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Abstract

In this work, we have inquired about the effects of the minimum length hypoth-
esis on the recombination of a delocalized mass. The question stems from a class of
gedankenexperiments involving the gravitational interaction of such a delocalized
system with another distant body, while the former is being recombined. These
experiments are aimed at investigating potential violations of causality if gravity
is quantum in nature. We focus specifically on the case of the system being split
in a superposition of spatially separated spin states, which bears a strong resem-
blance to the Humpty-Dumpty effect studied by Schwinger and collaborators. We
find that by taking the physical distance between the two parts of the system to
be bounded from below by a minimum value (usually of the order of the Planck
length), the ability to restore coherence by reconstructing the original spin state
is bound by the same conditions found in previous works on the subject where, to
avoid tensions between causality and complementarity, emission of gravitons has
been invoked as a mean to carry away the coherence of the state. We also find
that the velocities experienced by the delocalized system during recombination
can approach the speed of light when the aforementioned bounds are reached and,
therefore, we propose a relativistic generalization, finding a more complex depen-
dence on mass and velocity for the spin coherence. We conclude by positing an
intriguing equivalence between graviton emission and minimal length in accounting
for the expected loss of coherence.
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1 Introduction

The idea of witnessing1 the quantum properties of a field through its ability to entangle
spatially delocalized states goes back to a proposal by Bohr. The idea is that in order
to preserve both causality and complementarity, quantized radiation, able to carry away
part or all quantum coherence from the state by means of entangling with the emitting
body, must be taken into account.
An in-detail analysis of this early proposal, as well as a first analysis of the gravitational
case, was given in the work of Baym & Ozawa [2] and further analysis on the gravitational
case was developed later by Mari et al. [3].

These apparent tensions between the principle of complementarity and causality seem
to suggest superluminal signaling to be possible. Resolutions to this tension have been
proposed2, involving the emission of quanta of the electromagnetic/gravitational field,
and, thus, these experiments have been suggested as indirect proofs of quantum carriers
for these fields. In the development of the gravitational version of the experiment, it has
been noted that the necessity of invoking gravitational radiation to avoid paradoxes is
sometimes debatable, for example in the case in which, after recombination, the coherence
of the state is measured by interferometric means, i.e. by observing an interference
pattern [5]. In such a case a minimum length, below which distances cannot be resolved
or defined, is enough to resolve the paradox. The reason is that, as we will show, the
interference fringe spacing goes below the Planck length under the same conditions for
which graviton emission has been postulated. To resolve the paradox, this same minimum
length has been invoked in the form of vacuum fluctuations of the gravitational field.

The minimum-length argument, however, apparently does not apply once one considers
any other setup that does not rely on a physical interference pattern to be measured. For
example, in the setup we have explored in this work, using a Stern-Gerlach apparatus, a
definite spin state along an axis can be brought into a superposition of orthogonal, spa-
tially separated, spin states along another axis. At least in principle, this state can later
be recombined into a localized state with the initial spin reconstructed (the difficulty in
doing so is called the Humpty-Dumpty effect [6]). The only important difference between
this setup and the former is how coherence is measured. The threshold on recombination
time, the mass and other parameters needed to avoid the possible insurgence of superlu-
minal signaling remain the same. Our work quantitatively investigates the degree of spin
coherence at the merging of two delocalized wavepackets and, particularly, its value in
the regime in which graviton emission has been proposed. As a means to introduce the
minimum length hypothesis in a consistent way we introduce and discuss the q-metric:
an effective metric, resulting from a transformation of the usual spacetime metric, whose

1See [1] for details on the problem of what is meant by “witnessing”.
2As an example, specifically the one whose reasoning we will follow, see Belenchia et al. [4]
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geodesic distances have a lower bound, successfully implementing this way the finite
length in a Lorentz-covariant way.
We find that, in this minimum-length scenario, spin coherence is suppressed in the same
conditions that have been previously attributed to a mass-quadrupole moment variation
large enough to prompt graviton emission.

The work is structured as follows:

• We begin in 2 by introducing the gedankenexperiment and deriving the current
situation regarding its implications. We show the equivalence between the condi-
tions for the emission of quantized radiation and the disappearance of interference
fringes both non-relativistically and relativistically.

• Proceeding to 3, we give a brief introduction to the q-metric and some of its results,
leaving the details of the calculations to the appendices A and B.

• 4 shows a derivation of the Humpty-Dumpty effect and its connection with this
work, showing how the dynamics of the gedankenexperiment can translate into
practice.

• In 5, we calculate the spin coherence of merging wavepackets using Gaussian pack-
ets, we go to the finite length limit for their separation, and confront the results
with the conditions derived in 2.

• In 6, we introduce Lorentz-invariant wavepackets whose non-relativistic limit are
the packets from the preceding section. We find a closed-form relativistic general-
ization of the results from the preceding section and make some observations.

• Finally, in the appendices A and B, we introduce the general theory of bitensors
and use them to derive the q-metric mentioned above.

2 Electrically and gravitationally mediated entan-

glement

2.1 The electric case

On one side we have Alice (A) holding a charged massive particle of mass mA and charge
qA in a delocalized superposition, with a separation of 2d between the paths. The state
has been split adiabatically as to preserve coherence and held like this from a distant
past. At time t = 0 Alice starts recombining the two particles, she will complete the
process in a time which we shall denote as TA. At a distance from Alice, Bob (B) holds
another charged body of mass mB and charge qB in a narrow trap such that it is not
displaced by any field. Again, at t = 0, Bob chooses to release or not release the trap
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and let his particle evolve freely under the influence of the field of A. 3

Bob will then measure the position of his particle at a time TB. If throughout the
whole experiment, Alice and Bob are spacelike separated at a distance D, (i.e. causally
disconnected) we have that 4:

TB < TA < D,

where the first inequality is necessary for the experiment to make sense, indeed Bob
needs to resolve which-path before the particle ultimately merges into one single path.
A seemingly paradoxical situation then arises: Since the electromagnetic field is quan-
tum, Bob’s particle feels a superposition of fields implying distinct evolutions. If Bob
can resolve the deflection of the trajectory of his particle between the two paths, he
will gain which-path information on Alice’s state. But, being Alice and Bob spacelike
separated, no signal can reach Alice in time TB. As Bob gains which-path information,
complementarity tells us that the coherence of Alice’s state must be lost. At the same
time, if Alice can (or can’t) coherently recombine her state, she will know that Bob didn’t
(or did) release his trap. Hence an apparent protocol for superluminal signaling arises
where, depending on the choice of Bob to release or not release his trap, Alice will be
able to get one bit of information by discriminating between restored coherence or lost
coherence on her recombined state, regardless of what measurement she does (be it a
measure of spin, interference pattern or anything else).
Let us go in more detail and see how this tension is resolved:

The system can initially be described as

|Ψ⟩ = 1√
2
(|L⟩A |φL⟩+ |R⟩A |φR⟩)⊗ |ψ0⟩B , (2.1)

where |L⟩A (|R⟩A) is the left (right) component of Alice’s particle (including possible
spin degrees of freedom), |φL⟩ (|φR⟩) is the state of the electromagnetic field entangled
with the left (right) component of A and |ψ0⟩B is the ground state of Bob’s particle in
the trap.
After a certain evolution time and assuming Bob did release his trap, the state would
become entangled:

|Ψ⟩ = 1√
2
(|L⟩A |φL⟩ |ψL⟩B + |R⟩A |φR⟩ |ψR⟩B) .

And any which-path knowledge on Bob’s side would collapse Alice’s part, thus destroying
the coherence of her state.
To resolve the paradox, for what concerns Bob’s part of the experiment, we will make

3For the electromagnetic case we will ignore gravitational effects. When the time comes to talk about
the gravitational version of the experiment we will set qa = qB = 0

4Throughout this paper c = ℏ = 1 unless explicitly stated
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use of the concept of vacuum fluctuations. These fluctuations are, for the electric field,
on a scale ∼ R, in the order of magnitude [7]

∆E ∼ 1

R2
,

and using Newton’s law the displacement of a particle under an electric field 5.

mẍ = qE → x =
q

2m
Et2 + v0t+ x0.

Hence these fluctuations imply an uncertainty in position

∆x =
q

2m
∆(Et2),

which over a timescale ∼ R, as above, yields ∆x ∼ q
m
. 6

Given this, we will need the separation between the paths of Bob’s particle, δx, to obey
the condition

δx >
qB
mB

, (2.2)

in order to say that Bob can, even in principle, acquire which-path information on Alice’s
system.
As for the field produced on Alice’s part, in the time Bob performs his task (TB), his
side will only feel the static electric field produced by the superposition A. Given the
assumption that d≪ D, the sensitivity to the electric field that Bob needs to discriminate
the two paths is

Erel ∝ qA

(
1

(D − d)2
− 1

(D + d)2

)
∼ 2d

qA
D3

,

which is no less than the dipole contribution to the electric field in the multipole expan-
sion.
The displacement B will undergo in a time TB given this field is

δx ∼ qB
mB

ErelT
2
B = 2d

qBqA
mB

T 2
B

D3
, (2.3)

which, inserted in (2.2), yields the condition

2dqA
T 2
B

D3
> 1. (2.4)

5We are assuming a non-relativistic setting, this should be justified (at least for the moment) assuming
large masses and slow motion

6This is also known as the ”charge radius”. Reinstating constants it becomes ℏq
mcqP

with qP =
√
ℏc

the Planck charge. Note that for q > 1 this is larger than the Compton wavelength localization limit
λC ∼ 1

m
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Now, assuming the electromagnetic field to be quantized (which of course is, by now, a
known fact), we can look for conditions on Alice’s recombination process such that no
such quanta (photons) are emitted, thus ensuring the recombination process is coherent.7

The energy flux radiated from a time-dependent electric dipole is known to be propor-
tional to (D̈)2, where D is the time-dependent dipole moment (in our case D = 2dqA).
We can then estimate the total energy radiated in the time TA as

W ∼
(
D
T 2
A

)2

TA.

Estimating the energy of emitted photons to be the peak value of their energy distribu-
tion, i.e. ω ∼ 1

TA
, yields for the number of emitted photons the value

N ∼ W

ω
=

(
DA

T 2
A

)2

< 1.

The last inequality is the requirement that no photons be emitted, hence

DA < TA.

Using these results, we can now solve the tension between causality and complementarity
mentioned earlier. In the case of interest, namely for spacelike separated A and B
(TB < TA < D), there emerge two possibilities: DA < TA and DA > TA. If DA < TA,
Alice will be able to recombine her state coherently without emitting photons but, given
that DA < TA < D, we have that both DA < D and TB < D hold. Then by inequality
(2.4) Bob will be unable to gain which-path information, no matter what he does. On
the other hand, if DA > TA, Alice’s system will emit radiation and consequently entangle
with it. Coherence will be lost and, while Bob can obtain which-path information, he
is not the cause for the loss of coherence in A, hence no superluminal signaling can be
deduced from this.

7This follows from the LOCC argument (local operations and classical communication), whereby
if we want to assume local interactions through mediating fields, entanglement cannot be generated
by classical mediators. For this reason, the experiment discussed in this work has been proposed as
a witness for the quantization of the EM/gravitational field. Emission of classical radiation would
at most accumulate a total relative phase corresponding, for example, to a shift in an interference
pattern produced during the recombination (similar to what is observed in the Aharonov-Bohm effect).
Quantum radiation on the other hand, having quantum degrees of freedom of its own, can generate
entanglement and decohere a state, thus eliminating the possibility of observing an interference pattern
in the previous example. Still, it has been argued that if one considers interactions to be nonlocal (yet
causal), as in the absorber theory of electromagnetism of Wheeler and Feynman [8], i.e., we exclude
mediators of the interaction, one can anyway recover the results above, this shows that entanglement
alone, even if displaying quantum features of the field, might in principle not be enough to deduce the
existence of (quantum) mediators [9].
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Other scenarios arise by allowing either TA > D, or TB > D, or both. These do not lead
to any apparent paradoxes and are not of interest in the present work. Analyses of such
cases can still be found in the references.

2.2 The gravitational case

Following Belenchia et. al [4], the extension of the experiment to the gravitational case
is straightforward, for this purpose, we set qA = qB = 0 and consider the gravitational
Newtonian potential between the two parties. The problem of localizability of a particle
in the context of general relativity is hindered by the absence of a fixed background,
being the metric itself the gravitational field. A well-defined concept is, then, the relative
distance between two bodies, this being a physically significant quantity independent of
the reference frame 8.
Positions in spacetime are expected to fluctuate by an amount of order

∆x ∼ lP .

This can be derived through arguments involving little and elementary assumptions, but
the result has been argued by many theories and estimates in the landscape of quantum
gravity.9

So now the threshold for Bob to gain significant which-path information is for the dis-
placement of his particle to respect the following inequality

δx > lP .

Now, as far as graviton emission on Alice’s part is concerned, previous works have re-
placed the charge dipole with the mass dipole term. This has been corrected by [4],
observing that in the case of gravitational multipole expansions, the dipole term must
vanish by the principle of conservation of center of mass. We cannot ignore the fact that
Alice will have used her lab10 to give the paths a relative motion. This will, necessarily,
shift the lab in the opposite direction, such that both trajectories have effectively the
same center of mass (i.e. they cannot be used to distinguish the two trajectories and
gain which-path information). Qualitatively one may write state (2.1) as

|Ψ⟩ = 1√
2
(|L⟩A |LABL⟩ |φL⟩+ |R⟩A |LABR⟩ |φR⟩)⊗ |ψ0⟩B ,

8We will construct and discuss a useful tool to construct general relativity using distances between
points in appendix A and derive a metric endowed with a concept of minimal localization in section B.

9The argument of vacuum fluctuations has also been used as a further claim that the experiment, if
successful, would be witnessing the gravitational field as a quantum field subject to vacuum fluctuations.
Hossenfelder [10] derives the minimum length argument from many different perspectives, some of which
do not require the gravitational field to be quantum in nature, hence weakening this claim.

10Here laboratory refers abstractly to whatever body Alice is using to perform the recombination, be
it a Stern-Gerlach apparatus, the earth attached to it, etc. We will return to this point shortly.
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where the inclusion of the LAB states, which move in the opposite direction of the
particle in each of the two superposed cases, balances the mass distribution to cancel
any dipole moment.
The next relevant term to distinguish the paths is the quadrupole11 contribution to the
field QA

D4 . Equation (2.3) has the gravitational equivalent

δx ∼ QA
D4

T 2
B.

The differences from the electric version of the experiment are clear: firstly, the localiza-
tion limit described above does not depend on any property of system A and secondly,
by the usual correspondence of inertial and gravitational mass, this result is independent
of mB.
Which-path discrimination by Bob now requires the following to be true. Setting the
gravitational constant G = 1, such that lP = 1:

δx > ∆x→ QA

D4
T 2
B > 1.

This can be rewritten as
QA

D2
>
D2

T 2
B

. (2.5)

And, if causality is respected (TB > D), this sets the condition QA > D2 for Bob to
distinguish the paths.
But, since our focus is on the case of spacelike separation (TB < D), let us proceed in this
case: For what concerns Alice’s emission of quantized gravitational radiation (photons),
the emitted energy in this case is

W ∼
(
QA

T 3
A

)2

TA,

and just as before, we take the mean energy of emitted quanta to be of order ∼ 1
TA

and
get, for the number of gravitons

N ∼
(
QA

T 2
A

)2

< 1 −→ QA < T 2
A, (2.6)

where the second inequality is required for no such gravitons to be emitted, i.e. it is the
condition for coherent recombination of A. These conditions solve the paradox entirely,
in the same way as for the electromagnetic case: if condition (2.6) holds, Alice will be
able to recohere her particle, but since then QA < T 2

A < D2 and TB < D, the condition

11The contribution of the lab to the quadrupole moment can now be reasonably neglected if mA ≪M
(M is the mass of the lab).
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for Bob to distinguish the two paths (2.5) cannot be met. On the other hand, if QA > T 2
A

Alice’s particle will emit and decohere, rendering any action by Bob inconsequential for
the means of communicating between them.
It might be of interest now to give an explicit expression for the quadrupole moment
concerning both Alice’s and Bob’s parts of the experiment. In the work by Rydving,
Aurell, and Pikovski [5], it is argued that the quadrupole moment for the superposed
paths is not able to distinguish them and that it is the octupole moment that decides
the distinguishability condition for Bob. We will follow the line of reasoning of Pesci
[11], which using a more general case of mass distribution for A, restores the quadrupole
moment as the lowest order contribution in both processes.
The gravitational potential is

V (r) = −
∫
d3r′

ρ(r′)

|r− r′|
,

where r and r′ are vector quantities. This has the following explicit multipole expansion,
assuming all particles lay on the same line as is the case in this setup

V (x) ≈ −M +m

x
− D
x2
− Q

2x3
− O

6x4
− ...

where M is the mass of the lab and m is the mass of Alice’s particle.
If the mass m is at position xm, setting the origin at the center of mass position xCM

gives the displacement for the lab xM

xCM =
MxM +mxm

M +m
≡ 0 −→ xM = −m

M
xm = −ηxm,

where quite generally η ≪ 1.
Given a Dirac delta mass distribution ρm = mδ(x− xm) for the particle, its quadrupole
moment can be easily evaluated:

Qm(xm) =

∫
2x2ρmdx = 2mx2m.

On the other hand, considering a general mass distribution for the lab ρM , its quadrupole
moment without the particle is

QM(xm) =

∫
2x2ρMdx =

∫
2(x− xM + xM)2ρMdx = 2

∫
(x− xM)2ρMdx+ 2ηmx2m.

If we consider the quite general case in which the center of mass of the lab and that
of the particle, taken by themselves, do not coincide with the center of mass of the
whole system (the origin), but retain instead some offset (xm in the notation used until
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now)12, we can write for the two paths taken by the particle in the delocalized state their
respective quadrupole moments:

Qd = Qm(xm − d) +QM(xm − d),
Q−d = Qm(xm + d) +QM(xm + d).

While for the recombined state

QF = Qm(xm) +QM(xm).

The relevant quantities for the experiment are the difference between the quadrupole
moments of the paths |Qd − Q−d| as far as Bob’s side is concerned, and the variation
between delocalized and localized state (|QF − Q−d| and |QF − Qd|) as far as Alice’s
part is concerned. Neglecting terms of order O(η) and greater, we obtain

QF −Q−d = −2md2 − 4mxmd = −2md2 −Q,
QF −Qd = −2md2 + 4mxmd = −2md2 +Q,

where we defined Q = 2mxmd. From these, we can consequently obtain

Qd −Q−d = −8mxmd = −2Q.

It is now clear that, if we take xm ≫ d (while necessarily requiring xm ≪ D), all these
quantities can be taken to be of the same order, i.e.

|QF −Q−d| ≈ |QF −Qd| ≈ |Qd −Q−d| ≈ Q.

This proves that the same quantity representing the quadrupole moment can be used to
describe both sides of the experiment.

12for clearer understanding see figure 1.
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D

Figure 1: Schematic visualization of the experimental setup. The L and R subscripts
here strictly refer to the components of systems A and B being on the left or right of
each other. The entangled pairs are AL ↔ BR and AR ↔ BL. Nothing here is to scale.

Inserting this explicit value in our condition for graviton emission13 results in

TA <
√
QA ∼

√
2mAxmd,

and rearranging this equation while also reinserting factors of ℏ and c gives

TA <

√
2xm
d

√
mA

mp

d

c
.

Here mp is the Planck mass. The last factor d
c
clearly acts as a lower bound on TA,

imposed by causality itself.
A crucial point follows now by giving a better definition of what we call the “lab”: Until
now, we considered the lab to quantitatively describe the vanishing of a net mass dipole
contribution to the experiment, and to calculate higher order multipoles by accounting
for all the masses involved in the process (this is as usual a consequence of gravity being
only attractive, being there no negative mass). Now, we set a boundary to this concept
of laboratory by imposing that what is involved in the experiment is no more than what
is causally connected to it. What this means is

TA > 2xm,

13Be careful: (2.6) is the condition for coherent recombination, i.e. no graviton emission. The
condition for graviton emission will have the inverse inequality sign.
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such that the portion of the lab involved in the experiment be in causal contact with
particle A.
Now, our inequality can be recast as

TA <

√
2xm
d

√
mA

mp

d

c
<

√
cTA
d

√
mA

mp

d

c
. (2.7)

Or, in other terms

cTA
d

<

√
cTA
d

√
mA

mp

,

which requires mA > mp ( cTA

d
> 1 for causality). Now we found that, for graviton

emission to be possible in such a scenario, the mA needs to be greater than the Planck
mass (∼ 10−8 kg), very big for current delocalization experiments. The last condition
simplifies to

cTA <
mA

mp

d, (2.8)

and, taking 2xm = TA, i.e. the largest possible value for xm, the first and second in-
equality in (2.7) are equivalent, and this last condition becomes the strongest condition
for emission.
Before moving on we wish to emphasize that two conditions have been used to resolve
the apparent paradox: the minimum length requirement for Bob’s part, and the quan-
tized radiation requirement for Alice’s part. As noted in footnote 9, the minimum length
requirement does not strictly imply, by itself, the existence of quantum mediators but
simply that the field is subject to quantum fluctuations.
As for the quantized radiation requirement, it should be noted that in the proposed
resolution of the paradox, quantum emission is sufficient to resolve the paradox, and
necessary (in the sense that classical radiation would not suffice). Yet, other settings
can be envisaged in which the loss of coherence, taken alone, can find alternative expla-
nations (see, again, [1] section 6), including, as we mentioned above, the case without
any mediators at all. We will now show the equivalence between emission and impos-
sibility of fringe discrimination for the interference-type measurement and, later, give a
quantitative calculation for the case of spin-type measurements.

2.3 Equivalence of conditions for graviton emission and fringe
disappearance

Alice’s check of coherence after recombination can be done in more than one way, if this
is done interferometrically, then the interference pattern would be observed over repeated
runs of the experiment, and the emergence of fringes or absence thereof would account
for the maintained or lost coherence of the state. It is clear that if the fringe spacing were
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to shrink below the Planck length lp, the visibility of the interference pattern is to be
considered lost. Following [5], from geometric optics considerations, the fringe spacing
is given by

δ = λ
L

d
,

where L is the distance traveled to the detection screen on which the recombination
pattern is checked. This can be written as L = vTA, where v is the velocity of the
particle and λ = h

p
= h

mAv
is the de Broglie wavelength of the particle. Hence, requiring

δ to be greater than the Planck length we obtain

δ =
hTA
mAd

∼ lp
mp

mA

cTA
d

> lp −→ cTA >
mA

mp

d. (2.9)

Remarkable! This is equivalent to condition (2.8), which we found for the onset of
graviton emission. This formula has been given in [5], where the authors conclude,
however, that fringe disappearance is a stronger condition than emission for the avoidance
of the paradox. The reason is that the configuration considered in our calculation for the
multipole moments is more general than that considered in [5] 14. Here, we found that
as long as the experiment is done through interferometric means, the two conditions are
the same (in the maximal case 2xm = TA, the fringe condition is stronger otherwise).
This is quite intriguing: In this particular setting, the experiment shows that the loss of
coherence could be explained both through quantized gravitational radiation and fringe
disappearance from ideal limit spatial resolution. They set in concomitantly in producing
decoherence. In the next section, we will go into further detail about another possible
procedure for Alice to check the coherence of her state: namely a measure of spin, as
suggested in [12]. This excludes the previous argument, as there are no fringes to be
observed. Yet, is there some argument bringing the finite minimal length scale lp to still
resolve the paradox as quantized radiation does?

Lastly, in view of a relativistic discussion in a later section, we note that, from (2.9), the
condition for fringe disappearance becomes

mA

mp

>
cTA
d

> 1,

where it is clear that masses below the Planck mass violate it, this means the fringe
spacing will never go below the Planck length for such masses. Also, as we approach the
Planck mass, the velocity of the particle in question becomes (strongly) relativistic. The

14It would be, though, in the very specific case in which we prepared the state such that xm = 0 after
recombination. This case, however, appears to be too specific after all, to the point that it might be
questioned whether it could be prepared at all.
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de Broglie wavelength for a relativistic particle is λR = h
mγv

. After some manipulation,
the previous condition generalizes to

γ
mA

mp

>
cTA
d

> 1,

which can be satisfied for any value of mass mA given the right velocity. We expect,
therefore, that our relativistic calculations will exhibit a threshold behavior at the Planck
momentum scale, but not necessarily at the Planck mass scale only.

3 Minimum length and the q-metric

We have had a hint at how a minimum length, be it from vacuum fluctuations of a
linearized quantum gravity, or any other more or less complex theory, can render the
interference pattern undetectable even with the most ideal measurement conditions imag-
inable, i.e. one with a resolution up to this minimum length (presumably of the order of
the Planck length lp).
The background on which most theories are based is the metric of spacetime and this
metric is what defines distances between events. One way to implement this concept of
a minimum discernible distance, independently of the model taken to infer its existence,
is to construct a metric with the property of rendering two events indiscernible once
their classically expected separation reaches the aforementioned lower bound. Hence,
what we are describing, is a metric that would coincide with the usual metric as the
separation between events grows large, while strongly deviating from it once the limiting
lower bound on geodesic distances is approached. This has been achieved, in its latest
development, in the work [13] for time-like and space-like separations. We describe this
work briefly here as an introduction, leaving a detailed derivation in the appendix.

To build such a metric, mathematical objects called bitensors come in handy: These are
objects with two indices, referring to two distinct points, that transform as tensors in
each index separately. Specifically, we make use of the Synge world function, defined as
half the squared geodesic length between the two points

Ω =
1

2
σ2

In a convex spacetime, meaning one where geodesics between any two points are unique,
this quantity completely characterizes the metric of this spacetime. 15

Then, modifying the world function into a modified version of itself, having the desired
limit at coincidence is what we are after:

Ω −→ S(Ω) such that lim
Ω→0

S =
1

2
ϵl20.

15See section on coincidence limits in appendix A.
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Here, we called the minimum length a generic l0, and ϵ = gµνt
µtν (tµ is the tangent

to the geodesic) is the signature of the geodesic characterizing its spacelike or timelike
nature. We do assume that the modified world function only depends on the original
world function.
The requirement that distances on large scales are unaffected is simply limΩ→∞ S(Ω) = Ω.
The world function’s defining equation is sometimes referred to as its Hamilton-Jacobi
equation and reads

gµνΩµΩν = 2Ω,

To look for a modified metric qµν with the properties required above for the modified
geodesic distance, we require the following to hold:

qµνSµSν = 2S. (3.1)

Previous work on the development of the q-metric (a summary can be found in the ap-
pendix) has suggested for it a form known in the literature as a disformal transformation
of the classical metric, i.e.

qµν = A(Ω)gµν + ϵB(Ω)tµtν ,

where tµ = dxµ

dσ
. Condition (3.1) yields

A+B = Ω
S ′2

S
.

Since the functions defining the new metric are two, we will need a second condition
to fully specify it. This requirement comes from imposing that the coincidence limit of
Green’s functions of free relativistic particles be modified from being of order ∼ 1

σ2 , to ∼
1

σ2+l20
. In other words, we require that the modified Green’s function Gq(Ω) = Gg(S(Ω))

be a solution to
□qGq(Ω) = 0 given □gGg(Ω) = 0,

where □q is the D’Alembertian derived from the q-metric. We require this in all max-
imally symmetric spacetimes, i.e. the ones in which we know the Green’s function to
depend only on the squared geodesic distance.
In general d-dimensional spacetime, one finds:

B = Ω
S ′2

S
− S

Ω

(
∆̄

∆

)− 2
d−1

,

where we introduced the Van Vleck-Morette ∆ determinant and its modified equivalent
∆̄ (see appendix A).
The q-metric is then finally complete:

qµν =
S

Ω

(
∆̄

∆

)− 2
d−1

gµν + ϵ

[
Ω
S ′2

S
− S

Ω

(
∆̄

∆

)− 2
d−1

]
tµtν ,
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and its inverse, such that qµαq
αν = δνµ, reads

qµν =
Ω

S

(
∆̄

∆

) 2
d−1

gµν + ϵ

[
1

Ω

S

S ′2
− Ω

S

(
∆̄

∆

) 2
d−1

]
tµtν .

Given the abrupt discontinuity from −l0 to l0 (or vice versa, depending on conventions
used) in passing from the coincidence limit of a spacelike geodesic to that of a timelike
geodesic, geodesics on the light cone (i.e. null geodesics) require a separate treatment.
Since we will not use them in this work. The form of this metric for light-like separations
is [14]

qµν =
λ̃2

λ2

(
∆̄

∆

)− 2
d−2

gµν −

[
dλ̃

dλ
− λ̃2

λ2

(
∆̄

∆

)− 2
d−2

]
(lµmν +mµlν)

This result is not obtained by modifying the geodesic length itself, like for spacelike/timelike
intervals, because as we know lightlike geodesics have zero proper distance along them,
in any case. What is modified is the distance along the null geodesic as measured by
a canonical observer. This distance defines an affine parameter λ, and we map it to
a modified affine parameter λ̃ = λ̃(λ), such that λ̃ → L0 when λ → 0. The two null
vectors used for the construction, which enter the final form of the metric, are lµ = dxµ

dλ

and mµ = vµ − 1
2
lµ, with v the velocity of a canonical observer such that vµl

µ = 1.
The consequences of this metric on areas and volumes have been explored in [15], where
A. Perri finds, in particular, for null surface elements a finite area value in the coinci-
dence limit around a base point. This limiting area value being of 4πl20. This result is
particularly relevant for the study of black hole horizon area variations, since one can
conclude that these variations must come in discrete value according to this bound.

One may check that geodesics distances are indeed modified, e.g. for timelike separations,
using the fact that

tµdx
µ = tµt

µdσ = ϵdσ

σ being geodesic distance. We can compute

dσ2
q = qµνdx

µdxν = Aηµνdx
µdxν + ϵBtµtνdx

µdxν

= (A+ ϵB)dσ2 (3.2)

We choose to use the mostly-minus convention (ηµν = diag(1,−1, ...)) so that for a

timelike trajectory ϵ = 1 and, therefore, A + ϵB = ΩS′2

S
. Now, from (3.2), we can

integrate to find the modified spacetime interval lengths:∫
dσq =

∫ √
Ω
S ′2

S
dσ =

∫
Ω
S ′2

S

dΩ√
2Ω

=

∫
S ′2(Ω)

2S(Ω)
dΩ =

√
2S,
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where we used the fact that Ω = 1
2
σ2 and that, by definition,

√
2S = s with s the

modified geodesic length, whose main property is the fact that limσ→0 s = L0.

We will make use of this property of geodesic distances in the q-metric, as our objective
is to determine the effects of this minimum finite length on GIE (gravitationally induced
entanglement) experiments, and specifically on the maintenance of spin coherence during
recombination. We hope to extend the results from the interference fringe spacing,
described in the previous section, to cases where no such fringes are present, while a
measurement of spin is performed instead.

4 Spin coherence and the Humpty Dumpty effect

The problem of splitting a beam of particles, polarized in a definite spin state, into a
superposition of macroscopically spatially separated beams using a Stern-Gerlach appa-
ratus has been studied before in a set of three papers by Englert, Schwinger, and Scully
[16] [6] [17]. We quickly review their general treatment of this effect, since it will bear a
strong resemblance to our results in the previous sections.

A particle with mass m and magnetic moment µ⃗ = γ2
⃗̂
S = γσ⃗ (where σ⃗ is the vec-

tor of Pauli matrices), moving in a static inhomogeneous magnetic field B⃗(r), obeys a
Hamiltonian of the form

Ĥ =
ˆ⃗p2

2m
− µ⃗ · B⃗(r),

and the Heisenberg equations of motion follow simply

˙⃗r(t) =
p⃗(t)

m
˙⃗p(t) = ∇(µ⃗(t) · B⃗(r(t)) = γ∇⃗σ⃗ · B⃗(r(t)). (4.1)

We will use a second quantization formalism for the spin operators. The advantage
of this will be clear soon. The single particle spin operator can be written in second
quantization formalism in terms of the annihilation and creation operators as follows:

ˆ⃗
S(t) =

1

2
â†(t)σ⃗â(t) or Sk(t) =

1

2

∑
i,j=±

σk
ija
†
iaj,

where the annihilation and creation operators a and a† follow the usual commutation
relations

[ai, a
†
j] = δij, [ai, aj] = [a†i , a

†
j] = 0.

The time evolution of an operator in the Heisenberg picture is

dÔ(t)

dt
= i[Ĥ, Ô(t)] +

∂Ô(t)

∂t
.
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Consequently, we may calculate the time variation of the creation and annihilation op-
erators:

dâ(t)

dt
= i
[
−γâ†σ⃗ · B⃗(r⃗)â, â

]
= −iγ[â†, â]σ⃗ · B⃗(r⃗)â

= iγσ⃗ · B⃗(r⃗)â, (4.2)

and, similarly, one derives the conjugate equation

dâ†(t)

dt
= −iγâ†σ⃗ · B⃗(r⃗).

It is easily verified that
d(â†(t)â(t))

dt
= 0,

at any time, meaning the number of spin 1
2
is conserved, which will be important later.

Meanwhile for the spatial variables, using (4.1), and writing the initial values r⃗(0) = r⃗0
and p⃗(0) = p⃗0:

p⃗(t) = p⃗0 +

∫ t

0

dt′γ∇⃗
[
B⃗(r⃗(t′)) · â†(t′)σ̂â(t′)

]
,

r⃗(t) = r⃗0 +
1

m

∫ t

0

dt′′p⃗(t′′)

= r⃗0 +
p⃗0
m
t+

∫ t

0

dt′′
∫ t′′

0

dt′γ∇⃗
[
B⃗(r⃗(t′)) · â†(t′)σ̂â(t′)

]
, (4.3)

and by careful analysis of the integration region in the plane t′ − t′′, we can use the
following simplification of the integrals∫ t

0

dt′
∫ t′

0

dt′′f(t′′) =

∫ t

0

dt′′
∫ t

t′′
dt′f(t′′) =

∫ t

0

dt′(t− t′)f(t′).

Then, (4.3) becomes

r⃗(t) = r⃗0 +
p⃗(t)

m
t− 1

m

∫ t

0

dt′γ∇⃗
[
B⃗(r⃗(t′)) · â†(t′)σ̂â(t′)

]
t′.

Consider now a single spin 1
2
state |ψ⟩, such that

⟨ψ| S⃗(0) |ψ⟩ = 1

2
⟨ψ| â†(0)σ⃗â(0) |ψ⟩ = 1

2
.



20

We want to calculate the quantity

⟨ψ| S⃗(t) |ψ⟩ = 1

2
⟨ψ| â†(t)σ⃗â(t) |ψ⟩ ,

at a time t after the particle has exited the Stern-Gerlach interferometer. To do this, we
apply (4.2) to this state:

dâ(t)

dt
|ψ⟩ = iγσ⃗ · B⃗(r⃗(t))â(t) |ψ⟩

= iγσ⃗ · B⃗
(
r⃗0 +

p⃗0
m
t+

1

m

∫ t

0

dt′γ(t− t′)∇⃗
[
B⃗(r⃗(t′)) · â†(t′)σ̂â(t′)

])
â(t) |ψ⟩

= iγσ⃗ · B⃗
(
r⃗0 +

p⃗0
m
t

)
â(t) |ψ⟩ ,

where the last step used the fact that, being |ψ⟩ a single spin 1
2
state, â(t) |ψ⟩ will be a

null spin 1
2
state. Consequently, any further application of â(t) from the field B⃗ will be

zero. This is the advantage of the second quantization formalism.
The next step is separating the scales of the problem into macro- and microscopic so
that we can expand the field in these distinct scales. Firstly, we write

r⃗0 +
p⃗0
m
t = ⟨r⃗0⟩+

⟨p⃗0⟩
m

t+ (r⃗0 − ⟨r⃗0⟩) +
p⃗0 − ⟨p⃗0⟩

m
t,

where terms in angled brackets represent macroscopic averages, while the other terms
are the microscopic fluctuations. Now the field can be expanded as

B⃗

(
r⃗0 +

p⃗0
m
t

)
≂ B⃗

(
⟨r⃗0⟩+

⟨p⃗0⟩
m

t

)
+

(
(r⃗0 − ⟨r⃗0⟩) +

p⃗0 − ⟨p⃗0⟩
m

t

)
∇⃗B⃗

(
⟨r⃗0⟩+

⟨p⃗0⟩
m

t

)
= B⃗(t) +

(
(r⃗0 − ⟨r⃗0⟩) +

p⃗0 − ⟨p⃗0⟩
m

t

)
∇⃗B⃗(t).

Finally, the â equation of motion becomes

dâ(t)

dt
|ψ⟩ =

[
iγσ⃗ · B⃗(t) + iγ

(
(r⃗0 − ⟨r⃗0⟩) +

p⃗0 − ⟨p⃗0⟩
m

t

)
∇⃗B⃗(t)σ⃗

]
â(t) |ψ⟩ ,

and the conjugate equation is easy to guess.
Let us now choose B⃗ such that only the x component Bx = B plays a role here16. Let

16One will, rightfully, inquire about the property of magnetic fields: ∇ · B = 0. This approximation
is justified by moving the y-dependence to time dependence, meaning ∂

∂y = 1
v

∂
∂t . Given the motion is

considered constant and along y. Plus other careful considerations. For more details see [6] and [18].
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us further set ⟨x⟩ = ⟨px⟩ = 0, and denote ∂Bx

∂x
= B′ and px = p. Then the differential

equation above simplifies to (we also remove the subscripts indicating initial values):

dâ(t)

dt
|ψ⟩ = iγσx ·

[
B(t) +

(
x+

p

m
t
)
B′(t)

]
â(t) |ψ⟩ .

This can be integrated, with the only problem being the fact that the operator on the
right-hand side doesn’t commute with itself. This is, luckily, not a problem since the
commutator of x and px results at most in a constant phase factor, which will cancel in
any expectation value we take. We thus ignore it, to yield the following solution:

â(t) = U(σx)â(0), U(σx) = exp{iσxφ} exp
{
iσx

[
x∆p− p∆x+ p

∆pt

m

]}
,

where

φ = γB(t),

∆p = γ

∫ t

0

dt′B′(t′), (4.4)

∆x =
γ

m

∫ t

0

dt′(t− t′)B′(t′).

U(σx) is unitary, i.e. U
†(σx) = U−1(σx) = U(−σx). We can now find the effects of the

apparatus on spin states:
The most obvious effect comes from measuring the x-component of spin:

⟨ψ| Ŝx(t) |ψ⟩ = ⟨ψ| â†(t)
σ̂x
2
â(t) |ψ⟩

= ⟨ψ| â†(0)U−1(σx)
σ̂x
2
U(σx)â(0) |ψ⟩

= ⟨ψ| â†(0) σ̂x
2
â(0) |ψ⟩

= ⟨ψ| Ŝx(0) |ψ⟩ .

Next, we will measure the spin along the z-axis. For this purpose, let us show that for
a generic operator Ô that commutes with σ⃗17

exp
{
iσxÔ

}
σz = σzσz exp

{
iσxÔ

}
σz = σz exp

{
−iσxÔ

}
,

17This can be derived by expanding the exponential in its series form and using the fact that σ2n
i = 1

and therefore σ2n+1
i = σi.
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then

⟨ψ| Ŝz(t) |ψ⟩ = ⟨ψ| â†(t)
σ̂z
2
â(t) |ψ⟩

=
1

2
⟨ψ| â†(0)U−1(σx)σ̂zU(σx)â(0) |ψ⟩

=
1

4
⟨ψ| â†(0)σ̂zU(2σx)

[
|←⟩ ⟨←|+ |→⟩ ⟨→|

]
â(0) |ψ⟩

=
1

4
⟨ψ| â†(0)σ̂z

[
|←⟩U(−2) ⟨←|+ |→⟩U(2) ⟨→|

]
â(0) |ψ⟩

=
1

4
⟨ψ| â†(0)

[
|→⟩U(−2) ⟨←|+ |←⟩U(2) ⟨→|

]
â(0) |ψ⟩

=
1

4

[
⟨ψ| â†(0) |←⟩U(2) ⟨→| â(0) |ψ⟩+ ⟨ψ| â†(0) |→⟩U(−2) ⟨←| â(0) |ψ⟩

]
=

1

2
Re
{
⟨ψ| â†(0) |←⟩U(2) ⟨→| â(0) |ψ⟩

}
=

1

2
Re

{∫
ψ∗←(x) ⟨x|U(2) |x⟩ψ→(x)dx

}
=

1

2
Re

{∫
ψ∗←(p) ⟨p|U(2) |p⟩ψ→(p)dp

}
, (4.5)

where, in the third step, we inserted the completeness relation in the spin-x basis

1

2

[
|←⟩ ⟨←|+ |→⟩ ⟨→|

]
= I,

which is composed of eigenstates of σx.
Using the Zassenhaus formula, one can rearrange the evolution operator in the following
way:

U(2) = exp{2iφ} exp
{
2i

[
x∆p− p∆x+ p

∆pt

m

]}
= e2iφeix∆pe−2i(∆x−∆p

m
t)peix∆p.

Taking the inner product of this operator with the left and right components of the
initial spin state, as derived in (4.5), we see this operator corresponds to a chain of
known operations:

⟨ψ| Ŝz(t) |ψ⟩ =
1

2
Re

{
e2iφ

∫
ψ∗←(p)e

ix∆pe−2i(∆x−∆p
m

t)peix∆pψ→(p)dp

}
=

1

2
Re

{∫
ψ∗←(p+∆p)e−2i(∆x−∆p

m
t)pψ→(p−∆p)dp

}
cos 2φ (4.6)

=
1

2
Re

{∫ (
eip(∆x−∆p

m
t)ψ←(p+∆p)

)∗
e−ip(∆x−∆p

m
t)ψ→(p−∆p)dp

}
cos 2φ,
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where we first recognized the boost operators and then the shift operators. Another
equivalent way to express this result in position space is

⟨ψ| Ŝz(t) |ψ⟩ =

=
1

2
Re

{∫
ψ∗←(x+

(
∆x− ∆p

m
t

)
)e2ix∆pψ→(x−

(
∆x− ∆p

m
t

)
)dx

}
cos 2φ.

Repeating the process for the expectation value of Sy produces a similar result, with
the imaginary part in place of the real part (and a sine in place of the cosine as a
consequence).
This result depends only on the initial state, and the degree to which spin coherence
can be maintained depends on the magnitude of the total spin vector expectation value
⟨ψ| S⃗(t) |ψ⟩.
Let us make a specific example, choosing a minimum uncertainty (Gaussian) initial state,
polarized along the positive spin-z-axis:

⟨p|ψ0⟩ = A exp
{
−αp2

}(1
0

)
. (4.7)

Whose projections along the positive and negative x-spin axis are easy to find.18

Applying result (4.6) to this state results in no less than

⟨ψ| Ŝz(t) |ψ⟩ =
1

2
exp

{
−
(∆x− ∆p

m
t)2

2α
− 2α(∆p)2

}
cos 2φ. (4.8)

This result serves to show how one can, at least in principle, use a Stern-Gerlach in-
terferometer to split and recombine a beam of spin-polarized particles. The degree of
coherence maintained during the recombination depends on the precision with which one
can control the magnetic field and the magnetic field gradient of the apparatus. Further
analysis on this can be found in the main article [6]. As for our purposes, we take this as
a further justification of our previous results, and as a starting point for our discussions
on the impact of a minimum length scale on the restoring of spin coherence.

5 Wavepacket approach

5.1 Non-relativistic Gaussian packets

Let us first describe the recombination process of a delocalized mass in the non-relativistic
regime. From here on, we will ignore the presence of Bob’s particle and focus on the

18Simply use

(
1
0

)
= 1

2

(
1
1

)
+ 1

2

(
1
−1

)
.
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delocalized particle only. To do so, recall that by choosing a representation for the Pauli
matrices such that σz is diagonal:

σz =

(
1 0
0 −1

)
,

we can define the projectors along the spin z-axis as

P↑ =
1 + σz

2
=

(
1 0
0 0

)
, P↓ =

1− σz
2

=

(
0 0
0 1

)
,

and along the spin x-axis

P→ =
1 + σx

2
=

(
1 1
1 1

)
, P← =

1− σx
2

=

(
1 −1
−1 1

)
.

Here, ↑ (↓) represents positive (negative) spin along z, while → (←) represents positive
(negative) spin along x. The Pauli matrices are related to the spin operator matrices by
the relation Si =

ℏ
2
σi. In this basis, the Pauli spinors for positive and negative z-axis

spin are

|↑⟩ =
(
1
0

)
, |↓⟩ =

(
0
1

)
,

and using the projectors, we may decompose a positive spin state in the z direction in
terms of x-axis Pauli spinors:

P→ |↑⟩ =
1

2

(
1 1
1 1

)(
1
0

)
=

1

2

(
1
1

)
=

1√
2
|→⟩ ,

and, similarly,

P← |↑⟩ =
1

2

(
1
−1

)
=

1√
2
|←⟩ .

So that the properly normalized positive and negative x-oriented spin states are

|→⟩ = 1√
2

(
1
1

)
, |←⟩ = 1√

2

(
1
−1

)
.

Hence, the sought-after decomposition takes the form

P→ |↑⟩+ P← |↑⟩ = (P→ + P←) |↑⟩ = |↑⟩ =
1

2

[(
1
1

)
+

(
1
−1

)]
=

1√
2
(|→⟩+ |←⟩) ,

and, similarly, for a z-axis negative spin state

|↓⟩ = 1

2

[(
1
1

)
−
(

1
−1

)]
=

1√
2
(|→⟩ − |←⟩) .
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This said, imagine we had a localized state, represented by a Gaussian wavepacket with
a positive (negative) spin along the z direction: we can write such a state as

⟨x|ψI⟩ |↑ (↓)⟩ = A exp

(
ik0x−

x2

4α

)
|↑ (↓)⟩ .

where A =
(

1
2πα

) 1
4 and k0 represents the initial wavenumber (momentum) of the packet.

The Hilbert space containing this state can be written as a tensor product of the spatial
Hilbert space of square-integrable functions and the spin Hilbert space:

H = Hspace ⊗Hspin.

Upon sending this state through an x-oriented Stern-Gerlach apparatus, the x-directed
spins that make up our spin-z eigenstate will delocalize, entangling with the spatial
part of the wavefunction into two distinct (albeit the spatial parts, being Gaussian, will
be slightly overlapping) Gaussian functions. We also impart each packet a momentum
(kL, kR ≥ 0), such that they move towards each other. For the most general case, we
choose a state such as

|ψI⟩ |↑ (↓)⟩ −→
∣∣ψ±F 〉 = |ψL⟩ |→⟩ ± |ψR⟩ |←⟩ ,

where we condensed both cases in the notation |↑ (↓)⟩. From here, the + sign refers to
an initially spin up |↑⟩ polarized state, while the − sign to an initially spin down |↓⟩
polarized state. Explicitly:〈

x
∣∣ψ±F 〉 = 1√

2

[
AeikL(x+dL)−

(x+dL)2

4α |→⟩ ± Aeiφ−ikR(x−dR)− (x−dR)2

4α |←⟩
]

=
1

2

[
AeikL(x+dL)−

(x+dL)2

4α

(
1
1

)
± Aeiφ−ikR(x−dR)− (x−dR)2

4α

(
1
−1

)]
,

where we also added a relative phase φ between the two packets for later use. Its
conjugate transpose is

〈
ψ±F
∣∣x〉 = 1

2

[
Ae−ikL(x+dL)−

(x+dL)2

4α

(
1 1

)
± Ae−iφ+ikR(x−dR)− (x−dR)2

4α

(
1 −1

) ]
.

Upon applying the spin operator, which in matrix form reads

Ŝz =
1

2
σz =

1

2

(
1 0
0 −1

)
,

to our ket, its effect is flipping each spin state and adding a multiplicative factor of ℏ
2
(1
2

in our units). We then obtain

Ŝz

∣∣ψ±F 〉 = 1

4

[
AeikL(x+dL)−

(x+dL)2

4α

(
1
−1

)
± Aeiφ−ikR(x−dR)− (x−dR)2

4α

(
1
1

)]
.
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We can now calculate the expectation value of Ŝz by taking the internal product of these
last two expressions. Notice only terms mixing right and left components survive the
vector products. Leaving us with〈

ψ±F
∣∣ Ŝz

∣∣ψ±F 〉 = ±1

2
(⟨ψR|ψL⟩+ ⟨ψL|ψR⟩) = ±Re {⟨ψR|ψL⟩} ,

which is, explicitly,

⟨Ŝz⟩ = ±
1

2

1√
2πα

Re

{∫ +∞

−∞
exp

[
− (x+ dL)

2

4α
− (x− dR)2

4α

− ikL(x+ dL)− ikR(x− dR) + iφ
]}

dx.

The argument of the exponential:

−(x+ dL)
2

4α
− (x− dR)2

4α
− ikL(x+ dL)− ikR(x− dR) + iφ,

can be expanded in powers of x as

− x2

2α
−
(
dL
2α
− dR

2α
+ i(kL + kR)

)
x−

(
d2L
4α

+
d2R
4α
− ikRdR + ikLdL − iφ

)
≡ −(ax2 + bx+ c).

The integral of such a Gaussian function is well-known to be∫ +∞

−∞
e−(ax

2+bx+c)dx =

√
π

a
exp

{
b2

4a
− c
}
.

Putting everything together and using the fact that eiϑ + e−iϑ = 2 cos (ϑ), after some
algebra, one obtains

⟨Ŝz⟩ = ±
1

2
exp

{
−(dL + dR)

2

8α
− α

2
(kL + kR)

2

}
×

× cos

{
−1

2
(kR − kL)(dL + dR)− φ

}
.

We recognize in this expression the relative distance between the peaks of the Gaussians
D ≡ dL + dR and the relative momentum K ≡ kL + kR. For the moment, let us set
φ = 0. The result then becomes

⟨Ŝz⟩ = ±
1

2
exp

{
−D

2

8α
− αK2

2

}
cos

(
−D

2
(kR − kL)

)
. (5.1)
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Figure 2: ŜZ expectation value for non-relativistic motion in the symmetric case (dL =
dR = d and kL = kR = k). Then, relative velocity stands for 2k

m
and relative distance

stands for 2d.

Here, we can see that there is an exponential damping of the initial state spin expectation
value, due to the overlap in both coordinate and momentum space, and that only relative
distance and motion play a role in this. The oscillating factors of cosines and sines can
be made to vanish with a suitable choice of relative phase φ, rather than setting it to
zero as we did. These oscillating terms are of little importance to our question, which
is related mainly to the loss of spin coherence associated with the merging of the packets.

This result can be shown, by explicitly evaluating the dynamics of the superposed wave
packets, to not depend on time. Or in other words, to hold at any point in time. This can
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be traced back to the property of the non-relativistic dispersion relation of not affecting
the Gaussian form of the packets while they broaden in time. As well as the fact that the
spin operators commute with the free Hamiltonian, and are therefore trivially conserved
in time.

5.2 Spin coherence and graviton emission

Let us consider our latest result (5.1) under symmetric conditions, i.e. dL = dR = d0
and kR = kL = k0. For clarity, we define the relative distance D0 = 2d0 and relative
momentum K0 = 2k0. This yields

|⟨Ŝz⟩| =
1

2
exp

{
−D

2
0

8α
− αK

2
0

2

}
.

Figure 3: Schematic representation of the simplified case. We assume constant relative
velocity and Gaussian shape for our packets.

This expression is very similar to the Humpty-Dumpty effect from chapter 4 (see, in
particular, (4.8)). We are making the following simplifying assumptions, which we will
discuss throughout this chapter:

1. At time t = 0 the state is delocalized, with a distance D0 between the two compo-
nents of the delocalized state. Recombination from the initial distance D0 to the
final distance l0 (with l0 ≪ D0) occurs in a time TA.

2. The state at the time t = TA of recombination can be described as the superposition
of two Gaussians, with relative distance l0 and relative momentum K0.

3. The relative momentum K0 can be roughly estimated from the average relative
velocity during recombination: v = D0

TA
−→ K0 = mA

D0

TA
.
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We will discuss the analogy with the Humpty-Dumpty effect in relation to our simplifying
assumptions later on in this chapter. Let us check how this result holds up to the previous
discussion concerning the GIE experiment and introduce the minimum length effect into
it.
First of all, we take a snapshot of the packets at the time of recombination. Here,
under the minimum length hypothesis, we can not have D(t) → 0, as in the ordinary
metric, but we have instead D(t)→ l0, as contemplated in the qmetric. Using (5.1) with
kR = kL ≈ K0/2 in the last instant, this gives

|⟨Ŝz⟩| =
1

2
exp

{
− l20
8α
− αK

2
0

2

}
. (5.2)

Next, find the value of the Gaussian width α that maximizes |⟨Ŝz⟩|, which is straightfor-
wardly the value such that

∂

∂α

(
− l20
8α
− αK

2
0

2

)
=

l20
8α2
− K2

0

2
= 0,

which is satisfied by α0 =
l0

2K0
.

Now, with this condition, the value for our spin is

|⟨Ŝz⟩α0| =
1

2
exp

{
− l0K0

2

}
.

Any other value of α implies greater decoherence.

Were we, instead, to send D(t)→ 0 (i.e. l0 = 0), we would have no loss of coherence with
this most favorable value for α0, but we need to be careful since this also implies α0 → 0.
Going back to (5.2) we see, anyhow, that a reasonably small α gives |⟨Ŝz⟩| ≈ 1/2. Here is
where the minimum length condition, described with the backup of the q-metric, shows
its effect.

Applying our third assumption 3, the spin expectation value may be written as

|⟨Ŝz⟩α0 | =
1

2
exp

{
−l0

mAD0

2TA

}
=

ℏ
2
exp

{
− l0
2lp

mA

mp

D0

cTA

}
=

ℏ
2
exp{−C}, (5.3)

where, in the last steps, we reintroduced factors of ℏ and c, and subsequently factors of
the Planck mass and length. Remembering the condition for graviton emission derived
earlier in the context of the GIE experiment (2.8):

cTA <
mA

mp

D0 −→
mA

mp

D0

cTA
> 1,

we see that the same conditions for graviton emission are here conditions for which the
spin coherence of a delocalized spin state is strongly suppressed in (5.3). Or, at the very
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least, coherence is not fully restored, even when considering the most optimal value for
the position uncertainty parameter α.

The factor l0
2lp

is assumed to be of order ∼ 1, then the argument of the exponential

reduces to

C ∝ mA

mp

D0

cTA
=
mA

mp

vA
c
<
mA

mp

(5.4)

And if we set a threshold for the loss of spin coherence at a suppression of order ∼ 1
e
,

then this requires
C ≳ 1 (5.5)

in case mA < mp we have trivially from (5.4)

C ∝ mA

mp

vA
c
<
mA

mp

< 1

such that if mA is lighter than the Planck mass, no suppression below 1
e
is possible. This

coincides with what we showed in the previous chapter, resulting in no graviton emission
being possible under the same conditions. In addition, if we take mA > mp, in order to
satisfy (5.5) we need:

mA

mp

vA
c

≳ 1 −→ vA ≳
c(

mA

mp

)
We can then conclude the following: below the Planck mass, no suppression of spin
coherence can happen to the degree we talked about above. Above the Planck mass, our
condition requires larger and larger velocities between the two packets the closer mA is
to mp, while this requirement on velocity becomes smaller as mA ≫ mp (see figure 4).
Interestingly, condition (5.5) can also be written as

C ∝ k

kp
≳ 1

where k is the relative momentum, while kp = mpc ≈ 6.5249 kgm
s
is the Planck momen-

tum.
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Figure 4: Contour plot of equation (5.3) as a function of particle mass and velocity.
Notice decoherence below 1

2e
does not set in below a value of the order of the Planck

mass.

In section 2, we have invoked causality in the conditions for avoiding the paradox. If
we were now to impose a condition such as v < c, we would see a lower bound on the
spin value, which hardly makes sense. Furthermore, in the conditions for suppression of
coherence just discussed, we have shown that as we go from below to above the Planck
mass, the velocities required to bridge between these two regimes approach the speed
of light, prompting a relativistic description. For this reason, in the next chapter, we
will repeat the calculation using a relativistic generalization of our wavepackets, where
we expect causality to emerge naturally. We will thus check how this result holds at
the highest velocities that have been considered (which is any, as long as causality is
respected).

5.3 Comparison with Humpty Dumpty

We wish to compare the simplified wavepacket approach of this chapter and the Humpty
Dumpty effect from 4. To do so, in analogy with the gedankenexperiments discussed in
2, we need to describe the recombination of a delocalized state, split adiabatically in a
distant past.
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We begin with a split version of the state (4.7):

ψ(k) =
A

2
e−αk

2+ikd

(
1
−1

)
+
A

2
e−αk

2−ikd
(
1
1

)
,

describing the two packets with orthogonal spin being centered at x = ±d.
Using the following projections:

ψ←(p) = Ae−αk
2+ikd, ψ→(p) = Ae−αk

2−ikd,

where |A|2 =
√

2α
π
.

We apply (4.6) to this state. After another straightforward Gaussian integral, we get the
following time-dependent value for the spin coherence:

⟨Ŝz⟩ =
1

2
exp

{
− 1

2α

(
d+∆x− ∆p

m
t

)2

− 2α(∆p)2

}
.

As we know, ∆x and ∆p are functions of time t and of the magnetic field gradient B′(t),
as given in (4.4). Thus, we assume that with a careful choice of B(t)19, one can drive the
recombination with the assumptions of this chapter, i.e. with constant velocity. It would
be appropriate to include a stopping phase for a realistic description of the dynamics of
such an experiment.

6 Relativistic wavepackets

6.1 Lorentz-invariant Gaussian packet

Our objective now is to find a relativistic generalization for the calculation performed in
the previous section.
We remind the reader that, throughout this work, we use the ”mostly-minus” metric
convention, i.e.

ηµν = diag(1,−1,−1,−1).

Starting with the usual 1-dimensional non-relativistic Gaussian wavepacket in the mo-
mentum representation:

⟨k|ψ⟩ =
(
2α

π

) 1
4

exp
{
−α(k − p)2 + ikd

}
.

19An example of such a choice, though not the one we need for our purposes, is shown graphically in
[16]. More appropriate conditions, specifically magnetic field gradient pulses for the splitting, reversing,
and stopping of the beam, with free propagation between pulses, have been discussed in [19].
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Note that we now refer to the mean momentum as p to later avoid confusion with the
0-th component of relativistic momentum.
This form already suggests a way of writing a relativistic version of it by generalizing
the quantities involved to their Lorentz-invariant counterparts, i.e.

⟨k|d, p⟩ ∝ exp{−α(k + p)µ(k + p)µ + ikµdµ},

which, now, includes 3 spatial dimensions, the number of dimensions did not matter to
the result in the non-relativistic case, as the axes orthogonal to the motion just integrate
out but, as we will see, they do make a difference here.
The factors of kµ + pµ may initially seem not intuitive; however, they can be shown to
represent the relativistic, minimum-uncertainty, and Lorentz-covariant generalization of
the Gaussian packet described above. We also adopted a new convention to name these
Lorentz invariant states, labeling them by their central position d and momentum p,

meanwhile k0 = Ek =
√
k⃗2 +m2 and p0 = Ep =

√
p⃗2 +m2 are the relativistic energies,

while the initial displacement vector dµ and the momentum vectors kµ are of the form

dµ =

(
t0(= 0)

d⃗

)
kµ =

(
Ek

k⃗

)
,

as shown in parenthesis, the initial time displacement will be set to zero since it is of no
use to our discussion. We can write this in a more compact form by using the following:

(k + p)µ(k + p)µ = (Ek + Ep)
2 − (k⃗ + p⃗)2 = 2m2 + 2kµp

µ,

and hence, the wavepacket will take the form

⟨k|d, p⟩ = N exp
{
−2α(m2 + kµp

µ) + ikµd
µ
}
.

The factor e−2αm
2
can be absorbed in the normalization constant N , which we shall

evaluate next.
Notice that the state can also be recast in the form

⟨k|d, p⟩ = N exp{−2αkµpµ + ikµd
µ}

= N exp{ikµ(dµ + 2αipµ)},

which shows an interesting property: the state could be labeled by one single quantity,
namely dµ + 2αipµ.
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Proceeding to evaluate N , we impose normalization on the state

1 = ⟨d, p|d, p⟩

=

∫
d3k

2Ek

⟨d, p|k⟩ ⟨k|d, p⟩

= |N |2
∫
d4kdEkϑ(Ek)δ(E

2
k − (k⃗2 +m2))e−4αkµp

µ

= |N |2
∫
d4kdEkϑ(Ek)δ(E

2
k − (k⃗2 +m2))e−4αm

√
k⃗2+m2

= |N |2
∫ ∞
−∞

d3k

2Ek

exp

{
−4αm

√
k⃗2 +m2

}
= 2πm|N |2

∫ ∞
m

dEke
−4αmEk

√
E2

m2
− 1

= 2πm2|N |2
∫ ∞
1

dte−4αm
2t
√
t2 − 1

= |N |2 π
2α
K1

[
4αm2

]
,

where

K1 [z] = z

∫ ∞
1

dte−zt
√
t2 − 1,

is the modified Bessel function of the second kind of order 1. We did the following: In the
third line, we restored the manifest Lorentz invariant form of the integral measure, now
k is not on-shell anymore (this condition is enforced by the δ function). Meanwhile, p is
still on-shell and we may perform a boost to its rest frame such that pµ → Λpµ = (m, 0⃗).
Given that the measure is Lorentz-invariant, we arrive at the fourth line. Next, we put
k on-shell again, then change variable from k to Ek using spherical coordinates, change
variable again from Ek

m
to t, and finally recognize one of the integral forms of the modified

Bessel function K1.
Finally, we have

⟨k|d, p⟩ =
√

2α

π

1√
K1 [4αm2]

exp{−2αkµpµ + ikµd
µ}. (6.1)

Notice that this does indeed have the correct non-relativistic limit, but care needs to be
taken. The argument of the exponential reduces, using the non-relativistic limit

Ek ≈ m+
k⃗2

2m
, Ep ≈ m+

p⃗2

2m
,

to
−2αm2 − α(k⃗ − p⃗)2 − i⃗k · d⃗.
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Meanwhile, for the normalization constant, the limit we need to take is m→∞ or, more
reasonably, αm2 → ∞20. The following limit is a well-known property of the Bessel
functions Kn:

lim
z→∞

Kn [z] =

√
π

2z
e−z. (6.2)

Then, in the aforementioned limit

lim
αm2→∞

N =
√
2m

(
2α

π

) 3
4

e2αm
2

,

and the non-relativistic limit of the wavepacket is

⟨k|d, p⟩ →
√
2m

(
2α

π

) 3
4

exp
{
−α(k⃗ − p⃗)2 − i⃗k · d⃗

}
,

which we immediately recognize as the non-relativistic packet used in the previous sec-
tion (in the momentum basis), apart from a constant factor

√
2m, and the different

dimensionality.
A closed form of this packet in the coordinate basis can be derived. Because we will not
need it, we limit ourselves to quickly showing it here. For this purpose and later use, we
will need the ”master integral”: 21:∫

d3k

2Ek

ekµΞ
µ

= 2πm
K1 [m|Ξ|]
|Ξ|

, (6.3)

where |Ξ| =
√

ΞµΞµ in the case of Ξµ timelike. 22

Using this and ⟨x|k⟩ = 1

(2π)
3
2
e−ikµx

µ
, we can calculate:

⟨x|d, p⟩ =
∫

d3k

2Ek

⟨x|k⟩ ⟨k|d, p⟩ =
√
αm2

π2

1√
K1 [4αm2]

K1 [m|Ξ|]
|Ξ|

,

20This is a very reasonable limit: in our units, 1
m = λC where λC is the Compton wavelength of the

particle. Then, αm2 = α
λ2
C
. Requiring this to be greater than one then just amounts to requiring the

spread of the particle to be greater than its Compton wavelength (
√
α > λC). It is well known that,

when trying to localize a particle to within its λC , the energy uncertainty reaches order m and hence,
leads to the regime of pair-creation. At such a point, relativistic quantum mechanics would have to
leave its place to quantum field theory.

21Reference [20] is useful, as it contains proof of this integral for any dimension D ≥ 2, as well as
more detailed calculations.

22For real values of ΞµΞµ, timelike just refers to this number being positive. But this might in general
be complex-valued. In this case, it implies the magnitude of the complex value to be positive and we
may choose a branch cut on the negative real axis such that, for −π ≤ θ ≤ π and z ≥ 0, we define√
z =
√
reiθ ≡

√
rei

θ
2 .
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where

|Ξ| =
√

ΞµΞµ =
√

4α2m2 − (x− d)µ(x− d)µ + 4iαpµ(x− d)µ.

Figure 5: Example of Lorentz-invariant packet moving to the right. Notice the asymme-
try and overall deviation from a Gaussian shape.

6.2 Boosting a spinor

As for the spinorial part of the relativistic case, we will need to solve for the Dirac
equation. Let us begin by finding solutions to the Dirac equation, which in the mostly
minus convention is:

(iγµ∂µ −m)ψ = 0,

where we are using the Dirac representation for the gamma matrices:

γ0 =

(
I 0
0 −I

)
,

(
0 σi

−σi 0

)
.

Here, 1 is the 2x2 identity matrix, σi are the Pauli matrices and the zeroes fill in whatever
missing blocks.
Moving to momentum representation by using kµ = i∂µ → kµ = iηµν∂ν , leads to

(γµkµ −m)ψ = 0.
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Then, in the rest frame of the spinor, the three-momentum k⃗ = 0 and k0 = E = ±m.
Therefore the application of momentum and energy operators to the spinor gives the
following results:

k̂ψ = k⃗ψ = 0 −→ −i∇⃗ψ = 0⃗.

Hence, ψ does not depend on the coordinates x⃗ and

Êψ = Eψ −→ i∂tψ = ±mψ, (6.4)

where the positive sign stands for a Dirac particle, while the negative sign stands for its
antiparticle. In this frame it is easy to find solutions to the Dirac equation:

(γ0p−m)ψ = 0 −→


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



ψ1

ψ2

ψ3

ψ4

 =
m

E


ψ1

ψ2

ψ3

ψ4

 ,

as m
E
= ±1, we have for the positive energy solution

ψ1 = ψ1, ψ2 = ψ2, ψ3 = −ψ3, ψ4 = −ψ4.

Hence the third and fourth components must vanish. A similar procedure applies to the
negative sign solutions. We get the results

u(k⃗ = 0) =


a
b
0
0

 , v(k⃗ = 0) =


0
0
c
d

 ,

which, by virtue of equation (6.4), gives the solutions

ψ+ = u(0)e−imt, ψ− = v(0)eimt.

The last thing we need to do is normalize these solutions. Using a standard normalization
we write

u(0)†u(0) = a∗a+ b∗b = 2m.

To define our initial state, we will not need solutions of the form v(0) since they represent
negative energy states. In the present discussion, since we are working in the regime of
relativistic quantum mechanics, we will only need the positive energy solutions u to
describe the spinors of interest in the recombination experiments. To generalize what
was done in the non-relativistic case, we will focus on the following spinors:

|⇄⟩ =
√
m


1
±1
0
0

 =
√
2m

(
χ±
0

)
, (6.5)
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where χ± = 1√
2

(
1
±1

)
. We now need to boost these spinors to arbitrary momentum.

Spinors transform under a specific representation of the Lorentz group:

ψ → S(Λ)ψ, Λ = exp

{
1

2
ωµνL

µν

}
,

where Lµν are the generators of the Lorentz transformation.
Following [21], we find the form of S(Λ) to be

S(Λ) = exp

{
− i
4
ωµνΣ

µν

}
,

where Σµν ≡ i
2
[γµ, γν ].

The coefficients ω0i are the boost parameters (rapidity) for boosts in the i-th spatial
dimension, while the ωij are the parameters (angles) for rotations in the i-j plane. Let
us focus on computing explicitly the operator for a boost in the x-direction since that is
what we will need. Given that the quantity ωµν , as well as Σ

µν , are antisymmetric, we
need

S(Λx) = exp

{
− i
2
ζΣ01

}
,

ω01 = ζ = tanh−1 (−v) being the rapidity for a boost of velocity v in the negative
x-direction. Given that γ0γ1 = α1 and the anticommutation property of the gamma
matrices, we get

[γ0, γ1] = 2γ0γ1 = 2α1 → Σ01 = iα1 → S(Λx) = exp

{
ζ

2
α1

}
,

and we can show the following:

exp

{
ζ

2
α1

}
=
∞∑
n=0

(
ζ

2

)n
(α1)n

n!

=
∞∑
n=0

(
ζ

2

)2n
(α1)2n

(2n)!
+
∞∑
n=0

(
ζ

2

)2n+1
(α1)2n+1

(2n+ 1)!

= 1

∞∑
n=0

(
ζ

2

)2n
1

(2n)!
+ α1

∞∑
n=0

(
ζ

2

)2n+1
1

(2n+ 1)!

= 1 cosh

(
ζ

2

)
+ α1 sinh

(
ζ

2

)
.

Now, using the hyperbolic trigonometric identities

cosh
(x
2

)
=

√
1

2
(1 + cosh (x)), sinh

(x
2

)
=

√
1

2
(cosh (x)− 1).
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Use now the fact that, in our case, ζ = tanh−1 (−v) = − tanh−1 (v) and ζ = cosh−1 (γ)
to derive

tanh

(
ζ

2

)
=

sinh
(
ζ
2

)
cosh

(
ζ
2

) =

√
cosh ζ − 1

cosh ζ + 1
=

√
γ − 1

γ + 1
.

Some more relations we need are γ = E
m
, γβ = k

m
, and β = k

E
. So that we can show

cosh

(
ζ

2

)
=

√
1

2
(γ + 1) =

√
E +m

2m
,

and

tanh

(
ζ

2

)
=

√
E −m
E +m

=
k

E +m
.

This allows us to write the final result for our boost operator

S(Λx) = cosh

(
ζ

2

)
1 0 0 tanh

(
ζ
2

)
0 1 tanh

(
ζ
2

)
0

0 tanh
(
ζ
2

)
1 0

tanh
(
ζ
2

)
0 0 1



=

√
E +m

2m


1 0 0 k

E+m

0 1 k
E+m

0

0 k
E+m

1 0
k

E+m
0 0 1

 .

Meanwhile, the spatial part of the spinor (the plane wave factor) gets transformed simply
to arbitrary momentum as

e−imt = e−iEt = e−ipx
0 → e−ikµx

µ

.

Let us continue by applying the boost we just found to our choice of spinor (6.5), yielding
the boosted version of it:

S(Λx) |⇄⟩ = |⇄, k⟩ = 1√
2

1√
E +m


E +m
±(E +m)
±k
k


=

1√
E +m

(
(E +m)χ±
k(σxχ±)

)
=

1√
E +m

(
(E +m)χ±
±kχ±

)
,

where σx =

(
0 1
1 0

)
is the first Pauli matrix.

So far so good. The generalization to four-component spinors of the spin operators is23

Ŝi =
1

2
γ0γiγ5 =

1

2

(
σi 0
0 σi

)
,

23For the generalization of the spin operator to the relativistic regime, see the ”Pauli-Lubanski” vector.
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such that the value of spin along the z-direction on a spinor u(k) is given by 1
2
ū(k)γ3γ5u(k).

This means that applying the spin along the z-direction operator to the boosted spinors
results in

Ŝz |⇄, k⟩ = 1

2

1√
2

1√
E +m


E +m
∓(E +m)
±k
−k

 =
1

2

1√
E +m

(
(E +m)χ∓
±kχ∓

)
.

Now it is easy to check the following identities:

1

2E
⟨→,−k| Ŝz |→, k⟩ = 0

1

2E
⟨→,−k| Ŝz |←, k⟩ =

1

2
1

2E
⟨←,−k| Ŝz |←, k⟩ = 0

1

2E
⟨←,−k| Ŝz |→, k⟩ =

1

2
,

which shows that, as in the non-relativistic case, only cross terms will contribute to this
spin measurement.
It is of no surprise that boosting spin-x eigenstates along the x-axis doesn’t bring any
new results, since in Dirac theory the spin along the direction of motion is conserved
and, therefore, doesn’t vary with boosts in that direction. One may ask what would
happen if the merging happened along the y-axis or a generic direction in the x-y plane.
Although we won’t proceed with the calculation here, it can be shown that the result we
are interested in does not vary: the peculiar quantity that is the ŜZ operator, sandwiched
between orthogonal spin states along any axis perpendicular to z, moving relatively to
each other in such a symmetric fashion, is in fact always equal to what we just found.

6.3 Computing ⟨Ŝz⟩
We now use what was found in the previous two sections to generalize our result to the
relativistic regime. We construct the state using equation (6.1) respectively for the left
and right components of the delocalized particle:

⟨k|ϕL⟩ = ⟨k|−dL, kL⟩ =
1√
2

√
2α

π

1√
K1 [4αm2]

exp
{
−2αEkEkL + 2αk⃗ · k⃗L + iEkt0 + i⃗k · d⃗L

}

⟨k|ϕR⟩ = ⟨k|dR,−kR⟩ =
1√
2

√
2α

π

1√
K1 [4αm2]

exp
{
−2αEkEkR − 2αk⃗ · k⃗R + iEkt0 − i⃗k · d⃗R

}
,
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where we set the zeroth (time) components of the displacements (dL and dR) of the
packets to the same value t0 (this can safely be set to 0, but it will cancel either way).
Our state is, then,

|ψ⟩ = |ϕL⟩
|→, k⟩√
2Ek

+ |ϕR⟩
|←,−k⟩√

2Ek

.

Calculating the spin expectation value, while keeping in mind the orthogonality of the
spin states derived previously:

⟨ψ| Ŝz |ψ⟩ =
1

2
(⟨ϕL|ϕR⟩+ ⟨ϕR|ϕL⟩) = Re{⟨ϕL|ϕR⟩}.

Using the completeness relation

1 =

∫
|k⟩ d

3k

2Ek

⟨k| ,

allows us to calculate

⟨ψ| Ŝz |ψ⟩ = Re

{∫
d3k

2Ek

⟨ϕL|k⟩ ⟨k|ϕR⟩
}
.

Let us focus on the argument of the integral:

⟨ϕL|k⟩ ⟨k|ϕR⟩

=
α

π

1

K1 [4αm2]
exp

{
− 2α [Ek(EkL + EkR)− k(kL − kR)]− ik(dL + dR)

}
=
α

π

1

K1 [4αm2]
exp

{
kµ (iDµ − 2αKµ)

}
,

where we defined the constant 4-vectors

Dµ =


0

dL + dR
0
0

 , Kµ =


EkL + EkR

kL − kR
0
0

 .

Now we can evaluate our integral using the formula (6.3), first we will need

|Ξ|2 = ΞµΞµ = (iDµ − 2αKµ)(iD
µ − 2αKµ)

= −DµD
µ + 4α2KµK

µ − 4αiKµDµ

= (dL + dR)
2 + 4α2(EkL + EkR)

2 − 4α2(kL − kR)2 + 4αi(dL + dR)(kL − kR),

and thus the integral will result in

⟨ψ| Ŝz |ψ⟩ =
1

2

4mα

K1 [4αm2]
Re

{
K1 [m|Ξ|]
|Ξ|

}
.
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This can be proven to reduce to (5.1) by taking the correct limit, we will showcase this
in the simple case of interest to us: the symmetric case, where we choose dL = dR = d
and kL = kR = k. The argument of K1 becomes real, and the Bessel function itself is
real too as a consequence. The result simplifies to

⟨ψ| Ŝz |ψ⟩ =
1

2

4mα

K1 [4αm2]

K1

[
2m
√
d2 + 4α2E2

k

]
2
√
d2 + 4α2E2

k

=
1

K1 [4αm2]

K1

[
2αm2

√
d2

α2m2 + 4γ2
]

√
d2

α2m2 + 4γ2
, (6.6)

where γ is the Lorentz factor γ2 = 1
1−v2 = 1 + k2

m2 .
Interestingly, taking the limit v ≪ 1 is not enough to recover the non-relativistic limit.
This is because the condition αm2 ≫ 1 is also needed. As we noted earlier, this condition
is nothing more than requiring the position uncertainty of the wavepacket to be much
greater than the Compton wavelength of the particle. This is necessary to ensure that
we remain in the domain of quantum mechanics (be it relativistic or not) and don’t cross
into quantum field theory, where the concept of single particle doesn’t hold. Another way
to interpret this limit is that, due to the uncertainty principle, once one tries to localize
a particle below its Compton wavelength, the uncertainty in energy grows beyond m,
enabling pair creation.
Let us take this limit, while not assuming anything regarding the velocity itself. Using
the limit (6.2) again, we know the normalization constant goes to

lim
αm2→∞

1

K1 [4αm2]
=

√
8αm2

π
e4αm

2

,

while the main part can be expanded using the aforementioned limit plus√
d2

α2m2
+ 4γ2 → 2γ +

d2

4α2m2γ
+ ...

which leads to

lim
αm2→∞

K1

[
2αm2

√
d2

α2m2
+ 4γ2

]
=

√
π

8αm2γ
exp

{
−4αm2γ − d2

2αγ

}
.

Thus the final limit is

lim
αm2→∞

⟨ψ| Ŝz |ψ⟩ =
1

2
γ−

3
2 exp

{
− d2

2αγ
− 4αm2(γ − 1)

}
=

1

2
γ−

3
2 exp

{
− d2

2αγ
− 4αm(Ek −m)

}
= ⟨Ŝz⟩R, (6.7)
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where Ek −m is the relativistic kinetic energy.

Figure 6: Contour plot of equation (6.6) as a function of particle mass velocity in the
lower distance limit 2d → l0, notice the massless limit goes inevitably to zero and the
same can be said about the ultra-relativistic limit independently of the mass.
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Figure 7: Example plot of our results as a function of half-separation d at fixed v = 0.5.
The limit αm2 ≫ 1 is almost indistinguishable from the full result (6.6).

Figure 8: Similarly to the above picture, example plot of our results as a function of
velocity v at fixed d = 3.
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By taking the low velocity approximation γ → 1 + v2

2
, or equivalently γ → 1 + k2

2m2 ,
the non-relativistic result follows trivially. This result retains the relativistic speed while
enforcing the single-particle regime of relativistic quantum mechanics. Notice the addi-
tional suppression factor γ−

3
2 in front of the result.

Next, notice first of all that the v → c (γ →∞) limit makes now more sense:

lim
γ→∞
⟨Ŝz⟩R = 0.

Let us check how this compares to the non-relativistic result. Given the following chain
of inequalities:

γ =
1√

1− v2
= 1 +

v2

2
+

3v4

8
+ ... > 1 +

v2

2
> 1.

We compare the arguments of the two exponentials:

− d2

2αγ
− 4αm2(γ − 1) < − d

2

2α
− 2α(mv)2.

This can be manipulated into

γ2 − γ
(
1 +

v2

2
+

d2

8α2m2

)
+

d2

8α2m2
> 0.

We wish to neglect factors of d2

8α2m2 . This can be done if

d2

8α2m2
=

1

8

d2

α

1

αm2
≪ 1.

Given we are working in the regime where αm2 ≫ 1, if d2

α
≳ 1 (the other way around

would mean our state is initially overlapping) we can reasonably approximate the in-
equality to

γ > 1 +
v2

2
,

which is always true. Thus we can write

⟨Ŝz⟩R < γ
3
2 ⟨Ŝz⟩R =

1

2
exp

{
− d2

2αγ
− 4αm2(γ − 1)

}
< ⟨Ŝz⟩NR,

and conclude that the relativistic correction will not enhance spin coherence, but rather
suppress it even further. Were we to minimize this result with respect to the width α,
as done in the non-relativistic case, we would find a value

α0 =
d

2
√
2m

1√
γ(γ − 1)
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This value can only be used with caution though, since we can see by multiplying by m2

that

α0m
2 =

md

2
√
2

1√
γ(γ − 1)

But since we have previously derived our result by using αm2 ≫ 1, this α0 is only valid
as long as this condition is also respected. Nevertheless, let us see where this leads us.
The spin expectation value becomes:

⟨Ŝz⟩R(α0) =
1

2
γ−

3
2 exp

{
−
√
2(2d)m

√
γ − 1

γ

}

Figure 9: Contour plot of equation (6.7) as a function of particle mass and velocity in
the lower distance limit 2d → l0. This results validity steps in for values of mass above
the dashed line. Notice the factor γ−

3
2 causes suppression of the spin coherence due to

relativistic velocities for any value of mass.

Now, as before, we send 2d→ 1(= lp) , this gives

lim
2d→1
⟨Ŝz⟩R(α0) =

1

2
γ−

3
2 exp

{
−
√
2m

√
γ − 1

γ

}
<

1

2
γ−

3
2 exp

{
−
√
2m
}

<
1

2
exp
{
−
√
2m
}

(6.8)
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and we see that the mass m
mp

is an upper bound limiting the amount of spin coherence

maintained or lost in (6.8). However, it should be noted that relativistic velocities give
an increasingly strong suppression (see figure 9).

GIE experiments are usually meant to be performed using massive particles, such as
nanodiamonds or similar objects. As it is generally not in the scope of the practical
realization of these experiments to achieve relativistic relative velocities between the
components of the delocalized state, our analysis here was mainly meant as a proof of
concept: massive particles can, in principle, achieve relativistic velocities. It is good
practice to see how this would affect the recombination, and look for unexpected setups
and parameter choices that may produce interesting scenarios.

7 Conclusions

In the present thesis, we have explored the behaviour of spin coherence in the merging
of a delocalized single-particle state. This state is modeled by two spatially separated
wavepackets. We have done this in the context of a well-known gedankenexperiment in
which the gravitational field, sourced by a delocalized particle, is probed at a distance
while the particle is recombined. This setup has been noted to bring some tension
between the principles of complementarity and causality if gravity is quantum mechanical
in its nature. Focusing mainly on the delocalized state, rather than the probe particle,
we found under what conditions spin coherence is maintained during the recombination
process.

In doing so (this being the specific piece of research characterizing this work), we have
tried to study the effects of the existence of a universal lower limit value on physical
distances. We have done this using the effective metric, known as q-metric, which pre-
cisely implements the existence of such a minimum length, as applied to the separation
of the two wavepacket components. Using this and under some simplifying assumptions,
namely that:

• The recombination occurs in a time TA.

• The state at the moment of recombination can be described as the superposition
of two Gaussians, characterized by their relative distance and momentum.

• The relative momentum can be estimated from the average relative velocity during
the recombination.

In this way, the level of decoherence we get is the same required to avoid faster-than-light
communication in the aforementioned experiment (where the decoherence arises from
graviton emission). The formula we get exhibits some analogy with the formula provid-
ing the residual decoherence one gets when recombining, in the spin basis, a particle with
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finite experimental resolution in position and momentum (the so-called Humpty-Dumpty
effect [6]).
We found that, for the delocalized particle, the Planck mass acts as a pivotal value of
mass in the phenomenon. We also noted that, both in the case of interferometric recom-
bination (measurement of fringe pattern) and in the case of spin coherence measurement,
the required recombination time (within the bounds such that the delocalized particle
and the probe are causally disconnected) can be such that the relative motion between
the two components can become relativistic. For this, we proposed a quick order of mag-
nitude computation of interference fringe spacing in the case of relativistic momenta,
and a relativistic generalization of our Gaussian wavepackets for the discussion on spin
coherence. We managed to obtain a closed-form equation for the spin coherence in terms
of Bessel functions which, again, assuming a finite lower bound on separation, produces
similar or slightly stronger bounds in the mass-velocity plane for the maintenance of spin
coherence.

All in all, spin coherence is a fragile object, and the question of recombining a delo-
calized spin state coherently is heavily influenced by its mass and velocity. Real- and
gedankenexperiments, aimed at studying the possible quantum gravitational effects of
such coherent delocalized states, require masses big enough to witness their gravitational
pull on another distant body and possibly relativistic velocities. Our analysis shows that
a finite-length assumption might be sufficient to avoid the tension between complemen-
tarity and causality mentioned above. by causing the expected decoherence on the state,
i.e. with no need to invoke graviton emission. What is quite intriguing, however, is
that the effects arising from minimum length and graviton emission happen together,
i.e. strong decoherence from minimum length does set in right when the emission of
gravitons is expected to take place.
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A Theory of bitensors

A.1 Synge’s world function

In this section, we construct and derive some general results from the theory of bitensors,
the main objects we will use in constructing the q-metric. Let us begin with the world
function introduced by Synge.24

Take the following integral

I(v) =
1

2
(u1 − u0)

∫ u1

u0

gµν
∂xµ

∂u

∂xν

∂u
du, (A.1)

along v = constant curves. Also, consider two vector fields, defined as

Uµ =
∂xµ

∂u
, V µ =

∂xµ

∂v
,

and it follows that
DUµ

Dv
=
DV µ

Du
, (A.2)

where the operator D
Dλ

stands for the covariant derivative with respect to a parameter λ,

DT µ

Dλ
=

[
∂T µ

∂xβ
+ Γµ

αβT
α

]
dxβ

dλ
.

Then, (A.1) can be written as:

I(v) =
1

2
∆u

∫ u1

u0

gµνU
µUνdu,

where ∆u = (u1 − u0). Using (A.2), we can differentiate the integral

dI(v)

dv
= ∆u

∫ u1

u0

gµνU
µDV

ν

Du
du =

∆u

∫ u1

u0

∂

∂u

(
gµνU

µV ν
)
du−∆u

∫ u1

u0

gµν
DUµ

Du
V νdu =

∆u
[
gµνU

µV ν
]u1

u0

−∆u

∫ u1

u0

gµν
DUµ

Du
V νdu. (A.3)

If the endpoints of the curve are fixed, say we call them A0 and A1, at these points
V µ = 0 by virtue of (A.2), and we are left with

dI

dv
= −∆u

∫ u1

u0

gµν
DUµ

Du
V νdu.

24From Synge’s book [22]
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Figure 10: A graphical representation of our u-v parameterized curves

A geodesic is defined as the curve (we assume it to be unique) that gives a stationary
value to I for a variation that leaves the endpoints fixed. Hence we want

dI

dv
= 0,

for arbitrary V ν (except at the endpoints). Then we get that a geodesic must satisfy

DUµ

Du
=

D

Du

dxµ

du
=
d2xµ

du2
+ Γµ

αβ

dxα

du

dxβ

du
= 0. (A.4)

This equation has a first integral of the form

gµν
dxµ

du

dxν

du
= ϵk2,

or, equivalently
ds = kdu, (A.5)

where k is a constant and ϵ indicates whether the geodesic is null, timelike, or spacelike
by taking, respectively, the values 0, -1, and 1 (this depends on the chosen convention).
Every geodesic allows for a class of parameters, called affine parameters, for which it
satisfies equation (A.4). Affine parameters are related through one another by linear
transformations: u′ = au + b. Any other parameterization modifies eq. (A.4) with a
term proportional to the tangent vector tα = ∂xα

∂u
. Unless the geodesic is a null one, an

affine parameter for which k = 1 can be found. From (A.5) then ds = du. Thus the
parameter can be associated with proper time, and the geodesic equation (A.4) becomes

D

Ds

dxµ

ds
=
d2xµ

ds2
+ Γµ

αβ

dxα

ds

dxβ

ds
=
dtµ

ds
+ Γµ

αβt
αtβ = 0.
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To interpret the meaning of I, we note that for a non-null curve xα = xα(u) with
u0 ⩽ u ⩽ u1, we can choose a parameter u′ using the linear transformation property
between affine parameters. Let us take it such that

u′ =
∆u

L
s+ u0,

where s is the geodesic distance of the current point from u = u0, while L is the value of
s at u = u1. (A.1) then becomes

I(v) =
1

2
ϵL2. (A.6)

And, in the case of a null curve, this equates to 0 = 0. Hence our variational principle
turns into

δ(L2) = 0 =⇒ δL = δ(

∫
ds) = 0,

which is the usual stationary action principle for a free particle.
Consider now figure 10 and equation (A.3). If we suppose the two curves to be geodesics
and let u be an affine parameter on each one of them running between u0 and u1, eq.
(A.3) reduces, in virtue of (A.4), to

dI

dv
= ∆u [gµνU

µvν ]u1

u0
,

which, in terms of variations gives

δI = ∆u [gµνU
µδxν ]u1

u0
. (A.7)

This is now a function of the coordinates of the endpoints, say xµ
′
for A0 and x

µ for A1.
Additionally, (A.7) leads us to the derivatives of I:

∂I

∂xµ
= ∆u

(
gµν

dxν

du

)
A1

. (A.8)

An identical calculation results in the derivative with respect to the other end’s coordi-
nates:

∂I

∂xµ′ = −∆u
(
gµν

dxν

du

)
A0

. (A.9)

These are general results for any geodesic, if the curve is non-null we get the special cases

∂I

∂xµ
= Ltµ,

∂I

∂xµ′ = −Ltµ′ ,

where tµ and tµ′ are unit tangent vectors to the geodesic, respectively at A1 and A0,
while L is the length |A0A1|.
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What was done until now will now be used to construct and discuss what is referred to
as Synge’s world function.
Let P ′(x′) and P (x) be two events joined by a geodesic Γ, described by equations xµ =
ξµ(u), where u is an affine parameter. We suppose the geodesic to be unique and rewrite
the integral (A.1), now taken along Γ:

Ω(P ′, P ) = Ω(x′, x) =
1

2
∆u

∫ u1

u0

gµνU
µUνdu, Uµ =

dξµ

du
, (A.10)

which is independent of the particular affine parameter that is used. This object, which
is a function of the eight variables xµ, xµ

′
, is what we will refer to as the world function.

Since along a geodesic we know DUµ

Du
= 0, we have that gµνU

µUν is a constant along Γ,
and the world function becomes

Ω(x′, x) =
1

2
(∆u)2 [gµνU

µUν ]Γ . (A.11)

One can rescale and shift u to make u0 = 0 and u1 = 1, to yield ∆u = 1. Then, as in
eq. (A.6)

Ω(x, x′) =
1

2
ϵL2, L =

∫ P

P ′
ds.

This shows that in flat space there is a coordinate system for which

Ω(x, x′) =
1

2
ηµν(x

µ′ − xµ)(xν′ − xν).

Ω is a biscalar, it is invariant under coordinate transformations, both in the coordinate
system xµ

′
at P ′ and the coordinate system xµ at P , independently so.

Let us now refer back to a generic 2-point invariant I, all results will apply specifically
for Ω as well.

For convenience, we will denote covariant derivatives of I by subscripts while omitting
the usual semicolon notation, e.g. Iµ = I;µ. Derivatives can be taken with respect to
both coordinate systems of the points on which the object has a dependence, for example

Iµ′ =
∂I

∂xµ′ , Iµ′ν′ =
∂Iµ′

∂xν′
− Γ(P ′)λ

′

µ′ν′Iλ′

Iµ =
∂I

∂xµ
, Iµν =

∂Iµ
∂xν
− Γ(P )λµνIλ.

Another important relation, which will be needed later and can be proved by an argument
found in [22], is the fact that derivatives with respect to primed and unprimed indices
commute, hence the following holds

I...µ′ν... = I...νµ′.... (A.12)
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These are then examples of 2-point tensors. Mixed index derivatives act no different:

Iµ′νλ =
∂

∂xλ
Iµ′ν − Γρ

νλIµ′ρ.

Subscripts can then be raised at P ′ through the action of gµ
′ν′ , and at P through gµν .

As for the world function, by (A.8) and (A.9) we have

Ωµ′ = −∆uUµ′ , Ωµ = ∆uUµ. (A.13)

And, again, if Γ is not null, choosing the affine parameter such that du = ds, we have
the special case

Ωµ′ = −Ltµ′ , Ωµ = Ltµ,

with tµ the unit tangent vector to Γ at P , and tµ′ the one at P ′.
Equation (A.13) yields

gµνΩµΩν = ∆u2gµνUµUν .

And by (A.11), we obtain the important partial differential equations obeyed by the
world function

gµνΩµΩν = 2Ω, gµ
′ν′Ωµ′Ων′ = 2Ω. (A.14)

Note the following properties of the derivatives of Ω:

Ωµ′ν′ = Ων′µ′ , Ωµν = Ωνµ, (A.15)

Ωµ′ν′... = Ων′µ′..., Ωµν... = Ωνµ..., (A.16)

where (A.16) holds only when the subscripts being exchanged are the ones adjacent to
Ω. Also ... indicates a set of unchanged indices.

A.2 Coincidence limits of the world function

The notation for the limit P −→ P ′ (which implies xµ −→ xµ
′
), is the following

lim
P→P ′

Ω... = [Ω...].

The coincidence limit better not depend on the path taken between the two points, a
formal argument (as long as power series expansions are valid, which puts constraints on
the metric) is the following.
From the geodesic equation, one has:

dUµ

du
= −Γµ

αβU
αUβ, Uµ =

dxµ

du
.
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This suggests the following expansion for sufficiently close P and P ′:

xµ|P = xµ|P ′ +
dxµ

du

∣∣∣∣
P ′
δu+

d2xµ

du2

∣∣∣∣
P ′
(δu)2 + ...

= xµ
′
+ Uµ′

u1 −
1

2
Γµ′

α′β′U
α′
Uβ′

u21 + ..., (A.17)

which is an expansion of the coordinate point P in terms of the affine parameter u and
the tangent vector pointing towards P ′. Note δu = u1 − u0 ≡ u1.
The term Uµ′

U ν′u21 can be seen as

dxµ
′

du

dxν
′

du
δuδu ≈ δxµ

′
δxν

′ ≈ (xµ − xµ′
)(xν − xν′).

And (A.17) can be inverted as

u1U
µ′
= (xµ − xµ′

) +
1

2
Γµ′

α′β′(x
α − xα′

)(xβ − xβ′
) + ...,

defining ξµ = xµ − xµ′
, we can write

u1U
µ′
= ξµ +

1

2
Γµ′

α′β′ξ
αξβ + ...

Using (A.11), we thus write

2Ω(x, x′) = u21gµ′ν′ξ
µξν + Aµ′ν′λ′ξµξνξλ + ...

The coefficients of this series are functions of gµ′ν′ and its derivatives, hence Ω appears
as an analytic function, and the coincidence limits should be independent of the path.
In this limit, we will drop the primes on the base point.

Using (A.10) and (A.13), we know

[Ω] = [Ωµ′ ] = [Ωµ] = 0,

which also implies
[Ωµ′

] = [Ωµ] = 0.

Another important equation comes from differentiating eq. (A.14):

Ωµ = Ων
µΩν . (A.18)

Now divide by ∆u, then use (A.13):

Ωµ

∆u
=

Ων

∆u
Ων

µ −→ Uµ = UνΩ
ν
µ.
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Taking the coincidence limit of this equation, considering it must be independent of the
limit Uµ takes (because of path independence), one obtains

[Ων
µ] = δνµ −→ [Ωµν ] = gµν .

The coincidence limit can be equivalently taken by letting P → P ′, or by letting P ′ → P ,
hence we may exchange primed indices with unprimed ones in all our results, e.g.

[Ωµ′ν′ ] = gµν .

As for mixed indices, we will need to invoke Synge’s rule (A.24)

[ΞPQ′;µ] + [ΞPQ′;µ′ ] = [ΞPQ′ ];µ,

which will be proven at the end of this section. Thus we obtain, as an example that we
will need later for the world function’s second mixed derivative:

[Ωµν′ ] = [Ωµ];ν − [Ωµν ] −→ [Ωµν′ ] = −gµν = [Ωµ′ν ].

While more coincidence limits can be extracted by further differentiation of (A.18):

1. Ωµ = ΩνΩ
ν
µ

2. Ωµν = ΩλνΩ
λ
µ + ΩλΩ

λ
µν

3. Ωµνρ = ΩλνρΩ
λ
µ + ΩλνΩ

λ
µρ + ΩλρΩ

λ
µν + ΩλΩ

λ
µνρ

4. Ωµνρσ = ΩλνρσΩ
λ
µ + ΩλνρΩ

λ
µσ + ΩλνσΩ

λ
µρ + ΩλνΩ

λ
µρσ

+ ΩλρσΩ
λ
µν + ΩλρΩ

λ
µνσ + ΩλσΩ

λ
µνρ + ΩλΩ

λ
µνρσ.

Coincidence of equation number 2 above gives nothing of worth. On the other hand,
coincidence of number 3 gives

[Ωµνρ] = −[Ωρνµ].

And by this property and the symmetry on the first two indices given above, we see that

[Ωµνρ] = 0.

The last equation in the list, at coincidence, gives

[Ωνµρσ] + [Ωρµνσ] + [Ωσµνρ] = 0. (A.19)

Recall the commutation rule for covariant derivatives is

Tµ;ν;ρ − Tµ;ρ;ν = Rλ
µνρTλ,
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and
Tµν;ρ;σ − Tµν;σ;ρ = Rλ

µρσTλν +Rλ
νρσTµλ.

Using this last property on Ωµνρσ, and taking the coincidence limit, also using the sym-
metries of the Riemann tensor leads to

[Ωµνρσ] = [Ωµνσρ].

Next, applying the first covariant derivative commutation rule we stated on Ωµνρ, differ-
entiating and taking the coincidence limit gives

[Ωµνρσ]− [Ωµρνσ] = Rσµνρ = −Rµσνρ.

Exchange ρ and σ in this expression and add it to itself to get

2[Ωµνρσ]− [Ωµρνσ]− [Ωµσρν ] = − (Rµσνρ +Rµρνσ) .

And lastly, add expression (A.19) with the first two indices swapped on each factor. This
yields

[Ωµνρσ] = Sµνρσ = −1

3
(Rµσνρ +Rµρνσ) , (A.20)

where S is the symmetrized Riemann tensor, which contains the same information as R
by the relation

Rµνρσ = − (Sµρνσ − Sµσνρ) .

A.3 Proof of Synge’s rule

To prove Synge’s rule, we start with a mixed index bitensor

ΞPQ′ = Ξi1...ipj
′
1...j

′
q
,

where P and Q′ are multi-indices of the p and q indices respectively, as shown.
Next, take p vectors on the geodesic Γ, parallel transported to the point P and q vectors,
parallel transported on the base point P ′ along the geodesic:

AP = Ai1
1 ...A

ip
p , BQ′

= B
j
′
1

1 ...B
j
′
q

q .

Now we can form a biscalar, parametrized on Γ by the parameter u in such a way that
u = u0 at P ′ and u = u1 at P :

H(u0, u1) = ΞPQ′APBQ′
, (A.21)

then, for small ∆u = u1 − u0, to first order, we can write

H(u0, u1) = H(u0, u0) + ∆u

(
∂H

∂u1

)
u1=u0

= H(u0, u0) + ∆u [ΞPQ′;µ]P ′ U
µ′
(APBQ′

)|P ′ .

(A.22)
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And the same reasoning can be applied by starting from P:

H(u0, u1) = H(u1, u1)+(u0−u1)
(
∂H

∂u0

)
u0=u1

= H(u1, u1)−∆u [ΞPQ′;µ′ ]P U
µ(APBQ′

)|P .

(A.23)
Subtracting (A.23) from (A.22), we obtain

H(u1, u1)−H(u0, u0)

∆u
=
(
[ΞPQ′;µ]P ′ U

µ′
(APBQ′

)|P ′ + [ΞPQ′;µ′ ]P U
µ(APBQ′

)|P
)
.

And taking the limit as u0 → u1, we find

dH(u)

du
= ([ΞPQ′;µ] + [ΞPQ′;µ′ ])UµAPBQ.

Now, note that from the coincidence limit of equation (A.21), we get

H(u) = [ΞPQ′ ]APBQ −→ dH(u)

du
= [ΞPQ′ ];µ U

µAPBQ.

Finally, being the vectors A and B and the tangent to the geodesic U arbitrary, we obtain
the desired result

[ΞPQ′;µ] + [ΞPQ′;µ′ ] = [ΞPQ′ ];µ . (A.24)

A.4 The parallel propagator

We now introduce on the geodesic Γ an orthonormal basis eµa , which is parallel trans-
ported along the geodesic. The Latin indices indicate the frame spanned by this basis.
We have the following for normal local coordinate systems:

gµνe
µ
ae

ν
b = ηab,

and since the basis vectors are parallel transported along the geodesic, they satisfy

eµa;νt
ν = 0,

where, again, tµ are the unit tangent vectors to the geodesic. By defining the cotetrad

eaµ = ηabgµνe
ν
b ,

we obtain the completeness relation

gµν = ηabe
a
µe

b
ν . (A.25)

Tetrad and cotetrad relate as such on Γ:

eaµe
µ
b = δab , eaνe

µ
a = δµν .
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Any vector field can be decomposed on Γ in this basis, e.g.

Aµ = Aaeµa −→ Aa = Aµeaµ.

If, then, Aµ is parallel transported along Γ, and so is our basis, the coefficients Aa are
constant along the geodesic. This vector can be written as

Aµ(x) = (Aν′(x′)eaν′)e
µ
a .

Then, by defining
Πµ

ν′ = eaν′e
µ
a , (A.26)

we can write
Aµ(x) = Πµ

ν′A
ν′(x′). (A.27)

The role of Πµ
ν′ is to take a vector at x′ and parallel transport it to x. Since the met-

ric tensor is covariantly constant and satisfies, therefore, the geodesic equation, it is
automatically parallel transported on Γ. This implies

gαβ = Πα′

α Πβ′

β gα′β′ .

From (A.8) and (A.9), we can see that

eαa;βΩ
β = eαa;β∆ut

β = ∆ueαa;β
dxβ

du
= 0,

at x, and

eα
′

a;β′Ωβ′
= ∆ueα

′

a;β′
dxβ

′

du
= 0,

at x′.
These are the geodesic equations for the tetrad, which are zero since the basis vectors e
are parallel transported. From these last expressions, it is clear that

Πα
α′;βΩ

β = Πα
α′;β′Ωβ′

= 0. (A.28)

Also note that, if tµ is the tangent to Γ, we have tα = Πα
α′tα

′
and hence, again using

(A.8) and (A.9), we notice that

Ωα = −Πα′

α Ωα′ , Ωα′ = −Πα
α′Ωα.

The coincidence limit of the parallel propagator follows from (A.27):

[Πα
β′ ] = δα

′

β′ ,
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while other coincidence limits can be extracted by further differentiation of (A.28) and
by then taking coincidence limits, the results are [23]:

[Πα
β′;γ] = [Πα

β′;γ′ ] = 0,

and

[Πα
β′;γ;δ] = −

1

2
Rα′

β′γ′δ′ , [Πα
β′;γ;δ′ ] =

1

2
Rα′

β′γ′δ′ ,

[Πα
β′;γ′;δ] = −

1

2
Rα′

β′γ′δ′ , [Πα
β′;γ′;δ′ ] =

1

2
Rα′

β′γ′δ′ . (A.29)

A.5 Near-coincidence expansion of bitensors

To find a series expansion approximation for a generic bitensor Ξµ′ν′(x, x
′) near coinci-

dence, we write it as a series in the quantity Ωα′
, since it is the closest analog to the flat

spacetime event distance (x′ − x)α. A general form of such an expansion for a rank two
tensor at point x′ takes the form

Ξµ′ν′(x, x
′) = Aµ′ν′ + Aµ′ν′ρ′Ω

ρ′ +
1

2
Aµ′ν′ρ′σ′Ωρ′Ωσ′

+ ...,

where the coefficients A... are regular tensors at the base point x′, clearly symmetric in
the indices ρ′ and σ′. To find their form, we differentiate and take coincidence limits of
this expression, hence to zeroth order we get

Aµ′ν′ = [Ξµ′ν′ ].

Differentiating once and taking the limit gives

Aµ′ν′α′ = [Ξµ′ν′α′ ]− Aµ′ν′;α′ .

Repeating this process once more gives the second-order expansion coefficient

Aµ′ν′α′β′ = [Ξµ′ν′α′β′ ]− Aµ′ν′;α′;β′ − Aµ′ν′α′;β′ − Aµ′ν′β′;α′ .

In the case of a mixed-indices type of bitensor Ξµ′ν , the parallel propagator comes in to
help, we may write

Ξ̃µ′ν′ = Πν
ν′Ξµ′ν ,

and expand this. Then, invert the relation with the inverse of the parallel propagator
before taking the usual coincidence limits. We thus get the following expansion

Ξµ′ν = Πν′

ν

(
Bµ′ν′ +Bµ′ν′ρ′Ω

ρ′ +
1

2
Bµ′ν′ρ′σ′Ωρ′Ωσ′

+ ...

)
. (A.30)



A.6 The Van Vleck-Morette determinant 60

The coincidence limit of this equation gives, simply

Bµ′ν′ = [Ξµ′ν ].

Differentiating once gives

Ξµ′ν;α′ = Πν′

ν;α′(...) + Πν′

ν [Bµ′ν′;α′ +Bµ′ν′ρ′;α′Ωρ′ + µ′ν ′ρ′Ωρ′

α′+

+Bµ′ν′ρ′σ′Ωρ′Ωσ′

α′ +
1

2
Bµ′ν′ρ′σ′;α′Ωρ′Ωσ′

],

where the ... in parenthesis refers to the whole expression in parenthesis in eq. (A.30).
By what we know about the coincidence limits of the various quantities, we get easily
that

Bµ′ν′α′ = [Ξµ′ν;α′ ]−Bµ′ν′;α′ .

After further differentiation, the terms not vanishing in the limit now will include a term
proportional to the Riemann tensor from the second formula in (A.29):

Bµ′ν′α′β′ = [Ξµ′ν;α′;β′ ] +
1

2
Bµ′λ′Rλ′

ν′α′β′ −Bµ′ν′;α′;β′ −Bµ′ν′α′;β′ −Bµ′ν′β′;α′ .

The same method with two parallel propagators can be applied to a tensor with two
unprimed indices. The procedure is the same, hence we only report the results here:
The expansion takes the form

Ξµν = Πν′

ν Π
µ′

µ

(
Cµ′ν′ + Cµ′ν′ρ′Ω

ρ′ +
1

2
Cµ′ν′ρ′σ′Ωρ′Ωσ′

+ ...

)
.

The coefficients follow from the usual procedure:

Cµ′ν′ = [Ξµν ],

Cµ′ν′ρ′ = [Ξµν;ρ′ ]− Cµ′ν′;ρ′ ,

Cµ′ν′ρ′σ′ = [Ξµ′ν;α′;β′ ] +
1

2
Cµ′λ′Rλ′

ν′ρ′σ′ +
1

2
Cλ′ν′R

λ′

µ′ρ′σ′

− Cµ′ν′;α′;β′ − Cµ′ν′α′;β′ − Cµ′ν′β′;α′ .

A.6 The Van Vleck-Morette determinant

Another important object in our study will be the so-called Van Vleck-Morette determi-
nant. It is a biscalar defined as follows [23]:

∆(x, x′) = det
{
∆µ′

ν′(x, x
′)
}
, ∆µ′

ν′(x, x
′) = −Πµ′

µ (x, x
′)Ωµ

ν′(x, x
′).
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And we will now proceed to write it in a more recognizable form, as it is cited in many
other texts. We begin using the inverse of equation (A.25), namely

gαβ = ηabeαae
β
b .

Then, by taking the determinant and using the fact that it is a multiplicative map, we
get

det
{
gαβ
}
= det

{
ηabeαae

β
b

}
= det

{
ηab
}
det{eαa} det

{
eβb

}
= −e2,

where e is the determinant of the basis vectors coefficients eαa . Calling g the determinant
of the metric and recalling that det{A−1} = 1

det{A} , we obtain

1

det{gαβ}
= −e2 −→ e =

1√
−g

. (A.31)

The same procedure applied to the inverse completeness relation at P ′, namely gα
′β′

=
ηabeα

′
a e

β′

b , results in

e′ =
1√
−g′

, (A.32)

where primed quantities are evaluated at point P ′. Now, consider equation (A.26),
written as

Πα
α′ = ηabgα′β′eαae

β′

b ,

and take the determinant, to yield

det{Πα
α′} = −g′ee′,

which becomes, by equations (A.31) and (A.32),

det{Πα
α′} =

√
−g′√
−g

.

Now, take the definition of the VVD and apply what we just found

∆(x, x′) = det
{
−Πα

α′Ωα
β′

}
= det{Πα

α′} det{−gαγΩγβ′} = −det{−Ωγβ′}√
−g′
√
−g

,

which is the desired result.

From the coincidence limits of the world function and the parallel propagator derived in
the previous sections, it is clear that

[∆α′

β′ ] = δα
′

β′ , [∆] = 1.
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The near coincidence expansion of the VVD follows from the expansion (A.30) applied
to the world function, given by

Ωµ′ν = Πν′

ν

(
Bµ′ν′ +Bµ′ν′ρ′Ω

ρ′ +
1

2
Bµ′ν′ρ′σ′Ωρ′Ωσ′

+ ...

)
,

with the coefficients
Bµ′ν′ = [Ωµ′ν ] = −gµ′ν′ ,

Bµ′ν′α′ = [Ωµ′ν;ρ′ ] = 0,

Bµ′ν′ρ′σ′ = [Ωµ′ν;ρ′;σ′ ] +
1

2
Bµ′λ′Rλ′

ν′ρ′σ′ =
1

3

(
Rν′ρ′σ′µ′ − 1

2
Rµ′ν′ρ′σ′

)
,

where the first two results follow from well-known facts, while the third follows from a
combination of the commutation rule (A.12) and the use of Synge’s rule (A.24) on the
known coincidence limits of Ω (A.20):

[Ωµ′νρ′σ′ ] = [Ωνµ′ρ′σ′ ] = −Sν′σ′ρ′µ′ =
1

3
(Rν′ρ′σ′µ′ +Rν′µ′σ′ρ′) .

And so, we finally get the near coincidence expansion of the mixed-index second deriva-
tive of the world function:

Ωµ′ν = −Πν′

ν

(
gµ′ν′ +

1

6
Rν′ρ′µ′σ′Ωρ′Ωσ′

)
+ ...

Then, using the fact that Πν
α′Πν′

ν = δν
′

α′ , we immediately get the expansion for the VVD,
starting with

∆α′

µ′ = −Πα′νΩµ′ν = δα
′

µ′ +
1

6
Rα′

ρ′µ′σ′Ωρ′Ωσ′
+ ...

And recalling the approximation for a small magnitude matrix A:

det{I+A} = 1 + Tr{A}+O(A2),

we obtain

∆ = 1 +
1

6
Rρ′σ′Ωρ′Ωσ′

+ ...

We now set out to derive an important differential equation satisfied by ∆ [24]. We begin
with equation (A.14), written in the form

Ω =
1

2
ΩµΩµ,

and derive both sides. First with respect to xν and then with respect to xσ
′
, obtaining

Ωνσ′ = Ωµνσ′Ωµ + ΩµνΩ
µ
σ′ .
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Now, contract both sides with −Πν
ν′ and note that Ωµνσ′ = Ωνσ′µ, thanks to the symme-

tries (A.15) and (A.12). Then,

∆ν′σ′ = −Πν
ν′Ωνσ′µΩ

µ +∆µν′Ω
µ
σ′ .

Next, integrate the first term on the right-hand side by parts:

∆ν′σ′ =
(
[−Πν

ν′Ωνσ′ ];µ − Πν
ν′;µΩνσ′

)
Ωµ +∆µν′Ω

µ
σ′ .

The second term in brackets is zero due to (A.28), this leaves us with

∆ν′σ′ = ∆ν′σ′;µΩ
µ +∆µν′Ω

µ
σ′ .

Now, multiply both sides by the inverse of the VVD, namely (∆−1)
ν′

α′ , defined by the fact
that (

∆−1
)ν′
α′ ∆

α′

µ′ = δν
′

µ′ ,

to obtain
gα′σ′ =

(
∆−1

)ν′
α′ ∆ν′σ′;µΩ

µ + gµα′Ωµ
σ′ .

Now contract with gα
′σ′

and, given that we are working in d space-time dimensions, we
arrive to

d =
(
∆−1

)ν′σ′
∆ν′σ′;µΩ

µ + Ωα′

α′ .

We now invoke Jacobi’s formula:

δ(det{A})
det{A}

= δ(ln det{A}) = Tr
{
A−1δA

}
.

And recognize that we do have the trace in question in our expression, we then finally
write

d = ∆−1∆;µΩ
µ + Ωµ

µ = ln∆;µΩ
µ + Ωµ

µ. (A.33)

Another compact form of this equation, which may be useful, comes from multiplying
by ∆:

d∆ = ∆;µΩ
µ + Ωµ

µ∆ = (∆Ωµ);µ .

The last thing we wish to derive are the relations I1 and I2 involving the VVD stated in
[13], namely

I1 : ∇t ln∆ = d−1
|2Ω|

1
2
−K,

I2 : ∇t∇t ln∆ = −d−1
|2Ω| +KµνK

µν +Rµνt
µtν ,
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where

Kµν = tν;µ =

[
Ων

|2Ω| 12

]
;µ

=
Ωνµ

|2Ω| 12
− ϵΩνΩµ

|2Ω| 32
.

From which follows

K = Kµ
µ =

Ωµ
µ

|2Ω| 12
− ϵ 2Ω

|2Ω| 12
=

Ωµ
µ − 1

σ
,

where we used a notation such that |2Ω| 12 = (2ϵΩ)
1
2 =
√
ϵσ2 ≡ σ.

Using this and equation (A.13), equation I1 and (A.33) are clearly equivalent. As for
equation I2, we again take (A.33) and covariantly differentiate it. We obtain

ln∆;µ;νΩ
µ + ln∆;µΩ

µ
ν = −Ωµ

µν .

By multiplying both sides by Ων , this becomes

ln∆;µ;νΩ
µΩν + ln∆;µΩ

µ = −Ωµ
µνΩ

ν ,

and, using (A.33) on the second term, gives

ln∆;µ;νΩ
µΩν = −d+ Ωµ

µ − Ωµ
µνΩ

ν .

One can easily show the following two relations hold:

Ωµ
µνΩ

ν = Ωµ
µ − ΩµνΩµν −RλνΩ

λΩν ,

and

KµνK
µν =

ΩµνΩ
µν − 1

|2Ω|
.

Finally, combining these last 3 equations and using (A.13), again gives equation I2.

A.7 Further readings

More coincidence limits and expansions, as well as an explanation of the point-splitting
regularization method involving bitensors, can be found in [25].
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B The Q-metric: a deeper look

B.1 Introduction

The classical description of gravity in general relativity relies on local quantities derived
from the metric or the fields that represent sources of matter and energy. In trying to
implement a quantum-compatible description of space-time, these local metric or mat-
ter/energy fields might not make much sense given what we know about the quantum
realm. As a matter of fact, many (if not all) proposals of quantum theories of gravity
agree on the impossibility of localizing an event with infinite precision to a point, which,
in the theory of the q-metric, is effectively translated by the endowing of space-time
with a finite zero-point length. Having no complete framework of quantum gravity, the
fundamental reason for the emergence of this finite scale at coincidence is not known.
Nevertheless, its consequences can be explored using the usual tools of differential ge-
ometry, as long as the theory can be kept covariant. Thus explained why we discussed
bitensors at length: the metric theory of gravity can be reconstructed through the use of
bitensors given that, as we have seen, quantities such as the metric tensor, the Riemann
tensor, its contractions, etc., can be recovered in the limit of coincidence of such biten-
sors. It should, then, be immediate to apply a modification to these limits in which an
exact localization of events becomes impossible.
Let us begin by finding the relation between the usual metric gµν and our q-metric. We
begin by citing previous results: The position space propagator for a relativistic particle
in flat space-time can be evaluated using the path integral approach. The action is:25

A = −m
∫ x

x′
dτ = −m

∫ x

x′

√
ηµνdxµdxν = −m

∫ u1

u0

du
√
ηµνtµtν = −m

√
ϵ∆u,

which can be written, in our notation, as

A = −m
√
ϵσ2.

Then the propagator is, symbolically

G(x;x′) =
x∑
x′

exp
{
−im
√
ϵσ2
}
,

which can be evaluated to yield

G(x;x′) =
1

4π2

−im√
ϵσ2

K1(im
√
ϵσ2),

where K1 is the modified Bessel function of first order and σ2 = ηαβ(x
α′ − xα)(xβ′ − xβ).

[27] suggests a modification to the Feynman propagator of a massive scalar field, due

25Calculations can be found in [26]
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to the introduction of a zero-point length L0, through shifting the geodesic length σ to√
σ2 + L2

0. But, more generally, we might just introduce our modified geodesic length
without assuming the form of the function describing it by the substitution σ → s:

G(x;x′) =
1

4π2

−im√
ϵs
K1(im

√
ϵs), (B.1)

Another result is the leading order divergent part of the Hadamard form of the propagator
in arbitrary curved space being of the form [28]

GS(x, x
′) ∝

√
∆

(Ω(x, x′) + iϵ)
d−2
2

+ ...

and, interestingly enough, equation (B.1), when generalized to curved space-time, does
in fact gain a factor of

√
∆ as can be read in [29]. This shows that to be general and

include curvature effects in the modified propagator, the q-metric will have to include,
in some way, the VVD, which accounts for the expansion of geodesic congruences, i.e.
curvature.

B.2 Construction

We wish to construct a modified metric such that the form of the 2-point function (B.1)
arises naturally as its kernel. We start here with the simple shift of magnitude L0 in the
geodesic distance and, later on, generalize to arbitrary modifications. To achieve this, we
denote the initial, usual coordinates with primes and follow [27]. Start in flat space-time
and rotate to Euclidean signature. The line element is, in Cartesian and hyperspherical
coordinates:

dτ 2 =
∑
i

dx2i = dR2 +R2dΘ2
(3),

where dΘ2
(3) is the line element on a 3-sphere of radius R.

Note geodesic distances from a point are given by the radial distance R. For this reason,
from now on, we identify R with the geodesic length σ and write

dτ 2 = dσ2 + σ2dΘ2
(3). (B.2)

We now apply the simplest (or leading order) prescription for a zero-point minimum
length by the Pythagorean addition of such length scale

σ → σ̄ =
√
σ2 + ϵL2

0,

where ω is the modified geodesic distance. The differentials are related in the following
way:

dσ̄ =
∂σ̄

∂σ
dσ =

σ√
σ2 + ϵL2

0

dσ −→ dσ̄2 =
σ2

σ2 + ϵL2
0

dσ2.
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Hence the line element above can be rewritten as

dτ 2 =

(
1 + ϵ

L2
0

σ2

)
dσ̄2 + σ2dΘ2

(3).

Subtracting the last term on both sides yields

dτ 2 − σ2dΘ2
(3) = dσ2 =

(
1 + ϵ

L2
0

σ2

)
dσ̄2.

It is then clear, by (B.2), that

dσ =

√
1 + ϵ

L2
0

σ2
dσ̄.

This can be integrated to obtain the transformation between the geodesic lengths:

σ = T σ̄, T =

√
1 + ϵ

L2
0

σ2
=

√
1 +

L2
0

2ϵΩ
,

where we used the fact that σ2 = 2Ω, and we will alternate between the geodesic length
and the world function depending on what is more convenient. The factor ϵ is trivially
1 in Euclidean space, but it will be needed when we rotate back to Lorentzian metric.
Notice the transformation is singular in the coincidence limit, where σ → 0, which is to
be expected. The transformation we just performed corresponds to the following when
applied to a Cartesian set of coordinates:∑

i

x2i → T 2
∑
i

x2i ,

and for the single coordinates, we have

xi → yi = Txi.

Now, we wish to incorporate this transformation in the metric. To do this, we impose that
the geodesic interval element, as measured in the new metric using the old coordinates,
be equal to the one measured in the flat metric using the transformed coordinates, this
means

qµνdx
µdxν = gαβdy

αdyβ,

which in turn implies

qµν(x) =
∂yα

∂xµ
∂yβ

∂xν
gαβ(y(x)),

where gαβ(x) = δαβ in euclidean space. Since yµ = Txµ, this requires us to compute

qµν(x) =
∂(Txα)

∂xµ
∂(Txβ)

∂xν
δαβ. (B.3)
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Clearly, we have
∂(Txα)

∂xµ
=

∂T

∂xµ
xα + Tδαµ .

And, recalling that Ωµ = σtµ =
√
2ϵΩtµ, and that in this geometry the normalized

tangent vector to the geodesic is, simply, tµ = δµνxν
√
2ϵΩ

= xµ

σ
, we can write

∂T

∂xµ
=
∂σ2

∂xµ
∂σ2T = 2Ωµ∂σ2T = −ϵL

2
0

σ4
T−1Ωµ,

and it follows that

(∂µTx
α) = −ϵL

2
0

σ4
T−1Ωµσt

α = −ϵL
2
0

σ4
T−1
√
ϵσ2

2
tµt

α = −L
2
0

σ2
T−1tµt

α.

Hence we can finally write

∂(Txα)

∂xµ
= Tδαµ −

L2
0

σ2
T−1tµt

α.

Plugging what we know in (B.3), we obtain

qµν(x) = T 2δµν − ϵ
[
L2
0

σ2

(
2ϵ− L2

0

σ2
T−2

)]
tµtν ,

which can be cast in the following, more familiar form

qµν(x) = T 2δµν −
L2
0

σ2

(
2 + ϵ

L2
0

σ2

1 + ϵ
L2
0

σ2

)
tµtν = T 2δµν − ϵ(T 2 − T−2)tµtν .

Rotating back to Lorentzian signature now only requires us to allow for ϵ to take both
values ±1, to accommodate for the fact that tµtµ = ϵ = ±1, depending on the space-
like/timelike character of the tangent vector respectively.
Finally, this leaves us with

qµν(x) = T 2ηµν − ϵ(T 2 − T−2)tµtν , (B.4)

where, now, T =
√

1 + ϵ
L2
0

σ2
η
, and ση is the Minkowski geodesic length.

The inverse is easily found to be

qµν(x) = (T−1)2gµν + ϵ(T 2 − T−2)tµtν .

This can be proven either by direct computation or by a general result which we will
state later.
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B.3 Disformal transformations

Equation (B.4) is essentially a disformal transformation in the biscalar Ω. A disformal
transformation is a generalization of a conformal transformation that redefines measures
differently along the gradient of a particular scalar field, the world function in this
case. Unlike conformal transformations, disformal transformations are not isotropic and
therefore do not preserve angles. Such a transformation was shown by Bekenstein [30]
to be the most general relation between two geometries in a theory (one describing the
gravitational geometry, the other describing the dynamics of matter) which is compatible
with the principles of weak equivalence and causality. Unlike the simpler conformal
transformation, due to the anisotropy of the modification of scales it induces, this sort of
transformation does affect the shape of light cones, opening up the possibility of, e.g., the
shrinking of light cones at small scales or other phenomena which have been suggested
in the context of quantum gravity [31].

A general disformal transformation takes the form:

qµν = Agµν + ϵBtµtν . (B.5)

And the inverse has the general form [32]

qµν = A−1gµν − ϵ A−1B

A− 2ϵIB
tµtν ,

with

I = −1

2
gµνtµtν = − ϵ

2
,

gives

qµν = A−1gµν − ϵ A
−1B

A+B
tµtν = A−1gµν + ϵCtµtν ,

where for the moment we consider tµ as the tangent vector to a generic scalar field ϕ,
hence

tµ =
∂µϕ√

ϵgαβ∂αϕ∂βϕ
−→ gµνtµtν = ϵ = ±1. (B.6)

We can further calculate the magnitude of these vectors in the disformal metric:

qµνt
µtν = ϵ(A+B).

Then deduce the following:
qµνt

µtν

gµνtµtν
= A+B,

which suggests the introduction of the following vectors of unit magnitude in this frame:

Tµ = (A+B)
1
2 tµ, T µ = qµνtν = (A+B)−

1
2 tµ,
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which respect the relation
qµνTµTν = ϵ.

It’s important to notice that the Lorentzian signature of the metric has to be conserved.
If the metric is such that no sign-inversion in its terms is present, we should impose, at
all points, that the following holds:

q00 = Ag00 + ϵBt0t0 > 0. (B.7)

Since the function B may be zero at some point, this also implies the condition A > 0
(clearly g00 > 0).
We now wish to find the induced metric of a hypersurface orthogonal to the vector field
Tµ (also called its ”first fundamental form”), this is, in analogy with the case for the tµ
in the usual metric:

h̄µν = qµν − ϵTµTν = Ahµν . (B.8)

Thus we found that the induced metrics on such hypersurfaces, as seen in the usual
metric and the disformally related one, are conformally related to each other.

The ”second fundamental form” or extrinsic curvature is, in the usual metric:

Kµν = hαµ∇αtν = (δαµ − ϵtµtα)∇αtν = ∇µtν − ϵaνtµ,

where aν = tα∇αtν is the acceleration of the tangent vector tµ along the hypersurface.
This vanishes if the tangent vector satisfies the geodesic equation, which will be our case
later on. But for the moment, we remain general and keep the acceleration term.

The extrinsic curvature in the disformal metric can thus be written as:

K̄µν = h̄αµ∇̄αTν = ∇̄µTν − ϵāνTµ,

where āν = Tα∇̄αTν , and the covariant derivative in the disformal frame acts as:

∇̄αTβ = ∂αTβ − Γ̄γ
αβTγ.

Now, to find the relation between the Christoffel symbols in the two frames, we recall
the usual form of the connection:

Γα
βγ =

1

2
gαδ (∂γgδβ + ∂βgδγ − ∂δgβγ) ,

and compare it with the connection in the disformal frame we need:

Γ̄α
βγ =

1

2
qαδ (∂γqδβ + ∂βqδγ − ∂δqβγ) .
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A relation between the two can be easily found by adding and subtracting the relevant
connections to complete the derivatives into their covariant form, i.e.

Γ̄α
βγ =

1

2
qαδ
[ (
∂γqδβ − Γµ

γδqβµ − Γµ
γβqδµ

)
+ Γµ

γδqβµ + Γµ
γβqδµ + ...

=
1

2
qαδ (∇γqδβ +∇βqδγ −∇δqβγ) + Γα

γβ.

Given this, we will need a few identities. Start by expanding the following term:

∇γqδβ = ∇γ (Agδβ + ϵBtδtβ) = (∂γA)gδβ + ϵ ((∂γB)tδtβ +B(tδ∇γtβ + tβ∇γtδ)) ,

and use this to find some equations that we will need, firstly

tγ∇γqδβ = gδβ∂tA+ ϵ(∂tB)tδtβ + ϵB(tδaβ + tβaδ), (B.9)

and

tβ∇γqδβ = tδ∂γ(A+B) + ϵB(tδt
β∇γtβ + ϵ∇γtδ) = tδ∂γ(A+B) +B∇γtδ, (B.10)

where we used the fact that

tδ∇γtδ = ∇γ(t
δtδ)− tδ∇γtδ = −tδ∇γtδ,

which therefore vanishes.
We are now ready to find the following expression:

Γ̄α
βγTα = (A+B)

1
2Γα

βγtα +
1

2
(A+B)

1
2 qαδtα (∇γqδβ +∇βqδγ −∇δqβγ) .

Using the fact that qαδtα = (A+B)−1tδ, this becomes:

Γ̄α
βγTα = (A+B)

1
2Γα

βγtα +
1

2
(A+B)−

1
2

(
tδ∇γqδβ + tδ∇βqδγ − tδ∇δqβγ

)
,

and the term in parenthesis is what we need the relations in (B.9) and (B.10) for. The
result for these terms is:

tδ∇γqδβ + tδ∇βqδγ − tδ∇δqβγ =

B(Kγβ +Kβγ) + tβ∂γ(A+B) + tγ∂β(A+B)− ϵ(∂tB)tγtβ − gγβ∂tA.

The last piece we need is:

∂βTγ = ∂β

[
(A+B)

1
2 tγ

]
=

1

2
(A+B)−

1
2∂β(A+B)tγ + (A+B)

1
2∂βtγ.
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After putting everything together, we finally find:

∇̄βTγ = ∂βTγ − Γ̄α
βγTα =

(A+B)
1
2∇βtγ −

1

2
(A+B)−

1
2

(
B(Kγβ +Kβγ)+

+ tβ∂γ(A+B)− ϵ(∂tB)tγtβ − gγβ∂tA
)
.

The next step is adding and subtracting a factor of ϵ(∂tA)tγtβ. After some simplifications
and recalling the form of the induced metric (hµν = gµν − ϵtµtν), we obtain:

∇̄βTγ = (A+B)
1
2

{
∇βtγ −

1

2
(A+B)−1

[
B(Kγβ +Kβγ)

− (∂tA)hγβ −
(
ϵtγ∂t(A+B)− ϵ∂γ(A+B)

)]}
.

We can, then, easily find that the acceleration of the tangent vectors in the disformal
frame is:

T β∇̄βTγ = āγ = aγ +
1

2
(A+B)−1 (tγ∂t(A+B)− ϵ∂γ(A+B)) ,

where we used the fact that hγβt
β = 0 and tβKγβ = 0 = tβKβγ.

Note that the second term vanishes if the coefficients of the disformal transformation are
taken to be functions of the scalar field ϕ only (as in [33]). This is because, using (B.6),
we obtain

∂t = tα∂α =
ϕα√
ϵϕ2

∂α =
ϕ2√
ϵϕ2

∂ϕ =

√
ϕ2

ϵ
∂ϕ = ϵ

√
ϵϕ2∂ϕ,

where we used the notation ∂αϕ = ϕα, ϕαϕ
α = ϕ2 and ∂

∂ϕ
= ∂ϕ.

26

Now it should be clear that, in such a case,

ϵ∂γ(A+B) = ϵ∂ϕ(A+B)ϕγ = ϵ
√
ϵϕ2tγ∂ϕ(A+B) = tγ∂t(A+B).

Either way, we will continue with the general case, especially since we shall now see that
in the expression for the extrinsic curvature, these terms cancel.

We are now in the condition of finding the disformal frame extrinsic curvature, we begin
by defining:

K̄µν = ∇̄µTν − ϵāνTµ.
26We also note that 1√

ϵ
= ϵ
√
ϵ is valid in any but the null case.



B.3 Disformal transformations 73

After plugging in what we found for the individual terms on the right-hand side and
some basic manipulation, the terms discussed above indeed cancel and we are left with

K̄µν = (A+B)
1
2

[
∇µtν − ϵaνtµ −

1

2
(A+B)−1 (B(Kµν +Kνµ)− (∂tA)hµν)

]
= (A+B)

1
2

[
Kµν −

1

2
(A+B)−1 (B(Kµν +Kνµ)− (∂tA)hµν)

]
.

If we assume the scalar field is hypersurface orthogonal, by Froebenius’ theorem this
implies the following condition holds:

t[α∇γtβ] = tγ∇βtα − tβ∇γtα + tα∇γtβ − tγ∇αtβ + tβ∇αtγ − tα∇βtγ = 0,

which, once contracted with tγ on both sides, yields

Kαβ = Kβα.

This assumption also implies the field tµ is irrotational, i.e. ϵαβγδtβ∇γtδ = 0.

Following this assumption, our previous result simplifies greatly:

K̄µν = (A+B)−
1
2

[
AKµν +

1

2
(∂tA)hµν

]
,

and it follows easily, using the same methods used before in this section, that the extrinsic
curvature scalar is

K̄ = qµνK̄µν = (A+B)−
1
2

[
K +

d− 1

2
∂t lnA

]
.

We can also find the variation along the tangent to our scalar field, in the disformal
frame, of the extrinsic curvature scalar. For this purpose, we start by writing

∇̄T K̄ = Tα∇̄αK̄ = (A+B)−
1
2 tα∂αK̄,

which is easily found to be

∇̄T K̄ =
1

2
∂t(A+B)−1

[
K +

d− 1

2
∂t lnA

]
+ (A+B)−1

[
∂tK +

d− 1

2
∂2t lnA

]
.

Given the objects derived until now, we can remarkably derive the Ricci scalar for the
conformal frame, appealing to the Gauss-Codazzi equation (for a derivation see section
3.5 of [34]), which reads

R = RΣ + ϵ(K2 −KµνK
µν) + 2ϵ∇α(t

β∇βt
α − tα∇βt

β)

= RΣ − ϵ(K2 +KµνK
µν) + 2ϵ∇αa

α − 2ϵ∇tK,



B.3 Disformal transformations 74

where, in the second line, we used the fact that tβ∇βt
α = aα, and that

∇α(t
α∇βt

β) = (∇αt
α)(∇βt

β) +∇t∇βtβ = K2 +∇tK.

Hence all we need to do to find the disformal frame Ricci scalar is translate all quantities
as

R̄ = R̄Σ − ϵ(K̄2 + K̄µνK̄
µν) + 2ϵ∇̄αā

α − 2ϵ∇̄T K̄.

The only thing we are missing in order to put this object together is the disformal
induced Ricci scalar on Σ. Luckily, given that the induced metric on the hypersurfaces
are conformally related (equation (B.8)), as long as A is constant on the hypersurface
Σ, this is conformally related to the Einstein frame induced Ricci scalar, hence

R̄Σ = A−1RΣ.

Another object which may be useful is the traceless symmetric part of the extrinsic
curvature tensor. In the disformal frame, this is

σ̄µν = K̄µν −
1

d− 1
h̄µνK̄,

which, using equation (B.8), quickly becomes

σ̄µν =
A√
A+B

(
Kµν −

1

d− 1
hµνK

)
=

A√
A+B

σµν .

It is then easy to show that the following holds:

σ̄2
µν = qαµqβν σ̄µν σ̄αβ = (A+B)−1σ2

µν .

Lastly, let us state some properties of the disformal frame:
From the definition of the connection coefficients, it is easy to see that these are sym-
metric in their lower indices, just like in the original frame, i.e. Γ̄α

µν = Γ̄α
νµ. Given this

fact, it can be proven, through a lengthy calculation, that the disformal metric respects
the condition of metric compatibility in the disformal frame, namely

∇̄µqαβ = 0,

and, in very much the same way as in the normal frame, the product rule for this
derivative holds. We will need the form of the wave operator for a scalar field in the
disformal frame. Recall that in the Einstein frame the following is true:

□φ = gµν∇µ∇νφ = gµν∇µ∂νφ = ∇µ∂
µφ = ∂µ∂

µφ+ Γµ
αµ∂

αφ,
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and it can be found easily that

Γµ
αµ =

1

2
gµβ∂αgµβ =

1√
−g

∂α
√
−g,

where the second equality follows from the matrix identity

d

dλ
log detM = Tr

(
M−1 d

dλ
M

)
.

Then, it is clear that for a scalar field the d’Alembertian takes the form:

□φ =
1√
−g

∂α
(√
−ggαβ∂βφ

)
.

Much of the same procedure applies in the disformal frame, we write

□qφ = qµν∇̄µ∇̄νφ = ∇̄µφ̄
µ = ∂µφ̄

µ + Γ̄µ
αµφ̄

α,

where φ̄µ = qµν∂νφ.
And from the definition, it is easy to see that:

Γ̄µ
αµ = Γµ

αµ +
1

2
qµδ∇αqµδ,

and the second term on the right-hand side is the one we will need to evaluate.
Expanding the metric terms and using the same methods used until now in the calcula-
tions of this section we arrive at

qµδ∇αqµδ = d∂α lnA+ A−1B

(
∂α ln

B

A+B

)
= (d− 1)∂α lnA+ ∂α(A+B),

where d is the number of space-time dimensions. Finally, putting it all together, we find:

Γ̄µ
αµ = ∂α ln

√
−g + ∂α lnA

d−1
2 + ∂α ln (A+B)

1
2

= ∂α ln
√

(−g)Ad−1(A+B) = ∂α ln
√
−q, (B.11)

and we will see that q is indeed the determinant of the disformal metric. As such, we
will need to require it to be non-vanishing for the inverse metric to be well defined.27

Finally, the d’Alembertian operator in the disformal frame reads

□qφ = ∂µφ̄
µ + (∂µ ln

√
−q)φ̄µ =

1√
−q

∂µ
(√
−qqµν∂νφ

)
. (B.12)

27Notice that both this requirement and requirement (B.7) are satisfied in the special case derived in
section B.2
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B.4 The q-metric for arbitrary curved spacetime

We have seen, at the beginning of this section, that the imposition of a minimal length
in space-time generates a new metric, disformally related to the usual metric. But we
were missing a key ingredient, there are reasons to believe that our previous derivation
should be missing corrections due to curvature and can, at most, approximate the desired
effects in an arbitrary curved spacetime. Let us proceed from here: since the precise way
distances should be modified on small scales depends on a full theory of quantum gravity,
we now want to extend the construction of the q-metric to arbitrary functions of the world
function (or, equivalently, of the geodesic distance). That being said, we now consider a
transformation of the world function of the type

Ω→ SL0(Ω),

where L0 is the zero-point length.
The only constraints we will require from the function SL0(Ω) are

• Zero-point length assumption SL0(0) = ϵ
L2
0

2
,

• Identity S0(Ω) = Ω,

•
[

SL0
(Ω)

S′2
L0

(Ω)

]
Ω=0

<∞,

where a prime indicates differentiation with respect to Ω. The last condition will become
clear during the derivation.
Taking what we learned in the previous section, we now take the disformal transformation
in the form (B.5) as our ansatz. To determine the coefficients A, B, and C we first require
the modified geodesic length to satisfy the defining equation for the world function (A.14)
in the q-metric, which then becomes

gµνΩµΩν = 2Ω −→ qµνSµSν = 2S. (B.13)

Note that, just as indices for the world function mean differentiation, also for S we write
∂S
∂xα = Sα.

Now, we will need the relations

tα =
Ωα

√
2ϵΩ

,

and

Sµ = ∂µS =
∂S

∂Ω
Ωµ = (∂ΩS)Ωµ = S ′Ωµ,

where we also took the occasion to showcase some of the notation which will be used
later. Using these and plugging the inverse q-metric in (B.13), we obtain(

A−1gµν + ϵC
Ωµ

√
2ϵΩ

Ων

√
2ϵΩ

)
S ′

2
ΩµΩν = 2S,
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and, using (A.14), this yields the result

A−1 + C = Q =
1

Ω

S

S ′2
. (B.14)

Let us now state the relations between the factors we have for later use, they are

• Q = A−1 + C = 1
A+B

,

• C = −A−1B
A+B

= −A−1BQ = Q− A−1,

• B = − AC
A−1+C

= −ACQ−1.

That said, the q-metric will be completely determined by the next condition, which
involves the propagators of fields and hence the d’Alembertian □. The condition will be
explained later. For now, let us derive the q-metric wave operator.

B.5 The q-metric d’Alembertian

Recall a general property of matrix determinants, namely the matrix determinant lemma,
which states that

det
{
M+ uvT

}
= det{M}

(
1+ vTM−1u

)
.

Then, it is clear that for our metric the following holds:

q = det{qµν} = det{Agµν}
(
1 + ϵBA−1gµνtµtν

)
= Ad−1 (A+B) g =

Ad−1

Q
g. (B.15)

Here, d is the number of space-time dimensions and g is the determinant of gµν . Note
that this is the same result obtained before (see (B.11)). Also, let us define

ξ =
A

d−1
2

Q
1
2

.

We will need the q-metric d’Alembertian to take the usual form, as in eq. (B.12).

□q =
1√
−q

∂µ
(√
−qqµν∂ν

)
,

which, using (B.15) and the metric itself, we break into two terms as

□q =
1

ξ
√
−g

∂µ
[
ξ
√
−gA−1gµν∂ν

]
+

ϵ

ξ
√
−g

∂µ
[
ξ
√
−gCtµtν∂ν

]
= □q,1 + ϵ□q,2.

So, let us begin with the first term

□q,1 =
1

ξ
√
−g

∂µ
[
ξ
√
−gA−1∂µ

]
.
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After derivation and some basic manipulation, this becomes:

□q,1 =
∂µξ

ξ
A−1∂µ + ∂µA

−1∂µ + A−1
1√
−g

∂µ(
√
−g∂µ),

which can be further simplified to

□q,1 = (∂µ ln ξ)A
−1∂µ − A−2∂µA∂µ + A−1□g

= A−1 [∂µ ln ξ − ∂µ lnA] ∂µ + A−1□g.

Notice, by the definition of ξ, that the following is true:

∂µ ln ξ = ∂µ

(
lnA

d−1
2 − lnQ

1
2

)
=
d− 1

2
∂µ lnA−

1

2
∂µ lnQ, (B.16)

and as such, we can continue and finally obtain

□q,1 =
1

2
A−1 [(d− 3)∂µ lnA− ∂µ lnQ] ∂µ + A−1□g.

We now move on to the second term

□q,2 =
1

ξ
√
−g

∂µ
[
ξ
√
−gCtµ∂t

]
=

1

ξ
√
−g

∂µ
[
ξ
√
−g(Q− A−1)tµ∂t

]
,

where ∂t = tα∂α is the directional derivative along the tangent vector t.
After derivation and some simplifications, this becomes

□q,2 = (∂µ ln ξ)(Q− A−1)tµ∂t +
1√
−g

(∂µ
√
−g)(Q− A−1)tµ∂t+

+ ∂µ(Q− A−1)tµ∂t + (Q− A−1)(∂µtµ)∂t + (Q− A−1)∂2t .

By applying (B.16), and recalling that

∂µ
√
−g√
−g

= Γα
αµ,

and using the form of the covariant derivative we arrive at the result

□q,2 =
d− 1

2
Q∂t lnA∂t −

d− 3

2
A−1∂t lnA∂t+

1

2
A−1∂t lnQ∂t + (Q− A−1)∇µt

µ∂t +
1

2
∂tQ∂t + (Q− A−1)∂2t .
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Putting the two terms back together, we get the following expression for the box operator:

□q = □q,1 + ϵ□q,2 = A−1
[
□g +

d− 3

2
(∂µ lnA∂

µ − ϵ∂t lnA∂t)
]
+

+ ϵ(Q− A−1)
[
∇µt

µ∂t + ∂2t
]
+
ϵ

2
∂tQ∂t+

+ ϵ
d− 1

2
Q∂t lnA∂t +

1

2
A−1 [ϵ∂t lnQ∂t − ∂µ lnQ∂µ] .

Lastly, if the coefficients A and B only depend on the world function Ω, we can show
that the two terms in the last parenthesis cancel each other:

ϵ∂t lnQ∂t = ϵtµ(∂µ lnQ)t
ν∂ν = ϵ(lnQ)′tµΩµt

ν∂ν =

= ϵ(lnQ)′
Ωµ

√
2ϵΩ

Ωµ
Ων

√
2ϵΩ

∂ν = Ων(lnQ)
′∂ν = ∂ν lnQ∂ν .

And the very same argument applies to the second term in the first parenthesis. This is
the first step towards our next goal: finding a simpler version of this operator, restricted
to maximally symmetric spaces. At the moment, we have the following form of the
q-metric d’Alembertian:

□q = □q,1 + ϵ□q,2 = A−1□g + ϵ(Q−A−1)
[
∇µt

µ∂t + ∂2t
]
+
ϵ

2
∂tQ∂t + ϵ

d− 1

2
Q∂t lnA∂t,

which can be further simplified into

□q = A−1□g + ϵ(Q− A−1)
[
∇µt

µ∂t + ∂2t
]
+
ϵ

2
((d− 1)Q∂t lnA∂t +Q∂t lnQ∂t)

= A−1□g + ϵ(Q− A−1)
[
∇µt

µ∂t + ∂2t
]
+ ϵQ∂t ln (A

d−1
2 Q

1
2 )∂t,

(B.17)

where, as a sanity check, we gladly recognize the d’Alembertian deriving from a conformal
transformation in the conformal limit, i.e. when B = 0 and consequently Q = A−1.

B.6 The d’Alembertian in maximally symmetric spaces

The wave operator in maximally symmetric spaces takes a simpler form. This is because
we will have the 2-point function and the various coefficients of the metric depend only
on the geodesic distance. Given this assumption, We will take the Green’s function to
be G = G(Ω) (a scalar) and see how the standard box operator becomes. Let us begin
by applying the d’Alembertian to G:

□gG(Ω) = ∇µ∇µG = ∇µ∂
µG = ∇µ [Ω

µG′] = Ωµ
µG
′ + 2ΩG′′.

We finally get to use the identity (A.33), involving the Van Vleck determinant in the
form

Ωµ
µ = d− (ln∆);µΩ

µ = d− 2Ω(ln∆)′,
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and, with this, we continue:

□gG(Ω) = (d− 2Ω(ln∆)′)G′ + 2ΩG′′

= 2Ω

[(
d

2Ω
− (ln∆)′

)
∂Ω + ∂2Ω

]
G,

and by employing the trick
d

2Ω
= ∂Ω lnΩ

d
2 ,

we achieve the desired result, namely

□gG(Ω) = 2Ω
[
∂Ω ln (Ω

d
2∆−1)∂Ω + ∂2Ω

]
G.

For clarity, we will write

□MSS
g = 2Ω

[
∂Ω ln (Ω

d
2∆−1)∂Ω + ∂2Ω

]
, (B.18)

which will be useful later. Now we turn our attention back to the q-metric d’Alembertian
and find its form in maximally symmetric spaces. By using the same chain rule tricks
and substitutions seen above, and assuming the coefficients of the metric depend on Ω
only, we find the following simplified form of the relevant terms:

① ∂tQ∂t = 2ϵΩQ′∂Ω,

② ∂t lnA∂t same as above with Q←→ lnA,

③ ∂2t = 2ϵΩ
[
∂2Ω + ∂Ω

(
lnΩ

1
2

)
∂Ω

]
,

④ (∇µt
µ)∂t = 2ϵΩ∂Ω

[
ln
(
Ω

d−1
2 ∆−1

)]
∂Ω.

Then, it is easy to realize that

ϵ(③ + ④) = □MSS
g .

Next, we go back to the general case q-metric d’Alembertian (B.17) and plug-in was just
found. After some straightforward simplifications, we achieve

□MSS
q = Q

[
□MSS

g + Ω∂Ω
[
ln (Ad−1Q)

]
∂Ω
]
.

Now, use expression (B.18) to yield

□MSS
q = 2QΩ

[
∂2Ω + ∂Ω

[
ln (Ω

d
2∆−1A

d−1
2 Q

1
2 )
]
∂Ω

]
.
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B.7 Determination of the parameters

The final requirement we will use to fully determine the general case for the q-metric is
the modification of Green’s functions for a scalar propagator in a maximally symmetric
space. We suppress the MSS in the superscript in this section, but this restriction should
be understood. We require that the modified Green’s function Gq(Ω) = Gg(S(Ω)) be a
solution to

□qGq(Ω) = 0 given □gGg(Ω) = 0.

We proceed to evaluate □gGg, and impose the condition [□gGg(Ω)]Ω=S = 0:

[□gGg(Ω)]Ω=S = □gGg(S) = 2S
[
∂2S + ∂S

[
ln (S

d
2 ∆̄−1)

]
∂S

]
Gg(S),

where ∆̄ is the VVD, with the substitution Ω←→ SL0 .
Now, by the chain rule, we know

• ∂S = 1
S′∂Ω,

• ∂2S =
(

1
S′

)2
[∂2Ω − ∂Ω ln (S ′)∂Ω],

which leads us to

□gGg(S) = 2
S

S ′2

[
∂2Ω + ∂Ω

[
ln

(
S

d
2 ∆̄−1

S ′

)]
∂Ω

]
Gg(S).

Imposing the condition that this vanishes, we obtain the following differential equation:

∂2ΩGg(S) = ∂Ω

[
ln

(
S ′∆̄

S
d
2

)]
∂ΩGg(S). (B.19)

Now we will impose the condition that □qGq(Ω) = 0. To do so, begin by writing

□qGq(Ω) = □qGg(S) = 2QΩ
[
∂2Ω + ∂Ω

[
ln
(
Ω

d
2∆−1Q

1
2A

d−1
2

)]
∂Ω

]
Gg(S) = 0,

which in turn immediately implies

∂2ΩG(S) + ∂Ω

[
ln
(
Ω

d
2∆−1Q

1
2A

d−1
2

)]
∂ΩGg(S) = 0.

Using eq. (B.19), this becomes

∂Ω

[
ln

(
∆̄

∆
A

d−1
2

(
Ω

S

) d
2

S ′Q
1
2

)]
∂ΩGg(S) = 0.



B.7 Determination of the parameters 82

Plugging in our expression for k, namely (B.14), this condition becomes

d− 1

2
∂Ω ln

(
AΩ

S

(
∆̄

∆

) 2
d−1

)
= 0.

The solution is easy to find and reads

AΩ

S

(
∆̄

∆

) 2
d−1

= α −→ A = α
S

Ω

(
∆̄

∆

)− 2
d−1

,

where α is a constant of integration which is fixed by requiring that A = 1 when L0 is
set to zero, or equivalently when SL0=0(Ω) = Ω. This implies α = 1, and so we finally
have our result.
The relations between our coefficients help us find all we need to finally give the final
form of the q-metric:

A−1 + C = Q =
1

Ω

S

S ′2
−→ C =

1

Ω

S

S ′2
− Ω

S

(
∆̄

∆

) 2
d−1

,

and

B = −ACQ−1 = Ω
S ′2

S
− S

Ω

(
∆̄

∆

)− 2
d−1

.

The q-metric, then, has the final general form:

qµν =
S

Ω

(
∆̄

∆

)− 2
d−1

gµν + ϵ

[
Ω
S ′2

S
− S

Ω

(
∆̄

∆

)− 2
d−1

]
tµtν ,

and its inverse

qµν =
Ω

S

(
∆̄

∆

) 2
d−1

gµν + ϵ

[
1

Ω

S

S ′2
− Ω

S

(
∆̄

∆

) 2
d−1

]
tµtν .

As expected, the q-metric is singular in the limit Ω → 0 and reduces to the regular
metric gµν in the limit of large separations Ω → ∞, regime in which S(Ω) → Ω. It is
also not uniquely determined by the event x, as the usual metric would be, because it
explicitly depends on the choice of base point x′. It is therefore a bitensor and a non-
local object (by construction). Also, notice that the simple case at the beginning of this
section, which did not include the contribution of the VVD, can be recovered by setting

S = Ω+ ϵ
L2
0

2
and ∆ = 1.

Keep in mind that setting ∆ = 1 in any case but for flat space-time is dangerous. In
general, the q-metric might yield a non-zero curvature even if the starting geometry is
flat. The value of the VVD in maximally symmetric spaces is known and is [13]
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• ∆−
1

d−1 =
sin

√
2ϵΩ
a√

2ϵΩ
a

for positive curvature,

• ∆−
1

d−1 = 1 for zero curvature,

• ∆−
1

d−1 =
sinh

√
2ϵΩ
a√

2ϵΩ
a

for positive curvature,

where a is the radius of curvature. The modified VVD, ∆̄, will take the same form with
the exchange of Ω⇐⇒ SL0 .
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