological field. Indeed the climatology in this particular

day is quite inaccurate. Figure 5.16 shows the standard deviation with respect

to the climatology for the 17
th

of April. The standard deviation have noticeable

variability with the southeastern part of the region having lower values, under

0.43
◦
C, and increasing westward and northward, reaching a maximum over

1.39
◦
C in the northern area, indicating a large inter-annual variability in this

region.

The analysis of the spatial and temporal distribution of the metrics, along

with the visualization of the reconstructed temperature field highlighted the

similar behavior of the two models, with only slightly differences. So the in-

creased complexity of the Unet doesn’t contribute to a significant improvement

and we can hypothesize that this is due to fact that the information processed
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Figure 5.15: Full range temperature fields. Top left: Dense model reconstruction. Top

left: Unet model reconstruction. Bottom left: true temperature field. Bottom right:

climatology.
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Figure 5.16: Standard deviation with respect to the daily climatology for the 17
th

of

April.

by the Unet passes trought the bottleneck of the Dense model, establishing the

capability of reconstruction.

5.3.2 Comparison with spatial averaged temperature
Here a comparison between the reconstruction of the area averaged temperature

and the recontruction made pointwise and then spatially averaged over the test

period is presented. In order to use consistent spatial domains, v0l0, i.e. the

surface level with zero time lag, averaged horizontally on the entire domain is

used in this comparison. Figure 5.17 shows the time evolution of the mean bias

over time. For v0l0 the the mean temperature has been computed before the

reconstruction, so the mean bias is only the difference between the output of the

model and the target. For the pointwise reconstruction the horizontal averages

are computed after the reconstruction. The temporal behavior of the MB is

similar among the three methods. The oscillations of v0l0 tend to be a slightly

less accentuated; the Unet MB tend tends to follow the v0l0 trend, with slightly

more fluctuations and the Dense model MB tends more to negative values. The

mean values confirm this ovservation.

However the consistent trend among the three methods indicates a good

ability of reconstructing the averaged temperatures, even from a pointwise re-

construction, for both models.
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Figure 5.17: Comparison of time evolution of mean bias, between v0l0 and pointwise

reconstruction of the Dense model and Unet model.

5.3.3 Comparison with satellite
In this section a comparison between the satellite, neural network models’ output

and the reanalysis is performed. Spatial and temporal characteristics of the

previously adopted metrics is analyzed. The obtain a consistent analysis with

previous ones, the metrics are computed on the anomalies, in the test period.

Anomalies of the satellite temperatures have been computed by removing its

own climatology.

Spatial analysis

Mean Bias MB spatial distribution is shown in Figure 5.18a. First panel shows

the comparison between reanalysis and satellite, that evidence a pretty marked

general positive MB, with the exception of little spot where MB is slightly neg-

ative. All the western coast shows positive bias more pronounced than other

regions. In the bottom panels the comparison between the neural network mod-

els and the satellite shows instead a diffuse negative bias with a marked positive

bias in the western coast. This is due to the general underestimation of the

anomalies of the neural networks reconstruction of the reanalysis, except on the

western coast. Between the two models the Unet has slightly better performance

due to the less severe underestimation.
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(a) (b)

Figure 5.18: Spatial distribution of the evaluation metrics in the comparison between

reanalysis and satellite, Dense model reconstruction and satellite, Unet reconstruction

and satellite (part 1).

77



5.3 CMEMS pointwise temperature reconstruction Chapter 5 - Results

(c) (d)

Figure 5.18: Spatial distribution of the evaluation metrics in the comparison between

reanalysis and satellite, Dense model reconstruction and satellite, Unet reconstruction

and satellite (part 2).
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MB SDE CC uRMSE

Dense-Sat −0.103 −0.349 0.091 0.553

Unet-Sat −0.042 −0.373 0.074 0.515

Rean-Sat 0.227 −0.051 0.517 0.453

Table 5.2: Mean values of the temporal metrics.

Standard deviation error Figure 5.18b shows the SDE spatial distribution. The

general low values of SDE between reanalysis and satellite indicate a consistent

ability to capture variability of the sea temperature. However there are some

areas with significant SDE values, as in the northern region where there is an

underestimation of the variability observed from the satellite, in the reanalysis,

and in the island under the Istria peninsula, where the reanalysis overestimate

the variability. This can be due to the complex dinamic in this region, that the

satellite struggle to capture due to the proximity with the indented coastline

and the issues of land contamination effects. On the other hand, both neural

network models strongly underestimate the variability, with larger effect in the

northern areas.

Correlation coefficient Correlation coefficient is shown in Figure 5.18c. Re-

analysis and satellite exhibit a strong CC throughout all the region, with values

higher than 0.88 and lower values only in a band near the western coast, that can

be associated with the dynamic of the WAC. In this region CC of the neural net-

work models with the satellite present its lower values, with better performances

eastward.

Unbiased RMSE Figure 5.18d shows the uRMSE spatial distribution. Patterns

in the spatial distribution resemble the pattern of the CC with generalized low

error, under 0.5°C for the reanalysis-satellite comparison and higher values the

near the western coast, with values reaching around 0.8°C. The error in the

neural network models is model considerably higher, especially in the north-

west region, with values over 0.9°C.

These patterns, highlights the presence of bias and inconsistency in some

areas, among all methods. The reanalysis and satellite have a good degree of

agreement, but the MB is quite marked almost all domain. MB between neural

network reconstruction and satellite is instead mitigated by the underestimation

of reanalysis temperatures.
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Figure 5.19: Temporal distribution of the evaluation metrics in the comparison between

reanalysis and satellite, Dense model reconstruction and satellite, Unet reconstruction

and satellite.
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Temporal analysis

Figure 5.19 show the temperal behavior of the metrics, with mean values shown

in Table 5.2.

Mean Bias In satellite-reanalysis comparison, MB is confined between around

-1°C and +0.5°C with relatively small variations. MB for the neural networks-

satellite comparison generally fluctuates between -1°C and +1°C but often shows

larger negative fluctuations exceeding -2°C with several pronounced spikes, par-

ticularly in mid-2020 and mid-2022. Temporal mean of MB in Table 5.2 shows a

slight tendency of the reanalysis to overestimate MB. The Satellite-Unet compar-

ison exhibits the largest variations, with MB values ranging from -1°C to often

over +1°C and frequent positive spikes, reaching and exceeding +2°C through-

out the entire period. These figures evidence that the satellite is significantly

more in agreement with the reanalysis regarding the mean temperature over the

basin, with a confined behavior of the mean bias throughout time. The neural

network models sometimes struggle to reconstruct the right mean temperature,

as already evidenced. These errors are often of the same sign of the one between

satellite and reanalysis, and thus are amplified in the mean bias between satel-

lite and Unet. This is the case of the March-April 2021 period in which errors

between neural network models and Unet exceed 1°C in magnitude while in the

neural networks-satellite comparison they are bigger than 2°C in magnitude.

The same happen in October-Novemeber 2022.

Standard Deviation Error Satellite-reanalysis DE range between -0.5 and 0.25°C

with some spikes exceeding these values, in particular in early 2020 when SDE

reaches around -0.75°C. Neural networks-satellite SDE is generally shifted to-

wards negative values, with values oftwn exceeding -0.5 °C and a peak under

-1°C in early 2020. As for the MB some underestimates and overestimates of

the SDE happen in the same period between satellite and neural networks, with

respect to the reanalysis, leading to an increased SDE between the two.

Correlation Coefficient All three comparisons shows a similar temporal pat-

tern of CC, with higher values in winter and lower values in summer. CC for

the reanalysis-satellite comparison is usually over 0, except for some values as

in spring and autumn 2021. On the other hand values for neural networks

are largely fluctuating, ranging between -0.75 to over +0.75, indicating varying

spatial consistency in the temperature distribution.
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Unbiased RMSE All uRMSE plots shows the same temporal behavior, similar

to the one already seen berween the neural network models and the reanalysis,

in Figure 5.13, but with more pronounced peaks in winter. Reanalysis-Satellite

uRMSE values are manily in the range 0.2°C-0.8°C, with peaks in early 2020 and

early 2021. Neural network uRMSE pattern is similar but with larger amplitude,

with values occasionally exceeding 1.2°C.

Figure 5.20: Temperature anomalies fields of the reanalysis and satellite, compared with

the reconstruction of the neural network models.

Anomalies field

Here a comparison between reanalysis and satellite is reported to highlight the

possible inconsistencies between the two and potential goodness of the neural

82



5.4 Comparison with Acqua Alta statistics Chapter 5 - Results

networks’ reconstruction. Figure 5.20 shows the temperature anomalies fields

for the reanalysis and satellite, on the 17
th

April 2021. This day has been chosen

as example of a good performance in the neural networks reconstruction, as de-

scribed in Section 5.3.1. In the figure is possible to see that in this day reanalysis

and satellite fields have significant differences. In the northern region the tem-

perature observed by the satellite is consistently lower than the reanalysis, with

values ranging between -1.2°C and -2°C for the former and values smaller than

-2°C for the latter. The temperature is generally overestimated by the reanalysis,

with the exception of a spot in the western coast where the satellite measure

a warmer anomaly, so we expect a positive MB, as confirmed by Figure 5.19,

where the value is highlighted by a black dot. The variability, and the spatial

distribution of the features, are quite consistent so we can see that SDE, CC, and

uRMSE have good values as expected. It is worth noting that for this specific

day the neural network models exhibit a greater agreement with the reanalysis

than the reanalysis with the satellite.

5.4 Comparison with Acqua Alta statistics

Figure 5.21: Positions of AAot and of the two points used to compare the statistics with,

superimposed to the uRMSE spatial distribution of the Dense model reconstruction.

As evidenced by the previous analysis, the performance of the pointwise

reconstruction has substantial spatial variability. In this section the statistics of

the reconstruction of the AAot temperature are compared with the statistics of
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Figure 5.22: Statistics of the temperature reconstruction in points 1 and, compared to

the statistics of the reconstruction of AAot temperature.

the temperature reconstruction in two points in the proximity of the platform.

The data used to compute the statistics for AAot are obtained by using the Dense

model and the daily mean data of the first experiment, with training, validation

and test splits consistent with the pointwise experiment. The position of the two

points and of AAot are shown in Figure 5.21. These points have been chosen

for their relatively high and low values of uRMSE despite being geographically

close, to highlight that the non optimal performance in the first experiment can

be due to the characteristics of that area. Indeed, even though the uRMSE in the

pointwise reconstruction has not a maximum in the AAot point, the neighbor

point 2 shows an higher uRMSE than the surrounding. Point 1 serve as term of

comparison for statistics in a region with different characteristics. The statistics

of the reconstruction of the two points and the AAot temperatures are shown

in Figure 5.22. MB for point 1 is larger in magnitude than MB in both point 2

and AAot, that have similar values. On the other hand the variability of point

1 is better captured while in point 2 and especially for AAot is underestimated,

as shown by the SDE values. CC is higher in point 1, with lower values for the

AAot reconstruction ad in point 2. The uRMSE shows similar values for both

point 2 and AAot.

The statistics values show that in the reanalysis there are points with similar

characteristics to AAot. The lack of exact spatial coincidence may be due to
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a representation error in the reanalysis. However, the spatial distribution of

performance metrics confirms the complexity of deriving sea temperature from

air temperature in this region, explaining the sub-optimal results in the first

experiment.
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Conclusions

This thesis presents an approach to reconstructing SST using atmospheric data

from coastal weather stations. This approach has several advantages, that make

it interesting for further development. In fact, once tuned, this method is in-

dependent from the existing monitoring methods of sea temperature, and thus

presents a complementary alternative, that doesn’t suffer from the same limi-

tations. In-situ measurements are sources of reliable data but these are often

sparse and they ere not able to give a simultaneous coverage of a wide area. On

the other hand satellite observations, that have the advantage of having a wider

spatial coverage, suffer from some limitations, derived by the interaction of the

radiation emitted by the sea with the atmosphere. They measure a different

SST from the in-situ measured one and have a major issue give by the gaps in

the observed fields, given by the presence of clouds for IR measurements or by

contamination of other radio frequency sources for PMW observations.

An air temperature-derived sea temperature has also time-related charac-

teristics: it can potentially be used to reconstruct historical data, where direct

measurements were unavailable and has the advantage of exploiting weather

data, that are often available in real time.

In addition, by leveraging coastal weather stations the neural network ap-

proach doesn’t require significant additional operational costs, emulating the

spirit of the ship-of-opportunity program exploiting already available resources,

in a method that can be called “data-of-opportunity”.

This study aim to apply the approach to the Northern Adriatic sea, using

atmospheric data from Ancona, Venezia and Trieste weather stations. The study

encompassed a range of experiments, each designed to test the feasibility of SST

reconstruction at different spatial and temporal scales.

The capability of reconstructing sea temperature measured at AAot has been

investigated, using different temporally processed data, hourly, low-pass filtered

hourly and daily data, different architectures, Linear, Dense and a combination
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of the two, and different input features, air temperatures only or additional wind

and precipitation data. The different models’ architecture and additional fea-

tures didn’t obtain significantly different results, while the effect of the temporal

processing had the effect of reducing the mean RMSE on obtained in the cross

validation from 1.25°C for hourly data, to 1.21°C for filtered data and 1.08°C for

daily data, with an improvement of around the 13% from hourly to daily data,

leading to the hypothesis that the large errors obtained in the reconstruction are

partially due to the higher frequency fluctuations, that are not captured by the

air temperatures. The quite large RMSE obtained also with daily data, led the

the hypothesis that the temperature measured by AAot was driven mainly by

advection process, instead of heat exchanges with the atmosphere.

To further investigate the hypothesis that advective processes influence the

temperature measured by AAot, we employed spatially averaged CMEMS re-

analysis data. A Dense model was used to reconstruct spatially averaged tem-

perature targets, obtained by considering various combinations of vertical levels,

time lags, and horizontal areas. The optimal reconstruction performance was

achieved using a target temperature averaged over the vertical levels from 1m

to 5.5m, with no time lag (0 days), and considering a horizontal area where the

correlation coefficient between air and sea temperature exceeded 0.5 (r > 0.5).

The RMSE for this specific target reconstruction was 0.48°C, which is 55% lower

than the RMSE obtained when reconstructing the daily temperature data from

AAot. These findings support the hypothesis that advective processes play a

significant role in shaping the temperature measured by AAot. The spatial aver-

aging of temperature data likely smooths out the local advective effects, making

it easier for the model to capture the relationship between atmospheric variables

and sea temperature.

As last experiment, the CMEMS reanalysis temperature at 1.0m has been

reconstructed pointwise, using two different architectures: Dense model, and a

Unet model. The performances of the two models have been analyzed through

the distribution of absolute errors and the analysis of spatial and temporal dis-

tribution of MB, SDE, CC, uRMSE. The models obtained similar statistics, with

a lower RMSE in the training and larger in the validation and test set. In this

latter the Dense and Unet models obtained an RMSE of 0.74°C and of 0.71°C

respectively. The spatial and temporal distribution of MB, SDE, CC and uRMSE

presents the same characteristics between the two models, as also highlighted by

the visualization of the reconstructed temperature fields. This evidenced that

the added complexity of the Unet doesn’t bring additional information. The

time pattern of MB for both model is compared with the MB of the averaged

spatial temperature reconstruction, evidencing the good consistence in the es-

timation of basin averaged temperature even by computing it from a pointwise
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reconstruction.

As final evaluation, a comparison, on spatial and temporal performance

of MB, SDE, CC and uRMSE, is made between satellite measured temperature,

reanalysis and modeled temperature. This spatial analysis evidenced systematic

differences also between the satellite and reanalysis temperature, although they

are generally in agreement. The temporal analysis highlighted the presence

of variable consistency through time, also between the reanalysis and satellite,

with similar patterns of the neural networks and reanalysis differences.

In conclusion this study has highlighted some of the issues and strengths

of the neural networks approach of reconstructing sea temperature from atmo-

spheric data, proving the potential values of this approach in future applications.

Indeed even if this method has several limitations we have seen that also already

navigated methods of observing sea temperature have biases and differences be-

tween them. In addition this approach has room for several future investigations

and improvements, one of which may be the inclusion of prior knowledge of the

sea state at a certain time, like a cloud free satellite observation, from which the

neural network starts to evolve the temperature field, by using only atmospheric

data at present time.

In summary, despite its current limitations, the neural networks approach

can add value to the ocean observing framework by providing an additional

source of sea temperature estimates in a context where data scarcity remains a

persistent challenge.
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