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“Quando uno legge uno scritto di cui vuole conoscere il senso, non ne

disprezza i segni e le lettere, né li chiama illusione, accidente e involucro

senza valore, bens̀ı li decifra, li studia e li ama, lettera per lettera.”

- Hermann Hesse





Introduction

The aim of this thesis is to prove the so-called Maximum Propagation Principle for

semielliptic operators L, to derive from it the Strong Maximum Principle (SMP, for

short) for selected classes of partial differential operators and to deepen the Maximum

Propagation Principle further analyzing a version of it called “propagation along the

drift”.

The following presentation will be useful to get an idea of the principal concepts and

of the demonstration paths of the thesis.

First of all, we clarify what kind of differential operator we handle (during all the

thesis): given ∅ ̸= D ⊆ RN an open set, for each i, j ∈ {1, . . . , N}, we assume that

ai,j = aj,i and bi are fixed real-valued continuous functions on D and we consider the

second order linear homogeneous (that is L(1) ≡ 0) partial differential operators

L :=
N∑

i,j=1

ai,j(x)
∂2

∂xi ∂xj
+

N∑
i=1

bi(x)
∂

∂ xi
,

for which we denote

A(x) :=
(
ai,j(x)

)
i,j≤N , x ∈ D,

that is the matrix of the principal part of L, which is supposed to be positive semidefinite

and because of that L is said semielliptic.

Then, it is essential to understand how we see vector fields, in general: a vector field

X : D → RN is a continuous function identified with the first order differential operator

X ≡
N∑
i=1

X i ∂

∂xi
,

where X i is the i-th component-function of X. Consistently with this vision, we can mul-

tiplicate two vector fields, viewing it as a composition, through the distributive property

and Leibniz rule. Practically, operators L as above are often created composing vector

fields in this way; for example:

i



ii INTRODUZIONE

1. given ai,j = aj,i C
1 functions on D (0 ≤ i, j ≤ N), any divergence form operator

L =
N∑
i=1

∂

∂xi

(
N∑
j=1

ai,j(x)
∂

∂xj

)
= div

(
A(x) · ∇T

)
satisfies the above assumptions;

2. or also L =
∑m

j=1X
2
j +X0 is a sum of squares of C1 vector fields X1, . . . , Xm plus

a C0 drift X0 on D, indeed even in this case all desired assumptions are true.

This last example of L is called Hörmander sum of squares with drift if

S := {X0, X1, . . . , Xm} is a Hörmander vector-field system, that is S ⊆ C∞(D) and

Span({X(x) ∈ RN : X ∈ Lie(S)}) = RN , for each x ∈ D,

where Lie(S) is the Lie algebra generated by S inside X (D) := {C∞ vector fields over D},
which is a Lie algebra with the commutator.

For these operators L (with the extra hypothesis X0 ≡ 0) we will prove the SMP

that is, in general, what follows:

we say that L satisfies the Strong Maximum Principle on the connected open set Ω

if it satisfies the following condition: for every function u ∈ C2(Ω) such that

Lu ≥ 0 and u ≤ 0 on Ω,

the existence of x0 ∈ Ω such that u(x0) = 0 implies that u ≡ 0 on the whole of Ω.

In order to attain this result, we firstly need the Maximum Propagation Principle

(MPP, for short), that is the principal result of this thesis:

let Ω ⊆ D be an open set; for every function u ∈ C2(Ω) satisfying

Lu ≥ 0 and ≤ 0 on Ω,

the set F (u) = {x ∈ Ω : u(x) = 0} contains the trajectories, starting at points of F (u),

of the integral curves of any C1 principal vector field for L over Ω.

Just to get the idea, an integral curve of a vector field X starting at the point x0 is

a solution γ (on an interval containing zero) for the Cauchy problem d
dt
γ(t) = X(γ(t))

γ(0) = x0.
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And there is also a precise definition for L-principality of a vector field:

if X is a vector field on Ω, we say that X is a principal vector field for L (on Ω) if

for every x ∈ Ω there exists a real number λ(x) > 0 such that

⟨X(x), ξ⟩2 ≤ λ(x)
〈
A(x) ξ, ξ

〉
, for every ξ ∈ RN .

The MPP can be rephrased by the concept of invariant set with respect to a vector field:

let X be a vector field on Ω, and let F be a subset of Ω; we say that F is positively

X-invariant (or positively invariant with respect to X) if, for every integral curve γ of

X, γ : [0, T ] → Ω satisfying γ(0) ∈ F , we have γ(t) ∈ F for every t ∈ [0, T ]; we say that

F is X-invariant (or invariant with respect to X) if it is positively invariant with respect

to X and to −X.

To proceed we introduce a definition of tangentiality, that is in a certain sense milder

than the one from differential geometry, and it can be seen in the concept of external

orthogonality :

let F be a closed subset of Ω and let y ∈ Ω ∩ ∂F ; we say that a non-null vector

ν ∈ RN is externally orthogonal to F at y if

B
(
y + ν, ∥ν∥

)
⊆ (Ω \ F ) ∪ {y};

in this case we shall write ν⊥F at y and we also let

F ∗ :=
{
y ∈ Ω ∩ ∂F

∣∣ there exists ν⊥F at y
}
.

Provided that F is a closed proper subset in Ω, we prove that F ∗ ̸= ∅.

Always as for tangentiality, we have a notion of vector field tangent to a closed set :

let F be a closed subset in Ω; we suppose that X is a vector field on Ω; we say that

X is tangent to F if

⟨X(y), ν⟩ = 0, for each y ∈ F ∗ and for each ν⊥F at y.

Then we show the Nagumo-Bony Theorem which establishes the equivalence between

invariancy and tangentiality. Indeed one of its immediate consequences is:

let X be a C1 vector field on Ω; suppose that F is a relatively closed subset of Ω;

then, F is X-invariant if and only if X is tangent to F .

This result, once we have introduced suitable notation, is summed up by Tg(F ) =

Inv(F ).

Going deeper, a whole section is entirely devoted to the demonstration of the so-called

Hopf Lemma. Here, we give only its statement and its direct corollary:
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let Ω ⊆ D be a connected open set; we consider u ∈ C2(Ω) such that Lu ≥ 0 and

u ≤ 0 over Ω; we set F (u) := {x ∈ Ω : u(x) = 0} and we suppose that F (u) is a proper

subset of Ω;

then, for each y ∈ F (u)∗ and for each ν⊥F at y, we have

⟨A(y)ν, ν⟩ = 0, that is ν ∈ Isotr(A(y)).

It easily follows that, if X is a principal vector field for L, then X is tangent to F (u).

Actually, at this point, the proof of the MPP is quite easy: one needs only to put

together all the pieces briefly described above. Furthermore, as a plus, we derive the

following result:

given F a non-empty closed set of RN contained in Ω, we find that

{X ∈ X (Ω) : F is X-invariant} = Inv(F ) = Tg(F ) = {X ∈ X (Ω) : X is tangent to F}

is Lie sub-algebra of X (Ω) (i.e., it is closed by the commutator [X, Y ] = XY − Y X).

(This last proposition requires a preliminary study of vector-field flows.)

And finally we derive our first goal:

if {X1, . . . , Xm} are a Hörmander vector fields over an open set D ⊆ RN , then the

associated Hörmander sum of squares
∑m

i=1X
2
i satisfies the SMP over each connected

open set Ω ⊆ D.

In conclusion, in the last chapter, we analyze a propagation extra-result that, from

a certain point of view, completes the previous analysis. Indeed, until the last result,

nothing has been said about the propagation along the integral curves of the drift X0,

provided that one is also interested in the operators of the form
∑m

j=1X
2
j + X0. More

precisely, rewriting the initial differential operator L in the following form

L =
N∑
i=1

∂

∂xi

(
N∑
j=1

ai,j(x)
∂

∂xj

)
+

N∑
j=1

(
bj(x)−

N∑
i=1

∂ai,j
∂xi

(x)

)
∂

∂xj

=
N∑
i=1

∂

∂xi

(
Xi

)
+X0,

where X0 is called the drift of L, the result has the following proposition:

given u ∈ C2(Ω) an L-subharmonic function over a non-empty open set Ω ⊆ D, if

we assume the set of maximum points F (u) of u is non-empty, then F (u) is positively

X0-invariant.
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It is not a result of X0-invariance, but only of positive invariance. And there is the

example of the known Heat Operator

LHeat = (∂x1)
2 + · · ·+ (∂xN)

2 − ∂xN+1,

to testify that this is the strongest propagation result that we can reach about the drift.
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Chapter 1

Preliminaries

1.1 Assumptions and examples

During all this thesis, we shall be dealing with the following type of partial differential

operators.

Let ∅ ̸= D ⊆ RN be an open set. For every i, j ∈ {1, . . . , N}, we assume that

ai,j = aj,i and bi are fixed real-valued continuous functions on D. We consider the

second order linear homogeneous (that is L(1) ≡ 0) partial differential operator on D

L :=
N∑

i,j=1

ai,j(x)
∂2

∂xi ∂xj
+

N∑
i=1

bi(x)
∂

∂ xi
. (1.1)

We introduce the notation

A(x) :=
(
ai,j(x)

)
i,j≤N , x ∈ D,

for the matrix of the principal part of L. The map ξ 7→ qL(x, ξ) := ⟨A(x)ξ, ξ⟩ denotes

the characteristic form of L (at x ∈ D).

In the sequel, we make the following assumption:

L is semielliptic,

that is, A(x) is positive semidefinite for every x ∈ D.

Throughout the chapter, the above notations and assumptions on L are tacitly as-

sumed.

Remark 1.1. We say once and for all that, when we consider a C1 vector field

X = (X1, . . . , XN) on D, we identify X with the associated first order differential oper-

ator X ≡
∑N

i=1Xi(x)
∂
∂xi

. As a consequence, when we “multiply” vector fields with each

other, we understand the composition of differential operators.

1
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Example 1.2. We have the following examples.

1. Any sum of squares of C1 vector fields L =
∑m

j=1X
2
j on D is of the form required

above. Indeed L is semielliptic, since a brief calculation gives

qL(x, ξ) =
∑m

j=1

〈
Xj(x), ξ

〉2
, x ∈ D, ξ ∈ RN . (1.2)

2. Suppose L =
∑m

j=1X
2
j +X0 is a sum of squares of C1 vector fields X1, . . . , Xm plus

a C0 drift X0 on D. We claim that L is semielliptic. Indeed this property only

depends on the principal part of L, which is completely determined by
∑m

j=1X
2
j ;

hence our claim follows from (1.2).

3. If ai,j = aj,i are C
1 functions on D (0 ≤ i, j ≤ N), any divergence form operator

L =
N∑
i=1

∂

∂xi

(
N∑
j=1

ai,j(x)
∂

∂xj

)
= div

(
A(x) · ∇T

)
satisfies the above assumptions, provided that A(x) is positive semidefinite at any

x ∈ D. Under this assumption on A, the same is true of

L =
1

V (x)

N∑
i=1

∂

∂xi

(
V (x)

N∑
j=1

ai,j(x)
∂

∂xj

)
,

with V ∈ C1 and V > 0 on D. Out of curiosity, the latter is the typical form of the

Laplace-Beltrami operator written in coordinates, and of many meaningful partial

differential operators on Lie groups.

1.2 A kit of several tools

To deepen the principal topic, we need some definitions and results that will be useful

in the following chapters.

Now, we can analyze a linear algebra preliminary proposition, which will be of assis-

tance in demonstrating some principality characterizations in the next chapter start.

Proposition 1.3. We consider two (N × N)-dimensional real matrices B and C, and

a (N ×m)-dimensional real matrix S. Then we have:

1. kerB ⊆ Isotr(B) and (kerB)⊥ = Im (B⊺) (in particular if B is symmetric we gain

immediately (kerB)⊥ = Im (B));

2. if B is positive semidefinite, then kerB = Isotr(B);
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3. if B is positive semidefinite and C is negative semidefinite, then trace(BC) ≤ 0;

4. the (N ×N)-dimensional real matrix D := SS⊺ is symmetric and positive semidef-

inite, kerD = kerS⊺ and Im(D) = Im(S).

We have set Isotr(B) := {v ∈ RN : v⊺Bv = 0} and the orthogonal vector space is

performed referring to the standard scalar product in RN .

Proof. Regarding the first point: kerB ⊆ Isotr(B) is trivial; furthermore (kerB)⊥ =

Im (B⊺) is equivalent to kerB = (Im (B⊺))⊥, which is easy to prove.

As for the second point, from the fact that B is positive semidefinite it follows that B

is orthogonally diagonalizable: B = Q⊺MQ, where M is a diagonal matrix that can be

supposed to have the first r diagonal terms strictly positive and the following diagonal

terms equal to zero. Now, if x is an isotropic vector of B, we find that

0 =
r∑
i=1

Mi((Qx)i)
2, which gives (Qx)1 = · · · = (Qx)r = 0.

This implies the thesis, due to the form of the matrix

M =



M1 0 · · · 0 0 · · · 0

0 M2 · · · 0 0 · · · 0
...

...
. . .

...
... · · · ...

0 0 · · · Mr 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · 0


.

About the third point, we can say that if B is symmetric, B is orthogonally similar

to a diagonal matrix with non-negative diagonal elements, which can be supposed to be

equal to 1 or 0. If E is such a diagonal matrix, then B = PEP ⊺. Then we also have

E = EE⊺. Hence, by placing R := PE, we can write

B = PEE⊺P ⊺ = RR⊺ and trace(BC) = trace(RR⊺C) = trace(R⊺CR),

where in the last identity we used the invariance of the trace by commutation of matrices.

In conclusion, if C is symmetric and negative semidefinite, the same is true of R⊺CR, thus

in particular this last matrix is similar to a diagonal matrix with non-positive diagonal

elements, which gives what we desired, by remembering that the trace is invariant by

similarity.
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Referring to the last point, one has

D⊺ = (SS⊺)⊺ = (S⊺)⊺S⊺ = SS⊺ = D,

and, for each ν ∈ RN

ν⊺Dν = ν⊺SS⊺ν = (S⊺ν)⊺(S⊺ν) = ∥S⊺ν∥2 ≥ 0.

Hence, from the second point, we derive kerD = Isotr(D). From this we can prove

kerD ⊆ kerS⊺: if ν ∈ kerD = Isotr(D), then ∥S⊺ν∥2 = 0, that implies S⊺ν = 0, that is

ν ∈ kerS⊺. The other inclusion is trivial, so kerD = kerS⊺.

Finally, we prove that Im(D) = Im(S): if kerD = kerS⊺, then

dim(Im(D)) = N − dim(kerD) = N − dim(kerS⊺) = dim(Im(S⊺)) = dim(Im(S)),

and trivially Im(D) ⊆ Im(S) also holds.

Then, we can introduce the strict subharmonicity referring to L, a concept that will

be useful in Hopf Lemma and, first of all, it appears in every maximum propagation

result of this thesis.

Definition 1.4 (L-subharmonicity). A function u ∈ C2(Ω) is called

strictly L-subharmonic over Ω if

Lu(x) > 0 for each x ∈ Ω,

and it is simply called L-subharmonic over Ω if

Lu(x) ≥ 0 for each x ∈ Ω.

Proposition 1.5. If u ∈ C2(Ω) is strictly L-subharmonic over Ω, then u has no local

maximum points inside Ω.

Proof. Proceeding by contradiction, we suppose that such a u has a local maximum point

ξ0 ∈ Ω. Applying the operator L to u, we find

Lu(ξ0) =
N∑

i,j=1

ai,j(ξ0)
∂2u

∂xi ∂xj
(ξ0) +

N∑
i=1

bi(ξ0)
∂u

∂ xi
(ξ0).

By the contradiction hypothesis, if u ∈ C2(Ω), the gradient of u at ξ0 equals zero,

that is ∇ξ0u = 0, and the Hessian matrix of u at ξ0, denoted by Hξ0u, is symmetric and

negative semidefinite. This being established, the previous identity becomes

Lu(ξ0) = trace(A(ξ0) ·Hξ0u) ≤ 0,

where the last inequality comes from the third point of the Proposition 1.3. This is in

contradiction with the strict L-subharmonicity of u over Ω, that would give Lu(ξ0) >

0.
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We also have to introduce what integral curves are. In the following chapter, they

will be the ones along which the maximum propagates in the following chapters.

Definition 1.6 (Integral curve). Given a sufficiently regular vector field X over D and

fixed a point x0 ∈ D, we call the integral curve of X with initial point x0 the maximal

solution γ(t) (as a function of t) on its maximal domain I(X, x) (that is known to be an

open interval of R) of the following Cauchy problem: d
dt
γ(t) = X(γ(t))

γ(0) = x0.

Remark 1.7. In the following chapter we will talk about integral curves of a vector field

simply by referring to functions γ : [a, b] → D which satisfies the differential equation
d
dt
γ(t) = X(γ(t)) for each t ∈ [a, b], where a ≤ 0 ≤ b. This latter γ will be understood

as a restriction of an integral curve that respects the previous definition.

Definition 1.8 (Flow). Let X be a C1 vector field over D and x ∈ D. We denote by

ΨX
t (x) the flow of the vector field X at the time t, which is the map from DX

t to D that,

fixing time t, associates x 7→ γx(t) ≡ γ(t), where γ is the integral curve of X starting at

the point x and DX
t := {x ∈ Ω : t ∈ I(X, x)}.

Remark 1.9. Let f ∈ C2(D,R) and the previous definition be understood. Fixing x ∈ Ω,

we can consider the composition

D(X, x) → R, t 7→ f(ΨX
t (x)) ≡ f(γ(t)).

It is easy to recognize that the second order Taylor expansion of this function in 0 is

f(γ(t)) = f(x) + t(Xf)(x) +
t2

2
(X2f)(x) + o(t2), if t→ 0. (1.3)

Iteratively choosing f as the i-th projection D → R and placing I : D → D the identity

over D, we attain the N -dimensional development

ΨX
t (x) ≡ γ(t) = f(x) + t(XI)(x) +

t2

2
(X2I)(x) + o(t), if t→ 0.

If f is as above and (t, s) is in a suitable neighborhood of (0, 0) ∈ R2, giving two C2

vector fields X and Y over Ω, the following composition is well posed:

Γ(t, s) = f(ΨY
s ◦ΨX

t ).

(After the following proposition, we will dwell on the well-posed definition and the reg-

ularity of this function Γ.)
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Proposition 1.10 (Flow composition). Let X, Y be C2 vector fields over D and

x ∈ D. Then

Ψ−Y
t ◦Ψ−X

t ◦ΨY
t ◦ΨX

t (x) = x+ t2([X, Y ]I)(x) + o(t2), if t→ 0.

Here and in the sequel [X, Y ] = XY − Y X is the commutator of X and Y .

Proof. Given f ∈ C2(D), we firstly define

Λ(t1, t2, t3, t4) := f(ΨY
t4
◦ΨX

t3
◦ΨY

t2
◦ΨX

t1
(x)),

that is well posed and C2 in a suitable symmetric neighborhood of (t1, t2, t3, t4) =

(0, 0, 0, 0) ∈ R4 (see Remark 1.11). Applying several times (1.3), we find the second

order Taylor polynomial of Λ at (t1, t2, t3, t4) = (0, 0, 0, 0) is:

∑
0≤k1+k2+k3+k4≤2

([
(t1X)k1

k1!

(t2X)k2

k2!

(t3X)k3

k3!

(t4X)k4

k4!

]
f

)
(x).

Choosing t1 = t2 ≡ t and t3 = t4 ≡ −t, we have the second order Taylor polynomial of

the function Λ(t, t,−t,−t) := f(ΨY
−t ◦ΨX

−t ◦ΨY
t ◦ΨX

t (x)) that, after some cancellations,

can be seen to be f(x) + t2([X, Y ]f)(x).

Replacing f with I, we obtain the thesis:

ΨY
−t ◦ΨX

−t ◦ΨY
t ◦ΨX

t (x) = x+ t2([X, Y ]I)(x) + o(t2), if t→ 0.

We have concluded proof (also by the next Remark).

Remark 1.11. We provide three clarifications:

1. The C2-regularity of the flow ΨX
t (x) with respect to time t and position x ∈ D

used in the above demonstration derives from the C2-regularity of the associated

vector field X, through some general ODE theory results; this is the reason why Λ

is C2.

2. If X is a C1 vector field over D, x ∈ D and r, α ∈ R are such that

αr ∈ D(X, x), then r ∈ D(αX, x) and ΨX
αr(x) = ΨαX

r (x); we can give a proof to

this fact:

let γ : I(X, x) → D be the unique maximal solution of the Cauchy problem d
dt
γ(t) = X(γ(t))

γ(0) = x0.
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we initially suppose α ̸= 0 and we set

J :=
I(X, x)

α
:= {r ∈ R : αr ∈ I(X, x)},

which is an interval containing 0; we can well-pose the function

u : J → Ω, u(r) := γ(αr);

we find u(0) = γ(0) = x and

d

dr
u(r) = αγ̇(αr) = αX(γ(αr)) = (αX)(u(r)), for each r ∈ J,

which means that u is a solution of the Cauchy problem d
dr
u(r) = (αX)(u(r))

u(0) = x0.

This implies J ⊆ I(αX, x) and, on J , u coincides with the maximal solution of this

last problem; in particular αr ∈ I(X, x) (being α ̸= 0) implies r ∈ J ⊆ I(αX, x),

hence

ΨX
αr(x) = γ(αr) = u(r) = ΨαX

r (x);

the case α = 0 is trivial because a null vector field has as integral curve starting

at x which is a constant function equal to x (whose domain obviously contains

0 = αr).

3. Again via some general ODE theory results, given a starting point x ∈ D and a

C2 vector field X on D, there exists ϵ > 0 and r > 0 such that B(x, r) ⊆ D and

the function

[−ϵ, ϵ]×B(x, r) → D, (s, y) 7→ ΨX
s (y)

is well-posed (that is s ∈ I(X, y) for each (s, y) ∈ [−ϵ, ϵ] × B(x, r)); then, given

another C2 vector field Y , the function

I(Y, x) → D, t 7→ ΨY
t (x)

is continuous at 0, hence there is a δ > 0 such that for each t ∈ [−δ, δ] we have

ΨY
t (x) ∈ B(x, r); all this being said, we infer that the following composition of

flows is well-defined in a symmetric neighborhood of (0, 0):

[−δ, δ]× [−ϵ, ϵ] → D, (t, s) 7→ ΨX
s (Ψ

Y
t (x));

and the same can be done with a finite number of flows of different vector fields.
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With the last section of this thesis in mind, we have to deepen our knowledge of

the flows, looking for the second-order MacLaurin expansion of a flow in both time and

space.

Remark 1.12. We consider a C1-vector field X over the open set D. Then we define

D(X) := {(t, x) ∈ R× RN : x ∈ D, t ∈ I(X, x)}.

Hence we can see the flow of X as the map

D(X) → D, (t, x) 7→ ΨX
t (x). (1.4)

From general ODE theory results, D(X) is an open set in R × RN and, for each k ∈
{1, 2, 3, . . . ,∞}, if X is Ck, the function (1.4) is Ck as well, and it admits all (k + 1)-th

order derivatives of the type
∂k+1

∂t∂xi1 . . . ∂xik
ΨX
t (x),

with i1, . . . , ik ∈ {1, . . . , N}, where differentiation can be interchanged without modifi-

cation of the outcome and these derivatives are continuous in (t, x) ∈ D(X). Thus, if X

is C1, for any (t, x) ∈ D(X) and for any j ∈ {1, . . . , N}, we have

∂2

∂t∂xj
ΨX
t (x) =

∂2

∂xj∂t
ΨX
t (x). (1.5)

We also remember that, from Definitions 1.6 and 1.8, we have, for each (t, x) ∈ D(X),

d

dt
ΨX
t (x) = X(ΨX

t (x)), ΨX
0 (x) = x. (1.6)

The equalities (1.5) and (1.6) give

JΨX
t (x)(XI) · Jx(ΨX

t ) = Jx(XI ◦ ΨX
t ) = Jx

(
d

dt
ΨX
t

)
=

d

dt
Jx(Ψ

X
t ), Jx(Ψ

X
0 ) = IdN×N .

This means that the matrix-valued map

D → RN×N , (t, x) 7→ W(t, x) := Jx(Ψ
X
t )

solves the linear ODE system d
dt
W(t, x) = C(t, x) ·W(t, x), (t, x) ∈ D(X)

W(0, x) = IdN×N , x ∈ D,
(1.7)

where C(t, x) := JΨX
t (x)(XI) for each (t, x) ∈ D(X).

The system (1.7), by the Fundamental Theorem of Calculus, is equivalent to

Jx(Ψ
X
t ) = IdN×N +

∫ t

0

JΨX
τ (x)(XI) · Jx(ΨX

τ ) dτ, for each (t, x) ∈ D(X). (1.8)
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Now, we are finally ready to show, supposing X is C2 on D and 0 ∈ D, denoting X =∑N
i=1 σi(x)

∂
∂xi

and γ(t, x) := ΨX
t (x) (for each (t, x) ∈ D(X)), for every i ∈ {1, . . . , N},

the second-order expansion

γi(t, x) = σi(0)t+ xi +
1

2

(
(Xσi)(0)t

2 + 2t⟨∇0σi, x⟩
)
+ o(∥(t, x)∥2), (1.9)

as (t, x) → (0, 0) in R× RN .

By the definition of flow

γ(0, x) = x and
∂γi
∂t

(t, x) = σi(x) for each (t, x) ∈ D(X), (1.10)

hence

γ(0, 0) = 0,
∂γi
∂t

(0, 0) = σi(0), ∇0γi(0, ·) = ei;

then, from (1.8), for every i ∈ {1, . . . , N}, we have

∇xγi(t, ·) = ei +

∫ t

0

∇γ(x,τ)σi · Jx(γ(τ, ·)) dτ, for each (t, x) ∈ D(X). (1.11)

Thus, using (1.10) and (1.11), for every i ∈ {1, . . . , N}, we gain

∂2γi
∂t2

(0, 0) =
∂i

∂t

∣∣∣
t=0
σi(γ(t, 0)) = ∇0σi ·X(0) = (Xσi)(0),

(Hess(0,0)γi(·, ·))h,k =
∂2γi

∂xh∂xk
(0, 0) =

∂2

∂xh∂xk

∣∣∣
x=0

γi(0, x) = 0 for each h, k ∈ {1, . . . , N},

∇x

∣∣∣
x=0

∂

∂t

∣∣∣
t=0

(γi(t, x)) =
∂

∂t

∣∣∣
t=0

∇x

∣∣∣
x=0

(γi(t, x)) = ∇0σi · J0(γ(0, ·)) = ∇0σi,

where in the first equality of the third row we have used (1.5).

If we insert what we found in

γi(t, x) = γ(0, 0) + ⟨∇(0,0)γi(·, ·), (t, x)⟩+
1

2
⟨Hess(0,0)γi(·, ·) · (t, x), (t, x)⟩+ o(∥(t, x)∥2),

as (t, x) → (0, 0), we get (1.9) (for every i ∈ {1, . . . , N}).

Now, we turn to a completely different issue. It is quite easy to see that the minimal

distance between a point and a closet set (not containing that point) is equal to the

distance between the point and the boundary of the set; but we also have to prove it

formally.

Proposition 1.13 (Distance and boundary). If F is a closed set in RN , x ∈ RN \F ,
v ∈ F is such that ∥v − x∥ = dist(x, F ) > 0, then v ∈ ∂F and dist(x, F ) = dist(x, ∂F ).
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Proof. We suppose, by contradiction, that v /∈ ∂F and we consider the continuous

function

H : RN → R, H(y) :=

dist(y, ∂F ), y ∈ F

−dist(y, ∂F ), y /∈ F.

If dist(v, ∂F ) > 0 and −dist(x, ∂F ) < 0, then, thanks to the Zero Theorem, we gain that

there is a q ∈ {tx + (1 − t)v ∈ RN : t ∈ [0, 1]} \ {x, v} such that dist(q, ∂F ) = 0. ∂F is

closed, thus q ∈ ∂F . And ∥q−x∥ < ∥v−x∥, which contradicts ∥v−x∥ = dist(x, F ).

As we shall see, triangle inequality will not be enough to prove the Nagumo-Bony

Theorem. We have to generalize it.

Lemma 1.14 (Generalization of the triangle inequality). For each a, b, c ∈ RN ,

whenever a ̸= c, a ̸= b the next inequality holds:

∥a− b∥ ≤
〈

c− a

∥c− a∥
,
b− a

∥b− a∥

〉
· ∥c− a∥+ ∥c− b∥.

Proof. We distinguish two cases.

In the first case we suppose ⟨c− a, b− a⟩ ≥ 0. From a simple direct calculation

we gain

b− a =

〈
c− a,

b− a

∥b− a∥

〉
· b− a

∥b− a∥
−
〈
c− b,

b− a

∥b− a∥

〉
· b− a

∥b− a∥
.

Thanks to triangle inequality and, for the second summand, the Cauchy-Schwarz in-

equality, we have

∥b− a∥ ≤
∣∣∣∣〈c− a,

b− a

∥b− a∥

〉∣∣∣∣+ ∥c− b∥ =

∣∣∣∣〈 c− a

∥c− a∥
,
b− a

∥b− a∥

〉∣∣∣∣ · ∥c− a∥+ ∥c− b∥.

Due to ⟨c− a, b− a⟩ ≥ 0 we have the desired result.

Now instead we instead suppose ⟨c−a, b−a⟩ < 0. Even in this case, through a direct

calculation, we obtain

∥b− a∥ =

〈
c− a,

b− a

∥b− a∥

〉
−
〈
c− b,

b− a

∥b− a∥

〉
.

In our hypothesis, collecting factors from the scalar products, the previous implies:

∥b− a∥+
∣∣∣∣〈 c− a

∥c− a∥
,
b− a

∥b− a∥

〉∣∣∣∣ · ∥c− a∥ =

∣∣∣∣〈 c− b

∥c− b∥
,
b− a

∥b− a∥

〉∣∣∣∣ · ∥c− b∥.

By the Cauchy-Schwarz inequality applied to the second part of the equality, we set

∥b− a∥+
∣∣∣∣〈 c− a

∥c− a∥
,
b− a

∥b− a∥

〉∣∣∣∣ · ∥c− a∥ ≤ ∥c− b∥.

That is

∥c− b∥ −
∣∣∣∣〈 c− a

∥c− a∥
,
b− a

∥b− a∥

〉∣∣∣∣ · ∥c− a∥ ≥ ∥b− a∥.

Remembering the assumption of this second case, this is the end of the proof.



1.2 A kit of several tools 11

Again functional to the proof of the Nagumo-Bony Theorem we will require a real

Analysis lemma.

Lemma 1.15. Let g : [0, T ] → R be a continuous function such that

lim sup
h→0−

g(t+ h)− g(t)

h
≤M for every t ∈ (0, T ],

for a constant M ∈ R. Then g(t) ≤ g(0) +M t, for all t ∈ [0, T ].

Proof. Let ϵ > 0. We define the following function

G : [0, T ] → R, t 7→ G(t) := g(t)− g(0)− (M + ϵ)t.

Thanks to Weierstrass Theorem, as G continuous on a compact interval, there exists

t0 ∈ [0, T ] such that G(t0) = max[0,T ]G. Now we prove that t0 = 0.

By contradiction, we suppose t0 ∈ (0, T ]. Hence for each t ∈ [0, T ] we have

g(t)− g(0)− (M + ϵ)t ≤ g(t0)− g(0)− (M + ϵ)t0.

We can set t = t0 + h with h < 0 such that t0 + h ∈ (0, t0). From this we gain

M + ϵ ≤ g(t0 + h)− g(t0)

h
.

Passing to lim suph→0− we have M + ϵ ≤M, that cannot be true if ϵ > 0. So t0 = 0.

Hence the first inequality of this proof becomes

g(t)− g(0)− (M + ϵ)t ≤ 0, for each t ∈ [0, T ].

Letting ϵ go to 0, the thesis follows.

Lemma 1.16. Let g : [0, T ] → R be a continuous and non-negative function such that

g(0) = 0 and

lim sup
h→0−

g(t+ h)− g(t)

h
≤ Lg(t) for every t ∈ (0, T ], (1.12)

for a constant L ≥ 0. Then g ≡ 0 on [0, T ].

Proof. Let ε > 0 be so small that ε < T and Lε < 1. We show that g ≡ 0 on [0, ε];

by repeating the same argument finitely-many times we derive that g ≡ 0 on [0, T ]. g

satisfies the hypothesis of the Lemma 1.15 on [0, ε], with the constant M = L sup[0,ε] g.

Thus, from the Lemma 1.15 (and g(0) = 0), we get

g(t) ≤M t ≤M ε = Lε sup[0,ε] g, ∀ t ∈ (0, ε].

By taking the supremum over [0, ε], we get

sup[0,ε] g ≤ Lε sup[0,ε] g, which implies (1− Lε) sup[0,ε] g ≤ 0.

Since Lε < 1 and g ≥ 0, this is possible only if g ≡ 0 on [0, ε].
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The last tool that we need (in particular, for the Maximum Propagation Principle

along the drift) is summerized in the following lemma.

Lemma 1.17. For every i, j ∈ {1, . . . , N}, let mi,j be differentiable functions on an open

set U ⊆ RN . Let M(x) := (mi,j(x))i,j be symmetric and positive semidefinite for each

x ∈ U . Let us assume that there exists a point x0 ∈ U and two vectors u, v ∈ RN such

that ⟨M(x0)u, u⟩ = ⟨M(x0)v, v⟩ = 0. Then, for every k ∈ {1, . . . , N},

⟨∂xkM(x0)u, v⟩ = 0,

where ∂xkM(x) :=
(

∂
∂xk

mi,j(x)
)
i,j
, for each x ∈ U .

Proof. M(x0) is symmetric and semidefinite, hence it is orthogonally diagonalizable, let

we say M(x0) = Q⊺DQ, where diagonal coefficients of D are all non-negative. So there

exists a diagonal real matrix D̃ (with non-negative diagonal terms as well) such that

D = D̃D̃ = (D̃)⊺D̃. Thus, placing L := D̃Q, one easily derives M(x0) = L⊺L.

By this fact (using the Cauchy-Schwarz inequality with respect to the standard scalar

product in RN) we can write

0 ≤ ⟨M(x0)u, v⟩2 = ⟨Lu, Lv⟩2 ≤ ⟨Lu, Lu⟩⟨Lv, Lv⟩ = ⟨M(x0)u, u⟩⟨M(x0)v, v⟩ = 0.

Thus ⟨M(x0)u, v⟩ = 0, and exchanging the roles of u and v we also have ⟨M(x0)v, u⟩ = 0.

Furthermore,

⟨M(x0)(u+ v), (u+ v)⟩ = ⟨M(x0)u, u⟩+ ⟨M(x0)u, v⟩+ ⟨M(x0)v, u⟩+ ⟨M(x0)v, v⟩ = 0.

Now, we let ξ ∈ RN be a vector such that ⟨M(x0)ξ, ξ⟩ = 0 and let us consider the

differentiable function

f : U → R, x 7→ ⟨M(x)ξ, ξ⟩.

In this way ξ is a minimum point for f , which gives ∇x0f = 0, that is, for each k ∈
{1, . . . , N},

0 =
∂

∂xk
f(x0) =

∂

∂xk
⟨M(x0)ξ, ξ⟩ = ⟨∂xkM(x0)ξ, ξ⟩. (1.13)

In conclusion,

0 = ⟨∂xkM(x0)(u+ v), (u+ v)⟩

= ⟨∂xkM(x0)u, u⟩+ ⟨∂xkM(x0)u, v⟩+ ⟨∂xkM(x0)v, u⟩+ ⟨∂xkM(x0)v, v⟩

= 0 + ⟨∂xkM(x0)u, v⟩+ ⟨∂xkM(x0)v, u⟩+ 0

= 2⟨∂xkM(x0)u, v⟩,

where we have used (1.13) three times (with ξ = u + v, ξ = u and ξ = v), and we have

also used the symmetry of ∂xkM(x0).
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1.3 Hörmander vector fields

In this section, we want provide the definition of Hörmander systems. But firstly see

the following forewords.

It is easy to recognize that X (D), the R-vector space of the C∞ vector fields on D,

is a Lie R-algebra with the product defined by the commutator

[X, Y ] := XY − Y X with X, Y ∈ X (D).

(It is easy to prove that this operation is R-bilinear, it gives [X,X] = 0 and it satisfies

the Jacobi identity and, first of all, it is well-posed by the Schwarz Theorem).

This being said, given m ∈ N and

S := {X1, . . . , Xm} ⊆ X (D),

we denote by Lie(S) the Lie algebra generated by S inside X (D), that is the intersection

of all the sub-algebras of X (D) containing S. (Lie(S) can be considered also with respect

to a generic S ⊆ X (D), with the same definition.)

Remark 1.18. Some vector fields X1, . . . , Xm are linear dependent in X (D), by definition,

if there exist λ1, . . . , λm ∈ R (not simultaneously zero) such that
∑m

i=1 λiXi is the null

vector field, which means that its components are all identically zero.

We have not to confuse two different linear-independence concepts: the first is the

opposite of the previous clause, that is the vector fields linear independence in X (D);

the second, fixed x ∈ D, is the vectors X1(x), . . . , Xm(x) being linear independent in the

vector space RN .

On the other hand, we can easily see that the second independence (once it is verified

only at x ∈ D) implies the first one, showing that the second dependence (with respect

to every x ∈ D) is implied by the first dependence:

m∑
i=1

λiXi ≡ 0 over Ω implies
m∑
i=1

λiXi(x) = 0 ∈ RN for each x ∈ Ω.

The following example ensures that, in general, the vice-versa s false.

Example 1.19. Taken the 1-dimensional vector fields X1 := ∂1 and X2 := x1∂1, X1 and

X2 are linearly independent in X (R1) but, for each x ∈ R, X1(x), X2(x) are linearly

dependent in R.

Proposition 1.20. We consider S ⊆ X (D) and x ∈ D.

Then we find the dimensional inequalities

dim(Span({Y (x) ∈ RN : Y ∈ S})) ≤ min{dim(Span(S)), N} ≤ min{dim(Lie(S)), N},
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where the first Span is a vector subspace in RN , the second one and third one meant as

dimensions in X (D).

Proof. Given x ∈ D, Vx := Span({Y (x) ∈ RN : Y ∈ S}) is a vector subspace in RN ,

hence it has finite dimension m ≤ N and we can consider a basis {v1, . . . , vm} in Vx.

By definition of Vx, for every i ∈ {1, . . . ,m}, vi is a linear combination of a finite

number of vector fields in S evaluated in x. In total, we found a finite number of vector

fields in S which, evaluated in x, generate Vx as a vector space. We can extract a basis

{X1(x), . . . , Xm(x)}, where X1, . . . , Xm ∈ S.

From Remark 1.18 we gain that X1, . . . , Xm are linear independent in X (D), which

implies m ≤ dim(Span(S)).

Finally, S ⊆ Lie(S) gives us dim(Span(S)) ≤ dim(Lie(S)).

Now we are ready for the next definitions.

Definition 1.21 (Hörmander vector fields system). We are given S ⊆ X (D).

We say that S is a Hörmander system of vector fields on D if

dim({Y (x) ∈ RN : Y ∈ Lie(S)}) = N for each x ∈ D.

Obviously {Y (x) ∈ RN : Y ∈ Lie(S)} is a vector subspace of RN , hence this previous

condition is equivalent to

{Y (x) ∈ RN : Y ∈ Lie(S)} = RN for each x ∈ D.

Definition 1.22 (Hörmander sum of squares). If S := {X0, X1, . . . , Xm} ⊆ X (D)

is a Hörmander system on D, the differential operator defined by

LS := X2
1 + · · ·+X2

m +X0

is called a Hörmander sum of squares with drift X0 associated to S.

If X0 ≡ 0 over D we refer to Hörmander sum of squares associated to S.

Example 1.23. The Laplace operator, the Laplacian, over RN is defined by

L∆ =

(
∂

∂x1

)2

+ · · ·+
(

∂

∂xN

)2

where the vector fields

∆ :=

{
X0 = 0, X1 =

∂

∂x1
, . . . , XN =

∂

∂xN

}
form a Hörmander system on RN . Indeed, denoting {e1, . . . , eN} the canonical basis

in RN , Xi ≡ ei ∈ Lie(∆) for each i = 1, . . . , N , hence for every x ∈ RN we have

X1(x) = e1, . . . , XN(x) = eN ∈ {Y (x) ∈ RN : Y ∈ Lie(∆)}.
In other words L∆ is the Hörmander sum of squares associated to ∆.
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Example 1.24. The Heat operator in RN+1

LHeat =

(
∂

∂x1

)2

+ · · ·+
(

∂

∂xN

)2

− ∂

∂xN+1

is a Hörmander sum of squares with drift, the one related to

Heat :=

{
X0 = − ∂

∂xN+1

, X1 =
∂

∂x1
, . . . , XN =

∂

∂xN

}
,

that is clearly a Hörmander system on RN+1.

We will discuss again about Hörmander vector fields at the end of the following

chapter.
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Chapter 2

Maximum propagation principle

2.1 Principal vector fields

The primary aim of this chapter is to prove the so called Maximum Propagation

Principle, which we now introduce. We first need the concept of principal vector field

with respect to the partial differential operator L, the latter being assumed to be as in

Section 1.1 (more precisely in Definition 1.1).

Definition 2.1 (Principal vector field). Let X be a vector field on D. We say that

X is a principal vector field for L (on D) if for every x ∈ D there exists a real number

λ(x) > 0 such that

⟨X(x), ξ⟩2 ≤ λ(x)
〈
A(x) ξ, ξ

〉
, for every ξ ∈ RN . (2.1)

If, as usual, X (D) denotes the set of the smooth vector fields on D, we define

Pr(L) := {X ∈ X (D) : X is a principal vector field for L}.

Observe that (2.1) can be rewritten as

⟨X(x), ξ⟩2 ≤ λ(x) qL(x, ξ), for every ξ ∈ RN .

Note that ξ 7→ ⟨X(x), ξ⟩2 is the quadratic form associated with the matrixX(x) (X(x))T ;

if X =
∑N

j=1 αj(x)∂j, this matrix is simply
(
αi(x)αj(x)

)
i,j
.

With the aid of some elementary linear algebra we can provide a simple characteri-

zation of the principality of a vector field.

Proposition 2.2 (Characterizations of Principality). The vector field X is principal

for L (on D) if and only if one of the following equivalent conditions is satisfied for every

x ∈ D:

17
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1. the vector X(x) belongs to (kerA(x))⊥;

2. the vector X(x) is a linear combination of the columns of A(x);

3. every isotropic vector for A(x) is orthogonal to X(x):

Isotr(A(x)) ⊆ (X(x))⊥, ∀ x ∈ D.

Proof. We refer to the proposition “the vector field X is principal for L on D” as the

phrase “0”. Let us see the following implications.

[ 1 ↔ 2 ]

For each x in D, A(x) is symmetric, hence, due to Proposition 1.3, (kerA(x))⊥ =

ImA(x).

[ 1 ↔ 3 ]

For every x in D, due to A(x) being positive semidefinite, again from Proposition

1.3, we find

kerA(x) = Isotr(A(x)).

If X(x) belongs to (kerA(x))⊥ and we take an element in Isotr(A(x)), y, then y belongs

to kerA(x); hence X(x) and y are orthogonal to each other.

As for the opposite direction, for what has been said, it is sufficient to take the or-

thogonal.

[ 0 7→ 1 ]

From the definition of the clause 0, for every x ∈ D there exists a real number

λ(x) > 0 such that ⟨X(x), ξ⟩2 ≤ λ(x)
〈
A(x) ξ, ξ

〉
, for every ξ ∈ RN .

Thus for every ξ ∈ RN if A(x) = 0 we have ⟨X(x), ξ⟩ = 0.

[ 1 7→ 0 ]

This is the most complex implication.

Set x in D. If X(x) = 0, we find the thesis. We suppose X(x) ̸= 0. Thus A(x) ̸= 0,

because X(x) ∈ (kerA(x))⊥. We consider the set

S := (kerA(x))⊥ ∩ {v ∈ RN : ∥v∥ = 1}

and the function

f : S → R, f(w) =
⟨X(x), w⟩2

⟨A(x)w,w⟩
.
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This function is well-posed, indeed for each w in S the denominator of f(w) is different

from 0, since (kerA(x))⊥ = ImA(x).

From the compactness of S and the continuity of f there exists

λ(x) := max
w∈S

f(w) ≥ 0.

From this, for each w ∈ D, ⟨X(x), w⟩2 ≤ λ(x)⟨A(x)w,w⟩. Then, for every ξ1 ∈
(kerA(x))⊥, there is a w ∈ S such that ξ1 = ∥ξ1∥w, so that

⟨X(x), ξ1⟩2 ≤ λ(x)⟨A(x)ξ1, ξ1⟩.

In conclusion, for each ξ ∈ RN we have ξ1 ∈ (kerA(x))⊥ and ξ2 ∈ kerA(x) such that

ξ = ξ1 + ξ2, that gives

(⟨X(x), ξ⟩)2 = (⟨X(x), ξ1⟩+ ⟨X(x), ξ2⟩)2 = (⟨X(x), ξ1⟩+ 0)2

≤ λ(x)⟨A(x)ξ1, ξ1⟩ ≤ λ(x)⟨A(x)ξ, ξ⟩,

where the last inequality is obtained from A(x) being positive definite, by which

0 ≤ λ(x)⟨A(x)(ξ − ξ1), (ξ − ξ1)⟩.

We have found the desired result with λ(x) ≥ 0, and if the thesis is true with λ(x) = 0

then it is true with another λ(x) strictly larger than zero as well.

We now see some examples in order to become accustomed to thinking about princi-

pality with respect to L.

Example 2.3. The vector field X = ∂
∂xN+1

is not principal for the Heat operator

L =

(
∂

∂x1

)2

+ · · ·+
(

∂

∂xN

)2

− ∂

∂xN+1

,

already seen in RN+1 in Example 1.24. Indeed, for each x ∈ RN+1, X(x) is the (N+1)-th

vector in the canonical basis in RN+1, whereas the columns in the associated matrix A(x)

are the other first N vectors of basis; thus X(x) cannot be a linear combination of the

latter, violating the second condition in the previous result.

Example 2.4. We reconsider, from Example 1.2, the operator L =
∑m

j=1X
2
j +X0, where

X0, . . . , Xm are C1 vector fields on D. Then, any vector field of the form

X =
m∑
j=1

gj(x)Xj,

where g1, . . . , gm are real-valued functions on D, is principal for L.
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Indeed, owing to the Cauchy-Schwarz inequality in Rm, we have

⟨X(x), ξ⟩2 =
( m∑

j=1

gj(x) · ⟨Xj(x), ξ⟩
)2

≤
m∑
j=1

|gj(x)|2 ·
m∑
j=1

⟨Xj(x), ξ⟩2 = λ̃(x) qL(x, ξ),

where λ̃(x) :=
∑m

j=1 |gj(x)|2. This gives (2.1) by taking λ(x) := max{λ̃(x), 1}.
By means of the characterization in Proposition 2.2, this means that, for every x ∈ D,∑m
j=1 gj(x)Xj(x) is a linear combination of the column-vectors of

A(x) = S(x) · S(x)T , where S(x) := (X1(x), . . . , Xm(x))
T .

Indeed this A(x) is the matrix of the principal part of
∑m

j=1X
2
j + X0. This fact is not

surprising, since, for any N ×m matrix S one has (from Proposition 1.3)

Im(S) = Im(S ST ),

where Im(C) denotes, in general, the span of the column vectors of the matrix C. As a

consequence

Im(A(x)) = Im(S(x)) = span{X1(x), . . . , Xm(x)}, for each x ∈ D.

Hence a vector field X is principal for L =
∑m

j=1X
2
j +X0 if and only if

X(x) ∈ span{X1(x), . . . , Xm(x)} for each x ∈ D.

In particular, if the functions g1, . . . , gm are all chosen to be 0 except for one of them,

which is identically +1 or −1, we see that

±X1, . . . ,±Xm are principal vector fields for L =
∑m

j=1X
2
j +X0.

Remark 2.5. By arguing via the second condition in Proposition 2.2, one recognizes that

Pr(L) is a module over C∞(D), that is

X, Y ∈ Pr(L), f, g ∈ C∞(D) implies f X + g Y ∈ Pr(L).

The next example shows that Pr(L) could not be a Lie-subalgebra of X (D).

Example 2.6. Consider the Kohn-Laplacian on the Heisenberg group in R3:

L = X2
1 +X2

2 , where X1 = ∂1 + 2x2 ∂3, X2 = ∂2 − 2x1 ∂3.

Since L is a sum of squares, the associated second order matrix A(x) is

A(x) = S(x) · S(x)T , where S(x) =


1 0

0 1

2x2 −2x1

 .
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Taking into account Example 2.4, we have Im(A(x)) = Im(S(x)) and X is principal for

L if and only if it is of the form

X = g1(x) (∂1 + 2x2 ∂3) + g2(x) (∂2 − 2x1 ∂3),

for some real-valued functions g1, g2. Note that, even if X1, X2 are principal for L, their

commutator [X1, X2] = −4 ∂3 is not principal for L, because (0, 0,−4) does not belong

to Im(S(x)), for any x ∈ R3.

Thus, Pr(L) may fail to be a Lie algebra of vector fields.

2.2 Propagation and Strong Maximum Principle

We are ready to state the main result of this chapter. The notations and hypotheses

of Section 1.1 are always understood.

Theorem 2.7 (Maximum Propagation Principle). Let L be semielliptic on D. Let

Ω ⊆ D be an open set. For every function u ∈ C2(Ω) satisfying Lu ≥ 0 and u ≤ 0 on

Ω, the set F (u) = {x ∈ Ω : u(x) = 0} contains the trajectories, starting at the points of

F (u), of the integral curves of any C1 principal vector field for L.

In this case we say that the set F (u), which is the set of the maximum points of

u (when non-void), propagates along the trajectories of the integral curves of the C1

principal vector fields for L, whence the name of the theorem, the Maximum Propagation

Principle.

We shall prove Theorem 2.7 in the next sections. We observe that, as it will be clear

in our proof, we can also consider locally Lipschitz continuous principal vector fields for

L instead of C1 ones, which is assumed for simplicity.

Remark 2.8. Since L is homogeneous, that is L(1) = 0, the hypothesis u ≤ 0 in Theorem

2.27 is irrelevant: it suffices to remove it and to replace F (u) by F = {x ∈ Ω : u(x) =M},
where M = supΩ u. If M = +∞ or, more generally, if F is empty, then there is nothing

to prove (since no integral curve can start at a point of an empty set). Otherwise, if

there exists x ∈ Ω such that u(x) = supΩ u, then x is a maximum point of u and (since L

is homogeneous) we can apply Theorem 2.7 to v = u−M (which satisfies Lv = Lu ≥ 0

and v ≤ 0).

We therefore obtain that, if it exists, the maximum of an L-subharmonic function

u ∈ C2(Ω) propagates along the trajectories of the C1 principal vector fields for L starting

at the points where this maximum is attained.
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We also give the following definition, that represents the second main topic of this

chapter.

Definition 2.9 (Strong Maximum Principle). We say that L satisfies the Strong

Maximum Principle (SMP, for short) on the connected open set Ω if it satisfies the

following condition: for every function u ∈ C2(Ω) such that

Lu ≥ 0 and u ≤ 0 on Ω,

the existence of x0 ∈ Ω such that u(x0) = 0 implies that u ≡ 0 on the whole of Ω.

More generally, if L satisfies the SMP on the connected open set Ω, and if u ∈ C2(Ω)

is such that Lu ≥ 0 and u attains its maximum in Ω, then u is constant (as it is said in

Remark 2.8).

The strict relationship between the Maximum Propagation Theorem and the SMP is

clear: indeed, roughly put, if L admits sufficiently many principal vector fields running

throughout Ω, then the maximum of an L-subharmonic function propagates everywhere

and the SMP holds.

2.2.1 Invariant sets, tangentiality and Nagumo-Bony Theorem

The statement of the Maximum Propagation Theorem 2.7 suggests an independent

study of the invariance of a set with respect to the trajectories of a vector field; more

precisely, given a closed set F , we aim to give a characterization of the vector fields

whose integral curves are constrained to remain in F once they touch F at one point at

least. We then begin with the relevant definition.

For the rest of the section, Ω ⊆ RN is a non-empty open set.

Definition 2.10 (Invariant set). Let X be a vector field on Ω, and let F be a subset

of Ω.

We say that F is positively X-invariant (or positively invariant with respect to X)

if, for every integral curve γ of X, γ : [0, T ] → Ω satisfying γ(0) ∈ F , we have γ(t) ∈ F

for every t ∈ [0, T ].

We say that F is X-invariant (or invariant with respect to X) if it is positively

invariant with respect to X and to −X.

Remark 2.11. It is easy to recognize that F is X-invariant if and only if, for every integral

curve γ : [a, b] → Ω of X (with a < 0 < b) such that γ(0) ∈ F , one has γ(t) ∈ F for

every t ∈ [a, b].
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The role of 0 is immaterial and, by re-parametrization, one can check that F is X-

invariant if and only if, for every integral curve γ : [a, b] → Ω ofX such that γ([a, b])∩F ̸=
∅, one has γ(t) ∈ F for every t ∈ [a, b].

Remark 2.12. By means of the notion of invariant set with respect to a vector field, we

can restate the thesis of the Maximum Propagation Principle in Theorem 2.7 as follows:

If L is semielliptic on Ω and if u ∈ C2(Ω) is L-subharmonic and nonnegative, then

the set F (u) = {x ∈ Ω : u(x) = 0} (when non-void) is X-invariant, for every C1

principal vector field X for L.

Due to its importance in maxima propagation, it is now of our concern to find an

effective characterization of X-invariance: this will be given by the Nagumo-Bony The-

orem (where, more generally, positive invariance is studied). Roughly put, if we try to

picture a set F which captures the integral curves of a vector field X, we spontaneously

pass through the idea, coming from Differential Geometry, that X is somehow “tangent”

to the set F .

Unfortunately, since we want to deal with sets F (u) (as in the Maximum Propagation

Principle) which are made of maximum points x ∈ Ω of u, we have ∇u(x) = 0; thus,

we cannot expect F (u) to be a submanifold of Ω. For this reason we have to consider a

milder notion of “tangentiality”, which we now introduce.

In what follows, we shall denote by ∥ · ∥ the usual Euclidean norm and by B(z, r) the

Euclidean ball of centre z and radius r:

B(z, r) := {x ∈ RN : ∥x− z∥ < r}.

Definition 2.13 (External orthogonality). Let F be a closed subset of Ω and let

y ∈ Ω ∩ ∂F . We say that a non-null vector ν ∈ RN is externally orthogonal to F at y if

B
(
y + ν, ∥ν∥

)
⊆ (Ω \ F ) ∪ {y}.

In this case we shall write ν⊥F at y. We also let

F ∗ :=
{
y ∈ Ω ∩ ∂F

∣∣ there exists ν externally orthogonal to F at y
}
.

Since we are mainly interested in vectors which are externally orthogonal to F , we

shall briefly say that ν is orthogonal to F at y, without the reference to ‘externality’:

this is the reason for the brief notation ‘ν⊥F at y’.

Now, we are about to see a technical lemma, that proves the non-emptyness of F ∗,

when F ∗ is a closed and proper sub-set in Ω.
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Lemma 2.14. Let F be a closed subset in Ω and let y ∈ Ω ∩ ∂F .
If x ∈ Ω \ F and ∥y − x∥ = dist(∂F, x), let ν := 1

2
(x− y); then we have ν⊥F at y.

The statement of the thesis is clear and simple to see in the plan and in the space,

but it deserves a proof elsewhere.

Proof. Fixing z ∈ F \ {y}, we have to prove that z /∈ B(y + ν, ∥ν∥).
From the hypothesis ∥x− y∥ ≤ ∥x− z∥. Then, we observe that ν ̸= 0 because x /∈ F

and y ∈ F (indeed Ω ∩ ∂F = ∂ΩF ⊆ F closed in Ω). And we denote

c := y + ν, r := ∥ν∥, hence B(y + ν, ∥ν∥) ≡ B(c, r).

We proceed by contradiction, supposing z ∈ B(c, r).

We can translate by −x the N -dimensional space, without introducing other nota-

tions. In this way x = 0, y is a vector with norm 2r, and c of norm r. Now, we can

apply an orthogonal transformation by the following instructions: let {e1, . . . , eN} be the

canonical basis of RN ; we move y into 2re2; if y and z are linear independent, we move a

unit vector orthogonal to y in Span{y, z} to e1, while if y and z are linearly dependent,

we jump this instruction. By this transformation (that is in particular an isometry of

RN), we move

c 7→ e2, B(c, r) 7→ B(re2, r), z into B(re2, r) ∩ Span{e1, e2}.

Summing up, we can visualize the situation in the plan generated by the first two coor-

dinates of the arrival N -dimensional space, where there is a circumference of center re2,

radius r, south-pole the origin, north-pole 2re2 and inside the circle there is z.

Euclidean distances are not changed, hence, as initially we had ∥x − y∥ ≤ ∥x − z∥,
now we have ∥z∥ = 2r. At this point it is trivial to see that z = 2re2 (where 2re2 is the

“old” y), and this is absurd.

If we want to formalize the final step, we can parametrize the circumference and the

circle by suitable functions. The function

f : [0, 2π] → R, θ 7→ (r cos (θ))2 + (r sin (θ) + r)2,

from a brief study, has a unique maximum point corresponding to the value (2r)2.

The function

g : [0, r]× [0, 2π] → R, (ρ, θ) 7→ (ρ cos (θ))2 + (ρ sin (θ) + r)2

has maximum (2r)2, reached only at points belonging to [0, 2π]× {r}. Indeed, for each
(ρ, θ) ∈ [0, r) × [0, π], is easy to prove that f(θ) > g(ρ, θ); if w ≡ (xw, yw) ∈ R2 with

|xw|, |yw| ≤ r, it is straight forward that ∥w∥ < 2r and, for each θ ∈ [0, 2π], g(r, θ) = f(θ).

These observations about functions f and g give z = y.
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Proposition 2.15 (Non-emptyness of F ∗). With the notations of the above definition,

we remark that, provided F is a closed proper subset in Ω and Ω is connected, then

F ∗ ̸= ∅.

Remark 2.16. Arguing on the connected components of Ω, one can remove the connect-

edness hypothesis for Ω.

Proof. The boundary of a set, the internal part of a set and the complementary of a set

are all considered referring to RN and its euclidean topology.

If Ω is connected, then ∂F ∩ Ω ̸= ∅ holds. In fact, provided ∂F ∩ Ω = ∅, we obtain

a contradiction with the hypothesis:

Ω = (Ω ∩ ∂F ) ⊔ (Ω ∩ int(F )) ⊔ (Ω ∩ F c) = (Ω ∩ int(F )) ⊔ (Ω ∩ F c),

that gives that Ω is disconnected, because Ω ∩ int(F ) and Ω ∩ F c are two open sets in

Ω, both non-empty if F is a proper subset of Ω and a closed set in RN .

At this point, we can consider an element z ∈ Ω∩∂F and, given that Ω is a euclidean

open set, there exists a ratio r larger than zero such that B(z, r) ⊆ Ω. Then, there is

a point x0 ∈ B(z, r/2) that does not belong to F (by a known characterization of the

boundary of the complementary of the N -dimensional real sets).

Now, from Weierstrass Theorem, we have a point of minimum

y ∈ B(x0, r/2) ∩ ∂F such that ∥x0 − y∥ = inf{∥x0 − x∥ : x ∈ F}.

Clarification of this last clause is due: by Weierstrass Theorem we have the existence

of y ∈ F such that ∥x0 − y∥ = inf{∥x0 − x∥ : x ∈ F}; then, by Proposition 1.13, since

x0 /∈ F , we derive that y ∈ ∂F and besides

inf{∥x0 − x∥ : x ∈ F} = inf{∥x0 − x∥ : x ∈ F ∩B(x0, r/2)}

is obviously true.

In conclusion, we simply apply the previous technical Lemma 2.14 to gain y ∈ F ∗.

Since “tangentiality” seems a good notion when X-invariance is concerned, it is

convenient to give the following definition.

Definition 2.17 (Tangent vector field). Let F be a closed subset in Ω. We suppose

that X is a vector field on Ω.

We say that X is tangent to F if

⟨X(y), ν⟩ = 0, for each y ∈ F ∗, for each ν⊥F at y. (2.2)

We tacitly mean that condition (2.2) is fulfilled whenever F ∗ = ∅. We set

Tg(F ) := {X ∈ X (Ω) : X is tangent to F}. (2.3)
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Remark 2.18. It is a simple exercise to recognize that Tg(F ) is a vector subspace of

X (Ω) and, more generally, it is a module over C∞(Ω), that is

X, Y ∈ Tg(F ), f, g ∈ C∞(Ω) implies f X + g Y ∈ Tg(F ).

Later, we shall see that Tg(F ) is a Lie-subalgebra of X (Ω).

Next we turn to the characterization of positive X-invariance of a set F .

Remark 2.19. If F is relatively closed in Ω, it is not difficult to verify that the condition

⟨X(y), ν⟩ ≤ 0, for every y ∈ F ∗, for every ν⊥F at y (2.4)

is necessary for the positive X-invariance of F .

Indeed, let y ∈ F ∗, ν⊥F at y and let γ : [0, T ] → Ω be an integral curve of X such

that γ(0) = y. By definition of orthogonality of ν at y we have

B(y + ν, ∥ν∥) ⊆ (Ω \ F ) ∪ {y}. (2.5)

Then, if F is positively X-invariant (that is γ([0, T ]) ⊆ F ), from (2.5) we have

∥γ(t)− (y + ν)∥2 ≥ ∥ν∥2 and ∥γ(0)− (y + ν)∥2 = ∥ν∥2,

for every t ∈ [0, T ]. This means that the C1 real-valued function

t 7→ ∥γ(t)− (y + ν)∥2

has a minimum point at t = 0. As a consequence

0 ≤ d

d t

∣∣∣
t=0

(
∥γ(t)− (y + ν)∥2

)
= 2

〈
γ̇(0), γ(0)− (y + ν)

〉
= ⟨X(y),−ν⟩.

Hence (2.4) is satisfied.

In this way we have proved a direction of the following Nagumo-Bony theorem.

We are about to show that (2.4) is also sufficient for the positive X-invariance of F .

Therefore the statement of the next theorem will be completely proven.

Theorem 2.20 (Nagumo-Bony). Let X be a C1 vector field on Ω, and suppose that

F is a relatively closed subset of Ω.

Then F is positively X-invariant if and only if

⟨X(y), ν⟩ ≤ 0, for every y ∈ F ∗ and every ν⊥F at y. (2.6)



2.2 Propagation and Strong Maximum Principle 27

Proof. Due to the previous Remark 2.19, we only need to show the “if” part of the

assertion. To this end, let γ : [0, T ] → Ω be an integral curve of X such that x0 := γ(0)

belongs to F . For t ∈ [0, T ] we define

δ(t) = dist(γ(t), F ) := inf
{
∥γ(t)− z∥ : z ∈ F

}
.

Note that δ(0) = 0 and δ is continuous and non-negative. We need to prove that, under

condition (2.6), we have δ(t) = 0 for every t ∈ [0, T ]. Due to Lemma 1.12, it is enough

to prove that

Ψ(t) := lim sup
h→0−

δ(t+ h)− δ(t)

h
≤ L δ(t), ∀ t ∈ (0, T ], (2.7)

for some constant L > 0. To this aim, let V ⊂ Ω be a bounded neighborhood of x0

containing γ([0, T ]) (such a neighborhood exists due to the compactness of γ([0, T ])),

and let

L := sup
x,z∈V, x ̸=z

∥X(x)−X(z)∥
∥x− z∥

(2.8)

be the Lipschitz constant of X on V . By shrinking T if necessary, we can suppose that

V = B(x0, r) with B(x0, 2r) ⊆ Ω.1 We shall prove (2.7) with this choice of L.

If δ(t) = 0, inequality (2.7) is trivial, since h < 0 and δ(t+ h) ≥ 0. Suppose δ(t) > 0

and choose a sequence hn < 0, hn → 0 such that

Ψ(t) = lim
n→∞

δ(t+ hn)− δ(t)

hn
.

Let us denote x := γ(t) and xn := γ(t+hn). Since γ([0, T ]) ⊂ B(x0, r) and B(x0, 2r) ⊆ Ω,

for every n there exists a point zn ∈ F ∩B(x0, r) such that

∥xn − zn∥ = dist(xn, F ) = dist(γ(t+ hn), F ) = δ(t+ hn).

Obviously, by choosing a subsequence if necessary, we may suppose that zn converges to

some z ∈ F ∩B(x0, r). As a consequence, since xn → x, one has

∥x− z∥ = lim
n→∞

∥xn − zn∥ = lim
n→∞

dist(xn, F )

= dist(x, F ) = dist(γ(t), F ) = δ(t).
(2.9)

From Proposition 1.13 we have z ∈ ∂F and from Lemma 2.14, thanks to ∥x − z∥ =

dist(x, F ), we gain

ν := 1
2
(x− z)⊥F at z. (2.10)

1Otherwise we apply this same argument on a partition of [0, T ] into small segments, say

[0, T1], [T1, T2], . . . , [Tn, T ], proving that δ ≡ 0 on [0, T1], then on [T1, T2], and so forth.
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Then

δ(t+ hn)− δ(t) = ∥xn − zn∥ − ∥x− z∥ ≥ ∥xn − zn∥ − ∥x− zn∥

≥ −⟨x− zn, x− xn⟩
∥x− zn∥

=
⟨xn − x, x− zn⟩

∥x− zn∥
.

(2.11)

In the first inequality we used the fact that ∥x− z∥ = dist(x, F ) and zn ∈ F ; the second

inequality, due to x ̸= zn (having δ(t) > 0), if x ̸= xn, is a consequence of the following

estimate (obtained by taking a = x, b = zn, c = xn in Lemma 1.14):

∥x− zn∥ ≤ ∥xn − zn∥+
⟨zn − x, xn − x⟩

∥zn − x∥ · ∥xn − x∥
∥x− xn∥,

while, if x = xn, the inequality is simply 0 ≥ 0. Hence (taking into account that

hn < 0 and the continuity of the functions under consideration), we have the following

calculation:

Ψ(t) = lim
n→∞

δ(t+ hn)− δ(t)

hn

(2.11)

≤ lim
n→∞

〈
xn − x

hn
,
x− zn

∥x− zn∥

〉
= lim

n→∞

〈
γ(t+ hn)− γ(t)

hn
,
x− zn

∥x− zn∥

〉
=

〈
γ̇(t),

x− z

∥x− z∥

〉
(2.10)
=

2

∥x− z∥
⟨X(γ(t)), ν⟩ = 2

∥x− z∥
⟨X(x), ν⟩

=
2

∥x− z∥

{
⟨X(x)−X(z), ν⟩+ ⟨X(z), ν⟩

}
≤ 2

⟨X(x)−X(z), ν⟩
∥x− z∥

.

In the last inequality we used the hypothesis (2.6) applied when y is equal to z (giving

⟨X(z), ν⟩ ≤ 0). This produces the estimate

Ψ(t) ≤ 2
⟨X(x)−X(z), ν⟩

∥x− z∥
.

From the Cauchy-Schwarz inequality, together with ∥ν∥ = ∥x− z∥/2, we get that

Ψ(t) ≤ ∥X(x)−X(z)∥.

From the definition (2.8) of L, we finally get

Ψ(t) ≤ L ∥x− z∥ (2.9)
= L δ(t).

This completes the proof of (2.7).

Remark 2.21. Notice that in the previous demonstration it is sufficient to consider a

locally Lipschitz continuous vector field X over Ω instead of a C1 one, which is assumed

for simplicity.
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With Definition 2.17 at hand, the Nagumo-Bony Theorem 2.20 provides us with the

following crucial result.

Corollary 2.22 (Equivalence of invariance and tangentiality). Let X be a C1

vector field on Ω. Suppose that F is a relatively closed subset of Ω.

Then, F is X-invariant if and only if X is tangent to F .

Proof. By Definition 2.10, F is X-invariant if and only if F is positively invariant with

respect to X and −X. By the Nagumo-Bony Theorem 2.20, this is equivalent to

⟨±X(y), ν⟩ ≤ 0, ∀ y ∈ F ∗, ∀ ν⊥F at y.

That is (2.2) holds true, which means that X is tangent to F .

Remark 2.23. If F is a relatively closed subset of Ω, we let

Inv(F ) := {X ∈ X (Ω) : F is X-invariant}.

We deduce from Corollary 2.22 that (see the notation in (2.3)) Tg(F ) = Inv(F ). In

Section 2.2.3, we shall discover that Tg(F ) = Inv(F ) is not only a module over C∞(Ω),

but it is also a Lie sub-algebra of X (Ω).

2.2.2 Hopf Lemma

We now see another result that will be required in the proof of the Maximum Prop-

agation Principle Theorem 2.7. It is a classic result about elliptic operators, generalised

to an operator L as in the hypothesis of the recalled theorem.

Lemma 2.24 (Hopf Lemma). Let L be a semielliptic operator over D and Ω ⊆ D be

a connected open set. We consider u ∈ C2(Ω) such that Lu ≥ 0 and u ≤ 0 over Ω, we

place F (u) := {x ∈ Ω : u(x) = 0} and we suppose that F (u) is a proper subset of Ω.

Then, for each y ∈ F (u)∗ and for each ν⊥F at y

⟨A(y)ν, ν⟩ = 0, that is ν ∈ Isotr(A(y)).

Remark 2.25. IfX is a principal vector field for L (as in Definition 2.1) and the hypothesis

of the previous Lemma holds, then X is tangent to F (u).

Indeed, for each y ∈ F (u)∗ and for each ν⊥F

0 ≤ ⟨X(y), ν⟩2 ≤ λ(y)⟨A(y)ν, ν⟩ = 0,

by definition of the principality (with a certain λ(y) > 0), using also the thesis of Hopf

Lemma.
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Another possible way is as follows:

given y ∈ F (u)∗ and ν⊥F , by Proposition 1.3 with A(y) positive semidefinite,

Isotr(A(y)) = kerA(y), hence Hopf thesis says ν ∈ kerA(y); on the other hand, if X

is principal for L, then Proposition 2.2 gives X(y) ∈ (kerA(y))⊥, from which we derive

⟨X(y), ν⟩ = 0.

Lemma 2.26 (The Hopf function). Let G be an operator of the form

G :=
N∑

i,j=1

αi,j(x)
∂2

∂xi ∂xj
+

N∑
i=1

βi(x)
∂

∂ xi
+ γ,

where αi,j = αj,i, βi and γ are continuous functions on an open set Ω ⊆ RN . We suppose

there exists y ∈ Ω and ν ∈ RN \ {0} such that

N∑
i,j=1

αi,j(y)νiνj > 0.

Then, letting B := B(y + ν, ∥ν∥), there exists a function h ∈ C∞(RN), called “Hopf

function for G in y along ν”, with the following properties:

(1) h > 0 on B, h = 0 on ∂B and h < 0 on RN \B;

(2) there exists δ > 0 (depending on ν and the coefficients of G in a neighborhood of

y) such that Gh > 0 on B(y, δ) and B(y, δ) ⊆ Ω.

Proof. We place z := y + ν and r := ∥ν∥. Now we define the desired smooth function

h : RN → R in this way

x 7→ h(x) := exp(−λ∥x− (y + ν)∥2)− exp(−λ∥ν∥2),

where λ > 0 will be suitably chosen, depending on ν, αi,j, βi,j, later on.

Notice that the point (1) follows immediately from the definition of h.

We set H(y) := (αi,j(y))i,j and the N-vector β(y) := (βi(y))i, by a direct calculation

we gain

Gh(y) = 4λ2 exp(−λr2) ·
{
⟨H(y)ν, ν⟩+ 1

2λ
(⟨β(y)ν, ν⟩ − trace(H(y))

}
.

The hypothesis ⟨H(y)ν, ν⟩ =
∑N

i,j=1 αi,j(y)νiνj > 0 ensures that, with a λ sufficiently

large, Gh(y) > 0. And from this, by continuity, we have (2).

Therefore, we are ready to prove the Hopf Lemma.
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Proof of Hopf lemma. To simplify the notation we let F := F (u). Let y ∈ F ∗ and ν⊥F
at y; hence B(y + ν, ∥ν∥) ⊆ (Ω \ F ) ∪ {y}. We set B := B(y + ν, ∥ν∥).

We suppose, by contradiction, the opposite of the thesis, that is, remembering that

A(y) is positive semi-definite, ⟨A(y)ν, ν⟩ > 0. With this, by the previous Lemma 2.26

applied to the operator L, there is a Hopf function h for L in y along ν. As in the

statement of the precedent Lemma, we have a δ > 0 such that:

(1) h > 0 on B, h = 0 on ∂B and h < 0 on RN \B;

(2) there exists δ > 0 (depending on ν and the coefficients of G in a neighborhood of

y) such that Gh > 0 on B(y, δ) and B(y, δ) ⊆ Ω.

We place z := y + ν, r := ∥ν∥ and V := B(y, δ).

We divide the boundary of V in two disjoint subsets:

Γ1 := ∂V \B(z, r), Γ2 := ∂V ∩B(z, r).

In this way we find Γ2 ⊆ Ω \ F and Γ2 is a compact set in RN . Being u < 0 over

Ω \ F , there is a certain M := maxΓ2u < 0. In particular there exists ϵ > 0 such that

u + ϵh < 0 over Γ2, as the continuous function h is bounded over the compact set Γ2.

On the other hand, being h < 0 over the complementary set of B(z, r) and u ≤ 0 on Ω,

we also have u+ ϵh < 0 on Γ1. Letting uϵ := u+ ϵh, it holds that

uϵ < 0 on ∂V = Γ1 ∪ Γ2.

Furthermore, Lu ≥ 0 on Ω by hypothesis and Lh > 0 on V by construction; hence

L(uϵ) = Lu+ ϵLh ≥ ϵLh > 0 on V.

In conclusion, due to u(y) = 0 (from y ∈ F ∗ ⊆ F ) and h(y) = 0 (y ∈ ∂B(z, r)), we gain

uϵ(y) = 0.

Summing up, we have the three facts

uϵ < 0 on ∂V = Γ1 ∪ Γ2, L(uϵ) > 0 on V and uϵ(y) = 0,

which are contradictory with each other. Indeed, we can consider α := maxV uϵ and

from the third fact α ≥ 0, and from the first fact this maximum is achieved at an inner

point of V , that is in V ⊆ Ω; but uϵ is strictly subharmonic referring to L over V (by

the second fact), and this implies, through Proposition 1.5, that uϵ can not have a local

maximum point in V . This contradiction puts an end to the proof.
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2.2.3 The proof of the Maximum Propagation Principle

The Nagumo-Bony Theorem and the Hopf Lemma are the two fundamental elements

for the demonstration of the Maximum Propagation Principle, of which we give again

the statement.

Theorem 2.27 (Maximum Propagation Principle). Let L be semielliptic on D. Let

Ω ⊆ D be an open set. For every function u ∈ C2(Ω) satisfying Lu ≥ 0 and u ≤ 0 on

Ω, the set F (u) = {x ∈ Ω : u(x) = 0} contains the trajectories, starting at the points of

F (u), of the integral curves of any C1 principal vector field for L over Ω.

Proof. Let X be a C1 principal vector field for L. We suppose that F (u) is non-empty,

otherwise there is nothing to say. Furthermore, we can also suppose that Ω is path-

connected, by possibly arguing over each path connected component of Ω (from which

the integral curves of X cannot escape). Due to Definition 2.10, we want to prove that

F (u) is an X-invariant set.

If F (u) = Ω there is nothing to prove; hence we suppose that F (u) a proper set of

Ω, so that F (u) is relatively closed in Ω.

Then, we have X tangent to F (u) due to Remark 2.25 (that is a Hopf Lemma

consequence), X being a principal vector field for L.

In conclusion, from Nagumo-Bony Theorem, being F (u) is a relatively closed in Ω, we

have the equivalence between tangentiality and invariance, hence F (u) isX-invariant.

Proposition 2.28. Taking F a non-empty closed set of RN contained in Ω and two C2

vector fields X and Y on Ω, we suppose that F is invariant with respect to both X and

Y (or equivalently X and Y are both tangent to F ).

Then F is also [X, Y ]-invariant (or equivalently [X, Y ] is tangent to F ).

As a natural consequence we find that

{X ∈ X (Ω) : F is X-invariant} = Inv(F ) = Tg(F ) = {X ∈ X (Ω) : X is tangent to F}

is Lie sub-algebra of X (Ω).

Proof. We remember that, from the Nagumo-Bony Theorem, we have the equivalence

between invariance and tangentiality. Furthermore we have already observed that Tg(F )

is a module over C∞(Ω).

It remains to show that Tg(F ) is closed by commutation.

Letting F , X and Y as in hypothesis, [X, Y ] is a C1 vector field on Ω and we can

prove that it is tangent to F . We consider y ∈ F ∗ and ν⊥F in y. We know, by Remark

1.11, that there exists T > 0 such that we can well-pose the function

Γ : [0, T ] → Ω, t 7→ Γ(t) := ΨY
−
√
t
◦ΨX

−
√
t
◦ΨY√

t
◦ΨX√

t
(y).



2.3 Strong Maximum Principle for Hörmander operators 33

Through Proposition 1.10, we are able to say

limt→0+
Γ(t)− y

t
= ([X, Y ]I)(y).

At the same time, being F invariant with respect to both X and Y , F contains all

integral curves of X and Y starting at a point in F . Hence Γ([0, T ]) ⊆ F.

Then, seen that Γ(0) = y and B(y + ν, ∥ν∥) ⊆ (Ω \ F ) ∪ y, we gain

∥Γ(t)− (y + ν)∥2 ≥ ∥ν∥2 = ∥Γ(0)− (y + ν)∥2, for each t ∈ [0, T ].

By these two facts

0 ≤ d

dt

∣∣∣∣
t=0

(
∥Γ(t)− (y + ν)∥2

)
= 2⟨Γ̇(0),Γ(0)− (ν + y)⟩ = −2⟨[X, Y ](y), ν⟩.

This implies

⟨[X, Y ](y), ν⟩ ≤ 0, for each y ∈ F ∗ and ν⊥F in y.

Exchanging the roles of X and Y , we also obtain ⟨[Y,X](y), ν⟩ ≤ 0, and the commu-

tator anti-symmetry gives ⟨[Y,X](y), ν⟩ = −⟨[X, Y ](y), ν⟩.
Hence, summing up

⟨[X, Y ](y), ν⟩ = 0, for each y ∈ F ∗ and ν⊥F in y.

Therefore [X, Y ] is tangent to F and we have put an end to this proof.

2.3 Strong Maximum Principle for Hörmander op-

erators

We remember the following definition, already given in a previous section.

Definition 2.29 (Strong Maximum Principle). We say that L satisfies the Strong

Maximum Principle (SMP, for short) on the connected open set Ω if it satisfies the

following condition: for every function u ∈ C2(Ω) such that

Lu ≥ 0 and u ≤ 0 on Ω,

the existence of x0 ∈ Ω such that u(x0) = 0 implies that u ≡ 0 on the whole of Ω.

Now, we demonstrate that Hörmander sum of squares operators satisfy the previous

definition.
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Theorem 2.30. Let S := {X1, . . . , Xm} be a Hörmander system on an open set D ⊆ RN .

Then, the associated Hörmander sum of squares LS =
∑m

i=1X
2
i satisfies the SMP on

each connected open set Ω ⊆ D.

Proof. Let u ∈ C2(Ω) such that Lu ≥ 0 and u ≤ 0 on Ω, where Ω is a connected open

set inside D. Furthermore, we suppose there is a point x0 ∈ Ω such that u(x0) = 0 and

we place F (u) := {x ∈ Ω : u(x) = 0}, so that x0 ∈ F (u).

Hence the thesis becomes F (u) = Ω.

Supposing by contradiction that F (u) is a proper subset of Ω and remembering that

X1, . . . , Xm are principle vector fields for such a operator LS, from the Hopf Lemma, we

gain that X1, . . . , Xm are all tangent to F (u).

Furthermore, by Proposition 2.28, we find that Tg(F (u)) is a Lie algebra.

From these two clauses, we have

Lie(S) ⊆ Tg(F (u)).

If F (u) is a proper subset of Ω we know there exists a y ∈ F (u)∗ and a vector ν⊥F (u)
at y, thanks to Proposition 2.15.

Being S a Hörmander system there exist Y1, . . . , YN ∈ Lie(S) such that

{Y1(y), . . . , YN(y)} is a basis of RN as a vector space.

From what we said Y1, . . . , YN are tangent to F (u), thus by definition we have

⟨Yk(y), ν⟩ = 0 for each k = 1, . . . , N.

By the fact that Y1(y), . . . , YN(y) is a basis of RN , we obtain ν = 0 ∈ RN , which is

in contrast with the definition of external normal (see Definition 2.13).

Once it is obtained this contradiction, F (u) cannot be a proper set of Ω, that is

F (u) = Ω.

Example 2.31. This example serves to remark that the previous result does not work

substituting the Hörmander sum of squares with a Hörmander sum of squares with drift.

We take the Heat operator over RN+1

LHeat =

(
∂

∂x1

)2

+ · · ·+
(

∂

∂xN

)2

− ∂

∂xN+1

.

The so called “fundamental solution” of LHeat (letting x ≡ (x1, . . . , xN))

Φ(x, xN+1) :=

0, if xN+1 ≤ 0 and (x, xN+1) ̸= (0, 0)

− 1
(4π xN+1)N/2 exp

(
− ∥x∥2

4 xN+1

)
, if xN+1 > 0
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is “LHeat-harmonic” over the connected open set Ω := RN+1 \ {0}, that is

LHeatΦ(x) = 0 for each x ∈ Ω,

that obviously implies the LHeat-subharmonicity of Φ on Ω.

Furthermore Φ is ≤ 0 over Ω, but it is not identically zero over Ω.

Hence LHeat does not respect the SMP over Ω.

Notice that in this case

Heat =

{
X0 = − ∂

∂xN+1

, X1 =
∂

∂x1
, . . . , XN =

∂

∂xN

}
is a Hörmander system in RN+1, but{

X1 =
∂

∂x1
, . . . , XN =

∂

∂xN

}
is not a Hörmander system in RN+1, indeed:

Lie

({
X1 =

∂

∂x1
, . . . , XN =

∂

∂xN

})
=
{
fXi − gXj : f, g ∈ C∞(Ω), i, j = 1, . . . , N

}
;

for each X in this latter algebra and for each x ∈ RN+1 the (N + 1)-th component of

X(x) ∈ RN+1 is zero.
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Chapter 3

Propagation along the drift

3.1 Maximum Propagation Principle along the drift

We go further in our study of the Maximum Propagation Principle by turning our

attention to the role of the so called drift vector field.

The motivation is that, in the previous chapters, in dealing with operators of the

form L =
∑N

i=1X
2
i +X0, nothing has been said about the maximum propagation along

the integral curves of the drift term X0. This is not an oversight: the issue is that,

in general, X0 is not a principal vector field for L. The explicit example of the Heat

operator LHeat = (∂x1)
2 + · · · + (∂xN)

2 − ∂xN+1 and its fundamental solution Φ (see

Example 2.31) proves that not only misses to be principal, but neither can we expect

(two-sided) propagation of the maximum of an LHeat-subharmonic function along the

drift: indeed Φ is null in the half-space {xN+1 < 0} but elsewhere in RN+1 it is strictly

negative.

Nonetheless, a redeeming fact will be proved in this chapter: despite the lack of

X0-invariance, we still have the positive X0-invariance of the maximum points F (u) of

an L-subharmonic function u. The proof of this fact is extremely delicate: we have to

proceed through several steps to describe it.

Recovering the differential operator L from the first Section 1.1, we can associate,

supposing them to be C2, the following vector fields over D:

Xi : =
N∑
j=1

ai,j(x)
∂

∂xj
, for i = 1, . . . , N,

X0 : =
N∑
j=1

(
bj(x)−

N∑
i=1

∂ai,j
∂xi

(x)

)
∂

∂xj
.

37
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By means of these vector fields we can rewrite L as:

L =
N∑
i=1

∂

∂xi

(
N∑
j=1

ai,j(x)
∂

∂xj

)
+

N∑
j=1

(
bj(x)−

N∑
i=1

∂ai,j
∂xi

(x)

)
∂

∂xj

=
N∑
i=1

∂

∂xi

(
Xi

)
+X0.

(3.1)

X0 is called the drift of L.

Remark 3.1. We observe that X1, . . . , XN are principal vector fields over D with respect

to L; indeed X1(x), . . . , XN(x) are exactly the columns of A(x) for each x ∈ D (and we

have Proposition 2.2).

The main aim of this chapter is to demonstrate the following theorem:

Theorem 3.2 (Maximum Propagation Principle along the drift). Writing L as

in (3.1), where X0 is the drift of L, let u ∈ C2(Ω) be an L-subharmonic function on a

non-empty open set Ω ⊆ D. If we know that the set of the maximum points F (u) of u is

non-empty, then F (u) is positively X0-invariant.

To show this result we need the next proposition.

Proposition 3.3. Writing the operator L as in (3.1), where X0 is the drift of L, let

u ∈ C2(Ω) be an L-subharmonic function on an open set Ω ⊆ D. If u attains its

maximum at a point x0 ∈ Ω and there is a unit vector ν ∈ RN such that

⟨X0(x0), ν⟩ > 0,

then for every ρ > 0 the function u attain its maximum not only at x0 but also at some

point of the set Ω ∩B(x0 + ρν, ρ).

The latter result has a definitely complex proof, which needs some intermediate re-

sults. But in the meantime we can show in which way Proposition 3.3 implies Theorem

3.2.

Proof of Maximum Propagation Principle along the drift. We can suppose Ω ̸= F (u),

otherwise there is nothing to prove. Thus, from the Nagumo-Bony Theorem 2.20, we

know that F (u) is positively X0-invariant if and only if

⟨X0(y), ξ⟩ ≤ 0, for y ∈ F (u)∗ and for each ξ⊥F (u) at y.

We argue by contradiction assuming that there exist y ∈ F (u)∗ and ξ⊥F (u) at y such

that ⟨X0(y), ξ⟩ > 0. This allows us to apply Proposition 3.3 with x0 = y, ν = ξ/∥ξ∥ and
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ρ = ∥ξ∥, gaining that u attains its maximum at some point ỹ ∈ Ω ∩ B(y + ξ, ∥ξ∥); this
ensures that

F (u) ∩B(y + ξ, ∥ξ∥) ̸= ∅.

However ξ is externally orthogonal to F (u) at y, so F (u) ∩B(y + ξ, ∥ξ∥) = ∅. We have

the desired contradiction.

3.1.1 The full demonstration

We are now ready to approach the two preliminary results, proceeding step by step

to our final aim: the proof of Proposition 3.3.

Proposition 3.4. Let u ∈ C2(Ω) be an L-subharmonic function on an open set Ω in RN .

Let us assume that u attains its maximum at a point x0 ∈ Ω and that there exists a

function f ∈ C2(Ω) satisying the following properties:

(1) f(x0) = 0 and ∇x0f ̸= 0;

(2) Lf(x0) > 0.

Then, there is a neighborhood U0 of x0 such that, for every open neighborhood U of x0

with closure contained in U0, u attains its maximum not only at x0 but also st some point

of the set

{x ∈ ∂U : f(x) > 0}.

Proof. We consider the C2-function

F : Ω → R, F (x) := f(x)− c∥x− x0∥2,

where c > 0 will be chosen in a moment. F satisfies three properties (obtainable with

simple calculations):

1. F (x0) = 0;

2. ∇x0F = ∇x0f ;

3. LF (x0) = Lf(x0)− 2c trace(A(x0)).

From the first property of f and the second property of F , we can consider a ratio

r > 0 such that, set U0 := B(x0, r), U0 ⊂ Ω and ∇xF ̸= 0 for each x ∈ U0. By the

second property of f and the third property of F , we can choose such a small c > 0 that

LF (x) > 0 for every x ∈ U0.
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Simply by definition of F we have that

{x ∈ Ω \ {x0} : F (x) ≥ 0} = {x ∈ Ω : f(x) > 0}.

Due to this fact, fixing an open neighborhood U of x0 with U ⊆ U0, it is sufficient that

we prove that u attains its maximum at some point of

Σ := {x ∈ ∂U : F (x) ≥ 0}.

We argue by contradiction supposing that supΣ u < u(x0). Thus it is possible to choose

ϵ > 0 such that

0 < ϵ <
u(x0)− supΣ u

supΣ F
, (3.2)

also because supΣ F > 0, since for every x ∈ U0 we have ∇xF ̸= 0 and F (x) ≥ 0.

We define v := u+ ϵF over Ω and we have:

i. Lv = Lu+ ϵLF ≥ ϵLF > 0 on U ;

ii. v = u+ ϵF
(3.2)
< u+ u(x0)− supΣ u(x0) ≤ u(x0) on Σ.

Having v(x0) = u(x0) and v ∈ C2(U), it results that v is a strictly L-subharmonic

function over U possessing a maximum point inside U , which is a contradiction by

Proposition 1.5.

Corollary 3.5. Let u ∈ C2(Ω) be an L-subharmonic function on an open set Ω in RN .

Let us assume that u attains its maximum at a point x0 ∈ Ω and that there exists a unit

vector ν ∈ RN such that ⟨A(x0)ν, ν⟩ > 0. Then, for every ρ > 0, the function u attains

its maximum not only at X0 but also at some point of the set Ω ∩B(x0 + ρν, ρ).

Proof. Let ρ > 0. As in Proposition 2.26, we consider the Hopf function

h ∈ C∞(RN) for L in the point x0 along the vector ρν. From the known properties of this

kind of function we have h(x0) = 0 and Lh(x0) > 0. And, through a direct calculation,

one can also show that ∂
∂xj
h(x0) ̸= 0 for each j = 1, . . . , N , that is ∇x0h ̸= 0.

We are in a position to apply Proposition 3.4 to say that: there is a neighborhood

U0 of x0 such that, for every open neighborhood U of x0 with closure contained in U0, u

attains its maximum not only at x0 but also at some point of the set {x ∈ ∂U : h(x) > 0}.
But {x ∈ RN : h(x) > 0} = B(x0 + ρν, ρ), then

{x ∈ ∂U : h(x) > 0} ⊆ Ω ∩B(x0 + ρν, ρ),

and this is conclusive.
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To continue we have to specify how second order differential operators can be repa-

rameterized through diffeomorphisms.

Remark 3.6. Let G be an operator of the form

G :=
N∑

i,j=1

αi,j(x)
∂2

∂xi ∂xj
+

N∑
i=1

βi(x)
∂

∂ xi
+ γ,

where αi,j = αj,i, βi and γ are continuous function on a non-empty open set D ⊆ RN .

Let ψ : D → D̃ be a C2-diffeomorphism onto the open set D̃ ⊆ RN and let Jxψ be the

Jacobian matrix of ψ at the point x ∈ D.

We also define, for any x ∈ D, the N × N real matrix H(x) := (αi,j(x))i,j and the

vector β(y) := (βi(x))i ∈ RN .

We define a new operator G̃ on D̃ by setting

(G̃u)(y) := (G(u ◦ ψ))(ψ−1(y)), with y ∈ D̃ and u ∈ C2(D̃).

By direct calculations one can prove that

G̃ =
N∑

i,j=1

α̃i,j(y)
∂2

∂yi ∂yj
+

N∑
i=1

β̃i(y)
∂

∂ yi
+ γ̃,

where, for any y ∈ D̃,

H̃(y) := (α̃i,j(y))i,j = (Jψ−1(y)ψ) ·H(ψ−1(y)) · (Jψ−1(y)ψ)
⊺,

β̃(y) := (β̃i(y))
⊺
i = (Jψ−1(y)ψ) · β(ψ−1(y)) + (G0ψ)(ψ

−1(y)),

γ̃(y) = (γ ◦ ψ−1)(y),

in which G0ψ =
∑N

i,j=1 αi,j
∂2

∂xi ∂xj
ψ over D (meaning that we are applying the principal

part of G to each component of the vector-function ψ).

From the fact that, for each x ∈ D, the matrix Jxψ is non-singular, we deduce that

the principal matrices of G and G̃ are congruent, so

G is semielliptic if and only if G̃ is semielliptic.

We also draw attention on the particular case of a linear change of coordinates

ψ(x) =M(x− x0),

for a certain x0 ∈ RN , x ∈ D, where M is an N ×N non-singular matrix: in this case,

for each y ∈ D̃, we have

H̃(y) =M ·H(ψ−1(y)) ·M⊺, β̃(y) =M · β(ψ−1(y)), γ̃(y) = γ(ψ−1(y)).
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In the end, as a worthy conclusion of this thesis, we patiently give the proof of

Proposition 3.3.

Proof of Proposition 3.3. We have u ∈ C2(Ω) an L-subharmonic function and X0 the

drift of L. We suppose that u attains its maximum at a point x0 ∈ Ω and that there is

a unit vector ν ∈ RN such that

⟨X0(x0), ν⟩ > 0. (3.3)

We have to show that, for each ρ > 0, the function u attains its maximum not only at

x0 but also at some point of the set Ω ∩B(x0 + ρν, ρ).

For the sake of clarity we split the proof in three steps.

[ STEP I ]

If ⟨A(x0)ν, ν⟩ > 0, by Corollary 3.5, we have finished. Otherwise, being A(x0) positive

semidefinte, ⟨A(x0)ν, ν⟩ = 0, that, thanks to Proposition 1.3, means A(x0)ν = 0, thus

r := rank(A(x0)) < N . Being A(x0) othogonally diagonalizable, there exists a non-

singular N ×N matrix P such that

(a): P ⊺eN = ν and (b): PA(x0)P
⊺ =

(
IdN×N 0

0 0

)
.

We consider the linear change of variables

ψ : RN → RN , y ≡ ψ(x) := P (x− x0).

According to the previous Remark 3.6, L is turned by ψ into a linear differential semiel-

liptic operator L̃ over the open set D̃ := ψ(D) ⊆ RN , and L̃ is of the following form:

L̃ :=
N∑

i,j=1

αi,j(y)
∂2

∂yi ∂yj
+

N∑
i=1

βi(y)
∂

∂ yi
,

where, for any y ∈ D̃,

Ã(y) := P · A(ψ−1(y)) · P ⊺, β := P · β(ψ−1(y)).

Moreover, as we did with L in (3.1), we introduce the C2 vector fields on D̃ defined by

Yi : =
N∑
j=1

αi,j(y)
∂

∂yj
, for i = 1, . . . , N,

Y0 : =
N∑
j=1

(βj(y)−
N∑
i=1

∂αi,j
∂yi

(y))
∂

∂yj
.

(3.4)
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Again from Remark 3.6, we have

(L̃q)(y) := (L(q o ψ))(ψ−1(y)), with y ∈ D̃ and q ∈ C2(D̃),

from which, taking q(y) = yk for each k ∈ {1, . . . , N}, we gain

Y0(y) = PX0(ψ
−1(y)), for each y ∈ D̃,

that gives

⟨Y0(0), eN⟩ = ⟨PX0(x0), eN⟩ = ⟨X0(x0), P
⊺eN⟩ = ⟨X0(x0), ν⟩ > 0. (3.5)

Moreover, from the property (b), we get

αi,i(0) = ⟨Ã(0)ei, ei⟩ = 0, for each i ∈ {r + 1, . . . , N},

that gives, through Lemma 1.17, for each k ∈ {1, . . . , N}

∂αi,j
∂yk

(0) =

〈
∂Ã

∂yk
(0)ei, ei

〉
= 0, for each i, j ∈ {r + 1, . . . , N}. (3.6)

As a consequence, we obtain

⟨Y0(0), eN⟩
(3.4)
= βN(0)−

N∑
i=1

∂αi,N
∂yi

(0)
(3.6)
= βN(0)−

r∑
i=1

∂αi,N
∂yi

(0), (3.7)

thus, thanks to (3.5),

βN(0)−
r∑
i=1

∂αi,N
∂yi

(0) > 0. (3.8)

Now, we set Ω̃ := ψ(Ω) and we consider the function ũ := u o ψ−1. Obviously ũ ∈ C2(Ω̃)

and it attains its maximum at 0 = ψ(x0). Furthermore, for each y ∈ Ω̃,

(L̃ũ)(y) := (L(ũ ◦ ψ))(ψ−1(y)) = (Lu)(ψ−1(y)) ≥ 0,

that means that ũ is L̃-subharmonic over Ω̃.

[ STEP II ]

The aim of this second step is to show the thesis for ũ and L̃. We want to prove that,

for each ρ > 0, the function ũ attains its maximum at some point of the set Ω̃∩B(ρeN , ρ).

In this regard, we consider the polynomial function

f(y) := yN − 1

2

r∑
k=1

yk

(∂αk,N
∂yk

(0)yk + 2
N∑

j=k+1

∂αk,N
∂yj

(0)yj

)
− c

r∑
k=1

y2k − C

N∑
k=r+1

y2k,
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where c and C are suitable positive constants which we shall fix later on. We notice that

f(0) = 0 and ∇0f = 0. Moreover, a direct computation (based on property (b)) gives

L̃f(0) = −2rc+ βN(0)−
r∑

k=1

∂αk,N
∂yk

(0).

By (3.8), we can suppose c so small that L̃f(0) > 0. Owing to Proposition 3.4, it is

possible to find a ratio r0 > 0 such that B(0, r0) ⊆ Ω and, for each 0 < ϵ < r0, the

function attains its maximum at a point z(0, ϵ) ∩ {f > 0}, that is ∥z∥ < ϵ and

zN >
1

2

r∑
k=1

zk

(∂αk,N
∂yk

(0)zk + 2
N∑

j=k+1

∂αk,N
∂yj

(0)zj

)
+ c

r∑
k=1

z2k + C

N∑
k=r+1

z2k. (3.9)

Now, for each y ∈ B(0, r0), we can consider the integral curve γ(t, Y1, y) of Y1 starting

at y, which is C2 in a suitable open interval containing zero. From ODE theory we

know that (over a suitable domain) the function (t, y) 7→ γ(t, Y1, y) is continuous, hence,

shrinking r0 if necessary, we can assume that, for every y ∈ B(0, r),

y(1) := γ(−y1, Y, y) is well-posed and it belongs to Ω̃,

where y1 is the first coordinate of the vector y. Afterwards, we can consider the integral

curve γ(t, Y2, y
(1)) of Y2 starting at y(1). As above, we can assume r0 so small that

y(2) := γ(−y(1)2 , Y2, y
(1)) is well-posed and it belongs to Ω̃,

where y
(1)
2 is the second coordinate of y(1). By repeating this argument r times, we can

suppose r0 so small that

y(1) := γ(−y1, Y, y), . . . , y(r) := γ(−y(r−1)
r , Yr, y

(r−1))

are all well-defined in Ω̃. We can consider the map

θ : B(0, r0) → Ω̃, θ(y) := γ(−y(r−1)
r , Yr, y

(r−1)),

that is of class C2 being Y1, . . . , YN of class C2 (because integral curves of these vector

fields are C2 in both time and space). Since Y1, . . . , YN are principal vector fields (from

Remark 3.1), thanks to the Maximum Propagation Principle Theorem 2.7, we deduce

that, if z ∈ B(0, ϵ) is any maximum point for ũ, then the same is true of z := θ(z).

Now, taking ρ > 0, we want to show that, if ϵ is sufficiently small and C is sufficiently

large, then θ(z) ∈ B(ρeN , ρ). Thanks to Remark 1.12, one is able to recognize that

θ1, . . . , θr admit the following expansion at zero:

θi(y) = −1

2

r∑
k=1

yk

(∂αk,i
∂yk

(0)yk + 2
N∑

j=k+1

∂αk,i
∂yj

(0)yj

)
+ o(∥y∥2);
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and for θr+1, . . . , θN it holds that

θi(y) = yi −
1

2

r∑
k=1

yk

(∂αk,i
∂yk

(0)yk + 2
N∑

j=k+1

∂αk,i
∂yj

(0)yj

)
+ o(∥y∥2). (3.10)

From this, by shrinking r0 if necessary, we infer the existence of a positive constant

M > 0 such that, for each y ∈ B(0, r0),

N−1∑
k=1

(θk(y))
2 ≤M

( r∑
i=1

y4i +
N∑

i=r+1

y2i

)
; (3.11)

moreover, by (3.10) with i = N , we can assume that

θN(y) > yN − 1

2

r∑
k=1

yk

(∂αk,N
∂yk

(0)yk + 2
N∑

j=k+1

∂αk,N
∂yj

(0)yj

)
− c

2
∥y∥2. (3.12)

In particular, if z ∈ B(0, ϵ)∩ {f > 0} is a maximum point of ũ, by combining inequality

(3.12) with (3.9), then

zN = θN(z) >
c

2

r∑
i=1

z2i +
(
C − c

2

) N∑
i=r+1

z2i . (3.13)

Therefore, if we choose ϵ > 0 in such a way that

1. Mϵ2 < ρc/2;

2. ∥θ(y)∥ < ρ for every y ∈ B(0, ϵ),

and if let C > 0 be such that C − c
2
> M/ρ, by (3.11) and (3.13), we obtain

zN(2ρ− zN) = θN(z)(2ρ− θN(z)) (from ∥z∥ < ϵ and (ii))

> ρθN(z)
(3.13)
>

ρc

2

r∑
i=1

z2i + ρ
(
C − c

2

) N∑
i=r+1

z2i (owing to (ii))

> M
r∑
i=1

z4i + ρ
(
C − c

2

) N∑
i=r+1

z2i (by the choice of C)

> M

(
r∑
i=1

z4i +
N∑

i=r+1

z2i

)
(3.11)

≥
N−1∑
k=1

(θk(z))
2.

From θN(z)(2ρ − θN(z)) >
∑N−1

k=1 (θk(z))
2, one can easily prove that, if we take z ∈

B(0, ϵ)∩ {f > 0} a maximum point of ũ, the θ(z) (which is also a maximum point of ũ)

belongs to Ω̃ ∩B(ρeN , ρ).
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[ STEP III ]

In this last step, we show that the result proved for L̃ an ũ can be used to demonstrate

an analogous fact for L and u. To this end, we consider ρ > 0. There exists δ > 0 such

that B(δeN , δ) ⊆ ψ(B(x0 + ρν, ρ)). Indeed: B(x0 + ρν, ρ) has a smooth boundary

and ψ is a smooth diffeomorphism of RN ; if ν is the interior normal vector at x0 to

the ball B(x0 + ρν, ρ), it can be recognized that eN is the interior normal vector to

ψ(B(x0+ρν, ρ)) at ψ(x0) = 0. From the second step we know that ũ attains its maximum

at some y ∈ Ω̃ ∩ B(δeN , δ); hence x := ψ−1(y) is a maximum point of u belonging to

B(x0 + ρν, ρ).

This puts an end to the last proof.
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