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Abstract 

L’obiettivo della presente ricerca è volto a determinare quale possa essere la vera  

importanza di considerare la tridimensionalità nella risposta dinamica dei pendii e 

monitorare gli effetti delle condizioni al contorno utilizzate. 

La tesi è stata svolta utilizzando il software FLAC3D, un programma tridimensionale di 

analisi alle differenze finite, non lineare, per la computazione numerica ingegneristica e 

geomeccanica. E’ stato scelto questo software perché esso consente di utilizzare le 

condizioni al contorno: “free-field boundary condition”, strumento molto utile e ben 

funzionante nel campo delle analisi dinamiche. Nell’analisi numerica della risposta 

sismica, le condizioni al contorno del modello devono tener conto del moto di “free-

field”  che esisterebbe in assenza di strutture nel terreno. In alcuni casi può essere 

sufficiente utilizzare condizioni al contorno elementari; queste però devono essere poste 

a distanza sufficiente per minimizzare la riflessione delle onde sismiche in modo da 

poter comunque raggiungere le condizioni di “free-field”.  

Tuttavia, quando lo smorzamento del materiale è basso, la distanza a cui si dovrebbero 

posizionare le condizioni al contorno aumenta di molto e questo porterebbe ad un 

modello con dimensioni non pratiche da gestire.  

Per questo motivo risulta opportuno utilizzare una procedura alternativa, sviluppata 

anche per FLAC3D, che imponga il moto di “free-field” in modo tale che i margini del 

modello possano mantenere le loro proprietà non-riflettenti. Questa proprietà è proprio 

quella che utilizzano le “free-field buondary condition”.  

Nella prima parte della tesi, l’attenzione si è pertanto focalizzata sull’uso di queste 

condizioni al contorno.  

Per studiare le potenzialità di questo strumento è stato eseguito un confronto fra 

simulazioni dinamiche con FLAC3D ed alcuni risultati analitici. Inoltre sono state 

condotte altre analisi per stimare l’influenza sul modello di queste condizioni al 

contorno. 
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Dopodiché, per studiare il problema principale dell’effetto della tridimensionalità sulla 

risposta dinamica dei pendii, si è pensato di adottare il modello costitutivo 

“SANICLAY”.  “SANICLAY” è un modello costitutivo basato sul modello “Cam clay 

modificato”, con l’aggiunta di due meccanismi che tengono conto dell’anisotropia e del 

softening del materiale.   

Prima di applicare il modello “SANICLAY” ad una complessa geometria 

tridimensionale sono state condotte alcune simulazioni numeriche per testare le sue 

potenzialità e la sua stabilità. Dopo una serie di analisi di sensitività su alcuni parametri 

si è visto che il modello costitutivo “SANICLAY”, implementato per FLAC3D pochi 

anni fa, non risulta sufficientemente stabile per tutte le condizioni; per questo si è deciso 

di continuare il lavoro adottando il modello costitutivo “Mohr-Coulomb”. 

L’ultima parte della tesi è volta ad analizzare l’effetto della tridimensionalità nella 

risposta dinamica dei pendi. A tal fine è stato creato un modello tridimensionale avente 

due differenti pendii giacenti su due delle tre direzioni principali del sistema di 

riferimento. Su questa geometria è stata eseguita un’estesa analisi di sensibilità 

riguardante alcuni parametri, come la frequenza dell’onda sismica, l’accelerazione di 

picco e gli angoli dei due pendii.  

Osservando i risultati dell’analisi parametrica, sopratutto focalizzandosi sugli 

spostamenti, si è scoperto che il modello costruito lavora bene, perchè, come previsto, 

aumentando il valore di picco dell’accelerazione dell’onda di input oppure aumentando 

la pendenza dei pendii si ottengono spostamenti maggiori. Considerando l’analisi di 

sensitività effettuata sulle frequenze dell’onda di input gli spostamenti maggiori si sono 

verificati per una frequenza di 2 Hz. Questo può essere spiegato dal fatto che il valore 

della frequenza è prossimo alla frequenza propria del modello di terreno. 

Alla fine, i risultati di alcuni casi significativi di queste simulazioni numeriche sono 

stati confrontati con i risultati ottenuti attraverso l’utilizzo di modelli bidimensionale per 

evidenziare e quantificare gli effetti della tridimensionalità.  Dai risultati delle 

simulazioni numeriche è stato possible concludere che il modello tridimensionale 

fornisce i valori maggiori in termini di spostamenti e deformazioni. La presenza del 

pendio secondario produce una condizione maggiormente critica rispetto ad un semplice 
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modello bidimensionale avente le stesse dimensioni. Il modello bidimensionale 

ovviamente non riesce a catturare queste caratteristiche. Queste osservazioni e questi 

risultati, indicano che gli effetti della tridimensionalità sono molto importanti. In questi 

casi, una semplice analisi bidimensionale potrebbe sottostimare gli effetti dellùinput 

dinamico. 

 I risultati di questo studio possono essere usati per avere un’idea del grado di non 

cautelatività dei risultati bidimensionali. Inoltre, sviluppi per il futuro potrebbero 

riguardare il modello “SANICLAY” e lo sviluppo di un nuovo script per renderlo più 

facilmente applicabile a tutti i casi necessari, e per renderlo stabile. Riguardo al 

problema della tridimensionalità invece, sarebbe interessante vedere la risposta sismica 

dei pendi adottando diversi input sismici, cambiando la direzione dell’onda sismica o 

utilizzando un accelerogramma realistico. 
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Introduction 

The main goal of this work is to study the importance of considering the three-

dimensionality in the dynamic response of slopes and effect of boundary conditions in 

the analyses.  

 

The research is done by using of the software FLAC3D, a three-dimensional explicit non 

linear finite-difference program for engineering mechanics computation. This software 

it has been chosen because of the possibility to adopt the free-field boundary condition, 

which is a very useful and good powerful and effective tool for dynamic analysis of 

earthquake response.  

Indeed in the numerical analysis of the seismic response, the boundary conditions at the 

sides of the model must account for the free-field motion that would exist in the absence 

of the structure. In some cases, elementary lateral boundaries, may be sufficient but 

should be placed at sufficient distances to minimize wave reflections and achieve free-

field conditions. When the material damping is low, the required distance may lead to 

an impractical model, so an alternative procedure, developed also for FLAC3D, is to 

“enforce” the free-field motion in such a way that boundaries retain their non-reflecting 

proprieties.  

In the first part of the thesis, the attention has been focus on how to use this free-field 

boundary condition and its potentiality. To study these issues a comparison between 

analytical results and some numerical simulations is done in this way is possible to 

check the influence of these boundary conditions. 

Next, the idea was to use SANICLAY constitutive model to study the main problem of 

the three dimensionality. SANICLAY is a constitutive model based on the well-known 

isotropic modified Cam Clay model with two additional mechanism to account for 

anisotropy and destructuration. Before applying this model to a three-dimensional 

geometry some simulations are made to test its potential and its stability. But as it will 

be describe in Chapter 4, this model, implemented in FLAC3D few years ago, is not 
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quite stable for all conditions; so it was decided to continue the work adopting the Mohr 

Coulomb model. 

The last part consisted to analyze the effect of the three dimensionality in the dynamic 

response of slopes. A three-dimensional geometry is created with two different slopes: 

one in x-direction and the other in the y-direction. On this geometry it is performed an 

extensive sensitivity analysis on parameters like: earthquake frequency, peak 

acceleration, and the angles of the two slopes. At the end the results of some significant 

cases of the three-dimensional simulations are compared with the results obtained with 

the corresponding two-dimensional model, to quantify the effect of the three-

dimensionality. 

 

 



Three-dimensional earthquake response of slopes 

 

7 
 

Chapter 1 – Theory and Background 

1.1 Background 

Earthquake engineering deals with the effects of earthquake on people and their 

environment and with methods of reducing those effects. It is a very young discipline, 

many of its most important developments having occurred in the past 30 to 40 years. 

Earthquake engineering is a very board field, drawing on aspects of geology, 

seismology, geotechnical engineering, structural engineering, risk analysis, and other 

technical fields. Its practice also requires consideration of social, economic, and 

political factors. Most earthquake engineers have entered the field from structural 

engineering or geotechnical engineering backgrounds, a fact that is reflected in the 

practice of earthquake engineering. 

The study of earthquakes dates back many centuries. Written records of earthquakes in 

China date as far back as 3000 years. Japanese records and records from eastern 

Mediterranean region go back nearly 1600 years. In the United States the historical 

record of earthquake is much shorter, about 350 years. On the seismically active west 

coast of the United States, earthquake records go back only about 200 years. Compared 

with the millions of years over which earthquakes have been occurring, humankind’s 

experience with earthquakes is very brief. 

Today, hundreds of millions of people throughout the world live with a significant risk 

to their lives and property from earthquakes. Billions of dollars of public infrastructure 

are continuously at risk of earthquake damage. The health of many local, regional, and 

even national economies are also at risk from earthquakes. Earthquakes are a global 

phenomenon and global problem. 

Earthquakes have occurred for millions of years and will continue in the future as they 

have in the past. It is impossible to prevent earthquakes from occurring, but it is 

possible to mitigate the effects of strong earthquake shaking: to reduce loss of life, 

injuries, and damage. (Kramer, 1996). 
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1.1.1 Seismic Hazards 

A number of naturally occurring events, such as earthquakes, hurricanes, tornados, and 

floods, are capable of causing death, injuries, and property damage. These natural 

hazards cause tremendous damage around the world each year. Hazard associated with 

earthquakes are commonly referred to as seismic hazards. The practice of earthquake 

engineering involves the identification and mitigation of seismic hazards. The most 

important seismic hazards are described in the following sections. (Kramer, 1996). 

1.1.1.1  Ground Shaking 

When an earthquake occurs, seismic waves radiate away from the source and travel 

rapidly through the earth’s crust. When these waves reach the ground surface, they 

produce shaking that may last from seconds to minutes. The strength and duration of 

shaking at a particular site depends on the size and location of the earthquake and on the 

characteristics of the site. At site near the source of a large earthquake, ground shaking 

can cause tremendous damage. In fact, ground shaking can be considered to be the most 

important of all seismic hazards because all the other hazards are caused by ground 

shaking. Where ground shaking levels are low, these other seismic hazards may be low 

or nonexistent. Strong ground shaking, however, can produce extensive damage from a 

variety of seismic hazards. 

Although seismic waves travel through rock over the overwhelming majority of their 

trip from the source of an earthquake to the ground surface, the final portion of that trip 

is often through soil, and the characteristics of the soil can greatly influence the nature 

of shaking at the ground surface. Soil deposit tend to act as “filters” to seismic waves by 

attenuating motion at certain frequencies and amplifying it at others. Since soil 

conditions often vary dramatically over short distances, levels of ground shaking can 

vary significantly within a small area. One of the most important aspects of 

geotechnical earthquake engineering practice involves evaluation of the effects of local 

soil conditions on strong ground motion. (Kramer, 1996). 

1.1.1.2 Structural Hazards 

Without doubt the most dramatic and memorable earthquake damage are those of 

structural collapse.  Structural damage is the leading cause of death and economic loss 
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in many earthquakes. However, structures need not collapse to cause death and damage. 

Falling objects such as brick facings and parapets on the outside of a structure or heavy 

pictures and shelves within a structure have caused casualties in many earthquakes. 

Inferior facilities such as piping, lighting, and storage system can also be damaged 

during earthquakes. Over the years, considerable advances have been made in 

earthquake-resistant design of structures, and seismic design requirements in building 

codes have steadily improved. As earthquake-resistant design has moved from an 

emphasis on structural strength to emphasis on both strength and ductility, the need for 

accurate predictions of ground motions has increased. (Kramer, 1996). 

1.1.1.3  Liquefaction 

Some of the most spectacular examples of earthquake damage have occurred when soil 

deposit have lost their strength and appeared to flow as fluids. In this phenomenon, 

termed liquefaction, the strength of the soil is reduced, often drastically, to the point 

where it is unable to support structures or remain stable. Because it only occurs in 

saturated soil, liquefaction is most commonly observed near rivers, bays, and other 

bodies of water. The term liquefaction actually encompasses several related phenomena. 

Flow failures, for examples, can occur when the strength of the soil drops below the 

level needed to maintain stability under static conditions. Flow failures are therefore 

driven by static gravitational forces and can produce very large movements.  

Liquefaction is a complicated phenomenon, but research has progressed to the point 

where an integrated framework of understanding can be developed. (Kramer, 1996). 

1.1.1.4  Landslide 

Strong earthquakes often cause landslide. Although the majority of such landslides are 

small, earthquakes have also caused very large slides. In a number of unfortunate cases, 

earthquake-induced landslides have buried entire towns and villages. More commonly, 

earthquake-induced landslides cause damage by destroying buildings, or disrupting 

bridges and other constructed facilities. Many earthquake-induced landslides result from 

liquefaction phenomena, but many others simply represent the failures of slopes that 

were marginally stable under static conditions. (Kramer, 1996). 
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1.2 Seismic slope stability 

Landslides occur on a regular basis throughout the world as part of the ongoing 

evolution of landscape. Many landslides occur in natural slopes, but slides also occur in 

man-made slopes from time to time. At any point in time, then, slopes exist in states 

ranging from very stable marginally stable. When an earthquake occurs, the effects of 

earthquake-induced ground shaking is often sufficient to cause failure of slopes that 

were marginally to moderately stable before the earthquake. The resulting damage can 

range from insignificant to catastrophic depending on the geometric and material 

characteristics of the slope. 

Earthquake-induced landslides, which have been documented from as early as 1789 

B.C. (Li, 1990), have caused tremendous amounts of damage throughout history. In 

many earthquakes, landslides have been responsible for as much or more damage than 

all others seismic hazards combined. Evaluation of seismic slope stability is one of the 

most important activities of the geotechnical earthquake engineer. (Kramer, 1996). 

1.2.1 Types of earthquake-induced landslides 

Many factors, including geologic and hydrologic conditions, topography, climate, 

weathering, and land use, influence the stability of slopes and the characteristics of 

landslides. A number of procedures for classification of landslides have been proposed; 

that of Varnes (1978) is perhaps most widely used in the United States. Similar 

principles and terminology can be used to classify earthquake-induced landslides on the 

basis of material type (soil or rock), character of movement (disrupted or coherent), and 

other attributes, such as velocity, depth, and water content. Earthquake-induced 

landslides can be divided into three main categories: disrupted slides and falls, coherent 

slides, and lateral spreads and flows. 

Disrupted slides and falls include rock falls, rock slides, rock avalanches, soil falls, 

disrupted soil slides, and soil avalanches. The earth materials involved in such failures 

are shared, broken, and disturbed into a near random order. These types of failures, 

usually found in steep terrain, can produce extremely rapid movements and devastating 

damage; rock avalanches and rock falls have historically been among the leading causes 

of death from earthquake-induced landslides.  
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Coherent slides, such as rock and soil slumps, rock and soil block slides, and slow earth 

flows, generally consist of a few coherent blocks that translate or rotate on somewhat 

deeper failure surfaces in moderate steeply sloping terrain. Most coherent slides occur 

are lower velocities than disrupted slides and falls. 

Lateral spreads and flows generally involve liquefiable soils, although sensitive clays 

can produce landslides with very similar characteristics. Due to the low residual 

strength of these materials, sliding can occur on remarkably flat slopes and produce very 

high velocities. 

The different types of earthquake-induced landslides occur with different frequencies. 

Rock falls, disrupted soil slides, and rock slides appear to be the most common types of 

landslides observed in historical earthquakes. Subaqueous landslides, slow earth flows, 

rock block slides, and rock avalanches are least common, although the difficulty of 

observing subaqueous slides may contribute to their apparent rarity. (Kramer, 1996). 

1.2.2  Earthquake-induced landslide activity 

For preliminary stability evaluations, knowledge of the conditions under which 

earthquake-induced landslides have occurred in past earthquakes is useful. It is logical 

to expect that the extent of earthquake-induced landslide activity should increase with 

increasing earthquake magnitude and that there could be a minimum magnitude below 

which earthquake-induced landsliding would rarely occur. It is equally to expect that the 

extent of earthquake-induced landslide activity should decrease with increasing source-

to-site distance and that there could be a distance  beyond which landslides would not to 

be expected in earthquakes of a given size. (Kramer, 1996). 

1.2.3  Seismic slope stability analysis 

The database against which seismic slope stability analyses can be calibrated is much 

smaller. Analysis of the seismic stability of slopes is further complicated by the need to 

consider the effects of dynamic stresses induced by earthquake shaking, and the effects 

of those stresses on the strength and stress-strain behavior of the slope materials. 

Seismic slope instabilities may be grouped into two categories on the basis of which of 

these effects is predominant in a given slope. In inertial instabilities, the shear strength 
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of the soil remains relatively constant, but slope deformations are produced by 

temporary exceedances of the strength by dynamic earthquake stresses. Weakening 

instabilities are those in which the earthquake serves to weaken the soil sufficiently that 

it cannot remain stable under earthquake-induced stresses. Flow liquefaction and cyclic 

mobility are the most common causes of weakening instability. A number of analytical 

techniques, based on both limit equilibrium and stress-deformation analyses, are 

available for both categories of seismic instability. (Kramer, 1996). 

1.2.3.1  Analysis of inertial instability 

Earthquake motions can induce significant horizontal and vertical dynamic stresses in 

slopes. These stresses produce dynamic normal and shear stresses along potential failure 

surfaces within a slope. When superimposed upon the previously existing static shear 

stresses, the dynamic shear stresses may exceed the available shear strength of soil and 

produce inertial instability of the slope. A number of techniques for the analysis of 

inertial instability have been proposed. These techniques differ primarily in the accuracy 

with which the earthquake motion and the dynamic response of the slope are 

represented. (Kramer, 1996). 

1.2.3.2  Pseudostatic Analysis 

Pseudostatic analysis, produces a factor of safety against seismic slope failure in much 

the same way that static limit equilibrium analyses produce factor of safety against 

static slope failure. All the others approach attempt to evaluate permanent slope 

displacements produced by earthquake shaking. 

Beginning in the 1920s, the seismic stability of earth structures has been analyzed by a 

pseudostatic approach in which the effects of an earthquake are representes by constant 

horizontal and/or vertical accelerations. The first explicit application of the pseudostatic 

approach to the analysis of seismic slope stability has been attributed to Terzaghi 

(1950). In their most common form, pseudostatic analyses represent the effects of 

earthquake shaking by pseudostatic accelerations that produce inertial forces, Fh and Fv, 

which act through the centroid of failure mass (Figure 1.1).  
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Figure 1.1 - Forces acting on triangular wedge of soil above planar failure surface 

in pseudostatic slope stability analysis. 

The magnitudes of pseudostatic forces are: 

�� = ���� = ��� 

�� = ���� = ��� 

where �� and �� are horizontal and vertical pseudostatic accelerations, �� and �� are 

dimensionless horizontal and vertical pseudostatic coefficients, and W is the weight of 

the failure mass. The magnitudes of the pseudostatic accelerations should be related to 

the severity of the anticipated ground motion; selection of pseudostatic accelerations for 

design is, as discussed in the next section, not simple matter. Resolving the forces on 

the potential failure mass in a direction parallel to the failure surface, 

�	 = 
��
��
��	��
���

�
��	��
�� = ���� + ��� − ����������� �� − ����
�� + ������  

where c and φ are the Mohr-Coulomb strength parameters that describe the shear 

strength on the failure plane and lab is the length of the failure plane. The horizontal 

pseudostatic force clearly decreases the factor of safety it reduces the resisting force ( 

for φ > 0) and increases the driving force. The vertical pseudostatic force typically has 

less influence on the factor of safety - since it reduces both the driving force and 

resisting force - as a result, the effects of vertical accelerations are frequently neglected 

in pseudostatic analyses. The pseudostatic approach can be used to evaluate 

pseudostatic factors of safety for planar, circular, and noncircular failure surfaces. 

(Kramer, 1996). 
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1.2.3.3  Limitations of the Pseudostatic Approach 

Representation of the complex, transient, dynamic effects of earthquake shaking by a 

single constant unidirectional pseudostatic acceleration is obviously quite crude. Even 

in its infancy, the limitations of the pseudostatic approach were clearly recognized. 

Terzaghi (1950) stated that “the concept it conveys of earthquake effects on slopes is 

very inaccurate, to say the least”, and that a slope could be unstable even if the 

computed pseudostatic factor of safety was greater than 1. Detailed analyses of 

historical and recent earthquake-induced landslides have illustrated significant 

shortcomings of the pseudostatic approach. Experience has clearly shown, for example, 

that pseudostatic analyses can be unreliable for soils that build up large pore pressures 

or show more than about 15% degradation of strength due to earthquake shaking. A 

pseudostatic analyses produced factors of safety well above 1 for a number of dams that 

later failed during earthquakes. These cases illustrate the inability of the pseudostatic 

method to reliably evaluate the stability of slopes susceptible to weakening instability. 

Nevertheless, the pseudostatic approach can provide at least crude index of relative, if 

not absolute, stability. (Kramer, 1996). 

1.2.3.4  Discussion 

The pseudostatic approach has a number of attractive features. The analysis is relatively 

simple and straightforward; indeed, its similarity to the static limit equilibrium analysis 

routinely conducted by geotechnical engineers makes its computations easy to 

understand and perform. It produces a scalar index of stability that is analogous to that 

produced by static stability analyses. It must always be recognized, however, that the 

accuracy of the pseudostatic approach is governed by the accuracy with which the 

simple pseudostatic inertial forces represent the complex dynamic inertial forces that 

actually exist in earthquake. Difficulty in the assignment of appropriate pseudostatic 

coefficients and in interpretation of pseudostatic factors of safety, coupled with the 

development of more realistic methods of analysis, have reduced the use of the 

pseudostatic approach for seismic slope stability analyses. Methods based on evaluation 

of permanent slope deformation are being used increasingly for seismic slope stability 

analysis. (Kramer, 1996). 
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1.3  Review of 3D vs. 2D analyses 

Justo and Saura, Byrne et al., Stark and Eid, Jeremic, among many others, have studied 

the importance of considering the 3D effects in the analysis of slopes. Duncan cites over 

20 studies (since 1960s) concluding that in the factor-of-safety approach, with a few 

exceptions, two-dimensional analysis yields conservative results compared to three-

dimensional analysis, i.e. F2D < F3D provided that F2D is calculated for the most critical 

2D section. 

Since F2D < F3D, Leshchinsky and Huang and Duncan and Stark emphasize that in order 

to obtain post-failure in situ shear strength of soil by back-analysis of slope failures, 3D 

analysis should be avoided so that shear strength (to be used in 2D analysis) is not 

overestimated. 

Arellano and Stark present several curves showing the ratio of 3D to 2D factor of safety 

for different width/height ratios and slope angles, with translational failure mechanism. 

These curves show that for a 3H:1V slope, for example, the 3D factor of safety is about 

40% larger than the 2D factor of safety if the width/height ratio is about 2. In this type 

of failure mechanism, which usually occurs in flatter slopes, the mobilized shear 

strength along back scarp and sides of the slides mass are significantly different from 

those along the base.  

In deformation analysis approach, Lefebvre et al. found that 2D analysis can 

significantly overestimate movements of a dam in a V-shaped steep-wall valley because 

the effects of cross-valley arching are ignored in 2D analysis. Comparing the results of 

2D and 3D analysis of the transverse section of the dam showed that if the valley wall 

slopes were 1:1 or steeper, plane strain results would be significantly inaccurate. 2D/3D 

ratios of principal stresses, maximum shear stress, and displacements were also 

presented. For example, average 2D/3D ratio of horizontal displacements for 1:1 wall 

was 2.68, whereas that for 6:1 wall was 1.05. 

Some other studies, such as also compare the results of 3D and 2D finite element 

analyses for dams (simulating reservoir filling, water rise, etc.) and generally indicate 

that deformation in 3D models are significantly smaller than in 2D models, for 
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width/height ratios of about 2-3. From these studies, it is also possible to note that 

beyond a certain distance from the abutments, there is no significant variation in the 

predicted crest displacement. This distance is normally about 2.5-3 times the height. 

(Azizian, A., Popescu, R., 2005) 

Prevost et al. performed 2D and 3D total stress, dynamic FE analysis of Santa Felicia 

earth dam using a non-linear multi-surface plasticity model and compared the measured 

and computed earthquake responses. Their analysis showed that the first 10 frequencies 

of the 3D model all fall within the first two frequencies of the 2D model, indicating that 

more intermediate modal configurations are generated, despite the fat that the dam is a 

relatively long dam and 3D effects should not be significant. The study demonstrates 

the importance of 3D effects being more pronounced for strong shaking, in terms od 

crest acceleration and permanent deformations. In case of strong shaking, the 3D 

horizontal crest acceleration response is significantly lower than the 2D one due to 

significant contributions from higher modes of vibration. The two-dimensional 

idealization is normally based on the following considerations: 

1. Site material idealization: in most cases, it is assumed that soil layering is 

perpendicular to the plane of interest and a cross section represents all sections. 

If non-homogeneity or anisotropy of the slope material is important, then 

performing a 2D analysis is not appropriate. (Azizian, A., Popescu, R., 2005) 

2. Site geometry idealization: in numerical or analytical approaches toward many 

geotechnical problems, three main geometric idealizations are used to simplify 

and speed-up the analysis significantly: plane strain, plane stress, and axi-

symmetry. Almost all two-dimensional slope stability analyses use plane strain 

assumption, in which the value of the strain component perpendicular to the 

plane of interest is zero. Analysis time as well as necessary computational 

resources will decrease significantly, especially in a seismic step-by-step time-

domain analysis. However, the plane strain assumption is valid if one dimension 

is very large in comparison with the other two. It also requires all of the 

following: no curvature or corners exist in geometry of slope; the slope 

deformation is not constrained significantly by a near lateral boundary (such as a 

dam in a narrow rock-walled valley); no curvature exists in the shape of failure 
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surface in the direction perpendicular to the plane of interest. (Azizian, A., 

Popescu, R., 2005) 

3. Loading idealization: design recommendations usually suggest that from three 

components of earthquake acceleration, only the larger horizontal acceleration 

would suffice for analysis purpose. Vertical and smaller horizontal components 

of acceleration are then ignored. In the analysis of slopes, the horizontal 

acceleration is usually applied to the cross-section of the slope in its plane, that 

is, no instability due to transverse (out-of-plane) excitation is taken into account. 

(Azizian, A., Popescu, R., 2005) 

1.4  Constitutive model 

In this part will be presented the constitutive model used during the work. The models is 

the SANICLAY model, based on the more known Modified Cam-Clay model, so first 

of all a short presentation of the Modified Cam-Clay model is given. 

1.4.1 Modified Cam-Clay model 

The modified Cam-Clay model is an incremental hardening/softening elastoplastic 

model. Its features include a particular form of nonlinear elasticity and a 

hardening/softening behaviour governed by volumetric plastic strain. The failure 

envelopes are self-similar in shape and correspond to ellipsoids of rotation about the 

mean stress axis in the principal stress space. Then shear flow rule is associated; no 

resistance to tensile mean stress is offered in this model. 

1.4.1.2 Incremental Elastic Law 

The generalized stress components involved in the model definition are the mean 

effective pressure, p, and deviatoric stress, q, defined as 

! = −13$%% 
& = '3() 

where the Einstein summation convention applies and ()is the second invariant of the 

effective deviatoric-stress tensor ���. The incremental strain variables associated with p 
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and q are the volumetric strain increment ∆+, and shear strain increment ∆+-, and we 

have 

∆+, = −∆+%% 
∆+- = 23'3∆()/  

where ∆()/  stands for the second invariant of the incremental deviatoric-strain tensor 

∆���. In the FLAC3D plastic flow formulation, the assumption is made that both plastic 

and elastic principal strain-increment vectors are coaxial with the current principal 

stress vector. The generalized strain increments are then decomposed into elastic and 

plastic parts so that 

∆+, = ∆+,0 + ∆+,, 

∆+- = ∆+-0 + ∆+-, 

The evolution parameter is the specific volume, v, defined as 

� = 112 
where Vs, is the volume of solid particles, assumed incompressible, contained in a 

volume, V, of soil. The incremental relation between volumetric strain, +,, and specific 

volume has the form 

∆+, = −∆��  

And the specific volume, �3, for the step may be calculated as 

�3 = ��1 − ∆+,� 
The incremental expression of Hooke’s law in terms of generalized stress and strain is 

as follows: 

∆! = 4∆+,0 



 

 

where ∆& � '3∆(), and 

deviatoric-stress tensor. In the Cam

volumetric relation ∆! �
experimentally from isotropic compression tests. The results of a typical isotropic 

compression tests are presented in the semi

Figure 1.2 - Normal consolidation line and unloading

isotropic compression test. (FLAC

As the normal consolidation pressure, p, increases, the specific volume, v, of the 

material decreases. The point representing the state of the material moves along the 

normal consolidation line defined by the equa

where λ and �5 are two material parameters, and 

value of the specific volume at the reference pressure). 

define the slope of the normal conso
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, and ∆() stands for the second invariant of the incremental 

stress tensor. In the Cam-clay model, the tangential bulk modulus, K, in the 

� 4∆+,0 is update to reflect a nonlinear law de

experimentally from isotropic compression tests. The results of a typical isotropic 

compression tests are presented in the semi-logarithmic plot in Figure 1.2

Normal consolidation line and unloading-reloading (swelling) line for an 

otropic compression test. (FLAC3D Manual). 

As the normal consolidation pressure, p, increases, the specific volume, v, of the 

material decreases. The point representing the state of the material moves along the 

normal consolidation line defined by the equation 

� � �5 � 7 ln !
!: 

are two material parameters, and !: is a reference pressure (

value of the specific volume at the reference pressure). λ is used by Wood (1990) to 

define the slope of the normal consolidation line. It should not be confused with the 
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clay model, the tangential bulk modulus, K, in the 

is update to reflect a nonlinear law derived 

experimentally from isotropic compression tests. The results of a typical isotropic 

Figure 1.2. 
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As the normal consolidation pressure, p, increases, the specific volume, v, of the 

material decreases. The point representing the state of the material moves along the 

is a reference pressure (�5 is the 

is used by Wood (1990) to 

lidation line. It should not be confused with the 
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plastic (volumetric) multiplier used in the plasticity flow rule. An unloading-reloading 

excursion, from point A or B on the figure, will move the point along an elastic swelling 

line of slope κ, back to the normal consolidation line where the path will resume. The 

equation of the swelling lines has the form 

� � �; � < ln !!: 
where κ is a material constant, and the value of �= for a particular line depends on the 

location of the point on the normal consolidation line from which unloading was 

performed. 

The recoverable change in specific volume, ∆�0, may be expressed in incremental form 

after differentiation of the equation 

∆�0 = −< ∆!!  

After division of both members by v, and using equation: ∆+, = − ∆�� , we may write 

∆! = �!< ∆+,0 
In the Cam-clay model, it is assumed that any change in mean pressure is accompanied 

by elastic change in volume according to the above expression. Comparison with the 

equation: ∆! = 4∆+,0, hence, suggests the following expression for the tangent bulk 

modulus of the Cam-clay material: 

4 = �!<  

Under more general loading conditions, the state of a particular point in the medium 

might be represented by a point, such as A, located below the normal consolidation line 

in the (v, lnp) plane as shown in Figure 1.3. By virtue of the law adopted in: � = �= −
� ln ,,>, an elastic path from that point proceeds along the swelling line through A. 



 

 

Figure 1.3 - Plastic volume ch

pressure change (FLAC

The specific volume and mean pressure at the intersection of swelling line and normal 

consolidation line are referred to as (normal) consolidation (specific) volume and 

(normal) consolidation pressure (

incremental change in stress bringing the point from state A to state A’. At A’ there 

corresponds a consolidation volume, 

increment of plastic volume change, 

distance between lines (associated with points A and A’) and we may write, using 

incremental notation, 

After division of the left and right

∆+, � � ∆�
�  : 
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Plastic volume change corresponding to an incremental consolidation 

pressure change (FLAC3D Manual). 

The specific volume and mean pressure at the intersection of swelling line and normal 

consolidation line are referred to as (normal) consolidation (specific) volume and 

rmal) consolidation pressure (�?@ and !?@, in the case of point A). Consider an 

incremental change in stress bringing the point from state A to state A’. At A’ there 

corresponds a consolidation volume, �?@A
, and consolidation pressure, 

nt of plastic volume change, ∆�,, is measured on the figure by the vertical 

distance between lines (associated with points A and A’) and we may write, using 

∆�, � ��7 � <� ∆!?!?  

After division of the left and right member by v, we obtain, comparing with equation: 

∆+,, � 7 � <
�

∆!?!?  

dimensional earthquake response of slopes 

21 

 

ange corresponding to an incremental consolidation 

The specific volume and mean pressure at the intersection of swelling line and normal 

consolidation line are referred to as (normal) consolidation (specific) volume and 

, in the case of point A). Consider an 

incremental change in stress bringing the point from state A to state A’. At A’ there 

, and consolidation pressure, !?@A
. The 

, is measured on the figure by the vertical 

distance between lines (associated with points A and A’) and we may write, using 

member by v, we obtain, comparing with equation: 



Chapter 1 

 

22 
 

Hence, whereas elastic volume changes take place whenever the mean pressure 

changes, plastic volume changes occur only when the consolidation pr

1.4.1.2 Yield and potential functions

The yield function corresponding to a particular value p

has the form 

where M is a material constant. The yield condition 

with horizontal axis, pc, and vertical axis, Mp

1.4. 

Figure 1.4 - Cam-

Note that the ellipse passes through the origin; hence, the material 

able to support an all-around tensile stress. The failure criterion is represented in the 

principal stress space by an ellipsoid of rotation about the mean stress axis (any section 

through the yield surface at constant mean effective s

function, g, corresponds to an associated flow rule and we have 

Hence, whereas elastic volume changes take place whenever the mean pressure 

changes, plastic volume changes occur only when the consolidation pressure changes.

Yield and potential functions 

The yield function corresponding to a particular value pc of the consolidation pressure 

��&, !� � &) � C)!�! � !?� 

where M is a material constant. The yield condition � � 0 is represented by an ellipse 

, and vertical axis, Mpc, in the (q, p)-plane, as shown in 

-clay failure criterion in FLAC3D (FLAC3D Manual).

Note that the ellipse passes through the origin; hence, the material in this model is not 

around tensile stress. The failure criterion is represented in the 

principal stress space by an ellipsoid of rotation about the mean stress axis (any section 

through the yield surface at constant mean effective stress, p, is a circle). The potential 

function, g, corresponds to an associated flow rule and we have  

Hence, whereas elastic volume changes take place whenever the mean pressure 

essure changes. 

of the consolidation pressure 

resented by an ellipse 

plane, as shown in Figure 

 

Manual). 

in this model is not 

around tensile stress. The failure criterion is represented in the 

principal stress space by an ellipsoid of rotation about the mean stress axis (any section 

tress, p, is a circle). The potential 
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� � &) � C)!�! � !?� 

1.4.1.3 Hardening/Softening rule 

The size of the yield curve is dependent on that value of the consolidation pressure, pc. 

This pressure is a function of the plastic volume change and varies with the specific 

volume. The consolidation pressure is update for the step, using the formula 

!?3 � !? E1 � ∆+,, �7 − <F 
where ∆+,, is the plastic volumetric strain increment for the step, v is the current 

specific volume and λ and κ are material parameters. 

1.4.2 SANICLAY model 

SANICLAY is a simple anisotropic clay plasticity model that builds on a modification 

of an earlier model with an associated flow rule, in order to include simulations of 

softening response under undrained compression following K0 consolidation. Non-

associativity is introduced by adopting a yield surface. Besides, the isotropic hardening 

of the yield surface evolves according to a combined distortional and rotational 

hardening rule, simulating the evolving anisotropy. The SANICLAY is shown to 

provide successful simulation of both undrained and drained rate-independent behaviour 

of normally consolidated sensitive clays, and to a satisfactory degree of accuracy of 

overconsolidated clays. The model requires merely three constants more than those of 

the modified Cam-clay model, all of which are easily calibrated from well-established 

laboratory tests. 

Dafalias proposed what can be thought to be the simplest possible energetic extension 

of the modified Cam clay (MCC) model from isotropic to anisotropic response, 

introducing in the rate of plastic work expression a contribution coupling the volumetric 

and deviatoric plastic strain rates. The resulting plastic potential surface in the triaxial p-

q space, which for associative plasticity serves also as yield surface, is rotated and 

distorted ellipse. The amount of rotation and distortion is controlled by an evolving 

variable α, which is a scalar-valued in triaxial and tensor-valued in multiaxial stress 

space. The proposition by Dafalias, about this new hardening model, has these two 
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distinct characteristics. The yield surface has been derived from an energetic expression 

for the rate of plastic work. Second, the so derived yield surface maintains the peak q 

stress on it always at the critical stress-ratio M for any degree of rotation and induced 

anisotropy. The M acquires different values Mc and Me in compression and extension. 

The shape of the surface, in conjunction with the adopted rotational hardening law, 

induces a critical state line (CSL) in the void ratio-mean effective stress space, whose 

location depends on the degree of anisotropy, and in general is different in triaxial 

compression and extension. 

A model for soft clays should be able to also simulate the softening response than is 

often measured during undrained compression shearing following anisotropic 

consolidation at GHI � 1. From a constitutive point of view, this undrained softening 

response can be addressed by special forms of the rotational hardening law or by a non-

associative flow rule. Focusing on the latter approach for reason of simplicity and 

stability of the response, Dafalias et al. introduced a yield surface of the same general 

form as the original plastic potential, but with a different rotational variable α, and a 

different peak stress ratio than M. 

1.4.2.1 Mathematical Formulation of the model 

The constitutive model is constructed by extending the modified Cam-clay model, 

which has a simple and elegant formulation with clear physical interpretation. The 

present formulation takes advantage of the simple framework of MCC, and with 

perhaps the simplest possible approach, adds the very important features of anisotropy 

and destructuration. Each one of these important constitutive features can be 

deactivated, if so desired by the user, simply by selecting appropriate values for certain 

model constants. In this way, the developed model can be simplified back to the 

modified Cam-clay model. 

In this section, σ and ε are generic symbols for the stress and strain tensor and their 

components. All stress components are considered effective, and as usual in 

geomechanics, both stress and strain quantities are assumed positive in compression. 

The stress tensor σ can be analyzed in a hydrostatic ! � ��
$�/3 and a deviatoric 

components K = $ − !L, where �
 denotes the trace and I  is the identity tensor. 
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Similarly, the strain tensor ε can be decomposed in a volumetric M� � �
M and a 

deviatoric component N � M � M��L/3�. Within the range of small deformations and 

rotations, the kinematical assumption of the additive decomposition of total strain rate 

into elastic and plastic part is assumed, i.e., MO = M0 + M,OO . The elastic strain rate is given 

by 

M0 = M�03 L + N0O
O = !O34 L + KO26 

where the elastic bulk and shear moduli K and G are obtained from 

4 = ,�:P0�;     6 = QR�:S)T�)�:PT�  

where e is the current void ratio; and k and ν are the slope of rebound line in e-lnp and 

the Poisson’s ratio, respectively. 

For simplicity, an associated flow rule has been employed, giving a single expression 

� = 0 for the yield surface and the plastic potential. The plastic strain rate is given by 

M,O = 〈V〉 X�X$ 

where L is the loading index. The expression provided for the plastic potential, which is 

the same for the yield surface here, owing to application of associative plasticity, is 

obtained from an assumption for the plastic work dissipation given in Dafalias (1986), 

in the form of 

� = 32 �K − !Y�: �K − !Y� − [C) − 32Y: Y\ !�!] − !� = 0 

where the symbol : implies the inner product of two tensor (the trace of their product); 

the anisotropic variable α is a dimensionless deviatoric tensor and p0 is a scalar variable. 

The scalar M is the critical stress ratio and can be interpolated between its values Mc in 

compression and C0 = ^C? in extension as a function of a Lode angle θ and by means 

of the proposition of Argyris et al. (1974) as 
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C � _�

cos 3c � √6�
fQ;   

with g � h/! the deviatoric stress ratio tensor.

Figure 1

An illustration of the model is shown in Figure 

The isotropic hardening of the internal variable p

law of critical state soil mechanics i

M,O = 〈V〉 ijik for the volumetric plastic strain rate and yields

!]O = 〈
The kinematic hardening rule for the internal variable 

stress ratio α from its bounding 

r /x as (Dafalias et al. 2006; Taiebat et al. 2010)

YO = 〈V〉 E:P05S;F H E ,,lF) m�
 E

�c,^�C? = 2^
�1 � ^� � �1 � ^� cos 3cC? 

 f � gSn��gSn�:�gSn��>/o 

the deviatoric stress ratio tensor. 

 

1.5 - Model surfaces in triaxial stress space. 

An illustration of the model is shown in Figure 1.5, which is in the triaxial p

The isotropic hardening of the internal variable p0 is based on the classical evolution 

law of critical state soil mechanics in conjunction with the specialization of equation 

for the volumetric plastic strain rate and yields 

〈V〉 E:P05S;F !]�
 EijikF � 〈V〉!̅]  (1) 

The kinematic hardening rule for the internal variable α is based on the distance of back 

bounding 
^���	Y�, which in turn is defined by an attractor term 

/x as (Dafalias et al. 2006; Taiebat et al. 2010) 

m EijikFm qQ) �g � rY�: �g � rY�s:/) t �Y� � Y� �

, which is in the triaxial p-q space. 

is based on the classical evolution 

n conjunction with the specialization of equation 

is based on the distance of back 

, which in turn is defined by an attractor term 

� � 〈V〉Yu (2) 
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Y� � v)
Q C0fw;   fw � gSwn

��gSwn�:�gSwn��>/o 

where C and x are two model constants and the expression for Yu is evident from the last 

two members of the equation (2). The constant C controls the evolution of anisotropy in 

the model, and the constant x in the attractor term provides a flexibility to the model for 

proper estimation of the value of K0. To include an isotropic destructuration mechanism 

in the model the internal variable p0 is set equal to 	%!]y, where 	% ≥ 1 is the isotropic 

structuration factor and !]y is the destructured value of p0 (or the value of p0 at 	% � 1�. 

With this new definition of p0, equation (1) should now be replaced by the following 

equation, where !] � 	%!]y yields 

!O] � 	%!]yO � 	{O !]y � 〈V〉�	%!̅]y � 	%̅!]y� � 〈V〉!̅]  (3) 

where the analytical expression of !̅] is evident for the last two members of the 

equation (3) Here !̅]y and 	%̅ are obtained from 

!O]y � 〈V〉 E:P0
5S;F !]y�
 Eij

ikF � 〈V〉!̅]y  (4 a) 

	{O � �〈V〉�% E:P0
5S;F �	% � 1�My̅, � 〈V〉	%̅ (4 b) 

with !̅]y and 	%̅ following from the last two members of equation (4 a) and (4 b), 

respectively, and where κ i is a material constant. The degradation of Si has been taken 

into account means of MOy, � 〈V〉My̅,, which is the rate of an auxiliary internal variable 

called the destructuration plastic strain rate and defined as 

MOy, � 〈V〉My̅, � v�1 � |�MOy,) � | E)
Q }O ,: }O ,F   (5) 

The parameter A is a material constant distributing the effect of volumetric and 

deviatoric plastic strain rates to the value of MOy,. The foregoing destructuration 

mechanism described by equations (3)-(5) is a classical approach of isotropic 

destructuration. In Taiebat et al. (2010), in addition to the present isotropic 

destructuration mechanism that is in effect an isotropic-softening constitutive feature, an 

additional frictional destructuration mechanism was introduced that addressed the 
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possible collapse of the critical state stress ratio M in the foregoing destructuration 

plastic strain rate of equation (5). This mechanism is omitted in the present work for 

simplicity and because the isotropic destructuration is by far the more important of the 

two. In other words, many of the aspects of destructuration response in clays can be 

sufficiently addressed only by the isotropic destructuration mechanism for many 

practical purposes. 

Moreover, in Taiebat et al. (2010), the full destructuration model also had additional 

features, such as a plastic potential surface different than the yield surface with a 

different rotational variable, and simplified version were studied in regard to 

simulations of data and the relative effect of the two aforementioned destructuration 

mechanisms was evaluated.  To avoid any misunderstanding, it should be emphasized 

that the omission of the frictional destructuration implies only that the M remains intact, 

whereas the deviatoric (shear) strain rate is clearly influential in regard to the isotropic 

destructuration since it enters the definition of the destructuration plastic strain rate of 

equation (5), where A is different from zero with a typical default value of | � 0,5. 

Observe that by setting H � 0 and starting with Y � 0, the anisotropy feature of the 

model can be deactivate by setting <% � 0 or simply by starting with 	% � 1. To fully 

reduce the model to the modified Cam-clay model, in addition to the previous choices, 

one should also remove the Lode angle dependency by setting ̂ � 1. 

1.4.2.2 Calibration of constants 

SANICLAY requires the calibration of eight constants (Table 1.1). Only the last three 

(N, x, C) are new in regards to the constants required for the application of the modified 

Cam clay model. 

Constants Description of its rule 

Mc Value of stress ratio � � -
, at critical state in compression 

Me Value of stress ratio � � -
, at critical state in extension 

λ Compressibility of normally consolidated NC clay 

κ Compressibility of overconsolidated OC clay 

ν Elastic Poisson’s ratio 



 

 

N Shape of yield surface

x Saturation limit of anisotropy (under path with 

C Rate of evolution of anisotropy

Table 

The calibration of these constants requires data from well

• One-dimensional (K

one unload-reload cycle using an oedometer or a tri

λ).; 

• Lateral stress measurements during one

swelling reaching stresses (for constants x, 

• Undrained triaxial compression (CK

normally K0-consolidated clay (for constants M

Figure 1.6 presents the response of clay during one

(CI) compression and swelling, with lateral stress measurement. Given the latter, the 

stress variation is presented in the e

Figure 1.6 - Calibration of constants k and 
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Shape of yield surface 

Saturation limit of anisotropy (under path with � �
Rate of evolution of anisotropy 

le 1.1- Constants of SANICLAY model. 

The calibration of these constants requires data from well-established laboratory tests:

dimensional (K0) or preferably isotropic consolidation tests with at least 

reload cycle using an oedometer or a triaxial device (for constants 

Lateral stress measurements during one-dimensional (K0) compression and 

swelling reaching stresses (for constants x, ν); 

Undrained triaxial compression (CK0UC) and extension (CK

consolidated clay (for constants Mc and Me, N, C). 

presents the response of clay during one-dimensional (CK

(CI) compression and swelling, with lateral stress measurement. Given the latter, the 

stress variation is presented in the e-logp space of the figure. 
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established laboratory tests: 

) or preferably isotropic consolidation tests with at least 

axial device (for constants κ, 

) compression and 

UC) and extension (CK0UE) tests on 

 

dimensional (CK0) and isotropic 

(CI) compression and swelling, with lateral stress measurement. Given the latter, the 
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The Cc and Cr slopes that are measured in Figure 3.5 are related to 

Notice that a unique value of 

overstimates the clay strength in extension. Hence, when only a CK

available, then C0,�%� � C
 0 �  ?. 

Figure 1.7 focuses on the K

dashed grey line in this figure is the average curve that fits the initial data points of the 

K0-consolidated undrained triaxial compression (CK0UC) and extension (CK

tests. 

Figure 

As an approximation, the init

the Elastic Poisson’s ratio ν

For x and N, the use of closed

calibration easy and straightforward. For the estimation of c

drained path with � � �

slopes that are measured in Figure 3.5 are related to λ and 

and < � ��
��:]. 

Notice that a unique value of C � C? � C0 is not advised for use, since it seriously 

strength in extension. Hence, when only a CK

C0 � C? should hold, where Me,min is the Mc corresponding to 

focuses on the K0-unloading stress path of a clay; this path presented 

dashed grey line in this figure is the average curve that fits the initial data points of the 

consolidated undrained triaxial compression (CK0UC) and extension (CK

 

Figure 1.7 - Calibration of constant ν. 

As an approximation, the initial part of this path is proposed for use in the calibration of 

ν of the clay. 

For x and N, the use of closed-form analytical relations is proposed, which makes their 

calibration easy and straightforward. For the estimation of constant x, the case of a 

�= � �������� is considered. Practically speaking, all 

and κ as: 7 � ��
��:] 

is not advised for use, since it seriously 

strength in extension. Hence, when only a CK0UC test is 

is the Mc corresponding to 

unloading stress path of a clay; this path presented with a 

dashed grey line in this figure is the average curve that fits the initial data points of the 

consolidated undrained triaxial compression (CK0UC) and extension (CK0UE) 

ial part of this path is proposed for use in the calibration of 

form analytical relations is proposed, which makes their 

onstant x, the case of a 

is considered. Practically speaking, all 
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consolidation paths starting from slurry have this characteristic. After considerable 

algebra, a closed-form relation for x is: 

Y; � ��
w � �����P��oPq)E:S�

�FS���os���S��o
)�E:S�

�F ,  � � � )�:PT�;
��:S)T�5 

Different paths with �; � �������� correspond to different M values, which are not 

always a priori known. Of all possible such paths, the most frequently run is the K0-

loading path, for which M � 3/2 and �; � �;] � Q�:SRl�:P)Rl , where K0 is the measured 

value of the earth coefficient at rest. In the absence of K0 measurements, the K0 can be 

estimated from well-known empirical relations, such as the 4] � 1 � �
�  for NC 

clays. Anyway, having obtained the K0 value, one may estimate the value of constant x 

using equation: Y; � ��
w � �����P��oPq)E:S�

�FS���os���S��o
)�E:S�

�F . In general, for given values of 

k, λ, Mc and ν (the MCC model constants), constant x is an increasing function ok K0, 

unlike the MCC model, which is known for overestimating the K0 value. 

Similarly for the estimation of constant N the case of an undrained shearing stress at his 

considered. Given the available tests for calibration of the model constants it is the 

CK0UC test on normally consolidates clay that is suitable for the purpose at hand. In 

this case, the initial �%� � � � �;] � Q�:SRl�
:P)Rl  and !%� � !;], while �j � C?. When 

these two pair of (p, η) are inserted in the aforementioned equation of the undrained 

stress path one has:  

!j!;] � � �) � �;])
�) � 2�;]C? �C?)�

:SE;5F
 

Hence, one merely needs to solve the equation for N, given data of a CK0UC test on 

normally consolidated clay. 

Finally the calibration of constant C requires the execution of trial runs, having all other 

constants calibrated in advance. Constant C quantifies the rate of rotation and distortion 

of the yield surface and the plastic potential surface. Hence, test appropriate for its 

calibration are those that induce significant surface rotation, test for which the �%� is far 
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from �j of the effective stress path, and possibly the opposite sign. Practically a CK

test on normally consolidated clay is very suitable for the purpose at hand. Hence, 

Figure 1.8 presents the CK

series of trial runs fir C = 6, 11, 16, 21 and 26. Observe that the higher the value of C 

the larger the predicted undrained strength in triaxial extension.

Figure 

Experience has shown that constant C usually varies be

In cases when the C takes large values (e.g. C>8) the adopted N should be slightly 

increased compared to the value from equation 

!
because the basic assumption of a non

 

 

 

of the effective stress path, and possibly the opposite sign. Practically a CK

test on normally consolidated clay is very suitable for the purpose at hand. Hence, 

presents the CK0UE test data on normally consolidated clay, along with

series of trial runs fir C = 6, 11, 16, 21 and 26. Observe that the higher the value of C 

the larger the predicted undrained strength in triaxial extension. 

 

Figure 1.8 - Calibration of constant C. 

Experience has shown that constant C usually varies between 3 and 20 for various clays. 

In cases when the C takes large values (e.g. C>8) the adopted N should be slightly 

increased compared to the value from equation 

!j!;] � � �) � �;])
�) � 2�;]C? � C?)�

:SE;5F
 

because the basic assumption of a non-rotating yield surface is no longer valid.

of the effective stress path, and possibly the opposite sign. Practically a CK0UE 

test on normally consolidated clay is very suitable for the purpose at hand. Hence, 

UE test data on normally consolidated clay, along with a 

series of trial runs fir C = 6, 11, 16, 21 and 26. Observe that the higher the value of C 

tween 3 and 20 for various clays. 

In cases when the C takes large values (e.g. C>8) the adopted N should be slightly 

increased compared to the value from equation  

rotating yield surface is no longer valid. 
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Chapter 2 - Effect of boundary conditions 

The first part of this study deals with the principles of the program FLAC3D and how it 

works. The objective is to be able to use basic commands with mastery in order to 

create models, analyze their dynamic behaviour and to understand the differences in the 

responses by applying different boundary conditions.  

FLAC3D is a three-dimensional explicit finite-difference program for engineering 

mechanics computation. The program extends the analysis capability of FLAC (2D) 

into three dimensions, simulating the behaviour of three-dimensional structures built of 

soil, rock or other materials that undergo plastic flow when their yield limits are 

reached. Materials are represented by polyhedral elements within a three-dimensional 

grid that is adjusted by the user to fit the shape of the object to be modelled. Each 

element behaves according to a prescribed linear or nonlinear stress/strain law in 

response to applied forces or boundary restraints. The explicit, Lagrangian, calculation 

scheme and the mixed-discretization zoning technique used in FLAC3D ensure the 

plastic collapse and flow are modelled very accurately. FLAC3D offers an ideal analysis 

tool for solution of three-dimensional problems in geotechnical engineering. (FLAC3D 

Manual) 

2.1 Model construction 

2.1.1 Create the geometry and assign material models 

Figure 2.1 shows the initial model used for the analyses. 

 

Figure 2.1 – Geometry of the model. 
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The following are the material parameters used in the analyses: 

Model:  Elastic 

Properties:   Bulk modulus  (K) � 2 ∙ 10�	��� 

Shear modulus  (G) = 0,3 ∙ 10�	��� 

Density           (ρ) = 2 ∙ 10Q ;��� 

2.1.2  Finite difference Mesh 

Numerical perturbation of the propagating wave can occur in a dynamic analysis as a 

function of the modelling conditions. Both the frequency content of the input wave and 

the waves peed characteristics of the system will affect the numerical accuracy of wave 

transmission. Kuhlemeyer and Lysmer (1973) have shown that, for accurate 

representation of wave transmission through a model, the spatial element size, ∆l, must 

be smaller than approximately one-tenth to one-eighth of the wavelength associated 

with the highest frequency of the input wave: 

∆� ≤ 710 ÷ 78 

where 7 is the wavelength associated with the highest frequency component that 

contains appreciable energy. (FLAC3D Manual) 

For the model in Fig.2.1: 

∆� ≤ 710 

7 = �2���w 

�2 = �6� = �300002 = √15000 = 122,5 �̂  

�: � ���∙� � :)),��∙:] � 3,06	 ¡  1st natural frequency 
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Consider the following case: 

���w � 4 ¡ 

7 � �2���w � 122,54 � 30,6	^ 

∆� ≤ 710 ≤ 30,610 = 3,0	^ 

Whereby in x-direction (30m) there must be at least 10 elements, in y-direction (1m) at 

least 1 element and in the z-direction (10m) 4 elements. 

The mesh of the model consists of 15 elements in x-direction,  1 element in y-

direction and 5 elements in z-direction. 

Figure 2.2 shows the model and mesh created in this example. 

 

Figure 2.2 - Geometry and mesh.  
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2.1.3  Boundary conditions 

To investigate the performances of different boundary conditions, the model is 

constrained in different ways in the dynamic analysis; three different types of boundary 

conditions are considered: 

• Simple roller 

• Free field boundary conditions. This kind of boundary is implemented in 

FLAC3D and it “enforce” the free-field motion in such a way that boundaries 

retain their non-reflecting properties. 

• Simple roller with rigid-link. Similar to the first case, but a rigid link is applied 

between two points lying at the same height on the two side boundaries  

2.1.4  Dynamic input 

The dynamic input is applied at the bottom of the model in the form of an acceleration 

in x-direction. 

The dynamic input has the following expression: 

���� � sin�¤�� 

 

Figure 2.3 - Graphic of the input wave. 

The input is inserted into the program by creating a table and recalling it during the 

analysis.  
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2.2 Comparison between different boundaries 

conditions 

2.2.1   Simple roller 

 

Figure 2.4 – Model with simple roller boundary conditions. 

This type of constrain, applied on the two sides of the model, permit only the 

displacement in x-direction while z-displacements and y-displacements are blocked. The 

bottom of the model is fixed in x and y directions, only the x-displacements are free in 

order to apply the x-acceleration (Fig.2.5).  

 

Figure 2.5 - Boundary Conditions 

There are some commands in this script related to damping. This will be discussed later. 

The results of the analysis are reported into a graphics x-acceleration/dynamic time 
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(Fig.2.7) where x-acceleration is referred to point A, in the middle of the top of the 

model (Fig.2.6). 

 

Figure 2.6 - Position of the check point where the acceleration is measured. 

 

Figure 2.7 - Results of the analysis with simple roller boundary conditions (graphics: x-

acceleration vs dynamic time). 

2.2.2  Free-field boundary conditions 

Numerical analysis of the seismic response of surface structures such as dams, slopes, 

walls, etc. requires the discretization of a region of material adjacent to the foundation. 

The seismic input is normally represented by plane waves propagating upward through 

the underlying material. The boundary conditions at the sides of the model must account 



 

 

for the free-field motion that wou

elementary lateral boundaries

boundaries should be placed at sufficient distances to minimize wave reflections and 

achieve free-field conditions. Fo

be obtained with relatively small distance

influenced by the presence of the boundaries

low, the required distance may lea

developed also for FLAC3D

boundaries retain their non

free-field calculations in paralle

the main grid are coupled to the free

boundary (Fig. 2.8), and the unbalanced forces from the free

main-grid boundary. Both conditions are expressed in the following equations, which 

apply to the free-field boundary along one side boundary plane with its normal in the 

direction of the x-axis.  

Figure2.8 - Model for seismic analysis of surface structures and free
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field motion that would exist in the absence of the structure. In some cases, 

elementary lateral boundaries, such as roller boundary, may be sufficient. 

boundaries should be placed at sufficient distances to minimize wave reflections and 

field conditions. For soils with high material damping, this condition can 

be obtained with relatively small distance and the results of the analysis are not 

influenced by the presence of the boundaries. However, when the material damping is 

low, the required distance may lead to an impractical model. An alternative procedure
3D, is to “enforce” the free-field motion in such a way that 

boundaries retain their non-reflecting proprieties. FLAC3D involves the execution of 

field calculations in parallel with the main-grid analysis. The lateral boundaries of 

the main grid are coupled to the free-field grid by viscous dashpots to 

), and the unbalanced forces from the free-field grid are applied to the 

Both conditions are expressed in the following equations, which 

field boundary along one side boundary plane with its normal in the 

Model for seismic analysis of surface structures and free
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�̈ � ��H2¥��̈ � � j̈j¦| � �̈jj 

where: 

ρ = density of material along vertical model boundary; 

H, = p-wave speed at the side boundary; 

H2 = s-wave speed at the side boundary; 

A = area of influence of free-field gridpoint; 

�w� = x-velocity of gridpoint in main grid at side boundary; 

�§� = y-velocity of gridpoint in main grid at side boundary; 

��̈ = z-velocity of gridpoint in main grid at side boundary; 

�wjj = x-velocity of gridpoint in side free field; 

�§jj = y-velocity of gridpoint in side free field; 

� j̈j = z-velocity of gridpoint in side free field; 

�w = free-field gridpoint force with contributions from the $wwjj stresses of the free-

field zones around the gridpoint; 

�§ = free-field gridpoint force with contributions from the $w§jj stresses of the free-

field zones around the gridpoint; 

�̈  = free-field gridpoint force with contributions from the $wj̈j stresses of the free-

field zones around the gridpoint; 

In this way, plane waves propagating upward are not distorted at the boundary because 

the free-field grid supplies conditions that are identical to those in an infinite model. If 

the main grid is uniform, and there is no surface structure, the lateral dashpots are not 

exercised because the free-field grid executes the same motion as the main grid. 

However, if the main-grid motion differs from that of the free field, then the dashpots 
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act to absorb energy in a similar manner to quiet boundaries. In order to apply the free-

field boundary in FLAC3D, the model must be oriented such that the base is horizontal 

and its normal is in the direction of the z-axis, and the sides are vertical and their normal 

are in the direction of either the x- or y-axis. If the direction of propagation of the 

incident seismic waves is not vertical, then the coordinate axes can be rotated such that 

the z-axis coincides with the direction of propagation. In this case, gravity will act at an 

angle to the z-axis, and horizontal free surface will be inclined with respect to the model 

boundaries. The free-field model consists of four plane free-field grids, on the side 

boundaries of the model and four column free-field grids at the corners (Fig.2.9). 

(FLAC3D Manual) 

 

Figure 2.9 - Free Field boundary conditions 

The plane grids are generated to match the main-grid zone on the side boundaries, so 

that there is a one-to-one correspondence between gridpoints in the free field and the 

main grid. The four corner free-field columns act as free-field boundaries for the plane 

free-field grids. The plane free-field grids are two-dimensional calculations that assume 

infinite extension in the direction normal to the plane. The column free-field grids are 

one-dimensional calculations that assume infinite extension in both horizontal 

directions. Both the plane and column grids consist of standard FLAC3D zones, which 

have gridpoints constrained in such a way to achieve the infinite extension assumption. 
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The model should be in static equilibrium before the free-field boundary is applied. The 

free-field condition is applied to lateral boundary gridpoints. All zone data in the model 

zones adjacent to the free field are copied to the free-field region. Free-field stresses are 

assigned the average stress of the neighbouring grid zone. The dynamic boundary 

conditions are automatically transferred to the free field when the free field is applied. 

Any model or nonlinear behaviour may exist in the free field, as well as fluid coupling 

and flow within the free field. The free field supports both small- and large-strain 

calculation modes (FLAC3D manuals). 

The results of the analysis are reported into a graphics x-acceleration/dynamic time 

(Fig.2.10) where x-acceleration is referred to point A (Fig.2.6). 

 

Figure 2.10 - results of the analysis with free field boundary conditions (graphics: x-

acceleration vs dynamic time).  
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2.2.3  Simple roller boundary conditions with rigid link 

 

Figure 2.11 – Model with simple roller boundary conditions and a rigid link between 

two points on the sides of the model. 

The boundary conditions are similar to the first case: simple rollers applied on the two 

sides of the model that permit only x-displacements (Fig.2.13). Furthermore, a rigid link 

(Fig.2.12) is applied between two points lying at the same height on the two side 

boundaries. The rigid link is model like a cable element with a large value of the 

product © ∙ | (E: Young’s modulus, A: section area). The link enforces the two points to 

have the same horizontal displacements like a free-field condition. 

 

Figure 2.12 - Geometry of the model with the rigid link 
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Figure 2.13 - Boundary conditions 

The results are showing Figure.2.14. 

 

Figure 2.14 - results of the analysis with simple roller on the sides and a rigid link 

between two points (graphics: x-acceleration vs dynamic time). 
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2.2.4  Summary  

For an easy comparison, the time histories of point A (Fig.2.6) are showing in Figures 

2.15, 2.16 and 2.17. 

 

Figure 2.15 - Results of simple roller boundary conditions. 

 

Figure 2.16 - Results of free field boundary conditions. 
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Figure 2.17 - Results of simple roller on the sides and rigid link. 

From the results it appears that simple roller boundary conditions give the same answer 

of free field boundary conditions, while in the case of simple roller boundary conditions 

with rigid link one gets a gives a different result which is not correct. No attempt has 

been made to do a more detailed investigation on this model. It should also be noted that 

for this regular mesh and uniform model, it was expected that the result of roller 

boundary be the right one. This will not be the case in more general, non-homogeneous 

models. 
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2.3  Ground response analysis: comparison between 

analytical solution and FLAC3D solution 

2.3.1  Introduction 

One of the most important and most commonly encountered problems in geotechnical 

earthquake engineering is the evaluation of ground response. Ground response analyses 

are used to predict ground surface motions for development of design response spectra, 

to evaluate dynamic stresses and strain for evaluation of liquefaction hazards, and to 

determine the earthquake-induced forces that can lead to instability of earth-retaining 

structures. Under ideal conditions, a complete ground response analysis would model 

the rupture mechanism at the source of an earthquake, the propagation of stress waves 

through the earth to the top of bedrock beneath a particular site, and would then 

determine how the ground surface motion is influenced by the soils that lie above the 

bedrock. In reality, the mechanism of fault rupture is so complicated and the number of 

energy transmission between the source and the site so uncertain that this approach is 

not practical for common engineering applications. The problem of ground response 

analysis then becomes one of determining the response of the soil deposit to the motion 

of the bedrock immediately beneath it. Despite the fact that seismic waves may travel 

through tens of kilometres of rock and often less than 100m of soil, the soil plays a very 

important role in determining the characteristics of the ground surface motion. (Kramer, 

1996) 

2.3.2  One-dimensional ground response analysis 

When a fault ruptures below the earth’s surface, body waves travel away from the 

source in all directions. As they reach boundaries between different geologic materials, 

they are reflected and refracted. Since the wave propagation velocities of shallower 

materials are generally lower than the materials beneath them, inclined rays that strike 

horizontal layer boundaries are usually refracted to a more vertical direction. By the 

time the rays reach the ground surface, multiple refractions have often bent them to a 

nearly vertical direction (Fig.2.18). 
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Figure 2.18 - Refraction process that produces nearly vertical wave propagation 

the ground surface (Kramer

One-dimensional ground response analyse

boundaries are horizontal and that the response of a soil deposit is predominantly caused 

by SH-waves propagating vertically from the underlying bedrock. For one

ground response analysis, the soil and bedrock surface are assumed to extend infi

in the horizontal direction. 

An important class of techniques for ground response analysis is also based on the 

of transfer functions. For the ground response problem, transfer functions can be used to 

express various response parameters, such 

stress, and shear strain, to an input motion parameter such as bedrock acceleration. 

Because it relies on the principle of supposition, this approach is limited to the analysis 

of linear system. Non linear beh

procedure with equivalent linear soil proprieties. Although the calculation of the transfer 

function involves manipulation of complex numbers, the approach itself is quite simple. 

A known time history of bedrock (input) motion is represented as a Fourier series. Each 

term in the Fourier series of the bedrock (input) motion is then multiplied by the transfer 

function to produce the Fourier series of the ground surface (output) motion. The 

ground surface (output) motion can then be expressed 

inverse FFT (Fast Fourier transform). Thus the transfer function determines how each 

frequency in the bedrock (input) motion is amplified, or deamplified, by the soil 

deposit. The key to the linear approach is the evaluation of transfer function.

1996) 
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a) Uniform undamped soil on rigid rock 

First, consider a uniform layer of isotropic, linear elastic soil overlying rigid bedrock 

(Fig.2.19). 

 

Figure 2.19 - Linear elastic soil deposit of thickness H underlain by rigid bedrock. 

(Kramer, 1996) 

Harmonic horizontal motion of the bedrock will produce vertically propagating shear 

waves in the overlying soil. The resulting horizontal displacement can be expressed: 

ª�¡, �� � |�%�«¬P;¨� � ��%�«¬S;¨� (1.1) 

Where ω is the circular frequency of ground shaking, k the wave number E� � «��F and 

A and B the amplitudes of waves travelling in the �¡ (upward) and �¡ (downward) 

directions, respectively. At the free surface (¡ � 0), the shear stress, and consequently 

the shear strain, must vanish; that is: 

­�0, �� � 6®�0, �� � 6 i¯�],¬�i¨ � 0 (1.2) 

Substituting (1.1) into (1.2) and differentiating yields 

6 ∙ 
 ∙ � ∙ ¥|�%;�]� � ��%;�]�¦�%«¬ � 6 ∙ 
 ∙ � ∙ �| � ���%«¬ � 0					(1.3) 

Which is satisfied (nontrivially) when | � �. The displacement can then be expressed 

as: 

ª�¡, �� � 2| 0°�±P0²°�±) �%«¬ � 2| cos �¡ �%«¬  (1.4) 
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Which describes a standing wave of amplitude �2| ��� �¡�. The standing wave is 

produced by the constructive interference of the upward and downward travelling waves 

and has a fixed shape with respect to depth. Equation (1.4) can be used to define a 

transfer function that describes the ratio of displacement amplitudes at any two points in 

the soil layer. Choosing these two points to be the top and the bottom of the soil layer 

gives the transfer function 

�:�¤� � ¯³´µ�],¬�¯³´µ��,¬� � )@0°¶·)@ ¸¹º;�0°¶· � :¸¹º;� � :
¸¹ºE¶»¼� F  (1.5) 

The modulus of the transfer function is the amplification function 

|�:�¤�| � '¾I���:�¤��¿) � ¾À^��:�¤��¿) � :
m¸¹ºE¶»¼� Fm   (1.6) 

Which indicates that the surface displacement is always at least as large as the bedrock 

displacement (since the denominator can never be greater than 1) and, at certain 

frequencies, is much larger. Thus |�:�¤�| is the ratio of the free surface motion 

amplitude to the bedrock motion amplitude. As E«��� F approaches EÁ) � �ÂF, the 

denominator of equation (1.6) approaches zero, which implies that amplification, or 

resonance, will occur (Fig.2.20). Even this very simple model illustrates that the 

response of a soil deposit is highly dependent upon the frequency of the base motion, 

and that the frequencies at which strong amplification occurs depend on the geometry 

(thickness) and material properties (s-wave velocity) of the soil layer.(Kramer, 1996) 
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Figure 2.20 - Influence of frequency on steady-state response of undamped linear 

elastic layer. (Kramer, 1996) 

b) Uniform, damped soil on rigid rock 

Obviously, the type of unbounded amplification predicted by the previous analysis 

cannot physically occur. The previous analysis assumed no dissipation of energy, or 

damping, in the soil. Since damping is present in all materials, more realistic results can 

be obtained by repeating the analysis with damping. Assuming the soil to have the 

shearing characteristics of a Kelvin-Voigt solid, the wave equation can be written as  

� io¯
i¬o � 6 io¯

i¨o � � i�¯
i¨oi¬   (1.7) 

The solution to this wave equation is of the form 

ª�¡, �� � |�%�«¬P;∗¨� � ��%�«¬S;∗¨� 
where �∗ is a complex wave number with real part �: and imaginary part �). Repeating 

the previous algebraic manipulation with the complex wave number, the transfer 

function for the case of damped soil over rigid rock can be expressed as 

�)�¤� � :¸¹º;∗� � :
¸¹º[¶»¼�∗ \

  (1.8) 

Since the frequency-independent complex shear modulus is given by 6∗ � 6�1 � 
2Ä�, 
the complex shear wave velocity can be expressed as 

�2∗ � vÅ∗Æ � vÅ�:P)%Ç�Æ ≈ vÅÆ �1 � 
Ä� � �2�1 � 
Ä�  (1.9) 

for small ξ. Then the complex wave number can be written, again for small ξ, as 

�∗ � «
��∗ � «

���:P%Ç� ≈ «
�� �1 � 
Ä� � ��1 � 
Ä�  (1.10) 

And finally, the transfer function, as 

�)�¤� � :
¸¹º ;�:S%Ç�� � :

¸¹ºq¶»
¼� �:P%Ç�s   (1.11) 
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Using the identity |cos�r + 
É�| = 'cos) r + sinh) É, the amplification function can 

be expressed as  

|�)�¤�| ≈ :'¸¹ºo ;�P�Ç;��o = :
�¸¹ºoE¶»¼� FPqÇE¶»¼� Fso

  (1.13) 

For small damping ratios, equation (1.13) indicates that amplification by a damped soil 

layer also varies with frequency. The amplification will reach a local maximum 

whenever �  ≈ EÁ) + �ÂF but will never reach a value of infinity since (for Ä > 0) the 

denominator will always be greater than zero. The frequencies that correspond to the 

local maxim are the natural frequencies of the soil deposit. The variation of 

amplification factor with frequency is shown for different levels of damping in figure 

(Fig 2.21). This amplification factor is also equal to the ratio of the free surface motion 

amplitude to the bedrock motion amplitude. Figure (Fig 2.21) shows that damping 

affects the response at high frequencies more than at lower frequencies. 

 

Figure 2.21 - influence of frequency on steady-state response of damped, linear elastic 

layer.(Kramer, 1996) 

The (nth) natural frequency of the soil deposit is given by 

¤� ≈ ��� EÁ) + �ÂF    � = 0,1,2, … ,∞  (1.14) 
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Since the peak amplification factor decreases with increasing natural frequency, the 

greatest amplification factor will occur approximately at the lowest natural frequency, 

also known as the fundamental frequency 

¤] � Á��
)�     (1.15) 

The period of vibration corresponding to the fundamental frequency is called the 

characteristic site period, 

Î2 � 2Â¤] � 4 �2  

The characteristic site period, which depends only on the thickness and shear wave 

velocity of the soil, provides a very useful indication of the period of vibration at which 

the most significant amplification can be expected. At each natural frequency, a 

standing wave develops in the soil. Normalized deformed shapes, or mode shapes, for 

the first three natural frequencies are shown in figure (Fig.2.22).  

 

 

Figure 2.22 - Displacement patterns for standing waves at fundamental (n=0), second 

(n=1) and third (n=2) natural frequencies for a soil layer with ξ=5%. Displacements 

are normalized by maximum displacement at the fundamental frequency.(Kramer, 1996) 
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Note that the soil displacements are in phase at all depths in the fundamental mode, but 

not in the higher modes.  

2.3.3  Rayleigh damping 

Rayleigh damping was originally used in the analysis of structures and elastic continua 

to damp the natural oscillation modes of the system. The equations, therefore, are 

expressed in matrix form. A damping matrix, C, is used, with components proportional 

to the mass (M) and stiffness (K) matrices: 

H � YC � �4 

where: 

α is the mass-proportional damping constant; 

β  is the stiffness-proportional damping constant. 

For a multiple degrees-of-freedom system, the critical damping ratio, ξi, at any angular 

frequency of the system, ωi, can be found from (Bathe and Wilson 1976) 

Y � �¤%) � 2¤%Ä% 
or 

Ä% � 12 [ Y¤% � �¤%\ 
The critical damping ratio ξi, is also known as the fraction of critical damping for mode 

i with angular frequency ωi. The variation of the normalized critical damping ratio with 

angular frequency, ωi, is shown in figure (Fig.2.23). 
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Fig 2.23 - Variation of normalized critical damping ratio with angular frequency. 

(FLAC3D Manual) 

Three curves are given: mass and stiffness components only; and the sum of both 

components. As shown, mass-proportional damping is dominant at lower angular-

frequency ranges, while stiffness-proportional damping dominates at higher angular 

frequencies. The curve representing the sum of both components reaches a minimum at: 

Ä�%� � �Y��:) 

¤�%� � [Y
�\

:)
 

 

or: 

Y � Ä�%�	¤�%� 

� � Ä�%�¤�%� 

The centre frequency is then defined as 

��%� � ¤�%�2Â  
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It may be noted that at frequency ¤�%� (or fmin) and only at that frequency, mass 

damping and stiffness damping each supply half of the total damping force. Rayleigh 

damping is specified in FLAC3D with the parameters ��%� in Hertz and Ä�%�. (FLAC3D 

Manual). 

2.3.4 Comparison between analytical solution and FLAC3D 

solution 

Considering the analytical solution of uniform, damped soil on rigid rock, it is investing 

to check FLAC3D results and compare the two solutions that is, the analytical one and 

FLAC3D. The geometry of the model (Fig 2.24) for FLAC3D analysis is the same that 

described in the first part of the chapter. 

 

Figure 2.24 - Geometry of the model with free field boundary conditions. 

The material properties are: 

Model:   Elastic 

Properties:    Bulk modulus  (K) � 2 ∙ 10�	��� 

Shear modulus  (G) = 0,4 ∙ 10�	��� 

Density            (ρ) = 2 ∙ 10Q ;��� 
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The boundary condition adopted is free field boundary conditions, and Rayleigh 

damping is chosen. 

2.3.4.1 FLAC3D solution 

The input for Rayleigh damping in FLAC3D are: 

Ä�%� � 0,05 

��%� � 7,07	Hz 
In this case fmin is taken with the same value of the average between the first and second 

natural frequencies of the system: 

¤� � �2  EÂ2 � �ÂF 

�2 � �6� � �400002 � √20000 � 141,42	 �̂  

¤: � �2  EÂ2F � 141,4210 Â2 = 22,21	 
���  

¤) = �2  EÂ2 + ÂF = 141,4210 EÂ2 + ÂF = 66,63	 
���  

�: = ¤:2Â = 22,212Â = 3,53	 ¡ 
�) = ¤)2Â = 66,632Â = 10,60	 ¡ 

��%� � �: � �)2 � 3,53 + 10,602 � 7,07 ¡ 
¤�%� � 2Â��%� � 2 ∙ Â	 ∙ 7,07 � 44,42	 
���  

The analysis was repeated for a number of frequencies from 0,5 Hz to 12,5 Hz and some 

results are showing in Figure 2.25 to 2.28. 
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Figure 2.25 - Graphic x-acceleration/dynamic time. The frequency of the input wave is 

1,0 Hz. 

 

Figure 2.26 - Graphic x-acceleration/dynamic time. The frequency of the input wave is 

7,5 Hz. 
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Figure 2.27 - Graphic x-acceleration/dynamic time. The frequency of the input wave is 

9,0 Hz. 

 

Figure 2.28 - Graphic x-acceleration/dynamic time. The frequency of the input wave is 

11,0 Hz. 
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For each frequency the last part of the response, which represents the steady-state 

response, is used and the maximum value of x-acceleration is taken (Fig.2.29). Then 

these values are plotted in a graph as a function of frequency (fig.2.30). 

 

Figure 2.29 – Value of x-acceleration considered. 

 

Figure 2.30 - FLAC3D solutions. 
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2.3.4.2 Analytical solution 

From the input value for the Rayleigh damping the two parameters α and β are 

calculated as: 

Y � Ä�%�	¤�%� � 0,05 ∙ 44,42 � 2,22 

� � Ä�%�¤�%� � 0,0544,42 � 0,001 

The critical damping ratio ξi for each frequency is: 

Ä% = 12 [ Y¤% + �¤%\ 
For each frequency, the damping ratio is computed according to the above equation and 

plotted in Figure 2.31. 

 

Figure 2.31 - Graphic of damping ratio in function of angular frequency. 

The amplification function is: 

|��¤%�| = 1
�cos) E¤% �2 F + qÄ% E¤% �2 Fs
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The values of amplification function are calculated for every frequency with the 

corresponding damping and are plotted in Figure 2.32. 

 

Figure 2.32 – Graphic of analytical solution 

2.3.4.3 Comparison between the two solutions 

The results of FLAC3D are compared in Figure 2.33 with the analytical solution. 

 

Figure 2.33 – Comparison between FLAC3D solution and analytical solution. 
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It was considered that part of the discrepancies at high frequencies was due to the mesh 

size. Therefore, a new model (Fig 2.34), with the same geometry and the same material 

properties but with a more fine mesh, is adopted. The results are plotted together with 

previous results in Figure 2.35.  

 

Figure 2.34 - Geometry of the model 

 

Figure 2.35 - FLAC3D results. In red the values of the results obtained with the new 

mesh. 
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Figure 2.36 - Comparison between analytical solution and FLAC3D solution in the two 

cases: with large mesh and with fine mesh. 

 

Figure 2.37 – Comparison between FLAC3D solution and analytical solution. 

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13

am
pl

ifi
ca

tio
n

f (Hz)

large 

mesh

fine mesh

analytical 

solution

0

2

4

6

8

10

12

0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00

am
pl

ifi
ca

tio
n

f (Hz)

Amplitude vs Frequency



Three-dimensional earthquake response of slopes 

 

65 
 

Figure 2.37 shows the comparison based on the new data. Now with a more fine mesh, 

the two solutions are very similar. Especially refining the mesh in z-direction is possible 

to observe a better correspondence between the solutions. 
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Chapter 3 – Influence of free field boundary 

conditions 

The goal of this chapter is to study the performance of the free field boundary condition 

in slope analyses. A model of a simple slope is constructed and it is subjected to a 

dynamic load. Then at the sides of the model will be extended, in this way the boundary 

conditions are more distant from the slope. Three models will be created with different 

extensions and for each a dynamic analysis will be made. To study the result and the 

influence of the boundary conditions some monitoring points will be take on the top of 

the model and the x-acceleration will be registered. The results will be presented in 

summary plots for comparison. 

3.1 Model 1 - no extension 

A simple slope is created (Fig. 3.1) and a dynamic analysis is made at different 

frequencies ranging from 0,6 Hz to 3,6 Hz. The dynamic input is a simple sinusoidal 

wave: 

���� � sin�¤�� 
 In this first model five monitoring points (A, B, C, D, E) have been taken on top of the 

model, in which the values of the x-acceleration are measured (Fig 3.2) 

 

Figure 3.1 - Geometry of the model  
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The material parameters are: 

Model:  Elastic 

With the following properties:    

Bulk modulus  (K) � 2 ∙ 10�	��� 

Shear modulus  (G) = 0,4 ∙ 10�	��� 

Density            (ρ) = 2 ∙ 10Q ;��� 

The model is discretized using 72 elements in x-direction, 1 element in y-direction and 

18 elements in z-direction. Even though a 3D model is used, the analysis represents a 

plane strain case because of the size of the model in the y-direction. The zone length is 

smaller than 1/10 of the shortest wavelength (on the basis of elastic proprieties of the 

material and the input frequency) to provide accurate wave transmission. 

∆� ≤ 710 

7 = �2���w 

�2 = �6� = �400002 = √20000 = 141,42 �̂  

On the left side the height of the model is 60 m so the first natural frequency is: 

�� � �24 ∙   � 141,424 ∙ 60 � 0,6	 ¡ 
On the right side the height is 30 m so the first natural frequency on that side is: 

�Ò � �24 ∙   � 141,424 ∙ 30 = 1,2	 ¡ 
The range of frequency considered for the analyses vary between 0,6 Hz and three times 

the frequency of the right side that is 3,6 Hz. As fmax is taken 4Hz: 
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���w � 4,0	 ¡ 
7 � �2���w � 141,424 � 35,3	^ 

∆� ≤ 710 ≤ 35,310 = 3,53	^ 

Whereby in x-direction (250m) there must be at least 71 elements, in y-direction (1m) at 

least 1 element and in the z-direction, considering the highest side (left side: 60 m), 17 

elements.  

 

Figure 3.2 – Position of the monitoring points. 

The steady-state accelerations, as for the frequencies, for the monitoring points A-E are 

plotted in Figures 3.3 to 3.7. Because the input acceleration on the base is 1�2o, these 

plots can also be considered as transfer function.  
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Figure 3.3 – Steady-state acceleration for monitoring point A. 

 

Figure 3.4 – Steady-state acceleration for monitoring point B. 
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Figure 3.5 – Steady-state acceleration for monitoring point C. 

 

Figure 3.6 – Steady-state acceleration for monitoring point D. 
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Figure 3.7 – Steady-state acceleration for monitoring point E. 

3.2 Model 2 - one extension 

In this analysis, the model is extended at its sides (Fig. 3.8, 3.9), so that the boundary 

conditions are farther away from the slope. Two extra monitoring points (F,G) (Fig. 3.8) 

are added on the extensions and a new dynamic analysis is run. The same element size 

was used. 

 

Figure 3.8 - Geometry of the model with the extension on the two sides and position of 

the two new monitoring points F and G. 
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Figure 3.9 - Geometry of the model 

The steady-state accelerations, as for the frequencies, for the monitoring points A-G are 

plotted in Figures 3.10 to 3.16. 

 

Figure 3.10 – Steady-state acceleration for monitoring point A. 
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Figure 3.11 – Steady-state acceleration for monitoring point B. 

 

Figure 3.12 – Steady-state acceleration for monitoring point C. 
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Figure 3.13 – Steady-state acceleration for monitoring point D. 

 

Figure 3.14 – Steady-state acceleration for monitoring point E. 
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Figure 3.15 – Steady-state acceleration for monitoring point F. 

 

Figure 3.16 – Steady-state acceleration for monitoring point G. 
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added on the new extensions and a dynamic analysis is run. The same element size was 

used. The steady-state accelerations, as for the frequencies, for the monitoring points A-

G are plotted in Figures 3.19 to 3.27. 
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Figure 3.17 - Geometry of the model with the extension on the two sides and position of 

the two new monitoring points H and I. 

 

Figure 3.18 - Geometry of the model 

 

Figure 3.19 – Steady-state acceleration for monitoring point A. 
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Figure 3.20 – Steady-state acceleration for monitoring point B. 

 

Figure 3.21 – Steady-state acceleration for monitoring point C. 
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Figure 3.22 – Steady-state acceleration for monitoring point D. 

 

Figure 3.23 – Steady-state acceleration for monitoring point E. 
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Figure 3.24 – Steady-state acceleration for monitoring point F. 

 

Figure 3.25 – Steady-state acceleration for monitoring point G. 
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Figure 3.26 – Steady-state acceleration for monitoring point H. 

 

Figure 3.27 – Steady-state acceleration for monitoring point I.  
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3.4 Model 4 - three extensions 

In the last analysis, the model is extended the third time at its sides (Fig. 3.28, 3.29). 

Other two monitoring points (L, M) are added on the new extensions and a dynamic 

analysis is run. The same element size was used. The steady-state accelerations, as for 

the frequencies, for the monitoring points A-G are plotted in Figures 3.30 to 3.40. 

 

Figure 3.28 - Geometry of the model with the extension on the two sides and position of 

the two new monitoring points H and I. 

 

Figure 3.29 - Geometry of the model 
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Figure 3.30 – Steady-state acceleration for monitoring point A. 

 

Figure 3.31 – Steady-state acceleration for monitoring point B. 
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Figure 3.32 – Steady-state acceleration for monitoring point C. 

 

Figure 3.33 – Steady-state acceleration for monitoring point D. 
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Figure 3.34 – Steady-state acceleration for monitoring point E. 

 

Figure 3.35 – Steady-state acceleration for monitoring point F. 
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Figure 3.36 – Steady-state acceleration for monitoring point G. 

 

Figure 3.37 – Steady-state acceleration for monitoring point H. 
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Figure 3.38 – Steady-state acceleration for monitoring point I. 

 

Figure 3.39 – Steady-state acceleration for monitoring point L. 
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Figure 3.40 – Steady-state acceleration for monitoring point M. 

3.5  Comparison between the results of different model 

To analyze the results and understand the influence of boundary conditions, the 

monitoring points are considered one by one in different models. The four different 

models are resumed in Figure 3.41 to 3.49. 

 

Figure 3.41 - Monitoring point A. 
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Figure 3.42 – Monitoring point B. 

 

Figure 3.43 – Monitoring point C. 
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Figure 3.44 – Monitoring point D. 

 

Figure 3.45 – Monitoring point E. 
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Figure 3.46 – Monitoring point F. 

 

Figure 3.47 – Monitoring point G. 

0

1

2

3

4

5

6

7

0 1 2 3 4

x-
ac

ce
le

ra
tio

n 
(m

/s2
)

frequency (Hz)

point F

model 2

model 3

model 4

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4

x-
ac

ce
le

ra
tio

n 
(m

/s2
)

frequency (Hz)

point G

model 2

model 3

model 4



Chapter 3 

 

92 
 

 

Figure 3.48 – Monitoring point H. 

 

Figure 3.49 – Monitoring point I. 

Using these plots, one notes that the differences between model 3 and model 4 are very 

small. So it is possible to conclude that the location of the lateral boundaries in model 3 

is satisfactory for obtaining reliable results and there is no need to use longer model 

laterally. This observation on the optimum location of the boundaries will be used in the 

analyses in the slope analyses in this thesis. 
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Chapter 4 – Performance of SANICLAY model

The objective of this chapter is to perform some numerical simulation with the 

SANICLAY model and to test its sensitivity.

4.1 Description of the model and initialization

The first simulation consisted of some different dynamic analyses. The geometry of the 

model is a slope with a simple shape, as shown in 

at the bottom in the x-direction

Figure 4.1 - Geometry of the model with the dynamic load in the x

The dynamic load has the following expression (

��
Where the values of the parameters 

Three-dimensional earthquake response of slopes

erformance of SANICLAY model

The objective of this chapter is to perform some numerical simulation with the 

SANICLAY model and to test its sensitivity. 

Description of the model and initialization

sted of some different dynamic analyses. The geometry of the 

model is a slope with a simple shape, as shown in Figure.4.1, excited by a dynamic load 

direction.  

Geometry of the model with the dynamic load in the x

The dynamic load has the following expression (Figure 4.2): 

��� � 1,0 ∙ v� ∙ ��Sn¬� ∙ �Ó ∙ sin�¤�� 
Where the values of the parameters α, β, γ are: 

Y � 3,3 

� � 0,19 

® � 12 

�
�& � 2	 ¡ 
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erformance of SANICLAY model  

The objective of this chapter is to perform some numerical simulation with the 

Description of the model and initialization 

sted of some different dynamic analyses. The geometry of the 

excited by a dynamic load 

 

Geometry of the model with the dynamic load in the x-direction. 
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¤ � 2 ∙ Â ∙ �
�& � 12,56	 
�����  

With these values the maximum acceleration of the input is  

���w � 2,5 �̂) 

 

Figure 4.2 - Excitation applied at the bottom of the models in the x-direction. 

For these analyses free field boundary condition have been used.  

 4.2 Influence of boundary conditions 

As in the previous chapter, it is interesting to analyze the influence of the boundary 

conditions when SANICLAY model is adopted. The results of three dynamic analyses 

with different geometries are compared. The first analysis is with the original model, 

model n.1 (Figure 4.3 a)), in the second analysis an extension of 30	^ is added at both 

sides of the first geometry (Figure 4.3 b)) and in the third model, a second extension of 

30 m is added at both sides (Figure 4.3 c)).  
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Figure 4.3 - Geometry of the model: a) model n.1; b) model n.2 c) model n.3. 

Below are shown the time histories of shear strain at the monitoring points P3 (from 

Figure 4.4 to Figure 4.6) and P5 (from Figure 4. 7 to Figure 4. 9) which present some 

interesting results. 

 

Figure 4.4- Shear strain vs Dynamic time of P3 (x=30,y=18), model n.1. 
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Figure 4.5 - Shear strain vs Dynamic time of P3 (x=30,y=18), model n.2. 

 

Figure 4.6 - Shear strain vs Dynamic time of P3 (x=30,y=18), model n.3. 
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Figure 4.7 - Shear strain vs Dynamic time of P5 (x=50,y=17), model n.1. 

 

Figure 4.8 - Shear strain vs Dynamic time of P5 (x=50,y=17), model n.2. 
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Figure 4.9- Shear strain vs Dynamic time of P5 (x=50,y=17), model n.3. 

Considering the results of point P3, one might conclude that the extension in 4.3 b) is 

sufficient to obtain stable results which are almost unaffected by the lateral boundaries. 

4.3 Sensitivity to parameter κ (slope of elastic swelling 

line) 

In this section, the sensitivity of the results to parameter κ, which represents the slope of 

elastic swelling line (Figure 4.10), is studied. 
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Figure 4.10 - Normal consolidation line and unloading

isotropic compression test. (FLAC

Because of the results of the previous analyses only the model with one extension 

applied at each side is used (

Figure 4.11 

A value of 7 � 0,07 (slope of normal
realistic. Then four different dynamic analyses are made, changing each time the value 
of parameter κ (see Table 4.1

:  

Three-dimensional earthquake response of slopes

Normal consolidation line and unloading-reloading (swelling) l

isotropic compression test. (FLAC3D Manual). 

Because of the results of the previous analyses only the model with one extension 

applied at each side is used (Figure 4.11). 

Figure 4.11 - Geometry of the model. 

(slope of normal consolidation line, see Figure 4.10
realistic. Then four different dynamic analyses are made, changing each time the value 

Table 4.1) 
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reloading (swelling) line for an 

Because of the results of the previous analyses only the model with one extension 

 

Figure 4.10) is considered 
realistic. Then four different dynamic analyses are made, changing each time the value 
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case values of κ 

case 1 0,005 

case 2 0,010 

case 3 0,03 

case 4 0,04 

Table 4.1 - Values of parameter κ. 

At the end of each analysis the trend of Bulk modulus (K) is considered and the graphics 

are shown in Figure 4.13. In every case two value of K are taken: one on the left side 

(KL) of the model and the other on the right side (KR), both at an average height (10	^ 

for the left side, 15	^ for the right side), see Figure 4.12. Starting from these values of 

K, the value of own frequency of the model is calculated as follows: 

© = 34�1 − 2Õ�  ;     6 = Ö)�:PT� 

�2 = �6� 

� = �2   

where: 

� = 2000	 ;���  

Õ = 0,2 

 �0j¬ � 10	^      Ò%��¬ = 20	^ 

In Table 4.2 are shown the different values of the frequency of the model at the left side 

and at the right side, for all the cases considered. 

  



 

 

k 

0,005 

0,01 

0,03 

0,04 

Table 4.2 - Values of the frequency of the model at the left side and at the right side.

Figure 4.12 - Zones in which are taken the values of the

 

Three-dimensional earthquake response of slopes

Frequency at left side (Hz) Frequency at right side

8,66 

6,12 

4,74 

3,87 

Values of the frequency of the model at the left side and at the right side.

Zones in which are taken the values of the Bulk modulus, K
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Frequency at right side (Hz) 

5,30 

4,33 

2,73 

2,37 

Values of the frequency of the model at the left side and at the right side. 

 

Bulk modulus, KL and KR. 
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κ = 0,005 

a) 

 

KL = 20000 kPa   KR = 30000 kPa 

κ = 0,01 

b) 

 

KL = 15000 kPa   KR = 20000 kPa 

κ = 0,03 

c) 

 

KL = 6000 kPa    KR = 8000 kPa 

κ = 0,04 

d) 

 

KL = 4000 kPa    KR = 6000 kPa 

Figure 4.13 - Bulk modulus: a) κ = 0,005 b) κ = 0,01 c) κ = 0,03 d) κ = 0,04 

Figure 4.14 shows the graphics of the final displacements of the sensitivity analysis 

with parameter κ, in the two cases without damping and with a Rayleigh damping of 

2%. 
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The excitation frequency is 2 Hz. Observing the graphics of the 

4.14) it is possible to note that no resonance happens; in fact the larger displacements 

happens in the case with κ equal to 

κ 

0,010 

In this case the maximum displacement is 

3,68 m for 2% of damping. The case with the frequencies closest to the input frequency 

(2	 ¡) is the one with < �
results are not in accord with the theory, probably because of the non linearity in the 

response. 

Next, it was is decided to consider again three of the previous analyses, exactly those 

with the following values of parameter 

three different monitoring points (

and their graphs are shown in 

damping).  

Figure 4.15 - Geometry of the model and coordinates of the monitoring points A

 

 

The excitation frequency is 2 Hz. Observing the graphics of the displacement (

) it is possible to note that no resonance happens; in fact the larger displacements 

equal to 0,01, in which: 

Frequency at left side (Hz) Frequency at right side

6,12 4,33 

maximum displacement is 7,53	^ for the case without damping and 

3,68 m for 2% of damping. The case with the frequencies closest to the input frequency 

� 0,04 that is the case with minimum displacements. The 

ord with the theory, probably because of the non linearity in the 

Next, it was is decided to consider again three of the previous analyses, exactly those 

with the following values of parameter κ: 0,005, 0,01 and 0,03. The x-displacements of 

different monitoring points (Figure 4.15) on the top of the model are registered 

and their graphs are shown in Figure 4.16 (without damping) and Figure 4.17

Geometry of the model and coordinates of the monitoring points A

C. 

displacement (Figure 

) it is possible to note that no resonance happens; in fact the larger displacements 

Frequency at right side (Hz) 

 

for the case without damping and 

3,68 m for 2% of damping. The case with the frequencies closest to the input frequency 

that is the case with minimum displacements. The 

ord with the theory, probably because of the non linearity in the 

Next, it was is decided to consider again three of the previous analyses, exactly those 

displacements of 

) on the top of the model are registered 

Figure 4.17 (2% of 

 

Geometry of the model and coordinates of the monitoring points A, B and 
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NO DAMPING 

 × � Ø, ØØÙ × � Ø, ØÚ × � Ø, ØÛ 

A 

   

B 

   

C 

   

Figure 4.16 - Graphics of x-displacements of the three monitoring points A, B and C for the 

three different values of parameter k. Analysis without damping. 
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DAMPING 

 × � Ø, ØØÙ × � Ø, ØÚ × � Ø, ØÛ 
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Figure 4.17 - Graphics of x-displacements of the three monitoring points A, B and C for 

the three different values of parameter k. Analysis with 2% of damping. 
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Observing the displacements of the three monitoring points it is possible to draw the 

same conclusion as before. The displacements of the case with < � 0,01 are larger than 

those of the case with < = 0,03 which is the case with the frequencies of the model 

closest to the frequency of the input wave. 

4.4 Sensitivity analysis of the model, isotropic 

structuration factor Si 

The last sensitivity test was about the parameter Si (Structuration factor). The three 

analyses with the three different values of κ are considered again. For each value of κ 

four analyses are made changing the value of Si. The four different values of Si 

considered are: 3,0 , 2,5, 2,0, 1,0. A value of Si equal to 1,0 means the absence of 

structuration of the clay, while values of 	% > 1 means the presence of structuration. In 

this sensitivity analysis are considered the two cases with and without damping and the 

results (final displacements) are shown in Figure 4.18 and 4.19. 
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From these results, focusing on the more realistic case with the presence of damping, it 

is possible to conclude that in the absence of structuration (	% � 	1) the displacements 

are smallest. The presence of structuration (	% > 1) increase  clearly the displacement. 

About the parameter κ, for the cases considered, it is not easy to draw a conclusion; 

more tests on sensitivity analysis for this parameter may help elucidate the role of this 

parameter.  
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Chapter 5 – Effects of the three-dimensionality 

The goal of this chapter is to investigate the importance of considering the three-

dimensionality in the dynamic response of slopes. To this end, a three-dimensional 

geometry is created and on this geometry it is performed an extensive sensitivity 

analysis. Moreover, in order to quantify the effect of three dimensionality, the results of  

the three-dimensional simulations are compared with those obtained for the 

corresponding two-dimensional model. 

5.1 Geometry of the model 

The three-dimensional geometry of the model is shown Figure 5.1. In this model there 

are slopes in the two directions as follows: the main slope, in the x-direction (direction 

of the dynamic input), identified by α angle and the second slope, in y-direction, defined 

by β angle. The presence of this second slope is the main aspect that permits to observe 

the effects of the three-dimensionality in the dynamic response of the model.  

One of the parameters in the sensitivity analysis is the inclination of the slope. The 

angles of the two slopes are allowed vary in a way that the ratio between the vertical 

size and the horizontal size of the slope take on the values of 1:4, 1:5 or 1:6. For 

example, considering the main slope, the difference of height is constant and equal to 

10m, so the three different horizontal measures to have the right ratios are: 40 m, 50m, 

60m. In presenting the results in this chapter the different inclinations of the slopes will 

be indicated with α 1:4, α 1:5, α 1:6 for the main slope, and β 1:4, β 1:5, β 1:6 for the 

secondary slope. 
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Figure 5.1 - Geometry of the model. 

5.2 Material properties 

An undrained clay is chosen for the numerical simulation and the Mohr-Coulomb 

constitutive model is adopted. In the depth range from 0 m to 10 m the material 

parameters are varied linearly, while in the highest part of the model the material is 

considered homogeneous. The values adopted in the homogeneous upper part are: 

 Cohesion: � � 25,0	��� 

Shear modulus: 6 � 1000 ∙ � = 25000	���  

Bulk:  4 = )Å�:PT�Q�:S)T� = 241666,7���      with: Õ � 0,45   

Internal angle of friction:  � 0,0° 
Dilation angle: Ý � 0,0° 
Tension limit: is given a very large tension cut off to avoid failure in tension 

Density : � � 2000	 ;��� 

In the lower part of the model (from 0 m to 10 m), where it has been decided to take the 

properties non-homogeneous, the relations adopted are shown in Figure 5.2 



 

 

Figure 5.2 -

To make the properties vary with the depth, the function 

variation per meter equal to 

38666,67 for the bulk modulus. The variation of one material parameter (shear modulus 

G) with the depth is show in 

Figure 5.3

Three-dimensional earthquake response of slopes

- Variation of material parameters with depth

s vary with the depth, the function gradient was uses, adopting 

variation per meter equal to 4 for the cohesion, 4000 for the shear modulus and 

for the bulk modulus. The variation of one material parameter (shear modulus 

in Figure 5.3. 

5.3 - Variation of shear modulus G with depth. 
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Variation of material parameters with depth. 

was uses, adopting 

for the shear modulus and 

for the bulk modulus. The variation of one material parameter (shear modulus 
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5.3 Dynamic input 

For simplicity and better interpretation of the results a sinusoidal wave with the 

following expression has been used: 

ªO � � �
¤ cos	�¤�� 

 
Figure 5.4 - Dynamic input. 

In this way the acceleration and the displacements are sinuisoidal functions beginning 

from zero and expressed as follows.  

ª = − �¤) sin	�¤�� 
ªÞ = ��
�	�¤�� 

The dynamic input is specified as a velocity time history in the x-direction and is 

applied at the bottom of the model (see Figure 5.5). 
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Figure 5.5 - Direction of the dynamic input. 

Free field boundary conditions are adopted as shown in Figure 5.6. 

 
Figure 5.6 - Free field boundary condition. 

5.4 Sensitivity analysis 

Using this three-dimensional geometry an extensive sensitivity analysis has been 
performed on the following parameters: earthquake frequency, peak acceleration, and 
the angles of the two slopes. The different combinations are resumed from Table 5.1 to 
Table 5.3.   



Chapter 5 

 

116 
 

FREQUENCY 2.0 Hz 

 
α 1:4 α 1:5 α 1:6 

β 1:4 β 1:5 β 1:6 β 1:4 β 1:5 β 1:6 β 1:4 β 1:5 β 1:6 

peak 

acceleration 

0.1g 0.1g 0.1g 0.1g 0.1g 0.1g 0.1g 0.1g 0.1g 

0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 0.15g 

0.2g 0.2g 0.2g 0.2g 0.2g 0.2g 0.2g 0.2g 0.2g 

Table 5.1 - Analyses made with frequency of 2.0 Hz 

FREQUENCY 3.0 Hz 

 α 1:5 

 β 1:5 

peak acceleration 

0.1g 

0.15g 

0.2g 

Table 5.2 - Analyses made with frequency of 3.0 Hz 

FREQUENCY 5.0 Hz 

 α 1:5 

 β 1:5 

peak acceleration 

0.1g 

0.15g 

0.2g 

Table 5.3 - Analyses made with frequency of 5.0 Hz 
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Some representative cases of the sensitivity analysis were chosen to show some key 

results of the analyses, the cases are: 

 Frequency (Hz) 
Inclination 

of main 
slope 

Inclination of 
the secondary 

slope 

Peak 
acceleration 

 

Figure 
5.7 

2.0 Hz α 1:4 β 1:4 0.15g 

2.0 Hz α 1:5 β 1:5 0.15g 
 

Figure 
5.8 

2.0 Hz α 1:5 β 1:5 0.15g 

3.0 Hz α 1:5 β 1:5 0.15g 
 

Figure 
5.9 

2.0 Hz α 1:5 β 1:5 0.1 g 

3.0 Hz α 1:5 β 1:5 0.2 g 

Table 5.4 – Summary of the results that are shown in the next figure. 

The results of the total permanent displacements and of the permanent shear strain at the 

end of the dynamic analyses for these cases are shown in Figure 5.7 to Figure 5.9. The 

maximum computed values are also listed in these figures for easy comparisons. 
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Another interesting thing is to show the results of displacements separately in the 

horizontal and vertical directions. These results are shown in Figure 5.10 and they are 

referred to one significant case with the following parameters. 

Frequency (Hz) 
Inclination 

of main 
slope 

Inclination of 
the secondary 

slope 

Peak 
acceleration 

2.0 Hz α 1:5 β 1:5 0.15g 

 

  
Permanent x-displacement 

  
Permanent y-displacement 

  
Permanent z-displacement 

 

Figure 5.10 - Results of permanent displacements separately in the horizontal and 
vertical directions 
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In Figure 5.12 are shown plots of horizontal displacements in excitation direction of 

three monitoring points A, B, C lying on the slope (see Figure 5.11). 

 
Figure 5.11 - Position of the monitoring points. 
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Time history of permanent x-displacement of points A 

 

Time history of permanent x-displacement of points B 

 

 Time history of permanent x-displacement of points C 

Figure 5.12 - Plots of permanent horizontal displacements in excitation 

direction 

The following table summarizes the results of all the analyses. The results include the 

permanent displacements and shear strains.  



 

 

Three-dimensional earthquake response of slopesdimensional earthquake response of slopes 

127 

 



Chapter 5 

 

128 
 

Figure 5.13 to Figure 5.16 presents the results in graphic form. The results are presented 

against different parameters to highlight the influence of the parameters. 

 

Figure 5.13 – Permanent displacements in graphic form of the sensitivity analysis.  

 

Figure 5.14 – Permanent shear strain in graphic form of the sensitivity analysis. 
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Figure 5.15 – Permanent displacements in graphic form of sensitivity analysis on 
frequencies. 

 

Figure 5.16 - Permanent shear strain in graphic form of sensitivity analysis on 
frequencies. 
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Considering the results for the displacements, it is clear that the models work well, 

because, as expected, by increasing the peak acceleration or the inclination of the slope 

one obtains increase in the displacements. Considering the sensitivity analysis on the 

frequency, the large values of displacement occurs for a frequency of 2 Hz. This is 

explainable because this frequency is fairly close to the natural frequency of the soil 

model. 

5.5 2D vs. 3D 

In this section, the results of some of the cases of three-dimensional simulations are 

compared with the results obtained with the corresponding two-dimensional model in 

order to quantify the effect of three-dimensionality. The cases considered are described 

in Table 5.5: 

 

Frequency (Hz) 
Inclination 

of main 
slope 

Inclination of 
the secondary 

slope 

Peak 
acceleration 

 

Case 1 2.0 Hz α 1:4 β 1:4 0.15g 

Case 2 2.0 Hz α 1:5 β 1:5 0.15 g 

Case 3 5.0 Hz α 1:5 β 1:5 0.15 g 

Table 5.5 - Summary of the significant cases considered. 

Then for the two-dimensional simulations, three different geometries are prepared; each 
one corresponding to a longitudinal section normal to the secondary slope of the three-
dimensional model (see Figure 5.17).  
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3D - section 1: y = 20 m 2D - model a) 

 
 

3D - section 2: y = 35 m 2D - model b) 

 

  

3D - section 3: y = 50 m 2D - model c) 

Figure 5.17 –Sections of the three-dimensional model and corresponding two-

dimensional model. 
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The comparison between the results of the sections of the three-dimensional models and 

the corresponding two-dimensional models are shown in Figure: 5.18 to Figure 5.20: 
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Case 1 : Frequency: 2.0 Hz ; α 1:4; β 1:4; peak acceleration: 0.15g 

3D section 2D models 

  

Max. displacement = 1,043 m Max. displacement = 0,850 m 

  
Max. displacement = 1,041 m Max. displacement = 0,694 

  
Max. displacement = 1,009 m Max. displacement = 0,532 

 

Figure 5.18 a) – Permanent displacements, case 1 

Case 1 : Frequency: 2.0 Hz ; α 1:4; β 1:4; peak acceleration: 0.15g 

3D sections 2D models 

  

Max permanent shear strain = 9,03% Max permanent shear strain = 9,72% 

  
Max permanent shear strain = 9,29% Max permanent shear strain = 8,16% 

  
Max permanent shear strain = 10,00% Max permanent shear strain = 5,34%  

 

Figure 5.18 b) –Permanent shear strain, case 1 
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Case 2 : Frequency: 2.0 Hz ; α 1:5; β 1:5; peak acceleration 0.15g 

3D section 2D models 

  
Max. displacement = 0,693 m Max. displacement = 0,677 m 

  
Max. displacement = 0,682 m Max. displacement = 0,586 

  
Max. displacement = 0,650 m Max. displacement = 0,496 

 

Figure 5.19a) – Permanent displacements, case 2 

Case 2 : Frequency: 2.0 Hz ; α 1:5; β 1:5; peak acceleration 0.15g 

3D sections 2D models 

  

Max permanent shear strain = 5,71% Max permanent shear strain = 8,93% 

  
Max permanent shear strain = 5,52% Max permanent shear strain = 7,74% 

  

Max permanent shear strain = 5,16% Max permanent shear strain = 5,21%  

 

Figure 5.19 b) – Permanent shear strain, case 2 
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Case 3 : Frequency: 5.0 Hz ; α 1:5; β 1:5; peak acceleration 0.15g 

3D section 2D models 

  

Max. displacement = 0,115 m Max. displacement = 0,677 m 

  

Max. displacement = 0,106 m Max. displacement = 0,586 

  

Max. displacement = 0,100 m Max. displacement = 0,496 

 

Figure 5.20 a) – Permanent displacements, case 3 

Case 3 : Frequency: 5.0 Hz ; α 1:5; β 1:5; peak acceleration 0.15g 

3D sections 2D models 

  
Max permanent shear strain = 0,91% Max permanent shear strain = 1,62% 

  
Max permanent shear strain = 0,87% Max permanent shear strain = 0,99% 

  
Max permanent shear strain = 0,86% Max permanent shear strain = 1,53%  

 
Figure 5.20 b) – Permanent shear strain, case 3 
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From these results it is possible to conclude that three dimensional model gives largest 

values for displacements and strains. The presence of the secondary slope produces a 

condition that is more critical than a simple 2D model of the same size. Two-

dimensional models obviously fail to capture this feature.  

These observations and results indicate that the effects of the three-dimensionality are 

indeed important. In these case a simple two-dimensional anlaysis could underestimate 

the effects of the dynamic input. The results of this study can then be used to get an idea 

of the degree of unconservatism in the 2D results.  

 

 

 



Three-dimensional earthquake response of slopes 

 

137 
 

Conclusion 

The main goal of this research is to understand the role played by the three 

dimensionality in the earthquake response of slopes and understand the influence of the 

boundary conditions and material parameters.  

The research is performed by using of the software FLAC3D, a three-dimensional 

explicit non linear finite-difference program for engineering mechanics computation. 

This software has been chosen because of the possibility to adopt the free-field 

boundary condition, which is a very powerful and effective tool for dynamic analysis of 

earthquake response.  

The first part of this study deals with the principles of the program FLAC3D and how it 

works. The objective is to master the basic commands and learn special tools to create 

complicated models, analyze their dynamic behaviour and to understand the differences 

in the responses by applying different boundary conditions, in particular to understand 

how the “free field boundary conditions” works. Indeed in the numerical analysis of the 

seismic response, the boundary conditions at the sides of the model must account for the 

free-field motion that would exist in the absence of the structure. In some cases, 

elementary lateral boundaries, may be sufficient but should be placed at sufficient 

distances to minimize wave reflections and achieve free-field conditions. When the 

material damping is low, the required distance may lead to an impractical model, so an 

alternative procedure, developed also for FLAC3D, is to “enforce” the free-field motion 

in such a way that boundaries reproduce non-reflecting proprieties.  

During the research, it was observed that this tool always operates in the right way, 

giving accurate results. An important observation about these boundary conditions is 

that when “free field boundary condition” are applied, the fixities applied on the model 

in the previous loading stage are deleted only at the boundary of the model. In fact 

inside the model all the fixities remain unchanged.  

In the second chapter, the mono-dimensional dynamic ground response is calculated 

with analytical methods and with FLAC3D, and the responses are compared. The 

comparisons are indeed very satisfactory. During this phase it has been noted that care 
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must be taken about the size of the elements of the mesh. In fact with a largest mesh the 

results of the numerical simulations are not precisely the same as those of the case with 

a fine mesh. 

In the third chapter of the thesis, the focus has been on the influence of these free field 

boundary conditions in more general models. Considering a two-dimensional simple 

slope (modeled in FLAC3D with the third-dimension equal to one) some numerical 

simulations are made by increasing the dimension of the geometry in the x-direction, 

that is, by increasing the distance of the boundary conditions from the slope. In this way 

it has been possible to find out that also these free-field boundary conditions needs 

some space in order not to influence the results of the dynamic analysis. So at the end of 

this first part a very good knowledge about use of  FLAC3D in this seismic slope 

stability has been acquired. 

The second part of the work is the study of the role of three dimensionality on the 

dynamic response of slopes. The idea was to adopt as constitutive model for modeling 

the soil by the SANICLAY model. SANICLAY is a constitutive model based on the 

well-known isotropic modified Cam Clay model with two additional mechanisms to 

account for anisotropy and destructuration. SANICLAY is not implemented directly 

inside FLAC3D, but a few years ago a user-defined subroutine has been written for it to 

suit FLAC3D. Before applying this model to a three-dimensional geometry some 

simulations are made to test its performance and its stability. But as it has been 

described in Chapter 4, this model is not quite stable for all conditions. In fact it doesn’t 

work well when the mesh is made very fine. This could be partly due to general 

problem of implementation of strain-softening models in FE/FD programs. Due to this 

and other practical issues, it was decided to switch to the Mohr Coulomb constitutive 

model for the rest of the research. 

The last part of the thesis consisted of analyzing the effect of the three dimensionality in 

the dynamic response of slopes. A three-dimensional geometry is created with two 

different slopes: one in x-direction and the other in the y-direction.  In order to better 

interpret the importance of excitation characteristics, the input is chosen as a sinuisodal 

simple wave, and it has been applied to the bottom of the model as a velocity in the x-
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direction. In this way the displacements and the acceleration begin from zero, and it’s 

easy to control the parameters useful for the sensitivity analyses. On this geometry it is 

performed an extensive sensitivity analysis on parameters like: earthquake frequency, 

peak acceleration, and the angles of the two slopes.  

Considering the results of the sensitivity analyses, especially the displacements, it is 

found that the models work well, because, as expected, by increasing the peak 

acceleration or the inclination of the slope one obtains larger displacements. 

Considering the sensitivity analysis on the frequency, the large values of displacement 

occurs for a frequency of 2 Hz. This is explainable because this frequency is fairly close 

to the natural frequency of the soil model. 

In the last section of the thesis, the results of some of the cases of three-dimensional 

simulations are compared with the results obtained with the corresponding two-

dimensional model in order to quantify the effect of three-dimensionality. For the two-

dimensional simulations, three different geometries are prepared; each one 

corresponding to a longitudinal section normal to the secondary slope of the three 

dimensional model. From these results it is possible to conclude that three dimensional 

models give largest values for displacements and strains. The presence of the secondary 

slope produces a condition that is more critical than a simple 2D model of the same size. 

Two-dimensional models obviously fail to capture this feature. These observations and 

results indicate that the effects of the three-dimensionality are indeed important. In these 

cases, simple two-dimensional anlayses could underestimate the effects of the dynamic 

input. The results of this study can then be used to get an idea of the degree of 

unconservatism in the 2D results. 

Reccomandation for next studies are, about SANICLAY model, find a way to build up a 

more efficient script, more stable and easy to apply to every case.  

About the issue of the three dimensionality it should be intersting to investigate the 

earthquake response of slopes with different dynamic input, for example changing the 

direction of the input and using a realistic seismic input. 
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