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Abstract

As humanity’s in-orbit activities increased, so did the number of debris. The same
can’t be said about policies that should have regulated such activities, especially in
the first decades of space conquest. Today, after many years of unregulated reign, we
face all the problems that this phenomenon brings. The rapid advancement of space
exploration has driven the need for automated systems capable of accurately identify-
ing and classifying spacecraft under various conditions. This thesis presents a machine
learning-based approach to spacecraft detection and classification using image data.
A two-stage process is implemented on the NASA PoseBowl dataset: first, YOLO’s
object detection model is implemented to localize spacecraft within the image frames.
Next, MobileNetV3, a classification model fine-tuned to detected spacecraft, lever-
aging cropped images to reduce background interference and improve classification
accuracy. The classification model is trained on images from a chaser spacecraft’s
perspective, achieving a high level of accuracy in both training and testing accuracy
after extensive model tuning and refinement. This thesis work demonstrates that
combining object detection with image classification significantly enhances the accu-
racy of spacecraft identification, offering a robust solution for future space operations
such as docking, rendezvous, and other on-orbiting servicing operations. This research
contributes to the growing field of autonomous spacecraft systems, with potential ap-
plications in satellite management, more in particular in space debris removal–a rising
concern that needs to be addressed for a sustainable future.
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Abstract (Italian Version)

Con l’aumento delle attività in orbita, è cresciuto anche il numero di detriti spaziali.
Lo stesso non si può dire delle politiche volte a regolamentare tali attività, soprat-
tutto nei primi decenni della conquista dello spazio. Oggi, dopo molti anni di gestione
non regolamentata, ci troviamo a fronteggiare tutte le problematiche derivanti da
questo fenomeno. Il rapido progresso dell’esplorazione spaziale ha reso indispensabile
lo sviluppo di sistemi automatizzati in grado di identificare e classificare accurata-
mente i veicoli spaziali in condizioni variabili. Questa tesi presenta un approccio
basato sul machine learning per il rilevamento e la classificazione tramite immag-
ini di veicoli spaziali. È stato implementato un processo in due fasi sul dataset
PoseBowl della NASA: in primo luogo, è stato utilizzato il modello di rilevamento
oggetti YOLO per localizzare i veicoli spaziali nei fotogrammi; successivamente, è
stato impiegato MobileNetV3, un modello di classificazione ottimizzato per rilevare
gli spacecraft, sfruttando immagini ritagliate per ridurre l’interferenza dello sfondo
e migliorare l’accuratezza della classificazione. Il modello di classificazione è stato
addestrato su immagini riprese dal punto di vista di un veicolo spaziale inseguitore,
raggiungendo un’elevata accuratezza sia in fase di addestramento sia di test grazie
a un’attenta ottimizzazione e calibrazione del modello. Questo lavoro di tesi di-
mostra che combinare il rilevamento di oggetti con la classificazione delle immagini
migliora significativamente l’accuratezza nell’identificazione degli spacecraft, offrendo
una soluzione robusta per future operazioni spaziali come attracco, rendezvous e al-
tre attività di servizio in orbita. Questa ricerca contribuisce al crescente campo dei
sistemi autonomi per veicoli spaziali, con potenziali applicazioni nella gestione dei
satelliti e, in particolare, nella rimozione dei detriti spaziali, una questione emergente
che necessita una soluzione per garantire un futuro sostenibile.
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Chapter 1

Introduction

Space debris is a growing concern as Earth’s orbit becomes increasingly cluttered
with defunct satellites, spent rocket stages, and fragments from collisions. This debris
creates significant risks to operational satellites, space missions, and the International
Space Station (ISS). Even small pieces of debris, traveling at high velocities, can
cause catastrophic damage upon impact as shown in Figure 1.1. The accumulation of
space debris not only threatens the safety of current and future space operations but
also increases the likelihood of cascading collisions, known as the Kessler Syndrome
[4], which could render parts of Earth’s orbit unusable for generations. Addressing
this issue requires global cooperation and innovative solutions to remove or mitigate
debris, that is why in the last years there has been a positive trend of researching
the topic with many remarkable results like the first future Active Debris Removal/In
Orbit Servicing (ADRIOS) mission assigned to ClearSpace [3] by the European Space
Agency (ESA). Figure 1.2 shows ClearSpace spacecraft to perform deorbiting.

As the number of satellites in orbit increases drastically each year, so does the
risks. These problems combined with the soon-not-sustainable efforts of humans and
conventional algorithms to tackle all spacecraft operations make a new necessity arise,
automation in spacecraft operations, particularly vision-based tasks. This is where
Machine Learning (ML) comes into play. It is a well-established technology on Earth
that still has to find its way in the space domain. The objective of this thesis is to
demonstrate the efficiency of such techniques, how they can be implemented, and why
they seem to pose an advantage and a necessity for futures generations of spacecraft.

A traditional approach to mitigate these issues is collision avoidance systems. It
represent a critical technological asset in managing the increasingly congested orbital
environment. At their core, these systems are designed to predict and prevent poten-
tial impacts between spacecraft and the vast array of orbital debris circling the Earth.
The fundamental challenge lies in processing complex trajectorial data in real-time,
making split-second decisions that can mean the difference between mission success
and catastrophic failure. Traditional collision avoidance approaches have relied on
ground-based tracking networks and predictive mathematical models, for example
the General Method for Calculating Satellite Collision Probability [8]. The primary
system, known as the Space Surveillance Network (SSN), maintained by the United
States Space Force, tracks approximately 27,000 pieces of orbital debris larger than
10 centimeters. However, this system faces significant limitations. The sheer num-
ber of smaller debris fragments is estimated at over 170 million pieces smaller than
10 centimeters. Modern spacecraft, particularly those in low Earth orbit (LEO), are
equipped with increasingly sophisticated collision avoidance mechanisms. The ISS,
for instance, maintains a robust collision avoidance protocol that involves multiple
layers of protection. When a potential collision is detected, the station can perform
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debris avoidance maneuvers, using its thrusters to alter its orbital trajectory. These
maneuvers are typically planned days in advance, based on precise orbital calculations
and debris tracking data.

Figure 1.1: Space Debris Damage. Image credit: ESA NASA

Figure 1.2: ClearSpace spacecraft deorbiting a satellite. Image credit

The work will be structured as follows. The principles that govern machine
learning–more in particularly–deep learning will be explained in Chapter 2. Chap-
ter 3 will expand on the framework used for this work, and which state-of-the-art
algorithms have been chosen to perform training. We will then move onto showing
how data is processed and prepared to be fed to the model in Chapter 4. Chapter 5
will present the final results, from showing the full training process of both models
to highlighting the difference that object detection makes in classification accuracy.
Moreover, inspired by the work of the OpenAI team [2] on enhancing AI interpretabil-
ity, it will be offered a glimpse into the inner workings of a neural network (NN) as
it processes an image, in the end we will visualize the network’s multi-dimensional
output space, showcasing how each class is represented through both 2D embedding
spaces and interactive 3D projections, along with its associated manifold. Finally
in Chapter 6 all conclusions are drawn, it is discussed how all the work could be
improved, and what real-world applications could benefit from this technology.
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Chapter 2

Deep Learning

2.1 Introduction to Machine Learning

Before introducing deep learning, it’s important to provide an overview of machine
learning (ML). Machine learning is a subfield of computer science that has been around
for several decades, but its popularity has increased in the last years being a com-
putational power-enabled technology. At its core, ML aims to enable systems to
perform tasks autonomously without the need for explicitly programming every pos-
sible scenario. Essentially, these systems are designed to recognize patterns in data.
When these patterns are simple, predictions are relatively straightforward; however,
as the complexity of the patterns increases, so does the difficulty of making accurate
predictions.

In more detail, all problems can be framed as a function approximation task, where
the goal of a ML model is to predict this function as accurately as possible. The model
achieves this by learning from the input data it is provided. Generally, the more data
that is available, the easier it becomes for the model to identify patterns and improve
its predictions. Historically, the limited availability of data, alongside insufficient
computational power, were major obstacles to the adoption of such technology.

2.2 Principles of Deep Learning

Deep Learning specifically relies on Artificial Neural Networks (ANNs). The core idea
is to connect many artificial neurons, each retaining some type of information, and
make them work together to perform specific tasks. Conveniently, the type of infor-
mation processed by these neurons is numerical, and the tasks involve mathematical
operations. The goal is to produce some output given a certain input.

The first ANN, the Perceptron, a single layer network, was created by Frank
Rosenblatt in 1957 [10]. It was a simple binary classifier. Over the following decades,
advancements were made, leading to the understanding that neurons and their con-
nections can be arranged in various ways, achieving different layouts that perform
better for specific tasks. One of the most notable architectures is the Convolutional
Neural Network (CNN), which is particularly effective for image classification. In
1989, a CNN known as LeNet-1 [5] successfully classified a dataset of handwritten
digits. The fact that we still use similar architectures today highlights that the al-
gorithms were correct, although computationally too costly for the time to achieve
something meaningful. Some of these architectures are illustrated in Figure 2.1.

There are many approaches to enable a model to learn (e.g., unsupervised learning,
reinforcement learning, etc.). The problem we are addressing falls under supervised
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2.2. PRINCIPLES OF DEEP LEARNING

learning, where the model is trained on a labeled dataset, meaning the input data
is paired with the correct output (target). In our case, each image containing a
spacecraft is labeled with the appropriate class. The goal is to learn a mapping from
inputs to outputs, allowing the model to make predictions on new, unseen data.

Figure 2.1: In the single-layer perceptron we can see inputs (x), weights of each
connection (w), a weighted sum and a step activation function. By only observing
the symbolic architecture we can appreciate the rise in complexity in a multi-layer
design. Image credit

In deep learning, optimizers and loss functions play fundamental roles in the train-
ing process.

An optimizer is an algorithm that updates the parameters of a neural network
(weights and biases) to minimize the error calculated by the loss function. It does
this by leveraging the gradients of the loss with respect to the parameters, computed
during backpropagation. Different optimizers follow varying strategies for updating
the parameters:
Stochastic Gradient Descent (SGD): A foundational optimizer that updates the pa-
rameters using the gradients of a randomly selected batch of data. Despite its simplic-
ity, SGD often performs well, particularly with proper fine-tuning of hyperparameters
like the learning rate.
Adam: Combines momentum (which accelerates learning) and adaptive learning rates
(which adjust step sizes for each parameter), often making it a strong choice for many
problems.
RMSProp: An optimizer that adapts the learning rate for each parameter by normal-
izing gradients, making it useful for problems with non-stationary objectives.

The learning rate ("lr") is a crucial hyperparameter that determines the step
size at each iteration when updating the parameters. If the learning rate is too large,
the optimization process may overshoot the optimal solution, leading to instability.
Conversely, if it is too small, convergence may become too slow.

The loss function is a metric that quantifies how well the model’s predictions
align with the true labels. It guides the optimizer by providing feedback on the quality
of predictions.
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CHAPTER 2. DEEP LEARNING

2.3 Convulutional Neural Networks For Image Clas-
sification

A convolutional neural network (CNN) is a type of deep neural network composed of
several interconnected layers, which will be explained in detail in this section. Many
of the theoretical concepts discussed here are will be illustrated specifically for our
dataset in Chapter 5, with an initial schematic of a CNN shown in Figure 2.2.

To begin, it is important to understand how the input image will be processed by
the computer. An image is best represented as a matrix, with the numbers of rows
and columns corresponding to the image’s height and width, and each pixel in the
matrix assigned a value based on its intensity, typically ranging from 0 to 255. In
grayscale images, 0 represents black, 255 represents white, and intermediate values
represent shades of gray. For color images, three matrices (one each for Red, Green,
and Blue channels) are stacked together, as any color can be formed by mixing varying
intensities of these three colors.

With the input representation defined, the CNN architecture can be summarized
as follows. The first operation involves convolution, which takes another matrix (usu-
ally orders of magnitude smaller) called a filter, kernel, or feature detector, and sliding
it over the input matrix. A convolution is mathematically the dot product of two func-
tions as shown in Equation (2.1), and in this case, it generates a new function/matrix
— the feature map. The first kernels are responsible to detect specific shallow fea-
tures, such as edges, corners, or simple patterns. A single convolutional layer typically
contains multiple kernels (e.g., 16 in our case), each generating its own feature map.

(f ∗ g)(t) =
∫ ∞

−∞
f(τ)g(t− τ) dτ (2.1)

Following the convolutional layers, we use pooling layers, which downsample the
feature maps, keeping only the most significant features and reducing the spatial
dimensions of the data. This not only speeds up computation but also improves
the network’s generalization capabilities, reducing the risk of overfitting. By stacking
multiple convolutional and pooling layers, the network can detect increasingly complex
features, allowing it to capture objects, shapes, and intricate patterns as it progresses,
ultimately yielding a final, small matrix representation of the input. This entire
process of convolution and pooling is known as feature extraction.

Once features have been extracted, the network needs to classify them. This is
done through fully connected layers, similar to those in a multilayer perceptron (see
Figure 2.1). In our model, the classifier head is composed of 2048 neurons, which
will be trained by adjusting the weights of each connection during training through
backpropagation, a widely used algorithm that iteratively reduces the network’s error
by propagating it backward through the layers and updating weights using gradient
descent. The update rule for gradient descent is shown in Equation (2.2), where θ
represents the parameters being optimized, t is the current iteration, η is the learning
rate and J(θ) is the cost function with respect to θ.

θ(t+1) = θ(t) − η∇θJ(θ) (2.2)
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2.3. CONVULUTIONAL NEURAL NETWORKS FOR IMAGE
CLASSIFICATION

Figure 2.2: Generic CNN architecture. The blocks represent convolution and pooling
until the fully connected layers are reached, and finally we have the last 15 neurons
representing each class.
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Chapter 3

Methods And Tools

3.1 The PyTorch Framework

PyTorch is an open-source deep learning framework, widely used for constructing
and training neural networks. Built on a foundation of dynamic computation graphs,
PyTorch provides flexibility in model development, making it particularly suitable
for research and iterative experimentation. It supports tensor computation on both
CPU and GPU, enabling efficient handling of large-scale data. Additionally, PyTorch
offers a robust library of pre-built neural network layers and a wide range of tools for
model optimization, making it a common choice for developing and deploying machine
learning and deep learning applications.

3.2 Visual Studio Code & Google Colab

Visual Studio Code (VSCode) is an open-source code editor that is widely used for its
versatility and powerful features. It supports a wide range of programming languages
and offers a variety of extensions, making it an ideal environment for coding tasks.
For machine learning projects, such as image classification, VSCode provides features
like integrated debugging, version control, and support for Jupyter notebooks, which
are very useful for development and testing.

Google Colab is a cloud-based platform that provides an accessible environment
for running Python code, it is particularly useful in ML given that one of its most
significant advantages is the provision of free access to graphical processing units
(GPUs) and tensor processing units (TPUs) developed specifically for ML training,
which are essential for accelerating the training of deep learning models. This makes
Google Colab an invaluable tool for ML-related projects, where large datasets and
complex neural networks can require substantial computational power.

3.3 State Of The Art Algorithms

3.3.1 MobileNet

MobileNetV3 [11] was chosen as the backbone architecture for the classification net-
work for this study due to its efficient design and strong performance on resource-
constrained systems. The network, developed by Google researchers in 2018, is an
improvement over the original MobileNet architecture, featuring an innovative design
that uses depthwise separable convolutions and a unique inverted residual structure.
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3.3. STATE OF THE ART ALGORITHMS

These architectural choices allow the model to first expand the number of channels
for feature extraction, then filter features through efficient depthwise convolutions,
and finally project them back to a lower-dimensional representation. This approach
significantly reduces computational complexity and model size compared to tradi-
tional convolutional neural networks, while maintaining high accuracy levels. In our
implementation, MobileNetV2 proved to be particularly suitable due to its balance of
performance and efficiency, processing our dataset with considerably fewer parameters
and computational resources than would be required by standard architectures.

3.3.2 You Only Look Once

YOLOv8, released by Ultralytics in 2023 [9], was selected as the main object detec-
tion network (ODN) in this research because it is a state-of-the-art object detection
network which is well-suited for real time applications. The model works by analyzing
images just once to detect multiple objects simultaneously, unlike older methods that
needed to scan images multiple times. It uses a special backbone system called CSP-
Darknet53 [1] to extract important features from images, and a feature fusion network
(PANet) that helps the model better understand objects at different sizes and dis-
tances. One of the key improvements in YOLOv8 is its anchor-free approach, which
means it can detect objects more naturally without predefined box sizes. The model
also includes modern training techniques that help it learn more effectively and make
more accurate predictions. In our implementation, YOLOv8 proved particularly valu-
able because it could process our images with high inference speed while maintaining
sufficient accuracy. Figure 3.1 shows an overlay of the model components.

Figure 3.1: The network architecture of YOLO. Image credit
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Chapter 4

The Dataset

The dataset used for the official Pose Bowl Detection for Spacecraft Detection and
Pose Estimation Challenge issued by NASA was chosen, as it’s one of the few and
newest datasets of spacecraft imagery available alongside SPEED+ [7] and SPARK
[6].

4.1 Dataset Description

The dataset consists of 8021 images taken randomly out of the full dataset. It contains
simulated images of spacecraft taken from a nearby location in space, as if from the
perspective of a chaser spacecraft. Images were created using the 3D software Blender
using models of representative host spacecraft against simulated backgrounds. A
limited number of models and backgrounds were used to generate images; models and
backgrounds appear in multiple images. Distortions were applied to some images in
post-processing to realistically simulate image imperfections that result from camera
defects or field conditions including blur, hot pixels and random noise. An example of
images from the dataset can be found in Figure 4.1. Moreover the dataset is composed
of 15 different classes each representing a different spacecraft, the exact number of
samples for each class can be found in Table 4.1. In addition to the images ground
truth data is available in csv file format. This data will later be crucial in the training
process both for classification and object detection as it contains labelled images and
spacecrafts bounding box coordinates respectively.

Classes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Samples 430 457 447 510 532 373 520 526 549 575 510 667 653 654 618

Table 4.1: Distribution of samples across classes.

4.2 Dataset Preparation

4.2.1 Data Augmentation

It is assesed how deep learning can be prone to the phenomenon of overfitting, in
particular, computer vision is very susceptible to it. There are some strategies to
prevent the model from learning too specific features of the training dataset and help
it generalize as well as possible, perhaps one of these techniques is data augmentation.
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4.2. DATASET PREPARATION

Figure 4.1: Examples of spacecraft images from PoseBowl dataset.

In particular, if the goal is to make the model see the image a little unclear, to not
learn some of those very deep and too specific patterns, then, the easiest way to do so
is to actually artificially worsen the quality of said images (e.g. random crops, noise,
blur, rotations, hot pixels etc...). This process increases the diversity of the dataset
without the need for additional data collection, helping simulate a broader range of
scenarios and variations that the model might encounter in real-world applications,
achieving overall higher robustness. Now when the model is shown new unseen test
images, thanks to the generalization capabilities it is more likely to predict accurately.
An example of data augmentation is shown in Figure 4.2.

Figure 4.2: Original image on the left, augmented trough blur and random flip on the
right.

4.2.2 Image Classification – Object Detection

The dataset for image classification was organized into a structured directory for-
mat, dividing the data into training, validation, and testing subsets. Each subset
contained subdirectories named after the respective classes, with each subdirectory
holding the images corresponding to that class. This hierarchical organization enables
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CHAPTER 4. THE DATASET

seamless integration with PyTorch’s ImageFolder utility, which automatically maps
images to their respective class labels based on the subdirectory names. Moreover,
to optimize data handling and ensure efficient model training, PyTorch’s DataLoader
was employed. The DataLoader not only facilitates the batching of images but also
enables data shuffling to prevent the model from learning patterns in the dataset’s
order, and supports parallel data loading for improved computational performance.
Here is also where all the above discussed data augmentation takes part, alongside
normalization, and conversion to tensor format. All operations applied to our dataset
in order to standardize the input data. This systematic approach ensures robust
and efficient data pipeline, enabling consistent preparation and feeding of images into
the classification system during all phases of the workflow: training, validation, and
testing.

The dataset for object detection was prepared following the YOLO format, which
requires both images and annotations. Images were organized into training, validation,
and testing directories, and each image had a corresponding text file containing an-
notations. These annotations specified the object class and the bounding box details,
including the normalized center coordinates, width, and height of each box relative to
the image dimensions. Unlike classification datasets, where labels are inferred from
folder names, object detection relies on these precise annotations to identify object
locations. Images were resized to a fixed size (e.g., 640x640 pixels) required by YOLO,
while keeping the bounding boxes proportional. Data augmentation techniques such
as flipping, scaling, and rotation were applied during training to make the model more
robust. In addition to images and annotations, a YAML configuration file needs to
be created to define the dataset structure. This file specifies the paths to the training
and validation directories, the number of classes, and the class names. Figure 4.3
shows the directory structure and annotations files.

Figure 4.3: Data structure for YOLO.
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Chapter 5

Results

5.1 Training MobileNetV2 for Classification

5.1.1 Training Pipeline

As mentioned in Section 3.3, for the classification task the chosen model is Mo-
bileNetV3. To prepare the model for training on our dataset, we first initialize the
model, load its pretrained weights, and apply the necessary transforms. A critical
step is unfreezing the base layers to allow the weights to be updated during training.
Without this adjustment, the model would retain the pre-trained weights, limiting
its ability to adapt to the specific features of our dataset and ultimately resulting in
poor performance.

The next step involves modifying the classifier head of the model to match the
requirements of our task as shown in Figure 5.1. This classifier is composed of two
fully connected layers, an activation function, and a dropout layer, each designed
to enhance learning and prevent overfitting. The first fully connected layer, defined
as nn.Linear(in_features=576, out_features=2048, bias=True), transforms the input
from 576 features into a 2048-dimensional space, increasing the model’s capacity to
learn complex patterns. The inclusion of bias=True ensures that a bias term is used to
adjust the output of the neurons, further enhancing the model’s flexibility. Next, the
nn.Hardswish() activation function introduces non-linearity into the model, enabling
the model to capture complex relationships within the data by learning non-linear
transformations of the input features. To address overfitting, a Dropout layer is in-
cluded. Dropout is a regularization technique that randomly sets 35% of the input
units to zero during training, which helps the model generalize better by reducing the
likelihood of overfitting. The final component of the classifier is another fully con-
nected layer, defined as nn.Linear(in_features=2048, out_features=15, bias=True).
This layer maps the 2048 features to 15 output classes, corresponding to the number
of classes in our dataset. The output of this layer represents the logits, or raw class
scores, which are used to make predictions. To ensure the model operates efficiently
on the available hardware, the command model_1 = model_1.to(device) is used to
transfer the model to the specified device. In this case, the training is performed on
a Google Compute Engine backend using a Tesla T4 GPU with 15 GB of RAM.
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Figure 5.1: Code snippet of the model setup.

Through extensive experimentation parameters were chosen as follows. Stochastic
Gradient Descent (SGD) emerged as the optimal choice as the optimizer. Providing
better generalization. A learning rate of 0.1 was identified as the most effective for
this project, enabling the model to achieve robust performance. Smaller learning rates
led to slower training and occasionally suboptimal results, while larger values caused
oscillations around the minimum. The chosen value provided a balanced trade-off
between convergence speed and stability. For this classification task, where the goal
is to correctly assign one of 15 classes to each input, the Cross-Entropy Loss function
was used being particularly suited to multi-class problems, as it penalizes incorrect
predictions more heavily and rewards confident, correct classifications. By doing so,
it encourages the model to output probabilities that are as close as possible to the
true class distribution.

This carefully selected combination of SGD, a lr of 0.1, and Cross-Entropy Loss
ensured that the training process was both efficient and effective, resulting in a model
that generalized well to unseen data after extensive fine-tuning.

The last thing to implement are the training and testing functions. These are es-
sential components for training and evaluating a neural network model using PyTorch.
The train_step (Figure 5.2) function defines the operations performed during a single
epoch of training, including setting the model to training mode, performing forward
passes to compute predictions, calculating the loss, updating the model’s parameters
through backpropagation, and tracking the training loss and accuracy. The test_step
function, on the other hand, evaluates the model’s performance on a validation or
test dataset. It sets the model to evaluation mode to prevent updates to parameters
and computes metrics such, loss and accuracy without calculating gradients. This is
an important aspect, since accuracy on the train set is usually low, especially in the
first epochs, the model would update its parameters based on wrong clues.
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Figure 5.2: Code snippet of the train step.

5.1.2 Results

Training results with the model set up accordingly are shown in Figure 5.3. This
case serves as a perfect demonstration of overfitting - at first glance, these results
might be interpreted as successful as train accuracy reaches over 80% only 30 epochs.
However, in reality, the model has learned the specific training dataset too thoroughly,
resulting in very poor generalization power on unseen images. This is evidenced by
the testing accuracy, which fluctuates around 25%. To the author’s best knowledge,
many anti-overfitting techniques have been implemented with poor results. This is
further validated by the quite high dropout rate of 35% that we set during tuning.
Moreover, the test loss continuously increases, even reaching values of 8, which is
exceptionally high. In the following sections, we will demonstrate how these graphs
should look when the model is performing well, particularly after implementing object
detection.

Figure 5.3: Training results over 30 epochs using only image classification.
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5.2 Training YOLOv8 for Object Detection

5.2.1 Training Pipeline

The training pipeline for YOLO is designed to operate almost like an API, which
makes it a popular choice for object detection tasks. The process begins with speci-
fying the model configuration, where a YOLO variant needs to be selected based on
the trade-off between speed and accuracy. In our case YOLOv8n will be the model,
where the "n" stands for "nano" indicating the smallest and most lightweight version
of the YOLOv8 model. More accurate models are also available, at the cost of infer-
ence speed and computational power usage. The model uses pre-trained weights to
leverage transfer learning, allowing the model to benefit from prior knowledge gained
from large datasets.

The training is initiated through a single command, specifying parameters such as
the model architecture, the dataset .yaml configuration file, the number of training
epochs, and image resolution (Figure 5.4). During this phase, YOLO automatically
handles tasks such data loading, applying data augmentations, computing the loss,
and updating model weights using backpropagation. Training progress is monitored
through built-in logging and visualization tools that provide insights into metrics
such as training and validation loss, mean Average Precision (mAP), and real-time
evaluation of predictions.

Figure 5.4: YOLO training setup.

5.2.2 Accuracy Metrics

Precision metrics are essential tools for evaluating the performance of object detec-
tion models. They quantify the accuracy and reliability of predictions by assessing
how well a model identifies objects and their corresponding locations. These metrics
provide a comprehensive view of detection quality, balancing factors such as overlap,
correctness, and confidence. Below are the key precision metrics commonly used in
object detection:

• Precision and Recall: Precision measures the proportion of correctly identi-
fied objects among all predictions, while recall evaluates the ability to find all
relevant objects. Together, they provide a balance between prediction quality
and completeness. Predictions are categorized into four outcomes based on their
accuracy: True Positives (TP), False Positives (FP), False Negatives (FN), and
True Negatives (TN). True Positives occur when the model correctly identifies
an object, with its predicted bounding box sufficiently overlapping the ground
truth. In contrast, False Positives represent incorrect detections, where the
model predicts an object that does not exist or fails to meet the required overlap
with a true object. False Negatives arise when the model misses detecting
an actual object, leaving a ground truth object unaccounted for. Lastly, True
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Negatives are predictions where the model correctly identifies the absence of
an object in areas with no ground truth annotations.

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(5.1)

• Intersection over Union (IoU): Measures the overlap between the predicted
bounding box and the ground truth bounding box, calculated as the area of their
intersection divided by the area of their union. It assesses alignment accuracy.
Graphic example is shown in Figure 5.5.

IoU =
area of overlap
area of union

(5.2)

Figure 5.5: Data structure for YOLO.

• Average Precision (AP): A fundamental metric that combines precision and
recall across different confidence thresholds. It condenses the Precision-Recall
curve into a single score for each class.

• Mean Average Precision (mAP): Extends AP to multi-class detection by
averaging AP scores across all classes. It considers multiple IoU thresholds to
provide a holistic assessment of overall model performance. mAP@50 calcu-
lates the mean average precision with an IoU threshold of 0.50 (50%), meaning a
predicted bounding box is considered correct if it overlaps with the ground truth
by at least 50%. mAP@90 a stricter IoU threshold of 0.90 (90%), requiring a
much closer match between the predicted and ground truth bounding boxes.

5.2.3 Results

Training of YOLOv8n was performed for 250 epochs, exhausting any chance of signif-
icant % points improvement. Results shown in Table 5.1 refer to the testing unseen
dataset containing a total of 1151 images. The first row represents the average results
across all images, some of them, for example the mAP@90 seem to be quite low with
only 72% accuracy, but it’s imperative to remember that the mean average precision
@ 90% is the most stringest accuracy metric, and in reality, especially for the nano
model, it is a remarkably impressive achievement. For instance, the mAP@50 has a
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Class Images Instances P R mAP@50 mAP@50-95

All 1151 1151 0.834 0.795 0.860 0.724
2 56 56 0.931 0.958 0.986 0.831
3 55 55 0.880 0.836 0.910 0.735
5 68 68 0.814 0.853 0.899 0.865
6 70 70 0.779 0.843 0.866 0.806
11 72 72 0.918 0.917 0.968 0.790
13 59 59 0.826 0.483 0.732 0.453
14 67 67 0.784 0.868 0.923 0.864
18 72 72 0.762 0.778 0.818 0.729
19 81 81 0.729 0.764 0.778 0.618
20 85 85 0.809 0.750 0.803 0.686
22 78 78 0.869 0.853 0.927 0.760
24 105 105 0.843 0.600 0.722 0.453
25 91 91 0.923 0.923 0.952 0.880
28 100 100 0.874 0.950 0.977 0.929
30 92 92 0.776 0.554 0.636 0.459

Table 5.1: Performance metrics across different classes (named after numbers).

86% accuracy. For many real-world applications, 80%+ is considered sufficient for
practical use.

These results can be interpreted further using simplistic yet rational reasoning.
This can be done by taking the best and worst results of a specific metric–in this case
mAP@50–and compare the images that each class contains, respectively class 2 at
98.6% and class 30 at 63.6%.

Figure 5.6: Spacecraft from class 2 on the left, class 30 on the right.

It is evident from Figure 5.6 that, the spacecraft on the left has a much more
distinguishable shape than the one on the right. In the fourth image, the spacecraft is
barely noticeable, making it particularly challenging to create an accurate bounding
box that accounts for its very long, thin antennas extending from a prominent and
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easily detectable body. Given these characteristics, it is clear why the model struggled
to predict correct bounding boxes around this particular spacecraft.

5.3 Implementing Object Detection to Enhance
Classification Accuracy

This subchapter demonstrates the effectiveness of implementing a two-stage object de-
tection and classification model, demonstrating its significant advantages over stand-
alone classification approaches. In real-world scenarios, attempting to classify space-
craft directly from full images would be suboptimal, as the target often appears as a
small object against vast, complex backgrounds. The more efficient approach is first,
to identify the region of interest (RoI) by deploying ODN, then crop and resize the
image and finally perform the classification. When training a classification model, it’s
important to understand that the model doesn’t comprehend what a spacecraft truly
is; rather, it learns to recognize abstract patterns common across training images.
This becomes problematic when dealing with images where the spacecraft occupies
only a few pixels against a prominent–for example–Earth background. The model
struggles to identify the relevant features among the overwhelming background in-
formation. Our approach addresses this limitation by employing object detection to
locate the spacecraft within the image. By cropping around the detected bounding
box, we effectively eliminate a substantial portion of the background noise.
The process begins by loading the YOLO model, input images, and ground truth
data, followed by creating an output directory for storing cropped images. For each
image, the model detects spacecraft and generates bounding boxes, which are then
compared to the ground truth using the IoU metric. A detection is considered correct
if its IoU exceeds a defined threshold (0.5). For matched detections, the corresponding
regions of the image are cropped and saved in a class-specific directory, facilitating
data handling for image classification for further analysis. Images where no spacecraft
is detected are simply skipped and will not be part of the final cropped dataset. Table
5.2 demonstrates an accuracy of 93.18% in detecting spacecrafts with our pre-trained
YOLOv8n model.

Figure 5.7 shows the output of the detect & crop process. These images are not
ready yet to be fed to the classification model as they come with different sizes,
making them unsuitable for training since our model expects fixed input shapes. This
problem gets addressed by the transforms applied in the dataloader, normalizing all
images to a 224x224 shape. With all images separated accordingly for each phase of
the pipeline, the process illustrated in Section 5.1.1 was repeated.

Fed to YOLO IoU > 50% IoU < 50% Not detected

Number of Images 8021 7474 247 304

Table 5.2: Out of the 8021 images fed to the model 7474 were correctly detected, 247
had an intersection lower than 50% and no spacecraft was detected in 304 images.
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CLASSIFICATION ACCURACY

Figure 5.7: Samples of the cropped dataset.

Figure 5.8 shows the new performance. After only 30 epochs the model converges
to an optimal training accuracy of 99%+ and acceptable testing accuracy of around
85%. It is worth noting that these results were reached as soon as the seventh epoch,
with more steady improvements in later epochs.

Unlike the other case when MobileNet was used by itself, here, the model still
does show room for even more improvement. Being this the case, the training was
later performed across a total of 260 epochs. Given Google Colab usage limit this was
performed in different sessions by saving checkpoints of the model status and then
resuming training when resources were available again. The learning rate was steadily
manually lowered, in total by around a order of magnitude every 100 epochs, on top
of that a weight decay of 1e-4 and a momentum of 0.9 were also implemented. As the
model converges to the minimum the step towards that direction should get finer and
finer to not overshoot, thus ending up with a lr = 0.005.

After 230 more epochs train accuracy stabilized on 100%, consequently train loss
got as low as 0.002. Test accuracy got refined by around 7% dropping the average
test loss from 0.61 to 0.397. Figure 5.9 shows only the last 80 epochs (from 180 to
260) as it was the last checkpoint of training. Across these 80 epochs, with the model
converging to the limit, there was an improvement of almost 2% of accuracy. Even
though the train curves still show some inclination, there is almost nothing else to
squeeze out of it performance wise, if training continues that trend will get flatter and
flatter asintotically.
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Figure 5.8: Training results over 30 epochs with object detection implemented.

Figure 5.9: Train and test curves over the last 80 epochs out of 260.

5.4 Feature Maps

Chapter 2.3 served as a broad introduction on how a CNN interprets the input image
and how it processes it. This section will expand on those concepts giving a bet-
ter understanding on what actually happens to the image once its fed to the model.
Firstly it shall be recalled that feature maps play a fundamental role as intermediate
representations that capture essential visual information from the input image. As an
image passes through the layers of a convolutional neural network (CNN), each layer
generates feature maps that represent increasingly abstract characteristics of the orig-
inal image. The initial layers typically detect basic elements such as edges, textures,
and color patterns, while deeper layers combine these elementary features to recognize
more complex structures and object-specific attributes. These feature maps can be
conceptualized as learned filters that highlight particular aspects of the input image
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that are relevant for the classification task. The dimensionality and nature of these
features evolve throughout the network: from low-level spatial features in early layers
to high-level semantic features in deeper layers, effectively transforming the raw pixel
data into a rich, hierarchical representation that enables accurate classification. Un-
derstanding how these feature maps develop and interact is crucial for comprehending
the internal mechanics of CNN-based classification systems. Going back to Figure 2.2
we can now clearly distinguish each block, the last 2 orange sort of lines represent
the 2 fully connected layers of the classifier head, the same ones set up in Figure 5.1.
All blocks prior the classifying fully connected layers are all responsible for image
processing and feature extraction. The number of layers in modern architectures is
usually much greater than those used for the classification head. MobileNetV3 has
a total of 13 layers and 2542856 parameters that together compone the backbone of
the model. The full strucutre is visualizable by the command model.features, it shows
the comprehensive architecture, with the size of kernels, convolutional matrices, batch
normalization, non linear functions etc.

With the architecture clear in mind, we can now access each layer and extract
what the model "sees", getting an insight of how the input image is being processed.
Again, it is expected that accessing the first layers will result in images similar to the
input one, with a slightly lower size-resolution. In contrast, accessing deeper layers
should output images that are only a few pixels of resolution and resemble abstract
features.

The feature maps represented in Figure5.10 from the top, refer to the second,
fourth and tenth layer respectively. Rows represent 5 different input images, columns
are the 16 different channels (filters) that each convolutional layer has. As already
mentioned, each filter is responsible for detecting different patterns troughout the
same image. Each activation map, if the color is yellow/green indicates strong activa-
tions, where the filter detected patterns it was trained to recognize, in contrast, dark
(blue) areas indicate low or no activation, meaning the filter did not find relevant
patterns in those regions.
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Figure 5.10: Samples of the feature maps from the cropped dataset.
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5.5 Embedded Spaces

Embedding spaces provide a powerful lens through which we can examine how neu-
ral networks interpret and distinguish between different classes of images. These
high-dimensional spaces transform complex visual inputs into compact, meaningful
representations that capture the essential characteristics of each image. Visualiza-
tion techniques like t-Distributed Stochastic Neighbor Embedding (t-SNE) [12] offer
a window into these complex representations, allowing to map high-dimensional data
into two- or three-dimensional spaces. However, it is fundamental to approach these
visualizations with a clear understanding.

It has been explained that the input image is processed as a matrix of different
dimensions. At the end of the feature extractor backbone, the matrix reaches a
convoltuted complexity, as all the the features extracted by each different channel are
put all together into a single entity. Ready to be fed to the classifier head, the matrix
gets changed in shape, more in particular it needs to become a one single column with
as many rows as the first input layer of the classifier head has, noting, once again,that
the number of neurons is the one seen in Figure 5.3 where each neuron represents a
number from 0 (off-no activation) to 1 (on-fully active) mapped from the numbers that
composed the matrix. What gets created is de-facto a column vector, and vectors have
the intrinsic property of belonging to a vector space, thus making it representable.
This is the same concept of the 2/3D cartesian plane with the difference of being in
576 dimensions. This is the equivalent of saying that every input image, after some
mathematical operations, gets assigned a specific vector in some vector space.

A vector space of 576 dimensions is difficult to imagine and represent for obvious
reasons, t-SNE comes in hand by mapping high dimensional spaces to lower dimen-
sional spaces, making it possible to visualize those vectors (images) and the place
they occupy relative to each other. Perhpas it is interesting to see if there is any
relationship between the space they occupy and the caracteristichs of the images.
This mapping can be done, again, at shallow and deeper layers. It could be expected
that in shallow layers–where the model has not yet learnt–there wouldn’t be much
relationship between the image features in relation to the space it occupies and its
neighbors; in deeper layers, where the model has progressed learning, perhaps images
could start to cluster in some specific spaces.

Figure 5.11 represents the embedding space of a shallow layer, for clarity images
have been added to represent better their classes and characteristcs. As expected
there seem to be no correlation between how images occupy the embedding space. In
a simplistic description, this can be interpeted as, going up or down, left or right in
the plane won’t make any difference and no stable repeating patterns will be found.
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Figure 5.11: Class distribution in a shallow layer.

Getting into a medium layer gives a glimpse of the learning process of the model,
as here, still no pattern can be detected class-wise, all images seem to occupy a ran-
dom space. It is only with the help of representing some images of these vectors that
we can see that the model has learnt a pattern, colors. One of the easiest way to dis-
tinguish images and find patterns, without further instructions, is perhaps by colors,
this is exactly what the model is doing, not realizing this is not the classification it
needs to do. Something that will be picked up as soon as more abstract and complex
features will be comprehended. The model primarily leverages the features it has
learned—such as edges, corners, basic geometric shapes, and color distributions—to
classify images. Among these, color appears to be the most prominent distinguishing
factor. Additionally, the transition between color-based clusters in the t-SNE em-
bedding space exhibits a smooth gradient. For instance, moving from the center of
the embedding space towards the northwest direction corresponds to a progression
towards darker images. This indicates that the t-SNE projection effectively organizes
the data by capturing variations in fundamental visual features, with a notable em-
phasis on color transitions. This is shown in Figure 5.12.
Finally, Figure 5.13 shows a deeper layer, where classification is accurate and all
classes occupy clearly distinct spaces, making clusters of same classes form. Here, it
is more difficult to understand what exactly changes going one direction or another,
since patterns that the model picked up at this point are highly abstract and most of
the times do not have an interpretable meaning for humans.
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Figure 5.12: Class distribution in a medium-depth layer.
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Figure 5.13: Class distribution in a deep layer.
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What appears as a clear separation or clustering in a 2D projection can be fun-
damentally misleading. The dimensionality reduction process inevitably compresses
a vast amount of information, potentially obscuring the true relationships between
data points. Consider the journey of dimensionality: In our initial 2D representation,
certain image classes might appear to overlap, suggesting similarity or classification
ambiguity. Yet, as we progressively add dimensions—moving from 2D to 3D, and then
continuing to add dimensions until reaching the full embedding space (which in our
case encompass 576 dimensions)—a remarkable transformation occurs. Points that
seemed indistinguishable in lower-dimensional projections begin to reveal their true
spatial relationships. This phenomenon highlights a limitation of human perception.
ML models, in contrast, operate in spaces of much higher dimensionality with ease.
Each added dimension can dramatically alter the perceived distances and distribu-
tions of data points. What might look like a tight cluster in 2D could actually be a
complex, spread-out configuration in the full embedding space. By adding just one
more dimension, making the plot 3D, this phenomenon can be observed.

Figure 5.14: 3D t-SNE representation of the embedding space, an interactive version
of this plot can be found here.

The top view in Figure 5.15 of the 3D plot resembles the full 2D map shown in
Figure 5.13, it can be seen that some regions are indeed over lapping. After careful
analysis, for example inside the circled region, by changing persepctive it is assessed
how in reality those vectors lie in very distinct regions in the embedding space as
shown in Figure 5.16.
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Figure 5.15

Figure 5.16: Left map is the top view from the 3D plot, the one on the right shows a
side view, points that seem clustered in a 2D visualization might be on different levels
od depth. This gets acquainted the more dimensions you add.

29





Chapter 6

Conclusion

The primary objective of this thesis was to develop and evaluate machine learning
methodologies for the classification of spacecraft in the PoseBowl dataset, a collection
of synthetic imagery designed to simulate realistic conditions encountered in space
operations. The study aimed to assess the potential of ML models to address the
increasing challenges posed by space debris, focusing on their capabilities, limitations,
and overall deployability in real-world scenarios.

Initially, MobileNetV3, a lightweight convolutional neural network, was employed
for the classification task. However, the model exhibited significant challenges in
handling the complexities of the dataset, which included diverse environmental con-
ditions, varying illumination levels, and partial visibility of spacecraft. The model
achieved a testing accuracy that plateaued at approximately 25%, which is indicative
of its inability to generalize effectively. Furthermore, the high disparity between the
training accuracy, exceeding 80%, and the testing accuracy highlighted severe over-
fitting issues. These results underscored the limitations of using a lightweight model
like MobileNetV3 in isolation for such demanding tasks.

To address these issues, a two-stage approach integrating object detection with
classification was proposed. YOLOv8n, the nano variant of the YOLO family, was se-
lected for the object detection phase due to its balance of computational efficiency and
performance. The model demonstrated exceptional performance, achieving a preci-
sion of 0.834 and a mean average precision at 50% Intersection over Union (mAP@50)
of 0.86 across all spacecraft classes. This highlights the suitability of YOLOv8n for
detecting spacecraft in diverse and challenging scenarios.

The data processing pipeline was then refined based on YOLOv8n’s predictions.
Cropping was applied around the detected bounding boxes to isolate the spacecraft
from their backgrounds, effectively creating a new, high-quality dataset for classifica-
tion. The processed dataset reduced the complexity of the classification task. When
retrained and evaluated using this new dataset, MobileNetV3 exhibited improvement,
achieving a classification accuracy of over 92% on previously unseen test images. This
significant enhancement validates the efficacy of combining object detection with clas-
sification, highlighting the importance of data preprocessing and addressing model
limitations.

This study demonstrates that ML, is a viable and effective solution to challenges
associated with identifying spacecraft against the rising threat of space debris. The
findings emphasize the critical role of robust preprocessing and task-specific model
selection in overcoming the limitations of lightweight architectures. Furthermore, the
results contribute to advancing autonomous vision-based systems for space applica-
tions, paving the way for improved operational safety and debris mitigation strategies.
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6.1 Future Work

One significant avenue of improvement is model tuning. While strong performance
metrics were achieved, further optimization of hyperparameters—such as learning
rates, batch sizes, and augmentation strategies—could enhance accuracy and robust-
ness. Experimenting with advanced architectures, transfer learning techniques, or
ensemble models could also provide better generalization, particularly in edge cases
like occlusions or challenging lighting conditions.

Another crucial area for development lies in dataset expansion. The current
dataset, although comprehensive, is limited in scale and diversity. Future research
could involve using tools suchs as Blender to synthetically generate additional images
of spacecraft under varied conditions–different lighting, orientations, backgrounds,
and textures. By leveraging detailed spacecraft models and simulating realistic orbital
environments, researchers could create a significantly larger and more representative
dataset. Additionally, domain adaptation methods could help bridge the gap between
synthetic and real-world data, improving the real-world applicability of these models.

Finally, an important consideration for future work is the computational con-
straints of deploying such models on satellite onboard systems. Onboard computers
typically have limited processing power and memory, making it challenging to run
complex models with high inference times. Future research should focus on optimiz-
ing inference time and reducing the computational footprint of models. Lightweight
architectures tailored for edge devices, such as satellite computers, should be pri-
oritized to ensure compatibility with the resource-constrained environment of space
missions.
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