
Alma Mater Studiorum
Università di Bologna

Campus di Cesena

DIPARTIMENTO DI INFORMATICA – SCIENZA E INGEGNERIA
Corso di Laurea in Ingegneria e Scienze Informatiche

Experiments on Code Generation for
Web Development using LLMs: A

Comparative Study

Relatore:
Prof.ssa Silvia Mirri

Correlatore:
Dr. Giovanni Delnevo
Dr. Barry Bassi

Presentata da:
Junkai Ji

Sessione II
Anno Accademico 2023-2024

This work is dedicated to technology,
which turns ideas into reality.

Introduction

The rapid evolution of artificial intelligence (AI), especially through Large
Language Models (LLMs), is reshaping many aspects of life. From managing
everyday tasks to revolutionizing specialized fields like web development,
LLMs are becoming indispensable. These models are enhancing customer
service and productivity tools and transforming communication, learning,
and collaboration. Whether drafting emails, organizing schedules, providing
real-time translations, or tutoring in subjects such as math and history, LLMs
are demonstrating versatility in countless ways.

In technical fields like web development, LLMs are opening a new frontier.
They can automate or streamline intricate processes like code generation, de-
bugging, and even collaboration between technical and non-technical team
members. This means LLMs are no longer just aids for experienced develop-
ers; they are also powerful tools for anyone, regardless of coding background,
who wants to create or contribute to digital projects.

In education, the impact of LLMs could fundamentally change how pro-
gramming and web development are learned. Traditionally, learning to code
has demanded patience, rigorous practice, and often the support of skilled
instructors. LLMs bring an on-demand learning experience, where students
can instantly generate, test, and interact with code. This feedback loop
turns coding education into a dynamic, personalized journey, enabling learn-
ers of different backgrounds to engage with programming concepts in a more
exploratory way.

Imagine a classroom where students are encouraged to experiment with

i

ii INTRODUCTION

building websites by simply describing their ideas. Instead of starting with
memorizing syntax, they can explore HTML, CSS, and JavaScript through
hands-on practice, generating code, troubleshooting errors, and understand-
ing best practices with guidance from an AI model. This approach empowers
younger learners and those from non-technical backgrounds, fostering digital
literacy and a creative, problem-solving mindset.

At advanced levels, such as in university computer science programs,
LLMs serve as collaborative tools, allowing students to tackle more complex
tasks. Students can experiment with sophisticated coding techniques, study
web accessibility standards, and explore advanced programming concepts,
freeing up time to focus on areas like algorithm design, software architec-
ture, and ethical tech design.

LLMs are also helping to make technology more accessible, regardless of
technical skills. By automating accessibility features required by the Web
Content Accessibility Guidelines (WCAG) [1], LLMs support developers in
creating digital experiences usable by people of all abilities. This has a
profound impact on industries like public services, healthcare, and education,
where inclusivity is essential.

This thesis is organized into three main chapters, each building on foun-
dational knowledge to explore the transformative role of LLMs in web devel-
opment:

• Chapter 1: This chapter introduces the role of LLMs in various stages
of web development, focusing on front-end and back-end code genera-
tion and examining accessibility through WCAG 2.2 standards.

• Chapter 2: This chapter provides a technical overview of the archi-
tectures behind popular LLMs, outlines the models used in this study,
and describes prompt engineering techniques, experimental methods,
and datasets used to evaluate code generation and performance.

• Chapter 3: This chapter presents the findings from our experiments,
comparing the performance of OpenAI’s GPT models and Google Deep-

INTRODUCTION iii

Mind’s Gemini models in generating and assessing web programming
solutions.

Contents

Introduction i

1 Contextual Introduction 1
1.1 Introduction to Large Language Models 1

1.1.1 Historical Evolution 2
1.1.2 Scaling Laws . 3
1.1.3 Emergent Abilities . 4
1.1.4 Challenges in LLMs . 5
1.1.5 Applications of LLMs 5

1.2 LLMs in Web Development: An Integration 7
1.2.1 Enhanced Collaboration Between Technical and Non-

Technical Teams . 8
1.2.2 Error Detection, Debugging, and Optimization 8
1.2.3 Customizable and Scalable Solutions 9

1.3 Technologies Related to LLM Integration in Web Development 10
1.3.1 Version Control and Collaboration Platforms (e.g., GitHub) 10
1.3.2 Integrated Development Environments (IDEs) 10
1.3.3 Frontend Frameworks (React, Angular, Vue.js) 11
1.3.4 Backend Technologies (Node.js, Django, Flask) 11
1.3.5 DevOps and Cloud Platforms (Docker, Kubernetes,

AWS, Azure) . 12
1.4 Facilities and Advantages Offered by LLMs in Web Development 13

1.4.1 Automating Routine Tasks 13

v

vi INTRODUCTION

1.4.2 Learning and Adapting to User Preferences 13
1.5 Web Accessibility . 14

1.5.1 The Role of Web Accessibility 14
1.5.2 The Potential of LLMs in Web Accessibility 15

1.6 Strategies for Improving Web Accessibility with LLMs 15
1.6.1 Automated Code Review for Accessibility 16
1.6.2 Generating Accessible HTML and CSS Code 16
1.6.3 Alt Text and Metadata Generation 17
1.6.4 Improving Color Contrast and Visual Design 18
1.6.5 Creating Accessible Documentation 19

1.7 Challenges and Limitations of LLMs in Web Accessibility . . . 20

2 Technologies and Methods 21
2.1 Transformer Architecture . 21

2.1.1 Predecessors of the Transformer 22
2.1.2 Main Components and Architecture of the Transformer 23

2.2 Gemini . 28
2.2.1 Multimodal Integration 28
2.2.2 Model Variants . 29

2.3 Gemini 1.5 . 30
2.3.1 Expanded Long-Context Processing 30
2.3.2 Improved Core Capabilities 31
2.3.3 Efficiency and Training Optimization 31

2.4 Previous Experiments using ChatGPT 32
2.4.1 Dataset and Structure 33
2.4.2 Challenges in the Previous Experiment 33

2.5 Replicating and Extending the Previous Experiment 33
2.5.1 Goals of the Experiment 34

2.6 Techniques for Improving Prompt Engineering 34
2.6.1 Meta-Prompting . 35
2.6.2 Structured Evaluation Prompts 35
2.6.3 Zero-Shot Prompting 36

INDEX vii

2.6.4 Iterative Testing and Refinement of Prompts 36
2.6.5 Combining Prompting Techniques 36

2.7 Listing of Prompt Improvements 37
2.7.1 Exercise 1: HTML5 Web Page 38
2.7.2 Exercise 2: CSS Stylesheet 39
2.7.3 Exercise 3: Theory Question 41
2.7.4 Exercise 4: JavaScript for User Interaction 42
2.7.5 Exercise 5: PHP Script for Database Interaction 44

2.8 Code Accessibility Review and Correction 46
2.8.1 Accessibility Review 47
2.8.2 Code Correction . 48

3 Results and Analysis 53
3.1 Replication of Previous Experiments with Gemini Models . . . 53

3.1.1 HTML5 Results . 54
3.1.2 CSS Results . 56
3.1.3 Theory Question Results 58
3.1.4 JavaScript Results . 60
3.1.5 PHP Results . 62
3.1.6 Accessibility Review 64
3.1.7 Code Correction Results 67

3.2 Code Generation with Optimized Prompts 69
3.2.1 HTML Code Generation with Optimized Prompts . . . 70
3.2.2 CSS Code Generation with Optimized Prompts 70
3.2.3 JavaScript Code Generation with Optimized Prompts . 71
3.2.4 PHP Code Generation with Optimized Prompts 72
3.2.5 Code Correction with Optimized Prompts 72

Conclusion 75

Bibliography 79

Acknowledgments 85

List of Figures

2.1 Transformer architecture . 24
2.2 Gemini architecture . 29
2.3 Gemini Family Capabilities 30

ix

List of Tables

2.1 Gemini family code capability comparison 31

3.1 HTML Code Generation Performance 55
3.2 HTML Solutions with Errors by Gemini and GPT Models . . 56
3.3 CSS Code Generation Performance 57
3.4 CSS Solutions with Errors by Gemini and GPT Models 58
3.5 Theory Question Answering Performance 59
3.6 JavaScript Code Generation Performance 61
3.7 JavaScript Solutions with Errors by Gemini and GPT Models 61
3.8 PHP Code Generation Performance 63
3.9 PHP Solutions with Errors by Gemini and GPT Models . . . 63
3.10 Accessibility Review Result 66
3.11 Grading Results . 69
3.12 HTML Code Generation Performance Before and After Prompt

Optimization . 70
3.13 CSS Code Generation Performance Before and After Prompt

Optimization . 71
3.14 JavaScript Code Generation Performance Before and After

Prompt Optimization . 71
3.15 PHP Code Generation Performance Before and After Prompt

Optimization . 72
3.16 Optimized Grading Results 73

xi

Chapter 1

Contextual Introduction

This chapter begins with a detailed overview of Large Language Mod-
els (LLMs) (see Section 1.1) and their transformative impact on web devel-
opment. It explores the key concepts and capabilities of LLMs, highlighting
how these advancements are reshaping the way we design, build, and interact
with web applications.

Next, the focus shifts to the practical applications of LLMs within web
development workflows (see Section 1.2). This section examines how LLMs
are integrated into essential tools and technologies such as version control
systems, Integrated Development Environments (IDEs), frontend and back-
end frameworks, and DevOps platforms.

Finally, the chapter illustrates how LLMs can be leveraged to improve
Web Accessibility (see Section 1.5). It explores how they can automate
accessibility checks, generate accessible code, and help create better online
experiences for users with disabilities.

1.1 Introduction to Large Language Models

LLMs represent a specific line of pre-trained language models, different
from others due to extraordinary sizes, reaching tens or hundreds of billions
of parameters today. Such radical growth in model sizes has equipped LLMs

1

2 1. Contextual Introduction

with quite new abilities: performing some tasks which were believed to be
just impossible for AI. It includes famous ones like GPT-3 [2] and its succes-
sor GPT-4 [3], developed by OpenAI, and Gemini [4], Google’s DeepMind
latest development in the field of LLMs. Chapter 2 will delve into the ar-
chitecture of Gemini, highlighting the design techniques behind its recent
versions, like Gemini 1.5.

1.1.1 Historical Evolution

The journey of the language models has been great, passing through
several levels of evolvement to the highly developed LLMs of recent times.
Despite many limitations, the foray of statistical language models was
the starting point of construction in this regard. Models running in the
early days were based on n-grams. These models predict the next word
in a sentence based on the preceding words and depend upon probability
distributions. As pointed out by Jurafsky and Martin (2009) [5], what is
important to realize about all these models is that their ability to know the
long-range context is extremely poor; that is, they can only “think” a few
words ahead. This makes it hard for n-grams to adopt more critical language
comprehension tasks, and they usually suffered from issues related to data
sparsity.

The latter finally marked a great leap forward. In 2003, Bengio et al.
[6] first introduced the idea of using neural networks for language model-
ing, opening up new approaches toward that potency. Models could now
keep the context even on longer sequences of text using Recurrent Neural
Networks (RNNs) and further Long Short-Term Memory (LSTM)
networks. According to Hochreiter and Schmidhuber (1997) [7], these
improvements allowed models to capture patterns over longer distances in
text. However, these models did not fully get around vanishing gradients
and scalability problems, as noted by Goodfellow et al. (2018) [8], which
remained problems.

The next big breakthrough came with the introduction of pre-trained

1.1 Introduction to Large Language Models 3

language models (PLMs). Pioneer work was conducted by Radford et
al. (2018) [9]; it proposed a generative pre-training of models on gigantic
amounts of text and subsequent fine-tuning with respect to whatever specific
task might be considered. Combined with the revolutionary Transformer
architecture proposed in Vaswani et al. (2017) [10], models such as
BERT [11] and GPT [12] significantly improved the base NLP capabilities.
The architectures proved to be very good at handling long-range dependen-
cies and processing the text in parallel, which solved many issues that existed
with previous models. In such a way, turning from task-specific models to
general-purpose PLMs expanded the range of applications for LMs and gave
way to powerful LLMs, as assured by Bommasani et al. (2021) [13].

1.1.2 Scaling Laws

Arguably, these stunning improvements in LLMs emerged with the dis-
covery of scaling laws, which implied a remarkably strong relation between
a model’s size, data amount, and computational resources from one side, and
its performance from the other. These laws have served as guiding princi-
ples in the development of ever-stronger models. One of the most influential
scaling laws was introduced by Kaplan et al. (2020) [14] at OpenAI,
often referred to as the KM scaling law. This kind of law showed that
increasing both model and dataset size for training produces drastically bet-
ter performance across a range of tasks, particularly when models are scaled
towards billions of parameters. Building on this, Hoffmann et al. (2022)
[15] at Google DeepMind proposed the Chinchilla scaling law that model
size needs to be balanced against the amount of training data. Their findings
revealed that after a certain point, increasing the amount of training data has
a more fundamental impact on performance compared to simply scaling up
the model’s parameters. That realization has shaped the training of models
like Gemini to ensure there is much more balancing with generalization and
problem-solving potential.

These scaling laws have been crucial in setting a path for the mod-

4 1. Contextual Introduction

ern development of LLMs by guiding researchers on their work to ensure
that model architectures and training regimes are designed with maximum
considerations of efficiency with performance.

1.1.3 Emergent Abilities

Perhaps among the most arresting phenomena seen in LLMs are special
abilities developing which smaller models cannot replicate. As Wei et al.
(2022) [16] outlined, in systems which continue to increase beyond certain
thresholds in size and data, such capabilities often emerge out of nowhere,
almost as if the model undergoes some kind of phase transition. Some
tools among these emergent abilities include the following:

Few-Shot Learning: GPT-4 and Gemini among other LLMs have
been able to show incredible levels of few-shot learning as Brown et
al. (2020) [17] have demonstrated. Instead of being trained on vast task-
specific datasets, these models would be able to learn new tasks with just a
few examples given in the input prompt.

Following Instructions: LLMs are also capable of understanding and
following intricate directions in natural language. This lets users intuitively
interact with such models without technical experience or explicit program-
ming. Ouyang et al. (2022) [18] demonstrated how instruction-following
tuning can scale to an extremely wide range of tasks.

Step-by-Step Reasoning: LLMs can now break down complex prob-
lems into a series of logical steps, thus allowing for mathematical problem-
solving, code generation, and debugging tasks. Chowdhery et al. (2023)
[19] presented this emergent ability within the discussion of their work, where
it was underlined how the ability of the LLMs to reason through problems
in an ordered manner appeared.

1.1 Introduction to Large Language Models 5

1.1.4 Challenges in LLMs

Despite the significant success, there are a number of challenges in which
the researchers are very well engaged in finding out the remedy. Some of
them are:

• Understanding Emergent Abilities: Despite being quite exciting,
emergent capabilities in LLMs are still very poorly understood. The
researchers are yet to know why the emergent capabilities seem to hap-
pen only above a certain model size.

• Resource Use and Training Difficulty: Training giant models like
GPT-4 and Gemini requires gigantic computational resources, from
access to complicated hardware (GPU, TPU) to very large datasets.
This has contributed to the development of their growing seriousness
of environmental and financial costs.

• Bias and Alignment: Making certain that LLMs always produce
aligned and ethical outputs is another area of critical attention. Mean-
while, the biases in the training data lead to some sort of harmful and
unethical responses. Several researchers are working on reducing these
biases, improving safety mechanisms, and making models strongly ad-
here to human values.

• Model Interpretability: Since the LLMs are very complex, they
are considered sometimes “black boxes,” given this complexity in un-
derstanding how they reach certain outputs. There is a dire need to
especially improve the interpretability of such models in domains that
require transparency and accountability, such as healthcare and law.

1.1.5 Applications of LLMs

With their wide applicability to different spheres, LLMs have already
begun reshaping various industries. Some of the most important spheres
where LLMs are making a lot of difference include:

6 1. Contextual Introduction

• Natural Language Processing (NLP): LLMs are now an impor-
tant part in developing NLP-related tasks such as text summarization,
machine translation, question answering, and dialogue systems. Re-
search by Jiacheng Xu et al. (2019) [20] shows how LLMs can be
leveraged to improve discourse-aware neural models for more coherent
text summaries. These are finding applications in dialogue systems
that enrich the quality of human-computer interaction.

• Information Retrieval (IR): The large language models are also
changing the face of information retrieval systems. For instance, Yates
et al. (2021) [21] identified how pre-trained LLMs such as BERT
improve document ranking and query understanding to make informa-
tion retrieval more accurate and context-sensitive.

• Biomedical and Scientific Discovery Endeavors: LLMs in biomed-
ical domains operate automatic tasks of drug discovery and protein
structure prediction. Other variants, such as SciBERT by Beltagy
et al. (2019) [22] and AlphaFold by Jumper et al. (2021) [23],
have been achieving the state of the art in predicting protein structures
and extracting insights from scientific literature.

• Human-Computer Interaction (HCI): LLMs change how humans
interact with computers by furthering intuitive and personalized inter-
faces. Shneiderman (2022) [24] has discussed the roles of LLMs
in developing sophisticated virtual assistants, chatbots, and adaptive
user interfaces that can be responsive to complex user inputs and pref-
erences.

1.2 LLMs in Web Development: An Integration 7

1.2 LLMs in Web Development: An Integra-
tion

The development of the web has undergone considerable evolution since
the creation of the first website by Tim Berners-Lee in 1991 [25]. Early
websites were simple, static pages with very limited interactivity. The intro-
duction of HTML, JavaScript, and CSS in the mid-1990s laid the foun-
dations for the modern web. As these web technologies matured, the march
of server-side languages such as PHP, Python, and Java in the early 2000s
made dynamic content and far richer user interactions possible.

Equally pivotal was the introduction of AJAX, around the middle of
the decade, that allowed for more dynamic and responsive web applications
that could asynchronously fetch data. This was followed by web frameworks
such as Ruby on Rails, Django, and Angular, that vastly simplified the
process for developing on the web and deeply integrated best practices to
architect applications that scaled and were maintainable.

Nowadays, web development has embraced a new frontier with Large
Language Models (LLMs) such as OpenAI’s Codex, GPT-4, Google’s
PaLM, and Gemini. These models are trained on a large amount of data,
both code and text, enabling them to understand and generate code in many
different programming languages. Applications in web development work-
flows are changing the game regarding how websites and web applications
are designed, built, and maintained.

According to Chen et al. (2021) [26], LLMs like Codex have become
surprisingly effective for natural language-to-code translation, code comple-
tion, and even bug detection and repair. This, therefore, makes LLMs so
important in the acceleration of development processes and enhancement in
terms of accuracy, coupled with reducing manual effort in coding.

8 1. Contextual Introduction

1.2.1 Enhanced Collaboration Between Technical and
Non-Technical Teams

Another important strength of LLMs in web development is their ability
to fill the gap between technical developers and other non-technical stake-
holders, such as product managers, designers, and business analysts. Since
LLMs are able to generate code from natural language descriptions, non-
technical members might field a description in simple English and have it
translated by LLM into functional code.

• Bridging the Gap: LLMs let the non-technical stakeholders con-
tribute to the development process without having to cognize or un-
derstand the code. Translating natural language into code, LLMs help
in easier collaboration and a mutual understanding of the project’s re-
quirements.

• Interactive Prototyping: This way, LLMs can provide much more
interactive and intuitive prototyping, where stakeholders interact with
mockups or early-stage prototypes through natural language. In fact,
this rapid iteration better aligns stakeholders and developers to work
even more centered on the user and with finer details of the web appli-
cation.

1.2.2 Error Detection, Debugging, and Optimization

LLMs are powerful tools for error detection and debugging that empower
developers to rapidly detect and resolve issues. As a result, it decreases bug-
fixing time while enhancing overall code quality.

• Automated Debugging: Whenever any developer identifies an er-
ror, the error message or problematic code fragment can be fed to the
LLMs. The model can analyze the problem, give possible fixes, and
even explain why an error has occurred. This capability has been es-

1.2 LLMs in Web Development: An Integration 9

pecially handy in finding logic errors, syntax mistakes, and common
pitfalls while programming.

• Code Optimization: Similarly, LLMs can facilitate code optimiza-
tion by locating bottlenecks in performance, suggesting improvements
in algorithms, and pointing out where code can be parallelized or refac-
tored. Tools such as Sourcegraph Cody are already using LLMs to
drive optimized code performance and make life easier for developers.

1.2.3 Customizable and Scalable Solutions

In general, LLMs can enable developers to create customized solutions
that expand and scale with business needs. Whether it is the need to migrate
from monolithic architecture to microservices or scale cloud infrastructure,
LLMs could write and adapt code to meet various project requirements,
frameworks, or stacks.

• Adaptability: LLMs can adapt to different languages, frameworks,
and architectural patterns quite fast. It can generate configurations and
code for use cases, such as allowing a developer to add GraphQL in
order to perform API queries, manage global state with Redux in Re-
act, and even go ahead to change over to microservices architecture. In
fact, studies like LLM-Powered Code Generation by DeepMind
[27] prove dynamic usage of LLMs in code generation across diverse
web frameworks.

• Scalability: LLMs can help developers build scalable web applica-
tions by generating code for distributed systems, cloud infrastructures,
and microservices architectures. For example, an LLM may gener-
ate configuration files of Kubernetes or refactor a monolithic system
into one based on microservices, which would enable the application to
handle more significant traffic and business complexity.

10 1. Contextual Introduction

1.3 Technologies Related to LLM Integration
in Web Development

It is important to note that a number of enabling technologies and de-
velopment environments exist, incorporating LLMs into today’s web devel-
opment workflows. Such technologies are acting to facilitate the successful
application across the breadth of developments.

1.3.1 Version Control and Collaboration Platforms (e.g.,
GitHub)

Development platforms like GitHub have been very instrumental in cre-
ating avenues for developers to integrate LLMs into their workflow. GitHub
Copilot, powered by Codex, allows developers direct access to LLM-driven
code suggestions right in their code editor.

• Real-time Code Completions and Suggestions: While developers
are typing the code, Copilot checks the context of the project and
suggests completions or blocks of code in real time. This speeds up the
coding process because of lesser manual effort and early detection of
errors.

• Automation of Pull Requests: LLMs can also help in reviewing
pull requests by automatically suggesting changes, optimizing code, or
flagging potential issues in real time. This advances the speed and
quality of code reviews.

1.3.2 Integrated Development Environments (IDEs)

With the rise of LLMs being integrated into popular IDEs like Visual
Studio Code, JetBrains, and Sublime Text, real-time support is given
to the developers while they code.

1.3 Technologies Related to LLM Integration in Web Development 11

• Contextual Code Assistance: Editors like Visual Studio Code
have LLM-enabled add-ins that offer contextual code completions, de-
bugging support, and documentation queries within the editor itself.

• Automation of Tasks: LLMs can automate many activities, in-
cluding configurations for tests, linting, and deployment, while keeping
developers within the comfort of their IDE and still managing their
projects efficiently.

1.3.3 Frontend Frameworks (React, Angular, Vue.js)

LLMs are also becoming indispensable in frontend development, espe-
cially with frameworks like React, Angular, and Vue.js, which have gained
a leading position in modern web development by setting great store by
reusable components.

• Component Creation: LLMs will help create reusable components
with the handling of state and props in React, or directives and services
for Angular and Vue.js, to enable complex UI creation.

• State Management: Regarding complex state changes, LLMs will
implement a state management pattern—Redux or Context API in
React, increasing the efficiency of application state handling in general.

1.3.4 Backend Technologies (Node.js, Django, Flask)

LLMs have started revising backend development by automating key
tasks entailing API creation and database management. With the aid
of LLMs, backend frameworks such as Node.js, Django, Flask, and Ruby
on Rails have been able to create routes, middleware, and database models.

• API Generation: The LLMs are capable of building RESTful
APIs or GraphQL endpoints from simple natural language descrip-
tions. It could be that a developer asks the LLM to build the API

12 1. Contextual Introduction

endpoint for user registration that would imply JWT authentication.
It would return routes, middleware, and error handling.

• Database Schema Design: LLMs are also great at designing database
schemas, relationships, or queries. Be it SQL databases, such as
MySQL and PostgreSQL, or NoSQL databases, including Mon-
goDB and Firebase, the LLM helps with the design of the schema
and its integration into the logic of the application.

1.3.5 DevOps and Cloud Platforms (Docker, Kuber-
netes, AWS, Azure)

Today, LLMs find more and more applications in the DevOps ecosystem
in order to automate tasks with regard to infrastructure management, cloud
deployment, and container orchestration.

• Dockerfile Generation: Developers can also trust LLMs to generate
Dockerfiles for containerized applications automatically, thus avoiding
any need to set up Docker configurations.

• Kubernetes Configurations: LLMs make the creation of Kuber-
netes configurations much easier. This would also include YAML
files used for maintaining services, deployments, and application scal-
ing.

• Cloud Infrastructure: LLMs make cloud deployments easy through
AWS, Google Cloud, and Microsoft Azure by creating IaC scripts
like Terraform or AWS CloudFormation templates for managing
VMs, storage, and networking services.

1.4 Facilities and Advantages Offered by LLMs in Web Development13

1.4 Facilities and Advantages Offered by LLMs
in Web Development

LLMs are becoming invaluable tools for web development, offering vari-
ous facilities and advantages that enhance productivity and improve the
quality of code. These benefits range from automating repetitive tasks to
generating advanced code suggestions that elevate the performance and main-
tainability of web applications.

1.4.1 Automating Routine Tasks

LLMs have greatly reduced the need for developers to manually handle
routine tasks such as creating forms, handling API requests, or setting up
databases. By using natural language prompts, developers can automate
repetitive tasks that would otherwise take considerable time.

• Boilerplate Code Generation: LLMs can generate boilerplate code
for common tasks like authentication, data validation, and CRUD op-
erations for databases, cutting down on redundancy and speeding up
development workflows.

• Template Customization: LLMs also assist in generating and cus-
tomizing templates for HTML, CSS, and JavaScript frameworks, ensur-
ing consistency in design patterns across multiple pages or applications.

1.4.2 Learning and Adapting to User Preferences

Advanced LLMs, such as Gemini and GPT-4, are designed to learn
and adapt to a developer’s unique coding style and project preferences.
This allows the model to offer increasingly relevant suggestions that align
with the developer’s coding standards and architectural decisions.

• Context-Aware Assistance: LLMs can track the project’s context
and offer code suggestions that align with the established logic and

14 1. Contextual Introduction

structure of the project, delivering a more personalized and efficient
coding experience.

1.5 Web Accessibility

Web accessibility is increasingly important as the internet becomes a crit-
ical part of daily life. Ensuring websites and applications are usable by indi-
viduals with disabilities is not only a legal requirement in many regions but
also an ethical responsibility. Recent advancements in machine learning and
AI, particularly in Large Language Models (LLMs) like GPT, Gemini, and
other transformer-based models, provide developers with powerful tools to
automate and enhance web accessibility.

LLMs assist in tasks such as code generation, natural language processing,
and content creation. Their potential to identify and fix accessibility issues
in web development is still evolving, but they hold significant promise for
creating more inclusive online experiences. By leveraging LLMs, developers
can create more accessible websites, streamline workflows, and improve web
experiences for users with disabilities.

1.5.1 The Role of Web Accessibility

Web accessibility ensures digital content is accessible to individuals with
a range of disabilities, including visual, auditory, cognitive, and motor im-
pairments. Accessibility has become a fundamental right, supported by in-
ternational guidelines like the Web Content Accessibility Guidelines
(WCAG) [1], as well as laws such as Section 508 of the Rehabilitation
Act in the U.S. and the Equality Act in the U.K.

The goal of accessibility is to create a seamless user experience for every-
one, regardless of abilities. Common accessibility challenges include:

• Visual impairments (e.g., blindness, low vision, color blindness).

• Auditory impairments (e.g., deafness or hard of hearing).

1.6 Strategies for Improving Web Accessibility with LLMs 15

• Cognitive impairments (e.g., learning disabilities, memory issues).

• Motor impairments (e.g., difficulty using a mouse or other physical
limitations).

Developers are responsible for adhering to WCAG standards, ensuring
non-text content has alternatives, websites are keyboard-navigable, and con-
tent is perceivable, operable, understandable, and robust.

1.5.2 The Potential of LLMs in Web Accessibility

LLMs excel in processing and generating natural language, with applica-
tions in web development that include:

• Automating repetitive tasks like generating ARIA attributes or alt
text for images.

• Suggesting improvements based on accessibility guidelines like WCAG.

• Identifying common accessibility issues, such as missing alt text,
low contrast ratios, or incorrect heading structures.

• Generating alt text and other metadata to improve screen reader
compatibility.

1.6 Strategies for Improving Web Accessibil-
ity with LLMs

This section highlights how Large Language Models (LLMs) can revolu-
tionize web accessibility by automating key tasks that often require manual
effort.

16 1. Contextual Introduction

1.6.1 Automated Code Review for Accessibility

One of the most promising applications of LLMs in web development
is automated code reviews for accessibility issues. LLMs, trained on vast
datasets of code and accessibility guidelines, can recognize common barriers
and provide recommendations for improvement.

For example, developers can submit HTML and CSS code for evaluation,
and the LLM could offer suggestions such as:

• Adding or improving alt text for images. LLMs, as demonstrated by
Gurari et al. (2020) [28], can analyze images and generate informative
descriptions for users with visual impairments.

• Recommending color changes to improve contrast ratios between text
and background elements, adhering to WCAG guidelines.

• Identifying improper use of ARIA labels or roles and ensuring their
correct implementation.

• Suggesting improvements to ensure all interactive elements are key-
board navigable.

1.6.2 Generating Accessible HTML and CSS Code

Imagine effortlessly crafting web pages that embrace inclusivity from the
very start! Large language models (LLMs) can be your allies in this endeavor.
They can assist in generating accessible HTML and CSS code, minimizing
the need for time-consuming revisions later.

For instance, when generating a form, LLMs can automatically include
essential accessibility features:

• Labels for Input Fields: Clear labels connected to their correspond-
ing input fields ensure that everyone, including those using assistive
technologies, understands the purpose of each field.

1.6 Strategies for Improving Web Accessibility with LLMs 17

• ARIA Attributes: These attributes enhance compatibility with screen
readers, providing crucial information about the form’s structure and
elements.

• Keyboard Navigation and Focus Management: LLMs can ensure
that all form elements are easily navigable and operable using only the
keyboard, catering to users with motor impairments.

Example: An Accessible Form

Instead of generating a basic, inaccessible form like this:

Listing 1.1: Inaccessible form (missing labels and ARIA attributes)
<form>

<input type="text" name="username">

<input type="submit" value="Submit">

</form>

An LLM can produce a more accessible version, complete with labels and
ARIA attributes:

Listing 1.2: Accessible form with labels and ARIA attributes
<form>

<label for="username">Username:</label >

<input type="text" id="username" name="

username" aria -required="true">

<input type="submit" value="Submit">

</form>

1.6.3 Alt Text and Metadata Generation

Visual content can be a barrier for individuals with visual impairments.
LLMs can help bridge this gap by generating descriptive alt text for images,
allowing screen readers to convey the visual information effectively. This

18 1. Contextual Introduction

not only saves developers time but also ensures comprehensive and accurate
image labeling.

Beyond images, LLMs can also create captions for videos and transcripts
for audio content. These additions enhance accessibility and boost SEO by
providing search engines with richer context about your content.

Example: Bringing Images to Life with Alt Text

Consider an image tag without alt text:

Listing 1.3: Image tag without alt text

An LLM can analyze the image and generate evocative alt text:

Listing 1.4: Image tag with descriptive alt text
<img src="sunRise.jpg" alt="A␣breathtaking␣

sunrise␣paints␣the␣sky␣with␣vibrant␣hues␣

of␣orange␣and␣pink␣over␣a␣majestic␣

mountain␣range.">

1.6.4 Improving Color Contrast and Visual Design

Insufficient color contrast is a common accessibility issue, especially for
users with low vision or color blindness. LLMs can analyze color contrast
ratios in CSS files and suggest adjustments to meet the WCAG’s minimum
requirements (4.5:1 for normal text and 3:1 for larger text).

Example: Enhancing Contrast for Readability

Let’s say you have CSS with low color contrast:

Listing 1.5: CSS with low color contrast
p {

color: #333333;

1.6 Strategies for Improving Web Accessibility with LLMs 19

background -color: #e5e5e5;

}

An LLM can recommend improved color values for better readability:

Listing 1.6: CSS with improved color contrast
p {

color: #000000;

background -color: #ffffff;

}

1.6.5 Creating Accessible Documentation

Clear and concise documentation is vital for any project, especially when
it comes to accessibility. LLMs can help generate developer documentation
that emphasizes accessibility best practices, ensuring consistent standards
across your codebase.

Example: Guiding Developers with Accessible Documentation

An LLM can create documentation on various accessibility topics, such
as:

* Proper use of ARIA attributes * Guidelines for keyboard navigation

Listing 1.7: Accessibility guidelines for forms
Accessibility Guidelines for Forms

- Use ‘label ‘ elements to provide text labels

for input fields.

- Ensure that all form elements are keyboard -

navigable.

- Use ARIA attributes like ‘aria -required ‘

and ‘aria -labelledby ‘ to improve

compatibility with screen readers.

20 1. Contextual Introduction

1.7 Challenges and Limitations of LLMs in
Web Accessibility

While LLMs offer great potential in improving web accessibility, they also
have limitations:

• Contextual errors: LLMs may generate alt text or suggestions that
don’t align with the intended meaning of the content, necessitating
human review.

• Handling of edge cases: Certain accessibility issues may be too
specific or complex for LLMs to address accurately.

• Bias in training data: LLMs trained on general internet data may
carry biases that affect their ability to generate inclusive and unbiased
accessibility suggestions.

Chapter 2

Technologies and Methods

This chapter discusses key concepts from modern deep learning, partic-
ularly the Transformer architecture, which is central to many advanced
language models, as explained in Section 2.1. Additionally, methods used to
improve the outcome of the results are covered.

The Gemini architecture is also examined, building on the Transformer
to enhance multimodal understanding and code generation capabilities. Sec-
tion 2.2 outlines the key improvements introduced in Gemini 1.5, particularly
in areas such as reasoning and code comprehension.

A previous study [29] utilized ChatGPT for code generation, evaluating
the outputs based on correctness and accessibility (Section 2.4). In this chap-
ter, the experiment is extended by incorporating the latest Gemini models.
The updated experiment, described in Section 2.5, emphasizes prompt design
optimization for improved first-attempt accuracy and includes a comparison
of the performance between GPT and Gemini models.

2.1 Transformer Architecture

The Transformer architecture is a model in deep learning, particularly
for handling sequence-based tasks like machine translation, text generation,
and time series analysis. Introduced in 2017 by Vaswani et al. [10], it replaces

21

22 2. Technologies and Methods

the need for sequential processing (used by models like RNNs and LSTMs)
with attention mechanisms that process entire input sequences in parallel,
making the model more efficient and scalable.

2.1.1 Predecessors of the Transformer

Before the Transformer was introduced, the primary models for handling
sequential data were Recurrent Neural Networks (RNNs) and Long
Short-Term Memory Networks (LSTMs). While both were highly ef-
fective for tasks like speech recognition and machine translation, they faced
significant challenges, especially in processing long sequences efficiently.

Recurrent Neural Networks (RNNs)

RNNs process sequences token by token, maintaining a hidden state that
carries information from previous tokens. This hidden state is updated as
each new token is read, which makes RNNs capable of modeling sequences.
However, their sequential nature slows down both training and inference
because each step depends on the one before it. Moreover, RNNs struggle
with the vanishing gradient problem, which limits their ability to capture
long-term dependencies. As highlighted by Hochreiter et al. (1998) [30], this
problem arises because gradients tend to shrink as they propagate backward
through the network, making it difficult for RNNs to learn patterns that span
long sequences.

Long Short-Term Memory Networks (LSTMs)

LSTMs improved on RNNs by introducing gates to regulate the flow of
information, allowing them to retain information over longer periods. Specif-
ically, the forget gate, input gate, and output gate control which information
is discarded, stored, or used at each step. This design makes LSTMs better
suited for handling long-range dependencies. However, like RNNs, LSTMs
still rely on sequential processing, which limits their efficiency when dealing

2.1 Transformer Architecture 23

with long sequences.

The Transformer overcomes these issues by using attention mecha-
nisms that allow it to focus on relevant parts of the input sequence and
process all tokens in parallel, making it more efficient and capable of han-
dling long-range dependencies without the vanishing gradient problem.

2.1.2 Main Components and Architecture of the Trans-
former

The Transformer is composed of two primary components: the Encoder
and the Decoder. The encoder processes the input sequence and trans-
forms it into a rich, continuous representation, while the decoder generates
the output sequence by utilizing the encoder’s representation and the tokens
generated so far. Each encoder and decoder consists of multiple layers (usu-
ally N = 6) that contain several key components enabling efficient sequence
processing.

As shown in Figure 2.1, the architecture of the Transformer includes mul-
tiple layers of encoders and decoders, each containing self-attention mech-
anisms and feedforward neural networks. This design allows for effective
parallelization and the handling of long-range dependencies in sequences.

24 2. Technologies and Methods

Figure 2.1: Transformer architecture [10].

Input Embedding

The Transformer operates on sequences of tokens, which are first con-
verted into numerical representations called embeddings. These embed-
dings are high-dimensional vectors that encode the meaning of each token
in a continuous vector space. For example, the words ”king” and ”queen”
may have similar embeddings because they are semantically related. These
embeddings are learned during training and allow the model to capture the
semantic relationships between words, rather than treating them as discrete
symbols.

Since the Transformer processes all tokens in parallel, it does not inher-
ently understand the order of tokens. To provide the model with information
about the sequence structure, positional encodings are added to the input
embeddings. These positional encodings are vectors computed using sinu-
soidal functions that encode the position of each token in the sequence:

PE(pos,2i) = sin
(

pos

n
2i
d

)

2.1 Transformer Architecture 25

PE(pos,2i+1) = cos
(

pos

n
2i
d

)
Where:

• pos: Position of the token in the sequence

• i: Dimension of the encoding

• n: User defined scalar.

This approach allows the model to generalize to different sequence lengths
and still capture the relative order of tokens.

Self-Attention Mechanism

The self-attention mechanism is the core of the Transformer and en-
ables each token in the input to attend to all other tokens, allowing the model
to focus on different parts of the sequence as needed. For each token, the
model computes three vectors: a Query (Q), a Key (K), and a Value (V).
The attention mechanism computes the relevance of each token with respect
to others by calculating attention scores based on the dot product of the
Query and Key vectors, normalized by the square root of the dimensionality
of the Key vector dk:

Attention(Q, K, V) = softmax
(

QKT

√
dk

)
V

Where:

• Q: Query matrix

• K: Key matrix

• V : Value matrix

• dk: Dimensionality of the Key vectors

This allows the model to weigh the importance of other tokens when
processing a specific token. For instance, in a translation task, the word
”ate” may need to attend strongly to ”apple” to ensure correct context.

26 2. Technologies and Methods

Multi-Head Attention

Rather than applying a single attention mechanism, the Transformer uses
multi-head attention, which means that attention is applied multiple times
in parallel with different learned projections. This allows each attention head
to focus on different parts of the sequence and capture diverse aspects of
token relationships. The outputs of all attention heads are concatenated and
passed through a linear layer:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)W O

Where:

• headi = Attention(QW Q
i , KW K

i , V W V
i)

• W Q
i , W K

i , W V
i : Projection matrices for each head

• W O: Output projection matrix

This mechanism enables the model to capture a richer variety of relation-
ships between tokens by focusing on different aspects of the input sequence.

Feed-Forward Neural Networks (FFN)

After the attention mechanism, the Transformer applies a feed-forward
neural network (FFN) to each token independently. The FFN consists of
two linear layers with a ReLU activation function in between:

FFN(x) = max(0, xW1 + b1)W2 + b2

Where:

• W1 and W2: Weight matrices of the two linear layers

• b1 and b2: Bias terms for the layers

This component transforms the output from the attention mechanism
into a more useful representation, helping the model make better predictions
for each token.

2.1 Transformer Architecture 27

Layer Normalization and Residual Connections

To improve stability and training efficiency, the Transformer employs
layer normalization and residual connections. Residual connections
ensure that the input to each sub-layer is added to its output before moving
to the next layer.

Output = LayerNorm(x + SubLayer(x))

This helps prevent information loss and facilitates the flow of gradients
during training. Layer normalization, on the other hand, normalizes the
output of each sub-layer, ensuring stable inputs to subsequent layers.

Masked Multi-Head Attention in the Decoder

In the decoder, the Transformer uses masked multi-head self-attention,
which ensures that the model only attends to tokens that have already been
generated, not future ones. This is crucial in tasks like text generation or
translation, where the model predicts the next token without access to future
tokens in the sequence.

Encoder-Decoder Attention

The decoder also features encoder-decoder attention, which allows it
to attend to the encoder’s output. This ensures that the generated output
aligns with the input sequence, which is particularly important in tasks like
translation. The decoder receives the encoder’s representation as the Key
and Value, and the previous layer’s output as the Query, enabling the model
to focus on relevant parts of the input while generating the output sequence.

Output Linear and Softmax Layer

At the final stage, the decoder’s output is passed through a linear layer
that projects the representation into the vocabulary space. Then, a softmax
function is applied to produce probabilities over the target vocabulary:

28 2. Technologies and Methods

P (next token) = softmax(Woutput · hdecoder)

Where:

• Woutput: The weight matrix used in the linear layer to project the de-
coder’s hidden state into the target vocabulary space.

• hdecoder: The hidden state produced by the decoder, encapsulating the
information relevant to the current token generation in the sequence.

The token with the highest probability is selected as the next token in the
sequence, and this process is repeated until the full sequence is generated.

2.2 Gemini

The Gemini model family [31] is built on Transformer decoders, an
architecture that’s proven to be highly effective for handling language tasks.
A notable feature of these models is their advanced attention mechanisms,
particularly the use of multi-query attention (MQA) [32]. This attention
mechanism, unlike the traditional multi-head attention, uses a single query
with multiple keys and values, which significantly reduces the computational
complexity while maintaining robust performance. This setup enables Gem-
ini to handle large-scale data inputs efficiently, with earlier versions capable
of processing up to 32,000 tokens in one go. Even with such massive inputs,
Gemini ensures stable and reliable performance.

2.2.1 Multimodal Integration

What really makes Gemini stand out compared to other models, as shown
in Figure 2.2, is its ability to process multiple types of data simultaneously.
This includes text, images, audio, and even video. For instance, Gemini
can take in complex inputs, such as a combination of text and images or a
series of video frames, and generate diverse outputs—ranging from more text

2.2 Gemini 29

to new images. When processing video inputs, the model treats the video
as a series of individual frames and integrates them with other media like
text or audio. This capability makes Gemini extremely versatile in handling
various types of multimodal data.

Figure 2.2: The Gemini architecture [31].

2.2.2 Model Variants

There are three main versions of Gemini, each designed to meet different
needs:

• Ultra: The powerhouse. It’s built for tough tasks that involve com-
plex reasoning and multimodal processing on a large scale.

• Pro: This is the sweet spot between power and efficiency, making
it suitable for a wide variety of tasks.

• Nano: A lighter version that’s perfect for devices with limited memory,
offering flexible deployment options.

As shown in Figure 2.3, the performance of the different Gemini models
is normalized relative to the Gemini Pro model. The figure highlights how
each variant excels in different areas, with Gemini Ultra demonstrating su-
perior capabilities in complex reasoning and multimodal tasks, while Gem-

30 2. Technologies and Methods

ini Nano offers more constrained performance but optimized for lightweight
deployment.

Fac
tua

lity

Lon
g-C

on
tex

t

Math
/Sc

ien
ce

Su
mmari

zat
ion

Re
aso

nin
g

Mult
ilin

gu
alit

y
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d
Pe

rfo
rm

an
ce

 v
s P

ro

Nano 1
Nano 2
Pro
Ultra

Figure 2.3: Language understanding and generation performance of Gemini
model family across different capabilities (normalized by the Gemini Pro
model) [33].

2.3 Gemini 1.5

The release of Gemini 1.5 [33] introduces some major upgrades over the
original Gemini 1.0, including new variants.

• Gemini 1.5 Flash: A lightweight version optimized for low-latency
tasks.

• Gemini 1.5 Pro: A high-performance model that’s fine-tuned for
efficiency.

2.3.1 Expanded Long-Context Processing

One of the most impressive advancements in Gemini 1.5 is the huge
increase in its context window size—from 32,000 tokens in Gemini 1.0 to
an incredible 10 million tokens. This means the model can now handle
extremely long, complex multimodal inputs, like hours of video or huge

2.3 Gemini 1.5 31

document collections. Plus, it has achieved over 99% token recall in
information retrieval tasks, which is a massive improvement compared
to its predecessor.

2.3.2 Improved Core Capabilities

Gemini 1.5 brings significant improvements in core areas like reason-
ing, math, science, and multilingual understanding. For example, the
model demonstrates a 31.5% increase in multimodal reasoning tasks
and a 21.5% boost in code understanding when compared to Gemini
1.0. Moreover, the Pro version of Gemini 1.5 outperforms the Ultra version
of Gemini 1.0 on key vision tasks, particularly in processing image and
video content.

These improvements are evident in coding-related tasks as well. For in-
stance, as shown in Table 2.1, the Gemini 1.5 Pro model achieved signifi-
cantly higher scores compared to its earlier counterparts in coding capabili-
ties.

Coding Capability Gemini
1.0 Pro 1.0 Ultra 1.5 Flash 1.5 Pro

HumanEval 67.7% 74.4% 74.3% 84.1%
Natural2Code 69.6% 74.9% 77.2% 82.6%

Table 2.1: Gemini family code capability comparison [33].

2.3.3 Efficiency and Training Optimization

A big focus for Gemini 1.5 has been improving efficiency, especially in the
Pro variant. Even though it uses significantly less compute power than
the Ultra version of Gemini 1.0, it still delivers better performance. This is
thanks to the Mixture of Experts (MoE) [34] Transformer architecture,
which activates only the necessary parts of the model for specific tasks. So,
there’s less overhead, but no compromise on performance.

32 2. Technologies and Methods

The MoE architecture lets Gemini 1.5 turn on just the right components
for whatever task it’s working on, which boosts overall efficiency. By allocat-
ing resources more intelligently, it lowers the computational demand, making
the Pro version of Gemini 1.5 impressively efficient. As a result, it outper-
forms the Ultra version of Gemini 1.0, even while using fewer resources.

2.4 Previous Experiments using ChatGPT

In another thesis project [29], the potential of large language models
(LLMs), such as GPT-3.5 and GPT-4, was explored for both generating and
evaluating web development code. The experiment focused on two primary
tasks:

1. Code Generation Accuracy: This task involved testing how accu-
rately GPT models could create the front-end and back-end compo-
nents of a web application using technologies such as HTML, CSS,
JavaScript, and PHP. The models were provided with detailed in-
structions to see how well they could follow complex web development
specifications.

2. Code Evaluation: Here, the models were tested on their ability to act
as teaching assistants by evaluating and providing feedback on web de-
velopment code submissions. They were tasked with identifying errors,
correcting code, and offering constructive feedback.

Both tasks required adherence to key standards to ensure code quality
and accessibility:

• Compliance with HTML5 standards.

• Adherence to WCAG 2.2 accessibility guidelines, ensuring the
generated code was accessible to users with disabilities.

2.5 Replicating and Extending the Previous Experiment 33

2.4.1 Dataset and Structure

The original experiment relied on ten web development exam tasks from
the Tecnologie Web course at the University of Bologna (2022–2023). Each
exam, graded on a 32 point scale, consisted of five distinct component:

1. Creating a valid and accessible HTML5 page.

2. Writing an external CSS stylesheet.

3. Answering theoretical questions related to web technologies.

4. Writing JavaScript to implement dynamic behaviors (e.g., user inter-
action handling, DOM manipulation).

5. Writing server-side PHP scripts to interact with a database.

2.4.2 Challenges in the Previous Experiment

The experiment demonstrated the strong potential of GPT models, es-
pecially in generating functional code and handling theoretical questions.
However, it also surfaced several challenges. While the models performed
well in general, they sometimes missed key details, such as accessibility fea-
tures or proper use of semantic HTML, which required manual corrections.
Additionally, there were instances where the models would interpret prompts
incorrectly, act differently than expected, or even produce the wrong answers
by ignoring certain instructions.

2.5 Replicating and Extending the Previous
Experiment

In the replication and extension of the previous experiment, several im-
portant modifications were made. Rather than adhering to the original ten
exam tasks, the number of tasks was reduced to seven for a more focused
approach.

34 2. Technologies and Methods

2.5.1 Goals of the Experiment

1. Gemini Model Replication: Replicate the findings of the previous
experiment using the Gemini models, instead of ChatGPT.

2. Model Comparison: Compare the code generation capabilities of
GPT-3.5, GPT-4, Gemini 1.5 Flash, and Gemini 1.5 Pro.

3. Prompt Optimization: The experiment emphasized refining how
prompts were structured and phrased to improve the accuracy and
completeness of the code generated by models. This adjustment aimed
to minimize the need for manual corrections after the initial code gener-
ation. Unlike the previous approach, which included correcting outputs
post-generation, this experiment focused on crafting prompts designed
to yield correct, accessible code on the first attempt.

2.6 Techniques for Improving Prompt Engi-
neering

A key focus of the experiment was on refining prompt-writing techniques
to achieve more accurate results from models on the first attempt. Several
strategies were implemented, including meta-prompting, structured evalua-
tion prompts, and zero-shot prompting. Additionally, the “Act like” strat-
egy was incorporated, referred to as “Agire come” in the previous exper-
iment [29], where the model is instructed to take on the role of a domain
expert. In the previous experiment, the model is designed to act as an ex-
cellent student of the specific task, whereas the term ’expert’ is used here
to aim for higher-quality outputs, based on the assumption that an expert’s
response is more refined than that of a student. This approach enables the
model to frame responses more accurately by simulating expertise in specific
areas.

2.6 Techniques for Improving Prompt Engineering 35

2.6.1 Meta-Prompting

One of the techniques was the use of meta-prompting [35]. This ap-
proach integrates best practices and domain-specific knowledge directly into
the prompt, providing the model with a clear framework for reasoning and
decision-making.

Rather than issuing a general instruction like “evaluate this HTML page”,
meta-prompts guide the model more explicitly, directing it to focus on specific
criteria relevant to the task. This approach enhances the model’s ability to
produce targeted, accurate outputs, as seen in the following example:

Example of Meta-Prompting for HTML Accessibility Evaluation

Evaluate this HTML page for compliance with WCAG 2.2 accessibility
guidelines. As you proceed with your evaluation, consider the following
questions:

• Are all images described with meaningful alt text?

• Is there sufficient contrast between text and background colors?

• Does the page maintain a logical tab order for keyboard naviga-
tion?

• Are ARIA roles correctly applied where necessary?

2.6.2 Structured Evaluation Prompts

Another improvement in prompt design was the use of structured evalu-
ation prompts. By dividing tasks into specific requirements or checklists, it
ensured that the model focused on critical aspects of each evaluation.

For example, when assessing code, a structured prompt would provide
a step-by-step checklist for evaluation, including factors such as syntax cor-
rectness, compliance with coding standards, and the use of semantic HTML.

36 2. Technologies and Methods

2.6.3 Zero-Shot Prompting

In addition to meta-prompting and structured prompts, the experiment
utilized zero-shot prompting [36]. This method requires the model to
generate output without being provided with specific examples to follow. In
the experiment, the inputs consisted entirely of exam questions, requiring
the model to draw solely on its pre-existing knowledge from training data to
generate responses.

Unlike few-shot prompting, where models are given a few examples to
guide their responses, zero-shot prompting challenges the model to interpret
each question independently. For instance, when tasked with generating
code or solving complex problems, the model relied on learned patterns and
general knowledge rather than following pre-set examples.

This approach tested the model’s ability to generalize across diverse tasks
while allowing for direct comparison between Gemini and ChatGPT. By iso-
lating the influence of the prompt itself, it became possible to evaluate how
each model was developed and assess their performance under similar condi-
tions without relying on provided examples.

2.6.4 Iterative Testing and Refinement of Prompts

To improve prompt effectiveness, a process of iterative testing and re-
finement was employed. By experimenting with different prompt versions, it
became possible to identify which instructions led to the most consistent and
reliable results. This approach not only reduced the need for corrections in
later stages but also optimized the prompt structure for future use, ensuring
a higher likelihood of accurate responses on the first attempt.

2.6.5 Combining Prompting Techniques

By combining all of these prompting techniques, the prompt below demon-
strates how they were applied to an HTML exercise. It incorporates meta-
prompting by framing the task around domain-specific expertise, struc-

2.7 Listing of Prompt Improvements 37

tured evaluation by outlining clear standards and accessibility goals, and
zero-shot prompting by challenging the model to generate a solution with-
out any examples to follow.

Example of final System Prompt

You are an expert in HTML5 and web accessibility. Your task is to
provide a solution for the following HTML exercise, ensuring the so-
lution adheres to HTML5 standards and is accessible to users with
disabilities.

HTML Question:

{html_question}

Instructions:

1. Develop a solution for the provided HTML exercise.

2. Ensure your solution uses valid HTML5 syntax and semantics.

3. Follow web accessibility best practices (WCAG) when crafting
your solution. Consider aspects like proper use of ARIA at-
tributes, semantic HTML elements for screen readers, and suffi-
cient color contrast.

4. Validate your HTML solution using a validator like the W3C
Markup Validation Service to ensure it is error-free.

Provide the complete HTML code solution for the exercise.

2.7 Listing of Prompt Improvements

This section presents the tasks from the previous experiment that were
replicated. The original prompts, written in Italian, were translated into

38 2. Technologies and Methods

English and subsequently optimized to improve the quality of the code gen-
erated.

2.7.1 Exercise 1: HTML5 Web Page

Original System Prompt:

System Prompt for HTML5 Exercises (translated from Italian)

You are a very well-prepared student in the development of standard
and accessible HTML 5 and I ask you to write the solution for this
HTML exercise that was assigned to you for the Web Technologies
exam at the University of Bologna, Cesena campus, Degree Course in
Engineering and Computer Science.

Optimized System Prompt:

2.7 Listing of Prompt Improvements 39

Optimized System Prompt for HTML5 Exercises

You are an expert in HTML5 and web accessibility. Your task is to
provide a solution for the following HTML exercise, ensuring the so-
lution adheres to HTML5 standards and is accessible to users with
disabilities.

HTML Question:

{html_question}

Instructions:

1. Develop a solution for the provided HTML exercise.

2. Ensure your solution uses valid HTML5 syntax and semantics.

3. Follow web accessibility best practices (WCAG) when crafting
your solution. Consider aspects like proper use of ARIA at-
tributes, semantic HTML elements for screen readers, and suffi-
cient color contrast.

4. Validate your HTML solution using a validator like the W3C
Markup Validation Service to ensure it is error-free.

Provide the complete HTML code solution for the exercise.

2.7.2 Exercise 2: CSS Stylesheet

Original System Prompt:

40 2. Technologies and Methods

System Prompt for CSS Exercises (translated from Italian)

You are a very well-prepared student in the development of standard
and accessible CSS and I ask you to generate the solution for this
CSS exercise that was assigned to you for the written exam of Web
Technologies at the University of Bologna, Cesena campus, Degree
Course in Engineering and Computer Science.

Optimized System Prompt:

2.7 Listing of Prompt Improvements 41

Optimized System Prompt for CSS Exercises

You are an expert in CSS and web accessibility. Your task is to provide
a complete and functional CSS solution for the following HTML exer-
cise, ensuring the solution adheres to CSS standards and is accessible
to users with disabilities.

CSS Question:

{css_question}

HTML Content:

{html_content}

Instructions:

1. Develop a CSS solution for the provided HTML content. Your
solution should style the HTML elements to create a visually
appealing and functional layout.

2. Ensure your CSS code uses valid syntax and semantics. Avoid
outdated or deprecated CSS properties. Strive for clean, well-
organized, and maintainable code.

3. Adhere to web accessibility best practices (WCAG) when crafting
your solution. Consider users with visual, auditory, motor, and
cognitive impairments.

Provide the complete CSS code solution for the exercise.

2.7.3 Exercise 3: Theory Question

Original System Prompt:

42 2. Technologies and Methods

System Prompt for Theory Exercises (translated from Italian)

You are a well-prepared student in standard and accessible web devel-
opment, and I ask you to generate the answer to the theory question
that has been assigned to you for the written exam of Web Technolo-
gies at the University of Bologna, Cesena campus, Degree Program in
Computer Engineering and Computer Science.

Optimized System Prompt:

Same as the original system prompt since the question is very straight-
forward and the output is nearly always perfect.

2.7.4 Exercise 4: JavaScript for User Interaction

Original System Prompt:

System Prompt for JS Exercises (translated from Italian)

You are a very well-prepared student in the development of accessible
Javascript and I ask you to generate the solution for this Javascript
exercise that was assigned to you for the written exam of Web Tech-
nologies at the University of Bologna, Cesena campus, Degree Course
in Engineering and Computer Science. Below you will find the text
of the Javascript question and, subsequently, the content of the eser-
cizio javascript.html exercise file that is requested.

Optimized System Prompt:

2.7 Listing of Prompt Improvements 43

Optimized System Prompt for JS Exercises

You are an expert in JavaScript and web accessibility. Your task is to
provide a complete and functional JavaScript solution for the follow-
ing HTML exercise, ensuring the solution adheres to JavaScript best
practices and is accessible to users with disabilities:

Javascript Question:

{javascript_question}

HTML Content:

{esercizio_javascript_html_content}

Instructions:

1. Develop a Javascript solution that directly addresses the ques-
tion.

2. Your code should be accessible, following best practices for web
accessibility. Consider using ARIA attributes, semantic HTML,
and keyboard navigation support where applicable.

3. Use only the information provided in the Javascript Question and
the HTML Content.

4. Do not introduce any external libraries or resources unless ex-
plicitly mentioned in the question.

5. Ensure your Javascript code is compatible with the provided
HTML structure. Test your solution thoroughly to ensure it
integrates seamlessly and functions as expected.

6. Focus on writing clean, efficient, and well-structured Javascript
code.

7. Executes only after the HTML is fully rendered.

Output your complete Javascript solution, ready to be integrated
into the provided HTML file. Enclose your Javascript code within
<script> tags.

44 2. Technologies and Methods

2.7.5 Exercise 5: PHP Script for Database Interaction

Original System Prompt:

System Prompt for PHP Exercises (translated from Italian)

You are a very well-prepared student in the development of accessible
PHP and I ask you to generate the solution for this exercise that was
assigned to you for the written exam of Web Technologies at the Uni-
versity of Bologna, Cesena campus, Degree Course in Engineering and
Computer Science. Below you will find the question and the contents
of the README DB.txt file requested.

Optimized System Prompt for PHP Exam Questions:

2.7 Listing of Prompt Improvements 45

Optimized System Prompt for PHP Exam Questions

You are an expert PHP developer specializing in creating accessible
web solutions. You are taking a Web Technologies exam and need to
answer the following question using accessible PHP code. Refer to the
provided ”README DB.txt” content where necessary.

PHP Question:

{exam_question}

README DB.txt Content:

{readme_db_txt_content}

Instructions:

1. Carefully analyze the exam question and the provided
README DB.txt content.

2. Develop a complete and functional PHP solution that directly
addresses the exam question. The solution should include the
full PHP code, including any necessary HTML markup.

3. Ensure your PHP code adheres to accessibility best practices
(e.g., using ARIA attributes, semantic HTML). Explain in com-
ments how these accessibility best practices are implemented
within the code. For example, if you use an ARIA label, ex-
plain why and what it does in the comments.

4. Do not make any assumptions or add functionalities not explicitly
mentioned in the exam question. Base your solution solely on the
provided information.

5. If the provided information is insufficient to answer the question,
clearly state what additional information is needed and why. Be
specific about the missing details. Do not attempt to guess or
create the missing information.

Provide your complete working PHP solution within a single code
block.

46 2. Technologies and Methods

2.8 Code Accessibility Review and Correc-
tion

The second part of the experiment focused on reviewing and correcting
code generated by the models, particularly in terms of accessibility. This
stage involved two key tasks:

• Accessibility Review: Ensuring that the generated code adhered
to WCAG 2.2 guidelines. The review remained similar to the origi-
nal experiment, as the prompts already performed well in this regard.
CSS and JavaScript were excluded as a difference from the original,
along with Dependency Analysis and Detected by Humans fea-
tures, which were also not included in this version of the experiment.
Furthermore, I modified the output format from a markdown table to
CSV.

• Code Correction: Identifying errors or suboptimal patterns in the
generated code, correcting them to ensure both functionality and ac-
cessibility. The prompt was replicated and optimized by including more
detailed instructions to guide the model toward better output. Each
corrected exercise was then assigned a grade.

2.8 Code Accessibility Review and Correction 47

2.8.1 Accessibility Review

Original System Prompt:

System Prompt for Accessibility Review (translated from Italian)

You are a tool for detailed validation of web accessibility. Your task is
to analyze the provided HTML and CSS code and return a report with
all accessibility errors based on WCAG 2.2 guidelines (which include
previous WCAG 2.0 and 2.1) at Level AA.
I ask you to generate a summary table, formatted in Markdown as
follows:
In the first column, insert the name of the main file examined, which
is the one mentioned before the code to be analyzed.
In the second column, insert the reference to the violated success cri-
terion, along with a brief description.
In the third column, insert the associated technique of the violation,
always considering WCAG 2.2.
In the fourth column, insert the segment of code that contains the de-
tected error, enclosed in backticks.
In the fifth column, insert the most detailed possible description of the
error found or the related warning.
In the sixth column, with the header ”Dependency Analysis,” add
”NO.” In the seventh column, with the header ”Detected by Humans,”
just put a centered dash.
Here is the page code to analyze:

{HTMLPAGINA}

{CSSeJS}

Updated System Prompt:

48 2. Technologies and Methods

Updated System Prompt for Accessibility Review

You are a detailed web accessibility validation tool. Your task is to
analyze the provided HTML code and return a report with all accessi-
bility errors based on WCAG 2.2 (including WCAG 2.0 and 2.1) AA
level guidelines. You should generate a summary in CSV format with
semicolons (;) as separators. The report should have the following
columns:

• File: Name of the main file examined (the one written before
the code).

• Success Criterion: The violated success criterion with a brief
description.

• Technique: The associated reference technique.

• Code Snippet: The code segment with the detected error, en-
closed in backticks.

• Error Description: A detailed description of the error or the
reference warning.

Here is the page code to analyze:

{HTMLPAGINA}

2.8.2 Code Correction

Original System Prompt:

2.8 Code Accessibility Review and Correction 49

System Prompt for Code Correction (translated from Italian)

You are a university professor of Web Technologies specializing in ac-
cessibility. Given a web development assignment, which also includes a
theory question, consisting of 5 questions, evaluate the assignment by
assigning a final score from 0 to 32 according to the following instruc-
tions. In your answer, I ask you to report the errors made for each
exercise and the score you assigned to it. Finally, report the final score
n in the last line of the answer. The test is given to third-year students
of the Bachelor’s Degree Course in Engineering and Computer Science.
Some precautions:

• In exercise 3, the answer to the theory question can also be syn-
thetic and, if not explicitly requested, do not provide examples.

• Consider the use of longdesc valid even if deprecated in HTML 5
standard. The final grade, since it is used to create a summary
table, report it exactly in the following format, where n is the
value of the grade:

Grade: n

{EXERCISE 1}

{EXERCISE 2}

{EXERCISE 3}

{EXERCISE 4}

{EXERCISE 5}

{CRITERIA}

{STUDENT SOLUTIONS}

50 2. Technologies and Methods

Optimized System Prompt:

Optimized System Prompt for Code Correction

You are a university professor of Web Technologies specializing in ac-
cessibility. You are evaluating a web development assignment consist-
ing of 5 questions, including a theory question in Exercise 3. The
assignment is for third-year students in the Bachelor’s Degree Course
in Engineering and Computer Science.
Your task is to evaluate the assignment and assign a final score from
0 to 32 based on the provided criteria. For each exercise, report the
errors made and the score assigned. Consider the use of longdesc valid,
even if deprecated in HTML5. Do not provide examples in Exercise 3
unless explicitly requested.

Assignment:

{text_of_the_assignment}

Exercises and Student Solutions:

{EXERCISE 1...5}

{STUDENT SOLUTIONS}

Instructions:

1. Carefully review each exercise and the corresponding student so-
lution.

2. Identify any errors or deviations from the provided criteria.

3. Assign a score to each exercise based on its correctness and com-
pleteness. The maximum score for the entire assignment is 32.
Ensure the score distribution aligns with the criteria.

4. For each exercise, provide a concise summary of the errors made
and the rationale behind the assigned score.

2.8 Code Accessibility Review and Correction 51

5. Report the final score in the last line of your answer using the
following format:

Grade: the calculated final score

{EXERCISE 1: [Score: x] - [Error Summary]}

{EXERCISE 2: [Score: y] - [Error Summary]}

{EXERCISE 3: [Score: z] - [Error Summary]}

{EXERCISE 4: [Score: a] - [Error Summary]}

{EXERCISE 5: [Score: b] - [Error Summary]}

Chapter 3

Results and Analysis

This chapter provides a comprehensive analysis of the results obtained
from the experiments detailed in Chapter 2, focusing specifically on the per-
formance of Gemini 1.5 models.

The analysis is divided into two main sections:

• Part 1: Replicates the experiments from Chapter 2 with Gemini 1.5
Flash and Gemini 1.5 Pro models, enabling a direct comparison of their
performance across key web development tasks.

• Part 2: Investigates the impact of prompt optimization on both Gem-
ini models, assessing how refined prompts improve the quality of gen-
erated code and the accuracy of code evaluations.

3.1 Replication of Previous Experiments with
Gemini Models

This section focuses on replicating the experiments conducted in the pre-
vious study [29] using the Gemini models. The primary goal is to assess the
capabilities of Gemini 1.5 Flash and Gemini 1.5 Pro in generating and eval-
uating web development code compared to the GPT-3.5 Turbo and GPT-4o
models used in the original study.

53

54 3. Results and Analysis

The dataset used for this experiment consists of 7 web development tasks
extracted from past exams in the Web-related Technologies from the First
cycle degree programme in Computer Science and Engineering at the Univer-
sity of Bologna, covering the period from January 2023 to September 2024.
Each task in the dataset is structured following the structure of the previous
experiment:

• Objective: A statement of the goal of the exercise.

• Prompt: The instructions provided to the LLM, which may include
code snippets or images relevant to the task.

• Results: The results of the experiments conducted.

For the Results section, a comparison table will also be included to
display the scores of the Gemini models in relation to the GPT-3.5 Turbo and
GPT-4o models. The scores for GPT-3.5 Turbo and GPT-4o were previously
calculated in the original experiment, and the same scoring standards are
used here to ensure consistency in evaluation.

3.1.1 HTML5 Results

This section presents the outcomes of generating standard and accessible
HTML5 code using Gemini models.

Objectives

The primary goals of the HTML5 generation tests are as follows:

• Produce valid, accessible HTML5 code using the Gemini 1.5 Flash
and Gemini 1.5 Pro models.

• Manually evaluate the results by assigning each output a score from 0
to 7, assessing the models’ accuracy in code generation.

3.1 Replication of Previous Experiments with Gemini Models 55

Prompt

In contrast to the previous experiment, where image-based input was
excluded due to limitations in GPT-3.5 Turbo, this experiment utilizes the
multimodal capabilities of Gemini models by incorporating images directly
into the prompt.

System Prompt for HTML5 Task

You are an expert in HTML5 and web accessibility. Your task is to gen-
erate a solution for the following HTML exercise, ensuring it adheres
to HTML5 standards and is accessible to users with disabilities.

Optional Images:

{images}

HTML Exercise:

{html_content}

Results

The table below provides the average scores assigned to HTML5 solutions
generated by each model and the number of tasks evaluated.

Model Average HTML Score Solutions Evaluated

Gemini 1.5 Flash 5.7/7 7/10
Gemini 1.5 Pro 5.9/7 7/10
GPT-3.5 Turbo 5.1/7 10/10
GPT-4o 6.5/7 10/10

Table 3.1: HTML Code Generation Performance

To further analyze performance, Table 3.2 outlines the types of errors
identified within the HTML5 solutions produced by each Gemini model.

56 3. Results and Analysis

Type of error in HTML Gemini 1.5 Flash Gemini 1.5 Pro GPT-3.5 Turbo GPT-4o

Missing or incorrect parts 0/7 1/7 3/8 2/10
Non-standard W3C code 1/7 1/7 2/8 0/10
Accessibility errors 3/7 1/7 3/8 2/10

Table 3.2: HTML Solutions with Errors by Gemini and GPT Models

Both the Gemini and GPT model families showed strong performance in
generating HTML5 code, with higher-tier models like Gemini 1.5 Pro and
GPT-4o outperforming their counterparts, Gemini 1.5 Flash and GPT-3.5
Turbo, in terms of accuracy and reduced error rates.

A significant distinction between the two model families was multimodal
capability. Non-multimodal models, such as GPT-3.5 Turbo, struggled to
process image-based inputs, limiting their versatility in handling multimodal
tasks.

In HTML5 code generation, both Gemini models achieved high accuracy,
with the Pro version outperforming the Flash version. While both effectively
generated valid HTML, the Pro version was more consistent in meeting user
requirements and coding standards. In contrast, the Flash model some-
times omitted essential elements or included extra, unnecessary components.
Although both models were proficient in HTML5 code generation, neither
consistently adhered to accessibility standards.

3.1.2 CSS Results

This section summarizes the experiments conducted to evaluate CSS code
generation using the Gemini models.

Objectives

The primary objectives of the CSS generation tests are as follows:

• Generate accurate, efficient CSS code for styling HTML elements using
the Gemini 1.5 Flash and Gemini 1.5 Pro models.

3.1 Replication of Previous Experiments with Gemini Models 57

• Evaluate each output by assigning a score from 0 to 6, focusing on the
models’ effectiveness in generating visually accurate and best-practice-
compliant CSS.

Prompt

System Prompt for CSS Exercises (translated from Italian)

You are a highly skilled student in developing standard and accessible
CSS. Please generate the solution for this CSS exercise assigned as part
of the Web Technologies written exam at the University of Bologna,
Cesena campus, for the Degree Course in Engineering and Computer
Science.

HTML Content:

{html_content}

Results

The table below provides the average scores for CSS code generated by
each model, along with the number of tasks evaluated.

Model Average CSS Score Solutions Evaluated

Gemini 1.5 Flash 4.7/6 7/10
Gemini 1.5 Pro 5.3/6 7/10
GPT-3.5 Turbo 5.4/6 10/10
GPT-4o 5.6/6 10/10

Table 3.3: CSS Code Generation Performance

To highlight specific areas for improvement, the following table summa-
rizes common error types in the CSS solutions generated by each Gemini
model.

58 3. Results and Analysis

Type of error in CSS Gemini 1.5 Flash Gemini 1.5 Pro GPT-3.5-Turbo GPT-4o

Use of jQuery or other tools 0/7 0/7 0/10 1/10
Errata gestione di casi particolari 3/7 1/7 2/10 0/10

Table 3.4: CSS Solutions with Errors by Gemini and GPT Models

The CSS generated by both Gemini models was generally effective, though
it fell slightly short of GPT models in overall refinement. While the Pro ver-
sion performed better than the Flash variant, often using advanced selectors
and more precise media queries, both Gemini models tended to overlook finer
details, such as applying blur effects, which GPT models typically handled
more accurately.

The Flash version made more frequent errors, performing comparably to
the Pro version on simpler tasks without media queries. However, when me-
dia queries were required, the Flash model’s performance dropped noticeably
compared to the Pro version, which handled responsive design with greater
precision.

3.1.3 Theory Question Results

This section describes the experiments conducted on answering open-
ended theory questions using the Gemini models.

Objectives

The primary objectives of the theory question tests are as follows:

• Generate correct, complete, and accurate responses to theoretical ques-
tions using the Gemini 1.5 Flash and Gemini 1.5 Pro models.

• Evaluate each response on a scale of 0 to 5.

Prompt

The following prompt was used for the open-ended question.

3.1 Replication of Previous Experiments with Gemini Models 59

System Prompt for Theory Exercises (translated from Italian)

You are a well-prepared student in standard and accessible web devel-
opment, and I ask you to generate the answer to the theory question
that has been assigned to you for the written exam of Web Technolo-
gies at the University of Bologna, Cesena campus, Degree Program in
Computer Engineering and Computer Science.

Question:

{web_related_question}

Results

The average scores assigned to the answers generated by Gemini models
are presented below.

Model Average Theory Score Solutions Evaluated

Gemini 1.5 Flash 5/5 7/10
Gemini 1.5 Pro 5/5 7/10
GPT-3.5 Turbo 4.5/5 10/10
GPT-4o 4.9/5 10/10

Table 3.5: Theory Question Answering Performance

The results presented in Table 3.5 confirm the exceptional performance
of Gemini models in answering open-ended theory questions, mirroring the
high accuracy observed in the previous experiment with GPT-3.5 Turbo and
GPT-4o. Both Gemini 1.5 Flash and Gemini 1.5 Pro achieved perfect scores
across all evaluated solutions.

60 3. Results and Analysis

3.1.4 JavaScript Results

This section describes the experiments conducted on generating JavaScript
code using the Gemini models.

Objectives

The primary objectives of the JavaScript generation tests are as follows:

• Generate correct, complete, and precise JavaScript code to implement
dynamic behavior on a specified HTML5 page using the Gemini 1.5
Flash and Gemini 1.5 Pro models.

• Evaluate each output on a scale of 0 to 7, focusing on the accuracy and
functionality of code generated to handle events and manipulate the
DOM.

Prompt

The following prompt was used for exercise JavaScript. The prompt in-
cludes the content of the file esercizio javascript.html.

System Prompt for JS Exercises (translated from Italian)

You are a very well-prepared student in the development of accessible
Javascript and I ask you to generate the solution for this Javascript
exercise that was assigned to you for the written exam of Web Tech-
nologies at the University of Bologna, Cesena campus, Degree Course
in Engineering and Computer Science. Below you will find the text
of the Javascript question and, subsequently, the content of the eser-
cizio javascript.html exercise file that is requested.

HTML Content:

{html_content}

3.1 Replication of Previous Experiments with Gemini Models 61

Results

The average scores for the JavaScript code generated are presented below.

Model Average JavaScript Score Solutions Evaluated

Gemini 1.5 Flash 4.8/7 7/10
Gemini 1.5 Pro 5.2/7 7/10
GPT-3.5 Turbo 5.6/7 10/10
GPT-4o 6.3/7 10/10

Table 3.6: JavaScript Code Generation Performance

The following table shows the types of errors observed in the generated
JavaScript code and the number of solutions containing each error type.

Type of error in JavaScript Gemini 1.5 Flash Gemini 1.5 Pro GPT-3.5 Turbo GPT-4o

Inaccessible dynamically generated HTML 4/7 3/7 3/10 3/10
Other HTML accessibility errors generated by JS 0/7 0/7 1/10 1/10
Errors in data structures and HTML elements 3/7 1/7 3/10 0/10

Table 3.7: JavaScript Solutions with Errors by Gemini and GPT Models

The results for JavaScript generation were disappointing, with Gemini
models showing less accuracy than the GPT models. Although Gemini often
produced code that appeared correct at first glance, it frequently failed to
function as intended. This was due to several issues, including:

• Attempting to interact with HTML elements before they were fully
loaded.

• Syntax errors or other code-level problems that prevented the script
from executing.

• Providing comments about what the code should accomplish rather
than a fully implemented solution.

62 3. Results and Analysis

While the Pro version performed somewhat better than the Flash version,
generating fewer code errors, it still fell short of the accuracy demonstrated
by GPT models.

3.1.5 PHP Results

This section details the objectives, prompts, and results of the experi-
ments conducted on PHP code generation using the Gemini models.

Objectives

The primary objectives of the PHP generation tests are as follows:

• Generate accurate PHP code to handle tasks such as database schema
design, data insertion, and function implementation using the Gemini
1.5 Flash and Gemini 1.5 Pro models.

• Evaluate each output on a scale of 0 to 7, focusing on code functionality,
accuracy, and adherence to PHP development best practices.

Prompt

The prompt for generating PHP scripts includes a supplementary text
file, “README DB.txt”, which provides essential instructions for creating
the database required for the PHP code to function correctly.

3.1 Replication of Previous Experiments with Gemini Models 63

System Prompt for PHP Exercises (translated from Italian)

You are a highly skilled student in developing accessible PHP. Please
generate the solution for this exercise assigned in the Web Technologies
written exam at the University of Bologna, Cesena campus, for the
Degree Course in Engineering and Computer Science. Below is the
question and the contents of the README DB.txt file required.

FILE:

{readme_db_content}

Results

The table below shows the average scores assigned to PHP code generated
by each model, along with the number of tasks evaluated.

Model Average PHP Score Solutions Evaluated

Gemini 1.5 Flash 5.8/7 7/10
Gemini 1.5 Pro 6.3/7 7/10
GPT-3.5 Turbo 5.0/7 10/10
GPT-4o 6.2/7 10/10

Table 3.8: PHP Code Generation Performance

The following table categorizes common types of errors found in the gen-
erated PHP code for each Gemini model.

Type of error in PHP Gemini 1.5 Flash Gemini 1.5 Pro GPT-3.5 Turbo GPT-4o

Errors in Function Logic 3/7 2/7 4/10 1/10
Non-Standard W3C Code 3/7 1/7 1/10 3/10

Table 3.9: PHP Solutions with Errors by Gemini and GPT Models

The PHP solutions generated by both Gemini models were generally of

64 3. Results and Analysis

high quality, with the Pro model showing slightly better precision and fewer
errors. Both models handled database interactions and logical operations
well, though they occasionally missed minor details, such as using incorrect
database names.

Compared to the GPT models, the Gemini models showed very similar
performance: Gemini 1.5 Flash outperformed GPT-3.5 Turbo, while Gemini
1.5 Pro’s performance was comparable to GPT-4o. Both Gemini models ex-
hibited nearly identical error types, making their overall performance closely
aligned.

3.1.6 Accessibility Review

This section evaluates the generated code’s accessibility, focusing on how
well it meets established guidelines.

Objectives

The primary objectives of the accessibility evaluation tests is to evaluate
the generated code’s ability to identify and address accessibility issues, using
the Gemini 1.5 Flash and Gemini 1.5 Pro models.

Prompt

The prompt used for accessibility review.

3.1 Replication of Previous Experiments with Gemini Models 65

System Prompt for Accessibility Review

You are a detailed web accessibility validation tool. Your task is to
analyze the provided HTML code and return a report with all accessi-
bility errors based on WCAG 2.2 (including WCAG 2.0 and 2.1) AA
level guidelines. You should generate a summary in CSV format with
semicolons (;) as separators. The report should have the following
columns:

• File: Name of the main file examined (the one written before
the code).

• Success Criterion: The violated success criterion with a brief
description.

• Technique: The associated reference technique.

• Code Snippet: The code segment with the detected error, en-
closed in backticks.

• Error Description: A detailed description of the error or the
reference warning.

Here is the page code to analyze:

{HTMLPAGINA}

Results

The table below shows sample results for accessibility errors detected in
a PHP file using Gemini 1.5 Pro.

66 3. Results and Analysis
V

io
la

ti
on

T
ec

hn
iq

ue
C

od
e

D
es

cr
ip

ti
on

1.
1.

1
N

on
-t

ex
t

C
on

te
nt

G
94

<i
mg

ar
ia

-h
id

de
n=

"t
ru

e"
..

.

al
t=

"F
ac

eb
oo

k
ic

on
">

Fa
ce

bo
ok

’s
ic

on
is

us
ed

as
an

in
fo

rm
at

iv
e

el
-

em
en

t.
A

dd
te

xt
de

sc
rib

in
g

th
e

in
fo

rm
at

iv
e

im
ag

e.
1.

3.
1

In
fo

an
d

R
el

at
io

ns
hi

ps
H

49
<n

av
id

="
br

ea
dc

ru
mb

"

ar
ia

-l
ab

el
="

br
ea

dc
ru

mb
s"

>.
..

T
he

<n
av

>
la

nd
m

ar
k

sh
ou

ld
be

us
ed

fo
rm

ai
n

na
vi

ga
tio

n.
Fo

r
br

ea
dc

ru
m

bs
,

us
e

<o
l>

,
<u

l>
,

or
<n

av
ar

ia
-l

ab
el

="
br

ea
dc

ru
mb

">

w
ith

an
in

ne
r

lis
t.

1.
4.

1
U

se
of

C
ol

or
G

14
<b

ut
to

n
id

="
me

nu
Li

nk
"

..
.

ar
ia

-h
id

de
n=

"t
ru

e"
..

.>

C
ol

or
is

th
e

on
ly

in
di

ca
to

r
fo

r
m

en
u

st
at

us
.

A
dd

a
te

xt
ua

ls
ta

tu
s

up
da

te
.

2.
4.

4
Li

nk
Pu

r-
po

se
(I

n
C

on
-

te
xt

)

H
77

<u
l>

<l
i>

Ho
me

</
li

>.
..

H
om

el
in

k
in

sid
e<

na
v>

sh
ou

ld
co

nt
ai

n
a

co
r-

re
ct

lin
k

an
d

be
w

ra
pp

ed
w

ith
an

<a
>

ta
g.

2.
4.

4
Li

nk
Pu

r-
po

se
(I

n
C

on
-

te
xt

)

H
77

<a
hr

ef
="

ẗa
rg

et
=¨

bl
an

k.̈
..

>R
ea

d

mo
re

..
.<

/a
>

Em
pt

y
lin

ks
(h

re
f=

""
)

m
ay

co
nf

us
e

us
er

s.
U

se
a

va
lid

lin
k

or
th

e
on

cl
ic

k
ev

en
t

fo
r

m
or

e
de

ta
ils

.
4.

1.
2

N
am

e,
R

ol
e,

Va
lu

e
H

91
<b

ut
to

n
cl

as
s=

"g
oU

p
hi

dd
en

".
..

>
T

he
up

ar
ro

w
in

sid
e

th
e

bu
tt

on
m

ay
be

no
n-

se
m

an
tic

fo
r

as
sis

tiv
e

te
ch

.
C

on
sid

er
re

pl
ac

-
in

g
it

or
m

ak
in

g
it

de
co

ra
tiv

e.

Table 3.10: Accessibility Review Result

3.1 Replication of Previous Experiments with Gemini Models 67

Both Gemini 1.5 Pro and Gemini 1.5 Flash produced great results in
their accessibility reviews, uncovering issues that tools like AChecker [37]
often ignore.

In assessing the output from both Gemini 1.5 Pro and Gemini 1.5 Flash,
each model showed unique strengths and limitations:

Gemini 1.5 Pro generated a well-organized report (see Table 3.1.6), iden-
tifying a range of accessibility issues. However, its analysis often focused
on general accessibility improvements without delving into critical, nuanced
problems. Some major issues, which could significantly impact user experi-
ence, went undetected or received superficial attention.

Gemini 1.5 Flash performed similarly, capturing minor errors such as
missing alt attributes for images and incomplete link text. However, its
recommendations largely addressed surface-level concerns rather than deeper
accessibility requirements, often missing structural or functional barriers that
affect overall usability.

3.1.7 Code Correction Results

This section describes the experiments focused on evaluating the models’
ability to correct provided PHP code.

Objectives

This experiment aims to assess the models’ capabilities in identifying and
rectifying errors within existing PHP code snippets. The code correction
tasks involve debugging and improving the provided code to ensure function-
ality and adherence to best practices.

Prompt

The prompt used for the code correction task.

68 3. Results and Analysis

System Prompt for Code Correction (translated from Italian)

You are a university professor of Web Technologies specializing in ac-
cessibility. Given a web development assignment, which also includes a
theory question, consisting of 5 questions, evaluate the assignment by
assigning a final score from 0 to 32 according to the following instruc-
tions. In your answer, I ask you to report the errors made for each
exercise and the score you assigned to it. Finally, report the final score
n in the last line of the answer. The test is given to third-year students
of the Bachelor’s Degree Course in Engineering and Computer Science.
Some precautions:

• In exercise 3, the answer to the theory question can also be syn-
thetic and, if not explicitly requested, do not provide examples.

• Consider the use of longdesc valid even if deprecated in HTML 5
standard. The final grade, since it is used to create a summary
table, report it exactly in the following format, where n is the
value of the grade:

Grade: n

{EXERCISE 1}

{EXERCISE 2}

{EXERCISE 3}

{EXERCISE 4}

{EXERCISE 5}

{CRITERIA}

{STUDENT SOLUTIONS}

3.2 Code Generation with Optimized Prompts 69

Results

The table below shows an example of the output from a corrected exam
using Gemini 1.5 Pro.

Area Score Result Comments

HTML 5/7 Minor errors Missing ‘<html lang="it">‘. Image missing ‘width‘ and ‘height‘...
CSS 5/6 Minor errors Missing sans-serif fallback font. No explicit ‘h3‘ alignment...
Theory 3/5 Major errors Overly verbose. Repeats points. Unnecessary conclusion...
Javascript 4/7 Major errors No check for empty fields. Incorrect color checking. Duplicate list items...
PHP 3/7 Major errors Missing code for update functionality. Missing HTML structure...

Total Grade 20

Table 3.11: Grading Results

The Gemini models do a decent job of identifying problems, though they
still face some accuracy challenges. At times, errors may be interpreted as
correct, even if they can’t actually execute, and the models occasionally flag
common, correct details as mistakes.

Overall, the models are effective, and their grading approach generally
aligns well with the context. However, Gemini tends to be less strict than
the GPT models, often assigning higher grades, whereas GPT models tend
to grade more conservatively, giving slightly lower scores.

3.2 Code Generation with Optimized Prompts

This section analyzes the effects of prompt optimization techniques on
the performance of Gemini models. The focus is on evaluating how meta-
prompting, structured prompts, and the ”Act like an expert” strategy con-
tribute to improved code generation and evaluation.

The following subsections delve into specific aspects of code generation
and correction, examining the impact of optimized prompts on each:

• HTML, CSS, JavaScript, and PHP Code Generation: These
subsections evaluate the quality of generated code in each language,

70 3. Results and Analysis

comparing results before and after prompt optimization.

• Code Correction: This subsection focuses on how optimized prompts
affect the models’ ability to identify errors, provide feedback, and assign
grades to code.

3.2.1 HTML Code Generation with Optimized Prompts

This section evaluates how prompt optimization affects HTML code gen-
eration, comparing the quality of code generated with optimized prompts to
that produced using the original prompts.

Model Before Optimization After Optimization

Gemini 1.5 Flash 5.7/7 6.4/7
Gemini 1.5 Pro 5.9/7 6.7/7

Table 3.12: HTML Code Generation Performance Before and After Prompt
Optimization

Analysis: While the HTML code generated after prompt optimization
showed slight improvements, the quality of code was generally consistent with
that produced by the original prompts. This outcome can be attributed to
the straightforward nature of the HTML exercises, which limited the po-
tential for major enhancements. However, the optimized prompts led to a
marked improvement in accessibility, reducing the number of accessibility-
related errors.

3.2.2 CSS Code Generation with Optimized Prompts

This section examines the impact of prompt optimization on CSS code
generation, comparing the quality of code produced with optimized prompts
to that generated using the original prompts.

3.2 Code Generation with Optimized Prompts 71

Model Before Optimization After Optimization

Gemini 1.5 Flash 4.7/6 5.2/6
Gemini 1.5 Pro 5.3/6 5.5/6

Table 3.13: CSS Code Generation Performance Before and After Prompt
Optimization

Analysis: While prompt optimization led to slight improvements in the
generated CSS, the overall impact was moderate. Key issues, such as the
missing blur effects and inconsistencies in hover states, persisted even af-
ter prompt adjustments. These areas, particularly the blur effect, remained
unaddressed across multiple exercises, indicating that prompt optimization
alone may not fully resolve these aspects. However, there was a small im-
provement in the handling of media queries. The optimized prompts helped
both the Flash and Pro versions generate more consistent and accurate me-
dia query implementations, reducing errors that had occurred in the original
versions.

3.2.3 JavaScript Code Generation with Optimized Prompts

This section evaluates the impact of prompt optimization on JavaScript
code generation, comparing the quality of code produced with optimized
prompts to that generated using the original prompts.

Model Before Optimization After Optimization

Gemini 1.5 Flash 4.8/7 6.0/7
Gemini 1.5 Pro 5.2/7 6.4/7

Table 3.14: JavaScript Code Generation Performance Before and After
Prompt Optimization

Analysis: Prompt optimization significantly improved the quality of
JavaScript code generation. The optimized prompts led to more functional

72 3. Results and Analysis

and efficient code, with each script performing as expected in terms of core
functionality. Execution was consistent, with all code running without major
issues. While the code generated after optimization still occasionally con-
tained minor issues, such as logical errors or non-functional POST requests,
the overall improvement is evident.

3.2.4 PHP Code Generation with Optimized Prompts

This section evaluates the impact of prompt optimization on PHP code
generation, comparing the quality of code produced with optimized prompts
to that generated using the original prompts.

Model Before Optimization After Optimization

Gemini 1.5 Flash 5.8/7 6.4/7
Gemini 1.5 Pro 6.3/7 6.6/7

Table 3.15: PHP Code Generation Performance Before and After Prompt
Optimization

Analysis: Prompt optimization led to general improvements in PHP
code generation. The models now consistently generate complete, functional
code that meets the requirements of each exercise. The optimized versions
produced code that was more accurate and included fewer missing parts, re-
sulting in a more reliable performance overall. However, accessibility issues
within dynamically generated tables persisted, even when explicitly men-
tioned in the prompt.

3.2.5 Code Correction with Optimized Prompts

This section explores how optimizing prompts affects the code correc-
tion process, particularly focusing on the clarity of the Gemini models in
explaining errors and suggesting improvements.

3.2 Code Generation with Optimized Prompts 73

As illustrated in Table 3.16, the grading results reveal a mixed perfor-
mance across various coding areas when utilizing the optimized prompts
generated by the Gemini 1.5 Pro.

Area Score Result Comments

HTML 7/7 No errors The student correctly implemented the HTML table. . .
CSS 6/6 No errors The student correctly implemented the CSS. . .
Theory Question 5/5 No errors The student correctly and completely describes. . .
JavaScript 6/7 No errors The student correctly implemented the JavaScript code. . .
PHP 2/7 Minor errors Potential issues with filters applied multiple times. . .

-3 for not handling sessions correctly. . .
-1 for not sanitizing user input. . .

Total Grade 26

Table 3.16: Optimized Grading Results

Analysis: The findings indicate that, contrary to expectations, the op-
timized prompts did not enhance the quality of the corrections. Despite
providing more detailed instructions, the Gemini models often failed to rec-
ognize certain errors. As a result, the feedback was less accurate, and the
grades assigned were significantly higher than expected, as shown in the table
above.

Conclusion

The experiment highlights the transformative role that Large Language
Models (LLMs) are shaping the future of web development, focusing on a
comparison between OpenAI’s GPT models and Google DeepMind’s Gemini
models. Both models were evaluated on their ability to generate accurate, ac-
cessible code in key web development languages like HTML, CSS, JavaScript,
and PHP. The findings reveal that carefully crafted prompts significantly en-
hance code quality and functionality.

In particular, the Gemini models, especially the Gemini 1.5 Pro, stood
out in generating functional and accessible code across a range of web de-
velopment tasks. Optimized prompts had a notable impact on code accu-
racy and reduced common errors, especially with languages like PHP and
JavaScript. Compared to GPT models, the Gemini models showed a slight
edge in tasks requiring specific accessibility features, signaling their potential
for accessibility-focused web development.

When optimized prompts were used, Gemini models showed strong ad-
herence to Web Content Accessibility Guidelines (WCAG), though complex
accessibility requirements still presented occasional challenges. This prompt
optimization proved especially effective in HTML and CSS tasks, where el-
ements like alt text and ARIA labels were more reliably integrated. Al-
though both models encountered difficulties in context-heavy or interactive
JavaScript tasks, Gemini models demonstrated slightly more consistent per-
formance in these complex requirements.

Overall, prompt optimization had a more pronounced effect on the Gem-

75

76 CONCLUSION

ini models than on GPT models, resulting in more complete code with fewer
errors on the first attempt. This highlights the value of well-structured,
detailed prompts in generating high-quality responses. For instance, with
optimized prompts, the Gemini 1.5 Pro produced fewer syntax errors and
more accurate outputs, excelling in context-aware code generation and out-
performing both GPT-3.5 Turbo and GPT-4 in these areas.

In general, Gemini models, particularly the Pro version, led in generating
accessible, detailed code with fewer errors when using optimized prompts,
making them especially effective for web development tasks that require pre-
cision and a focus on accessibility.

Despite their strengths, both models showed some inconsistency with
highly context-sensitive tasks, such as managing JavaScript state or imple-
menting dynamic interactions. Recurring challenges in responsive design and
interactivity also emerged, as the models struggled to fully align with best
practices in web development. While accessibility issues were reduced, nu-
anced requirements like color contrast and screen reader compatibility still
posed challenges. These limitations suggest a need for further model refine-
ment and more targeted prompt designs to fully address these details.

Given Gemini’s strong performance in generating accessible code, these
models could be a promising fit for automated code review systems focused
on accessibility. LLMs could scan code continuously for accessibility com-
pliance, offering suggestions and helping developers create inclusive digital
experiences with less manual effort. They could also be valuable in web de-
velopment education, providing real-time feedback and troubleshooting to
create a more interactive learning environment. Students could get prompt-
based guidance to build a better understanding of web development concepts
and standards.

Both Gemini and GPT models have proven to be powerful tools for web
development, but their full potential shines when optimized for specific uses.
When users give clear, detailed prompts that align with their needs, these
LLMs become even more effective and efficient. A deep understanding of

CONCLUSION 77

what users need plays a key role in guiding these models to deliver the best
results. With well-structured prompts, these LLMs can evolve into even more
specialized and valuable resources for web development.

Future directions for this experiment could include expanding the analysis
to incorporate other language models, such as Anthropic’s Claude [38], to
gain a broader perspective on how different models handle web development
tasks. Comparing these models could help identify which is best suited to
specific web development needs, particularly for tasks requiring precision and
accessibility.

Additionally, since the experiment already included LLMs self-correcting
their own code, another valuable step could be to compare the generated
and corrected code with actual student submissions or to expand the tasks
used to evaluate these models by including more complex web development
scenarios.

78 CONCLUSION

Bibliography

[1] World Wide Web Consortium (W3C). Web content accessibility guide-
lines (wcag) 2.1. https://www.w3.org/TR/WCAG21/, 2018.

[2] OpenAI. Gpt-3. https://openai.com/index/gpt-3-apps/, 2020.

[3] OpenAI. Gpt-4. https://openai.com/index/gpt-4/, 2023.

[4] Google AI. Gemini. https://gemini.google.com/app, 2023.

[5] Vlado Keselj. Book review: Speech and language processing by daniel
jurafsky and james h. martin. Computational Linguistics, 35(3), 2009.

[6] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jan-
vin. A neural probabilistic language model. J. Mach. Learn. Res., 3
(null):1137–1155, March 2003. ISSN 1532-4435.

[7] S Hochreiter. Long short-term memory. Neural Computation MIT-Press,
1997.

[8] Jeff Heaton. Ian goodfellow, yoshua bengio, and aaron courville: Deep
learning: The mit press, 2016, 800 pp, isbn: 0262035618. Genetic pro-
gramming and evolvable machines, 19(1):305–307, 2018.

[9] Alec Radford. Improving language understanding by generative pre-
training. 2018.

[10] A Vaswani. Attention is all you need. Advances in Neural Information
Processing Systems, 2017.

79

https://www.w3.org/TR/WCAG21/
https://openai.com/index/gpt-3-apps/
https://openai.com/index/gpt-4/
https://gemini.google.com/app

80 BIBLIOGRAPHY

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. https://arxiv.org/abs/1810.04805, 2019.

[12] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. Language models are unsupervised multitask learn-
ers. OpenAI blog, 1(8):9, 2019.

[13] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran
Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine
Bosselut, Emma Brunskill, et al. On the opportunities and risks of
foundation models. arXiv preprint arXiv:2108.07258, 2021.

[14] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Ben-
jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and
Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[15] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena
Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas,
Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint
arXiv:2203.15556, 2022.

[16] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Se-
bastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Don-
ald Metzler, et al. Emergent abilities of large language models. arXiv
preprint arXiv:2206.07682, 2022.

[17] Tom B Brown. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

[18] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wain-
wright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina

https://arxiv.org/abs/1810.04805

BIBLIOGRAPHY 81

Slama, Alex Ray, et al. Training language models to follow instruc-
tions with human feedback. Advances in neural information processing
systems, 35:27730–27744, 2022.

[19] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,
Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. Journal of Machine Learning Research, 24
(240):1–113, 2023.

[20] Jiacheng Xu, Zhe Gan, Yu Cheng, and Jingjing Liu. Discourse-aware
neural extractive text summarization. arXiv preprint arXiv:1910.14142,
2019.

[21] Andrew Yates, Rodrigo Nogueira, and Jimmy Lin. Pretrained trans-
formers for text ranking: Bert and beyond. In Proceedings of the 14th
ACM International Conference on web search and data mining, pages
1154–1156, 2021.

[22] Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language
model for scientific text, 2019. URL https://arxiv.org/abs/1903.

10676.

[23] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael
Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates,
Augustin Ž́ıdek, Anna Potapenko, et al. Highly accurate protein struc-
ture prediction with alphafold. nature, 596(7873):583–589, 2021.

[24] Ben Shneiderman. Human-centered AI. Oxford University Press, 2022.

[25] Tim Berners-Lee. The first website. https://www.w3.org/History.

html, 1991.

[26] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas

https://arxiv.org/abs/1903.10676
https://arxiv.org/abs/1903.10676
https://www.w3.org/History.html
https://www.w3.org/History.html

82 BIBLIOGRAPHY

Joseph, Greg Brockman, et al. Evaluating large language models trained
on code. arXiv preprint arXiv:2107.03374, 2021.

[27] Demis Hassabis Jeff Dean and James Manyika. 2023: A year of ground-
breaking advances in ai and computing. Technical report, Google, 2023.

[28] Danna Gurari, Yinan Zhao, Meng Zhang, and Nilavra Bhattacharya.
Captioning images taken by people who are blind. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XVII 16, pages 417–434. Springer, 2020.

[29] Barry Bassi. Utilizzo di Large Language Model nello sviluppo web e nella
valutazione dell’accessibilita: un approccio sperimentale. PhD thesis.
URL http://amslaurea.unibo.it/32244/.

[30] Sepp Hochreiter. The vanishing gradient problem during learning re-
current neural nets and problem solutions. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 06(02):107–116,
1998. doi: 10.1142/S0218488598000094. URL https://doi.org/10.

1142/S0218488598000094.

[31] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M
Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

[32] Noam Shazeer. Fast transformer decoding: One write-head is all you
need. arXiv preprint arXiv:1911.02150, 2019.

[33] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Tim-
othy Lillicrap, Jean-baptiste Alayrac, Radu Soricut, Angeliki Lazaridou,
Orhan Firat, Julian Schrittwieser, et al. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

http://amslaurea.unibo.it/32244/
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094

BIBLIOGRAPHY 83

[34] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc
Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

[35] Mirac Suzgun and Adam Tauman Kalai. Meta-prompting: Enhanc-
ing language models with task-agnostic scaffolding. arXiv preprint
arXiv:2401.12954, 2024.

[36] Yinheng Li. A practical survey on zero-shot prompt design for in-context
learning. arXiv preprint arXiv:2309.13205, 2023.

[37] Achecker web accessibility checker. http://achecker.csr.unibo.it/

checker/index.php, 2024.

[38] Anthropic. Claude. https://www.anthropic.com/claude, 2023.

http://achecker.csr.unibo.it/checker/index.php
http://achecker.csr.unibo.it/checker/index.php
https://www.anthropic.com/claude

Acknowledgments

I would like to express my sincere gratitude to all those who supported
me throughout my research journey.

Thank you all.

	Introduction
	Contextual Introduction
	Introduction to Large Language Models
	Historical Evolution
	Scaling Laws
	Emergent Abilities
	Challenges in LLMs
	Applications of LLMs

	LLMs in Web Development: An Integration
	Enhanced Collaboration Between Technical and Non-Technical Teams
	Error Detection, Debugging, and Optimization
	Customizable and Scalable Solutions

	Technologies Related to LLM Integration in Web Development
	Version Control and Collaboration Platforms (e.g., GitHub)
	Integrated Development Environments (IDEs)
	Frontend Frameworks (React, Angular, Vue.js)
	Backend Technologies (Node.js, Django, Flask)
	DevOps and Cloud Platforms (Docker, Kubernetes, AWS, Azure)

	Facilities and Advantages Offered by LLMs in Web Development
	Automating Routine Tasks
	Learning and Adapting to User Preferences

	Web Accessibility
	The Role of Web Accessibility
	The Potential of LLMs in Web Accessibility

	Strategies for Improving Web Accessibility with LLMs
	Automated Code Review for Accessibility
	Generating Accessible HTML and CSS Code
	Alt Text and Metadata Generation
	Improving Color Contrast and Visual Design
	Creating Accessible Documentation

	Challenges and Limitations of LLMs in Web Accessibility

	Technologies and Methods
	Transformer Architecture
	Predecessors of the Transformer
	Main Components and Architecture of the Transformer

	Gemini
	Multimodal Integration
	Model Variants

	Gemini 1.5
	Expanded Long-Context Processing
	Improved Core Capabilities
	Efficiency and Training Optimization

	Previous Experiments using ChatGPT
	Dataset and Structure
	Challenges in the Previous Experiment

	Replicating and Extending the Previous Experiment
	Goals of the Experiment

	Techniques for Improving Prompt Engineering
	Meta-Prompting
	Structured Evaluation Prompts
	Zero-Shot Prompting
	Iterative Testing and Refinement of Prompts
	Combining Prompting Techniques

	Listing of Prompt Improvements
	Exercise 1: HTML5 Web Page
	Exercise 2: CSS Stylesheet
	Exercise 3: Theory Question
	Exercise 4: JavaScript for User Interaction
	Exercise 5: PHP Script for Database Interaction

	Code Accessibility Review and Correction
	Accessibility Review
	Code Correction

	Results and Analysis
	Replication of Previous Experiments with Gemini Models
	HTML5 Results
	CSS Results
	Theory Question Results
	JavaScript Results
	PHP Results
	Accessibility Review
	Code Correction Results

	Code Generation with Optimized Prompts
	HTML Code Generation with Optimized Prompts
	CSS Code Generation with Optimized Prompts
	JavaScript Code Generation with Optimized Prompts
	PHP Code Generation with Optimized Prompts
	Code Correction with Optimized Prompts

	Conclusion
	Bibliography
	Acknowledgments

