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Three-dimensional earthquake response of slopes

Abstract

L'obiettivo della presente ricerca € volto a deteiane quale possa essere la vera
importanza di considerare la tridimensionalita andilsposta dinamica dei pendk

monitorare gli effetti delle condizioni al contoratlizzate.

La tesi & stata svolta utilizzando il software FL3RQun programma tridimensionale di
analisi alle differenze finite, non lineare, perctanputazione numerica ingegneristica e
geomeccanica. E’' stato scelto questo software peesso consentdi utilizzare le
condizioni al contorno: ffee-field boundary condition”strumentomolto utile e ben
funzionante nel campo delle analisi dinamiche. 'Hedllisi numerica della risposta
sismica, le condizioni al contorno del modello dewvdener conto del moto dfrée-
field” che esisterebbe in assenza di strutture nel terrfenalcuni casi puo essere
sufficiente utilizzare condizioni al contorno elamuri; queste perd devono essere poste
a distanza sufficiente per minimizzare la riflesgiadelle onde sismiche in modo da

poter comunqueaggiungere le condizioni diree-field.

Tuttavia, quando lo smorzamento del materiale 8dyda distanza a cui si dovrebbero
posizionare le condizioni al contorno aumenta ditmm@ questoporterebbe ad un

modello con dimensioni non pratiche da gestire.

Per questo motivo risulta opportuno utilizzarea procedura alternativa, sviluppata
anche per FLA, che imponga il moto diffee-field in modo tale che i margini del
modello possano mantenere le loro proprieta noetehti. Questa proprieta e proprio

quella che utilizzano leffee-field buondary conditidn

Nella prima parte della tesi, l'attenzione si etpeto focalizzata sull’'uso di queste

condizioni al contorno.

Per studiare le potenzialita di questo strumentstao eseguito un confronto fra
simulazioni dinamiche con FLAE ed alcuni risultati analitici. Inoltre sono state
condotte altre analisi per stimare l'influenza snbdello di queste condizioni al

contorno.
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Dopodiché, per studiare il problema principale 'déttto della tridimensionalita sulla
risposta dinamica dei pendii, si € pensato di adetti modello costitutivo
“SANICLAY”. “SANICLAY” € un modello costitutivo baato sul modello “Cam clay
modificato”, con I'aggiunta di due meccanismi ckagono conto dell’anisotropia e del
softening del materiale.

Prima di applicare il modello “SANICLAY” ad una cqiessa geometria
tridimensionale sono state condotte alcune simoiéznumeriche per testare le sue
potenzialita e la sua stabilita. Dopo una seriandilisi di sensitivita su alcuni parametri
si & visto che il modello costitutivo “SANICLAY” niplementato per FLAZ pochi
anni fa, non risulta sufficientemente stabile petetle condizioni; per questo si &€ deciso
di continuare il lavoro adottando il modello cagivo “Mohr-Coulomb”.

L'ultima parte della tesi € volta ad analizzareffédo della tridimensionalita nella
risposta dinamica dei pendi. A tal fine é statatyaun modello tridimensionale avente
due differenti pendii giacenti su due delle treedioni principali del sistema di
riferimento. Su questa geometria € stata eseguitastesa analisi di sensibilita
riguardante alcuni parametri, come la frequenzéodela sismica, I'accelerazione di

picco e gli angoli dei due pendii.

Osservando i risultati dell'analisi parametrica, prsdutto focalizzandosi  sugli
spostamenti, si & scoperto che il modello costraora bene, perché, come previsto,
aumentando il valore di picco dell'accelerazion#@eda di input oppure aumentando
la pendenza dei pendii si ottengono spostamentigioag Considerando l'analisi di
sensitivita effettuata sulle frequenze dell’ondangiut gli spostamenti maggiori si sono
verificati per una frequenza di 2 Hz. Questo pugess spiegato dal fatto che il valore

della frequenza e prossimo alla frequenza promianddello di terreno.

Alla fine, i risultati di alcuni casi significativdi queste simulazioni numeriche sono
stati confrontati con i risultati ottenuti attragerl’utilizzo di modelli bidimensionale per
evidenziare e quantificare gli effetti della tridinsionalita. Dai risultati delle
simulazioni numeriche e stato possible concluddre & modello tridimensionale
fornisce i valori maggiori in termini di spostamiest deformazioni. La presenza del

pendio secondario produce una condizione maggideraitica rispetto ad un semplice
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modello bidimensionale avente le stesse dimensitinimodello bidimensionale
ovviamente non riesce a catturare queste carditbes Queste osservazioni e questi
risultati, indicano che gli effetti della tridimengalita sono molto importanti. In questi
casi, una semplice analisi bidimensionale potrefditostimare gli effetti delluinput

dinamico.

| risultati di questo studio possono essere ysati avere un’idea del grado di non
cautelativita dei risultati bidimensionali. Inoltreviluppi per il futuro potrebbero
riguardare il modello “SANICLAY” e lo sviluppo dirunuovo script per renderlo piu
facilmente applicabile a tutti i casi necessariper renderlo stabile. Riguardo al
problema della tridimensionalita invece, sareblierassante vedere la risposta sismica
dei pendi adottando diversi input sismici, cambaural direzione dell'onda sismica o

utilizzando un accelerogramma realistico.



Abstract
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Introduction

The main goal of this work is to study the impodanof considering the three-
dimensionality in the dynamic response of slopas effect of boundary conditions in

the analyses.

The research is done by using of the software FICA& three-dimensional explicit non
linear finite-difference program for engineeringahanics computation. This software
it has been chosen because of the possibility eptathefree-field boundary conditign
which is a very useful and good powerful and effectool for dynamic analysis of
earthquake response.

Indeed in the numerical analysis of the seismipaase, the boundary conditions at the
sides of the model must account for the free-fialation that would exist in the absence
of the structure. In some cases, elementary lateyahdaries, may be sufficient but
should be placed at sufficient distances to mingnviave reflections and achieve free-
field conditions. When the material damping is Idte required distance may lead to
an impractical model, so an alternative proceddexeloped also for FLA®, is to

“enforce” the free-field motion in such a way thatundaries retain their non-reflecting

proprieties.

In the first part of the thesis, the attention basn focus on how to use ttirse-field
boundary conditionand its potentiality. To study these issues a @mpn between
analytical results and some numerical simulatiaslone in this way is possible to

check the influence of these boundary conditions.

Next, the idea was to use SANICLAY constitutive rabtb study the main problem of
the three dimensionality. SANICLAY is a constitwgimodel based on the well-known
isotropic modified Cam Clay model with two additthhmechanism to account for
anisotropy and destructuration. Before applyings tmodel to a three-dimensional
geometry some simulations are made to test itsnpateand its stability. But as it will

be describe irChapter 4 this model, implemented in FLAE few years ago, is not
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quite stable for all conditions; so it was decide@ontinue the work adopting the Mohr

Coulomb model.

The last part consisted to analyze the effect eftkinee dimensionality in the dynamic
response of slopes. A three-dimensional geometcyeiated with two different slopes:
one inx-direction and the other in thedirection. On this geometry it is performed an
extensive sensitivity analysis on parameters lil@arthquake frequency, peak
acceleration, and the angles of the two slopesh@dend the results of some significant
cases of the three-dimensiosahulations are compared with the results obtaimihl
the corresponding two-dimensional model, to qugntiie effect of the three-

dimensionality.
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Chapter 1 - Theory and Background

1.1 Background

Earthquake engineering deals with the effects othgaake on people and their
environment and with methods of reducing thosecedfdt is a very young discipline,
many of its most important developments having oeclin the past 30 to 40 years.
Earthquake engineering is a very board field, dngwon aspects of geology,
seismology, geotechnical engineering, structurgirezering, risk analysis, and other
technical fields. Its practice also requires coesatlon of social, economic, and
political factors. Most earthquake engineers hamtered the field from structural
engineering or geotechnical engineering backgrauadfact that is reflected in the

practice of earthquake engineering.

The study of earthquakes dates back many centWeten records of earthquakes in
China date as far back as 3000 years. Japaneselgeand records from eastern
Mediterranean region go back nearly 1600 yearghénUnited States the historical
record of earthquake is much shorter, about 35@sy&2n the seismically active west
coast of the United States, earthquake recordsagk tnly about 200 years. Compared
with the millions of years over which earthquakesédr been occurring, humankind’s
experience with earthquakes is very brief.

Today, hundreds of millions of people throughow torld live with a significant risk
to their lives and property from earthquakes. Bilk of dollars of public infrastructure
are continuously at risk of earthquake damage.dath of many local, regional, and
even national economies are also at risk from qagkes. Earthquakes are a global
phenomenon and global problem.

Earthquakes have occurred for millions of years witlidcontinue in the future as they
have in the past. It is impossible to prevent eprdkes from occurring, but it is
possible to mitigate the effects of strong eartlkguahaking: to reduce loss of life,

injuries, and damagé@<ramer, 1996).
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1.1.1 Seismic Hazards

A number of naturally occurring events, such ashemiakes, hurricanes, tornados, and
floods, are capable of causing death, injuries, praperty damage. These natural
hazards cause tremendous damage around the waHdyear. Hazard associated with
earthquakes are commonly referred to as seismiartiezThe practice of earthquake
engineering involves the identification and mitigat of seismic hazards. The most

important seismic hazards are described in theviatig sections(Kramer, 1996).

1.1.1.1 Ground Shaking

When an earthquake occurs, seismic waves radiady &om the source and travel
rapidly through the earth’s crust. When these waeaxh the ground surface, they
produce shaking that may last from seconds to reguthe strength and duration of
shaking at a particular site depends on the siddaation of the earthquake and on the
characteristics of the site. At site near the sewfca large earthquake, ground shaking
can cause tremendous damage. In fact, ground ghe&imbe considered to be the most
important of all seismic hazards because all theerohazards are caused by ground
shaking. Where ground shaking levels are low, tlo#iser seismic hazards may be low
or nonexistent. Strong ground shaking, however,praduce extensive damage from a

variety of seismic hazards.

Although seismic waves travel through rock over ¢lverwhelming majority of their
trip from the source of an earthquake to the grasuntace, the final portion of that trip
is often through soil, and the characteristicshef $oil can greatly influence the nature
of shaking at the ground surface. Soil deposit teratt as “filters” to seismic waves by
attenuating motion at certain frequencies and dpnpdj it at others. Since soil
conditions often vary dramatically over short dis@s, levels of ground shaking can
vary significantly within a small area. One of thmost important aspects of
geotechnical earthquake engineering practice irgbwvaluation of the effects of local
soil conditions on strong ground motigKramer, 1996).

1.1.1.2 Structural Hazards
Without doubt the most dramatic and memorable gaeke damage are those of

structural collapse. Structural damage is theitgpdause of death and economic loss
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in many earthquakes. However, structures needaliatpse to cause death and damage.
Falling objects such as brick facings and parapetthe outside of a structure or heavy
pictures and shelves within a structure have caussdalties in many earthquakes.
Inferior facilities such as piping, lighting, antbsage system can also be damaged
during earthquakes. Over the years, considerableanags have been made in
earthquake-resistant design of structures, andangeidesign requirements in building
codes have steadily improved. As earthquake-regislasign has moved from an
emphasis on structural strength to emphasis on dicthgth and ductility, the need for

accurate predictions of ground motions has incokgkeamer, 1996).

1.1.1.3 Liquefaction

Some of the most spectacular examples of earthgiekege have occurred when soil
deposit have lost their strength and appearedotw #s fluids. In this phenomenon,
termed liquefaction, the strength of the soil idueed, often drastically, to the point
where it is unable to support structures or rensable. Because it only occurs in
saturated soil, liqguefaction is most commonly obedrnear rivers, bays, and other
bodies of water. The term liquefaction actually@npasses several related phenomena.
Flow failures, for examples, can occur when thergjth of the soil drops below the
level needed to maintain stability under staticdibons. Flow failures are therefore
driven by static gravitational forces and can paslvery large movements.

Liquefaction is a complicated phenomenon, but mete@as progressed to the point
where an integrated framework of understandingbeadevelopedKramer, 1996).

1.1.1.4 Landslide

Strong earthquakes often cause landslide. Althahghmajority of such landslides are
small, earthquakes have also caused very largesslid a number of unfortunate cases,
earthquake-induced landslides have buried entimgcand villages. More commonly,
earthquake-induced landslides cause damage byowdesirbuildings, or disrupting
bridges and other constructed facilities. Manylegrake-induced landslides result from
liquefaction phenomena, but many others simply eggnt the failures of slopes that

were marginally stable under static conditigqi@amer, 1996).
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1.2 Seismic slope stability

Landslides occur on a regular basis throughout wioeld as part of the ongoing

evolution of landscape. Many landslides occur itura slopes, but slides also occur in
man-made slopes from time to time. At any pointiine, then, slopes exist in states
ranging from very stable marginally stable. Wheneanthquake occurs, the effects of
earthquake-induced ground shaking is often sufficie cause failure of slopes that
were marginally to moderately stable before theheiake. The resulting damage can
range from insignificant to catastrophic dependomy the geometric and material

characteristics of the slope.

Earthquake-induced landslides, which have beenmdented from as early as 1789
B.C. (Li, 1990), have caused tremendous amountdaaiage throughout history. In
many earthquakes, landslides have been resporisibées much or more damage than
all others seismic hazards combined. Evaluatiosetgsmic slope stability is one of the

most important activities of the geotechnical eguittkke engineef(Kramer, 1996).

1.2.1 Types of earthquake-induced landslides

Many factors, including geologic and hydrologic diions, topography, climate,
weathering, and land use, influence the stabilityslopes and the characteristics of
landslides. A number of procedures for classifaaf landslides have been proposed,;
that of Varnes (1978) is perhaps most widely usedhe United States. Similar
principles and terminology can be used to class#gthquake-induced landslides on the
basis of material type (soil or rock), charactemmfvement (disrupted or coherent), and
other attributes, such as velocity, depth, and watentent. Earthquake-induced
landslides can be divided into three main categodesrupted slides and falls, coherent

slides, and lateral spreads and flows.

Disrupted slides and falls include rock falls, roglides, rock avalanches, soil falls,
disrupted soil slides, and soil avalanches. Théhaaaterials involved in such failures
are shared, broken, and disturbed into a near mnaaler. These types of failures,
usually found in steep terrain, can produce exthemapid movements and devastating
damage; rock avalanches and rock falls have hestibyibeen among the leading causes

of death from earthquake-induced landslides.

10
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Coherent slides, such as rock and soil slumps, aacksolil block slides, and slow earth
flows, generally consist of a few coherent blodkat ttranslate or rotate on somewhat
deeper failure surfaces in moderate steeply slof@ngin. Most coherent slides occur

are lower velocities than disrupted slides andfall

Lateral spreads and flows generally involve liqakle soils, although sensitive clays
can produce landslides with very similar charast®ms. Due to the low residual
strength of these materials, sliding can occuremnarkably flat slopes and produce very

high velocities.

The different types of earthquake-induced landslidecur with different frequencies.
Rock falls, disrupted soil slides, and rock slidppear to be the most common types of
landslides observed in historical earthquakes. Qudxaus landslides, slow earth flows,
rock block slides, and rock avalanches are leastnoon, although the difficulty of

observing subaqueous slides may contribute to épgiarent rarity(Kramer, 1996).

1.2.2 Earthquake-induced landslide activity

For preliminary stability evaluations, knowledge tfe conditions under which
earthquake-induced landslides have occurred in gasthquakes is useful. It is logical
to expect that the extent of earthquake-inducedslizte activity should increase with
increasing earthquake magnitude and that thereddmaila minimum magnitude below
which earthquake-induced landsliding would raredgw. It is equally to expect that the
extent of earthquake-induced landslide activityudti@lecrease with increasing source-
to-site distance and that there could be a distdreyend which landslides would not to

be expected in earthquakes of a given gkmmer, 1996).

1.2.3 Seismic slope stability analysis

The database against which seismic slope stakifiglyses can be calibrated is much
smaller. Analysis of the seismic stability of sleps further complicated by the need to
consider the effects of dynamic stresses induceeahquake shaking, and the effects

of those stresses on the strength and stress-berhavior of the slope materials.

Seismic slope instabilities may be grouped into tategories on the basis of which of

these effects is predominant in a given slopenémtial instabilities, the shear strength

11
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of the soil remains relatively constant, but slogeformations are produced by
temporary exceedances of the strength by dynamibhceeke stresses. Weakening
instabilities are those in which the earthquakeeseto weaken the soil sufficiently that
it cannot remain stable under earthquake-induaesgsgs. Flow liquefaction and cyclic
mobility are the most common causes of weakenistamlity. A number of analytical

techniques, based on both limit equilibrium andesgrdeformation analyses, are

available for both categories of seismic instapiliKramer, 1996).

1.2.3.1 Analysis of inertial instability

Earthquake motions can induce significant horizioatael vertical dynamic stresses in
slopes. These stresses produce dynamic normahaad stresses along potential failure
surfaces within a slope. When superimposed uporptéeously existing static shear

stresses, the dynamic shear stresses may exceadaitable shear strength of soil and
produce inertial instability of the slope. A numbar techniques for the analysis of
inertial instability have been proposed. Thesenagkes differ primarily in the accuracy

with which the earthquake motion and the dynamispoase of the slope are

representedKramer, 1996).

1.2.3.2 Pseudostatic Analysis

Pseudostatic analysis, produces a factor of safgdynst seismic slope failure in much
the same way that static limit equilibrium analyggeduce factor of safety against
static slope failure. All the others approach afierto evaluate permanent slope

displacements produced by earthquake shaking.

Beginning in the 1920s, the seismic stability oftleatructures has been analyzed by a
pseudostatic approach in which the effects of athgaake are representes by constant
horizontal and/or vertical accelerations. The fasplicit application of the pseudostatic
approach to the analysis of seismic slope stablidg been attributed to Terzaghi
(1950). In their most common form, pseudostaticlym®s represent the effects of
earthquake shaking by pseudostatic accelerati@gptbduce inertial forcesyand F,

which act through the centroid of failure mass (Fegl.1).

12
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Figure 1.1 -Forces acting on triangular wedge of soil abovanalr failure surface
in pseudostatic slope stability analysis.

The magnitudes of pseudostatic forces are:

ahW
Fh = = khW
g
a,W
E, = = k,W
g

wherea; anda, are horizontal and vertical pseudostatic accetaratk; andk, are
dimensionless horizontal and vertical pseudostaigfficients, and W is the weight of
the failure mass. The magnitudes of the pseudostatielerations should be related to
the severity of the anticipated ground motion; cigd@ of pseudostatic accelerations for
design is, as discussed in the next section, maplsi matter. Resolving the forces on

the potential failure mass in a direction paralbethe failure surface,

G resisting force  clyy, + [(W — E,)cosp]tang
~ driving force (W — E,)sinf + F,cosp

where ¢ and ¢ are the Mohr-Coulomb strength parameters thatribesthe shear
strength on the failure plane ahg is the length of the failure plane. The horizontal
pseudostatic force clearly decreases the factsafdty it reduces the resisting force (
for ¢ > 0) and increases the driving force. The verfpssdudostatic force typically has
less influence on the factor of safety - sinceedluces both the driving force and
resisting force - as a result, the effects of gattaccelerations are frequently neglected
in pseudostatic analyses. The pseudostatic appraach be used to evaluate
pseudostatic factors of safety for planar, cirquimnd noncircular failure surfaces.
(Kramer, 1996).

13
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1.2.3.3 Limitations of the Pseudostatic Approach

Representation of the complex, transient, dynarffeces of earthquake shaking by a
single constant unidirectional pseudostatic acagtar is obviously quite crude. Even
in its infancy, the limitations of the pseudostatispproach were clearly recognized.
Terzaghi (1950) stated that “the concept it convalysarthquake effects on slopes is
very inaccurate, to say the least”, and that aeslopuld be unstable even if the
computed pseudostatic factor of safety was gredtan 1. Detailed analyses of
historical and recent earthquake-induced landslitese illustrated significant
shortcomings of the pseudostatic approach. Expeidas clearly shown, for example,
that pseudostatic analyses can be unreliable ity @t build up large pore pressures
or show more than about 15% degradation of stredgthto earthquake shaking. A
pseudostatic analyses produced factors of safetyatveve 1 for a number of dams that
later failed during earthquakes. These cases ridltesthe inability of the pseudostatic
method to reliably evaluate the stability of slopesceptible to weakening instability.
Nevertheless, the pseudostatic approach can pratitkast crude index of relative, if
not absolute, stabilityfKramer, 1996).

1.2.3.4 Discussion

The pseudostatic approach has a number of atteaietatures. The analysis is relatively
simple and straightforward; indeed, its similatibythe static limit equilibrium analysis
routinely conducted by geotechnical engineers maikescomputations easy to
understand and perform. It produces a scalar imdestability that is analogous to that
produced by static stability analyses. It must glvhe recognized, however, that the
accuracy of the pseudostatic approach is goveriyethd accuracy with which the
simple pseudostatic inertial forces represent thraplex dynamic inertial forces that
actually exist in earthquake. Difficulty in the @gsment of appropriate pseudostatic
coefficients and in interpretation of pseudostdéictors of safety, coupled with the
development of more realistic methods of analybsye reduced the use of the
pseudostatic approach for seismic slope stabifiphyses. Methods based on evaluation
of permanent slope deformation are being used asargly for seismic slope stability

analysis(Kramer, 1996).
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1.3 Review of 3D vs. 2D analyses

Justo and Saura, Byrne et al., Stark and Eid, Jereamong many others, have studied
the importance of considering the 3D effects inahalysis of slopes. Duncan cites over
20 studies (since 1960s) concluding that in théofacf-safety approach, with a few
exceptions, two-dimensional analysis yields coresre results compared to three-
dimensional analysis, i.epf< F3p provided that bp is calculated for the most critical

2D section.

Since kp < Fsp, Leshchinsky and Huang and Duncan and Stark erigehtat in order
to obtain post-failure in situ shear strength of sp back-analysis of slope failures, 3D
analysis should be avoided so that shear strengthg used in 2D analysis) is not

overestimated.

Arellano and Stark present several curves showiagdtio of 3D to 2D factor of safety
for different width/height ratios and slope anghegh translational failure mechanism.
These curves show that for a 3H:1V slope, for exantphe 3D factor of safety is about
40% larger than the 2D factor of safety if the \witieight ratio is about 2. In this type
of failure mechanism, which usually occurs in Battslopes, the mobilized shear
strength along back scarp and sides of the slidessrare significantly different from

those along the base.

In deformation analysis approach, Lefebvre et alunfl that 2D analysis can
significantly overestimate movements of a dam \hshaped steep-wall valley because
the effects of cross-valley arching are ignore@nhanalysis. Comparing the results of
2D and 3D analysis of the transverse section ofddra showed that if the valley wall
slopes were 1:1 or steeper, plane strain resultddame significantly inaccurate. 2D/3D
ratios of principal stresses, maximum shear strass] displacements were also
presented. For example, average 2D/3D ratio ofzbatal displacements for 1:1 wall
was 2.68, whereas that for 6:1 wall was 1.05.

Some other studies, such as also compare the gesulBD and 2D finite element
analyses for dams (simulating reservoir filling,terarise, etc.) and generally indicate

that deformation in 3D models are significantly #ierathan in 2D models, for
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width/height ratios of about 2-3. From these stsdie is also possible to note that
beyond a certain distance from the abutments, tiser® significant variation in the
predicted crest displacement. This distance is atlymabout 2.5-3 times the height.
(Azizian, A., Popescu, R., 2005

Prevost et al. performed 2D and 3D total streseadyc FE analysis of Santa Felicia
earth dam using a non-linear multi-surface plasticiodel and compared the measured
and computed earthquake responses. Their anah@iges that the first 10 frequencies
of the 3D model all fall within the first two fregacies of the 2D model, indicating that
more intermediate modal configurations are gendratespite the fat that the dam is a
relatively long dam and 3D effects should not gnigicant. The study demonstrates
the importance of 3D effects being more pronounfoedstrong shaking, in terms od
crest acceleration and permanent deformations.abe of strong shaking, the 3D
horizontal crest acceleration response is sigmflgalower than the 2D one due to
significant contributions from higher modes of \abon. The two-dimensional
idealization is normally based on the following smierations:

1. Site material idealization: in most cases, it isuased that soil layering is
perpendicular to the plane of interest and a csestion represents all sections.
If non-homogeneity or anisotropy of the slope maters important, then
performing a 2D analysis is not appropriatzigian, A., Popescu, R., 2005

2. Site geometry idealization: in numerical or ana&igtiapproaches toward many
geotechnical problems, three main geometric idattins are used to simplify
and speed-up the analysis significantly: planeirstrplane stress, and axi-
symmetry. Almost all two-dimensional slope stapilitnalyses use plane strain
assumption, in which the value of the strain congmbrperpendicular to the
plane of interest is zero. Analysis time as well rezessary computational
resources will decrease significantly, especiailyaiseismic step-by-step time-
domain analysis. However, the plane strain assumpi valid if one dimension
is very large in comparison with the other two.also requires all of the
following: no curvature or corners exist in geomgetf slope; the slope
deformation is not constrained significantly byemnlateral boundary (such as a

dam in a narrow rock-walled valley); no curvatuxeses in the shape of failure
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surface in the direction perpendicular to the plafieinterest. Azizian, A.,
Popescu, R., 2005

3. Loading idealization: design recommendations ugusliggest that from three
components of earthquake acceleration, only thgetahorizontal acceleration
would suffice for analysis purpose. Vertical anda#ier horizontal components
of acceleration are then ignored. In the analydisslopes, the horizontal
acceleration is usually applied to the cross-saabiothe slope in its plane, that
is, no instability due to transverse (out-of-plaaggitation is taken into account.
(Azizian, A., Popescu, R., 2005

1.4 Constitutive model

In this part will be presented the constitutive mlagsed during the work. The models is
the SANICLAY model, based on the more known Modifiéam-Clay model, so first
of all a short presentation of the Modified CamyQtaodel is given.

1.4.1 Modified Cam-Clay model

The modified Cam-Clay model is an incremental hairtgsoftening elastoplastic

model. Its features include a particular form of nimear elasticity and a

hardening/softening behaviour governed by voluroeplastic strain. The failure

envelopes are self-similar in shape and corresporallipsoids of rotation about the
mean stress axis in the principal stress spacen Shear flow rule is associated; no

resistance to tensile mean stress is offered sntlodel.

1.4.1.2 Incremental Elastic Law
The generalized stress components involved in tloelemdefinition are the mean

effective pressure, p, and deviatoric stress, fineie as

1
p= _§Gll
q=+/3)2

where the Einstein summation convention applies Jaisdthe second invariant of the

effective deviatoric-stress tensar]. The incremental strain variables associated with
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and g are the volumetric strain increméaf, and shear strain incremefé¢,, and we

have

AEp = _Afii

Ae =E 3AJ,
q 3 2

where AJ; stands for the second invariant of the incremedé&iatoric-strain tensor
Ale]. In the FLACP plastic flow formulation, the assumption is mabattboth plastic
and elastic principal strain-increment vectors eo@xial with the current principal
stress vector. The generalized strain incrememshtean decomposed into elastic and
plastic parts so that

_ p
Ae, = Aeg + Aep

_ p
Aeg = Aeg + Aeq

The evolution parameter is the specific volumejefined as

=l <

where \, is the volume of solid particles, assumed incasgible, contained in a
volume, V, of soil. The incremental relation betwa@lumetric straing,, and specific

volume has the form

And the specific volumey”", for the step may be calculated as
vV =v(1 - Aey,)

The incremental expression of Hooke’s law in teohgeneralized stress and strain is

as follows:

Ap = KAeg
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Aq = 3GAeg

where Aq = /34J,, and AJ, stands for the second invariant of the increme
deviatoricstress tensor. In the C-clay model, the tangential bulk modulus, K, in
volumetric relation Ap = KAe; is update to reflect a nonlinear law rived

experimentally from isotropic compression testse Tiesults of a typical isotrop

compression tests are presented in the-logarithmic plot inFigure 1...

v
Vo N
" __normal
consolidation line
v A ‘
K t——— —_
v ©® _

/
f

| _,/--.--—_

' swelling lines

v

In p, Inp

Figure 1.2 -Normal consolidation line and unloadi-reloading (swelling) line for a

isotropic compression test. (FLA° Manual).

As the normal consolidation pressure, p, increaties,specific volume, v, of tF
material decreases. The point representing the sfathe material moves along t

normal consolidation line defined by the etion

v=v, — Alnﬁ

b1
where)A andv, are two material parameters, ap, is a reference pressurv, is the
value of the specific volume at the reference pnegsi is used by Wood (1990)

define the slope of the normal colidation line. It should not be confused with -
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plastic (volumetric) multiplier used in the pla#iycflow rule. An unloading-reloading
excursion, from point A or B on the figure, will m®the point along an elastic swelling
line of slopex, back to the normal consolidation line where taéhpwill resume. The

equation of the swelling lines has the form

p
V=1, —kln—

P1

wherex is a material constant, and the valuevpffor a particular line depends on the
location of the point on the normal consolidationel from which unloading was

performed.

The recoverable change in specific voluye,, may be expressed in incremental form

after differentiation of the equation

A
Av, = —K—p
p
After division of both members by v, and using dmma Ae,, = —%, we may write
vp
Ap = —A€s
p=-"0%

In the Cam-clay model, it is assumed that any ceangnean pressure is accompanied
by elastic change in volume according to the abex@ression. Comparison with the
equation:Ap = KAey, hence, suggests the following expression fortémgent bulk

modulus of the Cam-clay material:

v
k=2
K

Under more general loading conditions, the stata pfrticular point in the medium
might be represented by a point, such as A, loda¢dalv the normal consolidation line

in the (v, Inp) plane as shown in Figure 1.3. Bytug of the law adopted iw. = v, —

k lnpﬁ, an elastic path from that point proceeds aloegstielling line through A.
1
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M
v
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A ¥ consolidation line
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Figure 1.3 -Plastic volume cange corresponding to an incremental consolida

/CSD

pressure change (FLA~ Manual).

The specific volume and mean pressure at the gttos of swelling line and norm
consolidation line are referred to as (normal) otidation (specific) volume an
(normal) consolidation pressurew? and pZ2, in the case of point A). Consider
incremental change in stress bringing the poininfisiate A to state A’. At A’ ther
corresponds a consolidation vqumvCA', and consolidation pressunpgf". The
increment of plastic volume changv?, is measured on the figure by the vert
distance between lines (associated with points & Af) and we may write, usin

incremental notation,

Ap,

Cc

AvP = —(1 — k)

After division of the left and rigl member by v, we obtain, comparing with equat

Av |

Aepz —

A —KxAp,
vV Pc
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Hence, whereas elastic volume changes take placsnevkr the mean pressi

changes, plastic volume changes occur only whendhsolidation fessure change

1.4.1.2 Yield and potential functions
The yield function corresponding to a particulalueag. of the consolidation pressu

has the form

f(q,p) = ¢* + M*p(p — p.)

where M is a material constant. The yield condilf = 0 is repesented by an ellip:
with horizontal axis, § and vertical axis, V,, in the (g, p)plane, as shown iFigure

1.4

e
q
0%
. o
plastic dilation ,.&\0'23‘, .
&
<0 A . _
Q.= M\D_.-; P plastic compaction
or 2 “
?‘ -E} 0
P:
Pa=o P. P

Figure 1.4 -Cameclay failure criterion in FLAG® (FLAC®® Manual)

Note that the ellipse passes through the origincégthe materiein this model is no
able to support an adlround tensile stress. The failure criterion isrespnted in th
principal stress space by an ellipsoid of rotadbout the mean stress axis (any sec
through the yield surface at constant mean effectress, p, is a circle). The potent

function, g, corresponds to an associated flow anlé we havi
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g=q*+Mp-p)

1.4.1.3 Hardening/Softening rule
The size of the yield curve is dependent on thatevaf the consolidation pressure, p
This pressure is a function of the plastic volurharge and varies with the specific

volume. The consolidation pressure is update feistep, using the formula

'pé"z'pc(1+AeglfK)

where AES is the plastic volumetric strain increment for thep, v is the current

specific volume an@ andk are material parameters.

1.4.2 SANICLAY model
SANICLAY is a simple anisotropic clay plasticity mhel that builds on a modification

of an earlier model with an associated flow rule,order to include simulations of
softening response under undrained compressioowmly K, consolidation. Non-
associativity is introduced by adopting a yieldface. Besides, the isotropic hardening
of the yield surface evolves according to a combirtkstortional and rotational
hardening rule, simulating the evolving anisotrogjhe SANICLAY is shown to
provide successful simulation of both undrained dradned rate-independent behaviour
of normally consolidated sensitive clays, and teafisfactory degree of accuracy of
overconsolidated clays. The model requires metelget constants more than those of
the modified Cam-clay model, all of which are easilibrated from well-established

laboratory tests.

Dafalias proposed what can be thought to be theleshpossible energetic extension
of the modified Cam clay (MCC) model from isotropic anisotropic response,
introducing in the rate of plastic work expresseéoontribution coupling the volumetric
and deviatoric plastic strain rates. The resulgilagtic potential surface in the triaxial p-
g space, which for associative plasticity serves als yield surface, is rotated and
distorted ellipse. The amount of rotation and digia is controlled by an evolving
variablea, which is a scalar-valued in triaxial and tensalued in multiaxial stress

space. The proposition by Dafalias, about this tardening model, has these two
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distinct characteristics. The yield surface haslrived from an energetic expression
for the rate of plastic work. Second, the so detiyeld surface maintains the peak g
stress on it always at the critical stress-ratidadvany degree of rotation and induced
anisotropy. The M acquires different valueg &hd M. in compression and extension.
The shape of the surface, in conjunction with tdepsed rotational hardening law,
induces a critical state line (CSL) in the voidioganean effective stress space, whose
location depends on the degree of anisotropy, andeneral is different in triaxial

compression and extension.

A model for soft clays should be able to also satmilthe softening response than is
often measured during undrained compression slgeafollowing anisotropic
consolidation aDCR = 1. From a constitutive point of view, this undrainsaftening
response can be addressed by special forms obtétgonal hardening law or by a non-
associative flow rule. Focusing on the latter applofor reason of simplicity and
stability of the response, Dafalias et al. intrceti@ yield surface of the same general
form as the original plastic potential, but withddferent rotational variable, and a
different peak stress ratio than M.

1.4.2.1 Mathematical Formulation of the model

The constitutive model is constructed by extendihg modified Cam-clay model,

which has a simple and elegant formulation withaclphysical interpretation. The
present formulation takes advantage of the simpdenéwork of MCC, and with

perhaps the simplest possible approach, adds tiyeimportant features of anisotropy
and destructuration. Each one of these importanistdative features can be
deactivated, if so desired by the user, simply ddgcing appropriate values for certain
model constants. In this way, the developed model e simplified back to the

modified Cam-clay model.

In this sectiong ande are generic symbols for the stress and strairoteasd their
components. All stress components are considerddctee, and as usual in
geomechanics, both stress and strain quantitiesssemed positive in compression.
The stress tensas can be analyzed in a hydrostatic= (tro)/3 and a deviatoric

componentss = ¢ — pI, where tr denotes the trace andis the identity tensor.
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Similarly, the strain tensot can be decomposed in a volumetsc= tre and a
deviatoric componene = ¢ — &,(I/3). Within the range of small deformations and

rotations, the kinematical assumption of the additiecomposition of total strain rate
into elastic and plastic part is assumed, ées, ¢ + £, The elastic strain rate is given

by

<€e=—I+é‘3=£I+i
3 3K 2G

where the elastic bulk and shear moduli K and Gohtained from

__p(+e) __3K(1-2v)
K= k T 2(1+v)
where e is the current void ratio; and k anare the slope of rebound line in e-Inp and

the Poisson’s ratio, respectively.

For simplicity, an associated flow rule has beempleyed, giving a single expression

f = 0 for the yield surface and the plastic potentidle Plastic strain rate is given by

P — —_
€ (L) P
where L is the loading index. The expression preditbr the plastic potential, which is
the same for the yield surface here, owing to appbn of associative plasticity, is
obtained from an assumption for the plastic wodsighation given in Dafalias (1986),
in the form of

f:E(s— a): (s — a)—(MZ—Ea'a> (po—p) =0
> pa): p 5@ a)pPo—Pp

where the symbol : implies the inner product of t@nsor (the trace of their product);
the anisotropic variable is a dimensionless deviatoric tensor apts@ scalar variable.
The scalar M is the critical stress ratio and cannterpolated between its valueg M
compression anff, = mM_ in extension as a function of a Lode angjlend by means

of the proposition of Argyris et al. (1974) as
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2m Iy
(1+m)—(1—-m)cos30 °

M=0006,mM,=

r-a

_ 3. =
cos 36 = V/6trn>; n = [(r-a):(r-a)]/2

with r = s/p the deviatoric stress ratio ten

yield surface
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stress deviator q
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Figure 1.5 - Model surfaces in triaxial stress space.

An illustration of the model is shown in Figul.5, which is in the triaxial -q space.
The isotropic hardening of the internal variab, is based on the classical evolut

law of critical state soil mechanicn conjunction with the specialization of equat

ep = (L)a—f for the volumetric plastic strain rate and yit
do

po = (L) (355) potr (3) = (L)po (1)

The kinematic hardening rule for the internal vialgzo. is based on the distance of bz
stress ratia. from its boundingimage a”, which in turn is defined by an attractor te
r/x as (Dafalias et al. 2006; Taiebat et al. 2

1+e

a = (L) (ﬂ) C (p%)z |tr (Z—£)| E (r—xa):(r— xoc)]l/2 X (a? —a) =(LYya (2)
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b _ E . _ r-xa
a” = \/;Menx’ n, = [(r—xa):(r—xa)]1/2

where C and x are two model constants and the ssiprefora is evident from the last
two members of the equation (2). The constant Grolenthe evolution of anisotropy in
the model, and the constant x in the attractor f@mowides a flexibility to the model for
proper estimation of the value o§KTlo include an isotropic destructuration mechanism
in the model the internal variablg i3 set equal t§;py4, WhereS; > 1 is the isotropic
structuration factor ang,, is the destructured value of for the value of pats; = 1).
With this new definition of g equation (1) should now be replaced by the falgw

equation, wherg, = S;pyq Yields

Do = SiPoa + SiPoa = (LY(SiPoa + SiPoa) = (L)Do (3)

where the analytical expression p§ is evident for the last two members of the

equation (3) Herg,, andS; are obtained from

1+e

Poa = (L) (ﬂ) Poat” (Z—g) = (L)Poa (4 a)

$i= =Wk (1) (5, - D& = (LS, (4b)

with p,4 andS; following from the last two members of equation & and (4 b),
respectively, and wherne; is a material constant. The degradation ;di& been taken
into account means af] = (L)&}, which is the rate of an auxiliary internal vatib

called the destructuration plastic strain rate @gfthed as

e =(L)él = J(1 — AP+ A G ér: ép) (5)

The parameter A is a material constant distributihg effect of volumetric and
deviatoric plastic strain rates to the value &ﬁ The foregoing destructuration
mechanism described by equations (3)-(5) is a iclssapproach of isotropic
destructuration. In Taiebat et al. (2010), in additto the present isotropic
destructuration mechanism that is in effect arragoe-softening constitutive feature, an

additional frictional destructuration mechanism wasroduced that addressed the
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possible collapse of the critical state stressorMi in the foregoing destructuration
plastic strain rate of equation (5). This mechanismomitted in the present work for
simplicity and because the isotropic destructuraisoby far the more important of the
two. In other words, many of the aspects of detiiration response in clays can be
sufficiently addressed only by the isotropic deduation mechanism for many

practical purposes.

Moreover, in Taiebat et al. (2010), the full destamation model also had additional
features, such as a plastic potential surface rdifitethan the yield surface with a
different rotational variable, and simplified versi were studied in regard to

simulations of data and the relative effect of thwe aforementioned destructuration
mechanisms was evaluated. To avoid any misundelisig it should be emphasized
that the omission of the frictional destructuratiowplies only that the M remains intact,
whereas the deviatoric (shear) strain rate is lgléafluential in regard to the isotropic

destructuration since it enters the definition lué tlestructuration plastic strain rate of

equation (5), where A is different from zero withypical default value ofi = 0,5.

Observe that by setting = 0 and starting withe = 0, the anisotropy feature of the
model can be deactivate by setting= 0 or simply by starting witts; = 1. To fully
reduce the model to the modified Cam-clay modegddition to the previous choices,

one should also remove the Lode angle dependensgtbgigm = 1.

1.4.2.2 Calibration of constants

SANICLAY requires the calibration of eight constarfTable 1.1). Only the last three
(N, x, C) are new in regards to the constants reduor the application of the modified
Cam clay model.

Constants Description of its rule
M. Value of stress ratig = % at critical state in compression
Me Value of stress ratigp = % at critical state in extension
A Compressibility of normally consolidated NC clay
K Compressibility of overconsolidated OC clay
v Elastic Poisson’s ratio
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N Shape of yield surfa
X Saturation limit of anisotropy (under path wn = % = constant)
C Rate of evolution of anisotro

Table 1.1- Constants of SANICLAY model.
The calibration of these constants requires data fivel-established laboratory tes

* Onedimensional (ly) or preferably isotropic consolidation tests wéh leas
one unloadeload cycle using an oedometer or axial device (for constank,
M)

e Lateral stress measurements during -dimensional (K) compression an
swelling reaching stresses (for constantv);

e Undrained triaxial compression (GUC) and extension (CUE) tests on

normally Ko-consolidated clay (for constants; and Me, N, C).

Figure 1.6 presents the response of clay during-dimensional (Cly) and isotropic
(CI) compression and swelling, with lateral stressasurement. Given the latter,
stress variation is presented in tl-logp space of the figure.

0.5
- CONSOLIDATION
DD B |sotropic (Cl)
0 1-D(CK,)
0.45
C —
0.4

void ratio e

0.35

T T TT T T T T T T T T rTrTTT

03 lllllll 1 1 Ll L il

100 1000
mean effective stress p (kPa)

Figure 1.6 -Calibration of constants k ar4, via G and C.
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Cc
In10

The G and G slopes that are measured in Figure 3.5 are refa andk as:1 =

C.
andx = —.
n10

Notice that a unique value M = M, = M, is not advised for use, since it seriou
overstimates the clagtrength in extension. Hence, when only a,UC test is

available, thetM, ,,;, < M, < M, should hold, where Mhinis the Mc corresponding !

Pe = Pc.

Figure 1.7focuses on the g-unloading stress path of a clay; this path presewith a
dashed grey line in this figure is the average euhat fits the initial data points of t
KO-consolidated undrained triaxial compression (CKOW® extension (CoUE)
tests.
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Figure 1.7 - Calibration of constant.

As an approximation, the iial part of this path is proposed for use in thigcation of

the Elastic Poisson’s ratioof the clay.

For x and N, the use of clos-form analytical relations is proposed, which mattesr
calibration easy and straightforward. For the esftiom of ©nstant x, the case of

drained path withn =n, = constant is considered. Practically speaking,
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consolidation paths starting from slurry have tbisracteristic. After considerable

algebra, a closed-form relation for x is:

Mk _ Bgnk3+n12c+[2(1_%)_BMg]57lk_Mc2 _ _ 204wk
x 28(1_9 ' 9(1-2v)1

ay =

Different paths withn,, = constant correspond to different values, which are not

always a priori known. Of all possible such pating most frequently run is theK

loading path, for whicke =3/2 andn, = ny = 31(1;1'?’), where Ik is the measured
0

value of the earth coefficient at rest. In the aloseof Ky measurements, the KO can be
estimated from well-known empirical relations, suah theK, = 1 — sing for NC
clays. Anyway, having obtained the KO value, ong/ mstimate the value of constant x
T Ben 3 +ni+[2(1-5)-BMZ|en;—M?
< 2¢(1-3)

k, A, M. andv (the MCC model constants), constant x is an irgingafunction ok I,

using equationy;, = . In general, for given values of

unlike the MCC model, which is known for overestting the K value.

Similarly for the estimation of constant N the ca$@n undrained shearing stress at his
considered. Given the available tests for calibratdf the model constants it is the

CKOUC test on normally consolidates clay that igadile for the purpose at hand. In

this case, the initiah, = B = ngo = 31(;;;0)
0

and p;, = pko, While n, = M,. When

these two pair of (py) are inserted in the aforementioned equation efuhdrained

stress path one has:

k
1_ —_
A, g
Pro N2 = 2moM, + M¢

Hence, one merely needs to solve the equation fayiwen data of a CHUC test on

normally consolidated clay.

Finally the calibration of constant C requires ¢éxecution of trial runs, having all other
constants calibrated in advance. Constant C qussitifie rate of rotation and distortion
of the yield surface and the plastic potential &uef Hence, test appropriate for its

calibration are those that induce significant stefeotation, test for which thg,, is far
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from n, of the effective stress path, and possibly the sp@sign. Practically a GGUE
test on normally consolidated clay is very suitafde the purpose at hand. Hen
Figure 1.8presents the CoUE test data on normally consolidated clay, alonth a
series of trial runs fir C = 6, 11, 16, 21 and @&serve that the higher the value o

the larger the predicted undrained strength ixialaextensior

K,-loading

LCT data

TE OCR

Figure 1.8 - Calibration of constant C.

Experience has shown that constant C usually vaetween 3 and 20 for various cla
In cases when the C takes large values (e.g. Gw8atlopted N should be sligh
increased compared to the value from eque

P < N2 =72, )1‘(%

Pko N2 — 2n oM, + M?

because the basic assumption of e-rotating yield surface is no longer va

32



Three-dimensional earthquake response of slopes

Chapter 2 - Effect of boundary conditions

The first part of this study deals with the pridegpof the program FLA® and how it
works. The objective is to be able to use basicrmands with mastery in order to
create models, analyze their dynamic behaviourtanohderstand the differences in the

responses by applying different boundary conditions

FLAC® is a three-dimensional explicit finite-differenceaogram for engineering
mechanics computation. The program extends theysinatapability of FLAC ZD)
into three dimensions, simulating the behaviouthoée-dimensional structures built of
soil, rock or other materials that undergo plastosv when their yield limits are
reached. Materials are represented by polyhedeamhaits within a three-dimensional
grid that is adjusted by the user to fit the shap¢he object to be modelled. Each
element behaves according to a prescribed lineanomtinear stress/strain law in
response to applied forces or boundary restrairts. explicit,Lagrangian calculation
scheme and the mixed-discretization zoning tecteigsed in FLAE® ensure the
plastic collapse and flow are modelled very acalyaFLAC’® offers an ideal analysis
tool for solution of three-dimensional problemsgeotechnical engineeringel(AC"
Manual)

2.1 Model construction

2.1.1 Create the geometry and assign material models

Figure 2.1shows the initial model used for the analyses.

Figure 2.1 —Geometry of the model.
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The following are the material parameters usethénanalyses:
Model: Elastic
Properties:  Bulk modulus (K) =2-10%kPa

Shear modulus (G) =0,3-10° kPa

Density @ =2-103 %
2.1.2 Finite difference Mesh

Numerical perturbation of the propagating wave ceaur in a dynamic analysis as a

function of the modelling conditions. Both the foeqcy content of the input wave and

the waves peed characteristics of the system f@tathe numerical accuracy of wave

for accurate

transmission. Kuhlemeyer and Lysmef973 have shown that,

representation of wave transmission through a maldelspatial element sizgl, must

be smaller than approximately one-tenth to onetkigii the wavelength associated

with the highest frequency of the input wave:

Al<A'
=70°

Q| >

where 1 is the wavelength associated with the highesturaqy component that

contains appreciable energfLAC® Manua)

For the model ifFig.2.1

Al < A

— 10

vS

1=

fmax
G 30000 m
'US:\/:: _—= V15000:122,5_
p \} 2 s

fi= 4’_’—; = f—i’; = 3,06 Hz 1% natural frequency
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Consider the following case:

fmax =4Hz
v, 1225
A= =222 _306m
fmax 4
oA 306
=10-"10 ™M

Whereby inx-direction 80m) there must be at least 10 elementsy-airection (Lm) at

least 1 element and in tzedirection (LOm) 4 elements.

The mesh of the model consists of 15 elementsdimection, 1 element iny-

direction and 5 elements mdirection.

Figure 2.2shows the model and mesh created in this example.

FILAC3D 3.00

Settings: Model Perspective
14:37:05 Mon Oct 17 2011

Center: Rotation:

X: 1.500e+001 X: 20.000
Y: 5.000e-001 Y: 0.000
Z:5.000e+000 Z:330.000
Dist: 8.345e+001 Mag.: 1
Increments: Ang.: 22.500
Move: 3.320e+000
Rot.: 10.000
Surface

Magfac = 0.000e+000

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Figure 2.2 -Geometry and mesh.
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2.1.3

Boundary conditions

To investigate the performances of different boupdeonditions, the model is

constrained in different ways in the dynamic analythree different types of boundary
conditions are considered:

e Simple roller

Free field boundary conditionsThis kind of boundary is implemented in

FLAC® and it “enforce” the free-field motion in such aythat boundaries
retain their non-reflecting properties.

Simple roller with rigid-link Similar to the first case, but a rigid link ispdigd

between two points lying at the same height onwlteside boundaries
2.1.4 Dynamic input

in x-direction.

The dynamic input is applied at the bottom of theded in the form of an acceleration

The dynamic input has the following expression:

-1,00

a(t) = sin(wt)

1,00 +

FANANAND]

input
| |

0, [ D0

E.pD

0

f=2Hz

The input is inserted into the program by creat@ntable and recalling it during the

Figure 2.3 -Graphic of the input wave.
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2.2 Comparison between different boundaries

conditions

221 Simple roller

il
> p P

A _6_ _é. A x-acceleration

Figure 2.4 —Model with simple roller boundary conditions.

This type of constrain, applied on the two sidestlwd model, permit only the
displacement ix-direction whilez-displacements angldisplacements are blocked. The
bottom of the model is fixed ir andy directions, only the-displacements are free in

order to apply the x-acceleratidrig.2.5).

FI AC3ID 3. 00

Settings: Model Perspective
15:08:25 Mon Oct 17 2011

Center: Rotation:
X: 1.668e+001 X: 20.000
¥:1.147e+000 Y: 0.000
Z:3.403e+000 Z:320.000
Dist: 8.345e+001 Mag.: 1.56
Increments: Ang.: 22.500
Move: 3.320e+000
Rot.: 10.000

Surface
Magfac = 0.000e+000

Axes
T

Fixity Conditions
Linesty

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Figure 2.5 -Boundary Conditions

There are some commands in this script relateénapthg. This will be discussed later.

The results of the analysis are reported into glges x-acceleration/dynamic time
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(Fig.2.7) wherex-acceleration is referred to poiA; in the middle of the top of the
model Fig.2.6).

A
®
oo 7N
.ﬁ_ A
A 'é' —é— A v=teceleration

Figure 2.6 -Position of the check point where the acceleraisomeasured.

FI AC3ID 3.00

Step 124951
09:29:33 Tue Oct 18 2011

History
1 X-Acceleration Gp 175 1.5
Linostyl

@

y
-2.701e+000 <> 2.4216+000
Vs.

2 Dynamic Time
8.003e-004 <-> 1.000e+001
os

o

o5

-20+

Itasca Consulting Group, Inc. 2R 4.9 6.0 g0
Minneapolis, MN USA

Figure 2.7 -Results of the analysis with simple roller bourydemnditions (graphics: x-

acceleration vs dynamic time).

2.2.2 Free-field boundary conditions

Numerical analysis of the seismic response of sarfructures such as dams, slopes,
walls, etc. requires the discretization of a regsdmaterial adjacent to the foundation.
The seismic input is normally represented by plaages propagating upward through

the underlying material. The boundary conditionthatsides of the model must account
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for the freefield motion that wold exist in the absence of the structure. In soases
elementary lateral boundar, such as roller boundarynay be sufficient.These
boundaries should be placed at sufficient distanca®inimize wave reflections ar
achieve fredield conditions. Fr soils with high material damping, this conditioan
be obtained with relatively small distai and the results of the analysis are

influenced by the presence of the bound.. However, when the material dampinc
low, the required distance may d to an impractical model. An alternative proce,

developed also for FLA®, is to “enforce” the fredield motion in such a way th.
boundaries retain their n-reflecting proprieties. FLAZ involves the execution o
freedield calculations in parall with the main-grid analysisThe lateral boundaries
the main grid are coupled to the i-field grid by viscous dashpots simulate a quiet
boundary Fig. 2.8, and the unbalanced forces from the-field grid are applied to th
main-grid boundaryBoth conditions are expressed in the following éiqus, which

apply to the fredield boundary along one side boundary plane wighnormal in the
direction of thex-axis

; b .

free field
free field

‘ I =S

seismic wave

Figure2.8 -Model for seismic analysis of surface structured fine-field mesh
E, = —pCp(v;” - vff)A + Fxff

E, = —pCS(vJ’,” — v;f)A + Fyff
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E = —pC(v* —v[)A+
where:
p = density of material along vertical model bouryglar
C, = p-wave speed at the side boundary;
Cs = s-wave speed at the side boundary;
A = area of influence of free-field gridpoint;
vyt = x-velocity of gridpoint in main grid at side budary;
vy = y-velocity of gridpoint in main grid at side budary;
vt = z-velocity of gridpoint in main grid at side badary;
v{f = x-velocity of gridpoint in side free field,;
vj’,cf = y-velocity of gridpoint in side free field;
vsz = z-velocity of gridpoint in side free field;

F,= free-field gridpoint force with contributionsoin theo// stresses of the free-

field zones around the gridpoint;

E, = free-field gridpoint force with contributionsofmn theag stresses of the free-

field zones around the gridpoint;

E, = free-field gridpoint force with contributionsoim thea{zf stresses of the free-

field zones around the gridpoint;

In this way, plane waves propagating upward aredigtorted at the boundary because
the free-field grid supplies conditions that arentical to those in an infinite model. If
the main grid is uniform, and there is no surfacacsure, the lateral dashpots are not
exercised because the free-field grid executesstme motion as the main grid.

However, if the main-grid motion differs from that the free field, then the dashpots

40



Three-dimensional earthquake response of slopes

act to absorb energy in a similar manner to quoetlblaries. In order to apply the free-
field boundary in FLAGP, the model must be oriented such that the babkerigontal
and its normal is in the direction of the z-axisd dhe sides are vertical and their normal
are in the direction of either the or y-axis If the direction of propagation of the
incident seismic waves is not vertical, then therdmate axes can be rotated such that
the z-axis coincides with the direction of propagatiamthis case, gravity will act at an
angle to the-axis, and horizontal free surface will be inclineith respect to the model
boundaries. The free-field model consists of folanp free-field grids, on the side

boundaries of the model and four column free-figltls at the cornersFig.2.9).
(FLAC®® Manual

[ FLACSD 3,00 271 - [View Base/0]

P rie £ Scitngs Plothems  Window

FILAC3D 3.00
Step 1500 Model Perspective

15:18:06 Mon Oct 17 2011 4 plane free-field gt‘ldS
Center; Rotation:
X: 1.500e+001 X: 30.000

¥:5.000e-001 ¥: 0.000
Z: 5.000e+000 Z:330.000
Dist: 9.447e+001 Mag.: 1.25
Increments: Ang.: 22.500
Move: 3.758e+000

Rot.: 10.000

Magfac = 0.000e+000

\_e

4 column free-field grids

tasca Consulting Group, Inc.
Minneapolis, MN USA

Figure 2.9 -Free Field boundary conditions

The plane grids are generated to match the mathzgnne on the side boundaries, so
that there is a one-to-one correspondence betweépomts in the free field and the
main grid. The four corner free-field columns astfieee-field boundaries for the plane
free-field grids. The plane free-field grids areotdimensional calculations that assume
infinite extension in the direction normal to thiarme. The column free-field grids are
one-dimensional calculations that assume infinitdersion in both horizontal
directions. Both the plane and column grids consisgtandard FLA zones, which

have gridpoints constrained in such a way to aehtbe infinite extension assumption.
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The model should be in static equilibrium before fitee-field boundary is applied. The

free-field condition is applied to lateral boundgndpoints. All zone data in the model

zones adjacent to the free field are copied tdréeefield region. Free-field stresses are

assigned the average stress of the neighbourirdy zgme. The dynamic boundary

conditions are automatically transferred to the fiield when the free field is applied.

Any model or nonlinear behaviour may exist in theeffield, as well as fluid coupling

and flow within the free field. The free field supps both small- and large-strain

calculation modesHLAC®® manual.

The results of the analysis are reported into glgca x-acceleration/dynamic time

(Fig.2.10 wherex-acceleration is referred to poit(Fig.2.6).

FI AC3ID 3.00

Step 132070
09:43:31 Tue Oct 18 2011

History
2 X-Acceleration Gp 175
Linestyle
-2.728e+000 <-> 2.445e+000
Vs.

3 Dynamic Time
7.659e-004 <-> 1.000e+001

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Figure 2.10 -results of the analysis with free field boundaoyditions (graphics: x-

42
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2.2.3 Simple roller boundary conditions with rigid link
& | sy
-y ﬁgid( Y
& | sy
& | sy
ey PaY PAY AN

x-acceleration

Figure 2.11 —Model with simple roller boundary conditions andigid link between

two points on the sides of the model.

The boundary conditions are similar to the firssecasimple rollers applied on the two
sides of the model that permit onddisplacementsHig.2.13. Furthermore, a rigid link
(Fig.2.12 is applied between two points lying at the sameglit on the two side
boundaries. The rigid link is model like a cablereént with a large value of the
productE - A (E: Young's modulysA: section area The link enforces the two points to

have the same horizontal displacements like affedeg-condition.

Figure 2.12 -Geometry of the model with the rigid link
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Figure 2.13 -Boundary conditions

The results are showirfgigure.2.14

FI AC3ID 3.00 s

Step 297994
10:09:20 Tue Oct 18 2011 4.0+

History
1 X-Acceleration Gp 143
Linestyle
-4.316e-002 <-> 4.560e-002
Vs. 204

2 Dynamic Time
6.712e-004 <> 2.000e+001

MR paanaAAARRAR AR
Ty

2.0+

-0+

Itasca Consulting Group, Inc. 2.5 10 15
i i 101
Minneapolis, MN USA i 18, ohtober 2011

Figure 2.14 -results of the analysis with simple roller on #iées and a rigid link

between two points (graphics: x-acceleration vsasyitc time).
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224 Summary

For an easy comparison, the time histories of pli(fig.2.6) are showing irFigures
2.15, 2.16and2.17.

Figure 2.15 -Results of simple roller boundary conditions.

Figure 2.16 -Results of free field boundary conditions.
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[18. oktober 2011

Figure 2.17 -Results of simple roller on the sides and rigidkli

From the results it appears tisanple roller boundary conditiongive the same answer
of free field boundary conditionsvhile in the case afimple roller boundary conditions
with rigid link one gets a gives a different result which is notezi. No attempt has
been made to do a more detailed investigation smtdel. It should also be noted that
for this regular mesh and uniform model, it was estpd that the result of roller
boundary be the right one. This will not be theecessmore general, non-homogeneous

models.
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2.3 Ground response analysis: comparison between

analytical solution and FLAC3D solution

2.3.1 Introduction

One of the most important and most commonly en@redt problems in geotechnical
earthquake engineering is the evaluation of graesgonse. Ground response analyses
are used to predict ground surface motions for logweent of design response spectra,
to evaluate dynamic stresses and strain for evatualf liquefaction hazards, and to
determine the earthquake-induced forces that caah tie instability of earth-retaining
structures. Under ideal conditions, a complete gdoresponse analysis would model
the rupture mechanism at the source of an eartleguh& propagation of stress waves
through the earth to the top of bedrock beneathamicplar site, and would then
determine how the ground surface motion is infleehby the soils that lie above the
bedrock. In reality, the mechanism of fault ruptiseso complicated and the number of
energy transmission between the source and thessitencertain that this approach is
not practical for common engineering applicatiohke problem of ground response
analysis then becomes one of determining the regpohthe soil deposit to the motion
of the bedrock immediately beneath it. Despitefd that seismic waves may travel
through tens of kilometres of rock and often lé=s1t100m of soil, the soil plays a very
important role in determining the characteristitshe ground surface motiorKiamer,
1996

2.3.2 One-dimensional ground response analysis

When a fault ruptures below the earth’s surfacelybwaves travel away from the
source in all directions. As they reach boundabietsveen different geologic materials,
they are reflected and refracted. Since the wawepggation velocities of shallower
materials are generally lower than the materiatsehth them, inclined rays that strike
horizontal layer boundaries are usually refract®ed tmore vertical direction. By the
time the rays reach the ground surface, multipleacéons have often bent them to a

nearly vertical directionKig.2.18.
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F Surficial layers

Figure 2.18 -Refraction process that produces nearly verticalevpropagatiornear
the ground surface (Kram, 1996).

One-dinensional ground response anas are based on the assumption tha
boundaries are horizontal and that the responaesoil deposit is predominantly caus
by SHwaves propagating vertically from the underlyingltmek. For on-dimensional
ground response analysis, the soil and bedroclaseiidre assumed to extendnitely

in the horizontal directior

An important class of techniques for ground respamsalysis is also based on use
of transfer functions. For the ground response lprabtransfer functions can be usec
express various response parameters, as displacement, velocity, acceleration, sl
stress, and shear strain, to an input motion pamnseich as bedrock accelerati
Because it relies on the principle of suppositihis approach is limited to the analy
of linear systemNon linear beavior can be approximated, however, using an iter:
procedure with equivalent linear soil proprietidkhough the calculation of the transt
function involvesmanipulation of complex numbers, the approachfitsejuite simple
A known time historyof bedrock (input) motion is represented as a FEowseries. Eac
term in the Fourier series of the bedrock (inputfion is then multiplied by the transt
function to produce the Fourier series of the gdwurface (output) motion. Tl
ground surfacdoutput) motion can then be expresdin the time domain using tt
inverse FFT (Fast Fourier transform). Thus thedi@nfunction determines how ea
frequency in the bedrock (input) motion is amptifieor deamplified, by the sc
deposit. The key to &hlinear approach is the evaluation of transfection. (Kramer,
1996)
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a) Uniform undamped soil on rigid rock

First, consider a uniform layer of isotropic, linegastic soil overlying rigid bedrock
(Fig.2.19.

u

I I g Ael’(mhkz)

4

Bef(wt—kzj

A

Figure 2.19 -Linear elastic soil deposit of thickness H undierllay rigid bedrock.
(Kramer, 1996)

Harmonic horizontal motion of the bedrock will prod vertically propagating shear
waves in the overlying soil. The resulting horizimdisplacement can be expressed:

u(z, t) = Aet@t+kz) 4 pellwt=kz) (1 1)
Wherew is the circular frequency of ground shakikghe wave numbe(rk = vﬂ) and
A andB the amplitudes of waves travelling in the (upward) and+z (downward)
directions, respectively. At the free surfage<(0), the shear stress, and consequently
the shear strain, must vanish; that is:

ou(0t)

7(0,t) = Gy(0,t) = G —— = 0 (1.2

Substituting {.1) into (1.2) and differentiating yields
G-i-k-(Ae™® — pelk®)eivt = G.j-k-(A—B)ewt =0 (1.3)

Which is satisfied (nontrivially) wheA = B. The displacement can then be expressed

as:

ikz ,—ikz .
u(z,t) = 24 %e”"t = 2Acoskze'wt (1.4)
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Which describes a standing wave of amplit(@e cos kz). The standing wave is

produced by the constructive interference of thearg and downward travelling waves
and has a fixed shape with respect to depth. Emudfi.4) can be used to define a
transfer function that describes the ratio of dispment amplitudes at any two points in
the soil layer. Choosing these two points to bettipeand the bottom of the soil layer

gives the transfer function

Umax(0,t) _ 24ei®t 1 1

= =L 15
) (1.5)

Umax(H,t)  2AcoskHel®t — coskH cos(—
Vs

Fi(w) =

The modulus of the transfer function is the amgdifion function

|Fi(@)| = {{Re[F (0)]}? + {Im[Fy(w)]}? = m (1.6)
Which indicates that the surface displacementvigapd at least as large as the bedrock
displacement (since the denominator can never batgr thanl) and, at certain

frequencies, is much larger. Thig,; (w)| is the ratio of the free surface motion
amplitude to the bedrock motion amplitude. é%ﬁ) approaches(§+nn), the

denominator of equationl(6) approaches zero, which implies that amplification

resonance, will occurHg.2.20. Even this very simple model illustrates that the
response of a soil deposit is highly dependent uperfrequency of the base motion,
and that the frequencies at which strong ampliftcabccurs depend on the geometry

(thickness) and material properties (s-wave veypat the soil layerKramer, 1996

IFy ()l

-

|
s
o 3 2 B 2 2 M

3r 51 7 97
2 2 2
0 Vs 3nvg Bnvg Tnvg v w
2H 2H 2H 2H 2H
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Figure 2.20 -Influence of frequency on steady-state responsaeddmped linear

elastic layer. (Kramer, 1996)
b) Uniform, damped soil on rigid rock

Obviously, the type of unbounded amplification peeetl by the previous analysis
cannot physically occur. The previous analysis m&slino dissipation of energy, or
damping, in the soil. Since damping is presentlimaterials, more realistic results can
be obtained by repeating the analysis with dampikgsuming the soil to have the

shearing characteristics oKa&lvin-Voigtsolid, the wave equation can be written as

0%u _ . 0%u o3u

acz - U2z " 525,

(1.7)

The solution to this wave equation is of the form
u(z, t) — Aei(wt+k*z) + Bei((ut—k*z)

wherek* is a complex wave number with real plytand imaginary part,. Repeating
the previous algebraic manipulation with the compieave number, the transfer

function for the case of damped soil over rigidkraan be expressed as

1

Fz( ) = = cos(wH) (1-8)

cosk*H
vg

Since the frequency-independent complex shear raedsigiven by¢* = G(1 + i2¢),

the complex shear wave velocity can be expressed as

=\/§= /“%mz\/%(1+if) = vy(1 + ié) (1.9)

for small¢. Then the complex wave number can be written refgaismallé, as

k=2 = ~2(1—-i&) =k(1—i&) (1.10)

vs v (1+1€) vg

And finally, the transfer function, as

1
cos k(l i&)H COS[%(l'H'f)]

F(w) = (1.11)
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Using the identity|cos(x + iy)| = /cos? x + sinh? y, the amplification function can

be expressed as

1 1
o ()] & s = J - (1.13)
cosz(w

For small damping ratios, equatich13 indicates that amplification by a damped soil

layer also varies with frequency. The amplificationll reach a local maximum
wheneverkH =~ (g + nn) but will never reach a value of infinity since (6 > 0) the

denominator will always be greater than zero. Tieguencies that correspond to the
local maxim are the natural frequencies of the gigposit. The variation of
amplification factor with frequency is shown forffdrent levels of damping in figure
(Fig 2.2]). This amplification factor is also equal to tlaio of the free surface motion
amplitude to the bedrock motion amplitudégure (Fig 2.21)shows that damping

affects the response at high frequencies moreahkower frequencies.

Amplification factor

Figure 2.21 -influence of frequency on steady-state respondamped, linear elastic
layer.(Kramer, 1996)

The (th) natural frequency of the soil deposit is givgn

W, ~ ”;(g + nn) n=01.2,.. 00 (1.14)
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Since the peak amplification factor decreases wwitlieasing natural frequency, the
greatest amplification factor will occur approximlgt at the lowest natural frequency,

also known as the fundamental frequency

wo = % (1.15)

The period of vibration corresponding to the funeéatal frequency is called the
characteristic site period,

2n  4H
Ty=—=—

N wWo Vs

The characteristic site period, which depends amlythe thickness and shear wave
velocity of the soil, provides a very useful indica of the period of vibration at which
the most significant amplification can be expectéd.each natural frequency, a
standing wave develops in the soil. Normalized deéa shapes, or mode shapes, for

the first three natural frequencies are shownguare Fig.2.22)

Mormalized displacement

Ground
surface -1.0 -0.5 0.0 0.5 1.0
— : 0.0
A /
. n=2 n=1 n=>0
|H. = - zH 05
L o 3
7 7
Bedrock

Figure 2.22 -Displacement patterns for standing waves at furetgat (n=0), second
(n=1) and third (n=2) natural frequencies for a klayer with£=5%. Displacements

are normalized by maximum displacement at the fonadial frequency.(Kramer, 1996)
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Note that the soil displacements are in phase ategaths in the fundamental mode, but

not in the higher modes.

2.3.3 Rayleigh damping

Rayleigh damping was originally used in the analysistructures and elastic continua
to damp the natural oscillation modes of the syst&he equations, therefore, are
expressed in matrix form. A damping matrg, is used, with components proportional

to the massM) and stiffnessK) matrices:

C =aM + BK
where:
a Is the mass-proportional damping constant;
p Is the stiffness-proportional damping constant.

For a multiple degrees-of-freedom system, theaalitdamping ratiog, at any angular

frequency of the system;, can be found fromBathe and Wilson 1976
a+ i = 2w
or

1/«

Si =§(a)_i+ﬂwi>

The critical damping ratig;, is also known as the fraction of critical dampfogmode
i with angular frequency;. The variation of the normalized critical dampiagio with

angular frequencyy;, is shown in figureKig.2.23)
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gl
\ total
3

éi"' émin

Fig 2.23 -Variation of normalized critical damping ratio \wiangular frequency.
(FLAC®® Manual)

Three curves are given: mass and stiffness comporarly; and the sum of both
components. As shown, mass-proportional dampingloiinant at lower angular-
frequency ranges, while stiffness-proportional demgppdominates at higher angular
frequencies. The curve representing the sum of bathponents reaches a minimum at:

or.

& = Emin Wmin

ﬁ — fmin

Wmin
The centre frequency is then defined as

_ Wmin

fmin - 2T
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It may be noted that at frequenay,;, (or fmin) and only at that frequency, mass
damping and stiffness damping each supply halheftotal damping force. Rayleigh
damping is specified in FLA® with the parameterg,,;, in Hertz andé,,;,. (FLAC®
Manual).

2.3.4 Comparison between analytical solution and FLAC3D
solution

Considering the analytical solution whiform, damped soil on rigid rock is investing
to check FLACP results and compare the two solutions that isatiytical one and
FLAC®. The geometry of the modeFig 2.24 for FLAC®® analysis is the same that
described in the first part of the chapter.

Figure 2.24 -Geometry of the model with free field boundarydibons.
The material properties are:
Model: Elastic
Properties: Bulk modulus (K) =2-10° kPa

Shear modulus (G) =0,4-10° kPa

Density @ =2-103 %
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The boundary condition adopted is free field boupdeonditions, and Rayleigh

damping is chosen.

2.3.4.1 FLAC3D solution
The input for Rayleigh damping in FLAEare:

Emin = 0,05
fmin = 7,07 Hz

In this casdnmi, is taken with the same value of the average betilefirst and second

natural frequencies of the system:

VT
wn—ﬁ(§+nn)
G 40000 m
vsz\/:= — =+/20000 = 141,42 —
p ’ 2 s
Vs (n)_141,42n_22 21 rad
“1=H\2) T 10 27
VW _ 141,42 /m _ rad
wz—ﬁ(z T[)— 10 (E+7T)—66,63T
_w1_22,21_353H
Yoo T 2m T z
_w2_66,63_1060H
27 2w z
+ 3,53+ 10,60
fmm=f1 S _ — 7,07Hz
2 2
rad

Omin = 2 fyin =21 7,07 = 44,42 —

The analysis was repeated for a number of freqesrioom 0,5Hz to 12,5Hz and some

results are showing iRigure 2.25t0 2.28
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Figure 2.25 -Graphic x-acceleration/dynamic time. The frequeoicthe input wave is
1,0 Hz

Figure 2.26 -Graphic x-acceleration/dynamic time. The frequeoicthe input wave is
7,5 Hz
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Figure 2.27 -Graphic x-acceleration/dynamic time. The frequeoicthe input wave is
9,0 Hz

Figure 2.28 -Graphic x-acceleration/dynamic time. The frequeoicthe input wave is
11,0 Hz
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For each frequency the last part of the responsechwrepresents the steady-state
response, is used and the maximum valug-a€celeration is takerFi(g.2.29. Then
these values are plotted in a graph as a funcfifreguency {ig.2.30.

4,0
3,0
@ 20
E
- 10
§e)
T 00
[}
= ( | 4 >
8 1,0
Q
®
x 2,0 1 =
-3,0
-4,0 —
dynamic time (s)
Figure 2.29 —Value of x-acceleration considered.
12
10
@
S
= 8
c
5 [
T 6
Q
3 4
Q
P
< 2 <
O T T
o 1 2 3 4 5 6 7 8 9 10 11 12 13
frequency (Hz)

Figure 2.30 -FLAC® solutions.

60



Three-dimensional earthquake response of slopes

2.3.4.2 Analytical solution
From the input value for the Rayleigh damping the tparametersx and g are

calculated as:

a = Epin Omin = 0,05 - 44,42 = 2,22

fmin 0'05
= =——=10,001
B Omin 44,42

The critical damping ratig for each frequency is:

$i :%(i‘l'ﬁwi)

w;

For each frequency, the damping ratio is computedraing to the above equation and

plotted inFigure 2.31

0,40

0,35

0,25

0,30 \
\
\

6

0,20 \
0,15 \
0,10

0,05

0,00
0,00 20,00 40,00 60,00 80,00 100,00

o; (rad/s)

Figure 2.31 -Graphic of damping ratio in function of angulaefuency.

The amplification function is:

1

o () e )

|F(w)| =
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The values of amplification function are calculated every frequency with the
corresponding damping and are plottefFigure 2.32

12

) !\

|F ()|

/ /\

2
7 N

0,00 2,00 4,00 6,00 8,00 10,00 12,00 14,00 16,00

f (Hz)

Figure 2.32 —Graphic of analytical solution

2.34.3 Comparison between the two solutions

The results of FLAE® are compared iRigure 2.33with the analytical solution.

12

REREI

[£x]

2
=
z, + FLAC3D
2
4 analytical
zolution
*
? r”} .\\
4
i

a 1 2 3 4 5 6 7 8 & 10 11 1z 13 14 15

f(Hz)

Figure 2.33 —Comparison between FLAEsolution and analytical solution.
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It was considered that part of the discrepancidsgit frequencies was due to the mesh
size. Therefore, a new modélig 2.34), with the same geometry and the same material
properties but with a more fine mesh, is adoptdte flesults are plotted together with

previous results ifigure 2.35

Figure 2.34 -Geometry of the model

12
@ 10 *
E
— 8
R
T 6
Q
(5]
*
§4 4 .
X 2 . . ) A ¢
*? o ! 1
O T T
o 1 2 3 4 5 6 7 8 9 10 11 12 13
frequency (Hz)

Figure 2.35 -FLAC®® results. In red the values of the results obtaiwét the new

mesh.
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12
10 W
c 8 m
il
5
= 6 — & large
o mesh
% 4 ) \ 4 fine mesh
p *
Ve 4 * analytical
/3 « i
2 solution
b 3 ’
1 T |1
0 T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13
f (Hz)

Figure 2.36 -Comparison between analytical solution and FEAEblution in the two

cases: with large mesh and with fine mesh.

Amplitude vs Frequency

12
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S 8

g \

£ 6
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g 4 /\
2 /’/ \

-+ — \T\

O T T

0,00 1,00 2,00 3,00 4,00 500 6,00 7,00 8,00 9,00 10,0011,0012,00 13,00
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Figure 2.37 —Comparison between FLAEsolution and analytical solution.
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Figure 2.37shows the comparison based on the new data. Ndwaannore fine mesh,
the two solutions are very similar. Especially mefg the mesh iz-direction is possible

to observe a better correspondence between thigosslu
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Chapter 3 - Influence of free field boundary

conditions

The goal of this chapter is to study the perforneamicthe free field boundary condition
in slope analyses. A model of a simple slope issttacted and it is subjected to a
dynamic load. Then at the sides of the model vélelstended, in this way the boundary
conditions are more distant from the slope. Threelets will be created with different
extensions and for each a dynamic analysis wilimagle. To study the result and the
influence of the boundary conditions some moni@oints will be take on the top of
the model and the-acceleration will be registered. The results Wi presented in

summary plots for comparison.

3.1 Model 1 - no extension

A simple slope is createdrig. 3.1) and a dynamic analysis is made at different
frequencies ranging from 0,6 Hz to 3,6 Hz. The dayicainput is a simple sinusoidal

wave:
a(t) = sin(wt)

In this first model five monitoring points (A, &, D, E) have been taken on top of the

model, in which the values of tlxeacceleration are measurdeg 3.2

60 m

Iﬁi(;]m

F' 3
v

250 m
80 m 90 m 80 m

A
v
A
k4
A
v

Figure 3.1 -Geometry of the model
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The material parameters are:

Model: Elastic

With the following properties:

Bulk modulus (K) =2-10°kPa

Shear modulus (G) =0,4-10° kPa
Density @ =2-103 %

The model is discretized using 72 elementg-direction, 1 element ig-direction and
18 elements irz-direction. Even though a 3D model is used, thdyaigmrepresents a
plane strain case because of the size of the niodleé y-direction The zone length is
smaller than 1/10 of the shortest wavelength (@nltasis of elastic proprieties of the

material and the input frequency) to provide acveave transmission.

Al < A
10
Us

A=
fmax

G ’40000 m
Vg = \/; = |3 = V20000 = 141,42?

On the left side the height of the model isn680 the first natural frequency is:

_n e
W=H T 60 0612

On the right side the height is 80so the first natural frequency on that side is:

vy 141,42
T 4-H  4-30

f. =12Hz

The range of frequency considered for the analyagsbetween 0,6 Hz and three times
the frequency of the right side that is 3,6 Hz fAsis taken 4Hz:
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fmax = 4,0Hz

v, 14142

A= =353m

a fmax 4

Al < A <35’3—353
=10~ 10 0™
Whereby inx-direction @50n) there must be at least 71 elementy-direction Lm) at
least 1 element and in tlzedirection, considering the highest side (left sid@m), 17

elements.

A (35.,0.,60) B (80,0.60)

C (125,0.45)

D(170,0,30) E(215,0,30)

Figure 3.2 —Position of the monitoring points.

The steady-state accelerations, as for the fregeenfor the monitoring pointa-E are
plotted inFigures 3.3to 3.7. Because the input acceleration on the bases—z|msthese

plots can also be considered as transfer function.
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point A -model 1

€, \ A
g, \ /
g, \\j/ o
;o ANEPZA\
] \v/ e
0
0 0,5 1 1,5 2 2,5 3 3,5 4

frequency (Hz)

Figure 3.3 —Steady-state acceleration for monitoring point A.

point B -model 1

@ 4 \
: \ A\
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0
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frequency (Hz)

Figure 3.4 —Steady-state acceleration for monitoring point B.
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x-acceleration (m/3

point C - model 1

AVaeete

0 1 2 3

frequency (Hz)

Figure 3.5 —Steady-state acceleration for monitoring point C.

x-acceleration (m/3)

point D - model 1

frequency (Hz)

Figure 3.6 —Steady-state acceleration for monitoring point D.
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point E - model 1

A
1

L 3

x-acceleration (m/3
O P, N W b U1 OO N
-

0 1 2 3 4

frequency (Hz)

Figure 3.7 —Steady-state acceleration for monitoring point E.

3.2 Model 2 - one extension

In this analysis, the model is extended at itsssifigy. 3.8, 3.9, so that the boundary
conditions are farther away from the slope. Twaartonitoring points (F,GHg. 3.9
are added on the extensions and a new dynamicsamayrun. The same element size
was used.

Figure 3.8 -Geometry of the model with the extension on thestdes and position of

the two new monitoring points F and G.

72



Three-dimensional earthquake response of slopes

v
-«
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(=]
B

LY
Y
A
v
A
A4

Figure 3.9 -Geometry of the model

The steady-state accelerations, as for the fregesgnor the monitoring points A-G are
plotted inFigures 3.100 3.16

point A - model 2

@
£, \ A
N/
3, N\ /\ P
N N
0 1 2 3 4
frequency (Hz)

Figure 3.10 —Steady-state acceleration for monitoring point A.
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point B - model 2

@ 4 A\
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;?B,z_ \ /\\.\‘//\
§ 1 \/ \_.
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0

0 1 2 3 4

frequency (Hz)

Figure 3.11 —Steady-state acceleration for monitoring point B.
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Figure 3.12 —Steady-state acceleration for monitoring point C.
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point D - model 2

, /\
A

0 1 2 3 4

\
)

x-acceleration (m/3

frequency (Hz)

Figure 3.13 —Steady-state acceleration for monitoring point D.

point E - model 2
7 4
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T, A\
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frequency (Hz)

Figure 3.14 —Steady-state acceleration for monitoring point E.
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x-acceleration (m/3

point F - model 2

N W oy N

oS\

|

2

frequency (Hz)

Figure 3.15 —Steady-state acceleration for monitoring point F.

x-acceleration (m/3
O R N W b 1 O N 0O O

point G - model 2

A

[\
\

frequency (Hz)

3.3 Model 3 - two extensions

In this analysis, the model is extended agairsaFig. 3.17, 3.18 so that the boundary
conditions are farther away from the slope. Othep tmonitoring points (H, 1) are
added on the new extensions and a dynamic anadysis. The same element size was
used. The steady-state accelerations, as ford¢lg@dncies, for the monitoring points A-
G are plotted in Figures 3.19 to 3.27.
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Figure 3.16 —Steady-state acceleration for monitoring point G.
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Figure 3.17- Geometry of the model with the extension on thestdes and position of

the two new monitoring points H and |

60 m
I 30m
140 m 90 m 140 m ”
Figure 3.18- Geometry of the model
point A - model 3

6
@ ° ‘\
g, N
c
\ [\
5 \ /)
g \ A
E 1 \// \\//’/ \‘\‘

0 .

0 1 2 3 4
frequency (Hz)

Figure 3.19 —Steady-state acceleration for monitoring point A.
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point B -model 3
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frequency (Hz)
Figure 3.20 —Steady-state acceleration for monitoring point B.
point C - model 3
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Figure 3.21 —Steady-state acceleration for monitoring point C.
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point D -model 3

3 £\

/\ 5

x-acceleration (m/3

0 1 2 3 4

frequency (Hz)

Figure 3.22 —Steady-state acceleration for monitoring point D.

point E - model 3
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Figure 3.23 —Steady-state acceleration for monitoring point E.
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point F - model 3
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Figure 3.24 —Steady-state acceleration for monitoring point F.
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Figure 3.25 —Steady-state acceleration for monitoring point G.
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point H - model 3
7 4
6 .
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Figure 3.26 —Steady-state acceleration for monitoring point H.

point | - model 3
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Figure 3.27 —Steady-state acceleration for monitoring point I.
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3.4 Model 4 - three extensions
In the last analysis, the model is extended thel ttime at its sides (Fig. 3.28, 3.29).

Other two monitoring points (L, M) are added on tiev extensions and a dynamic
analysis is run. The same element size was usexlsfBady-state accelerations, as for
the frequencies, for the monitoring points A-G pl@ted in Figures 3.30 to 3.40.

L e ]

Figure 3.28- Geometry of the model with the extension on thestdes and position of

the two new monitoring points H and |

60 m

I 30m

A
v

>
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A

v

>
L

170 m 90 m 170 m

Figure 3.29- Geometry of the model
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point A - model 4

@ A\
S VA
S 3
N
5, \ A
3
5
= \ *

0

0 1 2 3 4
frequency (Hz)
Figure 3.30 —Steady-state acceleration for monitoring point A.
point B -model 4
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Figure 3.31 —Steady-state acceleration for monitoring point B.
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Figure 3.32 —Steady-state acceleration for monitoring point C.
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Figure 3.33 —Steady-state acceleration for monitoring point D.
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point E - model 4
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Figure 3.34 —Steady-state acceleration for monitoring point E.
point F - model 4
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Figure 3.35 —Steady-state acceleration for monitoring point F.
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point G - model 4
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Figure 3.36 —Steady-state acceleration for monitoring point G.
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Figure 3.37 —Steady-state acceleration for monitoring point H.
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Figure 3.38 —Steady-state acceleration for monitoring point I.

x-acceleration (m/3

point L - model 4
7 4
6
e\
4
3 | \ N
| \ /
1 - \\ /’/ \¢
] ~— e
0 T T
0 1 2 3 4
frequency (Hz)

Figure 3.39 —Steady-state acceleration for monitoring point L.
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point M -model 4
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Figure 3.40 —Steady-state acceleration for monitoring point M.

3.5 Comparison between the results of different model

To analyze the results and understand the influesfcdboundary conditions, the
monitoring points are considered one by one ined#it models. The four different
models are resumed kigure 3.41t0 3.49

point A

x-acceleration (m/3

o

TR
4

v,

frequency (Hz)

—e— model 1
—— model 2
—aA— model 3

—0— model 4
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Figure 3.41 -Monitoring point A.
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Figure 3.42 —Monitoring point B.
point C
3,5
3
e N
E 25
S 2 \ %;k —e—model 1
3 Qw’ ‘& mode
% 15 \\ /% —&—model 2
% 1 ¥ —&—model 3
* 05 —e—model 4
0

Figure 3.43 —Monitoring point C.
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point D
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Figure 3.44 —Monitoring point D.
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Figure 3.45 —Monitoring point E.
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Figure 3.46 —Monitoring point F.
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Figure 3.47 —Monitoring point G.
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Figure 3.48 —Monitoring point H.
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Figure 3.49 —Monitoring point .

Using these plots, one notes that the differeneésdenmodel 3andmodel 4are very
small. So it is possible to conclude that the limcabf the lateral boundaries model 3

is satisfactory for obtaining reliable results ahdre is no need to use longer model
laterally. This observation on the optimum locatadrihe boundaries will be used in the
analyses in the slope analyses in this thesis.
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Chapter 4 - Performance of SANICLAY model

The objective of this chapter is to perform someamarcal simulation with th
SANICLAY model and to test its sensitivi

4.1 Description of the model and initialization

The first simulation consted of some different dynamic analyses. The gegnoétthe
model is a slope with a simple shape, as shovFigure.4.1,excited by a dynamic loe

at the bottom in the-directior.

/ A
20m
10m
\ 4
a(t
< >« 100m >l >
30m 40 m 30m

Figure 4.1 -Geometry of the model with the dynamic load inx-direction.

The dynamic load has the following expressiFigure 4.2:

a(t) =1,0- /,6’ -e(-at) . t¥ . sin(wt)

Where the values of the paramela, 3, y are:

a =33

g =10,19

y =12
freq =2Hz
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=2 _ 12,56 "
w=2'mfreq =12, P

With these values the maximum acceleration of nipati is

m

Amax = 2,55—2

e
——

y f\ i \Aorn
Vh' | VVV ‘ T time (3

AN

acceleration (m/9)
o
>
—

Figure 4.2 -Excitation applied at the bottom of the modelthim x-direction

For these analyses free field boundary conditiorefeen used.

4.2 Influence of boundary conditions

As in the previous chapter, it is interesting talgme the influence of the boundary
conditions when SANICLAY model is adopted. The iesof three dynamic analyses
with different geometries are compared. The firshlgsis is with the original model,
modeln.1 (Figure 4.3 a), in the second analysis an extensio3®in is added at both
sides of the first geometryigure 4.3 b) and in the third model, a second extension of
30 mis added at both sideSigure 4.3 c).
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75" """""""""""" H b) ) E 20m
10m E c) b) a) E
0 ) FOU R SN i

= 220m

30m 30m 30m = 40m | 30m N 30m 30m

A4

Figure 4.3 -Geometry of the model: a) model n.1; b) modekhodel n.3.

Below are shown the time histories of shear stetithe monitoring point®3 (from
Figure 4.4to Figure 4.9 andP5 (from Figure 4. 7to Figure 4. 9 which present some

interesting results.

FIAC3ID 3.10 Job Title: Stahility Assesment of Submaring Slopes in Earthquake
{C32006 Itasca Consuling Group, Inc. View Titler Shear strain near (x=30.2=18)

Step 15083 el 01

16:3741 Fri Dec 022011 oo A

History
23 ez (FISH symbal)
Linestyle
-1.08%e-001 <> 2.5882-003 0.2 4
Vs

3 Dynamic Time
9.830e-004 <-> 1.000e+001

-0.4

-0.6 -

-0z

Itasca Consutting Group, Inc 02 0.4 os 0.8 o
Minneanalis, MW LISA 1 0

Figure 4.4-Shear strain vs Dynamic time of P3 (x=30,y=18)delx.1.

95



Chapter 4

FrACID 3. 10 Job Title: Stability Assesment of Submarine Slopes in Earthquake
(CY2008 Itasca Consulting Group, Inc. View Title: Shear strain near (x=60. z=18)
Step 18995 #1041
182118 Fri Dec 022011 0.0
Higtory
3423 exz (ASH symhol)
Linestyle
-2514e-001 <= 2455e-003 059
Vs,
3 Dynamic Time
7.208-004 <= 1 000e+001
1.0 =
1.5 -
2.04
]
2.5
Itasca Consuling Group, Inc. N— 0.2 04 0s 0e '
Minneapalis, MN USA ®10™

Figure 4.5 -Shear strain vs Dynamic time of P3 (x=30,y=18)deia.2.

FIACID 3. 10
[C)2006 Itasca Consulting Group, Inc

Step 25518
16:10:54 Fri Dec 022011

History
323 exz (ASH symbal)
Linestyle
-2465e-001 <> 26126003
Ve,

3 Dynamic Time
5. 1809e-004 <-> 1 000e+001

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Job Title: Stability Assesment of Submarine Slopas in Earthquake
Wiew Title: Shear strain near (x=90.z=18))

w1071
(]

-0.2 4

0.6 4

-0.5 4

=1 0™

Figure 4.6 -Shear strain vs Dynamic time of P3 (x=30,y=18)delm.3.
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FLAC3D 3.10 Job Title: Stability Assesment of Submarine Slopes in Earthquake
(c)2006 Itasca Consulting Group, Inc. View Title: Shear strain near (x=50.,z=17.)
Step 15093 x107-2
16:37:42 Fri Dec 02 2011 0.0 VA
- 7
History
54 z5_exz (FISH symbol)
Linestyle -1.0
-6.644e-002 <-> 1.751e-003
Vs.
3 Dynamic Time 204
9.830e-004 <-> 1.000e+001 ’
3.0
_a.04
-5.04
-6.04
Itasca Consulting Group, Inc. 02 0a 06 o8 )
Minneapolis, MN USA x107M1

Figure 4.7 -Shear strain vs Dynamic time of P5 (x=50,y=17)deia.1.

FLAC3D 3.10

(€)2006 Itasca Consulting Group, Inc.

Job Title: Stability Assesment of Submarine Slopes in Earthquake
View Title: Shear strain near (x=80.,z=17.)

Step 18995
18:21:20 Fri Dec 02 2011

History
54 z5_exz (FISH symbol)
Linestyle
-6.650e-002 <-> 1.73%-003
Vs.

3 Dynamic Time
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Itasca Consulting Group, Inc.

Minneapolis, MN USA

x10M-2

AN
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-1.04
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0.2 0.4 0.6 0.8
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Figure 4.8 -Shear strain vs Dynamic time of P5 (x=50,y=17)dela.2.
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FLAC3D 3.10 Job Title: Stability Assesment of Submarine Slopes in Earthquake
(c)2006 Itasca Consulting Group, Inc. View Title: Shear strain near (x=110.,z=17.)
Step 25518 x107-2
16:10:56 Fri Dec 02 2011 00 JAY
- ~
History
54 25_exz (FISH symbol)
Linestyle -1.04
-6.442e-002 <-> 1.743e-003
Vs.
3 Dynamic Time
5.189e-004 <-> 1.000e+001 201
-3.04
-4.0
5.0
-6.0
Itasca Consulting Group, Inc. 02 0.4 0.6 0.8 1.0
Minneapolis, MN USA X107~

Figure 4.9-Shear strain vs Dynamic time of P5 (x=50,y=17) den.3.

Considering the results of point P3, one might aohe that the extension #h3 b)is
sufficient to obtain stable results which are almowaffected by the lateral boundaries.
4.3 Sensitivity to parameter k (slope of elastic swelling
line)

In this section, the sensitivity of the resultprametek, which represents the slope of

elastic swelling lineKigure 4.10, is studied.
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v
\"A \
" __normal
consolidation line
A
Vnc ——=—__
v.°® _

v

In p, Inp

Figure 4.10 -Normal consolidation line and unloadi-reloading (swelling)ine for an

isotropic compression test. (FL° Manual).

Because of the results of the previous analyseg th model with one extensi

applied at each side is us¢Figure 4.11.

20 m

4%111'

10 m

40 m

%

Figure 4.11- Geometry of the model.

A value ofA = 0,07 (slope of norm: consolidation line, sefeigure 4.1() is considered
realistic. Then four different dynamic analysesmge, changing each time the ve
of parametek (seeTable 4.)
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case | values ofx
case 1| 0,005
case 2| 0,010
case 3 0,03

case 4 0,04

Table 4.1 -Values of parametex.

At the end of each analysis the trendotk modulugK) is considered and the graphics
are shown irFigure 4.13 In every case two value &f are taken: one on the left side
(K.) of the model and the other on the right sidg)(Koth at an average height)(m

for the left side,15 m for the right side), sekigure 4.12 Starting from these values of

K, the value of own frequency of the model is calted as follows:

i _ E
E=3K(1-2v) ; G=35—

G
Vs = ;
_Y
f= H
where:
kg
p = 2000 —3
v=20,2

Hiepe =10m  Hygpe =20m

In Table 4.2are shown the different values of the frequencthefmodel at the left side

and at the right side, for all the cases considered
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k Frequency at left side (Hz) Frequency at right sid (Hz)
0,005 8,66 5,30
0,01 6,12 4,33
0,03 4,74 2,73
0,04 3,87 2,37

Table 4.2 Values of the frequency of the model at the Id& aind at the right sid

Kr

Figure 4.12 -Zones in which are taken the values o Bulk modulus, | and Kx.
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Block Contour of Bulk

Live mech zones shown

9.5000e+001 to
6.0000e+003 to
1.2000e+004 to
1.8000e+004 to
2.4000e+004 to
3.0000e+004 to
3.6000e+004 to
4.2000e+004 to
4.8000e+004 to
5.4000e+004 to
6.0000e+004 to
6.6000e+004 to
7.2000e+004 to
7.8000e+004 to
8.4000e+004 to
9.0000e+004 to

1.0000e+003
7.0000e+003
1.3000e+004
1.9000e+004
2.5000e+004
3.1000e+004
3.7000e+004
4.3000e+004
4.9000e+004
5.5000e+004
6.1000e+004
6.7000e+004
7.3000e+004
7.9000e+004
8.5000e+004
9.1000e+004

Itasca Consulting Group, Inc.
Minneapolis, MN SA

a)

k = 0,005

1 | HEEEENE

K. =20000 kPa K= 30000 kPa
b)

k=0,01
K. = 15000 kPa K= 20000 kPa
C)

k=0,03
K. = 6000 kPa K= 8000 kPa
d)

k =0,04
K. =4000 kPa K= 6000 kPa

Figure 4.13 -Bulk modulus: ax = 0,005 b)x = 0,01 c)x = 0,03 d)x = 0,04

Figure 4.14shows the graphics of the final displacements ef gansitivity analysis
with parameter, in the two cases without damping and with a Rghlelamping of
2%.
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The excitation frequency is 2 Hz. Observing thepbres of thedisplacementFigure
4.14) it is possible to note that no resonance happeanigct the larger displacemer

happens in the case wittequal tc0,01, in which:

K Frequency at left side (Hz)| Frequency at right sid (Hz)

0,010 6,12 4,33

In this case thenaximum displacement 7,53 m for the case without damping a
3,68 m for 2% of damping. The case with the fregiesnclosest to the input frequer
(2 Hz) is the one withie = 0,04 that is the case with minimum displacements.

results are not in aocd with the theory, probably because of the naedrity in the

response.

Next, it was is decided to consider again thre¢hefprevious analyses, exactly th
with the following values of parametx: 0,005, 0,01 and0,03. Thex-displacements ¢
threedifferent monitoring pointsFigure 4.15 on the top of the model are registe
and their graphs are shownFigure 4.16(without damping) andrigure 4.1° (2% of
damping).

C (130,0.30)

B (80.0,25) 4
A (32&20) /

30 m
20 m

A
A
A
v
A
v

60 m 40 m 60 m

160 m

Figure 4.15 -Geometry of the model and coordinates of the mongg@oints 4, B and
C.
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k=0,005 it DA;chl(;\,ljl k=0,03
A AUWUAV W\UHUA Av/wvﬂ
e | I
c i

Figure 4.16 -Graphics of x-displacements of the three monitppnints A, B and C for the

three different values of parameter k. Analysihauit damping.
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DAMPING

k=10,005 k=001 k=0,03

: WW w v WMM “ﬂvﬁuﬂ\/ﬂvﬂvﬂ“ﬂwﬂﬂm

Figure 4.17 -Graphics of x-displacements of the three monitpgoints A, B and C for

the three different values of parameter k. Analwéib 2% of damping.
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Observing the displacements of the three monitopoits it is possible to draw the
same conclusion as before. The displacements afase withw = 0,01 are larger than
those of the case with = 0,03 which is the case with the frequencies of the rhode

closest to the frequency of the input wave.

4.4 Sensitivity analysis of the model, isotropic

structuration factor S;

The last sensitivity test was about the param8&tdftructuration factor). The three
analyses with the three different valuescadre considered again. For each value of
four analyses are made changing the valueésofThe four different values of
considered are3,0 , 2,5, 2,0, 1,0. A value ofS equal to1,0 means the absence of
structuration of the clay, while values §f> 1 means the presence of structuration. In
this sensitivity analysis are considered the twsesawith and without damping and the

results (final displacements) are showrrigure 4.18 and 4.19.
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From these results, focusing on the more realtstge with the presence of damping, it
is possible to conclude that in the absence otstration §; = 1) the displacements
are smallest. The presence of structuratiyrn>(1) increase clearly the displacement.
About the parametet, for the cases considered, it is not easy to daavonclusion;

more tests on sensitivity analysis for this par@ametay help elucidate the role of this
parameter.
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Three-dimensional earthquake response of slopes

Chapter 5 - Effects of the three-dimensionality

The goal of this chapter is to investigate the ingoece of considering the three-
dimensionality in the dynamic response of slopes.tfis end, a three-dimensional
geometry is created and on this geometry it isqoeréd an extensive sensitivity
analysis. Moreover, in order to quantify the effetthree dimensionality, the results of
the three-dimensionalsimulations are compared with those obtained foe th

corresponding two-dimensional model.

5.1 Geometry of the model

The three-dimensional geometry of the model is shBigure 5.1 In this model there
are slopes in the two directions as follows: themséope, in thex-direction (direction
of the dynamic input), identified by angle and the second slopeyidirection, defined
by  angle. The presence of this second slope is tie aspect that permits to observe
the effects of the three-dimensionality in the dyi@response of the model.

One of the parameters in the sensitivity analysishe inclination of the slope. The
angles of the two slopes are allowed vary in a tey the ratio between the vertical
size and the horizontal size of the slope take hmnwalues of 1:4, 1:5 or 1:6. For
example, considering the main slope, the differemickeight is constant and equal to
10m, so the three different horizontal measurdsaiee the right ratios are: 40 m, 50m,
60m. In presenting the results in this chapterdifferent inclinations of the slopes will

be indicated withu 1:4,0 1:5,a 1:6 for the main slope, aril1:4,p 1:5,p 1.6 for the

secondary slope.
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Figure 5.1 -Geometry of the model.

5.2 Material properties

An undrained clay is chosen for the numerical satioh and the Mohr-Coulomb
constitutive model is adopted. In the depth rangenfO m to 10 m the material
parameters are varied linearly, while in the highest of the model the material is

considered homogeneous. The values adopted irothedeneous upper part are:
Cohesion: ¢ = 25,0 kPa

Shear modulusz = 1000 - ¢ = 25000 kPa

2G(1+v)

Bulk: K = 0_2v)

= 241666,7kPa  with:v = 0,45

Internal angle of frictionp = 0,0°

Dilation angle = 0,0°

Tension limit: is given a very large tension cuttofavoid failure in tension
PR kg

Density :p = 2000 3

In the lower part of the model (froéhmto 10 n), where it has been decided to take the

properties non-homogeneous, the relations adopéesh@awn in Figure 5.2
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Figure 5.2- Variation of material parameters with de.

To make the propersevary with the depth, the functiigradientwas uses, adoptir

variation per meter equal t4 for the cohesion4000 for the shear modulus al

38666,67for the bulk modulus. The variation of one matepatameter (shear modul

G) with the depth is shom Figure 5.3

Figure 5.2 - Variation of shear modulus G with depth.
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5.3 Dynamic input

For simplicity and better interpretation of the uks a sinusoidal wave with the

following expression has been used:

L = — = cos (wt)
Uu=——0=C6o0sw
w

x-velocity (t)

Figure 5.4 -Dynamic input.

In this way the acceleration and the displacemargssinuisoidal functions beginning

from zero and expressed as follows.
= sin (wt)
Uu=——7>SsIn(w
wz

il = asin (wt)

The dynamic input is specified as a velocity timstdry in thex-direction and is

applied at the bottom of the model ($egure 5.5.
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Three-dimensional earthquake response of slopes

. a
it = ——cos (wt)
w

Figure 5.5 -Direction of the dynamic input.

Free field boundary conditions are adopted as showigure 5.6

Figure 5.6 -Free field boundary condition.

5.4 Sensitivity analysis

Using this three-dimensional geometry an extens@resitivity analysis has been
performed on the following parameters: earthqua&guency, peak acceleration, and
the angles of the two slopes. The different conimna are resumed froffable 5.1to

Table 5.3
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FREQUENCY 2.0 Hz

al:4 al:5 al:6
pl4 | BL5| L6 | pLl4 | L5 | L6 | L4 | L5 | BL6
0.1g 0.1g 0.1g 0.1g 0.19 0.1g 0.1g 0.1g 0.9
peak
d B
acceleration 0.15g | 0.15g| 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 5¢0{1
0.29 0.2g 0.29 0.2g 0.2¢ 0.2¢g 0.29 0.29 0.2g

116

Table 5.1 -Analyses made with frequency of 2.0 Hz

FREQUENCY 3.0 Hz
al5
B 1:5
0.1g
peak acceleration 0.15¢g
0.2g

Table 5.2 -Analyses made with frequency of 3.0 Hz

FREQUENCY 5.0 Hz

al:5
B1:5
0.1g
peak acceleration 0.15¢g

0.2g
Table 5.3 -Analyses made with frequency of 5.0 Hz




Three-dimensional earthquake response of slopes

Some representative cases of the sensitivity aisalysre chosen to show some key

results of the analyses, the cases are:

Inclination | Inclination of Peak
Frequency (Hz) of main the secondary| acceleration
slope slope

Figure 2.0 Hz al4 B1:4 0.15g
5.7 2.0 Hz ol5 B1:5 0.15g
Figure 2.0Hz alb B 15 0.15g
5.8 3.0 Hz al:5 B 1:5 0.15g
Figure 2.0 Hz al:5 B 1:5 0.1g9
5.9 3.0 Hz al:5 B 1:5 0.2¢g

Table 5.4 -Summary of the results that are shown in the figxte.

The results of the total permanent displacemerdaithe permanent shear strain at the
end of the dynamic analyses for these cases avensimoFigure 5.7 to Figure 5.9. The

maximum computed values are also listed in thegeds for easy comparisons.
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Chapter 5

Another interesting thing is to show the resultsdigplacements separately in the
horizontal and vertical directions. These resufts shown in Figure 5.10 and they are

referred to one significant case with the followpayameters.

Inclination | Inclination of Peak
Frequency (Hz) of main the secondary acceleration
slope slope
2.0 Hz alb B 15 0.15¢g

Permanenx-displacement

Permaneny-displacement

Permanent-displacement

Contour of Z-Displacement

Magfac = 0.000e+000

Live mech zones shown
-7.2000e-001 to -7.0000e-001
-7.0000e-001 to -6.0000e-001
-6.0000e-001 to -5.0000e-001
-5.0000e-001 to -4.0000e-001
-4.0000e-001 to -3.0000e-001
-3.0000e-001 to -2.0000e-001
-2.0000e-001 to -1.0000e-001
-1.0000e-001 to 0.0000e+000
0.0000e+000 to 1.0000e-001
1.0000e-001 to 2.0000e-001
2.0000e-001 to 2.4000e-001
Interval = 1.0e-001

Figure 5.10 -Results of permanent displacements separateheiaorizontal and
vertical directions
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Three-dimensional earthquake response of slopes

In Figure 5.12 are shown plots of horizontal displaents in excitation direction of
three monitoring points A, B, C lying on the slgjgee Figure 5.11).

Figure 5.11 -Position of the monitoring points.
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Time history of permanentdisplacement of points A

Time history of permanemntdisplacement of points C

Figure 5.12 -Plots of permanent horizontal displacements intation

direction

The following table summarizes the results of a# ainalyses. The results include the
permanent displacements and shear strains.
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Figure 5.13 to Figure 5.16 presents the resulggaphic form. The results are presented
against different parameters to highlight the iefloe of the parameters.

FREQUENCY 2.0 Hz DISPLACEMENTS

1,4
1,2 /+
+ —¢—o0 1:4 0.1g
P T e iy YRR PERELLLE] S A
‘3 0,8 VA\-—ﬂm..A. a0
q’ -— | -—
GEJ P‘_- - 1— - o _.— als_olg
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Figure 5.13 —Permanent displacements in graphic form of thesisigity analysis.
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Figure 5.14 —Permanent shear strain in graphic form of the #ernty analysis.
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SENSITIVITY ANALYSIS ON FREQUENCY
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Figure 5.15 —Permanent displacements in graphic form of santitanalysis on
frequencies.
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Figure 5.16 -Permanent shear strain in graphic form of sengjtignalysis on
frequencies.
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Considering the results for the displacementss itlear that the models work well,
because, as expected, by increasing the peak eatemheor the inclination of the slope
one obtains increase in the displacements. Comsgdéne sensitivity analysis on the
frequency, the large values of displacement océursa frequency of 2 Hz. This is
explainable because this frequency is fairly cltasé¢he natural frequency of the soill

model.

5.5 2Dvs. 3D

In this section, the results of some of the cadethree-dimensionasimulations are
compared with the results obtained with the comadmg two-dimensional model in
order to quantify the effect of three-dimensionalithe cases considered are described
in Table 5.5:

Inclination | Inclination of Peak
Frequency (Hz) of main the secondary| acceleration
slope slope
Casel 2.0 Hz al4 B 14 0.15g
Case 2 2.0Hz al:5 B1:5 0.15¢
Case 3 5.0 Hz al:5 B1:5 0.15¢

Table 5.5 -Summary of the significant cases considered.

Then for the two-dimensional simulations, thrededént geometries are prepared; each
one corresponding to a longitudinal section nortodhe secondary slope of the three-
dimensional model (see Figure 5.17).
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3D -section1:y=20m 2D - model a)

3D -section2:y=35m 2D - model b)

3D -section 3: y=50m 2D - model ¢)

Figure 5.17 -Sections of the three-dimensional model and comegimg two-

dimensional model.
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The comparison between the results of the sectbtise three-dimensional models and

the corresponding two-dimensional models are shawigure: 5.18 to Figure 5.20:
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Case 1 Frequency: 2.0 Hzg 1:4;8 1:4; peak acceleration: 0.15g

3D section 2D models

Max. displacement = 1,043 m Max. displacement 50,8

Max. displacement = 1,041 m Max. displacement 84,6

Max. displacement = 1,009 m Max. displacement 38,5

Contour of Displacement Mag.
Plane: on
Magfac = 0.000e+000
Live mech zones shown
1.0000e-003 to 1.5000e-001

1.5000e-001 to 3.0000e-001
3.0000e-001 to 4.5000e-001
4.5000e-001 to 6.0000e-001
6.0000e-001 to 7.5000e-001
7.5000e-001 to 9.0000e-001
9.0000e-001 to 1.0500e+000
1.0500e+000 to 1.1000e+000

Figure 5.18 a) -Permanent displacements, case 1

Case 1 Frequency: 2.0 Hzg 1:4;8 1:4; peak acceleration: 0.15g
3D sections 2D models

Max permanent shear strain = 9,03% Max permaneardgirain = 9,72%

Max permanent shear strain = 9,29% Max permaneyardgirain = 8,16%

h
I

Max permanent shear strain = 10,00% Max permarearsstrain = 5,34%

Contour of Shear Strain Increment

Plane: on

Magfac = 0.000e+000

Live mech zones shown

Gradient Calculation
-6.0000e-003 to 0.0000e+000
0.0000e+000 to 2.0000e-002
2.0000e-002 to 4.0000e-002
4.0000e-002 to 6,0000e-002
6.0000e-002 to 8.0000e-002
8.0000e-002 to 1.0000e-001
1.0000e-001 fo 1.1000e-001

Figure 5.18 b) Permanent shear strain, case 1
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Case 2 Frequency: 2.0 Hzq, 1:5; 8 1:5; peak acceleration 0.15g

3D section 2D models

Max. displacement = 0,693 m Max. displacement ¥ D)6

Max. displacement = 0,682 m Max. displacement 8®,5

Max. displacement = 0,650 m Max. displacement €®,4

Contour of Displacement Mag.

Plane: on

Magfac = 0.000e+000

Live mech zones shown
4.5000e-003 to 1.0000e-001
1.0000e-001 to 2.0000e-001
2.0000e-001 to 3.0000e-001
3.0000e-001 to 4.0000e-001
4.0000e-001 to 5.0000e-001
5.0000e-001 to 6.0000e-001
6.0000e-001 to 7.0000e-001

Interval = 1.0e-001

Figure 5.19a) -Permanent displacements, case 2

Case 2 Frequency: 2.0 Hzg 1:5;8 1:5; peak acceleration 0.15g

3D sections 2D models

Max permanent shear strain = 5,71% Max permanearsirain = 8,93%

Max permanent shear strain = 5,52% Max permaneardtrain = 7,74%

Max permanent shear strain = 5,16% Max permaneardsirain = 5,21%
Contour of Shear Strain Increment
Plane: on

Magfac = 0.000e+000

Live mech zones shown

Gradient Calculation
-6.5000e-004 to 0.0000e+000
0.0000e+000 to 1.5000e-002
1.5000e-002 to 3.0000e-002
3.0000e-002 to 4.5000e-002
4.5000e-002 to 6.0000e-002
6.0000e-002 to 7.5000e-002
7.5000e-002 to 9.0000e-002

Figure 5.19 b) -Permanent shear strain, case 2

1

w

4



Three-dimensional earthquake response of slopes

Case 3 Frequency: 5.0 Hzg 1:5;8 1:5; peak acceleration 0.15g

3D section 2D models

Max. displacement = 0,115 m Max. displacement ¥ D&

Max. displacement = 0,106 m Max. displacement 8®,5

|

Max. displacement = 0,100 m Max. displacement 96,4

Contour of Displacement Mag.

Plane: on

Magfac = 0.000e+000

Live mech zones shown
4.0000e-005 to 2.0000e-002
2.0000e-002 to 4.0000e-002
4.0000e-002 to 6.0000e-002
6.0000e-002 to 8.0000e-002
8.0000e-002 to 1.0000e-001
1.0000e-001 to 1.2000e-001
Interval = 2.0e-002

Figure 5.20 a) Permanent displacements, case 3

Case 3 Frequency: 5.0 Hzg 1:5;8 1:5; peak acceleration 0.15g

3D sections 2D models

Max permanent shear strain = 0,919 Max permaneardsirain = 1,62%

Max permanent shear strain = 0,879 Max permaneardgirain = 0,99%

Max permanent shear strain = 0,869 Max permanearsirain = 1,53%
Contour of Shear Strain Increment
Plane: on

Magfac = 0.000e+000

Live mech zones shown

Gradient Calculation
-3.0000e-004 to 0.0000e+000
0.0000e+000to 2.0000e-003
2.0000e-003 to 4.0000e-003
4.0000e-003 to 6.0000e-003
6.0000e-003 to 8.0000e-003
8.0000e-003 to 1.0000e-002
1.0000e-002 to 1.2000e-002

Figure 5.20 b) Permanent shear strain, case 3
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From these results it is possible to conclude timae dimensional model gives largest
values for displacements and strains. The presehtee secondary slope produces a
condition that is more critical than a simple 2D deb of the same size. Two-

dimensional models obviously fail to capture ttaatfire.

These observations and results indicate that tieetefof the three-dimensionality are
indeed important. In these case a simple two-dimeat anlaysis could underestimate
the effects of the dynamic input. The results of #tudy can then be used to get an idea

of the degree of unconservatism in the 2D results.
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Conclusion

The main goal of this research is to understand rle played by the three
dimensionality in the earthquake response of slgpelsunderstand the influence of the

boundary conditions and material parameters.

The research is performed by using of the softweltdC>P, a three-dimensional
explicit non linear finite-difference program fongineering mechanics computation.
This software has been chosen because of the pibgstb adopt thefree-field
boundary conditionwhich is a very powerful and effective tool fomdmic analysis of

earthquake response.

The first part of this study deals with the pridegpof the program FLA® and how it
works. The objective is to master the basic commanl learn special tools to create
complicated models, analyze their dynamic behavaout to understand the differences
in the responses by applying different boundarydd@gans, in particular to understand
how the free field boundary conditiofisvorks. Indeed in the numerical analysis of the
seismic response, the boundary conditions at thes sf the model must account for the
free-field motion that would exist in the absendetle structure. In some cases,
elementary lateral boundaries, may be sufficierit $hould be placed at sufficient
distances to minimize wave reflections and achigee-field conditions. When the
material damping is low, the required distance meay to an impractical model, so an
alternative procedure, developed also for FEAGs to “enforce” the free-field motion

in such a way that boundaries reproduce non-réifiggiroprieties.

During the research, it was observed that this &dabys operates in the right way,
giving accurate results. An important observatibow these boundary conditions is
that when free field boundary conditionare applied, the fixities applied on the model
in the previous loading stage are deleted onlyhatlioundary of the model. In fact

inside the model all the fixities remain unchanged.

In the second chapter, the mono-dimensional dynagroand response is calculated
with analytical methods and with FLAP, and the responses are compared. The

comparisons are indeed very satisfactory. During phase it has been noted that care
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must be taken about the size of the elements ahtsh. In fact with a largest mesh the
results of the numerical simulations are not pedgithe same as those of the case with

a fine mesh.

In the third chapter of the thesis, the focus heenbon the influence of thefee field
boundary conditionsn more general models. Considering a two-dimaraisimple
slope (modeled in FLA® with the third-dimension equal to one) some nuoari
simulations are made by increasing the dimensioth@fgeometry in the-direction,
that is, by increasing the distance of the boundangditions from the slope. In this way
it has been possible to find out that also thiese-field boundary conditionseeds
some space in order not to influence the resulteetiynamic analysis. So at the end of
this first part a very good knowledge about use BEAC®® in this seismic slope

stability has been acquired.

The second part of the work is the study of the rol three dimensionality on the
dynamic response of slopes. The idea was to adopomstitutive model for modeling
the soil by the SANICLAY model. SANICLAY is a cottsitive model based on the
well-known isotropic modified Cam Clay model wittvda additional mechanisms to
account for anisotropy and destructuration. SANIGLA not implemented directly
inside FLACP, but a few years ago a user-defined subroutinebes written for it to

suit FLAC®®. Before applying this model to a three-dimensiogabmetry some

simulations are made to test its performance asdstiability. But as it has been
described irChapter 4 this model is not quite stable for all conditiohsfact it doesn’t

work well when the mesh is made very fine. Thisl|dobe partly due to general
problem of implementation of strain-softening madel FE/FD programs. Due to this
and other practical issues, it was decided to swidcthe Mohr Coulomb constitutive

model for the rest of the research.

The last part of the thesis consisted of analy#iegeffect of the three dimensionality in
the dynamic response of slopes. A three-dimensigealmetry is created with two
different slopes: one ir-direction and the other in thedirection. In order to better
interpret the importance of excitation charactersstthe input is chosen as a sinuisodal
simple wave, and it has been applied to the botibthe model as a velocity in the
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direction. In this way the displacements and theelscation begin from zero, and it's
easy to control the parameters useful for the geitgianalyses. On this geometry it is
performed an extensive sensitivity analysis on mpatars like: earthquake frequency,

peak acceleration, and the angles of the two slopes

Considering the results of the sensitivity analysspecially the displacements, it is
found that the models work well, because, as erpecby increasing the peak
acceleration or the inclination of the slope onetaots larger displacements.
Considering the sensitivity analysis on the fregquyenhe large values of displacement
occurs for a frequency of 2 Hz. This is explaindi@eause this frequency is fairly close

to the natural frequency of the soil model.

In the last section of the thesis, the resultsoshes of the cases of three-dimensional
simulations are compared with the results obtaimeth the corresponding two-
dimensional model in order to quantify the effettloee-dimensionality. For the two-
dimensional simulations, three different geometriase prepared; each one
corresponding to a longitudinal section normal e secondary slope of the three
dimensional model. From these results it is posdgiblconclude that three dimensional
models give largest values for displacements araihst The presence of the secondary
slope produces a condition that is more criticahta simple 2D model of the same size.
Two-dimensional models obviously fail to capturestfeature. These observations and
results indicate that the effects of the three-disn@nality are indeed important. In these
cases, simple two-dimensional anlayses could ustierate the effects of the dynamic
input. The results of this study can then be usedjdt an idea of the degree of

unconservatism in the 2D results.

Reccomandation for next studies are, about SANICIpAdtel, find a way to build up a

more efficient script, more stable and easy toyafipkevery case.

About the issue of the three dimensionality it ddooe intersting to investigate the
earthquake response of slopes with different dyoanput, for example changing the

direction of the input and using a realistic seisimput.
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