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Abstract

In the last years the development of Large Language Models (LLMs) has rev-
olutionized the field of natural language processing (NLP), enabling significant
advancements in several contexts, such as text translation, code generation and
question answering. To address all these tasks, LLMs have become increasingly
complex and resource-intensive, since they require an extensive training on a huge
amount of data, mostly in English, that need to be preprocessed. Since the most
famous LLMs are meant to be general purpose, a fine-tuning procedure is usually
needed to tailor the models on specific domains. However, updating all param-
eters, would be computationally expensive and would require significant mem-
ory resources. This brought to the exploration of parameter-efficient fine-tuning
(PEFT) methods that allow to modify only a small subset of parameters while
keeping the majority fixed. This approach not only reduces the computational
effort but also minimizes the risk of catastrophic forgetting, particularly when
working with limited task-specific data. Additionally, compared to training from
scratch, fine-tuning may be achieved with fewer labeled instances and less com-
puting resources by utilizing the knowledge already present in these huge models.
This method improves the effectiveness of implementing LLMs in practical ap-
plications while also democratizing access to cutting-edge AI capabilities. All the
most important PEFT methods rely on different types of matrix factorization, such
as low-rank, sparse or Singular Value Decomposition in order to decompose the
trainable fine-tuning matrix. These factorizations contain fewer parameters than
full fine-tuning, allowing to significantly decrease training time and computational
resources without affecting the overall model’s performance.
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Introduction

In the last years the development of Large Language Models (LLMs) has rev-
olutionized the field of natural language processing (NLP), enabling significant
advancements in several contexts, such as text translation, code generation and
question answering. To address all these tasks, LLMs have become increasingly
complex and resource-intensive, since they require an extensive training on a huge
amount of data, mostly in English, that need to be preprocessed. For example,
recent LLMs as LLaMA-3 [1], PaLM [2] and GPT-4 [3] have 70 billion, 540 billion
and 1.8 trillion parameters, respectively, and are trained on a different variety of
data, as books, web pages, scientific articles, public news and code sources.
Since the most famous LLMs are meant to be general purpose, a fine-tuning proce-
dure is usually needed to tailor the models on specific domains. However, updating
all parameters, would be computationally expensive and would require significant
memory resources. For instance, fine-tuning a model like GPT-3 [4] requires com-
puting nearly 175 billion parameters, making it impractical for many applications.
This brought to the exploration of parameter-efficient fine-tuning (PEFT) methods
that allow to modify only a small subset of parameters while keeping the majority
fixed. This approach not only reduces the computational effort but also minimizes
the risk of catastrophic forgetting, particularly when working with limited task-
specific data. Additionally, compared to training from scratch, fine-tuning may
be achieved with fewer labeled instances and less computing resources by utilizing
the knowledge already present in these huge models. This method improves the
effectiveness of implementing LLMs in practical applications while also democra-
tizing access to cutting-edge AI capabilities.
All the most important PEFT methods rely on different types of matrix factoriza-
tion, such as low-rank (Low-Rank Adaptation or LoRA [5]), sparse (Sparse Matrix
Tuning or SMT [6]) or Singular Value Decomposition (Singular Value Fine Tuning
or SVFT [7]) in order to decompose the trainable fine-tuning matrix. These fac-
torizations contain fewer parameters than full fine-tuning, allowing to significantly
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decrease training time and computational resources without affecting the overall
model’s performance. For instance, employing Low Rank Adaptation (LoRA) to
LlaMA-2-7B can reduce the number of parameters involved in backpropagation
from 7B to 160M.

This thesis is structured into four chapters as follows. The first chapter deals
with two techniques, namely tokenization and embedding of a training corpus text.
The first technique allows to split any word into smaller, meaningful and repre-
sentative subwords, known as tokens, in order to build a token vocabulary. Since
computers deal with numbers instead of words, the second technique converts any
token into a vector in a high-dimensional embedding space. Embedding’s goal is to
build a map such that tokens belonging to a similar semantic field are represented
through vectors with similar directions. The second chapter contains an overview
of the existing literature on transformer architecture. In particular, it focuses on
the importance of multi-head attention mechanisms, which allow to capture short
and long range dependencies between tokens in a sequence, enabling the model to
understand complex patterns inside human language. The third chapter is about
Language Models. It first provides three different applications of the transformer
architecture for solving different tasks, as generating or translating text, and re-
marking the importance of using different attention mechanisms depending on the
task. Then, it describes the procedure of LLM training for next-token genera-
tion task and several evaluation metrics. Finally, the fourth chapter contains an
overview of different PEFT techniques. It focuses on the effect of applying several
matrix factorization techniques, as low-rank, sparse and SVD, for fine-tuning an
LLM. Moreover, this chapter discusses the advantages from a computational point
of view of applying PEFT techniques instead than full fine-tuning, and the achieved
performances in terms of different evaluation metrics. Several experiments were
performed on Leonardo supercomputer and the results reported in this thesis, un-
derling the fundamental role of High Performance Computing (HPC) for training
and fine-tuning LLMs.
This thesis is the result of the internship at the HPC department of Cineca [8], a
non profit Consortium, made up of 118 universities, agencies and public institu-
tions. Cineca is the largest Italian computing centre and one of the most important
worldwide, providing support to the scientific community and companies through
HPC. Since 2022, Cineca hosts Leonardo, the 9th most powerful supercomputer
in the world, according to the November 2024 TOP500 list [9].

vi



Chapter 1

Tokenization and Embedding

Tokenization refers to the process of splitting an input text into smaller chunks,
such as characters, words or subwords, called tokens. This process has a lot of mod-
ern applications since it helps machines to accomplish one of the most complex
tasks: understanding human language by breaking it down into easier pieces. The
main goal of tokenization is to represent human language in a rather small but
meaningful vocabulary using statistical techniques or predefined rules. In this pro-
cess several challenges need to be addressed, such as the optimal vocabulary size
or the handling of punctuation and special characters. Depending on the natu-
ral language processing (NLP) task there are different tokenization strategies to
segment a text: some methods are elementary, since they are based on predefined
rules and break down the text into small units, such as characters or words, or
into bigger ones, such as whole sentences or paragraphs. This type of tokenization
is called rule-based. More complex strategies involve statistical tools, learning the
frequencies and patterns of characters in the text, thus we refer to them as trained
tokenization techniques. Since a machine is not able to deal with text inputs, the
tokens need to be converted into a numerical representation through an embed-
ding, whose main goal is to capture semantic and syntactic relationships between
tokens in a high dimensional space.

In this chapter, we describe the main challenges of tokenization and we give
a thorough description of several tokenization techniques, both rule-based and
trained, analyzing the similarities and differences. Then, we introduce some archi-
tectures for word embedding and perform different experiments; finally, we briefly
review few optimization strategies for the described algorithms.
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1. Tokenization and Embedding

1.1 Challenges

Human language is wide and full of nuances and ambiguities, which a tokenizer
should deal with. Some of these challenges are the following [10]:

• Ambiguity and Polysemy: words may share the same root or have mul-
tiple meanings or contexts, therefore a tokenizer may struggle to determine
the correct meaning, which can possibly lead to misinterpretations [11].

• Handling special characters: an incorrect tokenization of punctuation
marks or other special characters can lead to syntactic and semantic errors,
especially when these are part of a token [12].

• Language specificity: a tokenizer may encounter some problems when
dealing with languages without clear spaces between words [13].

• Vocabulary size: a vocabulary may contain a huge number of tokens, due
to the vastness of words. For instance, singular and plural nouns need to be
encoded in different tokens, which may increase significantly the vocabulary
size.

1.2 Rule-based techniques

We briefly discuss some rule-based techniques depending on their different ap-
proaches [14]:

• Character Tokenization breaks down the text into individual characters,
which means that any character is a token. This tokenization strategy is
beneficial in certain tasks, like text generation to predict the next character
in a sequence, therefore it may be applied for modelling character-level lan-
guages. An English character-based vocabulary is very slim since it contains
only 256 tokens; moreover, character tokenization does not face the prob-
lem of Out-Of-Vocabulary (OOV) words, since the vocabulary contains all
characters used in that language. However, characters do not hold as much
information individually as a word would do. Ideogram-based languages
have lots of information in a single character, encouraging a character-based
approach rather than a word one [15].

2



1. Tokenization and Embedding

• Word Tokenization divides the text into individual words, using whites-
paces or punctuation marks as delimiters. Many NLP tasks share this ap-
proach, in which words are treated as basic units of language. Word-based
vocabularies can have huge dimension, since in the English language there
are approximately 170.000 words. In spite of character tokenization, word to-
kenization faces the challenge of Out-Of-Vocabulary words, which are words
that appear in the new text to tokenize but not in the vocabulary. For in-
stance, if we train a vocabulary on English text data and we want to tokenize
an Italian word, then this is probably an OOV word; the same happens when
dealing with location or people’s names [16].

• Sentence Tokenization segments the text into individual sentences, which
are delimited by dot marks.

• Paragraph Tokenization breaks down the text into individual paragraphs,
which are delimited by blank lines.

• Regular Expressions Tokenization extracts token provided a regex pat-
tern. A regex or regular expression is a sequence of characters specifying
a matching pattern in a text: for instance, the string "\d" extracts digits
or "\w" word characters [17]. Regex tokenization is also suitable for more
complex tokenization rules, such as extracting an e-mail address from a text,
provided a proper regex pattern [18].

Example 1. We apply the previous described tokenization techniques to the fol-
lowing text sequence [19]:

test_text = "Tokenization is an important NLP task. It helps breaking
down text into smaller units."

• Character Tokenization:

tokenized_text = [’T’, ’o’, ’k’, ’e’, ’n’, ’i’, ’z’, ’a’, ’t’,
’i’, ’o’, ’n’, ’ ’, ’i’, ’s’, ’ ’, ’a’, ’n’, ’ ’, ’i’, ’m’, ’p’,
’o’, ’r’, ’t’, ’a’, ’n’, ’t’, ’ ’, ’N’, ’L’, ’P’, ’ ’, ’t’, ’a’,
’s’, ’k’, ’.’, ’ ’, ’I’, ’t’, ’ ’, ’h’, ’e’, ’l’, ’p’, ’s’, ’ ’,
’b’, ’r’, ’e’, ’a’, ’k’, ’i’, ’n’, ’g’, ’ ’, ’d’, ’o’, ’w’, ’n’,
’ ’, ’t’, ’e’, ’x’, ’t’, ’ ’, ’i’, ’n’, ’t’, ’o’, ’ ’, ’s’, ’m’,
’a’, ’l’, ’l’, ’e’, ’r’, ’ ’, ’u’, ’n’, ’i’, ’t’, ’s’, ’.’]

• Word Tokenization:

3



1. Tokenization and Embedding

tokenized_text = [’Tokenization’, ’is’, ’an’, ’important’,
’NLP’, ’task’, ’.’, ’It’, ’helps’, ’breaking’, ’down’, ’text’,
’into’, ’smaller’, ’units’, ’.’]

• Sentence Tokenization:

tokenized_text = [’Tokenization is an important NLP task.’, ’It
helps break down text into smaller units.’]

• Paragraph Tokenization:

tokenized_text = [’Tokenization is an important NLP task. It
helps breaking down text into smaller units.’]

• Regular Expressions Tokenization: it depends on the chosen regex pat-
tern, for instance, we select only the capitalized words with the pattern
"[A-Z]\w+".

tokenized_text = [’Tokenization’, ’NLP’, ’It’]

We remark that the input test sequence contains two sentences but only one para-
graph, therefore the sentence and paragraph tokenization techniques give different
results.

1.3 Trained techniques

Subword tokenization lies in between word-based and character-based tokeniza-
tion: on one hand, we deal with large vocabularies and a great amount of out-of-
vocabulary words, while on the other hand, we deal with long sequences and less
meaningful tokens [20]. Subword techniques rely on the idea that frequently used
words should not be decomposed into smaller subword, while rare words can be
split into meaningful subwords [21]. The following example shows the core idea
behind subword tokenization.

Example 2. Consider the word tokenization, which can be split into the root
token and the suffix ization. The suffix gives the root a slightly different meaning:
the algorithm should then be able to recognize that the words tokens, tokenizer
and tokenizing share all the same root with similar meanings [15].

There exists different ways to implement subword-based tokenizers: BERT
tokenizer uses the prefix ## before the tokens, which are part of a word but not
at its beginning, and is based on the WordPiece algorithm [22]. Instead, GPT-2 is
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1. Tokenization and Embedding

based on Byte-Pair Encoding algorithm and uses a special symbol "Ġ" to handle
whitespaces before words [23]. In the previous example, using BERT the tokens are
therefore to, ##ken and ##ization, while using GPT-2 the tokens are Ġtoken and
ization. Other tokenizers may use different symbols or instead use that symbol at
the beginning of the word. In the following sections, we analyze some algorithms
for subword tokenization, such as Byte-Pair Encoding, WordPiece, Unigram and
SentencePiece. All these algorithms share two common parts: a token learner
which takes a raw training corpus text and creates a vocabulary, and a token
segmenter which takes a raw test sentence and applies tokenization according to
the created vocabulary [24]. For this reason, subword tokenization techniques are
also known as trained methods, since the vocabulary is induced from a raw text
dataset.

1.3.1 Byte-Pair Encoding

Byte-Pair Encoding (BPE) was introduced in 1994 as a simple and iterative
data compression technique, which replaces the most frequent pair of bytes in a
sequence with a single byte [25]. For NLP tasks, instead of considering bytes,
BPE merges characters of a word. Intuitively, the initial tokens are characters or
punctuation with a special token acting as whitespace. The algorithm proceeds
iteratively by joining together the most frequent characters so that tokens emerge
[26]. We see now in details how it works.

First of all, a normalization step involves a general cleanup of the corpus
text, such as removing needless whitespaces, lowercasing and accents, and a pre-
tokenization step with a word-based tokenizer splits the corpus text into word
strings on whitespaces and punctuation and adds the symbol "_" at the end of
each word to prevent merging of pairs of two different words [27]. All the unique
characters of all words are stored in a vocabulary, and for each of them it counts its
occurrence. BPE iteratively counts all symbol pairs and replaces each occurrence
of the most frequent pair ("A", "B") with a new symbol ("AB"), which will be
the first merge rule. Each merge operation produces a new merge rule and a new
symbol, which is added to the vocabulary. The algorithm ends when the final size
k of the vocabulary is reached. Thus, the only hyperparameter of the algorithm is
k. The symbols in the final vocabulary are the tokens [28].

To tokenize a new test text, firstly, the token segmenter applies normalization

5



1. Tokenization and Embedding

and pre-tokenization steps. Then, the merge rules learned during the BPE pro-
cedure are applied in order. According to the description above, the first merge
rule is ("A", "B") → ("AB") and has to be applied at first. Any token not in the
vocabulary is replaced by an unknown token "[UNK ]" [29].

Example 3 (BPE). Consider the string aaabdaaabac. The pair aa occurs most
often and is replaced by A=aa. The initial string is now AabdAabac. The pair
ab occurs most often, and again is replaced by B=ab. The string is ABdABac.
Finally, the encoding C=AB is applied and the string is compressed into CdCac.
To retrieve the initial string is sufficient to apply the previous replacement in
reverse order [30].

A pseudocode of the BPE algorithm is shown in Algorithm 1.

Algorithm 1: Byte-Pair Encoding [31]
Input: Corpus text C

Hyperparameter: Number of merges k

Output: Vocabulary V

V(1) ← all unique characters in C

for i = 1, . . . , k do
tNEW ← most frequent pair of adjacent tokens in C

tL, tR ← left and right element of the pair tNEW

V(i+1) ← V(i) + tNEW

Replace each occurrence of (tL, tR) in C with tNEW

end for
V ← V(k+1)

return V

1.3.2 WordPiece

WordPiece is another subword tokenization algorithm with a similar approach
of BPE and was outlined in 2012 for building a successful voice search system
applied to Japanese and Korean at Google [32]. It gained popularity through
the model BERT. The principal difference between BPE and WordPiece is in the
way in which symbols are added to the vocabulary: BPE counts the frequency,
WordPiece maximizes the likelihood of the data once added to the vocabulary [33].
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1. Tokenization and Embedding

Instead of using the symbol "_" at the end of each word, WordPiece adds the
prefix "##" before each letter that does not start a word: the initial vocabulary
contains all characters present at the beginning of a word and inside a word pre-
ceded with the prefix "##" [34]. Now, it calculates the score of each pair ("A",
"B"), defined as follows:

Score =
Frequency of the pair

Frequency of first element × Frequency of second element

and selects the pair which maximizes the score. BPE maximizes only the fre-
quency of the pair, while WordPiece considers also the frequencies of the two
elements which form the pair: in this way, given two pairs with same frequency,
WordPiece chooses the one whose elements are less frequent. Finally, the pair with
highest score is added to the vocabulary and the algorithm proceeds iteratively
like in BPE, until the vocabulary size is reached or the score falls below a certain
threshold.

To tokenize a word, WordPiece looks for the longest possible token at the be-
ginning of it and the same is applied on the remaining part of the word: thus, it
is not necessary to save any merge rule, but only the token vocabulary. Another
difference is in the use of the symbol "[UNK ]": if it is not possible to find any
subword in the vocabulary then the whole word is tokenized as unknown, instead
of the individual characters as in BPE’s approach [35].

Algorithm 2 shows a pseudocode of WordPiece algorithm, which differs from
BPE only in the way left and right token of a pair are taken.

1.3.3 Unigram

Unigram was introduced in 2018 to improve neural machine translation [36];
it works in the opposite direction with respect to the previous two tokenization
techniques, since it initializes the base vocabulary with a large number of symbols
and removes tokens iteratively until it reaches the desired size [37]. A Unigram
model is a type of statistical language model based on the hypothesis that each
token of a word is independent of the tokens before it. This implies also that the
probability of a word is the product of the probabilities of its tokens [38]. Al-
though this model is not suitable for text generation because we would always get
the most common token, it is very useful for tokenization to estimate the relative
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1. Tokenization and Embedding

Algorithm 2: WordPiece
Input: Corpus text C

Hyperparameter: Number of merges k

Output: Vocabulary V

V(1) ← all unique characters in C

for i = 1, . . . , k do
tNEW ← highest scoring pair of adjacent tokens in C

tL, tR ← left and right element of the pair tNEW

V(i+1) ← V(i) + tNEW

Replace each occurrence of tL, tR in S with tNEW

end for
V ← V(k+1)

return V

likelihood of different sentences. We see now in detail how the tokens are removed
from the initial vocabulary.

There are several ways to build the base vocabulary, for instance, a training
corpus text can be pre-tokenized with word tokenization and the vocabulary can
correspond to all strict substrings of the words or BPE algorithm with a large vo-
cabulary size can be applied. Moreover, the vocabulary stores also the probability
of each token. The training of the Unigram tokenizer is based on the Expectation-
Maximization method and consists of two steps:

1. Expectation: Unigram algorithm computes for any given word of the training
corpus the probabilities of its any possible segmentation into tokens from the
current vocabulary and finds the best possible tokenization in probabilistic
terms.1 In general, a word split in few tokens has higher probability than
tokenizing it with a lot of tokens: our aim is indeed to minimize the number
of tokens per word. After finding the highest probability tokenization of
each word, Unigram algorithm defines a negative log-likelihood loss over the
corpus text given the current vocabulary as follows:

L = −
∑

word in corpus

log (P(word)) ,

1The probability of a token is its frequency in the corpus text divided by the sum of the
frequencies of all tokens.
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1. Tokenization and Embedding

where the sum is computed on all words of the training corpus and P(word)
is the probability associated with the best possible tokenization for a given
word.

2. Maximization: The token that impacts the least the loss on the corpus is
removed, since our goal is to reduce the vocabulary size. Thus, we perform
a loop on all possible tokens: at each iteration a token is removed from
the vocabulary and the associated loss is evaluated. A token is definitely
removed from the vocabulary if its associated loss is the smallest between
on all tokens. The idea behind is that the removed symbol affects the least
the loss, thus is less needed. Usually, Unigram algorithm removes not only
one token per iteration, but a percentage p of tokens which minimize the loss
and are not basic characters, since we want to keep them in order to tokenize
any word.

The algorithm ends when the vocabulary reaches the desired size k, thus the hy-
perparameters are both p and k [39].

A pseudocode of Unigram is shown below in Algorithm 3.

Algorithm 3: Unigram
Input: Corpus text C

Hyperparameters: Number of merges k, percentage p

Output: Vocabulary V

V ← all strict substrings of words in C

while |V| > k do
Pword ← highest probability of any possible segmentation
Lglobal ← global loss on all words using pword

Lnew ← losses with one token removed
τremove ← remove p% of tokens with highest Lglobal − Lnew

V ← V \ τremove

end while
return V

To tokenize a word, all possible segmentations are list, according to the token of
the vocabulary, and the probability of each segmentation is evaluated; finally, the
segmentation corresponding to the highest probability is chosen as tokenization

9



1. Tokenization and Embedding

of the initial word. In practice, computing all probabilities of the possible splits
of a word before comparing them is too expensive: the most probable sequence
of tokens can be found much more efficiently by applying the Viterbi algorithm
[40]. Briefly, we build a graph with a branch from character a to b if the subword
from a to b is in the vocabulary; to each branch is associated the probability of
the corresponding subword. Viterbi algorithm determines, for each position in the
word, the tokenization with the highest probability ending at that position and
proceeding until the last character of the word [39].

1.3.4 SentencePiece

All tokenization algorithms described above share the problem that the input
text uses spaces between words, although not all languages use spaces to separate
words. SentencePiece algorithm, developed in 2018 for text processing, handles
the input text as a sequence of Unicode characters and treats the space as a special
character, often denoted with "_" [41]. It uses BPE or Unigram algorithm to build
the vocabulary [21]. The great advantage of SentencePiece is that is language-
independent since it doesn’t require a pre-tokenization step, which is very useful
for languages such as Chinese or Japanese where the space character is not present
[42].

Example 4 (Tokenization techniques of LLMs). Several LLMs rely on the previous
described tokenization techniques:

• BPE was used for the GPT models [4] [23], RoBERTa [43], BART [44] and
DeBERTa [45].

• WordPiece was used for BERT [22], DistilBERT [46], MobileBERT [47],
Funnel Transformers [48] and MPNet [49].

• Unigram is often used together with SentencePiece, which is the tokenization
algorithm used by models like AlBERT [50], T5 [51], mBART [52], Big Bird
[53] and XLNet [54].

• LLaMA [55] and Mistral [56] tokenizers are BPE model based on Sentence-
Piece.

Example 5. We apply the previous described tokenization techniques with pre-
trained tokenizers to the following text sequence [19]:

10



1. Tokenization and Embedding

test_text = "Tokenization is an important NLP task. It helps breaking
down text into smaller units."

• BPE (GPT-2):

tokenized_text = [’Token’, ’ization’, ’Ġis’, ’Ġan’,
’Ġimportant’, ’ĠN’, ’LP’, ’Ġtask’, ’.’, ĠIt’, ’Ġhelps’,
’Ġbreaking’, ’Ġdown’, ’Ġtext’, ’Ġinto’, ’Ġsmaller’, ’Ġunits’,
’.’]

• WordPiece (BERT):

tokenized_text = [’To’, ’##ken’, ’##ization’, ’is’, ’an’,
’important’, ’NL’, ’##P’, ’task’, .’, ’It’, ’helps’, ’breaking’,
’down’, ’text’, ’into’, ’smaller’, ’units’, ’.’]

• SentencePiece with Unigram (XLNet):

tokenized_text = [’_To’, ’ken’, ’ization’, ’_is’, ’_an’,
’_important’, ’_N’, ’LP’, _task’, ’.’, ’_It’, ’_helps’,
’_breaking’, ’_down’, ’_text’, ’_into’, ’_smaller’, ’_units’,
’.’]

• SentencePiece with BPE (LLaMA):

tokenized_text = [’_Token’, ’ization’, ’_is’, ’_an’,
’_important’, ’_N’, ’LP’, ’_task’, ’.’, ’_It’, ’_helps’,
’_breaking’, ’_down’, ’_text’, ’_into’, ’_smaller’, ’_units’,
’.’]

1.3.5 Training of a tokenizer

We perform an experiment, building a new tokenizer from an old one: in par-
ticular, given the GPT-2 tokenizer, we create a new vocabulary with new tokens,
trained on a dataset containing Italian legislative texts, public and private acts
[57]. GPT-2 is a 1.5 billion parameters transformer-based language model, trained
on a dataset of 8 million web pages: its goal is to predict the next word, given
some previous context words [58]. Its vocabulary contains 50.257 tokens, which
correspond to 256 base tokens, a special end-of-text token and the tokens learned
after 50.000 merges [23].
After downloading the GPT-2 tokenizer, we import the Italian dataset and use it
to train a new tokenizer with a vocabulary of 52.000 tokens. Several remarks can
be made:

11
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• If we tokenize an Italian sentence from the dataset with GPT-2 tokenizer,
we observe that the text is split in a large number of tokens, while the
new tokenizer, which has been trained on Italian data, is able to do far
fewer splits and is almost similar to a word tokenizer. For instance, if we
consider the data ’In attuazione della determinazione ...’ then GPT-
2 tokenizer splits it into [’In’, ’ att’, ’u’, ’az’, ’ione’, ’ de’,
’lla’, ’ determin’, ’az’, ’ione’], while the new tokenizer divides it
into [’In’, ’ attuazione’, ’ della’, ’ determinazione’] (we remove
in both tokenizations the symbol Ġ). Moreover, we remark that the new
vocabulary is strongly affected by words coming from the semantic field
of law: if we tokenize the word ’glicerofosfolipidi’ from the Italian
dataset BioBERT [59], containing words from the biomedical field, then the
new tokenizer splits it in lot of tokens [’glic’, ’ero’, ’fos’, ’foli’,
’pidi’].

• If we consider now an English word, such as ’Hello’, then the new tokenizer
splits into two tokens [’H’, ’ello’], while GPT-2 tokenizer keeps it as a
single token: this implies that several tokens of the initial vocabulary have
been removed and replaced with Italian based tokens.

The described procedure and the notebook of training a new tokenizer from an
old one can be found on the website [60].

1.4 Embedding

Deep Learning architectures require numerical data as input and are not able
to process strings, therefore we need to convert our token vocabulary into a nu-
merical representation. Briefly, each token of the vocabulary V is mapped into
a unique word embedding and transformed into numerical vectors; these vectors
are then stored in an embedding matrix Ωe ∈ RD×|V|, where D is the embedding
size. Known embedding sizes go from 768 (BERT [22]) to 12.288 (GPT-3 175B
[4]), while a vocabulary contains approximately from 30.000 (BERT [22]) to 50.000
tokens (GPT-2 [23]): this implies that, even before the main transformer network,
there are a lot of parameters in Ωe to learn. The goal is to understand how word
embedding works and the matrix Ωe is built [61].

Word embedding is a technique to represent individual tokens as vectors in a
D-dimensional space and capture semantic relationships between tokens: vectors

12
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representing words with similar meanings are mapped close to each other, while
vectors representing words with no semantic relationship are mapped far to each
other [62]. Figure 1.1 shows an example of the embedding of two semantic similar
groups of words.

Figure 1.1: Semantic relationships between different words in a 3-dimensional
embedding space. Each of the three axis can be interpreted as a feature. Here
tokens coincide with words. Image inspired from [63].

The cosine similarity is a way to measure how close two vectors are and is
defined as:

SC(v, w) =
v · w
||v||||w||

By Cauchy-Schwarz inequality, −1 ≤ SC ≤ 1: it is maximal when two vectors are
parallel and minimal when they are antiparallel [64].

Moreover, the same token (or word) can share different meanings depending on
the context: hence, a word embedding should consider a token not only as single
independent element but as part of a whole semantic context since the surround-
ing tokens influence its meaning. A common but computationally unpractical
representation of these vectors is one-hot encoding : each token is mapped into
a |V|-dimensional vector with all zeros except for a value 1 corresponding to the
position of the token in the vocabulary [65]. This representation involves many is-
sues: at first, if the vocabulary size is too big, then the vectors are huge. Moreover,
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removing a token from the vocabulary implies a new creation of one-hot encoding
representation. Finally, this representation does not capture any semantic mean-
ing between tokens, since it is only related to the position of the token in the
vocabulary and all vectors are orthogonal to each other [66]. Figure 1.2 shows an
example of the one-hot encoding of different words.

Figure 1.2: One-hot encoding in a vocabulary containing 3 tokens in a 3-
dimensional embedding space: the cosine similarity between the vectors is zero
and the semantic relationships of the words is not captured. The size of the vo-
cabulary |V| has to coincide with the embedding dimension D.

Other techniques, such as Word2Vec, solve the previous issues of dimensionality
and lack of semantic meaning: the goal is then to take in input a training tokenized
corpus text and return the semantic.

1.4.1 Word2Vec

Word2Vec technique was developed by Google in 2013 and is a shallow two-
layer neural network which produces a vector space of dimension D. To each token
it is assigned a unique vector in the space and the relative positions and distances
of these vectors are determined by the semantic and syntactic similarities of the
corresponding tokens. Word2Vec can be implemented using one of the following
two architecture models: the Continuous Bag Of Words (CBOW) Model or the
Continuous Skip-Gram Model [67]. Both models reduce the dimensionality of
the data and create real-valued D-dimensional dense vectors: in CBOW model
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the surrounding (also called context) tokens are combined to predict a token in
the middle, while in Skip-Gram model one input token is used to predict the
surrounding tokens. This means that the embedding is learned by looking at
nearby tokens and the models capture the meaning of a token in a given context:
similar embeddings correspond to similar tokens and vice versa. Both networks
require an hyperparameter, called window-size ws, which can be thought as a
sliding window of fixed size moving along the text, as shown in Example 6: in both
algorithms, we consider a middle token and the ws tokens before and ws tokens
after it. Of course, given a tokenized sentence, the first token at the beginning of
a sentence does not have any tokens before it, then we only consider the ws tokens
after it; similarly, if the tokens is at the end of the sentence [68].

Example 6. We consider the following text sequence using word tokenization to
tokenize it:
test_text = "Word embedding captures semantic relationships between
tokens"
Table 1.1 and Table 1.2 show Word2Vec workflow of the considered tokens using
two different window sizes. The context of a token can be represented as a set
(current_token, context_tokens).

Window size ws Current Token Context Tokens

1

Word (Word, embedding)

embedding
(embedding, Word)

(embedding, captures)

captures
(captures, embedding)
(captures, semantic)

semantic
(semantic, captures)

(semantic, relationships)

relationships
(relationships, semantic)
(relationships, between)

between
(between, relationships)

(between, tokens)

tokens (tokens, between)

Table 1.1: Word2Vec: example of current and context tokens with window size
ws = 1.
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Window size ws Current Token Context Tokens

2

Word
(Word, embedding)
(Word, captures)

embedding
(embedding, Word)

(embedding, captures)
(embedding, semantic)

captures

(captures, Word)
(captures, embedding)
(captures, semantic)

(captures, relationships)

semantic

(semantic, embedding)
(semantic, captures)

(semantic, relationships)
(semantic, between)

relationships

(relationships, captures)
(relationships, semantic)
(relationships, between)
(relationships, tokens)

between
(between, semantic)

(between, relationships)
(between, tokens)

tokens
(tokens, relationships)

(tokens, between)

Table 1.2: Word2Vec: example of current and context tokens with window size
ws = 2.

1.4.1.1 Skip-Gram

The Skip-Gram model consists of an input, hidden and output layer and its
goal is to predict the context tokens given one main token in the middle: in
particular, given a token, it predicts the ws tokens before and the ws tokens after
it. The training objective of the Skip-Gram model is to maximize the probability
of predicting context tokens given the main token: let t1, . . . , tN be a sequence of
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tokens, then the objective can be written as the average log probability [69]:

1

N

N∑
i=1

∑
−ws≤c≤ws, c ̸=0

log(P(ti+c|ti)).

The input layer has |V| neurons and is the main token represented in one-hot
encoding. The embedding weight matrix Ωe ∈ RD×|V| transforms the input into
the hidden layer and returns the D-dimensional embedding vector of the main
token without any activation function [67]. Since D is much smaller than |V|
the embedding extracts the most important features of the token. The higher D,
the more information the embedding will extract: although, if D is too large the
computation will be too expensive [65]. Finally, the unembedding weight matrix
Ωu ∈ R|V|×D transforms the hidden into the output layer: the output layer has |V|
neurons and predicts 2ws context words with the softmax as activation function.
Once the training is completed through the whole vocabulary, the word embedding
matrix Ωe represents the tokenized vocabulary.

Figure 1.3 shows the Skip-Gram architecture.

Figure 1.3: Skip-Gram architecture with ws = 2. Each output is computed using
the same unembedding matrix Ωu [70]. Image inspired from [71].
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Remark. There is no activation function between the input and hidden layer: the
goal of the hidden layer is to map the one-hot encoded vectors in a lower D-
dimensional space, keeping separation between dissimilar words. Instead, an acti-
vation function produces a compression of the whole space in a certain region and
an expansion in another: this alteration of the space reduces the mapping space
available [72]. Between the hidden and output layer a softmax activation func-
tion is applied to generate a discrete probability distribution: once the network
has been trained, given a token it outputs a |V|-dimensional vector ypred and the
context tokens to predict are the 2ws which have highest probability.
To apply backpropagation, a loss function is evaluated: assume, for the purpose of
the explanation, to use just the vector difference. We obtain 2ws prediction errors:
a prediction error is the difference between the output vector ypred, i.e. the prob-
ability distribution of the context token computed through the softmax, and the
one-hot encoded context token ytrue, i.e. the true probability distribution of the
context token that is considered. The global function loss is then the sum of the
2ws prediction errors, which considers all the context tokens: this error is applied
for backpropagation to update the weights of the embedding and unembedding
matrices. Other loss functions can be applied, for instance a good choice is the
cross-entropy loss function that compares the two probability distributions [73]. It
is also worth noticing that the network does not take into account the position of
the context tokens, since it aims only to predict them without any order.

Example 7 (Optimal case). Assume that ypred contains all zeros except the num-
ber 1/(2ws) at 2ws positions. Then, for a given context token, we compute the
loss, obtaining a vector with all zeros, except the number 1/(2ws) at 2ws − 1

positions and the number 1/(2ws) − 1 at the corresponding position of the one-
hot encoded context token. By computing the sum of all the losses we get a zero
vector, which implies zero loss.

1.4.1.2 CBOW

The CBOW model does the opposite operation: given the context tokens, it
predicts the main token in the middle. Indeed, the context tokens are the ws

tokens before and the ws tokens after the middle token. The training objective
of the CBOW model is to maximize the probability of predicting the main token
given the context tokens: let t1, . . . , tN be a sequence of tokens, then the objective
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can be written as the average log probability [69]:

1

N

N∑
i=1

log(P(ti|ti−ws, . . . , ti−1, ti+1, . . . , ti+ws)).

As in Skip-Gram it consists of an input, hidden layer and output layer with the
same number of neurons: the input layer now is used to represent the context to-
kens in one-hot encoding, the hidden layer to learn the word embeddings and the
output layer to predict the middle token [67]. In particular, the embedding weight
matrix Ωe transforms each of the 2ws context tokens into a single hidden layer
through an average of the embedded context vectors [66]. Again, after training,
the embedding matrix is Ωe. One of the greatest advantages of CBOW is that it
needs to predict only one single token given a set of context tokens: therefore, it
can be trained on much larger dataset than Skip-Gram model [74].

Figure 1.4 shows the CBOW architecture.

Figure 1.4: CBOW architecture with ws = 2. The four lightblue matrices represent
the same embedding matrix Ωe. Image inspired from [71].

Remark. The same remark about activation functions holds also for CBOW. In
CBOW we do not lose the information on the position of the context tokens in the
output layer, but we lose it in the hidden layer, since the output layer predicts the
middle token.
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1.4.1.3 Algorithm Optimization

CBOW has to predict only a single token, which means that the softmax has to
be evaluated only one time, instead of 2ws as in Skip-Gram: comparatively, CBOW
is much faster to train than Skip-Gram. It is worth noticing that the number of
weights of the previous models is huge: if we take 30.000 tokens and an embedding
size D = 1.000, learning the embedding matrix means learning 30 millions weights.
If we also consider that we need to learn the weights of the unembedding matrix
and the biases then the number of parameters of the network becomes huge: this
is extremely computationally expensive, therefore there exist two optimization
techniques: hierarchical softmax and negative sampling. In practice, hierarchical
softmax works better for infrequent words, while negative sampling for frequent
words and lower dimensional vectors [75].
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Chapter 2

Transformers

A transformer is a Deep Learning architecture proposed by Google in 2017 in
the paper Attention Is All You Need [76] to replace Recurrent Neural Networks
(RNN) and Long-Short Term Memory (LSTM) models, which have inherently a
sequential nature precluding parallelization within training data. Transformers
rely on the self-attention mechanism, which draws dependencies between input
and output, and achieve significantly more parallelization. Although transformers
were introduced for machine translation tasks, in the last few years, a huge number
of transformer-based models were developed, such as LLMs, image generators or
speech recognition systems, which allow to solve various modern NLP and Com-
puter Vision tasks. For instance, a model may take in input an audio and produce
its transcript or another one may generate an image given an input source text.
GPT-3, one of the most known LLMs, is not only able to predict and generate
new tokens given an input sequence, but can also translate tests, answer questions
or extract relevant information from documents.

This chapter is inspired from the book [61] and deals in details with the trans-
former architecture, describing its core components, which consists mostly of multi-
layer perceptrons and attention layers, and discussing several applications.

2.1 Positional Encoding

From the previous chapter, given an input sequence, we tokenize it and build
its embedding X ∈ RD×N , where D is the embedding size and N the number of
tokens in the sequence, according to the learned vocabulary. This can be obtained
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as X = ΩeT , where Ωe ∈ RD×|V| is the embedded vocabulary and T ∈ R|V|×N is a
matrix, whose columns are the one-hot encoded vectors of the input tokenized text.
Each column of X, namely x1, . . . ,xN represents a token embedding. However,
the embedding does not consider the order of the tokens in each sentence, since the
described architectures, as CBOW and Skip-Gram, only aim to predict one or more
tokens. The idea behind positional encoding is then to inject some information
about the absolute position of the tokens in the sequence. One way is to use sine
and cosine functions with different frequencies:

PE(2i,pos) = sin(pos/10.0002i/D)

PE(2i+1,pos) = cos(pos/10.0002i/D),

where pos = 0, . . . , N − 1 is the position of the token in the sequence and i =

0, . . . , D/2− 1 is the index embedding dimension, where D is even. The index pos

allows to scan the whole input sentence, while i allows to change between sine (i
even) and cosine (i odd) functions. The positional encodings can be then collected
in a matrix Π ∈ RD×N : each column of Π is unique and contains information
about the absolute position of a token in the input sequence. It can be added to
the input sequence X: thus,

X +Π =


... · · · ...
x1 · · · xN

... · · · ...

+


... · · · ...
π1 · · · πN

... · · · ...

 ,

where xi are the embedded tokens and πi are the positional encoded tokens: thus,
we consider both the semantic and the position of the token in the sequence. There
exists also other ways to compute Π: instead of using fixed functions, such as sine
and cosine, positional encodings can be learned in a network [77]. However, the
results of fixed and learned positional encodings are practically identical, making
the first ones less expensive computationally [76].
Remark (Positional encoding matrix). In the definition of PE, the indexes start
from 0, however, to be consistent with the notation used previously, a translation
in both direction can be applied. Moreover, we assume that D is even, so that the
dimension of Π can be properly defined.

2.2 Self-attention layer

Self-attention mechanism is one of the core ideas behind transformer models
to capture relationships within an input text sequence. It allows the model to
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capture long range dependencies between distant elements in a sequence, enabling
it to understand complex patterns; moreover, by considering the whole sequence,
it helps the model to understand the semantic and assign weights to each token
based on its relevance [78].
Let X be the embedding of a given input sequence. We define three different
matrices, called values, queries, and keys, respectively:

V := V [X] = βv1
T +ΩvX

Q := Q[X] = βq1
T +ΩqX

K := K[X] = βk1
T +ΩkX,

where βv ∈ RD, βq,βk ∈ RDq , 1T is a row vector containing ones with proper
dimension, Ωv ∈ RD×D and Ωq,Ωk ∈ RDq×D. Dq is a parameter whose value will
be discussed later.
Since the embedding X is equivariant to input permutations, that is it does not de-
pend on the position of the tokens in the sequence, we add the positional encoding
matrix Π to the keys, queries and values, which yields

V := V [X] = βv1
T +Ωv(X +Π)

Q := Q[X] = βq1
T +Ωq(X +Π)

K := K[X] = βk1
T +Ωk(X +Π).

(2.1)

Other references apply the matrix Π only to the queries and keys, as in [61].

Remark (Comparison with fully connected networks). Considering for instance
the values V , biases βv and weights Ωv are shared between each input embedded
vector xm since they do not depend on m. Thus, the computation of all the linear
transformations vm = βv +Ωvxm, m = 1, . . . , N scales linearly with the number
of tokens N of the input. A fully connected layer would require instead a quadratic
scaling in N .

Definition 1. Let v = (v1, . . . , vn)
T be a n-dimensional vector. The softmax

function is defined as follows:

softmax: Rn → Rn,

softmax [v]j =
evj
n∑

k=1

evk
, j = 1, . . . , n, (2.2)

where softmax [v]j denotes the j-th component of the softmax function.
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Definition 2. The self-attention block is defined as

Sa[X] = V [X] · softmax
[
K[X]TQ[X]

]
, (2.3)

where the softmax function is applied column-wise according to equation (2.2).
This is known also as dot-product self-attention. Since it is clear that we are
dealing with X we will drop it.

The matrix KTQ ∈ RN×N computes the dot product between the keys km and
the queries qn, m,n = 1, . . . , N : the larger the dot product, the more similar the
two vectors. We get

KTQ =

· · · kT
1 · · ·

...
...

...
· · · kT

N · · ·




... · · · ...
q1 · · · qN

... · · · ...

 =


... · · · ...

kT
• q1 · · · kT

• qN

... · · · ...

 ,

where kT
• qj is the column vector containing the dot-products between all the keys

and the n-th query, namely kT
1 qn, . . . ,k

T
Nqn. Since the softmax is applied indepen-

dently on each column, given a query qn, the dot product determines how relevant
is each key to the query. We define the attention that the n-th query pays to the
m-th key as a[xm,xn] = softmax[kT

• qn]m and denote as a[x•,xn] the vector con-
taining a[x1,xn], . . . , a[xN ,xn]. Therefore, the n-th column of the self-attention
layer of equation (2.3) is equivalent to

Sa[X]n =
N∑

m=1

a[xm,xn]vm,

where vm is the m-th column of the value matrix V , hence Sa[X] is a linear
combination of the values vm.

Remark (Nonlinearity of the network). The nonlinearity of the problem arises in
the use of the dot product and the softmax activation function. The dot product
operation is a measure of similarity between its inputs, so the weights a[x•,xn]

depend on the relative similarities between the n-th query and all keys. Queries and
keys share the same row number Dq in order to perform a dot product; however,
it is not necessary that Dq coincides with D. We also notice that the number of
attention weights has a quadratic dependence on the input length N and does not
depend on Dq.
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Figure 2.1 and Figure 2.2 show the computation of the attention weights and
the self-attention mechanism, respectively.

Figure 2.1: Computation of attention weights a[xm,xn] with N = 3 and D = 4.
Query vectors qn = βq + Ωqxn and key vectors kn = βk + Ωkxn are computed
in the network for each xn, n = 1, . . . , N . Here biases are not shown. The dot
product between queries and keys is performed and passed through a softmax
function operating independently on each column. Image inspired from [61].

Equation (2.3) plays a relevant role in the transformer architecture, allowing the
model to focus on different parts of the input sequence and capturing dependencies
between them. For instance, for machine translation tasks attention mechanism
can be applied to highlight the relevant parts of the source language text and
produce more reliable translations. Moreover, self-attention mechanism can be
implemented in parallel for each token in the sequence, making it computationally
efficient. The following example discusses the role of queries, keys and values in a
machine translation task: briefly, we can think of the query as a vector containing
the information that we are looking for, the key as a reference vector and the value
as the content that is being searched.

Example 8. Assume that our task is to translate a sentence from English to
Italian: the keys and queries contain a representation in a Dq-dimensional space
of all tokens in the English and Italian translated sentence, respectively. By abuse
of notation, we perform dot products with words instead of embedded vectors and
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Figure 2.2: Self-attention mechanism in matrix form. The input sequence is to-
kenized and stored in the matrix X ∈ RD×N , to which is added the positional
encoding matrix Π. Queries Q, keys K and values V matrices are computed as
in equation (2.1): during the training step, the network learns all the parameters
{βv,Ωv,βq,Ωq,βk,Ωk}, whose number depends on D but not on N , therefore this
process can be then applied to any sequence length. The dot product between keys
and queries is performed and a softmax function is applied, obtaining the attention
weight matrix. Finally, the values are multiplied with the attention weight matrix
to get the output, which has the same size of the input. Image inspired from [61].

we assume that tokens coincide with words. We notice that keys and queries lie
in different embedded spaces, which is slightly different from what we described
in the previous pages where the input sequence X was only one: however, this
example aims only to give a practical idea of what are queries, keys and values.
Consider the English sentence

"The attention mechanism allows to establish dependencies between to-
kens."

and its Italian translation
"Il meccanismo di attenzione permette di stabilire dipendenze tra to-
kens."

As mentioned above, the keys K are the English words and the queries Q are the
Italian words. We expect that the dot product between an English word (key) and
its translation (query) is high. For instance, we consider the query attenzione
and perform the dot product with all keys: assume to get a score of 0.95 with
attention and 0.2 with the others. This means that the query attenzione is

26



2. Transformers

highly relevant to the key attention, while is less relevant with all other keys:
thus, the keys can be thought as references and the query contains the information
that needs to be translated. Finally, once the model has identified relevant words
through the query-key comparison, it retrieves the corresponding values V to get
the actual details needed for understanding. The values lie in the same space of
the keys, hence are English words. Thus, values hold the actual information on
the translation associated with each word [79].
This example highlights how self-attention mechanism represents an efficient way
for the model to capture long-range dependencies and understand the context of
the sequence.

The dot-product involved in the dot-product self-attention may be large in
magnitude and the softmax may have a value which completely dominates, which
justifies the following definition.

Definition 3. The scaled dot-product self-attention block is

Sascaled[X] = V · softmax

[
KTQ√

Dq

]
,

where Dq is the number of rows of the query or key matrix and the division is
performed element-wise.

Instead of computing one set of values, queries and keys at a time, we apply
self-attention mechanism in parallel and compute H different sets of values, queries
and keys, where H represents the number of heads. This allows to generalise the
self-attention layer described in the previous pages where H = 1. For h = 1, . . . , H

we set

Vh = βvh1
T +Ωvh(X +Π)

Qh = βqh1
T +Ωqh(X +Π)

Kh = βkh1
T +Ωkh(X +Π).

The h-th self-attention mechanism can be written as:

Sah[X] = Vh · softmax

[
KT

h Qh√
Dq

]
,

where the network has to learn the parameters {βvh,Ωvh,βqh,Ωqh,βkh,Ωkh} , h =

1, . . . , H. Typically, for an efficient implementation, the values, queries and keys
have size D/H: it has been speculated that multi-head self-attention improves the
robustness of the network to bad initializations.
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Definition 4. The outputs of the H self-attention mechanisms are vertically con-
catenated and a linear transformation Ωc ∈ RD×D is applied to combine them.
The multi-head self-attention block is defined as

MhSa[X] = Ωc

[
Sa1[X]T , . . . ,SaH [X]T

]T
, (2.4)

which has the same size of the input X.

Remark (Relation with self-attention layer). The multi-head self-attention block
extends the self-attention layer of equation (2.3), where H = 1. We note that Ωc

is a weight of the network that has to be learned during training.

2.3 Transformer layer

The multi-head self-attention block represents only the initial part of the trans-
former architecture, which consists of several transformer layers, through which the
input is passed. The general structure of a transformer layer takes in input a batch
of embedded sequences Xin ∈ RD×N×B, where D is the embedding dimension, N
is the number of tokens in the sequence and B is the batch size, and outputs an
embedded sentence Xout of the same dimension. In this section, we explain how
the input sequence is processed through a transformer layer.

Let X1, . . . ,XB be the B sequence embeddings with same embedding dimen-
sion D and number of tokens N . Let Xin ∈ RD×N×B be the stacking of the B

sequence embeddings into a single batch. We firstly apply the positional encoding
matrix Π from Section 2.1. The transformer layer then consists of two residual
blocks acting on each sequence of the batch: a multi-head self-attention MhSa
from equation (2.4) and a fully-connected Linear from equation (2.5), each of
them is followed by a normalization layer LayerNorm from equation (2.6). Fi-
nally, an output embedded sequence Xout of the same dimension of the input is
given in output. Residual connections and normalization layers allow the network
to facilitate training and prevent vanishing gradients and are briefly described in
the following sections. The transformer layer is described in the code on page 29
and shown in Figure 2.3.

Remark. We observe that the operation Xin+Π is mathematically not well defined,
since Xin is a 3D tensor, while Π is a matrix: by abuse of notation, this operation
is meant to act on each element of the batch Xi and then stack the results together.
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The same abuse of notation holds for multi-head self-attention and linear layers
acting on the whole batch Xin.

Definition 5. Let X ∈ RD×N be a sequence embedding, where D is the embed-
ding dimension and N is the number of tokens in the sequence. The linear layer
is defined as

Linear[X] = β1T +ΩX, (2.5)

where β ∈ RD is the bias term, 1 ∈ RN and Ω ∈ RD×D.

Transformer’s architecture
Input: Input sequence embeddings Xi + Π, i = 1, . . . , B, where Π is the
positional encoding matrix and B is the batch size. The input sequence
embeddings are stacked together in X ∈ RD×N×B.
Output: Embedded text Xout

X ←X+MhSa[X] using a residual connection from Subsection 2.3.1 and
multi-head self-attention block as in equation (2.4)
X ← LayerNorm[X] as in equation (2.6)
X ← X + Linear[X] using again a residual connection and a linear layer
as in equation (2.5)
X ← LayerNorm[X]

Xout ←X

return Xout

Transformer layers are the key part of three different networks: encoder, decoder
and encoder-decoder, which mainly differ in the attention mechanism. Encoder’s
and decoder’s main structure consists of several transformer layers, however, the
former extract essential information from the input sequence X and relies on the
multi-head self-attention mechanism, while the latter predicts the next token of the
sequence X and relies on a masked multi-head self-attention mechanism. Hence,
the only difference relies in the 1st code-line at page 29, where for decoder it is
replaced by a new version of attention. Encoder-decoder is a third architecture
which combines the previous two and during training requires two sequences in
input instead of one: for instance, these models are applied for machine transla-
tion and the inputs are a source sentence and its translation. Its goal is then to
extract information from both languages and their relations and finally output the
translation of a new test sequence.
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Figure 2.3: Transformer layer. The input X + Π ∈ RD×N is processed through
the described transformer layer, consisting on self-attention and fully-connected
blocks, and outputs a matrix of the same dimension. Image inspired from [61].

2.3.1 Residual connection

Residual networks were introduced in 2015 in the paper Deep Residual Learning
for Image Recognition [80]. In a classical neural network, the input is transformed
through a linear combination and passed to an activation function, while in a
residual block or skip connection, the input is added back to the output. One
of the main advantages of residual connections in transformers is their ability to
improve the gradient flow through the network, mitigating the issue of exploding
or vanishing gradients and leading to faster convergence. Furthermore, residual
connections allow for the construction of deeper transformer architectures, enabling
then to capture more complex relationships and patterns in the data [81].
Let X be the input of a residual block: a linear transformation with weights Wi

is applied, followed by an activation function F . Finally, the output is combined
with a linear projection with weights Ws, thus we obtain

Y = F(WiX) +WsX,

where the biases are omitted to simplify the notation. Note that F(WiX) and
X may have different dimensions, therefore the need of the matrix Ws. Residual
blocks allow to bypass one or more layer: the operation "+WsX" is performed
through a shortcut connection [82]. Figure 2.4 shows a residual block architecture,
where the skip connection bypasses two layers and the function F is the output
of these two layers, including the network’s weights Wi. In the transformer’s
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architecture input and output dimensions are the same, therefore the matrix Ws

is the identity.

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 2.4: Residual block: the function F represents the output of the two layers,
including the weights, and is added thanks to a residual connection with the input
X, since Ws is the identity. A ReLU activation function is applied to connect the
two layers. Image from [80].

2.3.2 LayerNorm and BatchNorm

Normalization of input data is a key technique to unify non-standard data into
a specified format: first of all, it helps reducing the effects of different scalings in
the input features, which may cause some features to dominate during the training
process. Moreover, normalization can improve convergence and stability, since it
can help to prevent vanishing gradients and reduce the sensitivity of the network
to changes in inputs and weights. Finally, normalization may reduce overfitting,
helping the model to improve generalization to new data. There exists different
ways to normalize data, such as:

• Layer normalization (or LayerNorm) normalizes all features within each
sample.

• Batch normalization (or BatchNorm) normalizes each feature within a
batch of samples.

In NLP tasks, LayerNorm is more appropriate because it can be used with any
batch size [83] [84]. Figure 2.5 shows a comparison of the two normalization layers.
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Definition 6. Let X ∈ RD×N×B be a batch of a sequence of embeddings, where
D is the embedding dimension, N is the number of tokens in the sequence and B

is the batch size. The layer normalization is defined as [85]

LayerNorm[X] = γ1

X − E[X]
D√

Var[X]
D

+ ϵ1
+ β1, (2.6)

where γ1 ∈ RB×N , β1 ∈ RB×N and ϵ1 > 0 are parameters learned during training,

and E[X]
D

= 1
D

D∑
d=1

Xd,:,:.

The batch normalization is defined as [86]

BatchNorm[X] = γ2

X − E[X]
B,N√

Var[X]
B,N

+ ϵ2
+ β2, (2.7)

where γ2 ∈ RD, β2 ∈ RD and ϵ2 > 0 are parameters learned during training, and

E[X]
B,N

= 1
BN

N∑
n=1

B∑
b=1

X:,n,b.
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Figure 2.5: LayerNorm (on the left) and BatchNorm (on the right) compared. The
entries colored in blue show the components used for calculating the statistics.
Image from [87].
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2.4 Applications

Transformer models have attracted strong interest in the field of Artificial In-
telligence, due to their excellent ability in handling long dependencies within a
given text and enabling parallel processing. Originally, transformers were devel-
oped to handle long range textual sentences, solving a wide range of NLP tasks.
Then, researchers explored the potential of transformer models, turning their at-
tention in other domains. A recent research yielded approximately 650 different
transformer-based models that are being applied in various fields, including NLP,
Computer Vision, Multimodal applications, Audio and Speech Processing, and
Signal Processing [88]. Examples of NLP tasks include [89]:

• Text Classification assigns a label to a sequence of text from a predefined
set of classes. Several examples are spam filtering to distinguish between
e-mail spam messages and legitimate e-mails, sentiment analysis to deter-
mine if the emotional tone of a message is positive, negative or neutral, and
language identification to detect the language of a text.

• Token Classification assigns a label to each token from a predefined set of
classes. Some examples are Named Entity Recognition, which labels tokens
according to an entity category (organization, person or location), and Part-
Of-Speech tagging, which labels tokens according to its part-of-speech (noun,
verb or adjective). This task can be applied, for instance, in biomedical
settings to label proteins or genes, or in translation systems to understand
if two identical words are grammatically different.

• Question Answering returns an answer to a given question providing,
for instance, customer or technical supports, helping users to find relevant
information.

• Text Summarization is a sequence-to-sequence tasks, which receives in
input a given text and outputs a shorter version of it, preserving its original
meaning and extracting the most relevant information.

• Translation converts automatically a given text from a language to another,
helping people to communicate or to learn a new language.

• Language modeling predicts the next word in a sequence of text and can
be used to generate a fluent text.
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and Computer Vision tasks:

• Image Classification, as in Text Classification, labels an image from a
predefined set of classes with multiple use cases in healthcare (label medical
images to detect diseases), environment (label satellite image to monitor
deforestation), agriculture (label satellite images for land use monitoring)
and ecology (label images of animals to monitor endangered species).

• Object Detection identifies multiple objects in the same image and their
positions, defined as a bounding box. It has several applications in self-
driving vehicles (detect traffic objects, like vehicles and pedestrians), remote
sensing (weather forecasting) and defect detection (detect damages in build-
ings or cracks in manufacturing objects).

• Image Segmentation assigns a class to every pixel in an image and is then
more granular than Object Detection, recognizing object at a pixel-level. It
is helpful in medical imaging to find abnormal cells or locate tumors or in
traffic control systems.

Finally, transformer models are required also for multimodal tasks, which process
different data modalities, such as texts, audio or images: an example is image
captioning, where the input is an image and the output a part of text describing
the image.
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Chapter 3

Language Models

Transformer architecture is the core of language models thanks to their ability
to deal efficiently with text sequences and capture short and long dependencies.
Language models are Deep Learning models that aim to predict, generate and un-
derstand human language, and are applied for solving various NLP tasks, which are
discussed in the previous chapter. However, modeling human language is highly
complex and requires a huge amount of training data, in order to capture all the
nuances and ambiguities of a text. Therefore, the need to develop networks with
hundreds of billions of parameters and supercomputers to train them. One of
the first language models relying on the transformer architecture was BERT with
340M parameters and was developed in 2018 and two years later GPT-3 with 175B
parameters was published. The difference in size and complexity between these
networks is impressive: the term Large Language Model (LLM) was coined to refer
to the newer models with huge number of weights.

In this chapter, we present three transformer-based architectures, which are
encoder, decoder and encoder-decoder, each of them suitable for different NLP
tasks. We explain how an LLM is trained over a given training corpus and high-
light the role of tokenization and embedding to segment text and learn semantic
relationships between tokens, respectively. In particular, we will adapt the train-
ing in the use case of next token generation, but we remark how the procedure can
be extended to different tasks, like text classification. Finally, we discuss several
evaluation techniques to compare the efficiency of LLMs among a wide range of
tasks.
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3.1 Encoder model: BERT

An encoder model transforms the input embedded sequence in a representa-
tion useful for various NLP tasks and is often characterized by a bidirectional
self-attention, meaning that the attention layers can access all the embedded to-
kens, attending both the left and the right context of a given token. Therefore, it
is mainly used for tasks requiring an understanding of the whole sequence, such as
Sentence Classification, Named Entity Recognition and Question Answering [90].
In this section we introduce an example of encoder model, called BERT [22].

BERT (Bidirectional Encoder Representations from Transformers) is an en-
coder model developed by Google in 2018. Directional models handle to input
text sequentially, either from left-to-right or right-to-left, while bidirectional mod-
els like BERT read the entire sequence at once, which allows to learn the context
of a token, based on both its left and right surroundings [91]. In the original paper
two models with different sizes are reported:

• Base: it uses L = 12 transformer layers, D = 768 embedding size, H = 12

heads and 110M parameters.

• Large it uses L = 24 transformer layers, D = 1024 embedding size, H = 16

heads and 340M parameters.

Moreover, BERT uses WordPiece to build a 30.000 token vocabulary: the first
token of every sentence is always a special classification token [CLS] and its role
is explained in the next pages.

The original framework consists of two steps: pre-training and fine-tuning.
During pre-training, the model is trained on unlabeled data, while during fine-
tuning, the network adjusts all parameters using labeled data to solve a particular
task.

3.1.1 Pre-training

BERT pre-training is based on two simultaneous unsupervised tasks:

1. Masked Language Modeling (MLM): bidirectional encoding allows each
token to indirectly see itself, since the network has access to the whole in-
put sentence. Therefore, the model could trivially predict the target token
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without extracting any information from the data. To solve this problem,
15% of input tokens are masked at random with a [MASK] token1. Model’s
goal is to predict the masked tokens, based on the known non-masked con-
text tokens: indeed, the outputs of the masked tokens are fed into a softmax
function over the whole vocabulary to get a probability distribution.

2. Next Sentence Prediction (NSP): many NLP tasks such as Question
Answering require to understand the relationship between two sentences.
During the pre-training process, half of the inputs is a pair, in which the
second sentence is the subsequent sentence in the original corpus, while in
the remaining half, a sentence from the corpus is chosen at random as second
sentence. To separate the two sentences, a special token [SEP] is added in
between; moreover, a sentence embedding is added to each token to indicate
whether it belongs to the first or second sentence. Therefore, the input repre-
sentation of a token is the sum of its word, position and sentence embedding.
To predict if the second sentence follows indeed the first one, the output of
the [CLS] token is transformed into a 2-dimensional vector using a simple
classification layer with softmax function.

The pre-training procedure of BERT uses the BooksCorpus and English Wiki-
pedia, containing 800M and 2.500M words, respectively. For Wikipedia, only text
passages are extracted, ignoring lists, tables and headers. Figure 3.1 shows BERT
pre-training.

Remark (Difference between MLM and NSP). MLM and NSP are trained simulta-
neously with different objectives. MLM’s main goal is to understand relationships
between tokens, since it predicts several masked tokens in a sentence. On the other
hand, NSP enables BERT to capture longer-term dependencies across sentences
[93].

3.1.2 Fine-tuning

Fine-tuning is a technique where a pre-trained model is adapted to a specific
tasks by adjusting its parameters. This is done by training the model on a smaller
dataset specific to that task. BERT can be fine-tuned adding only an extra layer

1More precisely, each masked token is replaced with probability 80% with the [MASK] token,
10% with a random token from the vocabulary and 10% is not replaced. This increases the
robustness of the network: for instance, if a random token is given instead of the right one, then
the network should be forced to learn more on the context rather than a single token itself [92].
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Figure 3.1: Pre-training of BERT encoder. The input tokens and the classifica-
tion token [CLS] are converted to word embeddings and the positional encoding
is added to them. Then, the embedded tokens are passed into a series of K trans-
former layers to create a set of output embeddings. A fraction of input tokens
is masked with the token [MASK], in this example encoder and bidirectional.
The outputs are passed through a softmax function ranging over the whole vocab-
ulary V to get the probability of the masked tokens. In this figure, we use a word
tokenizer to tokenize the input sentence. Image inspired from [61].

to the transformer network to convert the output vectors to the desired output
format. Therefore, it can be used for a wide number of NLP tasks like:

• Text classification such as Sentiment Analysis, where the model has to
classify each sentence as positive or negative depending on its emotional
tone. A classification layer is added on the top of the encoder output for the
[CLS] classification token, which is mapped to a single number and passed
through a sigmoid function.

• Word classification such as Named Entity Recognition, where the model’s
goal is to classify each word as an entity type (e.g. person, place, ...). Each
word is mapped into a E-dimensional vector, where E indicates the number
of entity types, and is passed through a softmax function.

• Text span prediction such as Question Answering, where the model is
required to predict and mark the answer of a question within a given text
sequence. Each token maps to two numbers, which indicate how likely is
that the answer begins and ends inside the text sequence. Finally, the result
is passed through two softmax functions.

Figure 3.2 shows BERT fine-tuning on two different tasks.
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Figure 3.2: Fine-tuning of BERT encoder. a) Text classification task: the [CLS]
token is used to predict the probability that a review is positive. b) Word classifi-
cation task: the embedding of each word is used to predict its entity class (person,
place, organization, ...). Image inspired from [61].

3.2 Decoder model: GPT-3

While encoder models transform and extract essential information from the in-
put embedding, decoder model’s main goal is to generate the next token of a given
sequence. The basic architecture is quite similar to the encoder model with a series
of transformer layers, however, the key difference relies on the concept of masked
self-attention. Indeed, since decoders predict the next token, the learning process
is unidirectional from left-to-right and not bidirectional as in BERT, because they
do not have access to the right context of the sequence. In this section we present
GPT-3, an example of decoder model. There exists 8 different models of GPT-3
ranging from 125M to 175B parameters: we describe the largest one, which has
K = 96 transformer layers, an embedding size D = 12.288 and H = 96 heads [4].

GPT-3 (Generative Pre-trained Transformer 3) is an autoregressive model de-
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veloped by OpenAI in 2020. Autoregressive models are statistical or machine
learning models that predict the next value in a sequence given the previous one,
assuming that the future values depend on the past values and using this de-
pendency to make predictions [94]. We firstly discuss a brief example and then
generalize the concept of autoregressive model to any input sequence.

Example 9. Consider the sentence A decoder generates the next token and
assume that the tokens are full words. The probability of the full sentence is

P(A decoder generates the next token) =

P(A)× P(decoder|A)× P(generates|A decoder)×
P(the|A decoder generates)× P(next|A decoder generates the)×
P(token|A decoder generates the next).

In general, given an input sequence with tokens t1, . . . , tN an autoregressive
model factors its probability as

P(t1, . . . , tN) = P(t1)
N∏

n=2

P(tn|t1, . . . , tn−1).

The goal is then to maximize the log probability of the tokens in order to predict
the next token.

3.2.1 Masked self-attention

To train a decoder we maximize the log probability of the input sequence:
however, if we pass the whole sequence, the term log(P(generates|A decoder))
has access both to the answer generates and the right context the next token.
Therefore, the network may not train properly, since it knows already the token
to predict.
However, we can require in the self-attention layers that the attention given to
the answer generates and the right context the next token is zero by setting to
negative infinity the corresponding dot products in the self-attention computation,
before passing them through the softmax function. This process is known as
masked self-attention.
Indeed, for a given head h, we consider the keys Kh, queries Qh and values Vh.
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We define the mask matrix M as

M =


0 0 0 · · · 0

−∞ 0 0 · · · 0

−∞ −∞ 0 · · · 0
...

...
... . . . ...

−∞ −∞ −∞ · · · 0

 (3.1)

and we compute then the h-th masked self-attention block

MaskSah[X] = Vh · softmax

[
M +

KT
h Qh√
Dq

]
,

Finally, the masked multi-head self-attention block is obtained by concatenating all
the H blocks together with a matrix Ωd, similarly to the non-masked self-attention:

MaskMhSa[X] = Ωd

[
MaskSa1[X]T , . . . ,MaskSaH [X]T

]T
.

3.2.2 Training of the decoder

The training of the decoder network works as follows. An input sequence is to-
kenized and its embedding matrix X ∈ RD×N is computed, where D is the embed-
ding size and N is the number of tokens. Each token embedding xn, n = 1, . . . , N

is passed into the transformer network, where the transformer layers implement
the masked self-attention: in this way, an embedding xn can only attend the cur-
rent and previous embedded tokens xi, i = 1, . . . , n. After the transformer layers,
a linear layer maps each output token embedding to the size of the vocabulary,
followed by a softmax function to convert the values to probabilities. The training
procedure minimizes a standard categorical cross-entropy and aims to maximize
the sum of the log probabilities of the next token given the preceding tokens. The
following example shows how the samples are built from a training sentence in
order to predict a token.

Example 10. Consider the same sentence from Example 9 A decoder generates
the next token. Our samples that are fed into the decoder can be written as in
Table 3.1. We recall that tokens coincide with words here.
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Input tokens Token to predict

A decoder
A decoder generates
A decoder generates the
A decoder generates the next
A decoder generates the next token

Table 3.1: Input and predicted tokens of a decoder.

In this example, we remark that the model does not have access to the following
tokens, but can only attend the previous ones. From a computational point of view,
this is achieved by applying the masking as in equation (3.1).

After training, to generate text from the model, we feed the network with an
input sequence of text and obtain as output the probabilities over possible subse-
quent tokens from the vocabulary. The token with highest probability is chosen
and added to the initial sequence; another strategy consists of sampling the next
token from the resulting probability distribution. The procedure is then repeated
to generate large parts of text, as described in the following example.

Example 11. To generate new text, we assume that the user gives in input the
sentence "GPT-3 is a". Since the model was trained to generate the next token,
after feeding this partial input sentence in the network, we obtain as output a
distribution probability over the vocabulary, hence the index j with highest prob-
ability is chosen, which is associated with a certain token, for example "decoder".
Then, the network, before predicting a second token, changes the input, consid-
ering the sentence "GPT-3 is a decoder". The decoder ends to generate tokens
when either a special [END] token or a maximum number of tokens is reached.

GPT-3 was trained with 300B tokens on datasets such as CommonCrawl, Web-
Text2, Books1, Books2 and English Wikipedia. Since GPT-3 is not an open-source
model, the number of weights for each part of the network can only be estimated
and is depicted in Table 3.2.
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Layer Hyperparameters Number of weights

Token Embedding D = 12.288, |V| = 50.257 D · |V| = 617.558.016

Positional Encoding Π D = 12.288, N = 2.048 D ·N = 25.165.824

Key weight matrix Ωk D = 12.288, Dq = 128, H = 96, K = 96 D ·Dq ·H ·K = 14.495.514.624

Query weight matrix Ωq D = 12.288, Dq = 128, H = 96, K = 96 D ·Dq ·H ·K = 14.495.514.624

Value weight matrix Ωv D = 12.288, Dq = 128, H = 96, K = 96 D ·Dq ·H ·K = 14.495.514.624

Masked MhSa Ωd D = 12.288, K = 96 D2 ·K = 14.495.514.624

Linear layer with biases2 D = 12.288, K = 96 (8D2 + 5D) ·K = 115.970.015.232

Total 174.594.797.568

Table 3.2: Estimation of the distribution of GPT-3 weights [95]. We note that
the majority of the weight is in the fully connected layer, while token embedding
and positional encoding matrix contribute to only a little percentage of the whole
parameters of the model.

Figure 3.3 shows the training of a decoder network.

Figure 3.3: Decoder network. The input is X ∈ RD×N with a special [START]
token indicating the start of the sequence. Through masked self-attention each
token can only attend itself and the previous ones. A final layer maps each token
to the vocabulary with a softmax function. Image inspired from [61].

3.2.3 Challenges and limitations of GPT-3

Language models like GPT-3 have a wide range of beneficial applications such
as answering questions or summarizing text; however, they also have potentially

2From [4] D is the number of units in the bottleneck layer and the feedforward layer is four
times the size of the bottleneck layer, hence 4D. Therefore, computing Ω2 ·max(0,Ω1X+β1)+β2

implies that Ω1 ∈ R4D×D and Ω2 ∈ RD×4D for each transformer layer k = 1, . . . ,K.

43



3. Language Models

harmful applications, which are discussed in this section.

Training data may be rich of biases, that may lead the model to generate
stereotyped or prejudiced content in different aspects [4]:

• Gender: occupations have in general higher probability of being associated
with a male gender identification rather than a female one. GPT-3 was
tested on 388 professions and 83% of them were more likely to be identified
as male. For instance, if we consider the sentence "The detective was a"
the probability of male was much higher than a female.

• Race: the model was seeded with prompts such as "The {race} man was
very" or "People would describe the {race} person as" where "{race}"
is replaced with a term indicating a racial category like White or Asian. After
several tests, "Asian" had a consistently high sentiment, while "Black" a
lower one: these differences become smaller by increasing the model’s size,
although several racial biases can be observed.

• Religion: the model was fed with prompts like "{Religion practition-
ers} are" (e.g. "Buddhists are") for different religions. Similar to race, it
was observed for example that with the religion Islam, words like ramadan
or mosque, but also violent and terrorism, appear at a higher rate than for
other religions.

LLMs may also suffer from hallucinations, such as factual hallucinations, where
the model generates a content which is factually incorrect (like "World War II
started in 1800"), or contextual hallucinations, where the model generates a
contents containing inaccuracies (like "Tell me the life of Einstein" and a
fictional biography of a non-existing person is created). Moreover, an LLM may
self-contradict in the same answer or it can output dangerous information, such as
the instruction for the construction of a weapon [96].

3.3 Encoder-decoder model: machine translation

As explained in the previous sections, an encoder computes a representation
of the input sentence, while a decoder generates new tokens from an input sen-
tence. These two networks can be used together to form an encoder-decoder model
suitable for several tasks, such as translating from a language to another, speech
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recognition or image captioning. In particular, in this section we will discuss how
machine translation works.

Assume that our task consists of translating from English to Italian: the en-
coder receives a sentence in English and processes it through several transformer
layers and outputs a representation for each token. In Section 3.1 we remarked
that the encoder outputs a numerical representation of the English sentence, which
contains useful information on the relationships between tokens, based on the self-
attention mechanism. During training, the decoder receives the ground truth
translated sentence in Italian and passes it through the transformer layers, which
implement masked self-attention and produce several tokens from the Italian vo-
cabulary. Moreover, the decoder also attends the output of the encoder: in this
way, each Italian token is conditioned both on the source English sentence and the
previous output Italian tokens.

The original paper Attention is All You Need [76] describes the transformer
architecture, which is actually the encoder-decoder model. Let XA ∈ RDA×|VA|

and XB ∈ RDB×|VB | be the two embeddings of a given sentence in language A and
B, respectively: they represent the English sentence and Italian translation from
above. We note that both the number of rows and columns may not coincide, since
the dimension of the embedding and the vocabulary size may be different from a
language to another. The encoder-decoder architecture is shown in Figure 3.4 and
Figure 3.5.

• The encoder takes in input XA and outputs a matrix Xenc
out . Its goal is to

extract relevant features from the input and uses a bidirectional attention
mechanism, that is the model attends both the left and right part of the in-
put sequence. The encoder consists of Nenc identical layers, each composed
of two sublayers: the first sublayer implements a multi-head self-attention
mechanism, and the second sublayer is a fully connected feed-forward net-
work with two linear transformations and a ReLU3 activation in between.
Each of the two sublayers has a residual connection around it and is followed
by a normalization layer LayerNorm. Code on page 46 shows the encoder
procedure for the machine translation task.

3ReLU(x) = max(0,x).
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Figure 3.4: Transformer model from the original paper [76].

Encoder’s architecture
Input: Input embedded text XA, positional encoding matrix Π, number of
encoder layers Nenc.
Output: Embedded text Xenc

out

X ←XA +Π

for i = 1, . . . , Nenc do
X ←X + MhSa[X]

X ← LayerNorm[X]

X ← Linear[ReLU [Linear[X]]]

X ← LayerNorm[X]

end for
Xenc

out ←X

return Xenc
out

• Decoder ’s main goal is to generate the next token of a sequence. It takes in
two inputs during training procedure:

1. the output of the encoder Xenc
out , to which two linear transformations
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Figure 3.5: Encoder-decoder architecture for translating from Italian to English.
Two sentences are given as input and the goal is to the translate the first one
into the second. a) The first sentence is passed through an encoder model. b)
The second sentence is passed through a decoder model and implements also a
cross-attention, attending also the output of the encoder. Image inspired from
[61]. Cross-attention is also shown in Figure 3.6.

are applied, in order to get keys and values Kenc and V enc;

2. the translation XB of the input sequence shifted to the right, in or-
der to ensure that the predictions at a specific position j depend only
on predictions at positions less than j. The first input embedded to-
ken is therefore a special [START] token. In order to minimize the
cross-entropy loss function and update network’s weights (also of the
encoder), the prediction of the [START] token, i.e. ˆx1,B is compared
with the first column of the true translation x1,B, the predictions of
the [START] token and x1,B, i.e. ˆx2,B, are compared with the second
column of the true translation x2,B and so on until the last token is
achieved.

The decoder consists of Ndec identical layers, each composed of three sub-
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layers. The first sublayer implements a modified version of multi-head self-
attention, called masked multi-head self-attention: at a certain position j the
network can only attend the previous embedded tokens, hence the tokens at
positions greater than j are masked. The second sublayer implements a
multi-head self-attention mechanism, similar to the one implemented in the
first sublayer of the encoder: in particular, it receives the queries Qdec from
the previous decoder sublayer, and the keys and values from the output of the
encoder, namely Kenc and V enc. This mechanism is called cross-attention,
because it combines keys, queries and values from two different sources, and
is shown in Figure 3.6. The third sublayer implements a fully connected
feed-forward network, similar to the second sublayer of the encoder. Each of
the three sublayers has a residual connection around it and is followed by a
normalization layer. The goal of the decoder is to generate the next token
in the sequence; it uses a unidirectional attention mechanism. Therefore,
the last decoder layer is followed by a linear transformation and a softmax
function over the whole vocabulary is applied. Code on page 49 shows the
decoder procedure for the machine translation task.

Figure 3.6: Cross-attention. Keys and values are produced from the encoder, while
queries from the decoder. Image inspired from [61].
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Decoder’s architecture (for first token prediction)

Input: Output embedded sequence of the encoder Xenc
out , embedding of

[START] token x0,B, positional encoding π of x0,B, number of decoder lay-
ers Ndec.
Output: Next translated token ˆx1,B

x← x0,B + π

for i = 1, . . . , Ndec do
x← x+ MaskMhSa[x]
x← LayerNorm[x]

x← x+ MhSa[x]
x← Linear[ReLU [Linear[x]]]
x← LayerNorm[x]

end for
i ← max. index of softmax[β + Ωx], where Ω ∈ R|V|×D and the softmax
maps to the vocabulary ΩB

ˆx1,B ← i-th column of ΩB

return ˆx1,B

During inference procedure the translation XB is obviously not available, thus
only the embedding of the [START] token is given: the network then predicts the
next token of the sequence ˆx1,B, which should represent the first embedded token
of the translation of the input sentence XA and then proceeds iteratively. For
instance, at the j-th iteration, the decoder processes both the embedding of the
[START] token and the predicted tokens at previous step, namely ˆx1,B, . . . , ˆxj−1,B.
For this reason, we say that the decoder operates in an autoregressive way, which
means that the decoder uses information at previous steps to predict information
at the current step.

3.4 Developing an LLM

Large Language Models like GPT-3 are models based on the transformer ar-
chitecture able to recognize and generate text and trained on massive amount of
data from the Internet, such as books and articles. The adjective "Large" refers to
the huge number of trainable parameters, usually hundreds of billions. The goal of
this section is to provide further details on how an LLM is trained, starting from
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a training corpus text C.

The development of an LLM from scratch can be divided into different steps
[97]:

1. Building: Data like books, web contents, open-access datasets and articles
are sampled in a training dataset C. Then, the training dataset C is pre-
processed (uppercase letters are lowercased,...), and tokenized in order to
get T ; a vocabulary V is created. The training tokenized corpus T consists
of billions or trillions of tokens xi, i = 1, . . . , |T | and is highly impractical
to feed them simultaneously in the network. Therefore, for a practical im-
plementation we apply batching, which means that several training inputs
are put together into a batch. We can then consider a context size of N

consecutive tokens4 from C and build the embedding of these N tokens, i.e.
Xi ∈ RD×N , i = 1, . . . , B where D is the dimension of the embedding and
B the batch size. The batch is denoted as Y ∈ RD×N×B. The architecture is
finally built based on the transformer architecture: several hyperparameters
need to be defined, such as the number of heads and layers. Since the model
that we are explaining needs to solve the problem of next token prediction
we have to implement a masked multi-head self-attention, like in GPT-3.
In newer LLMs the positional encoding matrix is learned and not anymore
fixed, which increase the number of weights of the model.

2. Pre-training: The training loop of an LLM works like in all Deep Learning
models, where the goal is to find the optimal parameters of the network by
minimizing an objective function. Over several epochs, the training corpus C
is fed into the network in batches Y and the parameters are adjusted. Since
we are dealing with a token prediction task, as explained in Section 3.2,
the learning is supervised and the labels are the inputs shifted on the right:
considering X element of the batch, x1 should output x2, {x1,x2} should
output x3 and so until the last sequence of N tokens, where xi indicates the
i-th column of X.

3. Fine-Tuning: In this final step, an LLM is adapted for solving several
downstream tasks. For instance, if we have to develop a model for text
classification, which is a binary classification problem, the output layer of
the LLM, consisting of V neurons, is replaced with a layer containing only

4GPT-3 uses a context window size of 2.048 tokens.
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2 neurons. However, also previous layers can be fine-tuned, increasing the
number of weights that need to be updated. Similar fine-tuning techniques
can be applied for tasks requiring a multiclass classification.
However, creating a chatbot or a virtual assistant may be harder tasks to
solve: a training dataset containing instructions, inputs and outputs is pro-
vided, for this reason it is called instruction tuning. For instance, a sam-
ple from the dataset can be the following: "Split the following number
into digits" (instruction), "123456" (input) and "1 2 3 4 5 6" (output).
An LLM receives in input an instruction and input, and should be able to
understand the request and returns the output, which is a more complex
classification task.

The entire developing of an LLM for next token prediction is shown in Algo-
rithm 4.

Algorithm 4: LLM training for next token generation
Input: Training corpus C

Hyperparameters: D embedding dimension, B batch size, N context
window, H number of heads for multi-head attention, K number of trans-
former layers, Nepoch number of epochs, |V| vocabulary size, l learning rate,
d dropout, I evaluation interval

1. Preprocess the training corpus C

Create T , tokenized version of C, and a vocabulary V containing the tokens
of T
Split T into Ttrain and Tval

Create the embedded corpus Etrain = f(Ttrain) ∈ RD×|Ttrain|, where f trans-
forms all tokens into their D-embedding
Create Nbatches batches from Etrain, each of dimension D ×N × B, denoted
as X1, . . . ,XNbatches

2. Training
for epoch = 1, . . . , Nepoch do

for b = 1, . . . , Nbatches do
Create the labels of the supervised dataset as Xtrue ∈ R|V|×N×B by
transforming each token embedding along the first dimension (row) of
Xb into a one-hot encoding representation
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Algorithm 4: LLM training (continuation)

Create X(1) ∈ RD×N×B by shifting the second dimension (column) of
Xb on the right, adding the embedding of the [START] token on the
first column and removing the last column
for k = 1, . . . , K do

for h = 1, . . . , H do
Add the positional encoding matrix and compute values, queries
and keys for each head
Vh = βvh1

T +Ωvh(X
(k) +Π)

Qh = βqh1
T +Ωqh(X

(k) +Π)

Kh = βkh1
T +Ωkh(X

(k) +Π)

Compute masked multi-head self-attention

MaskSah[X
(k)] = Vh · softmax

[
M +

KT
h Qh√
Dq

]
, where Dq = D/H

and M from equation (3.1)
end for
Concatenate all blocks and apply a linear transformation
MaskMhSa[X(k)] = Ωd

[
MaskSa1[X

(k)]T , . . . ,MaskSaH [X
(k)]T

]T
Apply a residual connection
X(k) = X(k) + MaskMhSa[X(k)]

Apply a normalization layer
X(k) = LayerNorm

[
X(k)

]
Apply a linear layer with a residual connection
X(k+1) = X(k) + Linear

[
X(k)

]
end for

3. Classification
X = X(K+1)

Add a classification layer with a softmax activation function over V to
predict the outputs
X̂ = softmax[Classification[X(K)]] ∈ R|V|×N×B

Compute the cross-entropy loss
L = cross-entropy(Xtrue, X̂)

Minimize L and update weights with back-propagation using a learning
rate l; evaluate the model on Tval with frequency given by I

end for
end for
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3.5 Evaluation metrics

Traditionally, evaluating the performance of an LLM involves human judge-
ments with several quality metrics: for instance, the summarization of a text
should be coherent, readable, and grammatically correct. However, human evalu-
ation is expensive, even impossible in reasonable times, since modern datasets are
huge and contains millions of sentences. Therefore, there was the need of building
different metrics that would allow an efficient and reliable evaluation of a given
LLM. In this section we describe three metrics, called BLEU, ROUGE and per-
plexity, which handle translation, summarization and text generation problems,
respectively. In the last few years, in order to evaluate an LLM on a wide range
of NLP tasks, several evaluation benchmarks, such as GLUE, have been devel-
oped, collecting together different metrics and allowing the comparison of different
models on the same standardized framework.

3.5.1 BLEU

One of the most popular metric is called BLEU (BiLingual Evaluation Un-
derstudy) score [98], suitable for machine translation: the core idea is that the
closer the predicted or candidate sentence is to the human-generated or reference
sentence, the better. Usually, there exist several translations of a given source sen-
tence, which may differ in number and order of words: the candidate translation
should be as similar as possible to one of the provided reference translations. We
give a thorough description of BLEU score with several examples, based on the
original paper and [99].

Since the idea behind BLEU consists in comparing different sentences, the
simplest way to accomplish this is to overlap different parts of the model-generated
and reference translations. Therefore, we introduce the concepts of n-gram and
precision.

Definition 7. An n-gram is a set of n consecutive words in a sentence.

Example 12 (n-gram). Consider the sentence "BLEU score is an evaluation
metric". Then we have different n-grams, for instance:

1. 1-gram (unigram): "BLEU", "score", "is", "an", "evaluation", "met-
ric"
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2. 2-gram (bigram): "BLEU score", "score is", "is an", ...

3. 3-gram (trigram): "BLEU score is", "score is an", "is an evalua-
tion", ...

Since the words in an n-gram are ordered, then, for instance, "score BLEU is an"
is not valid.

Definition 8. Precision is defined as the ratio between the number of correct
predictions on the number of total predictions: in our case, the number of correct
predictions coincides with the number of words in the candidate sentence C that
appear also in the reference one, and the number of total predictions is the number
of words in the candidate sentence. Therefore,

Precision =

∑
word∈C

Countmatch(word)∑
word∈C

Count(word)
, (3.2)

where Countmatch(word) assigns 1 when word appears in both reference and can-
didate sentence.

However, this definition of precision is not suitable for evaluating a language
model, since we may deal with repeated words or a sentence may be expressed
with similar words. Thus, we define clipped precision and discuss the examples 13
and 14, showing that standard precision from equation (3.2) is an inappropriate
metric for language models.

Definition 9. Clipped precision for n-grams is defined as

CPn =

∑
n-gram∈C

Countclip(n-gram)∑
n-gram∈C

Count(n-gram)
, (3.3)

where Countclip is the minimum between Countmatch and the number of appear-
ances of the considered n-gram in the reference sentence.

Typically, machine translation involves several sentences, while equation (3.3)
is referred to only one. The following definition extends the previous one with
several candidate sentences.

Definition 10.

CPn =

∑
C∈{Candidates}

∑
n-gram∈C

Countclip(n-gram)∑
C∈{Candidates}

∑
n-gram∈C

Count(n-gram)
(3.4)
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Example 13 (Precision with repetition or permutation). Consider the reference
sentence "BLEU score is an evaluation metric" and assume that the predicted
sentence is "BLEU BLEU BLEU": in this case, the word BLEU appears in the refer-
ence sentence, thus the precision would be 1. The same precision is achieved by
predicting a permuted sentence of the reference one, for instance "metric is BLEU
an score evaluation". However, both predicted sentences are meaningless and
the obtained results useless.

Example 14 (Precision with multiple target sentences). Usually, similar sentences
share the same meaning, which a well defined metric should take into account:
therefore, we may accept multiple reference sentences capturing these different
variations. Consider the reference sentences

R1 : "BLEU score is a good evaluation metric"

R2 : "BLEU score is a well defined evaluation metric"

Now, assume that the candidate sentence is

C : "BLEU BLEU BLEU is a good evaluation measure"

and compute the clipped precision from equation (3.4), which is defined as the
ratio between the clipped number of correctly predicted words on the total num-
ber of predicted words. For instance, the word "BLEU" appears one time in both
reference sentences and three times in the candidate sentence: the clipped num-
ber is then 1 and not 3, which is useful to avoid repetitions. The words "is",
a", "evaluation" appear in all three sentences once. Finally, the word "good"
appears only in R1; conversely, "measure" does not appear in any of the reference
sentences. The clipped precision of the candidate sentence C is thus 5/8, which is
a more accurate result than the standard precision, which achieves 7/8. Table 3.3
shows the described procedure.

Before defining BLEU score, we introduce two concepts: geometric average
precision and brevity penalty. At first, from equation (3.4) we compute clipped
precision CPn for n-grams, n = 1, . . . , N , where N is a parameter that can be
chosen. In this way, we compute the clipped precision for words, pair of words,
... of the predicted sentence, avoiding, for instance a permuted target sentence to
have high precision.

Definition 11. We consider a set of weights ωn such that
N∑

n=1

ωn = 1 and ωn ≥ 0
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Word in C Matching Sentence R1 or R2 Countmatch Countclip

BLEU Both 3 1
is Both 1 1
a Both 1 1
good Only R1 1 1
evaluation Both 1 1
measure None 0 0

Total 7 5

Table 3.3: Comparison between Countmatch used in precision from equation (3.2)
and Countclip used in clipped precision from equation (3.4). In this example we
get Count(1-gram) = 8 because C contains 8 words.

and define the geometric average precision as:

Geometric Average Precision(N) = exp

(
N∑

n=1

ωnlog (CPn)

)
(3.5)

If the weights are uniform, i.e. ωn = 1/N then

Geometric Average Precision(N) =
N∏

n=1

pωn
n

Definition 12. The brevity penalty penalizes too short sentences:

BP =

{
1, if c ≥ r,

e(1−r/c), if c < r,
(3.6)

where c and r are the lengths of the candidate and reference sentence, respectively.

Definition 13. From equations (3.5) and (3.6) BLEU score is defined as

BLEU(N) = BP ·Geometric Average Precision(N).

We observe that BLEU(1) may encounter the problem encountered in the Ex-
ample 13 with permuted sentences, therefore N > 1 are suggested. In the original
paper, the suggested choice is N = 4 with uniform weights.
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Definition 14. An alternative definition of BLEU score computes the natural
logarithm of the formula above, i.e.

log BLEU(N) = min
(
1− r

c
, 0
)
+

N∑
n=1

ωnlogpn.

Remark (Adavantages and weakness of BLEU). BLEU score has several advantages
and weaknesses: on one hand, it is quick to calculate and it can be applied with
several target sentences. Moreover, it is widely used and can be applied to any
NLP model since it is language-independent. On the other hand, BLEU score does
not capture the meaning of the words: for instance, a synonym of a word may
be predicted, decreasing the score, since it would be classified as incorrect. Also,
BLEU looks only for word matches and does not take into account slight variations
of words, such as go or going. In a sentence, several words play different roles:
BLEU score penalizes in the same way an important word, contributing to the
meaning of the sentence, and a less important one.

3.5.2 ROUGE

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a set of eval-
uation measures which automatically determine the quality of a model generated
text by comparing it to other reference texts and is therefore applied for tasks
like text summarization and machine translation. In this section, we present four
different ROUGE metrics, which count the number of overlapping units such as
n-grams or word sequences [100].

Usually, a text can be summarized in several ways, which are called reference
summaries, while the network-generated translation is denoted as candidate sum-
mary. We will discuss the four rouge metrics given a sentence, but the concepts
can be easily extended for larger parts of text as summaries:

• ROUGE-N for n-gram co-occurrence statistics is defined as

ROUGE-N =

∑
R∈{Reference Summaries}

∑
n-gram∈R

Countmatch(n-gram)∑
R∈{Reference Summaries}

∑
n-gram∈R

Count(n-gram)
,

where n is the length of the n-gram and Countmatch(n-gram) is the maximum
number of n-grams co-occurring in a candidate summary and a set of refer-
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ence summaries. ROUGE-N is a recall-related measure, because the denomi-
nator counts the number of n-grams in the reference summaries, while BLEU
is a precision-based measure, since the denominator counts the number of
n-grams in the candidate summary. We remark that a candidate summary
containing words shared by more references is favored by the ROUGE-N
measure: intuitively, we prefer a candidate summary which is more similar
to the highest possible number of reference summaries.

• ROUGE-L identifies the longest common subsequence LCS that appear in
the same order, even if not consecutive, in both the reference and candidate
summaries. At a sentence-level, it is defined as

ROUGE-L =
LCS

m
,

where m is the number of words in the reference summary

• ROUGE-W for weighted longest common subsequence favors consecutive
LCSes. Indeed, ROUGE-L score does not take into account the consecutive
matches of words, but only if they appear in order in the reference summaries.
Therefore, ROUGE-W solves this challenge by giving more importance to
consecutive matches.

• ROUGE-S for skip-bigram co-occurrence statistics measures the overlap of
skip-bigrams between the candidate summary and the reference summaries.
A skip-bigram is a pair of ordered words in a given sentence with arbitrary
gaps in between. While LCS counts only one longest common subsequence,
skip-bigram counts all in-order matching word pairs.

One of the great advantages of ROUGE metrics is the multi-reference sup-
port, since all metrics can handle multiple reference summaries or translations,
providing a more comprehensive and representative evaluation of the model’s per-
formance. However, ROUGE has several limitations: for example, ROUGE-N is a
recall-based measure, but in some applications it may be more useful to apply a
precision-based measure like BLEU. For instance, ROUGE is applied in summa-
rization tasks, since it is important to capture all key points to obtain a compre-
hensive summary (high recall), even if it contains some extra information; on the
other hand, BLEU is applied in translation tasks, since it penalizes translations
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including irrelevant information. Moreover, all these metrics are not able to mea-
sure semantic similarities, since they only measure overlap of words of sequence
of words. Finally, ROUGE score relies on the quality of the reference summaries,
which might introduce subjectivity and variability in the results [101].

3.5.3 Perplexity

Another metric for evaluating language models is called perplexity and measures
how likely the model is to generate a text sequence. Thus, perplexity evaluates the
performance on the model on learning the distribution of the texts it was trained
on and quantifies the degree of uncertainty in a language model [102]. This section
describes this metric and highlights its advantages and application fields.

Definition 15. Given a tokenized sequence T = (t1, . . . , tN), where ti are the
tokens, the perplexity of T is defined as [103]

PPL(T ) = exp

(
− 1

N

N∑
i=1

log (P(ti|t1,...,i−1))

)
, (3.7)

where log (P(ti|t1,...,i−1)) is the log-likelihood of the i-th token conditioned on the
preceding tokens t1, . . . , ti−1.

Unlike the previous two metrics BLEU and ROUGE, perplexity does not com-
pare the model generated sequence with a reference one. Instead, it is calculated on
the conditioned probability distribution of the tokens generated by the model. Low
perplexity means that the model is confident in text generation, since the condi-
tioned probabilities are high; vice versa, high perplexity indicates a low confidence
in text generation [104]. The highest perplexity is achieved when PPL(T ) = 1, i.e.
all probabilities are maximal. We also notice that perplexity can be only applied
to autoregressive models as GPT-3 which generate the next token in the sequence
and is not well defined for models like BERT, since it tests the ability of a model
in generating text.

Remark (Benefits, drawbacks and applications). Perplexity metric represents a
measure of uncertainty or surprise and relies strongly on the dataset on which
the model was trained on, since each dataset has a different distribution of words.
Moreover, perplexity does not provide any information on the quality of the gen-
erated texts and does not capture semantic nuances of the language. On the other
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hand, models with high perplexity can be optimized and refined, enabling the
model to generate more fluent text. NLP tasks in which perplexity represents a
suitable metric are machine translation for evaluating the predictability and flu-
ency of the output translation, and in text generation, in which perplexity is useful
to refine the model to produce more human-like outputs and improving the quality
of the text [105].

3.5.4 GLUE Benchmark

The General Language Understanding Evaluation (GLUE) benchmark is a col-
lection of resources for training, evaluating and analyzing natural language un-
derstanding systems. It is centered on nine English sentence understanding tasks,
covering a wide range of domains, dataset sizes and degrees of difficulty, and is
built on established existing datasets [106]. It was introduced in 2019 for the
development of models able to generalize across several NLP tasks and domains,
encouraging the creation of models towards always broader language understand-
ing capabilities [107].

The key components of GLUE Benchmark are [108]:

• Single-Sentence Tasks:

1. CoLA [109]: The Corpus of Linguistic Acceptability (2018) contains
English acceptability judgements from books and journal articles. Each
sample is a sequence of words labeled with whether it is a grammatically
correct English sentence or not. The evaluation metric is Matthews
correlation coefficient.

2. SST-2 [110]: The Stanford Sentiment Treebank (2013) consists of sen-
tences from movie reviews and human annotations on their sentiment.
Accuracy is chosen as evaluation metric.

• Similarity and Paraphrase Tasks:

3. MRPC [111]: The Microsoft Research Paraphrase Corpus (2005) is
a corpus of sentence pairs from online news with human annotations
whether the sentences in the pair are semantically equivalent. Since the
classes are unbalanced, both accuracy and F1 score are computed.

4. STS-B [112]: The Semantic Textual Similarity Benchmark (2017) con-
sists of sentence pairs from image captions, news headlines and user
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forums. Each pair is human-annotated with a score from 1 to 5, thus,
Pearson and Spearman correlation coefficients are used as evaluation
metrics. This is the only regression task, while all the other eight are
single sentence or sentence pair classification tasks.

5. QQP [113]: The Quora Question Pairs dataset (2017) contains question
pairs from the website Quora. The distribution of classes is unbalanced
as in MRPC, therefore both accuracy and F1 score are computed.

• Inference Tasks

6. MNLI [114]: The Multi-Genre Natural Language Inference Corpus
(2018) is a collection of sentence pairs with textual entailment annota-
tions. A premise sentence and a hypothesis sentence are given: the task
is to predict whether the premise entails the hypothesis, contradicts the
hypothesis or neither of them. Evaluation is both on the matched and
mismatched sections.

7. QNLI [115]: The Stanford Question Answering Dataset (2016) is a
question-answering corpus containing question-paragraph pairs, where
one of the sentences in the paragraph (taken from Wikipedia) contains
the answer to the question (written by an annotator). A pair between
each question and sentence is formed: the task is to predict whether
the context sentence contains the answer.

8. RTE [116]: The Recognizing Textual Entailment datasets (2006-2009)
are based on news and Wikipedia articles. The task is to determine
whether a sentence logically entails another.

9. WNLI [117]: The Winograd Schema Challenge (2011) is a reading
comprehension task: given a pronoun in the sentence, the goal is to
predict the referent of that pronoun from a list of choices.

Table 3.4 sums up the GLUE Benchmark.

Since LLMs increase year-by-year their ability to solve more complex tasks,
the performances on the GLUE benchmark came close to the level of non-expert
humans. Therefore a new benchmark was developed in 2020, called SuperGLUE
benchmark [118], with the aim of providing more difficult language understanding
tasks.
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Corpus |Train| |Test| Task Metrics Domain

Single-Sentence Tasks

CoLA 8.5k 1k acceptability Matthews corr. misc.
SST-2 67k 1.8k sentiment acc. movie reviews

Similarity and Paraphrase Tasks

MRPC 3.7k 1.7k paraphrase acc./F1 news
STS-B 7k 1.4k sentence similarity Pearson/Spearman corr. misc.
QQP 364k 391k paraphrase acc./F1 social QA questions

Inference Tasks

MNLI 393k 20k NLI matched acc./mismatched acc. misc.
QNLI 105k 5.4k QA/NLI acc. Wikipedia
RTE 2.5k 3k NLI acc. news, Wikipedia
WNLI 634 146 coreference/NLI acc. fiction books

Table 3.4: Description of the tasks included in GLUE Benchmark [107].

3.5.5 Evaluation of LLaMA and GPT-3

LLaMA (Large Language Model Meta AI) [1] is a collection of pretrained and
instruction tuned generative models with 8B, 70B and 405B parameters [119];
GPT-3 model is described thoroughly in Section 3.2. Since LLaMA and GPT-3
are multilingual networks, that is support several input languages such as English
and Italian, multilingual benchmarks for evaluation should be also taken into ac-
count. This subsection illustrates several benchmarks on which these two models
have been evaluated.

LLaMA base pretrained model’s evaluation relies on the following benchmarks
using different metrics:

• MMLU [120] (Massive Multitask Language Understanding) is a benchmark
covering 57 subjects across STEM, social sciences and humanities, and rang-
ing in difficulty from an elementary to an advanced professional level. It
tests the model on multiple choice questions and the metric is the accuracy.

• CommonSenseQA [121] is a dataset for commonsense question answering
tasks and consists of 12.247 question with 5 choices each. The metric is
therefore the accuracy.

• Winogrande contains 44k problem inspired by Winograd Schema Chal-
lenge, which is part of GLUE benchmark.
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3. Language Models

• TriviaQA-Wiki [122] is a dataset containing 650k question-answer-evidence
triplets, therefore the exact match as metric.

• SQuAD [123] (Stanford Question Answering Dataset) is a reading compre-
hension dataset, consisting of questions, where the answer is a segment of
text from the corresponding reading passage. The question might also be
unanswerable. The metric is the exact match.

• DROP [124] (Discrete Reasoning Over Paragraphs) is a 96k-question bench-
mark, in which a model has to resolve references in a question and perform
discrete operations over them, such as addition, counting or sorting. The
metric is the F1 score, which is a combination of precision and recall.

LLaMA can be fine-tuned on different instructions, such as for generating code
or solving more complex mathematical problems. Few examples of benchmarks
include:

• HumanEval [125] is a problem solving dataset used to measure the correct-
ness for synthesizing programs from docstrings. It consists of 164 program-
ming problems, including algorithms and simple mathematics. The metric
is pass@1, which is the percentage of coding problem that the model solves
correctly at the first attempt.

• GSM-8K [126] is a dataset of 8.5k diverse grade school math problems. The
solutions involve performing a sequence of elementary calculations to reach
the final answer. The metric is the exact match with majority voting scheme
at one attempt.

Similarly to LLaMA, also GPT-3 can be evaluated on several benchmarks, such
as:

• LAMBADA [127] tests the modeling of long-range dependencies in the
text and the model has to predict the last word of sentences which requires
reading a paragraph of context. Both perplexity and accuracy are used.

• TriviaQA and Winogrande as in LLaMA.

• WMT [128] is a collection of datasets used in translation tasks in different
fields, like news, biomedical or chat translation. GPT-3’s training data is
primilarly English (93%), but includes also 7% of text in other languages.
The metric is BLUE.
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• PhysicalQA [129] is a dataset for commonsense reasoning and evaluates the
model’s ability in capturing physical and scientific knowledge with accuracy
as metric.

• ARC [130] (AI2’s Reasoning Challenge) is a multiple-choice question-answering
dataset, containing questions from science exams from grade 3 to grade 9.
The metric is the accuracy.

• SuperGLUE

GPT-3 instruction-tuning works as in LLaMA; since both are multilingual mod-
els, evaluating them only on English datasets is not sufficient, for instance the
multilingual benchmark MMLU is a dataset containing a translated version of the
MMLU dataset for multiple-choice question from various branches of knowledge.
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Chapter 4

PEFT

Once an LLM has been trained, it can be fine-tuned for solving specialized
and complex tasks, such as text summarization or code generation using instruc-
tion fine-tuning datasets. The main drawback is that full fine-tuning requires
that all model’s parameters are re-trained and stored, which is computationally
highly inefficient. For instance, a fine-tuning of GPT-3 would require to mod-
ify all 175B weights. Several techniques were studied in order to drastically re-
duce the number of trainable parameters without diminishing the performances
of the fine-tuned model: this approach is called Parameter-Efficient Fine-Tuning
(PEFT). It is mostly based on different matrix factorization techniques, as low-
rank, sparse or SVD, which allow to achieve comparable or sometimes even higher
performances than full fine-tuning. Indeed, full fine-tuning may sometimes lead
to "catastrophic forgetting", where the model loses its learned knowledge during
pre-training. PEFT, instead, by updating only a small subset of parameters, en-
ables the model to adapt better to a specific task, without loosing knowledge and
abilities on other pre-trained tasks [131]. Moreover, from a computational point
of view PEFT is both compute- and memory-efficient.

In this chapter we discuss Low-Rank Adaptation (LoRA) [5] and two of its
variants, LoRA+ [132] and LoRA-drop [133], which adds a low-rank factoriza-
tion of the fine-tuning matrix and achieves similar performances compared to full
fine-tuning. However, the gap between LoRA and full fine-tuning becomes wider
when considering larger language models and more complex tasks, for instance
with LLaMA-2 and LLaMA-3 on Commonsense Reasoning dataset. Thus, an-
other technique, called Sparse Matrix Tuning (SMT) [6], makes use of matrix
sparsity and allows to narrow this gap, obtaining high performances, sometimes
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even higher than full fine-tuning itself. A last PEFT method that we introduce
is named Singular Values Fine-Tuning (SVFT) [7], which updates the weights as
a sparse combination of outer products of its singular vectors, training only its
coefficients. Finally, we apply LoRA and SMT to the open-weight language model
LLaMA-2-7B, scale it and compare the obtained results, both in terms of training
time and performances to solve various tasks. Since training or fine-tuning LLMs
requires huge computational resources, which would be impossible to be satisfied
on a classical computer, for instance in terms of memory storage, we underline the
need of HPC and the role of parallelization to solve such problems.

4.1 LoRA

Low-Rank Adaptation (LoRA) of LLMs [5] is a technique developed in 2021 to
efficiently adapt a pre-trained language model to solve a specific task and allows
to reduce the trainable parameters of the network, while keeping approximately
the same performances compared to the whole fine-tuning of the model. The in-
spiration behind LoRA is built upon the observation that large-scale pre-trained
models reside on a low intrinsic dimension, which means that their parameters
often contain redundancies. Then, it was hypothesized that also the change in
weights during fine-tuning process has a low intrinsic rank. This section explores
LoRA and some of its variants, dealing with advantages and disadvantages of this
technique.

Given an autoregressive large-scale pre-trained language model PW0(y|x) with
weights W0, we want to adapt it to solve several downstream tasks, each of them
represented by a supervised dataset Z = {(xi, yi)}Ni=1. For instance, if our model
has to be fine-tuned on text summarization, xi represents the input text and yi the
output summarization. Full fine-tuning updates all the parameters of each layer
of the model W0 by adding the weights ∆W s.t.

W0 +∆W ∈ argmax
W

∑
(x,y)∈Z

|y|∑
t=1

log (PW (yt|x, y1, . . . , yt−1)) . (4.1)

The main drawback of full fine-tuning is that ∆W and W0 share the same number
of elements, which is computationally and memorically inefficient, especially when
dealing with LLMs. Then, for each downstream task, a new ∆W has to be
created. For instance, a full fine-tuning of GPT-3 would require an update of
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175B parameters. LoRA approach instead encodes ∆W = ∆W (Θ∗), where Θ∗ is
a small set of parameters, s.t.

Θ∗ ∈ argmax
Θ

∑
(x,y)∈Z

|y|∑
t=1

log
(
PW0+∆W (Θ)(yt|x, y1, . . . , yt−1)

)
. (4.2)

Instead of maximizing an objective function depending on W as in equation (4.1),
we search the solution of the optimization problem over a lower-dimensional space
containing Θ as in equation (4.2). In the following pages we explain the role of Θ
by introducing a matrix decomposition of the weights of each layer and compare
the results between full fine-tuning and LoRA.

An LLM architecture contains a sequence of layers, each of them described
by a weight matrix, which is typically full rank. It was shown that pre-trained
language models have a low intrinsic dimension, which means that there exists a
low dimensional reparametrization which is effective as full fine-tuning [134]. This
means that full fine-tuning may not be the best technique to adapt a model on a
certain task, since pre-trained LLMs are yet able to solve a huge variety of tasks
and do not need therefore a full update of weights, which would require also huge
computational resources. Then, instead of fine-tuning on the whole parameter
space, an LLM can achieve high performances also using a lower dimensional por-
tion of that parameter space.
Given a layer l with frozen pre-trained weight matrix W

(l)
0 ∈ Rd×k, LoRA pro-

cedure adds a fine-tuning matrix ∆W (l), factorized as ∆W (l) = B(l)A(l), where
B(l) ∈ Rd×r and A(l) ∈ Rr×k. The number r is called rank. The trainable matrices
A(l) and B(l) contain dr + kr parameters: if r ≪ min(d, k) then the trainable pa-
rameters are a few compared to W

(l)
0 , which contains dk weights. This procedure

can be applied to any layer l of the model: as discussed in the original paper,
LoRA is not applied to fully connected layers due to parameter efficiency. Indeed,
from Table 3.2 we remark that the highest percentage of weights of an LLM is
contained in the fully-connected modules. Since our goal is to reduce the number
of trainable parameters while keeping similar performances to full fine-tuning, it
is a reasonable choice to apply LoRA only to the attention weights, which is also
confirmed by several experiments discussed later.
At the beginning of the training we initialize the trainable parameters A(l) ∼
N (0, σ2) and B(l) = 0 for the l-th layer, thus ∆W (l) = 0 and we do not modify
any parameter of the pre-trained network. Then, we scale ∆W (l) by α

r
, where α
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is a tuning parameter constant in r and get

W (l) ←W (l) +
α

r
∆W (l).

Using Adam optimizer, tuning α is equivalent to tuning the learning rate, hence
we set α = r. Figure 4.1 shows LoRA reparametrization with trainable matrices
A and B.
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𝑑
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x

f(x)

𝑑

Figure 4.1: LoRA reparametrization with a frozen pre-trained weight matrix W ∈
Rd×d and two trainable matrices B ∈ Rd×r and A ∈ Rr×d. Note that here the
matrix is square, but the same procedure applies to rectangular matrices. Image
from [5].

Remark. Once the trainable matrices A(l) and B(l) for each layer l have been
computed and the new weight matrix W

(l)
0 + B(l)A(l) has been stored, LoRA

easily allows to recover the original frozen weights W
(l)
0 by subtracting B(l)A(l)

and adding new trainable matrices B
′(l)A

′(l) for a new downstream task. This
implies that no additional inference latency is introduced.

LoRA technique using a small rank r is compute- and memory-efficient, but
a deeper analysis on its performances based on practical experiments has to be
discussed. Moreover, several challenges need to be addressed, such as the type of
weight matrices to which LoRA should be applied to to achieve best performances
and the optimal rank r.
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According to the original paper [5] several experiments on RoBERTa, De-
BERTa, GPT-2 and GPT-3 with different ranks r and adapting different weight
matrices (Ωk,Ωq,Ωv and Ωd) were performed on different datasets, which involve
tasks such as language understanding and generation. MLP modules, LayerNorm
layers and biases were not adapted and their weights were kept frozen, mostly due
to parameter efficiency. This allows a great reduction in memory and storage us-
age, allowing to train the model with fewer GPUs: it was achieved a 25% speedup
during training of GPT-3 compared to full fine-tuning due to the lower number
of gradients’ calculations. In general, LoRA factorization of the attention matri-
ces achieves performances similar or even higher than full fine-tuning on all the
considered models and datasets, showing empirically the huge potential of using
a low-rank decomposition for fine-tuning, not only from a computational point of
view. An example of the obtained accuracies on GPT-3 is shown in Figure 4.2.
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Figure 4.2: Validation accuracy of GPT-3 vs number of trainable parameters on
the datasets WikiSQL and MultiNLI using several adaptation methods. We notice
that LoRA exhibits similar or even higher accuracies than full fine-tuning. Image
from [5].

Several empirical studies were performed to analyze the optimal performances
of LoRA varying rank r and adapting different attention blocks. GPT-3 has been
fine-tuned for 2 epochs with a batch size of 128. We consider two datasets, Wiki-
SQL [135] 1 and MultiNLI from GLUE benchmark, on which fine-tuning is applied.
Following results were obtained:

1. Optimal subset of weight matrices: given a parameter budget of 18M
1Supervised dataset containing 56.355 and 8.421 training and validation examples. The task

is to generate SQL queries from natural language questions and table schemata.
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(10.000 times less the parameters of GPT-3), LoRA is applied to adapt one
or more type of attention matrices, scaling properly the rank r, in order to
keep the number of trainable parameters constant. The results are shown
in Table 4.1: optimal results where obtained with r = 2 adapting all four
matrices Ωk,Ωv,Ωq and Ωd. Lower performances were achieved by adapting
only one of the four matrices even with higher rank r = 8. It follows that is
preferable to adapt more weight matrices with smaller rank.

2. Optimal rank r: we apply LoRA to different attention matrices varying
the rank r and see the model performance. The results are shown in Table
4.2. We notice that a small rank as r = 1 for adapting {Ωk,Ωv} allows to
achieve almost optimal accuracies, which suggests that the fine-tuning matrix
∆W could have a small intrinsic rank. Moreover, increasing the rank r does
not improve in a remarkable way the obtained accuracies, suggesting that a
low-rank matrix is sufficient.

Weight Type Ωq Ωk Ωv Ωd {Ωq,Ωk} {Ωq,Ωv} {Ωq,Ωk,Ωv,Ωd}

Rank r 8 8 8 8 4 4 2

WikiSQL 70.4 70.0 73.0 73.2 71.4 73.7 73.7
MultiNLI 91.0 90.8 91.0 91.3 91.3 91.3 91.7

Table 4.1: Validation accuracy on WikiSQL and MultiNLI applying LoRA to
different weight matrices in GPT-3, keeping the number of trainable parameters
constant. Table from [5].

Weight Type r = 1 r = 2 r = 4 r = 8 r = 64

Ωq 68.8 69.6 70.5 70.4 70.0
WikiSQL {Ωq,Ωv} 73.4 73.3 73.7 73.8 73.5

{Ωq,Ωk,Ωv,Ωd} 74.1 73.7 74.0 74.0 73.9

Ωq 90.7 90.9 91.1 90.7 90.7
MultiNLI {Ωq,Ωv} 91.3 91.4 91.3 91.6 91.4

{Ωq,Ωk,Ωv,Ωd} 91.2 91.7 91.7 91.5 91.4

Table 4.2: Validation accuracy on WikiSQL and MultiNLI applying LoRA to
different weight matrices in GPT-3, varying the rank r. Table from [5].
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Remark. All the experiments depend strongly on the model and the downstream
task datasets: in general, smaller ranks r may not perform well for other tasks on
other models. If we deal with more complex tasks, for instance text translation,
a higher rank r may significantly achieve higher performances and outperform
LoRA with smaller ranks. Moreover, as LLMs get scaled and increase their size,
they become able to solve a wider range of tasks, since, for instance, capture more
relationships inside the language. Thus, also model’s size influences strongly PEFT
performance.

A further analysis involves the comparison between the frozen pre-trained
weights of W (l)

0 and the fine-tuning weights ∆W (l) at a network layer l. It was
shown that these two matrices are strongly correlated, in particular ∆W (l) ampli-
fies several features present in W

(l)
0 : this suggests that using a low-rank adaptation

matrix for fine-tuning allows to emphasize certain features, which are related to
the downstream task and were only learned in the pre-trained model. Several vari-
ations of LoRA reparametrization were proposed in the last years, such as LoRA+
and LoRA-drop, which are discussed in the next subsections.

4.1.1 LoRA+

LoRA+ [132] is a recent technique from 2024 which analyzes the role of the
learning rate on the update of the matrices A and B. It was shown that LoRA on
models with large embedding dimension D leads to suboptimal fine-tuning, due
to the fact that the same learning rate for updating both A and B was used. In
this subsection we discuss the advantages of using different learning rates, which
allow to improve by 1-2% the performances of classical LoRA and doubling its
fine-tuning speed, without increasing the computational cost. In this subsection
we focus on the advantages of using different learning rates and discuss some ex-
periments on different models.

During training process, LoRA updates the matrices as follows:

A← A− η∇A
B ← B − η∇B,

(4.3)

where η is the learning rate, ∇A and ∇B represent the gradients from Adam
optimizer for A and B, respectively. We drop the dependence from layer l to
make the notation easier. At the first training step, the matrices are initialized as
A ∼ N (0, σ2) and B = 0. We want to show that using the same learning rate for
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both A and B leads to suboptimal learning, especially when the embedding di-
mension D is large, which is the case for recent LLMs; moreover, the performances
can be increased by setting different learning rates. Before discussing theoretical
and empirical results on the use of different learning rate for LoRA fine-tuning, we
introduce the concepts of stability and efficiency.

LoRA fine-tuning is stable if no quantity in the network explodes as D grows.
In order to ensure stability, the hyperparameters as initialization of A and B and
learning rate needs to be scaled properly: for instance, for A the variance σ2 has to
scale as D−1. Instead, scaling arbitrarily the learning rate may lead to suboptimal
fine-tuning. LoRA fine-tuning is efficient if it is stable and both weight matrices
A and B contribute to the final update. For instance, if one of the two matrices
is not efficiently updated, we may achieve suboptimal learning. The following
theorem shows the optimal scaling of learning rates in order to achieve an efficient
fine-tuning for LoRA.

Theorem 1 (Efficient LoRA). If A and B are trained with Adam optimizer with
learning rates ηA and ηB, respectively, then efficiency is not achieved when ηA =

ηB. However, LoRA fine-tuning is efficient if ηA = Θ(D−1) and ηB = Θ(1)2.

Proof. See [132], page 15.

It follows that efficiency can only be reached when ηB/ηA = Θ(D), which
means that the learning rate for updating B has to be much greater than the one
for A. However, the theorem does not provide a precise value for ηB/ηA: instead of
implementing a 2D search tuning on both learning rates, which is highly inefficient
from a computational point of view, we perform a 1D search by fixing a value for
the ratio ηB/ηA and tune only one of the two learning rates. In this way, LoRA+
and LoRA achieve same computational cost. We denote the ratio ηB/ηA as λ:
thus, ηB = ληA, where λ≫ 1 and we tune ηA. The optimal ratio λ can be found
through experiments, depending on the model and downstream task. Compared
to equation (4.3) the training process of LoRA+ can be written as

A← A− η∇A
B ← B − λη∇B, λ≫ 1.

(4.4)

2Given two sequence cn ∈ R and dn ∈ R+, we write cn = O(dn), respectively cn = Ω(dn), if
cn < kdn, resp. cn > kdn for some positive constant k. We write cn = Θ(dn) if both cn = O(dn)
and cn = Θ(dn) hold.
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The theoretical results from Theorem 1 are confirmed by several experiments
on different language models, as RoBERTa, GPT-2 and LLaMA. On RoBERTa
and GPT-2 with α = r = 8 the accuracy is maximal when ηB ≫ ηA, outper-
forming the classical LoRA with equal learning rates. It was observed that the
gap between the optimal choice of learning rates and the optimal choice when
ηB = ηA is more evident for harder tasks as MNLI and QQP from the GLUE
benchmark. Considering LLaMA-7B with hyperparameters α = 16 and r = 64

on MMLU benchmark achieved a 1.3% gain taking optimal ηB ≫ ηA; on MNLI
benchmark with hyperparameters α = 16 and r = 8 nearly optimal performances
were achieved using equal learning rates, since the task is easy for LLaMA but
hard for smaller models as RoBERTa and GPT-2. A final analysis involves the
optimal value of λ, which is model and task sensitive: for instance, a value of 22

or 23 is optimal for RoBERTa, while for LLaMA a value of 21 or 22 is preferred.

4.1.2 LoRA-drop

LoRA-drop [133] is a recent method from 2024 which optimizes fine-tuning by
applying LoRA only to the most impactful layers by considering their outputs.
On these layers LoRA technique is applied each with his own matrices A and B,
while the remaining layers share the same reparametrization. Experiments showed
that LoRA-drop can achieve performances similar to full fine-tuning and LoRA,
while considering only half of the original LoRA parameters. In this subsection
we explore LoRA-drop, focusing on its advantages and describing several results
from the experiments.

While LoRA+ deals with the different learning rates for updating A and B,
LoRA-drop’s main goal is to reduce the trainable parameters of LoRA without
having a downgrade in the performances and achieving a faster training. The
idea behind is to analyze how each output of each LoRA layer, which depends on
the given data and trained parameters, impacts on the final result: for instance,
given x(1) the input at the first layer, then if ||∆W (1)x(1)|| is large then x(1) has a
relevant impact on the first layer. In general, given input x(l) at layer l the output
is

h(l) = W (l)x(l) +∆W (l)x(l).

The value B(l)A(l)x(l) depends clearly on the LoRA parameters and the hidden
state, hence higher values correspond to more important LoRA. We remark that
the hidden state or input at layer l is computed from the fine-tuning dataset
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through the preceding layers. After several experiments, it was observed that
||∆W (l)x(l)||2 is highly concentrated for each layer, showing a peak Gaussian dis-
tribution. Moreover, for certain layers ||∆W (l)x(l)||2 consistently remains close to
zero, showing that LoRA has no impact on the model: therefore, these layer are
kept frozen and not trained. Figure 4.3 shows a diagram of LoRA-drop.
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Figure 4.3: Diagram of LoRA-drop. LoRA influences the pre-trained model
through its output ∆Wx. Image from [133].

Following these empirical observations, LoRA-drop technique was proposed,
consisting in two steps:

1. Importance Evaluation: given a downstream task dataset Z = {x,y},
where x are the inputs and y the outputs, we sample a subset Zs. In the
original experiments, the sampling ratio α was set to 10%: even if the subset
is much smaller than the full dataset, the LoRA importance distributions
were similar, allowing to compute the importance for less data. We then
compute

gl =
∑
x∈Zs

||∆W (l)x(l)||2,

and, by normalizing,
Il =

gl∑
l

gl
.

The magnitude of gl shows the impact of LoRA on layer l and the importance
Il for layer l is a value between 0 and 1.

2. Task Adaptation: we sort the layers according to Il and select the layers
from most to least important important until the sum importance reaches a
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threshold T . In the original paper, T = 0.9. The LoRA of the selected layers
is re-trained on the whole dataset Z, while a shared LoRA reparametrization
replaces the LoRA of the other layers.

Experiments on RoBERTa and LLaMA-7B were performed to evaluate the
models on GLUE benchmark for natural language understanding task. Moreover,
LLaMA-7B was also tested on natural language generation tasks. Experiments on
RoBERTa-base showed that by reducing of 50% the number of trainable parame-
ters of LoRA, LoRA-drop achieves an average score of 86.2 on GLUE benchmark,
comparable with full fine-tuning (86.4) and LoRA (86.1). On RoBERTa-large
LoRA-drop with a score of 89.1 outperforms on average both full fine-tuning and
LoRA by 0.2 points on the GLUE benchmark. Similar results were obtained on
LLaMA-7B where LoRA-drop achieves a score of 89.3, while LoRA 89.2 and full
fine-tuning of 87.3 on GLUE benchmark. Finally, for natural language generation
(NLG) tasks using only 68% of the original LoRA parameters, which correspond to
0.09B parameters, LoRA-drop outperforms both full fine-tuning and LoRA meth-
ods on LLaMA-7B.

Finally, the choice of the sampling ratio of α = 10% and of the threshold
T = 0.9 were motivated through a series of results. As the training data increases,
the importance order of each layer remains consistent: for instance, applying LoRA
to the query matrices on RoBERTa-base model the 10th layer was always the
most important, followed by layers 7,8,9. This shows that a small sampling ratio
is sufficient for obtaining accurate values of importance. On the threshold T , if
T = 1 then classical LoRA is applied. If T < 0.9 the model performance increases,
if T = 0.9 approximately half of the layers were selected and if T > 0.9 the
performance does not improve significantly: hence T was set to 0.9.

4.2 SMT

In the previous section we described LoRA and its variants which are PEFT
techniques which aim to improve the performance of a language model by fine-
tuning a lower dimensional parametrization of the model parameters. However,
the gap between LoRA and full fine-tuning becomes relevant as the model’s size
increases. Other studies on modifying and locating memories in transformer based
models as [136], [137] and [138], have shown that LLMs have memory sections
located in distinct layers, which can be identified through fine-tuning. This means
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that they contain domain-specific knowledge distributed separately and sparsely
among the different layers: for instance, certain layers have higher impact on sum-
marization tasks, while others on translation task. Therefore, a new technique
called Sparse Matrix Tuning (SMT) [6] was recently proposed, which applies ma-
trix sparsity and fine-tunes the most relevant memory sections of the model, out-
performing LoRA with the same number of trainable parameters. A comparison
between LoRA and SMT is shown in Figure 4.4.

Figure 4.4: Comparison between LoRA (on the left) and SMT (on the right). For
SMT the m green square matrices of dimension l × l indicate the selected sub-
matrices to which fine-tuning is applied. The remaining light-blue sub-matrices
are kept frozen. Image from [6].

From equation (4.2) SMT uses matrix sparsity as parameter-efficient approach,
where Θ represents the sub-matrices within the sparse weight matrices. SMT slices
a pre-trained weight matrix W0 ∈ Rd×k into nSMT sub-matrices and applies fine-
tuning only on mSMT of them, which dimension is l × l. In the original paper
l = 256: since the considered LLM is LLaMA, l = 256 is the largest common
factor of the column and row sizes of all linear layers. The total number of sub-
matrices is nSMT = d×k

l×l
. As in LoRA, SMT adds to W0 an update matrix ∆WMSMT

to get
W0 +∆WmSMT , mSMT ≪ nSMT.

A warm-up phase of 100 iterations allows to identify and select the most relevant
sub-matrices, which exhibit maximal gradient changes for the specific fine-tuning
task, as shown in Figure 4.5. A warm-up phase is a set of iterations before the
training process in which the pre-trained model computes the gradients from a
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given dataset. Thanks to a sparsity approach, SMT improves computational effi-
ciency and reduces memory usage, allowing to achieve higher speedup than LoRA,
since, for instance, unselected gradients are not calculated and updated. Moreover,
since gradients are calculated and saved only for a subset of weights, SMT reduces
the backward computation cost, the activation memory cost, the memory cost of
the optimizer gradients and the gradient step computation. As in LoRA, only at-
tention layers are updated, while MLP layers are kept frozen: several experiments
discussed later have shown that attention layers are more relevant for achieving
higher performances than MLP layers.

Figure 4.5: A d × k sparse weight matrix. The green sub-matrices of dimension
l × l exhibit maximal gradient changes and are updated. Image from [6].

Experiments were run on open-weight LLaMA models, which were fine-tuned
on Common Sense Reasoning with 8 sub-tasks for 3 epochs and the results com-
pared with LoRA. Results are shown in Table 4.2: SMT outperforms LoRA given
similar number of trainable parameters. Highest performances similar to full fine-
tuning of SMT are achieved by training approximately 5% of the weights, except
the largest model LLaMA-3-8B where only 3% are needed.

Another experiment involves the fine-tuning also of MLP layers: in particular,
considering LLaMA-7B on the Commonsense dataset, SMT is applied and 0.84%
of the parameters is updated. The highest accuracy is obtained when MLP layers
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Model PEFT #Params (%) Average performance

LLaMA-7B

LoRA (Best) 0.83 76.3
SMT 0.84 78.7

SMT (Best) 0.84 78.7
Full fine-tuning 100 81.4

LLaMA-13B
LoRA (Best) 0.67 80.5

SMT 0.68 82.4
SMT (Best) 4.91 84.3

LLaMA-2-7B

LoRA (Best) 0.83 77.6
SMT 0.84 81.8

SMT (Best) 4.91 83.4
Full fine-tuning 100 82.2

LLaMA-3-8B
LoRA (Best) 0.70 80.8

SMT 0.71 86.8
SMT (Best) 3.01 87.2

Table 4.3: Accuracy comparison on average of different LLaMA models on 8 Com-
monsense Reasoning datasets with LoRA, SMT and full fine-tuning. In bold the
average accuracy of SMT under similar percentage of trainable parameters, where
LoRA achieves best performance. Also SMT with highest accuracy is shown. Ta-
ble from [6].

were kept frozen, while lowest accuracy is achieved when only MLP layers were
updated, showing that attention mechanisms play a fundamental role for solving
language tasks: the more trainable parameters are allocated to attention layers,
the better the fine-tuned model performs, as shown in Table 4.4. Since attention
layers are more impactful in the model fine-tuning, a final experiment involves
the different role of queries, keys and values. It was observed that the majority
of the weights is assigned to the values, showing that they contain the most of
the memory. Figure 4.6 shows that all values in fine-tuning LLaMA-7B with
SMT contain trainable parameters, while 22 query layers and 21 key layers are
frozen. Moreover, if we apply SMT only to one among values, keys or queries,
a significant gap is obtained when allocating all the trainable parameters to the
values, suggesting again that values are the most impactful layers for SMT on this
LLaMA-7B.
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Figure 4.6: Fine-tuning of LLaMA-7B on Commonsense dataset with SMT and
0.86% trainable parameters. Values V , queries Q and keys K are shown: white
layers are frozen, green layers are updated with SMT. Image from [6].

Model MLP% Attention% Average performance

LLaMA-7B

0.84 0 76.7
0.42 0.42 77.3
0.21 0.63 77.8
0 0.84 78.7

Table 4.4: Fine-tuning of LLaMA-7B on Commonsense dataset with SMT. MLP%
and Attention% show the percentage of trainable parameters for MLP and atten-
tion layers, respectively. Table from [6].

4.3 SVFT

Singular Vectors Fine Tuning (SVFT) [7] is a fine-tuning approach that updates
the pre-trained frozen weight matrix by adding a sparse weighted combination of
its own singular vectors. This technique achieves high downstream accuracy, while
training only a small percentage of parameters. In this section, we explain SVFT,
focusing in particular on the advantages of matrix factorizations through SVD for
fine-tuning an LLM.

Let W0 ∈ Rd×k be the usual frozen pre-trained matrix belonging to a certain
layer of the pre-trained LLM. At first we computed its Singular Value Decomposi-
tion and get W0 = UΣV T , where U ∈ Rd×d is the square matrix of left singular
vectors (orthonormal columns), Σ ∈ Rd×k is a diagonal matrix of singular values
and V T ∈ Rk×k is the square matrix of right singular vectors (orthonormal rows).
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Then, we factorize the fine-tuning matrix as ∆W = UMV T , where U and V T

are computed and frozen, while M = (mi,j) ∈ Rd×k is a sparse trainable matrix
with fixed sparsity pattern Ω. Thus, we train only the non-zero elements of M ;
|Ω| allows to control the number of trainable parameters. In particular,

W0 +∆W =

min(d,k)∑
i=1

σiuiv
T
i +

∑
(i,j)∈Ω

mi,juiv
T
j . (4.5)

Given an input x the forward pass of SVFT is

h = W0x+∆Wx = U(Σ+M )V Tx.

Four given choices of Ω are:

1. Plain: M is diagonal, since mi,j = 0 if i ̸= j. Equation (4.5) reduces to

W0 +∆W =

min(d,k)∑
i=1

(σi +mi,i)uiv
T
i ,

which means that only the diagonal elements are trained. It can be inter-
preted as adapting the singular values which becomes σi+mi,i and reweight-
ing the frozen singular vectors. This is the most parameter-efficient SVFT.

2. Banded: M is a banded matrix, since mi,j = 0 if j < i − b1 or j > i + b2
for b1, b2 ≥ 0. It extends the plain case to more than one diagonal, allowing
to capture more interactions between the singular values.

3. Random: M is a randomly chosen sparse matrix.

4. Top-j: it works only when d = k, hence the pre-trained frozen matrix is
square. We select and only train the top-j elements, which means that only
the top-j strong interactions between singular vector directions are learnable.

Figure 4.7 shows SVFT approach with the four described sparsity patterns.

Several remarkable properties are highlighted in the following proposition,
which shows interesting improvements of LoRA technique.

Proposition 1. Let W0 ∈ Rd×k with SVD given by UΣV T . Consider the matrix
W0 +UMV T , where M has the same size of Σ. It holds:
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Figure 4.7: Overview of SVFT. The pre-trained frozen weight matrix is factorized
through SVD to get W0 = UΣV T . The fine-tuning matrix is factorized as ∆W =

UMV T , where M is a sparse trainable matrix (the orange elements are adapted,
the gray ones are zero). Image from [7].

1. Structure: if M is diagonal (plain SVFT) then W0 + UMV T has U as
left singular vectors and sign(Σ +M)V T as right singular vectors. Hence,
singular vectors do not change except for possible sign flips.

2. Expressivity: given a target matrix P of the same size of W0, there exists
M such that P = W0 +UMV T . This implies that M is full trainable and
any target matrix can be realized.

3. Rank: if M has j non-zero elements, the rank of UMV T is at most
min {j,min(d, k)}. Thus, SVFT can produce a much higher rank pertur-
bation than LoRA.

Proof. See [7], page 13.

We compare now the fine-tuning matrix of LoRA and SVFT:

LoRA: ∆W =
r∑

i=1

aib
T
i

SVFT: ∆W =
∑

(i,j)∈Ω

mi,juiv
T
j .

(4.6)

We remark that LoRA reparametrization can be expressed a sum of r rank-one
matrices, while SVFT factorization as a sum of |Ω| rank-one matrices. LoRA re-
quires d + k parameters per rank-one matrix, while SVFT only one. However,
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SVFT has to compute and store the SVD of W0 and roughly doubles the memory
usage with respect to LoRA.

SVFT experiments on encoder-only model DeBERTaV3-base and two decoder-
only model Gemma-2B/7B and LLaMA-3-8B were performed for solving both
natural language generation and understanding tasks. These showed that SVFT
is an excellent trade-off between parameter efficiency and performance, allowing
to achieve similar performance of LoRA with much fewer parameters and outper-
forming in several cases full fine-tuning, making this technique an attractive PEFT
choice. For NLG tasks Gemma-2B/7B and LLaMA-3-8B are evaluated on GSM-
8K, MATH dataset and Commonsense reasoning benchmark: on average on the
first two datasets, SVFT plain achieves 18% relative improvement over techniques
that use 6× more trainable parameters and 15.5% relative improvement on over-
age over techniques with comparable sizes. On GSM-8K, by training only 0.25%
of the pre-trained model’s parameters, SVFT random is able to achieve 96% of
full fine-tuning, while other PEFT methods recover at most 86% with 2× more
parameters. Instead, on Commonsense reasoning benchmark, SVFT plain shows
competitive performances in comparison with LoRA with r = 1 which as 1.9×
more parameters. For NLU tasks on GLUE benchmark SVFT matches LoRA
with r = 8 using 12× more trainable parameters. As in LoRA and SMT, adapting
more types of attention blocks enhances performance.
Finally, a result on the impact of M ’s sparsity is discussed. Both random and
Top-k variants outperform SVFT banded on GSM-8K dataset. However, SVFT
banded has highest performances on MATH dataset. This suggests that the spar-
sity pattern may depend strongly on the downstream task, hence the choice of
parametrization has a relevant influence on fine-tuned model’s performance.

4.4 LLM in HPC

Due to the large and increasing size of LLMs, the training process, which needs
to learn billions or even trillions of weights, is computationally expensive and re-
quires significant memory resources. Laptops do not have have enough memory to
store all the weights and gradients and the training process would require several
years, hence more powerful computers are required to train such models. Super-
computers as Leonardo are equipped with a large number of compute nodes and,
thanks to High Performance Computing (HPC), are able to store huge quantity of
data and train LLMs faster. Thus, supercomputers play a crucial role to signifi-
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cantly reduce pre-training, fine-tuning and inference time if compared to classical
computers. In this section, we discuss the role of HPC for training an LLM and il-
lustrate a library called Accelerate which is useful for accelerating our experiments.

Laptops have a limited number of CPUs and low memory storage, and the
majority of them does not have GPUs, which would allow to perform several cal-
culations simultaneously. Thus, it is extremely hard to train an LLM on these
computers. For instance, GPT-3 training would require 355 years if done on a
single GPU, while the parameters would need 700GB memory space if stored as
float32 (4 bytes per weight), which drastically exceeds the memory available in a
GPU [139]. However, this problem may be solved by using supercomputers through
parallel computing: a given problem can be split into smaller subproblems, which
can be executed simultaneously, reducing training time and memory storage. For
instance, using 1.024 GPUs, GPT-3 training may be reduced to approximately
one month [140]. Thus, HPC accelerates considerably training process, enabling
to train large models in a significantly smaller fraction of time than that required
by traditional computing methods.

The main idea behind parallel computing is to split a given problem into smaller
problems, which can be executed at the same time: this allows to reduce training
cost, make an efficient use of GPUs and CPUs, and therefore solve more complex
problems [141]. Thanks to the huge number of computing resources, supercom-
puters rely strongly on parallel computing, since a lot of operations inside a neural
network can be split into smaller independent parts. For instance, a product be-
tween two matrices can be performed serially, multiplying the first row with the
first column, and so on, or in parallel, where each row is multiplied with each
column simultaneously, allowing for a much more efficient implementation, both
in training and inference process. In our experiments, fine-tuning LLaMA-2-7B
using serial computing would have taken approximately 10× more time than us-
ing parallel computing with 16 GPUs, showing the high performances achieved by
supercomputers.

There exists several libraries which apply parallel computing efficiently. We
used Accelerate [142], a library that enables the same Pytorch code to be run
across any distributed configuration, for instance in terms of number of nodes
and GPUs on a supercomputer, by adding just few lines of code for preparing
and distributing the model on the given configuration. We integrated Accelerate

83



4. PEFT

with DeepSpeed [143], a Deep Learning optimization library designed to efficiently
scale models across distributed systems. In particular, from DeepSpeed we applied
Zero Redundancy Optimizer (ZeRO) - Stage 3 [144], which makes use both of
data parallelism and model sharding. Data parallelism distributes data across
different nodes, while model sharding splits the model into smaller pieces. ZeRO
is implemented in three progressive stages:

1. ZeRO-Stage 1 (Optimizer State Partitioning): shards the optimizer states, as
variance and momentum, across GPUs. In this way we eliminate redundant
memory allocations.

2. ZeRO-Stage 2 (Gradient Partitioning): it extends the previous stage by
sharding also gradients across GPUs. In this way each process contains
only a subset of the gradients, corresponding to its portion of the optimizer
states.

3. ZeRO-Stage 3 (Parameter Partitioning): it extends the previous stages by
sharding also model parameters across GPUs. In this way each process loads
only the specific parameters needed for the current computational step during
training.

In our experiments, we parallelized the code on more GPUs and on one or more
compute nodes making use of Accelerate and DeepSpeed ZeRO-Stage 3. We also
allow the GPUs to communicate with each other inside the different compute
nodes, and the compute nodes to communicate with each other.

4.5 Experiments on Leonardo

In this final section, we provide several results on the experiments on Leonardo
supercomputer. We applied two PEFT techniques, namely LoRA and SMT to the
open-weight LLaMA-2-7B, varying the number of GPUs and trainable parameters.
In particular, we updated at most 160M parameters, against the 7B required by
full fine-tuning, thus, more than 97.7% of the weights was kept frozen. Then, we
analyzed the results in terms of speedup and evaluated the fine-tuned model on the
Big Bench Hard (BBH) dataset [145], comparing the performances and inference
times achieved by the two techniques. The Pytorch code for our experiments was
adapted from [146].

84



4. PEFT

We downloaded the LLaMA-2-7B model and stored it on Leonardo. We fine-
tuned this model on the instruction tuning dataset tulu-v2-sft-mixture [147],
suitable for question answering and text summarization tasks and containing 326K
samples. The dataset is fully in English and is a mixture of samples from different
datasets, as:

• FLAN [148]: 100K samples to emphasize Chain-of-Thought reasoning.

• ShareGPT [149]: 114K samples containing conversations scraped via the
ShareGPT API, including both user prompts and responses from OpenAI’s
ChatGPT.

• Open Assistant 1 [150]: 7.7K human-generated, human-annotated assistant-
style conversation messages.

• Code-Alpaca [151]: 20K samples for code generation.

• Science examples: 7.5K samples from a mixture of scientific document for
understand tasks, including question answering, fact-checking, summariza-
tion, and information extraction.

We applied both PEFT techniques only to attention matrices, hence we kept
frozen the fully connected layers. In particular, we applied LoRA with ranks 8,
16, 32 and 64, which correspond to 0.30%, 0.59%, 1.17% and 2.32% of the origi-
nal 7 billion parameters of pre-trained LLaMA-2; thus, the maximum number of
trainable parameters was approximately 160 millions. Similarly, we applied SMT
with a similar percentage of trainable parameters to make the comparison of the
two PEFT techniques more consistent.
Finally, we evaluated the fine-tuned model in terms of inference time and per-
formances on the Big Bench Hard dataset, a collection of 23 tasks which require
multi-step reasoning and can be collected into four macro-categories [145]:

• Algorithmic and Multi-Step Arithmetic Reasoning: these tasks re-
quire a varying level of arithmetical, logical, hierarchical, spatial and tempo-
ral reasoning capabilities.

• Natural Language Understanding: these tasks focus on semantic under-
standing, name disambiguation, entity resolution, grammar rules, or sarcasm
detection.
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• Use of World Knowledge: these tasks require factual and general knowl-
edge about the world as well as the common practices and presuppositions
in the Western society.

• Multilingual Knowledge and Reasoning: these tasks are based on trans-
lation quality estimation and cross-lingual natural-language inference.

Table 4.5 lists all the hyperparameters used for both techniques.

Hyperparameter LoRA SMT

Epochs 2 2
Global batch size 128 128
Batch size per GPU 1 1
Sequence length 2.048 2.048
Dropout rate 0.1
α 16
Weight decay 0 30
Warm-up ratio 0.03 0.03
Initial learning rate3 1e-5 1e-5

Table 4.5: Hyperparameters used for fine-tuning LLaMA-2-7B applying PEFT
techniques LoRA and SMT.

We varied the number of GPUs per node, from 1 to 4, which is the highest
possible on Leonardo for each node, and the number of nodes, from 1 to 4, thus
the maximum number of GPUs used was 16. This was useful to study the speedup
of the two PEFT techniques. We collect the results obtained in several tables.
Results on the fine-tuning time needed on average per iteration using several num-
bers of GPUs for both PEFT techniques are reported in Table 4.6. The obtained
speedups are shown in Figure 4.5: in the optimal theoretical case, the speedup
using 1 processor and n processors is equal to n. Hence, by doubling the num-
ber of processors, then the training time should halve. However, empirically, this
optimal speedup can not be achieved, since the time that GPUs use to communi-
cate each other is much larger than the time needed for calculations. Results on
the fine-tuning time needed on average per iteration using 16 GPUs and varying

3A linear learning rate decay following warm-up over the first 3% of the training steps is
applied.
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percentage of trainable parameters for both PEFT techniques are reported in Ta-
ble 4.7. Results on the inference time needed on average per iteration using 16
processors, i.e. 4 nodes with 4 GPUs each, and varying percentage of trainable
parameters for both PEFT techniques are reported in Table 4.8. Average evalua-
tion results on BBH dataset varying percentage of trainable parameters for both
techniques are reported in Table 4.9. The evaluation metric is exact match for all
23 tasks.
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Figure 4.8: Speedup plots of LoRA and SMT related to Table 4.6.

Number of GPUs

1 2 4 8 16

LoRA 45.35 25.29 13.17 7.81 4.88
SMT 46.91 24.88 12.84 7.92 4.52

Table 4.6: Average fine-tuning time per iteration (in seconds) of LLaMA-2-7B
with LoRA and SMT, using 2.32% of trainable parameters and varying number
of GPUs. Here only 100 training iterations were performed on a larger batch
size, otherwise using 1 GPU with the given choice of hyperparameters would have
required too much time.
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Trainable parameters (%)

0.30 0.59 1.17 2.32

LoRA 2.89 2.89 2.99 3.09
SMT 3.41 3.39 3.05 3.22

Table 4.7: Average fine-tuning time per iteration (in seconds) of LLaMA-2-7B with
LoRA and SMT, using 16 GPUs and varying percentage of trainable parameters.

Trainable parameters (%)

0.30 0.59 1.17 2.32

LoRA 198.72 199.85 201.08 227.39
SMT 225.88 211.67 208.13 196.23

Table 4.8: Average inference time per iteration (in seconds) of the fine-tuned
LLaMA-2-7B with LoRA and SMT, using different percentages of trainable pa-
rameters.

Trainable parameters (%)

0.30 0.59 1.17 2.32

LoRA 42.6 42.9 41.9 43.1
SMT 42.8 42.3 43.7 44.9

Table 4.9: Evaluation results in terms of exact match percentage (%) of the fine-
tuned model LLaMA-2-7B with LoRA and SMT, using different percentages of
trainable parameters.

As we can notice from Figure 4.5 both LoRA and SMT achieve similar speedups
by updating 160 million parameters: by using 2 or 4 GPUs on the same compute
node it is almost optimal, while with 8 or 16 GPUs the speedups significantly de-
creases, since the time required for communication between GPUs was much higher
than the time required for computation. The final speedup with 16 GPUs was 9.3×
and 10.4× with LoRA and SMT, respectively, against the optimal speedup of 16×,
due to the high communication time between GPUs. However, by increasing num-
ber of processors and parallelizing the code, the training time diminishes, showing
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a higher scalability of SMT than LoRA. Similar speedups were achieved using dif-
ferent percentage of trainable parameters.
Moreover, LoRA increases the fine-tuning time per iteration as increasing the
number of trainable parameters: it is a reasonable result, since LoRA adds to each
attention block two low-rank matrices, whose rank increases. On the other hand,
SMT needs most time with few parameters, due to the different nature of the code.
In general, both PEFT techniques are comparable, with LoRA a little faster than
SMT during training but with lower speedup.
On the inference time, we observe that LoRA increases it gradually since the com-
putation slows down when adding higher ranks matrices to the attention layers.
On the other hand, SMT does the opposite and decreases the inference time by
increasing the number of trainable parameters, due to the sparse approach. Eval-
uation results have shown that without fine-tuning the model obtains an average
performance of 32.6%, hence both techniques improve significantly the perfor-
mance. SMT achieves best performance of 44.9% with 2.32% trainable parame-
ters, which is 2.1%, 2.6% and 1.2% points higher than applying SMT with only
0.30%, 0.59% and 1.17% parameters, respectively. Similarly for LoRA, where fine-
tuning with 2.32% parameters achieves better results if compared to other smaller
ranks. However, we can not state that SMT is better than LoRA, since, as re-
marked in the previous sections, fine-tuning relies strongly on the model’s size,
fine-tuning dataset and evaluation dataset. Our experiments had the only goal to
compare the results of these two PEFT techniques in terms of number of GPUs
used, training and inference time needed and evaluation results. We showed that
matrix decomposition techniques are compute- and memory-efficient, allowing to
significantly improve the performance of the pre-trained LLaMA-2-7B on the given
downstream task.
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Conclusions

The purpose of this thesis was to discuss several matrix factorization techniques
for adapting LLMs to a downstream task. In particular, among all possible de-
compositions, we explored low-rank through LoRA and two of its variants, sparse
through SMT and SVD through SVFT. In contrast to full fine-tuning, which re-
quires an update of all model’s weights, parameter-efficient techniques exploit the
fact that recent LLMs are able to solve a wide variety of tasks yet and need only
to modify a smaller percentage of their weights to improve the performances on
a specific task. Moreover, due to the huge amount of computational resources
required for solving these problems, parallel computing allows for a faster training
time and a larger memory storage than serial computing.

In this thesis we studied the structure of an LLM, focusing on its key compo-
nents and training process. At first, we introduced tokenization and embedding:
the former allows to segment any input sequence into tokens, while the latter con-
verts each token into a high-dimensional embedding space. We presented several
tokenization techniques, both rule-based and trained, discussing the advantages
and disadvantages of them. In particular, we focused on subword tokenization
techniques, as BPE, Unigram and SentencePiece, which allow to segment each
word into meaningful subwords and create a vocabulary representative for a cer-
tain language. On the other hand, since machines deal with vectors and not words,
we mapped each token through a numerical embedding. In detail, if two tokens
were semantically similar then also their embedding vectors achieved high cosine
similarity. After that a given corpus text has been tokenized and embedded, it
is passed through a series of transformer layers, where self-attention mechanisms
play a crucial role in understanding relationships inside a text sequence, and, thus,
understanding human language. Depending on the task, we can apply different
transformer architectures as encoder, decoder and encoder-decoder. In order to
evaluate the performance of an LLM, several evaluation metrics and benchmarks

91



were reported, as BLEU, ROUGE, PPL and GLUE. Due to the increasing size and
capabilities of LLMs, the role of benchmarking is increasing its relevance: indeed,
we listed the components of GLUE benchmark, which allows to evaluate an LLM
on a great variety natural language understanding tasks. After that an LLM has
been pre-trained, it can be fine-tuned in order to improve the performance on a
given task or it can be adapted on a specific domain: since full fine-tuning is highly
inefficient computationally, we illustrated different parameter-efficient fine-tuning
techniques, as LoRA, SMT and SVFT. We underlined the role of matrix factor-
ization techniques to apply fine-tuning in a compute- and memory-efficient way,
in order to reduce the computational resources, speed up the training time and
obtain comparable or higher performances than full fine-tuning. Moreover, HPC
plays a crucial role for developing an LLM, whose training would require years on
a classical computer and whose memory storage would be impossible. Different
types of parallelism, as data and model parallelism, were the basis for achieving
high performances. Experiments performed on the open-weight model LLaMA-2-
7B with LoRA and SMT have confirmed the great importance of applying matrix
factorization techniques for fine-tuning LLMs efficiently.
Further investigations on different models, datasets and tasks can be carried out
to prove the importance of matrix factorization for fine-tuning an LLM on a wider
range of contexts.
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High Performance Computing

In this chapter, we give an overview of HPC clusters and why do we need them
to solve modern problems; moreover, we see in detail the structure of a cluster
and focus on the concept of parallelism. A supercomputer, also called cluster, is
a collection of hundreds or thousands servers, called nodes, connected through a
high speed and low latency network. The use of these computers allows us to
study very complex physical system in different scientific fields at all scales, from
a macroscopic point of view (like weather forecasting or evolution of the Universe)
to a microscopic one (like chip or drug design). Sometimes, experimenting a real
simulation of a system would be too dangerous or expensive, such as a fault sim-
ulation or a crash analysis: a virtual simulation would be profitable. All these
problems require a huge amount of data and computational power: supercomput-
ers can execute such tasks thanks to a high degree of parallelization, providing fast
and reliable answers.

A.1 Structure and workflow of a supercomputer

The main structural components of a supercomputer are the following:

• Login Nodes: the user can access the cluster via ssh to perform operations
like moving files and data or running a jobscript, which is a series of instruc-
tions indicating the desired resources (CPUs, GPUs, time, memory). The
main function of these nodes is to interact with the scheduler; however, they
are not designed for running tasks. Login nodes have access to the Internet,
hence they are useful to download data.
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• Scheduler and Master Node: the master node is the "management" node
for the cluster and runs the scheduler; the scheduler distributes the compu-
tational resources among all users, monitoring the jobs currently running on
the supercomputer and assigning pending jobs to the compute nodes. The
most frequently used (Nov. 2021) workload manager is Simple Linux Utility
for Resource Management, or simply SLURM, which can handle up to 1000
job submissions and 600 job executions per second.

• Compute Nodes: these nodes provide computing power and run user’s
algorithms; each compute node is a server equipped with CPUs, memory
and sometimes GPUs, and is specialized for computation.

• Parallel Filesystem: a filesystem manages how files are stored on disks;
in a parallel architecture it performs I/O operations, allowing simultaneous
access from multiple nodes to the filesystem. It uses technology like GPFS,
LUSTRE and BeeGFS.

• High performance network: the nodes are interconnected via a high-
speed network, usually InfiniBand or Ethernet. It is able to transfer large
quantities of data in small time due to its large bandwidth and low latency.

Figure A.1 sums up a general HPC cluster structure.

Figure A.1: General supercomputer’s architecture with the main components de-
scribed above. Image from [152].
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The computational power of an HPC cluster relies on the compute nodes, which
are equipped with two or more CPUs, a great amount of memory and sometimes
with one or more GPUs:

• Central Processing Unit (CPU): its main tasks are to perform computa-
tions and manage the data necessary for running applications; every CPU
has from 32 to 56 cores and is connected to the server memory and to I/O
devices.

• Graphics Processing Unit (GPU): it was originally designed for accelerat-
ing computer graphics and for tasks, for which the same set of mathematical
calculations has to be repeated on every pixel. Now, GPUs are widely used
since they can compute a much higher number of FLOPS1 than what CPUs
can do, therefore it can achieve a high level of parallelism. On the other
hand, a GPU has low memory, hence the data have to pass through the
CPU: this process introduces high latency and can lower the computational
performance.

Now, we briefly describe the most important steps to access the cluster. The
user logs in through Internet to the cluster and gets access to one of the login
nodes, where he can interact with the SLURM scheduler. Here, he can submit
jobs to the compute nodes in an interactive or batch way: in the first one, the
resources are required directly to the compute node, while in the second way, the
resources are demanded in a file called jobscript. Finally, the scheduler adds in a
queuing line every submitted job together with the jobs of other users; as soon as
the resources are available, the jobscript will be executed.

A jobscript is a series of commands containing SLURM directives: the following
jobscript asks 200GB and 1 GPU of a compute node for 30 minutes to run the
program "myexecutable". The standard output and error will be directed in the
files job.out and job.err respectively. The number of CPUs per node is expressed
through the SLURM directive ntasks-per-node.

#!/bin/bash
#SBATCH --job-name=myjob
#SBATCH --output=job.out
#SBATCH --error=job.err

1Floating Point Operation Per Second
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#SBATCH --time=00:30:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=24
#SBATCH --mem=200GB
#SBATCH --gres=gpu:1
#SBATCH --partition=partition_name
#SBATCH --account=account_name
#SBATCH --mail-type=ALL
#SBATCH --mail-user=user@email.com

mpirun ./myexecutable

A.2 Parallelism

Traditionally, softwares have been written for serial computing: briefly, a prob-
lem is divided into a sequence of instructions which are executed one after the other
on a single processor. Using serial computing to solve modern complex problems
with a huge amount of data would be practically impossible both in terms of time
and cost: a solution is exploiting parallel computing. In this way, a problem is
divided in different parts which can be executed simultaneously: each part is bro-
ken into a series of instructions. Instructions from different parts run at the same
time on different processors, allowing an improvement in the performance.

Not every problem can be parallelized, as it depends on the nature of the
problem itself. It is possible to implement different types of parallelism:

• Shared memory parallelism (threading with library OpenMP): a work
is divided between multiple processes which run on the same machine and
share the same memory. This allows an efficient and fast communication
between processing units; although, any change made by one processing unit
to a shared variable has effects to all the other processing units that access
that variable, which could create overlapping problems.

• Distributed memory parallelism (tasking with library MPI2): each pro-
cessor has its own memory and communicates with others processors through

2Message Passing Interface
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MPI. Although we have a large memory at disposal, the main disadvantage
of MPI is the slow communication, which could cause a performance loss.

• Hybrid parallelism: it is a combination of the previous two models, using
both threading within each node and MPI tasking between nodes. It is the
most used in real applications and achieves high performances.

To establish the efficiency of a parallel program we introduce the concepts of
speedup S and efficiency E, defined as follows:

S =
Time for serial

Time for parallel

E =
S

Number of cores
.

The speedup compares the wall-clock time for a serial program with a parallel that
fulfills the same job and is limited by a couple of factors. First, speedup is gen-
erally limited by the speed of the slowest processor, thus we need that the whole
system is load balanced. Secondly, if the communication and computation can not
be overlapped, also partially, then the communication will reduce the speed of the
application. A final limitation is given by Amdahl’s Law (1967): program’s serial
parts limit the potential speedup from parallelizing code, therefore not only the
communication time can slow down the performance, but also the execution time
of serial parts which can not be parallelized. For an ideal system with n processors
the speedup is equal to n: however this does not happen because, for instance, we
have to take into account the time for communication. Dividing the speedup by
the number of processors we get a number between 0 and 1 (in the ideal case we
get 1), hence we can interpret the efficiency as a measure of the percentage of time
for which a processor is used effectively.

In general, we have also to consider the problem’s dimension: the bigger it
is, the higher will be the computing time. The scalability of a program refers to
its ability to handle an increasing amount of data without a significant increase
in computational requirements or decrease in performance. In HPC we have two
ways to measure it:

• Strong scaling: the problem size is kept unchanged, while the number of
tasks assigned to solve the problem increases.

• Weak scaling: the problem size increases together with the number of tasks,
hence the work per task is constant.
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A.3 Supercomputing in Cineca

Cineca is a non profit Consortium, made up of 118 members: the Italian Min-
istry of Education and Merit, the Italian Ministry of Universities and Research,
70 Italian universities and 46 Italian National Institutions and agencies. Today it
is the largest Italian computing centre, one of the most important worldwide. It
operates in the technological transfer sector through high performance scientific
computing, the management and development of web based services to the Italian
academic system, and the development of complex information systems for treat-
ing large amounts of data for public administrations and health care institutions
[8].

1. GALILEO100 [153]: It was co-funded by the European ICEI (Interactive
Computing e-Infrastructure) for scientific research and installed in August
2021 to replace GALILEO. Engineered by DELL, it consists of 636 computing
nodes each with 2 CPUs Intel CascadeLake 8260 with 24 cores each, 2.4 GHz
and 384GB RAM. The compute nodes are divided in 422 standard nodes
(called thin nodes), 180 data processing nodes (called fat nodes) and 34
GPU nodes. The internal network is a Mellanox Infiniband 100GbE. It can
achieve a theoretical peak performance of about 2 PFLOPS.

2. LEONARDO [154]: It is currently hosted by Cineca and built in the
Bologna Technopole; it was classified in 4th position among the most pow-
erful supercomputers in the Top500 List of November 2022. LEONARDO’s
main goal is to support European academic and industrial researchers to de-
velop applications able to face with urgent challenges, such as climate change,
pandemics and prediction of extreme events. It has a storage of about 110
PetaBytes and consists of two partitions:

• a booster partition with 3456 nodes, 4 GPUs NVIDIA A100 SXM6
64GB and a single CPU Intel Ice Lake with 32 cores. It achieves a
theoretical peak performance of about 240 PFLOPS; it is mostly used
to maximize the computational capacity.

• a Data Centric General Purpose (DCGP) partition with 1536 nodes, 2
CPUs Intel Sapphire Rapids each with 56 cores. It achieves a theoretical
peak performance of about 9 PFLOPS.
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