
Alma Mater Studiorum · Università di Bologna

Dipartimento di Fisica e Astronomia “Augusto Righi”

Corso di Laurea in Fisica

Digital approach to quantum adiabatic
algorithms

Relatore:

Prof. Lorenzo Piroli

Presentata da:

Jacopo Sceusi

Anno Accademico 2023/2024



Contents

Introduction 1

1 Quantum mechanics background 4
1.1 Linear Algebra and Dirac notation . . . . . . . . . . . . . . . . . . . . . 4
1.2 Elements of Quantum Computation . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 The Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Quantum Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Quantum time evolution: the evolution operator . . . . . . . . . . . . . . 18

2 Time evolution and adiabatic theorem 22
2.1 How to encode classical problems into quantum Hamiltonians? . . . . . . 22
2.2 Continuous quantum annealing: the Adiabatic theorem . . . . . . . . . . 24

3 Towards Digital Quantum Annealing 31
3.1 Trotter and Suzuki formulae . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Time-independent Hamiltonians . . . . . . . . . . . . . . . . . . . 32
3.1.2 Time-dependent Hamiltonians . . . . . . . . . . . . . . . . . . . . 33
3.1.3 Construction of Unitary 2-Qubits Operators . . . . . . . . . . . . 37

4 QAOA 41
4.1 Overview and Cost and Mixing Operators . . . . . . . . . . . . . . . . . 41
4.2 Classical optimization of the angles (γ, β) . . . . . . . . . . . . . . . . . 45
4.3 Comparison between QA and QAOA performances . . . . . . . . . . . . 48

Conclusions 51

Bibliography 54

1



Abstract

Negli ultimi trent’anni si sono registrati grandi progressi nel campo del calcolo quan-
tistico. Un approccio promettente al calcolo quantistico consiste nel calcolo quantis-
tico adiabatico, o quantum annealing, che si basa sul teorema adiabatico quantistico.
Sebbene quest’ultimo sia progettato per dispositivi quantistici analogici specifici, si può
considerare una versione digitale del quantum annealing che può essere implementata su
dispositivi quantistici di uso generale. Questo è l’argomento di interesse in questa tesi.
Dopo aver introdotto i concetti di base dell’informazione quantistica, esamineremo gli
aspetti del calcolo quantistico adiabatico. Discuteremo la versione digitale del quantum
annealing e stabiliremo un collegamento con il cosiddetto Quantum Approximate Opti-
mization Algorithm (QAOA), uno schema variazionale progettato per risolvere problemi
di ottimizzazione combinatoria su dispositivi quantistici digitali. Un focus particolare
è dato alla semplificazione di operatori di evoluzione con ordinamento temporale o con
Hamiltoniane contenenti termini non commutanti, e alle tecniche di ottimizzazione per
risolvere problemi computazionali complessi. L’obiettivo è fornire una base teorica solida
per comprendere l’implementazione pratica di tali algoritmi.



Introduction

The modern science of computation owes much to the groundbreaking work of Alan Tur-
ing. In 1936, Turing introduced the concept of what we now recognize as a programmable
computer — the Universal Turing Machine — a theoretical device capable of simulating
any computation process, laying the foundation for classical computer science. This no-
tion was encapsulated in the Church-Turing thesis 1, which asserts that any algorithmic
process executable on a physical machine can be simulated by a Turing machine.
Decades later, the traditional framework of computation reached its limits as miniatur-
ization pushed classical devices to encounter fundamental quantum effects. At the same
time, classical intrinsic inability of simulating quantum systems, due to the exponential
growth in the required resources as system size increases, challenged the Church-Turing
thesis. In 1982, Richard Feynman argued that if one wants to simulate a quantum
system accurately, one should use a quantum device — a suggestion that sparked the
birth of quantum computing [11]. Feynman’s insight laid the foundation for what is
now known as quantum simulation, a powerful idea with the potential to surpass classi-
cal computational methods particularly in efficiently solving certain complex problems.
This limitation was made explicit with the introduction of Peter Shor’s algorithm in
1994, which demonstrated that quantum computers could factorize large integers expo-
nentially faster than the best-known classical algorithms, in a time that grows (roughly)
as the square of the number of digits. Shor’s work provided a concrete challenge to the
strong Church-Turing thesis, suggesting that there exist problems efficiently solvable by
quantum machines that are beyond the reach of classical counterparts, even when en-
hanced with randomness [29].
Nowadays, hundreds of problems are known to be hard on classical devices, ranging from
the practical (variants of the ”Traveling Salesman problem”, see [15, 30]) to the whim-
sical (a problem derived from the game of Go). Further, a various range of important
scientific problems from polymer folding [7], [4], to memory [14], to collective decision
making in economics and social sciences [6], [23] can be ultimately resumed in a theory
of computational hard problems, that may find solution within the quantum computing

1Amore general version of this thesis is the Strong Church-Turing Thesis (or Extended Church-Turing
Thesis) which posits that any computational problem that can be solved efficiently (i.e., in polynomial
time) by a physically realizable machine can also be solved efficiently by a probabilistic Turing machine
using a classical algorithm.

1



framework.
Despite this theoretical promise, we currently live in what John Preskill termed the
Noisy Intermediate-Scale Quantum (NISQ) era [28]. In this era, quantum devices have a
limited number of qubits (generally under a thousand), and they are prone to significant
noise and limited coherence time, making it challenging to run deep or precise quantum
algorithms. However, the potential advantages of quantum devices in optimization, cryp-
tography, and simulation have motivated the search for algorithms capable of working
under these constraints and became a central focus in the 1990s, with the development
of the Quantum Approximate Optimization Algorithm (QAOA) and Digital Quantum
Annealing (DQA), which have emerged as leading candidates for solving optimization
problems — problems that are notoriously difficult for classical algorithms.
Both the DQA and QAOA are inspired by Quantum Annealing (QA)2, that was origi-
nally conceived as a form of analog quantum computation: it seeks to navigate complex
optimization landscapes by gradually evolving a quantum system from an easily pre-
pared initial state to a final state that encodes the solution [17]. This method exploit
the adiabatic theorem, which states that if the evolution is slow enough, the system will
remain in its ground state. The Hamiltonian of the system starts with a ”driver” term,
which is easy to prepare, and ends with a ”problem” Hamiltonian, whose ground state
encodes the solution to the problem of interest. By adjusting the interpolation between
these Hamiltonians, QA can leverage quantum effects like tunneling to explore the en-
ergy landscape and escape local minima — a task that classical optimization algorithms
often struggle with.
However, QA’s analog nature introduces practical limitations due to hardware constraints
and noise. This has led to the exploration of Digital Quantum Annealing (DQA), a dis-
cretized version of QA designed to be implemented on gate-based quantum computers.
The digital adaptation retains the core principles of QA while offering error correction
and enhanced control over the quantum evolution process [22]. This flexibility makes
DQA a promising candidate for NISQ devices.
Around the same time that QA was gaining traction, a more flexible approach was pro-
posed: the Quantum Approximate Optimization Algorithm (QAOA). Introduced by E.
Farhi and collaborators in 2014, QAOA is a hybrid algorithm designed to leverage both
quantum and classical resources [10]. The algorithm iteratively applies a sequence of
parameterized quantum gates that encode problem constraints, followed by a classical
optimization step to adjust the parameters. This iterative refinement allows QAOA to
approximate the solution to an optimization problem, with the quality of the approx-
imation improving as the number of iterations—or ”depth”—increases. QAOA shares
conceptual similarities with QA; both attempt to navigate complex energy landscapes

2QA was heavily influenced by ideas from statistical mechanics as it leverages simulated quantum
fluctuations, instead of thermal fluctuations, and tunneling offering a quantum-inspired variant of sim-
ulated annealing (SA) [20]

2



to identify optimal solutions. However, while QA relies on the continuous-time evolu-
tion of a quantum system, QAOA uses discrete, controlled operations. This distinction
makes QAOA particularly well-suited for NISQ devices because gate operations can be
tailored to specific problem instances and hardware architectures and long coherence
times isn’t required. Furthermore, QAOA’s modular structure lends itself to potential
improvements through hybrid techniques, combining the strengths of quantum search
with classical refinement.
While QA, DQA, and QAOA each offer promising paths toward achieving quantum ad-
vantage, they are not without challenges. The accuracy of QA is contingent on the
system’s ability to remain adiabatic throughout the evolution — a condition that be-
comes harder to meet as system size grows and hardware noise increases. In QAOA,
finding optimal parameters for deep circuits remains an open question, with classical
optimizers often getting stuck in local minima. Despite these obstacles, both approaches
are valuable as they push the boundaries of what can be accomplished with current
and near-term quantum hardware. Taking these challenges into account, the question of
whether it is possible to find efficient algorithms for solving hard computational problems
on NISQ devices remains unresolved.
In the first chapter of the thesis, we provide a brief explanation of the necessary back-
ground knowledge needed for a thorough grasp of quantum computation and information.
In the second chapter, we focus on the theory of quantum-system evolution. We state
the adiabatic theorem and discuss the adiabatic limit of the time evolution of a quan-
tum system. In Chapter 3, we analyze the digital approach to adiabatic evolution and
explore how to approximate it effectively using discrete steps through unitary operators,
which correspond to the logic gates of a quantum computer. We examine the Digital
Quantum Annealing (DQA) algorithm as a method for solving classical computational
problems using quantum resources. In Chapter 4, we present the Quantum Approximate
Optimization Algorithm (QAOA) as an alternative digital approach to DQA, leveraging
hybrid resources (classical and quantum) to address computational challenges.

3



Chapter 1

Quantum mechanics background

Quantum mechanics is the most precise and comprehensive description of the physical
world we have. It also forms the foundation for understanding quantum computation
and quantum information. This chapter offers the essential background in quantum
mechanics required for this thesis.

1.1 Linear Algebra and Dirac notation

Since quantum mechanics is the primary reason for our exploration of linear algebra, we
will introduce its standard notation, the Dirac notation, when discussing linear algebraic
concepts. Dirac notation is a compact and flexible tool when working with states,
operators and observables in QM. It eliminates the need to specify a vector’s coordi-
nates each time, clearly revealing the structure of Hilbert spaces and it facilitates the
calculation of probabilities, the use of operators, and the manipulation of superpositions
and state transformations. Although in QM Dirac notation is more concise and powerful
than the matrix notation, we will use both in this first part, emphasizing the parallels
between them. We will abandon the traditional notation and use only the Dirac formal-
ism once we have provided the necessary foundations for an effective understanding of
it.

Vectors and vector spaces Linear algebra studies vector spaces and linear operations
on vector spaces. We are most interested in Cn, the space of all n-tuples (z1, ..., zn), zi ∈
C. The elements of a vector space are called vectors, and they may be viewed either as
column vectors z or as row vectors z+1,

z =

z1...
zn

 z+ =
[
z∗1 . . . z∗n

]
1z+ = z∗T represent the transposed conjugate vector of z. This operation sends a vector space V

into its conjugate dual Ṽ ∗

4



The Dirac counterpart of a column (row) vector is the ket vector |z⟩ (bra vector ⟨z|).
Bra/ket vectors represent quantum system states, which naturally live in an appropriate
Hilbert space H. We will discuss a little further about Hilbert spaces in the dedicated
paragrph; for now, we can simply think of a Hilbert space as a complex vector space Cn

and use them as synonyms. As well as the matrix case, the bra and ket forms of a vector
are related as complex conjugates (or Hermitian conjugates) of each other.

z↔ z+ (1.1.1)

|z⟩ ↔ ⟨z| (1.1.2)

In Cn we define2 an addition operation for vectors and a multiplication by a scalar
operation

za+ zb = a

z1...
zn

+ b

w1
...
wn

 ≡
az1 + bw1

...
azn + bwn

 a, b ∈ C scalars (1.1.3)

az+ + bz+ = a
[
z∗1 . . . z∗n

]
+ b

[
w∗

1 . . . w∗
n

]
≡

[
az∗1 + bw∗

1 . . . az∗n + bw∗
n

]
(1.1.4)

The correspondent bra/ket version is

|z⟩ a+ |w⟩ b (1.1.5)

a ⟨z|+ b ⟨w| (1.1.6)

Inner product Given a column vector z and a raw vectorw+, we define their inner
product w+z as

w+z =
[
w∗

1 . . . w∗
n

] z1...
zn

 =
∑
i

w∗
i zi . (1.1.7)

In Dirac notation the inner product reads as the bra-ket product

⟨w|z⟩ = (
∑
i

w∗
i ⟨i|)(

∑
j

zj |j⟩) =
∑
ij

w∗
i zjδij =

∑
i

w∗
i zi . (1.1.8)

It is easy to prove that the inner product is

• Bilinear

u+(av + bw) = u+ava+ u+bw , (1.1.9)

(au+ + bv+)w = au+w + bv+w , (1.1.10)

2The formal definition of a vector space involves verifying numerous properties for the two operations.
However, we will skip these formalities and take a more intuitive approach instead.

5



and analogously

⟨u| (|v⟩ a+ |w⟩ b) = ⟨u|v⟩a+ ⟨u|w⟩b , (1.1.11)

(a ⟨u|+ b ⟨v|) |w⟩ = a⟨u|w⟩+ b⟨v|w⟩ . (1.1.12)

• Hermitian
u+v = (v+u)∗ , (1.1.13)

which means
⟨u|v⟩ = ⟨v|u⟩∗ . (1.1.14)

Linear operators Linear mappings of a vector space (as Cn) in itself are square n×n
(complex) matrices as A, representing what in QM we call linear operators, as Â, on a
Hilbert space3

A =


A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
An1 An2 . . . Ann

 . (1.1.15)

Given a column vector v and a matrix A, we can form the column/row vector matrix
multiplication

Az =


A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
An1 An2 . . . Ann



z1
z2
...
zn

 =



∑
iA1izi∑
iA2izi
...∑

iAnizi
,

 (1.1.16)

z+A =
[
z∗1 z∗2 . . . z∗n

]

A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
An1 An2 . . . Ann

 =
[∑

i z
∗
iAi1

∑
i z

∗
iAi2 . . .

∑
i z

∗
iAin

]
.

(1.1.17)

In analogous fashion, bra/ket operator multiplications are defined as

Az↔ A |z⟩ , z+A↔ ⟨z|A . (1.1.18)

One can demonstrate that column/row vector matrix multiplications are

3we will omit the ·̂ symbol to lighten the notation

6



• Linear in the vector factors

A(ua+ vb) = Aua+Avb , (1.1.19)

(au+ + bv+)A = au+A+ bv+A , (1.1.20)

which implies

A(|u⟩ a+ |v⟩ b) = A |u⟩ a+ A |v⟩ b , (1.1.21)

(a ⟨u|+ b ⟨v|)A = a ⟨u|A+ b ⟨v|A (1.1.22)

• Associative
(w+A)z = w + (Az) = w+Az , (1.1.23)

so that
(⟨w|A) |z⟩ = ⟨w| (A |z⟩) = ⟨w|A |z⟩ . (1.1.24)

Given two matrices A,B and two scalars a, b we can define two operations:

• The operator linear combination

aA+ bB = a


A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
An1 An2 . . . Ann

+ b


B11 B12 . . . B1n

B21 B22 . . . B2n
...

...
. . .

...
Bn1 Bn2 . . . Bnn

 =

=


aA11 + bB11 A12 + bB12 . . . A1n + bB1n
A21 + bB21 A22 + bB22 . . . A2n + bB2n

...
...

. . .
...

An1 + bBn1 An2 + bBn2 . . . Ann + bBnn

 , (1.1.25)

which is fully specified by

(aA+ bB)z = Aza+Bzb , (1.1.26)

z∗(aA+ bB) = az+A+ bz+B . (1.1.27)

In Dirac notation we write a linear combination of operators aA+ bB as

(aA+ bB) |z⟩ = A |z⟩ a+B |z⟩ b , (1.1.28)

⟨z| (aA+ bB) = a ⟨z|A+ b ⟨z|B . (1.1.29)

7



• Operator product

AB =


A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
An1 An2 . . . Ann



B11 B12 . . . B1n

B21 B22 . . . B2n
...

...
. . .

...
Bn1 Bn2 . . . Bnn



=


∑

iA1iBi1

∑
iA1iBi2 . . .

∑
iA1iBin∑

iA2iBi1

∑
iA2iBi2 . . .

∑
iA2iBin

...
...

. . .
...∑

iAniBi1

∑
iAniBi2 . . .

∑
iAniBin

 , (1.1.30)

completely defined by

(AB)z = A(Bz) = ABz , (1.1.31)

z+(AB) = (z+A)B = z+AB , (1.1.32)

in correspondence with

(AB) |z⟩ = A(B |z⟩) = AB |z⟩ , (1.1.33)

⟨z| (AB) = (⟨z|A)B = ⟨z|AB (1.1.34)

Adjoints and Hermitian operators Let A be the matrix representation of a linear
operator on a Hilbert space H, the adjoint of A is A+ = A∗T .

A+ =


A∗

11 A∗
21 . . . A∗

n1

A∗
12 A∗

22 . . . A∗
n2

...
...

. . .
...

A∗
1n A∗

2n . . . A∗
nn

 (1.1.35)

and it is completely defined by the relation

w+A+z = (z+Aw)∗ . (1.1.36)

In Dirac formalism it reads as the adjoint operator A+ of an operator, characterized by

⟨w|A+ |z⟩ = ⟨z|A |w⟩∗ . (1.1.37)

Outer product A useful way of representing linear operators is through the outer
product. Given a column vector v and a row vector w+, we define the outer product
zw+ as

vw+ =


z1
z2
...
zn

 [
w∗

1 w∗
2 . . . w∗

n

]
=


z1w

∗
1 z1w

∗
2 . . . z1w

∗
n

z2w
∗
1 z2w

∗
2 . . . z2w

∗
n

...
...

. . .
...

znw
∗
1 znw

∗
2 . . . znw

∗
n

 , (1.1.38)

8



which has the property

(zw+)u = z(w∗u) = zw+u , (1.1.39)

u+(zw+) = (u+z)w∗ = u+zw+ . (1.1.40)

In Dirac formalism, the outer product becomes the ket/bra product |z⟩ ⟨w| specified by

(|z⟩ ⟨w|) |u⟩ = |z⟩ (⟨w|u⟩) = |z⟩ ⟨w|u⟩ , (1.1.41)

⟨u| (|z⟩ ⟨w|) = (⟨u| z⟩) ⟨w| = ⟨u| z⟩ ⟨w| , (1.1.42)

with the properties of

• Linearity in both factors

v(az+ + bw+) = vaz+ + vbw+ , (1.1.43)

(za+wb)v+ = zav+ +wbv+ . (1.1.44)

• Adjunction
(zw+)+ = wz+ . (1.1.45)

Then, we also have

|v⟩ (a ⟨z|+ b ⟨w|) = |v⟩ a ⟨z|+ |v⟩ b ⟨w| , (1.1.46)

(|z⟩ a+ |w⟩ b) ⟨v| = |z⟩ a ⟨v|+ |w⟩ b ⟨v| , (1.1.47)

(|z⟩ ⟨w|)+ = ⟨w| |z⟩ . (1.1.48)

Now, given two vector states |v⟩ and |w⟩ it is possible to define the linear operator |w⟩ ⟨v|
whose action is characterized by

(|w⟩ ⟨v|)(|v′⟩) ≡ |w⟩ ⟨v| v′⟩ = ⟨v| v′⟩ |w⟩ , ⟨v| v′⟩ ∈ C . (1.1.49)

This equation implies that we can define the result of the operator |w⟩ ⟨v| acting on
|v′⟩, as the result of multiplying |v′⟩ for the complex number ⟨v| v′⟩. We can extend this
definition to linear combinations of operators. Thus,

∑
i ai |wi⟩ ⟨vi| is thus the linear

operator that acting on |v′⟩ produces
∑

i ai |wi⟩ ⟨vi| v′⟩ as result.

Hilbert space and orthonormal bases In QM vector spaces equipped with an inner
product define Hilbert spaces. In infinite dimensions, Hilbert spaces have additional
technical properties beyond those of general inner product spaces, but we will not need
to focus on those here. In this thesis, we limit ourselves to considering systems with a
finite number of elements. This means we deal with finite-dimensional Hilbert spaces,
where all linear operators are bounded.

9



The Hilbert space is the natural space where the state of quantum systems represented
by bra/ket vectors lies. We can define the norm of a vector v by mean of the inner
product

∥v∥ ≡
√
v+v . (1.1.50)

Analogously, the norm of |v⟩ is

∥ |v⟩ ∥ ≡
√
⟨v|v⟩ . (1.1.51)

Thus, every Hilbert space is also a normed space. Intuitively, we can say the norm is
a measure of the “length” or “size” of vectors. A unit vector is a vector v such that
∥v∥ = 1 (∥ |v⟩ ∥ = 1). We also say that |v⟩ is normalized. It is convenient to normalize
a vector by dividing by its norm: |v⟩ /∥ |v⟩ ∥ is the normalized version of |v⟩ ,∀ |v⟩ ∈ H.
We can also define a metric induced by the norm:

d(v,y) ≡ ∥v − y∥ =
√
(v − y)+(v − y) . (1.1.52)

Thus, every Hilbert space (normed space) is also a metric space. A metric is a way to
measure distance between elements in the vector space4. Now that we have introduced
all the fundamental elements of linear algebra in both Dirac notation and matrix nota-
tion (which helps us gain a better understanding of the operations expressed in Dirac
notation), we are ready to proceed by using only the first formalism. When discussing
finite-dimensional Hilbert spaces5, say Cn, it is useful to address them in terms of their
vector bases, i.e., sets of vectors as {|vi⟩ , i = 1, . . . , n} that span the whole vector space:

|v⟩ =
∑
i

αi |vi⟩ , αi ∈ C ∀ |v⟩ ∈ Cn . (1.1.53)

In particular, we are interested in orthonormal bases {|i⟩ , i = 1, . . . , n} of Cn because
they possess the advantageous property that the inner products of the basis vectors take
on a straightforward normalized diagonal form. This characteristic simplifies analyses
and calculations that require the use of bases, making them clearer and more transparent
when orthonormal bases are employed6. An orthonormal basis is one that satisfies the
relation

⟨i| j⟩ = δij . (1.1.54)

4More formal definitions would require an Hilbert space H to be complete as a metric space with
the metric induced by the norm, which in turn is induced by the inner product. In simple terms, saying
that H is complete as a metric space means that every sequence of points that gets closer and closer to
a certain limit actually has that limit within H.

5As we mentioned, we will deal with finite-dimensional Hilbert space only, so let us omit the discussion
of infinite-dimensional spaces with orthonormal bases containing an infinite number of elements.

6In the infinite-dimensional case, the Hilbert space H of wave functions serves as a continuous-index
configuration space analogous to Cn. Consequently, orthonormal bases of an appropriate form should
also exist in H, fulfilling the same important role that they play in Cn.

10



We can expand vectors in the orthonormal basis

|v⟩ =
∑
i

|i⟩ ⟨i| v⟩ =
∑
i

|i⟩ vi , (1.1.55)

⟨v| =
∑
i

⟨v| i⟩ ⟨i| =
∑
i

vi ⟨i| , (1.1.56)

where vi = ⟨i| v⟩ = ⟨v| i⟩, vi ∈ C. This is equivalent to say∑
i

|i⟩ ⟨i| = I . (1.1.57)

Equation (1.1.57) is known as completeness relation. One key application of the com-
pleteness relation is that it provides a method for representing any operator in terms of
outer product notation. Let A : V → W be a linear operator, and consider |vi⟩ and |wj⟩
as orthonormal basis for V and W , respectively. Then, by applying the completeness
relation twice, we arrive at:

A = IWAIV (1.1.58)

=
∑
ij

|wj⟩ ⟨wj|A |vi⟩ ⟨vi| (1.1.59)

=
∑
ij

⟨wj|A |vi⟩ |wj⟩ ⟨vi| , (1.1.60)

where, in the first line, we used the identity operators IW and IV of W and V . Equation
(1.1.60) is the outer product representation for A, which has matrix element ⟨wj|A |vi⟩
in the ith column and jth row, with respect to the input basis |vi⟩ and the output basis
|wj⟩.

Tensor product The tensor product is a method for combining vector spaces into a
larger vector space and is crucial for understanding quantum mechanics in multi-particle
systems. Let V and W be vector spaces of dimensions m and n, respectively, and for
convenience, let’s assume V and W are Hilbert spaces. Then, the tensor product V ⊗W
is an mn-dimensional vector space. The elements of V ⊗W are linear combinations of
”tensor products” |v⟩⊗ |v⟩, where |v⟩ ∈ V and |w⟩ ∈ W . In particular, if {|i⟩} and {|j⟩}
are orthonormal bases for V and W respectively, then {|i⟩ ⊗ |j⟩} forms an orthonormal
basis for V ⊗W For simplicity, we often use shorthand notations like |v⟩ |w⟩, |v, w⟩ or
even |vw⟩. Properties (i)− (iii) are satisfied:

(i) z(|v⟩ ⊗ |w⟩) = (z |v⟩)⊗ |w⟩ = |v⟩ ⊗ (z |w⟩), ∀z ∈ C, |v⟩ ∈ V, |w⟩ ∈ W .

(ii) (|v1⟩+ |v2⟩)⊗ |w⟩ = |v1⟩ ⊗ |w⟩+ |v2⟩ ⊗ |w⟩ , ∀ |v1⟩ , |v2⟩ ∈ V, |w⟩ ∈ W .

11



(iii) |v⟩ ⊗ (|w1⟩+ |w2⟩) = |v⟩ ⊗ |w1⟩+ |v⟩ ⊗ |w2⟩ , ∀ |v⟩ ∈ V, |w1⟩ , |w2⟩ ∈ W .

Given V ⊗W , the linear operators acting on such a space are of the form A⊗B, where
A,B are linear operators acting on V,W , respectively. We can define A⊗B by

(A⊗B)(
∑
i

ai |vi⟩ ⊗ |wi⟩) ≡
∑
i

aiA |vi⟩ ⊗B |wi⟩ , (1.1.61)

where we used linear combination |vi⟩ ⊗ |wi⟩ ∈ V ⊗W to represent a generic elements
of the present space. More generically

(
∑
i

ciAi ⊗Bi) |v⟩ ⊗ |w⟩ ≡
∑
i

ciAi |v⟩ ⊗Bi |w⟩ . (1.1.62)

We can use the inner product of each vector space in V,W to define an inner product in
V ⊗W

(
∑
i

ai |vi⟩ ⊗ |wi⟩ ,
∑
j

bj |v′j⟩ ⊗ |w′
j⟩) ≡

∑
ij

a∗i bj ⟨vi| v∗j ⟩ ⟨wi|w∗
j ⟩ , (1.1.63)

where we used the notation ”( , )” for the inner product of two quantities. produce
exponential of an operator, A vector subspace of a vector space V is a space W ∈ V
such that W is also a vector space, thus, W must be closed under linear combinations
of vectors.

1.2 Elements of Quantum Computation

From the previous section we see that quantum mechanics does not specify what laws
a physical system must obey, but rather provides a mathematical framework for the
development of such laws. In the following, we provide a series of elements at the basis
of quantum computation to define a connection between the physical world and the
mathematical formalism of QM.

1.2.1 The Qubits

Single Qubit Classical computation and information are built upon the concept of bit.
The quantum analogue for quantum computation and information is the quantum bit,
or qubit for short. We describe qubits as mathematical entities which can be physically
realized as a variety of systems that exhibit quantum mechanical properties: photons,
ions trapped in electromagnetic fields, atoms trapped using optical tweezers or in optical
lattices, etc. In the following sections of the thesis, we will use spin qubits organized
in chains. The mathematical approach allows us to build a general quantum theory of
information and computation regardless of the actual physical system used for imple-
mentation. The difference between a bit and a qubit can be attributed entirely to the

12



quantum mechanical nature of the latter. We can attribute a state to a bit out of the
discrete set {0, 1}; a qubit is a 2-state system, that means it also have a state, but it lives
in a 2D-Hilbert space C2, with eigenstates |0⟩ and |1⟩. Thus, a qubit state is expressible
as a linear combination

|ψ⟩ = α |0⟩+ β |1⟩ , α, β ∈ C , (1.2.1)

called superposition. The state of the qubit is determined by the values of α and β,
that are the amplitudes of the basis state |0⟩ and |1⟩, respectively. In other words, we
could say that a classical bit is like a coin: either ”heads” or ”tails”. By contrast, a
qubit can exist in a continuum of states between ”head” (|0⟩) and ”tail” (|1⟩) until we
measure it. When a qubit is measured, it only ever gives ‘0’ or ‘1’, that is a single-
bit information, with a certain probability determined by |α|2 and |β|2, respectively.
Naturally, |α|2 + |β|2 = 1, since probabilities must sum to one. Thus, a qubit’s state
is a unit vector in a two-dimensional complex vector space. As we anticipated, We can
choose the computational basis of the vectors:

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
. (1.2.2)

We can also give a geometrical representation of the qubit state. Since the qubit is a
2-state system, its vector state can be expressed as

|ψ⟩ = eiγ(cos (θ/2) |0⟩+ eiϕ sin (θ/2) |1⟩) (1.2.3)

where 0 ≤ γ ≤ 2π, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. Note that eiγ is a global phase and does
not have observable effects, so it can be neglected. The angles θ and ϕ define a point
on the Bloch sphere. All points on the surface of the unitary sphere represent a possi-
ble state for a qubit (pure state). The inside points correspond to mixed states, whose
treatment through density matrices lies beyond the scope of this thesis. Now we want
to recall an important difference between classical and quantum qubits. One can always
know the state of a classical bit by measuring it once. The result can be 0 or 1 and it
corresponds to the state the bit was in before the measurement. This is not the case for
quantum bits: one can reconstruct the state of a quantum particle only by measuring
it infinite times over an ensamble of the same particle. Thus, a single measurement is
not sufficient to know the exact state of the system. Further, acting on the particle, will
make its wavefunction collapse: once we observe a qubit, its state will change from being
in a superposition to occupy the specific state we measured (the measure will provide a
single bit of information, 0 or 1) even after the observation. Quantum mechanically, the
measurement process changes the state of the system throughout is irreversible.

13



Multiple qubits It is straightforward to assemble multi-body systems of qubits. For
a system of n-qubits, the computational basis states are of the form

|x1⟩ ⊗ |x2⟩ ⊗ ...⊗ |xn⟩ = |x1⟩ |x2⟩ ... |xn⟩ = |x1, x2, ..., xn⟩ (1.2.4)

(they are all equivalent notations), and live in the total 2n dimensional Hilbert space
(C2)⊗n formed by the tensor product of each single-qubit Hilbert space C2

i , i = 1, . . . , n

(C2)⊗n = C2
1 ⊗ C2

2 ⊗ · · · ⊗ C2
n . (1.2.5)

Since a single-qubit state is defined by 2 amplitudes α and β, an n-qubits state counts
2n amplitudes. Thus, for n = 500 we need 2500 amplitudes to simulate the state of an
n-qubits system over a classical computer, a number much bigger than the atoms in the
observable universe. Quantum computers, instead, can store this amount of information
in only 500 atoms.

1.2.2 Quantum Gates

As bits, wires and logic gates acting on the bits are the fundamental elements of clas-
sical circuits, qubits, wires (both classical and quantum communication channels) and
quantum logic gates are the fundamental elements of quantum circuits.
The simplest quantum gates are those acting on a single qubit. As we will see shortly,
they can be viewed as 2× 2 unitary matrix, and since there are infinitely many unitary
matrices, there are also infinitely many quantum gates they represent. However, it turns
out that the properties of the whole set can be summarized in those of a smaller, limited,
subset.

Theorem 1.2.1. (Single-qubit gates decomposition) An arbitrary single qubit uni-
tary gate (which is a 2× 2 unitary matrix) can be decomposed as a product of rotations

U = eiα
(
e−iβ/2 0
0 e−iβ/2

)(
cos(γ

2
) − sin(γ

2
)

sin(γ
2
) cos(γ

2
)

)
,

(
e−iδ/2 0
0 e−iδ/2

)
, (1.2.6)

where α, β, γ, δ are all real-valued.

The proof to the theorem will be clear at the end of section 1.2.2. The first matrix is
a (global) phase shift and can thus be neglected, while second matrix is just an ordinary
rotation. The first and last matrices can be seen as rotations in a different plane.
In general, we don’t need to implement these gates for arbitrary values of α, β, γ and
δ. Instead, we can construct arbitrarily good approximations of such gates using only
specific fixed values of the angles In this way, we can simulate any single-qubit gate using
a finite set of quantum gates. More generally, any quantum computation, regardless of
the number of qubits, can be generated using a finite set of gates, known as a universal
set for quantum computation.

14



Theorem 1.2.2. (Universal decomposition) Single-qubit gates, combined with the
CNOT gate (which acts on two qubits), form a universal gate set. This means that they
can approximate any quantum operation on an arbitrary number of qubits.

Now, let us first illustrate the main features of a generic single-qubit gate.

Single-qubit gates

Formally, single-qubit gates are transformations belonging to the group SU(2) of rota-
tions in three-dimensional spin state space

SU(2)={2× 2 complex matrix U | U † = U−1, det(U) = 1}

(this is also called ”fundamental representation of the transformation group). We require
U to be unitary in order to preserve the scalar product between two generic vectors |ψ⟩
and |ϕ⟩:

⟨ψ|ϕ⟩ → ⟨Uψ|Uϕ⟩ = ⟨ψ|U †U |ϕ⟩ = ⟨ψ|I|ϕ⟩ = ⟨ψ|ϕ⟩ , (1.2.7)

which implies the conservation of the norm the state belonging to a generic |psi⟩

||ψ|| =
√
⟨ψ|ψ⟩ . (1.2.8)

Further, we require det(U) = 1 to ensure that the transformations include the identity
I and form a continuous group. Then, in ”the vicinity of identity” we get

|ψ′⟩ = U |ψ⟩ ≈ (I − iϵaTa) |ψ⟩ , (1.2.9)

where ϵa represent a set of parameters, ϵa ≪ 1, a = 0, 1, 2, while Ta are a set of traceless
anti-hermitian matrices called generators of the transformation

We can impose that the composition of different transformations satisfies the closure
property of the group they belong to. Calculations show that this implies

[Ta, Tb] = iϵabcTc , (1.2.10)

where ϵabc is the Levi-Civita tensor of a 3 dimensional space (also known as total anti-
symmetric tensor) and it encodes the commutation coefficients called ”group structure
constants”. The commutation relation (1.2.10) represent the Lie algebra of the group
SU(2) and it is at the basis of the properties and behaviour of the group transformations.
It is evident that (1.2.10) coincides with the commutation relation of angular momenta
in quantum mechanics. Based on this analogy, it is easy to see how, in this specific
representation, the generators of SU(2) transformations (hermitian and traceless) can
be rewritten as(

a b− ic
b+ ic −a

)
= a

(
1 0
0 −1

)
+ b

(
0 1
1 0

)
+ c

(
0 −i
i 0

)
. (1.2.11)

15



In the right hand side of of (1.2.11) we can recognize the matrix form of Pauli operators
σa. The usual convention identifies the generators of SU(2) as

Ta =
1

2
σa . (1.2.12)

When exponentiated, Pauli matrices give rise to three useful class of unitary matrices,
the rotation operators about the x̂, ŷ and ẑ axes, defined by:

Rx(θ) ≡ e−iσx/2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
σx =

(
cos( θ

2
) −i sin( θ

2
)

−i sin( θ
2
) cos( θ

2
)

)
,

Ry(θ) ≡ e−iσy/2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
σy =

(
cos( θ

2
) − sin( θ

2
)

sin( θ
2
) cos( θ

2
)

)
,

Rz(θ) ≡ e−iσz/2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
σz =

(
e−iθ/2 0
0 eiθ/2

)
. (1.2.13)

These matrices are precisely the ones that appear in the ”Decomposition Theorem”
1.2.1 Each single-qubit gate can be thus visualized as a rotation on the Bloch sphere,
mathematically represented by linear operators, since they have to preserve states su-
perposition and operate in coherent way.

We have seen that each Pauli operator is associated to a specific single-qubit gate.

X-gate

σx → X =

(
0 1
1 0

)
. (1.2.14)

The X-gate, or bit− flip gate, is the quantum equivalent of a classical NOT-gate, since
it swaps the state |0⟩ with the state |1⟩ and viceversa.

X |0⟩ = |1⟩ , X |1⟩ = |0⟩ . (1.2.15)

The eigenstate of X are |+⟩ and |−⟩ with eigenvalues +1 and −1, respectively.

Z-gate

Z =

(
1 0
0 −1

)
. (1.2.16)

The Z gate, also known as phase − flip, acts only on the qubit state |1⟩ by adding a
phase θ = π. Thus

Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩ . (1.2.17)

Its eigenvectors are |0⟩ and |1⟩ with eigenvalues +1 and −1, respectively.

16



Y-gate

Y =

(
0 −i
i 0

)
. (1.2.18)

The Y gate, or bit-phase-flip, is a sort of combination of the X and Z-gate. More precisly

Y |0⟩ = i |1⟩ , Y |1⟩ = −i |0⟩ . (1.2.19)

The eigenstates of the Y -gate are |±i⟩, hence |+i⟩ = |0⟩+i|1⟩√
2

and |−i⟩ = |0⟩−i|1⟩√
2

.

H-gate

H =
1√
2

(
1 1
1 −1

)
. (1.2.20)

It can be decomposed as

H =
X + Z√

2
. (1.2.21)

The H-gate, or Hadamard -gate, allows us to put a set of qubits in a balanced superpo-
sition of |0⟩ and |1⟩ states,

H |0⟩ = |+⟩ = |0⟩+ |1⟩√
2

, H |1⟩ = |−⟩ = |0⟩ − |1⟩√
2

. (1.2.22)

and viceversa,

H |+⟩ = |0⟩ = |+⟩+ |−⟩√
2

, H |−⟩ = |1⟩ = |+⟩ − |−⟩√
2

. (1.2.23)

Thus, H performs a change of computational basis. Its eigenstates are

|H+⟩ = cos
(π
8

)
|0⟩+ sin

(π
8

)
|1⟩ , (1.2.24)

|H−⟩ = − sin
(π
8

)
|0⟩+ cos

(π
8

)
|1⟩ , (1.2.25)

with eigenvalues +1 and −1, respectively.

CNOT-gate

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.2.26)

The CNOT -gate, or conditional flip, is a two-qubit gate and operates on a control qubit
and a target qubit. When the control qubit is in the state |c⟩ and the target qubit in
the state |t⟩, the CNOT gate performs the following transformation:

|c, t⟩ → |c, t⊕ c⟩ . (1.2.27)

17



This means that the target qubit is flipped with an X-gate if and only if the control qubit
is in the state |1⟩,while |t⟩ is left unchanged when the control is in |0⟩. We can resume
the action of this gate in the following equations;

CNOT |00⟩ = |00⟩ , (1.2.28)

CNOT |01⟩ = |01⟩ , (1.2.29)

CNOT |10⟩ = |11⟩ , (1.2.30)

CNOT |11⟩ = |10⟩ . (1.2.31)

1.3 Quantum time evolution: the evolution operator

In classical physics, the state trajectory in the phase space represents the solution to a
problem written in the form of a differential equation

dy

dt
= f(y) . (1.3.1)

The solution to first order is

y(t+∆t) ≈ y(t) + f(y)∆t . (1.3.2)

Similarly, in quantum physics we consider the differential equation

iℏ
d |ψ⟩
dt

= H |ψ⟩ , (1.3.3)

known as Schrödinger equation. For a time independent H, the solution to this equation
is

|ψ(t)⟩ = e−iℏ−1Ht |ψ(t)⟩ . (1.3.4)

However, in the general case the HamiltonianH(t) of a quantum system is time-dependent.
We assume that the evolution of the state |ψ(t)⟩ still obeys the Schrödinger equation:

iℏ
d |ψ(t)⟩
dt

= H(t) |ψ(t)⟩ , (1.3.5)

and satisfies the initial condition i.c.

|ψ(0)⟩ = ψ0 . (1.3.6)

Equation (1.3.5) is a 1st-order differential equation with an associated evolution tra-
jectory in the quantum Hilbert space7. By linearity of (1.3.5), if |ψ1(t)⟩ and |ψ2(t)⟩

7The general idea recalls the evolution of the phase P (t) ≡ (q(t),p(t)) of a classical system in Hamil-
ton mechanics. In this case, the evolution trajectory associated to the 1st-order differential equation lies
in the classical phase space

18



are the solutions of the equation such that |ψ1(0)⟩ = |ψ10⟩ and |ψ2(0)⟩ = |ψ20⟩, then
|ψ(t)⟩ = c1 |ψ1(t)⟩ + c2 |ψ2(t)⟩ is the solution such that |ψ(0)⟩ = c1 |ψ10⟩ + c2 |ψ20⟩.
Therefore, there exists a linear operator U(t, 0) such that the solution of the Schrödinger
equation (1.3.5) with i.c. (1.3.5) can be written as:

|ψ(t)⟩ = U(t, 0) |ψ0⟩ , (1.3.7)

or more generally (since the initial time is arbitrary)

|ψ(t)⟩ = U(t, s) |ψs⟩ , (1.3.8)

where U(t, s) is a linear operator called evolution operator. U(t, s) respects the evolution
operator equations

iℏ
∂U(t, s)

∂t
= H(t)U(t, s) , iℏ

∂U(t, s)

∂s
= −U(t, s)H(s) , (1.3.9)

with i.c.
U(s, s) = 1 . (1.3.10)

Note that the first equation in (1.3.9) guarantees the compatibility between the (1.3.8)
and the Schrödinger equation (1.3.5), while the second one in (1.3.9) ensures that |ψ(t)⟩
doesn’t depend on the initial time s, that is, as we said, arbitrary. The i.c. makes |ψ(t)⟩
reduce to |ψ(s)⟩ for t = s8. From the equations (1.3.9) and (1.3.10) we can derive the
following properties of the evolution operator U(t, s):

• U(t, s) is unitary9 and invertible

U(t, s)+ = U(t, s)−1 . (1.3.11)

This is reflected in the conservation of probability

⟨ψ(t)|ψ(t)⟩ = 1 . (1.3.12)

• The chain identity is true:

U(t, u)U(u, s) = U(t, s) . (1.3.13)

8Note that we have not required t > s.
9Only closed quantum systems can be accurately described by unitary transformations. In reality,

however, all systems interact to some extent with their environment. Despite this, certain systems can
still be approximated as closed and described effectively by unitary evolution. Moreover, in principle,
any open system can be viewed as part of a larger, closed system, which undergoes unitary evolution as
a whole.

19



• The flip-inverse identity is also true:

U(t, s) = U(t, s)−1 . (1.3.14)

These properties are essential for us because they are the basis of the compositional
nature and reversibility of the state |ψ(t)⟩. In other words, it it is absolutely equivalent
whether a state |ψ(s)⟩ evolves into |ψ(u)⟩ and then into |ψ(t)⟩ or directly into |ψ(t)⟩.
This property is central to the whole theory of state preparation in QA and DQA. In
the end, we can say that the solution of the Schrödinger equation (1.3.5) reduces to the
computation of the associated evolution operator U(t, s). However, in most cases, the
latter is a problem as difficult as the former.

Time-independent Hamiltonian As we anticipated, for the time-independent Hamil-
tonian case, H(t) = H0, it is possible to derive an explicit expression of the evolution
operator U(t, s)

U(t, s) = e−iℏ−1(t−s)H0 = U0(t, s) . (1.3.15)

Time-dependent Hamiltonian In adiabatic quantum computation, we typically use
time-varying Hamiltonians. These Hamiltonians are not fixed but evolve based on pa-
rameters that are controlled by the experimentalist and can be adjusted during the course
of an experiment. While the system is not strictly closed, its evolution can still be de-
scribed, to a good approximation, by the Schrödinger equation with a time-dependent
Hamiltonian. The upshot is that in this thesis we will often describe the evolution of
quantum systems - even systems which are not closed – using unitary operators.

It has been demonstrated that in the general case of a time-dependent Hamiltonian,
the formal solution of (1.3.5) is

|ψ(t)⟩ = UT (t, t0) |ψ(t0)⟩ , (1.3.16)

where the symbol UT (t, t0) denotes the unitary time-ordered operator

UT (t, t0) = T
(
e
∫ t
t0

H(t′) dt′
)

, (1.3.17)

which is the solution of (1.3.9) (1.3.10). If U is known, then the corresponding differential
equation (1.3.9) can be solved for any initial condition. As we said, finding an exact
analytical solution to (1.3.9) is generally not possible, making approximations necessary.
Solving (1.3.9) by iteration yields the perturbation series

UT (t, t0) = 1− i
∫ t

t0

dt1H(t1) + i2
∫ t

t0

dt1

∫ t1

t0

dt2H(t1)H(t2) + . . . . (1.3.18)

20



For the purposes of this thesis, the series (1.3.18) is useless to us because truncating the
series at some point would result in a non-unitary approximation to UT (tf , ti). From
equation (1.3.18) the subscript ”T” can be understood as indicating ”time-ordering”.
However, since (1.3.18) is not used further, the exact meaning of T is not crucial. It is
enough to know that UT (tf , ti) is the solution to (1.3.9) and possesses evolution property

UT (t, t0) = T (e
∫ t
t0

H(t′) dt′
) = T (e

∫ t1
t0

H(t′) dt′)T (e
∫ t
t1

H(t′) dt′
)

= UT (t, t1)UT t1, t0 = W (t, t0), t ≥ t1 ≥ t0 . (1.3.19)

which is the analog of (1.3.13). In order to prove it, we start from (1.3.9) for the time-
ordered operator

iℏ
∂UT (t, t0)

∂t
= H(t)UT (t, t0) , (1.3.20)

iℏ
∂UT (t, t0)

∂t0
= −UT (t, t0)H(t0) , (1.3.21)

with initial conditions
UT (t0, t0) = I . (1.3.22)

Then, we compute

iℏ
∂(UT (t, t1)UT (t1, t0)

∂t1
= iℏ

∂UT (t, t1)

∂t1
UT (t1, t0) + UT (t, t1)iℏ

∂UT (t1, t0)

∂t1
(1.3.23)

= −UT (t, t1)H(t1)UT (t1, t0) + UT (t, t1)H(t1)UT (t1, t0) = 0 . (1.3.24)

As a consequence

UT (t, t1)UT (t1, t0) = UT (t, t0)UT (t0, t0) = UT (t, t0)I = UT (t, t0) . (1.3.25)

More generally, given a long time interval ∆t of evolution, we can decompose the time-
ordered operator UT (t+∆t, t) as

UT (∆t, t) = UT (tr, tr−1)UT (tr−1, tr−2) . . . UT (t2, t1)UT (t1, t) , (1.3.26)

tj = pj∆t , j = 1, . . . , r , (1.3.27)

for some appropriate positive integer r, where p1 + p2 + · · ·+ pr = 1.

21



Chapter 2

Time evolution and adiabatic theorem

In this Chapter we introduce the adiabatic algorithms of interest in this thesis. As
mentioned, they are tailored to solve some mathematical optimization problems. We
begin by briefly discussing them.

2.1 How to encode classical problems into quantum Hamilto-
nians?

Combinatorial optimization problems are specified by N bits and m clauses. Each clause
is a constraint on a subset of the bits which is satisfied only for certain assignments of
those bits. The objective function representing the number of satisfied clauses is

C(z) =
m∑

α=1

Cα(z) . (2.1.1)

It is defined on N -bit strings z = (z1, z2, ..., zN), where each zi ∈ {0, 1}. Each Cα(z),
which usually depends on a subset of the bits, is 1 if the clause α is satisfied and 0
otherwise. Thus, (2.1.1) identifies C(z) as a cost function which evaluates the ”cost”
of a candidate solution z compared to the problem, determining how quantitatively good
z is.
We aim to solve combinatorial optimization problems on quantum computers, in order
to exploit quantum resources such as the quantum adiabatic theorem and quantum
tunneling in QA and DQA, and the quantum superposition in QAOA.
This approach is realistic because we can encode the hard problem into one of the
evolution operators and then recover the solution string z as the ground state of the
final Hamiltonian. This means that we can represent the optimization problem in terms
of qubits by mapping the N -bit strings z of the problem into spin chains. In this way,
the parameter describing the spin at each site is promoted from a discrete variable
zi ∈ {+1,−1} (representing ’spin up’ and ’spin down’ respectively) to states in a quantum
vector space (typically the spin-1

2
or two-dimensional representation of SU(2)). Thus,

22



the quantum computer works on a 2N -dimensional Hilbert space H with computational
basis |z⟩ = |z1⟩ ... |zN⟩ = |z1...zN⟩. In this framework, each discrete variable is associated
with a qubit that is treated quantum-mechanically, and associated to the Pauli operators
σ̂x
j , σ̂

y
j , σ̂

z
j . In particular, we recall that

σz |0⟩ = + |0⟩ , σz |1⟩ = − |1⟩ . (2.1.2)

Now, the correspondence between classical bit variables and quantum states identified
by the assigned eigenvalue of σz is easily observed to be:

Bit Eigenvector Eigenvalue
z1 0 |0⟩ +1
z2 1 |1⟩ −1

zj =
1− σz

j

2
, j = 1, 2 . (2.1.3)

This defines a map to a classical cost function C(z), to a quantum Hamiltonian H,
C(z) → H. For instance, the cost function C(z) = z1z2 corresponds to the quantum
Hamiltonian operator H = 1

4
(1 − σz

1)(1 − σz
2). Note that the σz

j associated to different
qubits commute with each other, so they are measurable simultaneously.
Once H(z) is defined for our problem, we can make the system evolve within a time
interval [ti, tf ] from an initial state towards a final one using an evolution operator that
is the exponential of a time-dependent Hamiltonian H(t) of the form:

H(t) = (1− λ(t))Hi + λ(t)H , (2.1.4)

with λ(ti) = 0 , λ(tf ) = 1 . (2.1.5)

As we mentioned, H(z) is the problem Hamiltonian (also known as cost Hamiltonian) in
which we have encoded the problem solution. Hi is the initial Hamiltonian, representing
the system’s starting state, and acts as a driving term to facilitate the evolution towards
the problem Hamiltonian. In this way, at t = ti the system Hamiltonian is H(ti) = Hi

and the system is in the initial state which coincides with the ground state of Hi. We
want the evolution to bring the system to the ground state of the problem Hamiltonian
(note that at t = tf we have H(tf ) = H). Finally, after measuring the system final state
we can recover the desired classical solution of our problem (we recall that a measure-
ment of a quantum state gives a classical sequence of bits of information). There are
various methods to carry out the system evolution, ranging from those that implement a
physical realization of the described process, such as quantum annealers QA, to methods
that digitally simulate the process on a quantum computer, thus digitalized verions of
QA (DQA) and variational algorithm, as QAOA.

To simplify our analysis, we define a custom Hamiltonian as

H =
N−1∑
j=0

Hj,j+1 =
N−1∑
j=0

∆(j)σz
jσ

z
j+1 . (2.1.6)

23



This is a straightforward Hamiltonian whose associated classical function can be easily
derived using the mapping defined in (2.1.3). By doing so, we can focus our attention
only the Digital Quantum Annealing (DQA) algorithm and on how to best approximate
the adiabatic evolution operator using two-qubit unitary gates.
The system size is N , the σz

j are the Pauli-z matrices acting at position j, with σz
N+1 = σz

0

(periodic condition); the parameter ∆(j) is the anisotropy, which measures the spins
interactions along ẑ. Each Hj,j+1 represents the interactions between two consecutive
spins. Note that (2.1.6) is diagonal on the computational basis {|z⟩}.
We also define Hi as the transverse-field Hamiltonian

Hi = Hx = hx

N−1∑
j=0

σx
j . (2.1.7)

Let us specify that hx is the strength of the transverse field in the x-direction and σx
i is

the x-th component of the spin operator on site i. This Hamiltonian tends to align all
spins in the x-direction when hx is large, producing a ground state that is a superposition
of all basis states in the z-direction. This is a highly ”delocalized” state, making it easy
to initialize. Thus, we can write the time-dependent Hamiltonian (2.1.4) as

H(t) = (1− λ(t))Hx + λ(t)H . (2.1.8)

Throughout this thesis, we will focus on closed spin chain systems with periodic boundary
conditions, assuming they consist of an even number N of spins.

2.2 Continuous quantum annealing: the Adiabatic theorem

Quantum annealers take advantage of the shortcut provided by adiabatic quantum
evolution in an analog quantum system. To illustrate this, consider a system ini-
tially prepared in an eigenstate of a time-dependent Hamiltonian. In our notation, let
|ψj(t)⟩ , j ∈ {0, 1, 2, ...}, denote the instantaneous eigenstate of H(t) with energy Ej(t)
such that Ej(t) ≤ Ej+1(t),∀j, t, i.e.,

H(t) |ψj(t)⟩ = Ej(t) |ψj(t)⟩ , (2.2.1)

and j = 0 denotes the (possibly degenerate) ground state. Assume that a system initial
state is prepared in |ψ0(0)⟩, that is the ground state of the Hamiltonian H(0) = Hx.
This means

|ψ0(0)⟩ = |−⟩⊗N =

(
|0⟩ − |1⟩√

2

)⊗N

, (2.2.2)

according to which each of the N qubits of the system can be found in both states |0⟩
and |1⟩. This initial state is easy to initialize as we can start with all qubits initialized

24



to |1⟩ (the computational basis state) and then apply a Hadamard gate to each qubit
in the state. We use the H(t) (2.1.4) and initial state (2.2.2) both in the QA and DQA
algorithms.
As the system evolves in time according to the Schrödinger equation (1.3.5) the state
|ψ(t)⟩ will continue to follow the corresponding instantaneous ground state of H(t),
namely |ψ0(t)⟩, provided that H(t) changes sufficiently slowly. The required slowness of
this change is determined by the adiabatic theorem AT, which essentially quantifies how
gradual the evolution must be to ensure that the system remains in its ground state. If
this adiabatic condition is met, the system will evolve toward the ground state of the
final Hamiltonian H(tf ) = H (tf is the total evolution time) which encodes the solution
to the optimization problem. Thus, by controlling the evolution speed, we guide the
system smoothly to the desired solution state. There are several formulation of AT [1],
each providing slightly different results for the precision of bounds on the evolution time
tf and the error in state preparation, depending on the regularity properties of the time-
dependent Hamiltonian and the size of the spectral gap. The ”best” AT to use thus
depends on the specifics of the quantum systems. Here, we will discuss only a few of the
existing versions.
One of the simplest and oldest traditional AT [26] states that:

Theorem 2.2.1. (Adiabatic theorem) A system initialized in |ψ0(0)⟩ remains in the
same instantaneous eigenstate |ψ0(t)⟩ ,∀t ∈ [0, tf ] (up to a global phase), provided that

max
t∈[0,tf ]

|⟨ψ1|∂tψ0⟩|
|E1 − E0|

= max
t∈[0,tf ]

| ⟨ψ1| ∂tH |ψ0⟩ |
|E1 − E0|2

≪ 1 . (2.2.3)

However, this version of the theorem is not rigorous: if the Hamiltonian includes an
oscillatory driving term, then the eigenstate population will oscillate with a time scale
determined by this term, that is independent of tf , even if the adiabatic criterion is
satisfied.

Example 1 To see this consider an Hamiltonian of the form:

H(t) = aσz + b sin (ωt)σx . (2.2.4)

In this case, the adiabatic condition reduces to |bω| ≪ α2. Even if this condition is sat-
isfied, at resonance (when ω ≈ 2α) the system undergoes Rabi oscillations with period
T independent of tf , T = π|b|.

A more precise version of AT that excludes such additional timescales was formulated
by [2]. It holds only for Hamiltonians that can be written as Htf (stf ) = H(s), where
s ≡ t/tf ∈ [0, 1] is a dimensionless time and H(s) is tf -independent. Note that this
definition includes the ”interpolating” Hamiltonians, i.e., Hamiltonians of the form

H(s) = A(s)H0 +B(s)H1 , (2.2.5)

25



as (2.1.8), where A(s) and B(s) are monotonically decreasing and increasing, respectively,
and excludes the multiple timescales cases. The Schrödinger equation then becomes

1

tf

∂ψtf (s)

∂s
= −iH(s) |ψtf (s)⟩ , (2.2.6)

and the adiabatic condition used is reminiscent of (2.2.3)

1

tf
max
s∈[0,1]

|⟨ψ1(s)|∂sH(s)|ψ0(s)⟩|
|E1(s)− E0(s)|2

≪ 1 , (2.2.7)

where the denominator is often addressed as the spectral gap ∆ij(s) = E1(s)−E0(s). In
particular, we are interested in ∆ ≡ mins∈[0,1]∆(s) = mins[0,1]E1(s)− E0(s), since both
(2.2.3) and (2.2.7) can be summarized by the condition that the total adiabatic evolution
time tf should be large on the timescale set by 1

∆2 .

However, we have not seen any bounds on the closeness between the actual time-evolved
state and the desired eigenstate, yet. To continue, following Kato’s approach in [18], let
us introduce two new operators. For all s ∈ [0, 1], we define:

• P (s) as the eigenprojector of H(s). It represent the ideal adiabatic projector
onto the instantaneous ground state1 |ψ0(s)⟩ of H(s) with eigenenergy E0(s). It
represents the state the system would ideally remain in if it followed a perfectly
adiabatic path without any dynamic deviations.

• Ptf (s) = |ψtf (s)⟩ ⟨ψtf (s)| as the projector onto the actual time-evolved state |ψtf (s)⟩,
which is the solution of the time-dependent Schrd̈inger equation with Hamiltonian
H(s) as it evolves in time.

In real scenarios where the Hamiltonian evolution is not perfectly adiabatic, |ψ0(s)⟩ and
|ψtf (s)⟩ may differ, particularly if there are dynamic effects (like non-adiabatic tran-
sitions) that arise due to a finite evolution rate. Therefore, the istantaneus adiabatic
distance ∥Ptf (s) − P (s)∥ or the final adiabatic distance ∥Ptf (1) − P (1)∥ represents the
deviation of the actual evolution from the ideal adiabatic behavior. We also assume that
the spectral gap never vanishes, i.e. ∆ > 02.
Another version of the AT rigorously establishes the gap dependence of tf , without any
strong assumptions on the smoothness of H(s) [16]

1We don’t consider any restriction on the degeneracy of the ground state, and hence of the projector
P(s), which can be (even infinitely) degenerate.

2In [3] it is presented a version of AT without gap conditions, where the estimate on the error term
is o(1) as tf →∞-

26



Theorem 2.2.2. (Adiabatic Theorem) Suppose that the spectrum of H(s) restricted
to P has a non vanishing instantaneous gap ∆(s) = E1(s)−E0(s) > 0 and that H(s) is
twice continuously differentiable. H, H(1) and H(2) are bounded operators, since we are
in a finite-dimensional space3. Then for any s ∈ [0, 1] we have

∥Ptf (s)− P (s)∥ ≤
m(0)∥H(1)(0)∥

tf∆2(0)
+
m(s)∥H(1)(s)∥

tf∆2(s)

+
1

tf

∫ s

0

(
m∥H(2)∥

∆2

)
+

(
7m
√
m∥H(1)∥2

∆3

)
. (2.2.8)

Equation (2.2.8) emphasizes how the deviation from the ideal adiabatic evolution
depends on the norm of the 1st or 2nd time derivative of H(s), rather than the matrix
element that appears in (2.2.7). Theorem 2.2.2 shows that the adiabatic limit can be
approached arbitrarily closely if (but not only if)

tf ≫ max{ maxs∈[0,1]
∥H(2)(s)∥
∆2(s)

,maxs∈[0,1]
∥H(1)(s)∥2

∆3(s)
,maxs∈[0,1]

∥H(1)(s)∥
∆2(s)

} . (2.2.9)

If H(s) satisfies certain stricter assumptions, i.e., it belongs to the Gevrey class Gα, in
[9] it is achieved a scaling of tf with 1/∆2 (up to a logarithmic correction). This scaling
is significantly better than that of every other rigorous AT formulations, which generally
exhibit a worse gap dependence (cubic or higher).
Definition (Gevrey class): H(s) ∈ Gα if dH(s)/ds ̸= 0,∀s ∈ [0, 1], and there exist
constants C,R > 0, such that

max
s∈[0,1]

∥H(k)(s)∥ ≤ CRkkαk,∀k ≥ 1 . (2.2.10)

In simple terms, we want H(s) to be bounded and infinitely differentiable, with
limited value of magnitude for the higher derivatives.

Example 2 Consider the Hamiltonian H(s) = [1− λ(s)]H0 + λ(s)H1, with

λ(s) =

{
c
∫ s

−∞ e
− 1

x−x2 dx if s ∈ [0, 1]

0 if s /∈ [0, 1]
.

From a rapid analysis of the function λ(s) it emerges that since e
− 1

x−x2 is analytic in
(0, 1), so is λ(s). Further:

• Behavior outside [0, 1]: for s < 0 or s > 1, λ(s) = 0, which ensures it doesn’t affect
the Hamiltonian outside this time interval.

3notation: H(k)(s) ≡ ( ∂
∂t )

kH(t)|s

27



• Behavior within [0, 1]: the term e
− 1

x−x2 has the following properties:

– For x ∈ (−∞, 0) and x ∈ (1,∞), the expression x− x2 is negative, leading to

e
− 1

x−x2 → 0 as x approaches either endpoint.

– For x = 0 and x = 1, the expression becomes e−∞, which is also 0. Therefore,

the function e
− 1

x−x2 approaches 0 outside the interval (0, 1).

• Integral behavior: the integral ∫ s

−∞
e
− 1

x−x2 dx

will produce a finite value for s ∈ [0, 1] due to the rapid decay of the integrand
outside the interval where it contributes significantly. The integral is well-defined
and smooth as it will only accumulate positive contributions as s increases from
−∞ to 1.

• Smoothness and derivatives: λ(s) is continuous and differentiable within the inter-

val (0, 1) due to the properties of the integral and the fact that e
− 1

x−x2 is smooth
for x ∈ (0, 1).
We can compute the first derivative of λ(s):

λ′(s) = c · e−
1

s−s2 for s ∈ [0, 1] .

Higher-ordser derivatives can be computed recursively applying the Leibniz rule,

resulting in terms that grow in a factorial-like manner. Since e
− 1

x−x2 is a smooth
function, all derivatives will also be smooth.

Figure 2.1 may help you to visualize the behavior of the function.

Going back to H(t), its k-th derivative with respect to s is:

H(k)(s) = λ(k)(s)(H1 −H0) .

Therefore, the norm ∥H(k)(s)∥ can be written as:

∥H(k)(s)∥ = |λ(k)(s)| · ∥H1 −H0∥ .

The k-th derivative of λ(s) involves combinations of derivatives of the integrand e
− 1

x−x2 .

Since e
− 1

x−x2 decays rapidly, the derivatives λ(k)(s) will also decay but with a rate that de-
pends on k. Using the general behavior of derivatives of exponentially decaying integrals,
we can approximate the growth rate of λ(k)(s) by:

|λ(k)(s)| ≤ C ′(k!)2 ,

28



Figure 2.1: Function λ(s) defined in Example 2 plotted with MatLab. On the right,
zoomed-in views of the function are shown for different intervals on the axes.

where C ′ is a constant related to the decay properties of e
− 1

x−x2 . By Stirling’s approxi-
mation, k! ≈

√
2πk (k/e)k, and thus we have:

(k!)2 ≈ (2πk) ·
(
k

e

)2k

.

So, we can bound |λ(k)(s)| by a term proportional to Ck2k for some constant C and
we can conclude that

∥H(k)(s)∥ ≤ Ck2k · ∥H1 −H0∥ ,

where C is a suitable constant that includes the norm ∥H1 − H0∥. This bound shows
that H(s) satisfies the growth condition for the Gevrey class G2.
Now, we are ready to state a new version of the AT.

Theorem 2.2.3. (Adiabatic Theorem): Assume that H(s) is bounded and H(s) ∈
Gα, with α > 1. Define h as h ≡ ∥H(0)∥ = ∥H(1)∥ and assume that ∆≪ h. If

tf ≥
K

∆2
| ln (∆/h)|6α , (2.2.11)

for some ∆-independent constant K > 0 then ∥Ptf (s)− P (s)∥ is o(1),∀s ∈ [0, 1].

29



As we said before, theorem 2.2.3 state the existence of a lower bound tf = O(∆−2/ ln(∆)),
but it does not provide any error bound. We can find an exponentially small error bound
in tf with a cubic dependence on 1/∆ in [13]:

Theorem 2.2.4. Assume that all derivatives of the Hamiltonian H(s) vanish at s = 0, 1,
and that the Gevrey condition

max
s∈[0,1]

∥H(k)(s)∥ ≤ CRk (k!)1+α

(k + 1)2
, ∀k ≥ 1 (2.2.12)

is satisfied, for three constants C,R, α > 0. Then, the adiabatic error is bounded as

min
θ
∥Ptf (1)− eiθP (1)∥ ≤ c1

C

∆
e−(c2

∆3

C2 tf )
1

1+α
, (2.2.13)

where c1 = eR(8π
2

3

3
) and c2 =

1
4eR2 (

3
4π2 )

5.

Thus, for tf ≫ c2

∆3 , the adiabatic error is exponentially small in tf .

30



Chapter 3

Towards Digital Quantum Annealing

Circuit quantum computation is a complementary approach to AQC. It enables to con-
struct arbitrary interactions and to implement error correction, which allows for scal-
ability, which was problematic in AQC due to the presence of noise; this limited the
procedure in the system size. A drawback of using quantum circuit algorithms is that
they are tailored for specific problems. Digitized adiabatic quantum algorithm combine
pros of both approaches. In this section, we will discuss how to encode the solution to a
hard problem in the ground state of a quantum Hamiltonian, how to digitally simulate
an adiabatic analog evolution, the size of the error introduced by this approximation,
and how this error scales.

In Sec. 1.3, we saw that an exact analytical solution to either (1.3.5) or (1.3.9) is
not possible in general, so approximations are needed. There exists many methods
for decomposing and approximating solutions to these equations, such as Runge–Kutta
methods, Magnus expansions [24], [5], and product formulae. Product formulae assume
that we can decompose H(t) as

H(t) =
m−1∑
j=0

Hj(t) , (3.0.1)

where m is the number of operators in the decomposition, and each Hj(t) is such that
it can be easily exponentiated for every t ∈ [ti, tf ]. Thus, the operator U in (1.3.17) is
approximated by a product of ordinary operator exponentials of Hj(t):

U(ti +∆t, ti) ≈
N−1∏
p=0

eHjp (tp)∆tp , (3.0.2)

with ∆t = tf − ti time interval, ∆tp a real number proportional to ∆t and N is the
number of terms used in the product. The reason we prefer the approach with product
formulas is that it offers several advantages over alternative methods, while consistently

31



addressing the critical aspects of the problem: the t-dependence of each Hj and the
non-commutativity between two any Hi, Hj (which makes it non-trivial to decompose
U into a product of exponentials such that (3.0.2) holds). One key benefit is that
product formulas can explicitly preserve certain symmetries of U , which means that the
approximation in (3.0.2) remains unitary - unlike Runge–Kutta methods, which do not
preserve unitarity in their approximations. Additionally, product formulas do not require
the computation of commutators or integrals, as is necessary with the Magnus expansion.
They often involve only sparse matrix-vector multiplications, making them well-suited
for algorithms that are easily parallelized. Therefore, product formulae approximations
generate a sequence of unitary operations that accurately represent the time-evolution
operator, providing a set of instructions for a quantum computer to simulate a time-
dependent quantum system.

3.1 Trotter and Suzuki formulae

3.1.1 Time-independent Hamiltonians

To study some of the most commonly used product formulas for approximating evolution
operators, we begin with the time-independent Hamiltonian operator (see section 1.3)
and consider a short time interval δt. At first order, we have

|ψ(t+ δt)⟩ ≈ (I − iHδt) |ψ(t)⟩ . (3.1.1)

In many physically interesting situations, H can be written as a sum over local
interactions. A typical example is that of spin chains such as the Ising model [12] [19]
[25]. Specifically, for a system of N particles,

H =
L∑

j=0

Hj , (3.1.2)

where each Hj acts on at most a constant c number of qubits, and L is a polynomial in
N . Such locality is physically resonable, since most interactions fall off while increasing
distance or difference in energy. Equation (3.1.2) is important because e−iHjt is much
easier to approximate in quantum circuits than eiHt since it involves a much smaller
number of qubits. On the other side, the terms Hj often do not commute with each
other, i.e.

[Hj, Hk] ̸= 0 =⇒ e−iHt = e−i
∑L

j=0 Hj ̸=
L∏

j=0

e−iHjt . (3.1.3)

This is where Trotter’s theorem [34, 31] becomes useful.

32



Theorem 3.1.1. (Trotter formula) Assume that H = A + B, where A and B are
two Hermitian time-independent operators. Then,

U(t0 + δt, to) = e−iδtH ≈ e−iδtAe−iδtB +O(δt2) . (3.1.4)

This gives an accurate approximation for small δt. For large ∆t, we could use equation
(3.1.4) to derive the Trotter formula

lim
x→∞

(eiA∆t/neiB∆t/n)n = ei(A+B)∆t , (3.1.5)

or alternatively

e−i∆tH = e−i∆t(A+B) = (e−i∆tA/ne−i∆tB/n)n +O(∆t2/n) , (3.1.6)

which is valid even if A and B don’t commute. Therefore, when the Hamiltonian H of
a target system is made of two non-commuting terms A and B, we can approximate its
continuous-time evolution by alternating the evolution under A and B, by a sequence
of elementary steps of duration δt = ∆t/N , which could be implemented as quantum
“gates” acting on neighboring qubits. The smaller δt, the closer the discrete and contin-
uous dynamics remain. A proof of the theorem 3.1.1 is given in [27]. More generally, for
a sum of an arbitrary number of operators Aj, similar formulas yield the same error scal-
ing. To achieve better scaling, one can use an alternative product of exponentials. For
example, if H still consists of two non-commuting operators A and B, so that H = A+B,
the following decomposition formula can be applied

e−itH = e−it(A+B) = et1Aet2Bet3Aet4B . . . etmA +O(tm+1) , (3.1.7)

for any positive integer m, with appropriately chosen parameters {tj} [32]. When H
depends on time t explicitly, that is H = H(t), we are dealing with the case of ordered
exponentials. The situation becomes more complicated, but with a bit of work we can
do similar considerations.

3.1.2 Time-dependent Hamiltonians

The purposes of this section is to give a general theory of decomposing ordered expo-
nentials using the ordinary decomposition formulae of exponential operators. As in [33]
we follow the strategy of reducing the decomposition problem of ordered exponentials to
that of ordinary exponential operators.
Let us introduce the super-operator 1 J :

F (t)e∆tJG(t) = F (t+∆t)G(t) , (3.1.8)

1While a typical operator acts on a vector within a vector space, a super-operator acts on other
operators, which themselves may represent physical observables, density matrices, or state transforma-
tions. If one thinks of an operator as a matrix that transforms a vector, a super-operator transforms the
operator (or matrix) itself. Thus, if ρ is a density matrix describing a quantum state, a super-operator
S acts on ρ to change it in a specified way:ρ → S(ρ). A common example of a super-operator is the
commutator of two operators A and B, [A,B].

33



for any (even non-differentiable)2 operators F (t) and G(t). If F (t) = 1 we have

1 · e∆tJG(t) = e∆tJG(t) = G(t) . (3.1.10)

The approximation of a time-ordered exponential relies entirely on the following formula,
which is the central point of this section. Any ordered exponential can be written as an
ordinary exponential operator using the super-operator J

T (e
∫ t+∆t
t dsH(s)) = e∆t(H(t)+J ) . (3.1.11)

Given the importance of this formula, we include its proof here for completeness, as
illustrated in [33].
Proof: The right-hand side of (3.1.11) can be expressed as

e∆t(H(t)+J ) = lim
n→∞

(e
∆t
n
H(t)e

∆t
n
J )n (3.1.12)

= lim
n→∞

e
∆t
n
H(t+∆t) . . . e

∆t
n
H(t+ 2∆t

n
)e

∆t
n
H(t+∆t

n
) (3.1.13)

= T (e
∫ t+∆t
t dsH(s)) , (3.1.14)

where in (3.1.12) we have used the following relations recursively

e
∆t
n
H(t)e

∆t
n
J = e

∆t
n
H(t+∆t

n
) , (3.1.15)

e
∆t
n
H(t+∆t

n
)e

∆t
n
H(t)e

∆t
n
J = e

∆t
n
H(t+ 2∆t

n
)e

∆t
n
H(t+∆t

n
) , etc. (3.1.16)

Finally, in (3.1.14) we noticed that the product of the previous step is precisely the
Riemann sum that approaches the time-ordered exponential in the limit n → ∞. An
alternative version of the proof can be obtained by noting that the left-hand side of
(3.1.11) can be expanded as (1.3.18), and the right-hand side of (3.1.11) can be written

2When F (t) is differentiable with respect to time t, we also use the notation

J =

←−
∂

∂t
, (3.1.9)

where the arrow indicates differentiation of the operators that appear before this symbol.

34



as

e∆t(H(t)+J ) = e∆tJT (e
∫∆t
0 duHt(u))

= e∆tJ (1 +

∫ ∆t

0

duHt(u) + int∆t
0 du1

∫ u1

0

du2Ht(u1)Ht(u2) + . . . )

= e∆tJ (1 +

∫ ∆t

0

due−uJH(t)euJ +

∫ ∆t

0

du1

∫ u1

0

du2e
−u1JH(t)e(u1−u2)JH(t)eu2)J + . . .

= 1 +

∫ ∆t

0

duH(t+ u) +

∫ ∆t

0

du1

∫ u1

0

du2H(t+ u1)H(t+ u2) + . . .

= 1 +

∫ t+∆t

t

dsH(s)

∫ t+∆t

t

ds1

∫ s1

t

ds2H(s1)H(s2) + . . .

= T (e
∫ t
t +∆t dsH(s)) ,

where we used the notation

Ht(u) ≡ e−uJH(t)w + euJ . (3.1.17)

Now that we know that any ordered exponential operator can be expressed by an ordi-
nary exponential operator in terms of the super-operator T , we can address the general
case where H(t) can be decomposed as H(t) = A1(t) + · · · + Aq(t) [33]. Indeed, the
corresponding ordered exponential is written as

T (e
∫ t+∆t
t dsH(s)) = e∆t(A1(t)+···+Aq(t)+J ) . (3.1.18)

Then, according to general decomposition theory of ordinary exponentials [32], the first-
order decomposition of (3.1.18) is given by

U1(t+∆t, t) = e
∆t
2
J e∆tA1(t) . . . e∆tAq(t)e

∆t
2
J (3.1.19)

= e∆tA1(t+
∆t
2
) . . . e∆tAq(t+

∆t
2
) , (3.1.20)

which approximates U with an error that is at most O((∆t)2). We can improve the
approximation with the second-order decomposition formula

U2(t+∆t, t) = e
∆t
2
J e

∆t
2
A1(t) . . . e

∆t
2
Aq−1(t)e∆tAq(t)e

∆t
2
Aq−1(t) . . . e

∆t
2
A1(t)e

∆t
2
J (3.1.21)

= e
∆t
2
A1(t+

∆t
2
) . . . e

∆t
2
Aq−1(t+

∆t
2
)e∆tAq(t+

∆t
2
)e

∆t
2
Aq−1(t+

∆t
2
) . . . e

∆t
2
A1(t+

∆t
2
) , (3.1.22)

that gives an error of O((∆t)3). Higher-ordered decompositions can be built from
(1.3.26), which we rewrite

UT (∆t, t) = UT (tr, tr−1)UT (tr−1, tr−2) . . . UT (t2, t1)UT (t1, t)tj = pj∆t , j = 1, . . . , r ,
(3.1.23)

35



for some appropriate positive integer r, where p1 + p2 + · · · + pr = 1. Now, we can
approximate each UT (tj, tj−1) to first order with Q(1)(pj∆t; tj) obtaining

U (1)
m (t+∆t, t) = Q(1)(pr∆t; tr) . . . Q

(1)(p2∆t; t2)Q
(1)(p1∆t; t1) , (3.1.24)

where, from equation (3.1.20), the explicit form of the Q(1)(pj∆t; tj)’s is

Q(1)(pj∆t; tj) = e
pj∆t

2
J epj∆tA1(t) . . . epj∆tAq(t)e

pj∆t

2
J (3.1.25)

= epj∆tA1(tj) . . . epj∆tAq(tj) , (3.1.26)

with tj = t + (p1 + p2 + · · · + pj−1 +
1
2
pj)t that is the time instant where each operator

is evaluated. Hence, we have

U(t+∆t, t) = U (1)
m (t+∆t, t) +O((∆t)m+1) , (3.1.27)

and thusm is the order of the decomposition and the parameters {pj} can be analytically
or numerically found [32, 33] so that Um(t+∆t, t) becomes of m-th order in ∆t.
Similarly, we approximate each UT (tr, tr−1) to second order as S(2)(pj∆t; tj). Hence, we
get

U (2)
m (t+∆t, t) = S(2)(pr∆t; tr) . . . S

(2)(p2∆t; t2)S
(2)(p1∆t; t1) , (3.1.28)

where each operator S(2)(pj∆t; tj) is the second order approximant of S(pj∆t), and from
equation (3.1.22)

S(2)(pj∆t; tj) = e
pj∆t

2
J e

pj∆t

2
A1(t) . . . e

pj∆t

2
Aq−1(t)epj∆tAq(t)e

pj∆t

2
Aq−1(t) . . .

pj∆t

2
A1(t) e

pj∆t

2
J

(3.1.29)

= e
pj∆t

2
A1(tj) . . . e

pj∆t

2
Aq−1(tj)epj∆tAq(tj))e

pj∆t

2
Aq−1(tj) . . . e

pj∆t

2
A1(tj) .

(3.1.30)

Finally, we obtain

U(t+∆t, t) = U (2)
m (t+∆t, t) +O((∆t)m+1) . (3.1.31)

Note that in this second case we still have tj = t + (p1 + p2 + · · · + pj−1 +
1
2
pj)t, but

that the parameters {pj} in U (2)
m are different from those in U

(1)
m . Neverthless, they can

still be determined so that U
(2)
m may become of the m-th order of ∆t. Some additional

remarks on the concepts we’ve just discussed follow.
In contrast to the t-independent case, achieving scaling as O((∆t)m+1) is not always
possible for arbitrarily large m. This scaling is achievable only if derivatives of all orders
exist. When higher-order derivatives are undefined, Suzuki’s method can still be applied
to obtain error scaling as O((∆t)m+1); however, the maximum achievable m depends on

36



the existence of specific derivative orders. What we have seen is at the basis of the recur-
sive method provided by Suzuki [35] for generating increasingly accurate approximations
of U(t +∆t, t) for a long time interval ∆t. In simple terms, this method takes as input
a symmetric decomposition formula Um(t + ∆t), which approximates an ordered oper-
ator exponential U(t + ∆t) with an error no larger than O((∆t)2m+1). It then outputs
a new symmetric approximation formula Um+1(t + ∆t) with an improved error scaling,
often reduced to O((∆t)2m+3). First of all it is important to note that Suzuki’s recursive
method doesn’t directly approximate U(t+∆t, t). Instead, it constructs a higher-order
approximation formula from a lower-order one. This means that the method alone isn’t
sufficient to approximate U(t + ∆t, t); it needs to start with a suitable initial approx-
imation in order to produce accurate results. Last but not least, it turns out that we
don’t always obtain a higher order decomposition formula from a lower order one. In
[35], it is demonstrated that higher-order approximations can be achieved when the op-
erator and it’s derivative are sufficiently smooth. It also provides error bounds for these
approximation and establish conditions for their convergence. Conversely, when H(t)
or its derivatives change discontinuously or contain singularities, then Suzuki’s method
may not yield a product formula of the expected order.
However, in this thesis we will assume that H(t) are well-behaved, and will not make
much use of Suzuki’s recursive formula. In stead, we will settle for using (3.1.24) and
(3.1.28).

3.1.3 Construction of Unitary 2-Qubits Operators

Let us recall the time-dependent Hamiltonian we are interested in, that is (2.1.4)

H(t) = (1− λ(t))Hx + λ(t)H , (3.1.32)

where Hx is explicitly (2.1.7) and H is (2.1.6). Our initial state is (2.2.2). Note that, in
general, Hx and H do not commute, nor do the individual terms Hj,j+1 in the summation
of H. To construct quantum gates for DQC, we seek 2-qubits unitary operators that
accurately reproduce a discrete version of the system evolution. To do this, we make use
of the techniques introduced in sections 3.1.1 and 3.1.2.
We focus on an elementary decomposition strategy. The study of this simplified decom-
position is justified by the fact that, even in this case, the results we are interested in
still hold true.

Hamiltonian evolution decomposition We can divide the evolution time interval
in n steps of duration δt = ∆t/n. For each time subinterval we define a time-ordered
operatorQj,T (tj, tj−1), where tj = t0+jδt, whose form is entirely analogous to U(t+∆t, t),
but acts on an interval δt:

UT (t0+∆t, t0) = Qn,T (tn, tn−1)Qn−1,T (tn−1, tn−2) . . . Q2,T (t2, t1)Q1,T (t1, t0) , (3.1.33)

37



with j = 1, . . . , n. According to equation (3.1.24), each Qj,T (tj, tj−1) can be approxi-
mated to first order

Qj,T (tj, tj−1) ≈ Q
(1)
j,T (tj, tj−1; t

′
j) , (3.1.34)

up to an error O(δt2) = O((∆t
n
)2). The total approximation error on n steps thus become

O( (∆t)2

n
). The right-hand side of (3.1.34) is a time-independent operator that act in the

time interval [tj−1, tj] and is evaluated at t′j = tj−1 + δt/2. Explicitly, we can write

Q
(1)
j,T (tj, tj−1; t

′
j) = e−iδtH(t′j) . (3.1.35)

Now, we redefine H(t) = (1− λ(t))Hx + λ(t)H as

H(t) = Heff
x (t) +Heff (t) , (3.1.36)

and substituting it into (3.1.35), we obtain

Q
(1)
j,T (tj, tj−1; t

′
j) = e−iδt(Heff

x (t′j)+Heff (t′j)) . (3.1.37)

As we saw before, the two Hamiltonians in the exponential do not commute, so we have
to apply Trotter formula to proceed with the approximation.

Q
(1)
j,T (tj, tj−1; t

′
j) = e−iδtHeff

x (t′j)e−iδtHeff (t′j) +O(δt2) , (3.1.38)

and we handle the two exponentials separately.
The first term can be expand as Heff

x (t) = (1 − λ(t′j))
∑N−1

a=0 hxσ
x
a , thus all terms in

the summation commute with each other. It follows that the first exponential is easily
decomposed as

e−iδtHeff
x (t′j) = e−iδt(1−λ(t′j))

∑N−1
a=0 hxσx

a (3.1.39)

=
N−1∏
a=0

e−iδt(1−λ(t′j)hxσx
a . (3.1.40)

The second exponential of (3.1.38) requires a bit of work. Let us recall the explicit form
of the second Hamiltonian (2.1.6):

Heff (t′j) = λ(t′j)
N−1∑
a=0

Ha,a+1 (3.1.41)

= λ(t′j)
N−1∑
a=0

(∆(j)σz
aσ

z
a+1) . (3.1.42)

Note that even though each pair of operators Ha,a+1 and Ha+1,a+2 commute, the fact
that they act on a common qubit means that the corresponding unitary operators can

38



not be applied at the same time. One potential solution to this issue consists in dividing
the original Hamiltonian H in two parts:

Heven =

N/2−1∑
a=0

H2a,2a+1 =

N/2−1∑
a=0

∆(2a)σz
2aσ

z
2a+1 , (3.1.43)

Hodd =

N/2−1∑
a=0

H2a+1,2a+2 =

N/2−1∑
a=0

∆(2a+ 1)σz
2a+1σ

z
2a+2 , (3.1.44)

where 2a and 2a+ 1 are labels for even and odd qubits in the chain, respectively. Note
that eachH2a,2a+1 in (3.1.43) acts on qubits that are not shared with any other interaction
term, therefore all H2a,2a+1’s commute with each other. The same happens in (3.1.44).

Then, we can rewrite the exponential e−iδtHeff (t′j) as

e−iδtHeff (t′j) = e−iδtλ(t′j)H (3.1.45)

= e−iδtλ(t′j)Hevene−iδtλ(t′j)Hodd (3.1.46)

=

N/2−1∏
a=0

e−iδtλ(t′j)H2a,2a+1

N/2−1∏
a=0

e−iδtλ(t′j)H2a+1,2a+2 . (3.1.47)

Therefore, the explicit form of the operator Q
(1)
j,T becomes

Q
(1)
j,T (tj, tj−1; t

′
j) =

N−1∏
a=0

e−iδt(1−λ(t′j))hxσx
a

N/2−1∏
a=0

e−iδtλ(t′j)H2a,2a+1

N/2−1∏
a=0

e−iδtλ(t′j)H2a+1,2a+2 +O(δt2) . (3.1.48)

Since the decomposition is repeated over n steps, we will have that

UT (t0 +∆t, t0) ≈
n∏

j=1

{
N−1∏
a=0

e−iδt(1−λ(t′j))hxσx
a

N/2−1∏
a=0

e−iδtλ(t′j)H2a,2a+1

N/2−1∏
a=0

e−iδtλ(t′j)H2a+1,2a+2}+O(nδt2) . (3.1.49)

Finally, this form of UT can be straightforwardly implemented in terms of quantum gates:
indeed, up to a small error, it is decomposed as the product of one- and two-qubit unitary
operators, which can be implemented as local quantum gates.

To end this section, we recall that the efficiency of QA hinges on the annealing time
∆t, which is determined by the smallest spectral gap encountered during the process.

39



A narrow spectral gap, especially during first-order phase transitions, can significantly
slow down the computation, as a slower evolution is required to maintain the system
in its ground state. This limitation can make QA less effective for certain challenging
problems. Several strategies have been proposed to mitigate this, such as using heuristic
choices for the initial state, modifying the evolution to enlarge the minimum gap, or
avoiding problematic first-order transitions altogether. However, these methods often
require prior knowledge of the spectral gap, which is not always available.
DQA still inherits the core adiabatic limitations of QA—particularly the dependency on
the spectral gap. If the gap becomes vanishingly small, the evolution time can stretch
to infinity to ensure the system remains in its ground state, making it impractical for
certain complex problems.
In contrast, the Quantum Approximate Optimization Algorithm (QAOA) presents a fun-
damentally different, non-adiabatic approach. As we show in the next section, QAOA
uses a parameterized quantum circuit composed of discrete unitary gates to approximate
solutions to combinatorial optimization problems. The algorithm iteratively refines pa-
rameters through a classical optimization routine to find the best solution. Unlike QA
and DQA, QAOA does not rely on a slow, continuous evolution and is therefore not
constrained by small spectral gaps. The effectiveness of QAOA depends instead on the
circuit depth p and the number of iterations needed for the classical optimization to
converge.

40



Chapter 4

QAOA

The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum-
classical algorithm designed to solve combinatorial optimization problems. It has gained
significant attention due to its potential to outperform classical algorithms in finding
solutions to complex optimization tasks, particularly as quantum hardware advances.
We recall section 2.1 where we introduced the cost function C(z) and how to map it
into a quantum Hamiltonian. We can map C(z) into H such that the desired solution
corresponds to the eigenstate (once measured it will appear as a string of bits) belonging
to the minimum/maximum eigenvalue of system’s Hamiltonian. QAOA is an iterative
algorithm that uses quantum states superposition to explore the solution space of a given
problem, weighs various solutions and gradually converge towards the optimal or near-
optimal one through the application of quantum gates.
In this context, Satisfiability problems focus on determining if there exists an assignment
of binary variables, denoted as a string z, that satisfies a set of logical clauses Cα(z).
MaxSat, a more challenging variant, aims to find the assignment z that maximizes the
objective function C(z), reaching its optimal value Cmax(z). Unlike exact algorithms,
approximate optimization algorithms like QAOA are designed to find a solution z such
that the resulting C(z) is as close as possible to Cmax(z).

4.1 Overview and Cost and Mixing Operators

QAOA operates by repeatedly applying two evolution operators, namely U(H, γ) and
U(B, β), to the system. This process effectively produces a trotterized approximation of
the final state in the Quantum Adiabatic Algorithm.
Further, the algorithm depends on an integer positive parameter p that is the depth
of the quantum circuit used. Specifically, it indicates the number of alternating layers
of quantum gates applied to the quantum state to approximate the solution to the
combinatorial optimization problem. As p increases, the quality of the approximation
improves, but at the cost of greater computational complexity.

41



Again, we deal with a computational problem whose cost function can be mapped into
the custom Hamiltonian of a N -particles quantum ad-hoc model (2.1.6), but this time
we will not use (2.2.2) as initial state. Indeed, we define the system initial state as

|s⟩ = |+⟩⊗N =
1√
2N

∑
z

|z⟩ . (4.1.1)

This represent the superposition of all possible bit strings |z⟩ for a system of N qubits,
each of which can be in state |0⟩ or |1⟩. The coefficient 1√

2N
ensures that |s⟩ is properly

normalized.
This state is easy to initialize, as |s⟩ = H⊗N |0⟩⊗N , where H⊗N is the tensor product of
N Hadamard operators and |0⟩ is he initial state of each qubit of the string1.
We now define two unitary operators at the basis of QAOA protocol:

1. The cost operator
U(H, γ) = e−iγH , γ ∈ R . (4.1.2)

U(H, γ) encodes information about the objective function in the evolution of the
quantum state, while γ is a tunable parameter. This operator applies a phase
shift to each computational basis state |z⟩, with the phase being proportional to
the corresponding value of the Hamiltonian H, hence U(H, γ) |z⟩ = e−iγH(z) |z⟩.
It acts like a rotation of angle γ on the quantum state around the ẑ axis in the
Bloch sphere. This means that states with lower H(z) values (corresponding to
better solutions) receive smaller phase shifts, while states with higher energy values
(worse solution) receive larger phase shifts: in this way, better solutions have more
”weight” in the final optimization.
We recall that, since the algorithm must be implemented on a quantum computer
with at most 2-qubit gates and the Ha,a+1’s terms in H, share a qubit pairwise
as seen in previous sections, we need to apply a decomposition similar to the one
already discussed. Thus, the cost operator will have the form

U(H, γ) =

N/2−1∏
a=0

e−iγH2a,2a+1

N/2−1∏
a=0

e−iγH2a+1,2a+2 . (4.1.3)

We have just kept part of the decomposed operator (3.1.48) but we have not in-
cluded any kind of time dependence.

1Note that the initial state we used for the QA and DQA protocols (2.2.2) is different from |s⟩ in
(4.1.1), though both are uniform superpositions. The key difference lies in the relative phases: |s⟩ has all
positive amplitudes, while (2.2.2) can be rewritten as |−⟩⊗N

= 1√
sN

∑
z∈0,1N (−1)Hamming(z) |z⟩, where

Hamming(z)represents the number of 1’s in the bit string z, and the phase (−1)Hamming(z) comes from
the tensor product of the individual |−⟩ states.

42



2. The ”mixing” operator

U(Hx, β) = e−iβHx =
N−1∏
a=0

e−iβhxσx
j , β ∈ [0, π] . (4.1.4)

It acts on each qubit j with the ”flip operator” σx
j , which satisfies the eigenvalues

equations: σx
j |0⟩ = + |1⟩ and σx

j |1⟩ = + |0⟩. It facilitates the transition between
different basis states, leading to fluctuations across all potential configurations
of qubits when applied to a multi-body system. In fact, from Pauli exponential
formula:

e−iβσ̂x
j |0⟩ = cos (β) |0⟩ − i sin (β) |1⟩ , e−iβσ̂x

j |1⟩ = cos (β) |1⟩ − i sin (β) |0⟩ .
(4.1.5)

The above exponentials create quantum superpositions among various potential
configurations, subsequently ’mixing’ the probabilities associated with each quan-
tum state |z⟩. The angle β governs the amplitude of rotation about the x̂-axis,
thereby influencing the level of superposition. When the operator (4.1.4) is ap-
plied repeatedly across multiple layers, it facilitates exploration of the solution
space and prevents the system from being trapped in a specific configuration that
may represent a non-optimal local minimum.

QAOA alternates between applying the operators (4.1.2) and (4.1.4) for p cycles.
This alternation aims to achieve a balance between exploring known solutions and ex-
ploring new ones, crucial for effectively approximating the optimal solution to a given
combinatorial problem.
For any integer p ≥ 1 and 2p angles (γ1, ..., γp) ≡ γ and (β1...βp) ≡ β let us define the
angle-dependent quantum state:

|γ,β⟩ = U(Hx, βp)U(H, γp) . . . U(Hx, β1)U(H, γ1) |s⟩

=
N−1∏
a=0

e−iβphxσx
a

N/2−1∏
a=0

e−iγpH2a,2a+1

N/2−1∏
a=0

e−iγpH2a+1,2a+2

. . .

N−1∏
a=0

e−iβ1hxσx
a

N/2−1∏
a=0

e−iγ1H2a,2a+1

N/2−1∏
a=0

e−iγ1H2a+1,2a+2 |s⟩ . (4.1.6)

It can be proved that |γ,β⟩ can be produced by a quantum circuit of depth at most
mp+ p. Finally, let Ep(γ,β) be the expectation value of H in the final state:

Ep(γ,β) = ⟨γ,β|H |γ,β⟩ , (4.1.7)

43



and mp be the minimum value of (4.1.7) over the angles:

mp = min
γ,β

Ep(γ,β) . (4.1.8)

We have defined all quantities in the algorithm.
A simplistic explanation of the latter is useful to understand its general purpose: we pick
a certain p and a set (γ∗,β∗), which controls the evolution operators in the quantum
circuit and somehow makes Ep(γ,β) as small as possible. Now, we run the quantum cir-
cuit associated with QAOA for p times (depth of the algorithm). The circuit alternates
between the cost Hamiltonian (4.1.2) and the mixing Hamiltonian (4.1.4) for each pair
of angles (γ∗i , β

∗
i ), i = 0, ..., p, and yields the quantum state |γ∗, β∗⟩. We measure this

state in the computational basis several times, say M times, and get multiple bit-strings
zj, j = 1, ...,M , each of which allows us to compute C(z). Ep(γ

∗,β∗) is evaluated as
the average value over the C(z)’s in order to mitigate statistical noise and provide a
better estimate of the expected outcome. This process yields an error on Ep that scales
as O(1/

√
M).

In the general case, when the number of layers p is not fixed, we may need to execute the
algorithm multiple times and iterate through various updated sets of angles (γ,β) before
we get to the optimal one (γ∗,β∗). This optimal set is the one that brings Ep(γ

∗,β∗)
sufficiently close to mp. Hence, the process involves not only finding the optimal pa-
rameters (γ∗,β∗) for each layer of the quantum circuit but also determining the optimal
number of layers p, adding an additional dimension to the search space and increasing
the complexity of the optimization task.
In contrast, when p is fixed — a case we will explore later — this situation presents a
straightforward exception to the typical procedure. In this scenario, we can first run a
classical algorithm to efficiently determine (γ∗,β∗) and then execute the quantum algo-
rithm only once.
It could seem trivial, but let us recall that computing the mean of the final samples is
significant due to the probabilistic nature of quantum algorithms. Each time we run
the algorithm, we measure |γ, β⟩ and get a different string z since the measurement is
random and depends on the probability distribution associated with the system. In the
distribution, strings z that yield a lower value of C(z) are more likely to occur. So,
QAOA does not guarantee you to get the optimal string with each run. Instead, it im-
proves the distributions of strings z by optimizing the parameters (γ, β). If the mean
value improves, then the distribution is shifting toward configuration of z which minimize
C(z). At the end of the optimization process we can run the circuit some more times and
select the string z that produces the lowest value of C(z) among the measured outcomes.

44



4.2 Classical optimization of the angles (γ, β)

As described in [10] there are many methods that can be implemented on classical com-
puters to pick good sets (γ,β). The article considers a specific maximization problem,
the MaxCut problem on graphs with bounded degrees (so that we have reduced local
complexity around each vertix), and shows efficient classical calculations of general va-
lidity to find an optimal set of angles that minimize2 Ep(γ,β).

Fixed-p case

If we consider the scenario in which p doesn’t grow with n (p is fixed while the number
of variables increase) we can adopt the strategy used in [10]. We will see an adapted
version for application on a spin chain, rather than on graphs, and we will mention the
graph case as a generalization of the spin chain.
We can write H as H =

∑N−1
j=0 Hj,j+1, thus the explicit form of (4.1.7) becomes

Ep(γ,β) = ⟨s|U †(H, γ1) . . . U
†(Hx, βp)HU(Hx, βp) . . . U(H, γ1) |s⟩

=
N−1∑
j=0

⟨s|U †(H, γ1) . . . U
†(Hx, βp)Hj,j+1U(Hx, βp) . . . U(H, γ1) |s⟩

=
N−1∑
j=0

⟨s|
N/2−1∏
a=0

eiγ1H2a,2a+1

N/2−1∏
a=0

eiγ1H2a+1,2a+2

N−1∏
a=0

eiβ1hxσx
a . . .

· · ·
N/2−1∏
a=0

eiγpH2a,2a+1

N/2−1∏
a=0

eiγpH2a+1,2a+2

N−1∏
a=0

eiβphxσx
aHj,j+1

N−1∏
a=0

e−iβphxσx
a

N/2−1∏
a=0

e−iγpH2a,2a+1

N/2−1∏
a=0

e−iγpH2a+1,2a+2 . . .

· · ·
N−1∏
a=0

e−iβ1hxσx
a

N/2−1∏
a=0

e−iγ1H2a,2a+1

N/2−1∏
a=0

e−iγ1H2a+1,2a+2 |s⟩ . (4.2.1)

In each term of the sum above, the operator

U †(H, γ1) . . . U
†(Hx, βp)Hj,j+1U(Hx, βp) . . . U(H, γ1) , (4.2.2)

2Actually, the article of reference aims to maximize Ep. Obviously, the two situations are completely
analogous, except for a global ”−” sign, thus we have decided to remain consistent with the problem
discussed throughout the thesis.

45



involves only the j-th and j+1-th spins and those ones at most p steps away from j and
j + 1. We can easily see this for the p = 1 case, where (4.2.2) is

U †(H, γ1)U
†(Hx, β1)Hj,j+1U(Hx, β1)U(H, γ1) . (4.2.3)

Now, the factors in U(Hx, β1) which do not involve spins j or j + 1 commute through
Hj,j+1 and we get

U †(H, γ1)e
iβ1(σx

j +σx
j+1)Hj,j+1e

−iβ1(σx
j +σx

j+1)(H, γ1) . (4.2.4)

Analogously, any factors in the operator U(H, γ1) which do not involve qubits j or j +1
will commute through and cancel out. So the operator in equation (4.2.4) only involves
qubits j or j + 1 and those adjacent to j or j + 1. We can generalize for any p, and
conclude that the operator in (4.2.2) that represent a general term of the sum in (4.2.1)
depends only on the local subchain g(j, j + 1) of size 2p (as the interaction degree is
always 2 - or 1 for boundary spins - for each spin), which is small and independent of
N , involving spins j and j + 1 and spins at most p steps away from j or j + 1. For each
subchain g(j, j + 1), we define the the restriction of the following elements to the qubits
in g(j, j + 1), starting from the cost Hamiltonian

Hg(j,j+1) =
N−1∑
j=0

j,j+1∈g(j,j+1)

Hj,j+1 , (4.2.5)

the operators

U(Hg(j,j+1), γ) =

N/2−1∏
a=0

2a,2a+1∈g(j,j+1)

e−iγH2a,2a+1

N/2−1∏
a=0

2a+1,2a+2∈g(j,j+1)

e−iγH2a+1,2a+2 , (4.2.6)

U(Hg(j,j+1)
x , β) =

N−1∏
a=0

a∈g(a,a+1)

e−iβhxσx
a , (4.2.7)

and the subchain initial state |s, g(j, j + 1)⟩

|s, g(j, j + 1)⟩ =
∏

j∈g(j,j+1)

|+⟩j . (4.2.8)

Using this, we can rewrite the expectation value Ep(γ, β) for each term in terms of the
local subchains. Return to (4.2.1): each j-th spin of our model belongs to a g-type
subgraph g(j, j + 1), so let us define

eg(γ,β) = ⟨s, g(j, j + 1)|U †(Hg(j,j+1), γp) . . . U
†(Hg(j,j+1)

x , β1)

Hj,j+1U(H
g(j,j+1)
x , β1) . . . U(H

g(j,j+1), γp) |s, g(j, j + 1)⟩ , (4.2.9)

46



which is the contribution of each j to (4.2.1).
Note that if g(j, j+1) and g(j′, j′+1) give rise to isomorphic subsystems, the correspond-
ing functions of (γ, β) are the same. Our case is trivial because we have subchains of
dimension 2p and bounded degrees, hence they are obviously all isomorphic. Therefore,
we only need to calculate Ep through the contribution of one representative subchain
type g, using wg as the number of its occurences in the original sum:

Ep(γ,β) = wgeg(γ,β) . (4.2.10)

As stated in [10], the value of (4.2.10) can be evaluated on a classical computer since the
max number of qubits involved in (4.2.9) is determined by the size of the subchain. Thus,
the Hilbert space grows as 22p for a subchain of size 2p, and is independent of N . For
large values of p, the optimization may exceed current classical capabilities. However, it
is important to note that the required resources do not scale with the number of qubits
N . Therefore, the complexity remains manageable even for larger systems, making it
feasible to optimize for small p and run the quantum algorithm just once.
We can extend the QAOA algorithm by designing it for graphs instead of chains. By
considering an input graph with N nodes representing spins and a set of m edges {(j, k)}
representing interactions between arbitrary pairs of qubits j, k, we can generalize models
as the one we used to more complex configurations. While in spin chains interactions
occur linearly between adjacent qubits, spin graphs allow arbitrary interactions, expand-
ing the applicability of QAOA to optimization problems with more complex topologies,
beyond just linear spin chains. Even in the case of graphs, if the parameter p is fixed or
scales slowly with N , we can first pre-determine the algorithm’s angle parameters (γ, β)
and then run QAOA just once. In particular, we will have different kind of subgraphs
and we can write the analogous of (4.2.10) as

Ep(γ, β) =
∑
g

wgeg(γ,β) , (4.2.11)

and each eg(γ,β) involves a number of qubits that scales as

qtree = 2
(v − 1)p+1 − 1

(v − 1)− 1
(4.2.12)

(v is the maximum degree of the graph). Thus, each (4.2.9) works in a Hilbert space
whose dimension is at most 2qtree . Further, there are only finitely many subgraph types
for each p.
This makes the approach computationally efficient, as the resource requirements do not
grow with N , allowing the optimization of the angles to be done classically before ap-
plying the quantum algorithm, reducing the need for multiple quantum runs.

47



4.3 Comparison between QA and QAOA performances

We now recall some important differences between QA and QAOA as reported in [10].
Consider a time dependent Hamiltonian of the same kind of (3.1.32), let us say

H(t) =

(
1− t

T

)
Hx + (t/T )H , (4.3.1)

where T represents the total runtime. It is evident that at t = 0 (4.3.1) is dominated by
Hx, whose fundamental eigenstate |s⟩ = |+⟩⊗n (associated to the minimum eigenvalues)
is easy to initialize on a quantum computer. Note that |s⟩ is the minimum energy
eigenstate for Hx but not necessarily in H (it can be an high energy state for H). Since
Hx has only non-negative off-diagonal elements, the ground state is non-degenerate and
the energy gap between the ground state and the first excited state is > 0 for any t < T
(by the Perron-Frobenius theorem). Then, for T large enough, the QA algorithm will
succesfully yield the optimal solution.
Instead, QAOA makes use of an alternation of the cost operator and the mixing operator.
The sum of γ and β angles is analogous to the total evolution time. For a better
approximation, we want each angle to be as small as possible and a longer runtime (this
approximates the adiabatic evolution limit). These two conditions combined force p to
be large (perhaps, exponentially large in some cases). In [10], it is discussed that there
always exists p large enough and a set (γ, β) such that Ep(γ, β) is as close to mp as
desired. Further, at p− 1 we have mp ≤ m(p− 1)), that can be viewed as a constrained
minimization at p. Hence,

lim
p→∞

mp = min
z
C(z) , (4.3.2)

which forms the theoretical foundation of the QAOA algorithm.
There are some other subtle distinctions between QA and QAOA.
QA works by generating a state that exhibits a large overlap with the optimal string,
while QAOA aims to provide a good approximation of the optimal solution, but is not
necessary for the two states to share a significant overlap. For instance, at p = 1, QAOA
achieves a 3

4
approximation rate, yet the overlap with the optimal z is an exponentially

small overlap [10].
It is also noteworthy that in QA, the success probability is not a monotonic function of
the runtime T . This is studied in [8], for a particular 20-qubit-instances of Max2Sat. In
QAOA the quality of approximation improves as p increases.
To end this section we report to the reader the results of the analysis carried out in [21],
which presents slightly modified version of QAOA specifically adapted for studying the
ground state of molecular systems.3.

3The chemical adaptation of QAOA differs from the standard version in several key aspects. It
uses the Hartree-Fock state as the initial state, which reduces the complexity of the Hilbert space

48



Figure 4.1: The success probability in a QA as a function of total evolution time T, from
[8].The probability increases initially but then drops sharply, with the eventual rise for
large T remaining unseen within simulation times that are computationally practical

Figure 4.2 presents the performance of a ”chemical” QAOA in producing final states with
a good squared overlap with the ground state of the molecular system. While QAOA can
achieve good energy minimization without necessarily obtaining a good overlap, ensuring
this overlap, similar to the case of QAA, indirectly leads to effective energy minimization.
These images are significant because, as shown by their similarity to the performance
diagrams of a standard QAOA in Figure 4.3, the results are general and do not depend
on the QAOA adaptation for specific molecular chemistry problems, nor on the choice
of cost Hamiltonian, mixing Hamiltonian, or the initial state.
In the chemical QAOA, the angles sets γ and β are defined as

(γ, β) = {(γj, βj)} , j = 1, . . . , p , (4.3.3)

γj = γ(fj) = ∆fj , βj = β(fj) = ∆(1− fj) , (4.3.4)

fj =
j

p+ 1
, (4.3.5)

hence, the parameter ∆ simplifies the optimization process by combining the two distinct
parameters sets (γ, β), into one. This approach reduces computational complexity by
optimizing a single parameter that controls both the cost and mixing Hamiltonians. In
standard QAOA, ∆ can typically be interpreted as a step size used to adjust the evolution
over layers, balancing exploration and exploitation. A smaller ∆ results in a more gradual
evolution, while a larger p increases the number of layers for better approximation.

by incorporating prior knowledge about the molecular system. Unlike the standard QAOA, which
typically starts from an equal superposition state and evolves to find a single eigenstate approximating
the ground state, the chemical version works with a non-diagonal cost Hamiltonian. The algorithm’s
goal is to approximate the ground state as a linear superposition of eigenstates, and its performance is
evaluated through the squared overlap between the output state and the true ground state, rather than
focusing solely on energy minimization.

49



Figure 4.2: (Right) P2 with initial squared overlap 0.77; (Left) CO2 with initial squared
overlap 0.85, from [21]. White regions above the colored areas represent parameter
settings where squared overlap with target ground state is less than its initial value.

Figure 4.3: Squared overlap with the ground state(s) after completing QAOA is shown
as a function of the parameters ∆ and p. The left plot corresponds to a 20-variable
random 3-SAT instance with 80 clauses, while the right depicts results for a 6-variable
fully connected Ising spin system. Diagrams from [21].

50



Conclusions

This thesis provides an in-depth analysis of the quantum adiabatic algorithm (QAA) and
its digital implementations, emphasizing their theoretical underpinnings and potential
applications in solving computationally complex problems. By leveraging the adiabatic
theorem, QAA establishes a framework where a quantum system can be guided from
an initial state to the ground state of a target Hamiltonian, which encodes the solu-
tion to an optimization problem. The digital adaptations, particularly Digital Quantum
Annealing (DQA), offer an avenue to implement this approach on gate-based quantum
devices, making it accessible for the Noisy Intermediate-Scale Quantum (NISQ) era.
The study also highlights the relevance of the Quantum Approximate Optimization Algo-
rithm (QAOA), which shares conceptual similarities with QAA but introduces a discrete,
hybrid quantum-classical approach. While QAOA offers flexibility and modularity, chal-
lenges in parameter optimization remain a significant barrier, especially as circuit depth
increases. Similarly, DQA faces constraints in maintaining adiabaticity and mitigating
errors, yet it demonstrates promising adaptability to existing quantum hardware.
A comparative analysis reveals that both DQA and QAOA retain the core principles
of adiabatic evolution while addressing practical limitations such as noise and hardware
imperfections. This positions them as strong candidates for achieving quantum advan-
tage in optimization problems, even under current technological constraints. However,
scaling these algorithms to larger systems or more complex problems requires a deeper
understanding of spectral gaps, error resilience, and hybrid optimization techniques.
The thesis underscores the transformative potential of adiabatic-based quantum compu-
tation. By encoding combinatorial optimization problems into quantum Hamiltonians,
these methods exploit quantum mechanics’ inherent parallelism and tunneling properties.
Despite the challenges, their adaptability to current quantum hardware and their theo-
retical scalability highlight their value in both academic research and real-world appli-
cations. Future directions include refining algorithms to optimize performance on NISQ
devices, developing advanced parameter selection strategies for QAOA, and improving
error mitigation techniques for DQA. Additionally, research into hybrid frameworks that
combine quantum and classical resources more effectively could unlock new capabili-
ties. Ultimately, this thesis demonstrates that adiabatic-based quantum approaches,
especially in digital and variational forms, are pivotal steps toward realizing practical
quantum computation.

51



Bibliography

[1] Tameem Albash and Daniel A Lidar. “Adiabatic quantum computation”. In: Re-
views of Modern Physics 90.1 (2018), p. 015002.

[2] Mohammad HS Amin. “Consistency of the adiabatic theorem”. In: Physical review
letters 102.22 (2009), p. 220401.

[3] Joseph E Avron and Alexander Elgart. “Adiabatic theorem without a gap condi-
tion”. In: Communications in mathematical physics 203 (1999), pp. 445–463.

[4] Bonnie Berger and Tom Leighton. “Protein folding in the hydrophobic-hydrophilic
(HP) is NP-complete”. In: Proceedings of the second annual international confer-
ence on Computational molecular biology. 1998, pp. 30–39.

[5] Sergio Blanes et al. “The Magnus expansion and some of its applications”. In:
Physics reports 470.5-6 (2009), pp. 151–238.

[6] Jean-Philippe Bouchaud. “Crises and collective socio-economic phenomena: simple
models and challenges”. In: Journal of Statistical Physics 151 (2013), pp. 567–606.

[7] Joseph D Bryngelson and Peter G Wolynes. “Spin glasses and the statistical me-
chanics of protein folding.” In: Proceedings of the National Academy of sciences
84.21 (1987), pp. 7524–7528.

[8] Elizabeth Crosson et al. “Different strategies for optimization using the quantum
adiabatic algorithm”. In: arXiv preprint arXiv:1401.7320 (2014).

[9] Alexander Elgart and George A Hagedorn. “A note on the switching adiabatic
theorem”. In: Journal of Mathematical Physics 53.10 (2012).

[10] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. “A quantum approximate
optimization algorithm”. In: arXiv preprint arXiv:1411.4028 (2014).

[11] Richard P Feynman. “Simulating physics with computers”. In: Feynman and com-
putation. cRc Press, 2018, pp. 133–153.

[12] Fabio Franchini et al. An introduction to integrable techniques for one-dimensional
quantum systems. Vol. 940. Springer, 2017.

52



[13] Yimin Ge, András Molnár, and J Ignacio Cirac. “Rapid adiabatic preparation of
injective projected entangled pair states and Gibbs states”. In: Physical review
letters 116.8 (2016), p. 080503.

[14] John J Hopfield. “Neural networks and physical systems with emergent collective
computational abilities.” In: Proceedings of the national academy of sciences 79.8
(1982), pp. 2554–2558.

[15] Siddharth Jain. “Solving the traveling salesman problem on the d-wave quantum
computer”. In: Frontiers in Physics 9 (2021), p. 760783.

[16] Sabine Jansen, Mary-Beth Ruskai, and Ruedi Seiler. “Bounds for the adiabatic
approximation with applications to quantum computation”. In: Journal of Math-
ematical Physics 48.10 (2007).

[17] Tadashi Kadowaki and Hidetoshi Nishimori. “Quantum annealing in the transverse
Ising model”. In: Physical Review E 58.5 (1998), p. 5355.

[18] Tosio Kato. “On the adiabatic theorem of quantum mechanics”. In: Journal of the
Physical Society of Japan 5.6 (1950), pp. 435–439.

[19] Joris Kattemölle and Jasper Van Wezel. “Variational quantum eigensolver for the
Heisenberg antiferromagnet on the kagome lattice”. In: Physical Review B 106.21
(2022), p. 214429.

[20] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. “Optimization by
simulated annealing”. In: science 220.4598 (1983), pp. 671–680.

[21] Vladimir Kremenetski et al. “Quantum alternating operator ansatz (QAOA) phase
diagrams and applications for quantum chemistry”. In: arXiv preprint arXiv:2108.13056
(2021).

[22] Seth Lloyd. “Universal quantum simulators”. In: Science 273.5278 (1996), pp. 1073–
1078.

[23] Andrew Lucas and Ching Hua Lee. “Multistable binary decision making on net-
works”. In: Physical Review E—Statistical, Nonlinear, and Soft Matter Physics
87.3 (2013), p. 032806.

[24] Wilhelm Magnus. “On the exponential solution of differential equations for a lin-
ear operator”. In: Communications on pure and applied mathematics 7.4 (1954),
pp. 649–673.

[25] Glen Bigan Mbeng, Angelo Russomanno, and Giuseppe E Santoro. “The quantum
Ising chain for beginners”. In: SciPost Physics Lecture Notes (2024), p. 082.

[26] Quantum Mechanics Messiah. Vol. II, Chap. XXI. 13. 1962.

[27] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum in-
formation. Vol. 2. Cambridge university press Cambridge, 2001.

53



[28] John Preskill. “Quantum computing in the NISQ era and beyond”. In: Quantum
2 (2018), p. 79.

[29] Peter W Shor. “Algorithms for quantum computation: discrete logarithms and
factoring”. In: Proceedings 35th annual symposium on foundations of computer
science. Ieee. 1994, pp. 124–134.

[30] Karthik Srinivasan et al. “Efficient quantum algorithm for solving travelling sales-
man problem: An IBM quantum experience”. In: arXiv preprint arXiv:1805.10928
(2018).

[31] Masuo Suzuki. “Generalized Trotter’s formula and systematic approximants of
exponential operators and inner derivations with applications to many-body prob-
lems”. In: Communications in Mathematical Physics 51.2 (1976), pp. 183–190.

[32] Masuo Suzuki. “Fractal decomposition of exponential operators with applications
to many-body theories and Monte Carlo simulations”. In: Physics Letters A 146.6
(1990), pp. 319–323. issn: 0375-9601. doi: https://doi.org/10.1016/0375-
9601(90)90962-N. url: https://www.sciencedirect.com/science/article/
pii/037596019090962N.

[33] Masuo Suzuki. “General decomposition theory of ordered exponentials”. In: Pro-
ceedings of the Japan Academy, Series B 69.7 (1993), pp. 161–166.

[34] Hale F Trotter. “On the product of semi-groups of operators”. In: Proceedings of
the American Mathematical Society 10.4 (1959), pp. 545–551.

[35] Nathan Wiebe et al. “Higher order decompositions of ordered operator expo-
nentials”. In: Journal of Physics A: Mathematical and Theoretical 43.6 (2010),
p. 065203.

54


