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Abstract

General relativity is non-renormalizable, meaning that we lack a complete quantum theory
of gravity. However, working at energies below the Planck mass, which is the cutoff scale
of quantum gravity, we can resort to the effective field theory approach, implemented here
via the Barvinsky-Vilkovisky unique effective action. The latter has been used to derive
quantum corrections to classical metrics, such as the Schwarzschild solution. In this thesis,
we compute these corrections and extend the analysis to a static and electrically charged star
modeled as a perfect fluid, considering distinct scenarios based on different applications of
the perfect fluidity condition to the energy-momentum tensor components. Additionally, we
explore gravastars and dark energy stars, proposed as compact objects alternative to classical
Schwarzschild black holes, arguing that quantum-induced hairs in their metrics may allow us
to experimentally distinguish between these objects. Finally, we examine gravitational lensing
observables, namely the photon sphere radius and the deflection angle of bent light rays, and the
gravitational redshift, to validate the predicted quantum corrections. These findings provide a
framework for potential empirical tests to distinguish quantum-corrected metrics from classical
ones, contributing to the broader understanding of quantum gravity phenomenology.
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My subject is the quantum theory of gravitation. My interest in it is primarily in
the relation of one part of nature to another. There’s a certain irrationality to any
work in gravitation, so it’s hard to explain why you do any of it [...] But since I am
among equally irrational men, I won’t be criticized I hope for the fact that there is
no possible, practical reason for making these calculations.

– Richard Feynman, ”Quantum Theory of Gravitation”
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Chapter 1

Introduction

General relativity is an outstanding theory that completely changed our understanding of gravity
and has survived many tests in its more than a century-long life. However, it was eventually
realized that although it works extremely well when applied to astrophysical objects, problems
start to arise both on very large and very small scales. When looking at galaxies, we encounter
the well known problem of the rotation velocity of stars around the galactic disk [1, 2] and
when looking at the Universe as a whole, we encounter the problem of accelerated expansion
and dark energy in the ΛCDM model [3–8]. On the other hand, general relativity breaks down
in the quantum regime. As a gauge theory it is non-renormalizable [9, 10] and we thus cannot
quantize it as we do with the other fundamental interactions: electromagnetism, weak force
and strong force.

Although a theory of quantum gravity would seem to be non-relevant for current everyday
physics, as it becomes important at energies much bigger than those we deal with nowadays,
there are many physical scenarios that we still don’t fully comprehend and that could be made
more clear by this theory. The most interesting of which are surely black hole singularities and
the very first moments after the birth of the Universe, if not even the origin of the Universe
itself. Besides, the fact that we can quantize the other three fundamentals interactions but not
gravity, is in itself a good enough motivation for the most ”irrational men” among us to pursue
this subject.

Many attempts have been made in order to find the UV completion of general relativity.
Even though we do not yet have the full theory, there is still something that can be said about
quantum gravity. If we restrict ourselves to energies far below its typical energy scale, that is
the Planck mass Mp = 2.4× 1018 GeV, we can work in the effective field theory approach. The
resulting effective action is the unique effective action in quantum gravity [11–14], which, in
this work, we will refer to as the Barvinsky-Vilkovisky unique effective action. The effective
action has been extensively studied: from solutions to the modified Einstein field equations
one obtains from this action [15–25] to implications for the Standard Model and dark matter
[26–32], many are the information and hints towards the full theory that we can learn.

In this thesis, we will add to this vast phenomenology by computing quantum corrected
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metrics as perturbative solutions of the modified Einstein equations, looking specifically at
the charged star metric, modeled as a static perfect fluid, and at gravastars [33–36] and dark
energy stars [37]. Furthermore, we will study implications for gravitational lensing of these
and other modified metrics already present in the literature, finding deviations from some well
known, classical results [38–41] in order to find possible experimental effects of the theory. In
particular, these observables could allow us to experimentally distinguish classical black holes
from gravastars or dark energy stars.

The outline of the thesis is the following.

Chapter 2

We briefly review the quantization of general relativity and how the theory is non-renormalizable.
We then describe the concept of effective field theories (EFTs) and discuss the quantum gravi-
tational EFT with the Barvinsky-Vilkovisky unique effective action.

Chapter 3

We first show how the gravitational effective action can be used to find corrections to known
metrics solving perturbatively the modified Einstein equations. We report these corrections
for the simple case of a dust ball, described by the interior Schwarzschild metric star, in the
background field method.

Chapter 4

We generalize the result of the previous chapter to an electrically charged star. We consider
the star to be made up of a perfect fluid. The energy-momentum tensor is now given by
the sum of the proper matter and electromagnetic tensors. Therefore we distinguish two
cases, depending on which tensor we impose the perfect fluidity condition on, namely that the
spacelike eigenvalues of the energy-momentum tensor should all be equal everywhere: case
I, where the condition is imposed only on the matter tensor; case II, where the condition is
imposed on the whole tensor.

Chapter 5

After introducing the gravastar and the closely related dark energy star models as possible
compact objects alternative to black holes, we argue that the existence of hairs in the quantum
corrected metrics of these objects may allow us to experimentally distinguish them from
classical Schwarzschild black holes.
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Chapter 6

Finally, we turn to the computation of several observables in the framework of gravitational
lensing, namely refractive indices in the optical-mechanical analogy in general relativity, the
photon sphere radius, the bending of light rays and the gravitational redshift, with the aim of
testing the validity of our calculations.

Chapter 7

We reserve this chapter for conclusions and future outlooks.
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Chapter 2

The effective field theory of quantum
gravity

2.1 The quantization of gravity
In the past century, Quantum Field Theory has been extremely successful in quantizing the
electromagnetic, weak and strong interactions leading to the construction of the Standard
Model. However, when one attempts to repeat the same quantization procedure for General
Relativity, the theory turns out to be non-renormalizable. To better understand what this means,
let us start by briefly reviewing the quantization procedure through the path integral formalism
[42].

2.1.1 Path integrals
Path integrals give the transition amplitude for a generic field ϕ to go from an initial to a final
configuration. This can be expressed as

A =

∫
Dϕ e

i
ℏS[ϕ], (2.1)

where Dϕ denotes the integration over all possible field configurations weighted by the action
S[ϕ] =

∫
d4xL(ϕ).

Observables are expressed in terms of correlation functions, that is normalized averages of
the time-ordered product of a given number n of field operators on the vacuum:

⟨0|ϕ(x1)ϕ(x2) . . . ϕ(xn)|0⟩ =
1

Z

∫
Dϕ T{ϕ(x1)ϕ(x2) . . . ϕ(xn)}e

i
ℏS[ϕ], (2.2)

where Z =
∫
Dϕ e

i
ℏS[ϕ] is the normalization constant and T the time-ordering operator. If we
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now introduce the generating functional:

Z[J ] =

∫
Dϕ e

i
ℏ [S[ϕ]+

∫
d4xJ(x)ϕ(x)], (2.3)

where J(x) is an external source, we can then express correlation functions as

⟨0|ϕ(x1)ϕ(x2) . . . ϕ(xn)|0⟩ =
1

Z[0]

(
ℏ
i

)n
δnZ[J ]

δJ(x1)δJ(x2) . . . δJ(xn)
. (2.4)

For later convenience, it is useful to introduce the generating functional of connected correlation
functions W [J ] defined in terms of the usual generating functional (2.3) as

Z[J ] = e
i
ℏW [J ]. (2.5)

Path integrals are in general very difficult if not impossible to solve analytically. However, for
the free (i.e. non-interacting) theory, characterized by Gaussian integrals, these are exactly
solvable. Once we turn on interactions, the resulting path integrals can be computed using
perturbation theory around the free theory.

These integrals usually turn out to be divergent. Clearly, a divergent transition amplitude
is physically meaningless. Therefore, to get rid of these divergences, the integrals need to
be regularized using a given regularization scheme and then renormalized introducing a given
number of counterterms in the interaction Lagrangian. If the number of necessary counterterms
is finite then the theory is said to be renormalizable. As a general rule, if the coupling constant
of a term appearing in the Lagrangian has negative mass dimension then the theory is non-
renormalizable.

2.1.2 Background field method
General relativity can be quantized with the background field method [43]. That is, the metric
gµν is split into a background metric ḡµν and a small perturbation hµν as

gµν = ḡµν + κhµν , (2.6)

where κ2 = 8πGN . The perturbation is then quantized on top of the background metric,
which is kept classical and preserves the gauge symmetry of the theory, that is diffeomorphism
invariance. In this way, we can quantize general relativity while saving its symmetry.

However, the theory turns out to be non-renormalizable. This is not unexpected, as the
coupling constant has a negative mass dimension: [κ2] = −2. Divergences in general relativity
emerge already at one-loop. In fact, although at this order the pure theory may be renormalized,
when we consider interactions with scalar fields this is no longer true [9]. At the two-loop
order, even the pure theory is already non-renormalizable [44].
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2.2 Effective field theory
Even though general relativity is non-renormalizable, not all hope is lost. In terms of Planck
units and setting c = ℏ = 1, we may rewrite the coupling constant of general relativity as
κ−2 = M2

p , with

Mp =

√
ℏ c

8πGN

= 2.4× 1018 GeV (2.7)

the Planck mass. As long as we are at energies far below Mp, we may approximate the full
theory with an effective field theory or EFT. Energies relevant to modern day physics are below
this value. For example, the highest energy ever reached at the Large Hadron Collider is of the
order of 13.6× 103 GeV [45].

The EFT is valid up to the given cutoff scale. Once we know this scale we can then divide
the energy modes into two distinct categories: high energy modes, that is modes with energies
above the cutoff scale and low energy modes, that is modes with energies below the cutoff
scale. Since we work at low energies, high energy modes cannot be excited and thus need to be
removed from initial and final configurations. They are therefore ”integrated out” in the path
integral formalism. Formally, we may express this as∫

Dl e
i
ℏΓ[l] =

∫
Dl Dh e

i
ℏS[l,h], (2.8)

where h and l are respectively high and low energy modes, S is the action of the full theory
and Γ is the effective action.

If we know the full theory then we can carry out this integration explicitly. However, even
if the UV completion is unknown, we can still make predictions on the form of the effective
action based on the symmetries of the theory, as all the extra terms we add on top of the low
energy limit action must preserve its symmetries. Therefore for gravity, knowing that the cutoff
scale is the Planck mass, the low energy theory is given by general relativity and its symmetry
is that of diffeomorphism invariance, we expect an effective action of the form

Γ =

∫
d4x

√
−g

(
M2

p

2
R + a1R2 +

a2
M2

p

R3 +
a3
M4

p

R4 + . . .

)
, (2.9)

where Rn is any contraction of the product of n Riemann tensors and the Wilson coefficients
ai can only be determined from the UV completion of quantum gravity (see e.g. [46, 47]).

For gravity, the heavy modes we have to integrate out are the gravitons. Let us consider the
full graviton action, whatever it may be:

S[g] = M2
p

∫
d4x

√
−gL(g). (2.10)

The generating functional of connected correlation functions (2.5) is in this case

W [J ] = −iℏ ln
(∫

Dge
i
ℏ(S[g]+

∫
d4x

√
−ggµνJµν)

)
, (2.11)

9



and taking the Legendre transform we get the effective action

Γ[ḡ] = W [J ]−
∫

d4x
√
−gḡµνJ

µν , (2.12)

where
ḡµν =

δW [J ]

δJµν
= ⟨gµν⟩ (2.13)

is the vacuum expectation value of the metric. We can then use the background field method
with the metric (2.6):

gµν = ḡµν +M−1
p hµν , (2.14)

to finally obtain

Γ[ḡ] = S[ḡ] +
i

2Mp

Tr

[
ln

(
δ2S[ḡ]

δg2

)]
+O(M−2

p ), (2.15)

which does not depend on the perturbationhµν . We thus succesfully integrated out the gravitons.
This expansion may be interpreted as a loop expansion in Feynman diagrams: the leading

order term is the on-shell graviton action corresponding to tree level diagrams, the next term
contains one loop graviton diagrams and so on. In order to find corrections to the classical
action we thus need to compute the graviton loops. To do so in such a way that the background
metric may preserve its gauge freedom we can use DeWitt’s mean-field method [43, 48, 49].
The resulting effective action is the Barvinsky-Vilkovisky unique effective action [11–14].

2.3 The Barvinsky-Vilkovisky unique effective action
The Barvinsky-Vilkovisky effective quantum gravitational action is given by the sum of a local
and a non-local part:

Γ[g] = ΓL[g] + ΓNL[g]. (2.16)

At second order in curvature, the local part reads

ΓL =

∫
d4x

√
−g

[
M2

p

2
R + c1(µ)R

2 + c2(µ)RµνR
µν

+c3(µ)RµναβR
µναβ +O(M−2

p )
]
, (2.17)

where the prefactors ci are the Wilson coefficients and µ is the renormalization scale. The
non-local part is instead

ΓNL = −
∫

d4x
√
−g

[
αR ln

(
□
µ2

)
R + βRµν ln

(
□
µ2

)
Rµν

+γRµναβ ln

(
□
µ2

)
Rµναβ +O(M−2

p )

]
, (2.18)
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α β γ
Scalar 5(6ξ − 1)2 −2 2

Fermion −5 8 7
Vector −50 176 −26

Graviton 250 −244 424

Table 2.1: Non-local Wilson coefficients for different fields. All numbers should be divided by
11520π2. ξ is the value of the non-minimal coupling for a scalar theory.

where □ := gµν∇µ∇ν . The action of the non-local operator ln(□/µ2) on radial functions is
discussed in Appendix A. The last term of the local action (2.17), containing the contraction of
two Riemann tensors, can be rewritten as a function of the Ricci tensor and Ricci scalar using
the Gauss-Bonnet topological invariant:∫

d4x
√
−g(R2 − 4RµνR

µν +RµναβR
µναβ) = 32π2χ(M), (2.19)

where χ(M) is the Euler characteristic of the manifold. Being this a topological term, it does
not affect the equations of motion. In this way we may simplify the local action to

ΓL =

∫
d4x

√
−g

[
R

16πGN

+ c̄1R
2 + c̄2RµνR

µν

]
, (2.20)

where c̄1 = c1 − c3 and c̄2 = c2 + 4c3.
The value of the Wilson coefficients of the local part is unknown, since we need the UV

completion of the quantum gravity theory in order to be able to compute them. Bounds on
these coefficients can be determined from the Eöt-Wash experiment [50], which is a Cavendish
experiment looking at deviations from the Newtonian potential. The coefficients must be such
that: ci ≲ 1061. The value of those of the non-local part are instead calculable [11, 12, 51] in
a gauge invariant manner and are listed in Tab. 2.1. The non-local coefficients depend on the
type and number of fields that the graviton couples to. Denoting by Ns, Nf , Nv, Ng the number
of scalar, fermionic, vector and graviton fields in the theory, we have in general

α = Nsαs +Nfαf +Nvαv +Ngαg. (2.21)

By varying the effective action with respect to the metric (see Appendix B), we find the
equations of motion

Gµν + 16πGN(H
L
µν +HNL

µν ) = 0, (2.22)

where
Gµν = Rµν −

1

2
Rgµν (2.23)
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is the usual Einstein tensor. The local part is given by

HL
µν =c̄1

(
2RRµν −

1

2
gµνR

2 + 2gµν□R− 2∇µ∇νR

)
+ c̄2

(
2Rα

µRνα − 1

2
gµνRαβR

αβ +□Rµν +
1

2
gµν□R−∇α∇µR

α
ν −∇α∇νR

α
µ

)
.

(2.24)

The non-local part is

HNL
µν =− 2α

(
Rµν −

1

4
gµνR + gµν□−∇µ∇ν

)
ln

(
□
µ2

)
R

− β

(
2δα(µRν)β −

1

2
gµνR

α
β + δαµgνβ□+ gµν∇α∇β − δαµ∇β∇ν − δαν∇β∇µ

)
ln

(
□
µ2

)
Rβ

α

− 2γ

(
δα(µR

β
ν)στ −

1

4
gµνRαβ

στ + (δαµgνσ + δαν gµσ)∇β∇τ

)
ln

(
□
µ2

)
Rαβ

στ .

(2.25)

Note that variations of the ln(□/µ2) terms yield terms of higher order in curvature which can
then be neglected at second order in the curvature expansion [52].

Solving these modified equations of motion could help us better understand gravitational
phenomena and possibly solve some of the problems of general relativity. However, finding
analytic solutions is indeed a very difficult task and therefore we must resort to some approximate
methods. In the following chapter, using the background field method and perturbation theory,
we see how we may solve these equations finding corrections to the Schwarzschild metric.
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Chapter 3

Quantum gravitational corrections to the
Schwarzschild metric

The simplest solution of the Einstein field equations is given by the Schwarzschild metric [53,
54], describing the spacetime outside a static spherically symmetric object. In this chapter we
study the corrections that this metric gets using the modified equations of motions.

3.1 Quantum corrections to a star metric
Let us consider a static, homogeneous and isotropic star satisfying the Tolman-Volkoff-
Oppenheimer equation [55, 56], with constant density

ρ(r) = ρ0Θ(Rs − r) =

{
ρ0 if r < Rs,

0 if r > Rs,
(3.1)

where ρ0 > 0 is a constant, Rs is the star radius and Θ(x) is the Heaviside step function. The
solution to the Einstein equations inside the star (r ≤ RS) is the interior Schwarzschild metric
[53, 54]:

ds2 =

(
3

√
1− 2GNM

Rs

−

√
1− 2GNMr2

R3
s

)2

dt2

4
−
(
1− 2GNMr2

R3
s

)−1

dr2 − r2dΩ2

= gint
µνdx

µdxν ,

(3.2)

where
M = 4π

∫ Rs

0

ρ r2dr =
4

3
πR3

sρ0 (3.3)
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is the total Misner-Sharp mass of the source. The corresponding pressure is

p(r) = ρ0

√
1− 2GNM

Rs
−
√

1− 2GNMr2

R3
s√

1− 2GNMr2

R3
s

− 3
√

1− 2GNM
Rs

= O(GN). (3.4)

Due to Birkhoff’s theorem [57], the metric outside the star (r > Rs) is the usual Schwarzschild
metric:

ds2 =

(
1− 2GNM

r

)
dt2 −

(
1− 2GNM

r

)−1

dr2 − r2dΩ2 = gext
µνdx

µdxν . (3.5)

We will solve the equations of motion (2.22) with the background field method, that is we
consider perturbations of the above metrics of the form

g̃µν = gµν + hµν , (3.6)

where gµν is the classical background metric and the perturbation hµν is taken to be of order
O(GN). The equations of motion (2.22) then become

GL
µν [h] + 16πGN(H

L
µν [g] +HNL

µν [g]) = 0, (3.7)

where the linearized Einstein tensor is given by

2GL
µν = □hµν − gµν□h+∇µ∇νh−∇µ∇βhνβ −∇ν∇βhµβ

+ gµν∇α∇βhαβ + 2Rα
µ
β
νhαβ, (3.8)

and HL
µν [g] and HNL

µν [g] are given, respectively, by (2.24) and (2.25). Note that for a
Schwarzschild black hole, since it is a vacuum solution of the Einstein equations and its
Ricci scalar and Ricci tensor vanish, there are no corrections at second order in the Newton
constant [15, 16].

Focusing now on the local corrections in (3.7), outside the star the background metric is
the usual Schwarzschild vacuum solution, for which R,Rµν = 0 and therefore there are no
corrections due to the local part. Inside the star instead these corrections are non-vanishing.
However, they are of order O(G3

N) and therefore will be neglected.
As for the non-local part, knowing that the Ricci scalar, Ricci tensor and Riemann tensor

are all O(GN), (2.25) simplifies to

HNL
µν =2α(gµν□−∇µ∇ν) ln

(
□
µ2

)
R

+ β(δαµgνβ□+ gµν∇α∇β − δαµ∇β∇ν − δαν∇β∇µ) ln

(
□
µ2

)
Rβ

α

+ 2γ(δαµgνσ + δαν gµσ)∇β∇ρ ln

(
□
µ2

)
Rαβ

σρ +O(G3
N).

(3.9)
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Let us now express the Ricci scalar and Ricci tensor in terms of the energy-momentum tensor
of the source:

R = −8πGNT, (3.10)

Rµν = 8πGN

(
Tµν −

1

2
gµνT

)
, (3.11)

where, for the case of a perfect and isotropic fluid, we have

T = ρ0 +O(GN), (3.12)
Tµν = δ0µδ

0
νρ0 +O(GN). (3.13)

Now that everything is expressed in terms of the energy density, we can use the results from
Appendix A to find

8πGN ln

(
□
µ2

)
ρ =

6GNM

R3
s

f(r) +O(G2
N), (3.14)

where

f(r) =

−2
[
γE − 1 + ln

(
µ
√
R2

s − r2
)]

if r < Rs,

2Rs

r
− ln

(
r+Rs

r−Rs

)
if r > Rs,

(3.15)

with γE the Euler-Mascheroni constant. Note that the function f is not defined at r = Rs. As
we shall see later, the results we get are valid only outside a small region of the size of the
Planck length around the star radius. We can now plug (3.14) into (3.9) and from (3.7) we find

GL
µν = 192π(α− γ)

G2
NM

R3
s

(∇µ∇ν − gµν□)f(r)

+ 96π(β + 4γ)
G2

NM

R3
s

(∇µ∇ν − gµν□+ δ0µgν0□)f(r) +O(G3
N), (3.16)

where we used the non-local Gauss-Bonnet theorem [16] at second order in curvature to
substitute α → (α− γ) and β → (β + 4γ) and the identity

(gµν∇0∇0 − δ0µ∇0∇ν − δ0ν∇0∇µ)f(r) = O(GN). (3.17)

From (3.7), (3.8) and (3.16), we can solve for the components of the perturbation hµν , imposing
that this metric is spherically symmetric and time-independent as the background metric and
using the gauge freedom to set hθθ = 0. We thus find the corrections hµν = δgint

µν to the interior
Schwarzschild solution [17]:

δgint
tt = (α + β + 3γ)

192πG2
NM

R3
s

ln

(
R2

s

R2
s − r2

)
+

C1

r
+ C2 +O(G3

N), (3.18)

δgint
rr = (α− γ)

384πG2
NMr2

R3
s(R

2
s − r2)

+
C1

r
+O(G3

N), (3.19)
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where the integration constants Ci must be set to zero if we require regularity in the origin at
r = 0. Similarly we find the corrections hµν = δgext

µν to the exterior Schwarzschild solution:

δgext
tt = (α + β + 3γ)

192πG2
NM

R3
s

[
2
Rs

r
+ ln

(
r −Rs

r +Rs

)]
+

C3

r
+ C4 +O(G3

N), (3.20)

δgext
rr = (α− γ)

384πG2
NM

r(r2 −R2
s)

+
C3

r
+O(G3

N), (3.21)

where the integration constants Ci must be set to zero if we require asymptotic flatness, that is
limr→∞ δgext

µν = 0.
These equations can be simplified if we consider that astrophysical distances are many

orders of magnitude bigger than the typical star radius. Therefore, in the limit r ≫ Rs, the
exterior metric corrections reduce to

δgext
tt = −(α + β + 3γ)

128πG2
NM

r3
+O(G3

N), (3.22)

δgext
rr = (α− γ)

384πG2
NM

r3
+O(G3

N). (3.23)

On the other hand, deep inside the star, that is in the r ≪ Rs limit, the interior corrections
vanish:

δgint
tt = δgint

rr = O(G3
N). (3.24)

An interesting feature of the metric corrections is the presence of ”quantum hair” [20, 58].
The no-hair theorem [59] states that stationary black hole solutions of the Einstein-Maxwell
equations depend only on three parameters: mass, electric charge and angular momentum of the
black hole; all the other informations about the interior of the star are lost during the formation
of the black hole. If we look at the corrections (3.21) to the exterior Schwarzschild metric, we
see that these depend on the density distribution of the dust ball: two stars with same mass but
different density produce two different metric corrections. These corrections will survive when
following the gravitational collapse of the star [24]. In general, because of the non-locality of
the ln(□/µ2) operator, any exterior metric will carry some information about the interior of
the star in the form of the extra metric terms. Therefore the presence of hair is a general feature
of this framework.

Lastly, the horizon radius is shifted. The gravitational radius RH of the system is given in
general by the condition

grr(RH) = 0. (3.25)

For our case this implies

r − 2GNM = −384πG2
NM(α− γ)

r2
. (3.26)
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We solve this equation perturbatively, that is we first set the right-hand side to zero and solve
the resulting equation, finding the zeroth-order solution

RH = 2GNM, (3.27)

which is the Schwarzschild radius of the star. We then plug it on the right-hand side and obtain:

RH = 2GNM − 96π

M
(α− γ). (3.28)

From Tab. 2.1 we see that α − γ < 0 for vectors, fermions, gravitons and also scalars in the
case of minimal coupling ξ = 0. Therefore the resulting horizon radius is bigger than the usual
Schwarzschild one, although this modification is subleading with respect to the classical result.

3.2 Divergence at the surface
Note that all the metric corrections diverge in the limit ϵ ≡ |r −Rs| → 0+. This is because
we are including higher derivatives of the metric while the metric is only once continuously
differentiable. These divergences are of two types:

d1 =
G2

NM

R3
s

ln

(
ϵ

Rs

)
, (3.29)

d2 =
G2

NM

R2
s

1

ϵ
. (3.30)

However, since we obtained these corrections solving the modified Einstein equations pertur-
batively in GN , we should require that these terms are small with respect to the classical metric
coefficients, namely:

V ∼ GNM

r
. (3.31)

In our units GN = l2p, with lp = 1.62× 10−35 m the Planck length, therefore requiring d1 ≲ V
leads to

l2p
R2

s

ln

(
|r −Rs|

Rs

)
≲ 1, (3.32)

whereas for d2:
l2p

Rs|r −Rs|
≲ 1. (3.33)

These two conditions are satisfied for ϵ ≲ lp, since for a star we obviously have Rs ≫ lp.
Therefore the metric corrections should be considered to apply only outside a layer of thickness
ϵ ≳ lp around the star surface.
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Chapter 4

Quantum gravitational corrections to the
Reissner-Nordström metric

In this section, after reviewing the corrections received by the Reissner-Nordström black hole
found in [21], we will extend the result of the previous section for a static and spherically
symmetric star considering also its electric charge. This is not merely a theoretical exercise, as
astrophysical objects do indeed have charge, with an average charge-to-mass ratio of the order
of 100 coulomb per solar mass [60]. For example, the Sun has an estimated charge of 154
Coulomb [61].

4.1 Reissner-Nordström black hole
The general line element describing a static and spherically symmetric object is

ds2 = eβ(r)dt2 − eα(r)dr2 − r2dΩ2, (4.1)

where the functions α and β depend only on the radial coordinate. The spacetime outside a
static, spherically symmetric body with mass M and electric charge q is given by the Reissner-
Nordström metric:

ds2 =

(
1− 2GNM

r
+

GNq
2

r2

)
dt2 −

(
1− 2GNM

r
+

GNq
2

r2

)−1

dr2 − r2dΩ2. (4.2)

Since we are dealing with a charged object, this metric is a solution of both the Einstein and
Maxwell field equations. The Einstein equations are

Gµν = 8πGNTµν , (4.3)

where now the energy-momentum tensor receives two contributions:

Tµν = Mµν + Eµν , (4.4)
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with Mµν the proper matter energy-momentum tensor and Eµν the electromagnetic energy-
momentum tensor, defined in terms of the field-strength tensor Fµν as

4πEµν =

(
−FµαFν

α +
1

4
gµνFαβF

αβ

)
. (4.5)

The four Maxwell equations can be expressed in terms of Fµν :

∂ν(
√
−gF µν) =

√
−gJµ, F[µν,λ] = 0, (4.6)

where Jµ is the four-current density vector:

Jµ = 4πσUµ, (4.7)

with σ the charge density and Uµ its four-velocity, with normalization UµUµ = 1. Since we
consider a static field, we can write its four-velocity as

Uν = (e−β/2, 0, 0, 0). (4.8)

However, outside the body there is no charge and the four-current vanishes in this case:

Jµ = 0. (4.9)

The electric field has only a radial component, thus the only non-vanishing components of Fµν

are
F01 = −F10 =

Q(r)

r2
e(α+β)/2, (4.10)

and, as a result, the only non-vanishing components of the electromagnetic energy-momentum
tensor are

E0
0 = E1

1 = −E2
2 = −E3

3 =
Q(r)2

8πr4
. (4.11)

Since the Einstein and Maxwell equations are coupled, it is possible that also Fµν receives a
correction. We can then define the function Ω(r) such that

F01 =

[
Q(r)

r2
+G2

NΩ(r)

]
e(α+β)/2, (4.12)

which will then leave the equations of motion invariant as its contribution is subleading. Once
we find the metric corrections δgext

tt and δgext
rr outside the star, the t component of (4.6) in the

vacuum, that is
∂ν(

√
−gF 0ν) = 0, (4.13)

will then become an equation in Ω(r):

4rΩ(r) + q

[
dδgext

tt (r)

dr
− dδgext

rr (r)

dr

]
+ 2r2

dΩ(r)

dr
= 0. (4.14)
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Repeating the same procedure followed in Section 3, the quantum corrections to the metric
are found to be [21]:

δgext
tt = −32πG2

Nq
2

r4

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γE − 3

2

)]
+O(G3

N), (4.15a)

δgext
rr = −64πG2

Nq
2

r4
[
c̄2 + 2(β + 4γ) (ln(µr) + γE − 2)

]
+O(G3

N), (4.15b)

while solving (4.14) we find

Ω(r) = −16πq3

r6
[c̄2 + (β + 4γ) (2 ln(µr) + 2γE − 5)] . (4.16)

In all these corrections there seems to be a dependence on the renormalization scaleµ. However,
the Wilson coefficients c1, c2 and c3 are also dependent on the renormalization scale:

c1(µ) = c1(µ̄)− α ln

(
µ2

µ̄2

)
, (4.17)

c2(µ) = c2(µ̄)− β ln

(
µ2

µ̄2

)
, (4.18)

c3(µ) = c3(µ̄)− γ ln

(
µ2

µ̄2

)
, (4.19)

where µ̄ is some fixed scale where the effective theory is matched onto the full theory. Therefore
inserting these in the metric corrections we see that the terms involving µ cancel out. This
invariance with respect to the renormalization scale is a non trivial check of the validity of the
calculations.

Many other interesting results for the quantum corrected Reissner-Nordström black hole can
be found. For example, corrections to the Wald entropy [21] or to the charge and mass loss rate
[22] have been computed. We will now extend this calculation to a charged star metric, giving
a characterization of its interior and showing that, even in the large distance limit where the
star becomes essentially point-like, the outside metric still depends on the interior distribution.

4.2 Interior charged star metric
Let us study a static and spherically symmetric perfect fluid charged distribution. The general
line element for static spherically symmetric objects is

ds2 = eβ(r)dt2 − eα(r)dr2 − r2dΩ2, (4.20)

with r ∈ [0, Rs], Rs being the star radius, and the functions α and β depending only on the
radial coordinate. The functions β(r) and α(r) satisfying the Einstein-Maxwell equations are
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given by [62]

e−α(r) = 1− 8πGN

r

∫ r

0

(
ρ+

Q2

8πr4

)
r2 dr (4.21a)

= 1− 2GN(m+ ϵ)

r
+GN

Q2

r2
, (4.21b)

β(r) =

∫ r

0

eα

r

(
1− e−α −GN

Q2

r2
+ 8πGNM

r
r

)
dr (4.22a)

= −α(r) + 8πGN

∫ r

0

reα(ρ+M1
1 ) dr. (4.22b)

The functions Q, m and ϵ are defined as

Q(r) = 4π

∫ r

0

σr2eα/2dr, (4.23)

m(r) = 4π

∫ r

0

ρr2dr, (4.24)

ϵ(r) = 4π

∫ r

0

σrQeα/2dr, (4.25)

where ρ is the mass density and Q and m are, respectively, the charge and the mass inside a
sphere of radius r. The total charge of the distribution is then

q = Q(Rs). (4.26)

The Einstein-Maxwell equations for the components M2
2 = M3

3 reduce to

M2
2 = M3

3 =
r

2

dM1
1

dr
+

(
1 +

1

4
rβ′
)
M1

1 +
1

4
r

(
ρβ′ − 2σ

Q

r2
eα/2

)
, (4.27)

where the prime denotes derivatives with respect to the radial coordinate.
Outside the star the pressure, mass density and charge densitiy vanish and (4.21) and (4.22)

reduce smoothly to the exterior Reissner-Nordström solution:

e−α =

(
1− 2GNM

r
+

GNq
2

r2

)
, eβ =

(
1− 2GNM

r
+

GNq
2

r2

)
eC , (4.28)

where C is the constant
C = 8πGN

∫ Rs

0

reα(ρ+M1
1 )dr, (4.29)

and M is the total gravitational mass of the distribution, given by the sum of the proper matter
mass m and the mass equivalent of the electromagnetic energy distribution ϵ:

M = m(Rs) + ϵ(Rs). (4.30)
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Perfect fluidity can be characterized by the requirement that the three spacelike eigenvalues
of the energy-momentum tensor are equal everywhere. However, we have three different
energy-momentum tensors and thus three different possibilities, depending on which tensor we
choose to satisfy this condition:

I. Matter tensor, Mµν : we can find an explicit expression for the matter and charge density.

II. Total tensor, Tµν = Mµν + Eµν : in this case we have unspecified ρ(r) and Q(r) but can
still find the metric.

III. Electromagnetic tensor, Eµν : from (4.11) we have that at the origin Q(r) = 0 and this
would imply that the eigenvalues of Eµν vanish everywhere.

We shall therefore focus on case I and II.

4.2.1 Case I: perfect fluidity requirement on matter tensor
We require that the matter energy-momentum tensor satisfies

M1
1 = M2

2 = M3
3 = p(r). (4.31)

Therefore (4.27) becomes

1

2
rp′ +

(
1 +

1

4
rβ′
)
p+

1

4
r

(
ρβ′ − 2σ

Q

r2
eα/2

)
− p = 0. (4.32)

From (4.22b) we have
β′ = −α′ + 8πGN [re

α(ρ+ p)], (4.33)

and from (4.23)
Q′ = 4πσr2eα/2. (4.34)

Upon insertion in (4.32) we get

Z ′ − 1

2
α′Z + 4πGNre

αZ2 − Q2

2πr5
−
(
ρ+

Q2

8πr4

)′

= 0, (4.35)

where we defined
Z = ρ+ p. (4.36)

Equation (4.35) is a first-order ordinary differential equation quadratic in Z and is recognized
as a Riccati equation [63], that is an equation of the form

y′ = a(x)y + b(x)y2 + c(x). (4.37)
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If a particular solution y1 of a Riccati equation is known, the general solution of the equation
is given by

y = y1 + u. (4.38)

In fact, substituting this solution in the general Riccati equation (4.37) we get

(y1 + u)′ = a(x)(y1 + u) + b(x)(y1 + u)2 + c(x) (4.39)
= a(x)y1 + b(x)y21 + c(x) + a(x)u+ 2b(x)y1u+ b(x)u2. (4.40)

Since y1 is a solution, this equation reduces to

u′ = b(x)u2 + [2b(x)y1 + a(x)]u, (4.41)

which is a Bernoulli equation. Substituting z = 1/u in the Bernoulli equation converts it to
a linear differential equation which can be easily solved. If we now plug y = y1 + 1/z in the
Riccati equation (4.37) we get the linear equation

z′ + (a+ 2by1)z = −b. (4.42)

Solutions of the Riccati equation are then of the form

y = y1 +
1

z
, (4.43)

with z solving (4.42). Going back to our equation, no particular solution of (4.35) has been
found. Therefore we must make some assumptions in order to be able to solve it. A convenient
simplification is to choose

ρ+
Q2

8πr4
= c, (4.44)

with c a constant, so that the total energy density in the star interior is constant and this model
is a generalization of the Schwarzschild interior solution. In this way, the last term in (4.35)
vanishes. Note that, in order for the physical condition ρ ≥ 0 to be satisfied, (4.44) implies

c ≥ q2

8πR4
s

. (4.45)

Upon insertion of the assumption (4.44) in (4.21a), we get the simple expression

e−α = 1− r2/R2, (4.46)

where
1

R2
=

8πGNc

3
. (4.47)

Furthermore, since we use the metric signature (+,−,−,−), it must be

Rs < R. (4.48)
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From (4.46) we find
α′ =

2reα

R2
, (4.49)

and thus the Riccati equation (4.35) simplifies to

Z ′ =
1

4
(2Z − 8πGNR

2Z2)α′ +
Q2

2πr5
. (4.50)

This is still a Riccati equation, for which a particular solution is difficult to determine. One
way to further simplify it is to assume that the term Q2/(2πr5) be proportional to α′, so that
the equation becomes separable:

Q2

2πr5
=

1

4
Aα′. (4.51)

The constant A can be determined in terms of the total charge q = Q(Rs) as

A =
q2

πR6
s

R2

(
1− R2

s

R2

)
. (4.52)

We note that, by equations (4.23) and (4.46), the assumption (4.51) is equivalent to specifying
the charge density σ as

σ(r) = ±(A/16πR2)1/2(3 + r2eα/R2)

= ±(A/16πR2)1/2(3− 2r2/R2)(1− r2/R2)−1.
(4.53)

Using (4.23), the charge distribution is then

Q(r) =
r3
√
q2(3− 8πGNR2

sc)

R3
s

√
3− 8πGNr2c

=
r3
√
q2(1− R2

s

R2 )

R3
s

√
1− r2

R2

. (4.54)

The assumption we made allows us to separate (4.50) into

(A+ 2Z − 8πGNR
2Z2)−1dZ =

dα

4
, (4.55)

which can now be integrated leading to

Z =
1

8πGNR2

[
(n+ 1)−B(n− 1)(1− r2/R2)n/2

1 +B(1− r2/R2)n/2

]
, (4.56)

where B is an integration constant and we defined n as

n = (1 + 8πGNR
2A)1/2. (4.57)
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In order to determine B we use the conditions that on the boundary the pressure vanishes while
the matter density is given by (4.44):

p(Rs) = 0, ρ(Rs) = c− q2

8πR4
s

. (4.58)

Therefore we have that Z(Rs) = ρ(Rs) which yields

B = [n+ 1− 8πGNR
2ρ(Rs)][n− 1 + 8πGNR

2ρ(Rs)]
−1(1−R2

s/R
2)−n/2. (4.59)

Having found e−α(r), we can now determine the expression for β(r). Let us rewrite (4.22b)
as

β(r) = −α(r) + 8πGNJ(r), (4.60)

where we define:
J(r) =

∫ r

0

reα(ρ+ p)dr =

∫ r

0

reαZdr. (4.61)

To evaluate this integral we express α′ as in (4.49) and use (4.55):

J(r) =
1

2
R2

∫ r

0

Zα′dr

= 2R2

∫ Z(r)

Z(0)

Z(A+ 2Z − 8πGNR
2Z2)−1dZ.

(4.62)

Performing the integral and using (4.56) we find

8πGNJ(r) = 2 ln

[
1 +B(1− r2/R2)n/2

1 +B

]
− 1

2
(n+ 1) ln

(
1− r2

R2

)
. (4.63)

Then, substituting in (4.60) and using the result (4.46) we finally get

eβ =

[
1 +B(1− r2/R2)n/2

1 +B

]2(
1− r2

R2

)− (n−1)
2

. (4.64)

For the constant C in (4.29) we have

eC =

[
1 +B(1−R2

s/R
2)n/2

1 +B

]2
, (4.65)

which can be set to zero by a suitable rescaling of the time coordinate.
Summarising all the results, the interior metric is given by

ds2 =

[
1 +B(1− r2/R2)n/2

1 +B

]2(
1− r2

R2

)− (n−1)
2

dt2 −
(
1− r2

R2

)−1

dr2 − r2dΩ2, (4.66)
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where the constants R, n and B are given by (4.47), (4.57) and (4.59). We see that in the zero
charge limit we recover the interior Schwarzschild metric [64] in the form

ds2 = 4

(
1− 2GNM

r

)(
3

√
1− 2GNM

Rs

− 1

)−2

dt2 −
(
1− 2GNM

r

)−1

dr2 − r2dΩ2.

(4.67)
To obtain the usual expression (3.2), we simply need to rescale the time as

t →

(
3

√
1− 2GNM

Rs

− 1

)
t

2
. (4.68)

With this rescaling, the interior metric (4.66) is then

ds2 =

[
1 +B(1− r2/R2)n/2

1 +B

]2(
1− r2

R2

)− (n−1)
2

(
3

√
1− 2GNM

Rs

− 1

)2
dt2

4

−
(
1− r2

R2

)−1

dr2 − r2dΩ2.

(4.69)

The charge density σ(r) is given by (4.53) and from (4.44), (4.46) and (4.51) we find the
matter density

ρ(r) = c− 1

8
AR−2r2(1− r2/R2)−1. (4.70)

We see then that ρ(0) = c and we thus rename this constant as ρ0. Knowing the matter density
and recalling thatZ = ρ+p, the pressure can be found from (4.56). Note that the matter density
and pressure reduce to the Schwarzschild ones in the zero charge limit. Moreover, since outside
the star the matter density and pressure vanish and the charge distribution becomes that of a
point-like source with total charge q, these quantities are better described by the distributions

ρ(r) =

{
ρ0 − 1

8
AR−2r2(1− r2/R2)−1 if r < Rs,

0 if r > Rs,
(4.71)

p(r) =

{
Z(r)− ρ(r) if r < Rs,

0 if r > Rs,
(4.72)

Q(r) =


r3
√

q2(3−8πGNR2
sρ0)

R3
s

√
3−8πGNr2ρ0

if r < Rs,

q if r > Rs.
(4.73)

4.2.2 Case II: perfect fluidity requirement on total tensor
We require that the total energy-momentum tensor satisfies

T 1
1 = T 2

2 = T 3
3 . (4.74)
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From (4.4) and (4.11) we find

M2
2 = M3

3 = M1
1 − Q2

4πr4
, (4.75)

where M i
i = p(r). Thus (4.27) becomes

1

2
rp′ +

1

4
rβ′(p+ ρ) +

Q2

4πr4
− 1

2

σQ

r
eα/2 = 0. (4.76)

From (4.22b) we have
β′ = −α′ + 8πGNre

α(ρ+ p), (4.77)

and from (4.23)
Q′ = 4πσr2eα/2. (4.78)

Upon insertion in (4.76) we get

Z ′ − 1

2
α′Z + 4πGNre

αZ2 − Q2

2πr5
−
(
ρ+

Q2

8πr4

)′

= 0, (4.79)

where
Z = ρ+ p. (4.80)

Equation (4.79) is a Riccati equation. As before, no particular solution has been found.
Therefore we make again the assumption

ρ+
Q2

8πr4
= c, (4.81)

with c a constant. Upon insertion of this assumption in (4.21a), we get the simple expression

e−α = 1− r2/R2, (4.82)

where
1

R2
=

8πGNc

3
, (4.83)

and since we use the metric signature (+,−,−,−) then it must be:

Rs < R. (4.84)

From (4.82) we find
α′ =

2reα

R2
, (4.85)

and thus the Riccati equation (4.79) simplifies to

Z−1
(
1− 4πGNR

2Z
)−1

dZ =
1

2
dα, (4.86)
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which integrates to

Z =
1

4πGNR2

[
1 +B

(
1− r2

R2

)1/2
]−1

, (4.87)

where the integration constant B is determined using the conditions that on the boundary the
pressure vanishes while the matter density is given by (4.81):

p(Rs) = 0, ρ(Rs) = c− q2

8πR4
s

. (4.88)

Therefore we have

B = [2− 8πGNR
2ρ(Rs)][8πGNR

2ρ(Rs)]
−1(1−R2

s/R
2)−1/2. (4.89)

Having found e−α(r), we can now determine the expression for β(r). Let us rewrite (4.22b)
as

β(r) = −α(r) + 8πGNJ(r), (4.90)

where again we define

J(r) =

∫ r

0

reα(ρ+ p)dr =

∫ r

0

reαZdr. (4.91)

To evaluate this integral we express α′ as in (4.85) and use (4.82):

J(r) =
1

2
R2

∫ r

0

Zα′dr = R2

∫ Z(r)

Z(0)

(
1− 4πGNR

2Z
)−1

dZ. (4.92)

Performing the integral and using (4.87) we find

8πGNJ(r) = α(r) + 2 ln

[
1 +B(1− r2/R2)1/2

1 +B

]
. (4.93)

Then, substituting in (4.90) and using the result (4.82) we finally get

eβ =

[
1 +B(1− r2/R2)1/2

1 +B

]2
. (4.94)

For the constant C in (4.29) we have

eC =

[
1 +B(1−R2

s/R
2)1/2

(1 +B)(1−R2
s/R

2)1/2

]2
, (4.95)

which can be set to zero by a suitable rescaling of the time coordinate.
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Summarising all the results, the interior metric is given by

ds2 =

[
1 +B(1− r2/R2)1/2

1 +B

]2
dt2 −

(
1− r2

R2

)−1

dr2 − r2dΩ2, (4.96)

where the constants R and B are given by (4.83) and (4.89). As before, to obtain the usual
expression for the interior Schwarzschild metric (3.2) in the zero charge limit, we need to
rescale the time as in (4.68). With this rescaling, the interior metric (4.66) is then

ds2 =

[
1 +B(1− r2/R2)1/2

1 +B

]2(
3

√
1− 2GNM

Rs

− 1

)2
dt2

4

−
(
1− r2

R2

)−1

dr2 − r2dΩ2. (4.97)

With all these elements, we can now turn to the calculation of the metric corrections.

4.3 Quantum corrections to the charged star metric
As we already did for the Schwarzschild case, we solve the equations of motions (3.7) pertur-
batively at second order in the Newton constant GN .

4.3.1 Case I: perfect fluidity requirement on matter tensor
For the charged star, besides the non-local term in the modified Einstein field equations, we
need also to consider the local part, as this will now give a contribution. For the case I, the
Ricci scalar and Ricci tensor are

R = −8πGNT = −8πGN(ρ− 3p), (4.98)

Rt
t = 8πGN

(
ρ+ 3p

2
+

Q2

8πr4

)
,

Rr
r = 8πGN

(
p− ρ

2
+

Q2

8πr4

)
,

Rθ
θ = Rϕ

ϕ = 8πGN

(
p− ρ

2
− Q2

8πr4

)
,

(4.99)

with ρ, p and Q given by (4.71), (4.72) and (4.73) respectively. The action of the ln(□/µ2)
operator on the relevant quantities can then be computed as usual using the results of Appendix
A.
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For the interior Reissner-Nordström metric given by (4.66), to first order in GN the Ricci
scalar is

R = −8πGNT = GN

(
10q2r2 − 9q2R2

s − 8πR6
sρ0

R6
s

)
+O(G2

N), (4.100)

and the components of the Ricci tensor are

Rt
t = GN

(
10q2r2 − 9q2R2

s + 8πR6
sρ0

2R6
s

)
+O(G2

N), (4.101a)

Rr
r = GN

(
6q2r2 − 3q2R2

s − 8πR6
sρ0

2R6
s

)
+O(G2

N), (4.101b)

Rθ
θ = GN

(
2q2r2 − 3q2R2

s − 8πR6
sρ0

2R6
s

)
+O(G2

N), (4.101c)

Rϕ
ϕ = GN

(
2q2r2 − 3q2R2

s − 8πR6
sρ0

2R6
s

)
+O(G2

N). (4.101d)

As for the exterior Reissner-Nordström metric, the matter density and pressure are zero and
since the electromagnetic energy-momentum tensor is traceless then the Ricci scalar vanishes:

R̃ = 0, (4.102)

where we use the tilde notation to distinguish between the interior and exterior quantities, and
the components of the Ricci tensor reduce to

R̃t
t =

q2

8πr4
, (4.103a)

R̃r
r =

q2

8πr4
, (4.103b)

R̃θ
θ = − q2

8πr4
, (4.103c)

R̃ϕ
ϕ = − q2

8πr4
, (4.103d)

with q = Q(Rs) the total charge of the star. We can now proceed with the computation of the
action of the ln(□/µ2) operator on all these quantities.

Interior metric

For the Ricci scalar we find

ln

(
□
µ2

)
R =

GNq
2

3R6
s

[
r2
(
110

3
− 20γE

)
+ 2R2

s(−14 + 9γE)− 2(10r2 − 9R2
s)
]

+ 16πGNρ0

[
γE − 1 + ln

(
µ
√
R2 − r2

)]
+O(G2

N),

(4.104)
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and for the components of the Ricci tensor

ln

(
□
µ2

)
Rt

t =
GNq

2

r4R6
s

{
r2
[
R4

s + r4
(
55

3
− 10γE

)
+ r2R2

s(−14 + 9γE)
]

+R6
s ln

(
R2

s − r2

R2
s

)
− r4

(
10r2 − 9R2

s

)
ln
(
µ
√
R2

s − r2
)}

− 8πGNρ0

[
γE − 1 + ln

(
µ
√
R2 − r2

) ]
+O(G2

N),

(4.105a)

ln

(
□
µ2

)
Rr

r =
GNq

2

r4R6
s

{
r2
[
R4

s + r4(11− 6γE) + 3r2R2
s(−2 + γE)

]
+R6

s ln

(
R2

s − r2

R2
s

)
− 3r4(2r2 −R2

s) ln
(
µ
√

R2
s − r2

)}
+ 8πGNρ0

[
γE − 1 + ln

(
µ
√
R2

s − r2
)]

+O(G2
N),

(4.105b)

ln

(
□
µ2

)
Rθ

θ =
GNq

2

r4R6
s

{
r2
[
−R4

s + r4
(
11

3
− 2γE

)
+ r2R2

s(−4 + 3γE)

]
−R6

s ln

(
R2

s − r2

R2
s

)
− r4

(
2r2 − 3R2

s

)
ln
(
µ
√
R2

s − r2
)}

+ 8πGρ0

[
γE − 1 + ln

(
µ
√
R2

s − r2
)]

+O(G2
N),

(4.105c)

ln

(
□
µ2

)
Rϕ

ϕ =
GNq

2

r4R6
s

{
r2
[
−R4

s + r4
(
11

3
− 2γE

)
+ r2R2

s(−4 + 3γE)

]
−R6

s ln

(
R2

s − r2

R2
s

)
− r4

(
2r2 − 3R2

s

)
ln
(
µ
√
R2

s − r2
)}

+ 8πGρ0

[
γE − 1 + ln

(
µ
√
R2

s − r2
)]

+O(G2
N).

(4.105d)

We can now solve for the components of the perturbation metric hµν , imposing that it is
spherically symmetric and time-independent as the background metric and using the gauge
freedom to set hθθ = 0. We thus find the corrections hµν = δgint

µν to the interior Reissner-
Nordström metric:
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δgint
tt =

32πG2
Nq

2

3r4R6
s

[
− 27r4R2

s(α− γ) ln

(
R2

s − r2

R2
s

)
+ 3(β + 4γ)R6

s ln

(
R2

s − r2

R2
s

)
+ 30c̄1r

6 + 60(α− γ)r6 ln
(
µ
√
R2

s − r2
)

+ 10r6(α− γ)(−11 + 6γE) + 3r2R4
s(β + 4γ)

]
− (α + β + 3γ)256π2G2

Nρ0 ln

(
R2

s − r2

R2
s

)
+

C1

r
+ C2 +O(G3

N),

(4.106)

δgint
rr =

64πG2
Nq

2

3r4(R2
s − r2)R6

s

{
αr6

(
80r2 − 60r2γE − 83R2

s + 60R2
sγE
)

+ β(R2
s − r2)

(
6r4R2

s + 3r2R4
s − 43r6 + 30r6γE

)
+ γ

[
12r4R4

s + 12r2R6
s + r8(92− 60γE) + r6R2

s(−113 + 60γE)
]

+ 15(2c̄1 + c̄2)r
6(R2

s − r2) + 3(R2
s − r2)

[
(β + 4γ)R6

s ln

(
R2

s − r2

R2
s

)
+ 10(2α + β + 2γ) ln

(
µ
√

R2
s − r2

)]}
+ (α− γ)

512π2G2
Nρ0r

2

R2
s − r2

+
C1

r
+O(G3

N),

(4.107)

where the integration constants Ci must be set to zero if we require regularity at the origin. In
the r ≪ Rs limit we find indeed that these corrections are regular:

δgint
tt = −16πG2

Nq
2(β + 4γ)

R4
s

+O(G3
N), (4.108)

δgint
rr =

96πG2
Nq

2(β + 4γ)

R4
s

+O(G3
N). (4.109)

Exterior metric

For the Ricci scalar we find

ln

(
□
µ2

)
R̃ =

GNq
2

3rR6
s

[
(60r2Rs − 34R3

s)− 3r(10r2 − 9R2
s) ln

(
r +Rs

r −Rs

)]
+ 8πGNρ0

[
−2Rs

r
+ ln

(
r +RS

r −Rs

)]
+O(G2

N),

(4.110)
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and for the components of the Ricci tensor

ln

(
□
µ2

)
R̃t

t = −GNq
2

r4R6
s

[
− 10r5Rs +

17

3
r3R3

s + 2rR5
s +R6

s(−3 + 2γE)

+ 2R6
s ln(µr) +

1

2

(
10r6 − 9r4R2

s − 2R6
s

)
ln

(
r +Rs

r −Rs

)]

− 4πGNρ0

[
−2Rs

r
+ ln

(
r +Rs

r −Rs

)]
+O(G2

N),

(4.111a)

ln

(
□
µ2

)
R̃r

r = −GNq
2

r4R6
s

[
− 6r5Rs + r3R3

s + 2rR5
s +R6

s(−3 + 2γE)

+ 2R6
s ln(µr) +

1

2
(6r6 − 3r4R2

s − 2R6
s) ln

(
r +Rs

r −Rs

)]

− 4πGρ0

[
2
Rs

r
− ln

(
r +Rs

r −Rs

)]
+O(G2

N),

(4.111b)

ln

(
□
µ2

)
R̃θ

θ =
GNq

2

(6r4R6
s)

[
12r5Rs − 14r3R3

s + 12rR5
s + 6R6

s(−3 + 2γE)

+ 12R6
s ln(µr)− 3(2r6 − 3r4R2

s + 2R6
s) ln

(
r +Rs

r −Rs

)]

− 4πGNρ0

[
2
Rs

r
− ln

(
r +Rs

r −Rs

)]
+O(G2

N),

(4.111c)

ln

(
□
µ2

)
R̃ϕ

ϕ =
GNq

2

(6r4R6
s)

[
12r5Rs − 14r3R3

s + 12rR5
s + 6R6

s(−3 + 2γE)

+ 12R6
s ln(µr)− 3(2r6 − 3r4R2

s + 2R6
s) ln

(
r +Rs

r −Rs

)]

− 4πGNρ0

[
2
Rs

r
− ln

(
r +Rs

r −Rs

)]
+O(G2

N).

(4.111d)
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We find the corrections hµν = δgext
µν to the exterior Reissner-Nordström metric to be:

δgext
tt =

−32πG2
Nq

2

r4R6
s

{
2r3Rs(10r

2 +R2
s)(α− γ) + 2rR5

s(β + 4γ)

+R6
s(β + 4γ)(−3 + 2γE) +R6

s c̄2 + 2R6
s(β + 4γ) ln(µr)

+
[
10r6(α− γ)− 9r4R2

s(α− γ) +R6
s(β + 4γ)

]
ln

(
r −Rs

r +Rs

)}
+ 256π2G2

Nρ0(α + β + 3γ)

[
2Rs

r
+ ln

(
r −Rs

r +Rs

)]
+

C3

r
+ C4 +O(G3

N),

(4.112)

δgext
rr =

−64πG2
Nq

2

3r4R6
s(r

2 −R2
s)

{
3c̄2R

6
s(r

2 −R2
s) + αr3(60r4Rs − 20r2R3

s − 37R5
s)

+ β(r2 −R2
s)
(
30r5Rs + 10r3R3

s + 6rR5
s + 6R6

sγE − 12R6
s

)
+ 3γ

[
20r7Rs

−20r5R3
s + 7r3R5

s − 8rR7
s + 8R5

s(γE − 2)(r2 −R2
s)
]

+ 3(r2 −R2
s)
[
(10α + 5β + 10c)r6 + (β + 4γ)R6

s

]
ln

(
r −Rs

r +Rs

)
+ 6(r2 −R2

s)(β + 4γ)R6
s ln(µr)

}
+ (α− γ)

512π2G2
NR

3
sρ0

r(r2 −R2
s)

+
C3

r
+O(G3

N),

(4.113)

where the integration constants Ci must be set to zero if we require asymptotic flatness. By
looking in (4.112) at the coefficients in front of the ln[(r − Rs)/(r + Rs)] terms, we see that
there is an explicit dependence on the matter density ρ0 = 3M/(4πR3

s) and quadratically on
the charge density σ0 = 3q/(4πR3

s).
In the r ≫ Rs limit:

δgext
tt = −1280πG2

Nq
2(α− γ)

3rR3
s

− 64πG2
N

3r3Rs

(α + β + 3γ)(3q2 + 8πR4
sρ0)

− 32πG2
Nq

2

r4

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γE − 3

2

)]
+O(G3

N),

(4.114a)

δgext
rr = −1280πG2

Nq
2(α− γ)

3rR3
s

+
64πG2

N

r3Rs

(α− γ)
(
3q2 + 8πR4

sρ0
)

− 64πG2
Nq

2

r4
[c̄2 + 2(β + 4γ) (ln(µr) + γE − 2)] +O(G3

N).

(4.114b)

From (4.14), using the corrections (4.114), we find

Ω(r) =
32πq

3r5Rs

(β + 4α)
(
3q2 + 8πR4

sρ0
)

− 16πq3

r6
[c̄2 + (β + 4γ) (2 ln(µr) + 2γE − 5)] . (4.115)
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Note that, because of the non-locality of the corrections, we have a dependence on the
star radius Rs. If we consider the black hole limit by naively sending the star radius to the
Schwarzschild radius, the exterior corrections will induce a shift in the horizon radius, which
is found from

grr(RH) = 0, (4.116)

leading to

r2 − 2GNMr +GNq
2 = −384πG2

N(α− γ)

r

(
q2

2Rs

+M

)
+

1280πG2
Nq

2(α− γ)r

3R3
s

+
64πG2

Nq
2

r2
[c̄2 + 2(β + 4γ) (ln(µr) + γE − 2)] ,

(4.117)

which we wrote in this way in order to have on the left-hand side the classical equation for the
horizon radius of a Reissner-Nordström black hole. The resulting equation is a quartic with
the presence of ln(µr) terms, which can’t be solved analytically. Therefore, in order to find an
analytical solution, we solve this equation perturbatively. That is, we first solve it setting the
right-hand side to zero, obtaining the zeroth-order solution

RH = GNM ±
√

G2
NM

2 −GNq2. (4.118)

We are interested in the outer horizon and since we work in the approximation in which
q2 ≪ GNM

2, we can expand (4.118) as

RH ≃ 2GNM − q2

2M
+O(q4). (4.119)

We then plug this result on the right-hand side of (4.117). Since we are treating the additional
terms as a perturbation of the classical result, in the logarithms we keep only the 2GNM term.
We can now set RH = 2GNM . Solving the resulting equation we finally find the modified
horizon radius:

RH = 2GNM − q2

2M
− 96π(α− γ)

(
1

M
− 7q2

36GNM3

)
+

8πq2

GNM3
[c̄2 + 2(β + 4γ)(ln(2GNM) + γE − 2] +O(q4) +O(ℏ2),

(4.120)

where by O(ℏ2) we mean all those terms which are quadratic in the local and non-local
coefficients, for example α · β or α · c̄2.
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4.3.2 Case II: perfect fluidity requirement on total tensor
Let us now look at case II. For the interior Reissner-Nordström metric given by (4.96), to first
order in GN the Ricci scalar is

R = −8πGNT = GN

(
−3q2 − 8πR4

sρ0
R4

s

)
+O(G2

N), (4.121)

and the components of the Ricci tensor are

Rt
t = GN

(
−3q2 + 8πR4

sρ0
2R4

s

)
+O(G2

N), (4.122a)

Rr
r = GN

(
−q2 − 8πR4

sρ0
2R4

s

)
+O(G2

N), (4.122b)

Rθ
θ = GN

(
−q2 − 8πR4

sρ0
2R4

s

)
+O(G2

N), (4.122c)

Rϕ
ϕ = GN

(
−q2 − 8πR4

sρ0
2R4

s

)
+O(G2

N). (4.122d)

Note that, as a check for the validity of the calculation for the model of case II, we correctly
have that T 1

1 = T 2
2 = T 3

3 . The exterior is still the usual Reissner-Nordström metric, with Ricci
scalar and tensor given by (4.102) and (4.103) respectively.

Interior metric

The action of the ln(□/µ2) operator on the Ricci scalar is

ln

(
□
µ2

)
R =

2GN (3q2 + 8πR4
sρ0)

R4
s

[
γE − 1 + ln

(
µ
√

R2
s − r2

)]
+O(G2

N), (4.123)

and on the components of the Ricci tensor

ln

(
□
µ2

)
Rt

t =
GNq

2

r4R4
s

[
r2R2

s + 3r4(γE − 1) +R4
s ln

(
R2

s − r2

R2
s

)
+ 3r4 ln

(
µ
√
R2 − r2

)]
− 8πGρ0

[
γE − 1 + ln

(
µ
√
R2

s − r2
)]

+O(G2
N),

(4.124a)

ln

(
□
µ2

)
Ri

i =
GNq

2

r4R4
s

[
r2R2

s + r4(γE − 1) +R4
s ln

(
R2

s − r2

R2
s

)
+ r4 ln

(
µ
√
R2 − r2

)]
+ 8πGρ0

[
γE − 1 + ln

(
µ
√
R2

s − r2
)]

+O(G2
N),

(4.124b)
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with i = r, θ, ϕ. We can now solve for the components of the perturbation metric hµν , imposing
that it is spherically symmetric and time-independent as the background metric and using the
gauge freedom to set hθθ = 0. We thus find the corrections hµν = δgint

µν to the interior
Reissner-Nordström metric:

δgint
tt =

32πG2
Nq

2

r4R4
s

[
(β + 4γ)r2R2

s − [3(α− γ)r4 − (β + 4γ)R4
s] ln

(
R2

s − r2

R2
s

)]
− (α + β + 3γ)256π2G2

Nρ0 ln

(
R2

s − r2

R2
s

)
+

C1

r
+ C2 +O(G3

N),

(4.125)

δgint
rr =

64πG2
Nq

2

r4(R2
s − r2)R4

s

[
(β + 4γ)R4

s + (β + 4γ)R4
s(R

2
s − r2) ln

(
R2

s − r2

R2
s

)
+ (3α + β + γ)r6

]
+ (α− γ)

512π2G2
Nρ0r

2

R2
s − r2

+
C1

r
+O(G3

N),

(4.126)

where the integration constants Ci must be set to zero if we require regularity in the origin at
r = 0. In the r ≪ Rs limit we find indeed that these corrections are regular:

δgint
tt = −16(β + 4γ)πG2

Nq
2

R4
s

+O(G3
N), (4.127)

δgint
rr =

32(β + 4γ)πG2
Nq

2

R4
s

+O(G3
N). (4.128)

Exterior metric

For the Ricci scalar we find

ln

(
□
µ2

)
R̃ =

GN(3q
2 + 8πR4

sρ0)

R4
s

[
2Rs

r
+ r ln

(
r −Rs

r +Rs

)]
+O(G2

N), (4.129)
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and for the components of the Ricci tensor

ln

(
□
µ2

)
R̃t

t = −GNq
2

2r4R4
s

[
6r3Rs + 4rR3

s + 2R4
s(−3 + 2γ) + 4R4

s ln(µr)

+ (3r4 + 2R4
s) ln

(
r −Rs

r +Rs

)]
+ 4πGNρ0

[
2Rs

r
+ ln

(
r −Rs

r +Rs

)]
+O(G2

N),

(4.130a)

ln

(
□
µ2

)
R̃i

i = −GNq
2

2r4R4
s

[
2r3Rs + 4rR3

s + 2R4
s(−3 + 2γ) + 4R4

s ln(µr)+

(r4 + 2R4
s) ln

(
r −Rs

r +Rs

)]
− 4πGNρ0

[
2Rs

r
+ ln

(
r −Rs

r +Rs

)]
+O(G2

N),

(4.130b)

with i = r, θ, ϕ. We can now solve for the components of the perturbation metric hµν , imposing
that it is spherically symmetric and time-independent as the background metric and using the
gauge freedom to set hθθ = 0. We thus find the corrections hµν = δgext

µν to the exterior
Reissner-Nordström metric:

δgext
tt = −32πG2

Nq
2

r4R4
s

{
R4

s[c̄2 + (β + 4γ)(2 ln(µr) + 2γ − 3)]− 6(α− γ)r3Rs

+ 2(β + 4γ)rR3
s −

[
3(α− γ)r4 − (β + 4γ)R4

s

]
ln

(
r −Rs

r +Rs

)}

+ (α + β + 3γ)256π2G2
Nρ0

[
2Rs

r
+ ln

(
r −Rs

r +Rs

)]
+

C3

r
+ C4 +O(G3

N),

(4.131)

δgext
rr = − 64πG2

Nq
2

r4Rs(r2 −R2
s)

{
Rs(r

2 −R2
s)[c̄2 + (β + 4γ)(2 ln(µr) + 2γ − 4)]

− 3(α− γ)r3 − 2(β + 4γ)rR2
s + (β + 4γ)R4

s ln

(
r −Rs

r +Rs

)}

+ (α− γ)
512π2G2

NR
3
sρ0

r(r2 −R2
s)

+
C3

r
+O(G3

N),

(4.132)

where the integration constants Ci must be set to zero if we require asymptotic flatness, that is
limr→∞ δgint

µν = 0.
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In the r ≫ R limit:

δgext
tt = −64πG2

N

3r3Rs

(
3q2 + 8πR4

sρ0
)
(α + β + 3γ)

− 32πG2
Nq

2

r4

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γE − 3

2

)]
+O(G3

N),

(4.133a)

δgext
rr =

64πG2
N

r3Rs

(α− γ)
(
3q2 + 8πR4

sρ0
)

− 64πG2
Nq

2

r4
[c̄2 + 2(β + 4γ) (ln(µr) + γE − 2)] +O(G3

N).

(4.133b)

The quantum correction Ω(r) obtained by solving (4.14) in this case is the same as (4.115) for
case I.

For the horizon radius calculation, we can repeat the same steps showed in Section (4.3.1)
and find

RH = 2GNM − q2

2M
− 96π(α− γ)

(
1

M
− 4q2

3GNM3

)
+

8πq2

GNM3
[c̄2 + 2(β + 4γ)(ln(2GNM) + γE − 2] +O(q4) +O(ℏ2),

(4.134)

which, besides the prefactor of the term proportional to q2/(GNM
3), is the same as the result

(4.120) for case I.
A few comments are now in order. First of all we note that all these corrections reduce to

the Schwarzschild corrections in the zero charge limit once we substitute ρ0 with 3M/4πR3
s ,

as we expect. Of course being in the non-extremal case in which q2 ≪ GNM
2, for a real

star these contributions will be subleading with respect to the ones proportional to the proper
matter mass.

Again, there seems to be a dependence on the renormalization scale µ, which however is
removed by the Wilson coefficients c1, c2 and c3.

By looking at the exterior corrections in the r ≫ Rs limit and in particular at the r−3 terms,
we clearly see the contribution of the electromagnetic energy to the mass (4.30). In fact from
(4.24) and (4.25) we have that in both case I and II the total mass is

M =
4

3
πR3

sρ0 +
q2

2Rs

. (4.135)

Divergences at the surface

The interior and exterior metric corrections, for both case I and II, are divergent in the limit
ϵ ≡ |r −Rs| → 0+. This is due to the fact that we are including higher order derivatives
of the metric, which is instead only once continuously differentiable. For both cases these
divergences are of the type

39



d1 =
G2
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R3
s

ln

(
ϵ

Rs

)
, (4.136a)

d2 =
G2

Nq
2

R4
s

ln

(
ϵ

Rs

)
, (4.136b)

d3 =
G2

NM

R2
s

1

ϵ
, (4.136c)

d4 =
G2

Nq
2

R3
s

1

ϵ
, (4.136d)

whereas only for the interior corrections of case I there is also

G2
Nq

2

R4
s

ln

(
Rsϵ

µ̄

)
. (4.137)

Since we have obtained the metric corrections by solving the modified Einstein equations
perturbatively in GN , the divergences (4.136) coming from the exterior corrections of order
O(G2

N) must be small compared to the usual metric coefficients of order O(GN), which are

VM ∼ GNM

Rs

, Vq ∼
GNq

2

R2
s

. (4.138)

In our units GN = l2p, therefore requiring d1 ≲ VM and d2 ≲ Vq we have

l2p
R2

s

ln

(
|r −Rs|

Rs

)
≲ 1, (4.139)

whereas from d3 ≲ VM and d4 ≲ Vq:

l2p
Rs|r −Rs|

≲ 1. (4.140)

All these conditions are satisfied if ϵ ≡ |r −Rs| ≲ lp, since for a star we obviously have
Rs ≫ lp. Therefore our results for the metric corrections have to be considered only outside a
layer of thickness ϵ around Rs.
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Chapter 5

Quantum hair in dark energy stars

5.1 Gravastars
The final state reached by a star with large enough mass after gravitational collapse is a black
hole. Black holes are peculiar in many aspects, among the most bizarre of which are the
formation of the event horizon and of the singularity, a place where tidal forces diverge and
general relativity breaks down. If during the collapse a trapped surface, that is a region from
which not even light can escape, is formed and if the matter making up the star satisfies the
strong energy condition, namely:

ρ+
3∑

i=1

pi ≥ 0, (5.1)

then a singularity will form, as stated by the Hawking-Penrose theorem [65]. Another interesting
aspect of black holes is the Hawking radiation, that is radiation emitted from the near horizon
region which eventually leads to the evaporation of the black hole [66].

The presence of the event horizon and of the singularity are problematic not only from
a gravitational point of view but also from a quantum information one, as they lead to the
well known information paradox [67, 68]. Moreover, from the definition of the event horizon,
the radiation emitted at the horizon radius would be infinitely redshifted. Therefore, if the
Hawking radiation produced by the black hole were to propagate and reach an observer with
a finite frequency, following the process backwards we would have that the radiation started
with an arbitrarily large energy, reaching trans-Planckian values. Thus, the backreaction of the
emitted radiation cannot be neglected, as it disrupts the geometry of the black hole. Another
problem worth mentioning is that the entropy of the black hole, as given by the Bekenstein-
Hawking formula [69]:

SBH =
AkB
4ℏGN

, (5.2)

where A is the horizon surface, far exceeds the entropy of a typical star [70, 71].
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A model which attempted to take the backreaction into account considers the black hole
as immersed in a Hawking radiation atmosphere, with an equation of state p = ωρ [72]. The
resulting entropy of this fluid is

S = 4
ω + 1

7ω + 1
SBH , (5.3)

reducing to the Bekenstein-Hawking one for ω = +1. However, there is still the problem of
trans-Planckian energies close to the horizon.

A different proposal is that as the star collapses, the quantum vacuum undergoes a phase
transition at or near the location where the event horizon is expected to form, similar to the
quantum liquid-vapor critical point of an interacting Bose fluid [73, 74]. The interior of the
critical surface at the horizon is sustained by a fluid with equation of state p = −ρ, equivalent
to the cosmological vacuum dark energy in Einstein’s equations. Therefore the interior can be
described by the de Sitter spacetime:

ds2 = (1−H2r2)dt2 − (1−H2r2)−1dr2 − r2dΩ2, (5.4)

where H2 = 8πGNρ
3

= Λ
3

, Λ being the cosmological constant and the horizon is located at H−1.
We note also that trying to match an interior de Sitter solution to an exterior Schwarzschild one
is not a novelty and several attempts have been made [75, 76].

All these motivations lead to the search for objects that could substitute black holes. To
be good candidates for this job, these objects must concentrate as much mass as possible in a
radius Rs ≳ 2GMM while avoiding the formation of an event horizon and of the singularity.
Based on these and on the considerations above, Mazur and Mottola proposed the model of a
”gravitational vacuum star”, also called gravastar [35, 36]. Gravastars are composed of three
distinguished regions:

• an interior de Sitter region with equation of state p = −ρ;

• a shell of ”non-inflationary” material [77] with p = +ρ;

• an exterior Schwarzschild region;

with two infinitesimally thin layers at the junction surfaces. The strong energy condition
(5.1) holds for all known types of matter and radiation. However, this is not the case for the
cosmological vacuum dark energy, for which

ρ+
3∑

i=1

pi = −2ρ < 0. (5.5)

Since the interior of a gravastar doesn’t satisfy the strong energy condition, this allows us to get
rid of the singularity. Moreover, since the position of the shell is such that the gravastar radius
is greater than 2GNM and smaller than H−1, we also get rid of the event horizon and thus of
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Figure 5.1: Representation of the three-layer dark energy star model. Region I in blue is the
interior dark energy region (p = ωρ, ω < −1/3), region II in gray and delimited by the two
dashed lines is the thin shell (p = +ρ), region III in white is the exterior Schwarzschild region
(p = ρ = 0). The thick lines correspond to the Schwarzschild and de Sitter horizons. The star
radius is such that 2GNM ≲ Rs ≲ H−1.

the information paradox. Lastly, the entropy of the gravastar, given only by the entropy of the
shell, is found to be much smaller than the Bekenstein-Hawking one.

Gravastar models have been extensively studied throughout the years. Mazur and Mottola
[35] showed that gravastars are thermodynamically stable. Visser and Wiltshire [34] studied
the dynamic stability against radial perturbations of a simplified model, where the thick shell of
matter and the two junction surfaces are combined in a single infinitesimal junction surface at
r ≳ 2GNM , showing that stability regions do exist. In [78] the stability analysis was extended
to generic thin-shell gravastars. In [79] it was found that models where the two thin layers
were replaced by a continuous pressure profile require that the matter of the shell cannot be
a perfect fluid because of the presence of anisotropic pressures. Moreover, it was also shown
that these models allow for a higher compactness than that allowed by the Buchdahl limit [80],
which prescribes that a ball of dust with radius Rs and mass M must satisfy the condition
Rs > 9

8
(2GNM) in order to be stable. In [33], studying the Buchdahl limit for spherically

symmetric stars with constant density, it was shown that an interior solution with a negative
pressure can already emerge in the classical theory of general relativity.
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5.1.1 Observational tests
Since the exterior metric of a gravastar is the same as that of a black hole down to the length
scale of the shell, it is very difficult to tell them apart experimentally. For example, being
the radius of a gravastar arbitrarily close to its Schwarzschild radius, the light it emits will
be largely redshifted, to the point that a gravastar is essentially indistinguishable from a black
hole if we look at electromagnetic radiation only. The astonishing images of the (possibly)
black holes Sgr A* at the center of the Milky Way [81–86] and of M87* at the center of the
galaxy Messier 87 [87–90] lack the angular resolution to resolve the near horizon region and
essentially observe the electromagnetic radiation of the photon sphere (see Section 6.4) around
it.

Nonetheless, there are several proposed observational tests to differentiate between gravas-
tars and black holes [91]. For example, in [92] the stability against axial perturbations was
studied and it was found that the quasinormal modes eigenfrequencies of the two objects are,
indeed, different: even though we can always choose the thickness and compactness of the
gravastar in such a way that it has the same oscillation frequency of a black hole with the
same mass, the decay time of the oscillations will differ. Therefore, the gravitational radiation
produced by the oscillation of a gravastar can be used to distinguish it from a black hole.
Although the literature on these observational tests is extensive and growing larger [93–97], as
of now the question regarding the existence of gravastars remains unanswered.

5.2 Dark energy stars
An extension of the single thin-shell gravastar model [34] can be found in the concept of
dark energy stars [37], where the de Sitter interior is generalized to a region governed by the
equation of state p = ωρ, with ω < −1/3. The motivation for this resides in the fact that it
has been observed how the Universe is currently undergoing a phase of accelerated expansion
[3–8]. The main proposal to explain this phenomenon is that of dark energy, a cosmic fluid
parametrized exactly by an equation of state with ω < −1/3. Current observations suggest
that the value of ω is close to −1, therefore dark energy may be identified with the vacuum
gravitational constant Λ of the de Sitter spacetime (5.4). It is then natural to extend the interior
de Sitter region to a generic dark energy one.

Summarising, we consider a three layer star (see Fig. 5.1) with:

I. an interior dark energy region, with equation of state p = ωρ and ω < −1/3;

II. a single thin shell p = +ρ, with a radius Rs such that 2GNM ≲ Rs ≲ H−1, in order to
avoid the formation of an horizon;

III. an exterior Schwarzschild region, ρ = p = 0.
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We take the interior energy density to be constant. The total mass of the star is given not
only by the de Sitter vacuum but receives also a contribution from the thin shell, therefore we
parametrize the energy density as ρ = kρ0, where ρ0 = 3M

4πR3
s
, with M the total mass, and

k ≲ 1. The interior metric is thus [37]

ds2 =

(
1− 2GNkM

R3
s

r2
)−(1+3ω)/2

dt2 −
(
1− 2GNkM

R3
s

r2
)−1

dr2 − r2dΩ2. (5.6)

In the remainder of this section we will compute the quantum gravitational corrections to
the dark energy star metric, showing how the external metric carries information on the interior
distribution.

5.3 Quantum corrections to the dark energy star metric
Following the same procedure of Section 3, it is straightforward to compute the metric correc-
tions, in the limit where the shell is infinitesimally thin. For the interior we find

δgint
tt = [α + β + 3γ − 3ω(α− γ)]

192πG2
NkM

R3
s

ln

(
R2

s

R2
s − r2

)
+

C1

r
+ C2 +O(G3

N), (5.7)

δgint
rr = [(α− γ)− ω(3α + β + γ)]

384πG2
NMr2

R3
s(R

2
s − r2)

+
C1

r
+O(G3

N), (5.8)

where the integration constants Ci must be set to zero if we require regularity at the origin.
Similarly for the exterior we find

δgext
tt = [α + β + 3γ − 3ω(α− γ)]

192πG2
NkM

R3
s

[
2
Rs

r
+ ln

(
r −Rs

r +Rs

)]
+

C3

r
+ C4 +O(G3

N), (5.9)

δgext
rr = [(α− γ)− ω(3α + β + γ)]

384πG2
NkM

r(r2 −R2
s)

+
C3

r
+O(G3

N), (5.10)

where the integration constants Ci must be set to zero if we require asymptotic flatness.
Far away from the star, that is in the r ≫ Rs limit, the exterior metric corrections reduce to

δgext
tt = − [α + β + 3γ − 3ω(α− γ)]

128πG2
NkM

r3
+O(G3

N), (5.11)

δgext
rr = [(α− γ)− ω(3α + β + γ)]

384πG2
NkM

r3
+O(G3

N), (5.12)
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whereas deep inside the star, that is in the r ≪ Rs limit, the interior corrections vanish:

δgint
tt = δgint

rr = O(G3
N). (5.13)

These corrections also apply to the gravastar model when ω = −1. Note also that for ω = 0,
i.e. dust, we recover the corrections to the Schwarzschild star of Section 3. We thus see
explicitly the presence of quantum hairs: an outside oberserver can recover informations about
the interior fluid’s equation of state. As a last remark, because of the divergences in the limit
ϵ ≡ |r −Rs| → 0+, the metric corrections only apply outside a layer of thickness ϵ ≳ lp around
the star surface. Therefore the corrected metric cannot be used to study the stability of the
model in the Israel–Lanczos–Sen junction condition formalism [98–100], which aims to find
the equilibrium position of the freely moving transition layer at Rs. Moreover, even though the
horizon radius is now shifted

RH = 2GNM − 96kπ

M
[(α− γ)− ω(3α + β + γ)], (5.14)

the extra terms are subleading with respect to the classical result and won’t affect the stability
of the star.

We can now turn to the study of gravitational lensing as a way to find observables aiming to
test the validity of our calculations. In particular, because of the presence of quantum hairs in
the metric outside the gravastar/dark energy star and of the absence of second order corrections
to the Schwarzschild black hole, these observational tests could allow us to experimentally tell
these objects apart from one another.
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Chapter 6

Observational tests in gravitational lensing

Since the metric components are not measurable by themselves, it is interesting to find some
observables which could, in principle at least, allow us to detect the effects produced by the
different metric corrections found so far. Of particular interest in this regard is then gravitational
lensing. Gravitational lensing is not only of great historical value in physics, since it has been
one of the very first tests of general relativity [101], but is also relevant from an experimental
point of view, as many phenomena related to the bending of light have been observed.

By gravitational lensing we mean the collection of all the effects caused by a gravitational
field on the propagation of electromagnetic radiation (see e.g. Fig. 6.1). The gravitational
field is characterized by a metric with Lorentzian signature describing the spacetime manifold
while the radiation is described in terms of rays, that is the lightlike geodesics of the metric.
Therefore the mathematical description of gravitational lensing reduces to the study of lightlike
geodesics in a 4-dimensional spacetime manifold and thus allows us to directly connect our
metric corrections to measurements. We will now briefly review some of the basic concepts of
this framework and then procede to compute several observables.

6.1 Celestial sphere
In a generic spacetime (M, g), the past light cone of an observer at a given event PO, that is
a point in space and time, is outlined by the lightlike geodesics departing from PO into the
past. The observer can detect only those signals generated by a (pointlike) source moving
along a worldline γs intersecting its past light cone. For every past oriented lightlike geodesic
λ departing from PO and intersecting γs, an image of the source will be produced on the
observer’s sky. The observer’s sky or celestial sphere SO is the set of all lightlike directions at
PO [40]. Given the velocity UO of the observer at PO we can then identify the celestial sphere
SO as a subset of the tangent space TPO

M:

SO = {V ∈ TPO
M|g(V, V ) = 0 and g(V, UO) = 1}. (6.1)
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Figure 6.1: Representation of how light rays emitted by a source S are bent by a gravitational
lens L as they travel towards an observer O.

By definition of the exponential map, every affinely parametrized geodesic s → λ(s) satisfies
λ(s) = exp

(
sλ̇(0)

)
. Therefore, the past light cone of PO is the image of the map

(s, V ) → exp(sV ), (6.2)

defined on a subset of ]0,∞[×SO.
It is useful to introduce coordinates on the observer’s past light cone by choosing an

orthonormal tetrad {e0, e1, e2, e3} with e0 = −UO at the observation event. This allows us to
parametrize the points on the observer’s celestial sphere with spherical coordinates (Θ,Φ):

V = sinΘ cosΦe1 + sinΘ sinΦe2 + cosΘe3 + e0. (6.3)

Therefore the map (6.2) maps each (s,Θ,Φ) to a spacetime point. We can then let the
observation event move along the observer’s worldine, parametrized by the proper time τ , and
map each (s,Θ,Φ, τ) to a spacetime point. In terms of generic coordinates xµ = (x0, x1, x2, x3)
on the spacetime manifold, this map can be formally expressed as

xµ = F µ(s,Θ,Φ, τ). (6.4)

6.2 The optical-mechanical analogy in general relativity
For static and spherically symmetric metrics, as is the case for the metrics studied so far, it can
be useful to express the generic line element not in terms of the standard spherical coordinates
(t, r, θ, ϕ):

ds2 = f(r)c20dt
2 − g(r)−1dr2 − r2dΩ2, (6.5)
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but rather in terms of the isotropic radius r′, which is introduced in order to treat the 3-
dimensional space metric similarly to the Euclidean one:

ds2 = Ψ2(r′)c20dt
2 − Γ−2(r′)(dr′2 + r′2dΩ2)

= Ψ2(r′)c20dt
2 − Γ−2(r′)dl2.

(6.6)

Throughout this section we will keep explicit the dependence on the vacuum speed of light c0
as we will deal with propagation of particles and light rays in terms of optical mechanics. The
isotropic speed of light c(r′) = |dl/dt| can be found from ds2 = 0, leading to

c(r′) = |dl/dt| = c0Γ(r
′)Ψ(r′). (6.7)

The effective refractive index is therefore

n =
c0

c(r′)
= Ψ(r′)−1Γ(r′)−1. (6.8)

Light trajectories in a gravitational field, i.e. lightlike geodesics, may be calculated using the
effective refractive index in the geometrical optics formalism [39]. A convenient approach
is the ”F = ma” formulation [102, 103], in which optical rays obey an equation similar to
Newton’s law:

d2r⃗′

dA2
=

1

2
∇⃗(n2c20), (6.9)

where r⃗′(A) is the position along the light ray parametrized by A. We will now show the
analogy between trajectories in general relativity (governed by the least action principle),
geometrical optics (governed by Fermat’s principle) and classical mechanics (governed by
Hamilton’s principle). This will allow us to write down the equations of motion for massive
and massless particles in general relativity in analogy to the equations of motion of Newtonian
mechanics, which will be then used to investigate various phenomena.

6.2.1 Transformation of the geodesic condition
Let us consider the geodesic condition for particle trajectories:

δ

∫ (t2,x⃗2)

(t1,x⃗1)

ds = 0, (6.10)

where the variation is taken over the path of integration between two fixed spacetime points,
(t1, x⃗1) and (t2, x⃗2). For the isotropic line element (6.6) we have

δ

∫ (t2,x⃗2)

(t1,x⃗1)

Ψc0

(
1− v2n2

c20

)1/2

= 0. (6.11)
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If we define the effective Lagrangian:

L(xi, ẋi) = −c20Ψ

(
1− v2n2

c20

)1/2

, (6.12)

we clearly see an analogy between (6.11) and Hamilton’s principle, where ẋi ≡ dxi/dt and
v2 =

∑3
i=1(dxi/dt)

2 and we multiplied by an extra c0 for later convenience. The canonical
momenta are then

pi =
∂L

∂ẋi

= Ψn2ẋi

(
1− v2n2

c20

)1/2

, (6.13)

and the Hamiltonian is

H =
3∑

i=1

piẋi − L = c20Ψ

(
1− v2n2

c20

)−1/2

, (6.14)

or, in terms of the momentum

H = c20

(
Ψ2 +

p2

n2c20

)1/2

, (6.15)

where p = |p⃗|. Since there is no time dependence (as we work in static spacetimes) the
Hamiltonian is a constant of motion. From Hamilton’s principle:

δ

∫ (t2,x⃗2)

(t1,x⃗1)

Ldt = 0, (6.16)

we can then obtain Maupertuis’s principle:

δ

∫ x⃗2

x⃗1

3∑
i=1

piẋi dt = δ

∫ x⃗2

x⃗1

n2v2Ψ

(
1− v2n2

c20

)−1/2

dt = 0, (6.17)

where now the variation is over a path of integration with fixed space endpoints and conserved
energy along the path while the times at the endpoints are not fixed. If we substitute in (6.17)
the right-hand side of (6.14) for H , in order to restrict the varied paths to those satisfying the
energy constraint, we finally obtain

δ

∫ x⃗2

x⃗1

n2v dl = 0, (6.18)

where dl = vdt =
(∑3

i=1 dx
2
i

)1/2. We clearly see how Fermat’s principle, at the basis of
geometrical optics, and Maupertius’ principle, at the basis of classical mechanics as long as the
force can be derived from a velocity-independent potential, are simply a special case of (6.18):
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Relativistic gravitational
mechanics

Geometrical optics
(Fermat)

Classical mechanics
(Maupertuis)

δ
∫
n2v dl = 0 δ

∫
n dl = 0 δ

∫
v dl = 0

Dealing with light instead of massive particle requires some care but the end result is the
same. In this case the trial curves among which the lightlike geodesics extremizing a given
functional are to be singled out are all the past-pointing lightlike curves from the event PO

to γs. By parametrizing these curves with a generic past-oriented parameter and assigning to
each curve the parameter at which it arrives at the observer, we can define the arrival time
functional T that has to be extremized. By definition a spacetime is stationary if it admits
a timelike Killing vector field ξ⃗. If ξ⃗ is complete and if there are no closed timelike curves
then the spacetime must be a product M ≃ R× M̂, with M̂ a 3-manifold and ξ⃗ parallel to
the R-line [104]. Denoting by t the projection from M to R and choosing local coordinates
x = (x1, x2, x3) on M̂ we may rewrite the metric (6.6) as

ds2 = e2ϕ(x)[c20dt
2 − γij(x)dx

idxj], with i = 1, 2, 3 (6.19)

where e2ϕ = Ψ2 and γij = (ΓΨ)−2δij = n2δij is called the Fermat metric. The factor e2ϕ(x)
won’t affect the lightlike geodesics apart from their parametrization and the light rays’ paths
are determined only by the metric γij . If we assume that the observation event PO takes place
at t = 0, then the arrival time for each trial curve λ from PO to γs is equal to to the travel time
and we may write the arrival time functional as

T (λ) =

∫ l2

l1

√
γij(x)

dxi

dl

dxj

dl
dl =

∫ l2

l1=0

n(x)dl. (6.20)

Therefore lightlike geodesics in a curved spacetime can be treated equivalently to light propa-
gating in a medium with a suitable refractive index.

6.2.2 Equation of motion
Let us parametrize the particle trajectories by a parameter A, which will later be suitably chosen
in order to simplify the equations of motion. We can then rewrite (6.18) as

δ

∫ x⃗2

x⃗1

n2v

∣∣∣∣∣dr⃗′dA

∣∣∣∣∣dA = 0, (6.21)

where
∣∣∣dr⃗′/dA∣∣∣ = [

∑3
i=1(dxi/dA)

2]1/2. Consider now an infinitesimal displacement w⃗(A)

from the true path r⃗′(A), such that it vanishes at the end points r⃗′ = x⃗1, x⃗2. We thus have

δ

∫
n2v

∣∣∣∣∣dr⃗′dA

∣∣∣∣∣dA =

∫
δ(n2v)

∣∣∣∣∣dr⃗′dA

∣∣∣∣∣dA +

∫
n2v

(
δ

∣∣∣∣∣dr⃗′dA

∣∣∣∣∣
)
dA +

∫
n2v

∣∣∣∣∣dr⃗′dA

∣∣∣∣∣δdA. (6.22)
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For the first term on the right-hand side, since it depends only on r⃗′, to first order in w⃗ its
variation is

δ(n2v) = ∇⃗(n2v) · w⃗. (6.23)

For the second term, since a variation in the path will also induce a variation in the parameter
A, we may write

δ

∣∣∣∣∣dr⃗′dA

∣∣∣∣∣ =
∣∣∣∣∣ dr⃗′ + dw⃗

dA+ δdA

∣∣∣∣∣− dr⃗′

dA
=

dr⃗′

dA
· dw⃗
dA

∣∣∣∣∣dr⃗′dA

∣∣∣∣∣
−1

−

∣∣∣∣∣dr⃗′dA

∣∣∣∣∣δdAdA , (6.24)

again to first order in the variation. Plugging (6.23) and (6.24) in (6.22) we get

δ

∫
n2v

∣∣∣∣∣dr⃗′dA

∣∣∣∣∣dA =

∫ ∣∣∣∣∣dr⃗′dA

∣∣∣∣∣∇⃗(n2v) · w⃗ + n2v

∣∣∣∣∣dr⃗′dA

∣∣∣∣∣
−1

dr⃗′

dA
· d⃗w
dA

 dA. (6.25)

Integrating the last term by parts and remembering that w⃗ vanishes at the endpoints, we finally
find the differential equation of motion that particle trajectories must satisfy:∣∣∣∣∣dr⃗′dA

∣∣∣∣∣∇⃗(n2v)− d

dA

n2v

∣∣∣∣∣dr⃗′dA

∣∣∣∣∣
−1

dr⃗′

dA

 = 0. (6.26)

Since A is a generic parameter, we may choose it in such a way that it simplifies the equation
of motion and makes explicit the analogy with Newtonian mechanics. We thus define it as∣∣∣∣∣dr⃗′dA

∣∣∣∣∣ ≡ n2v. (6.27)

It is also useful to have an explicit relation between the stepping parameter A and the time t. If
in (6.27) we substitute ∣∣∣∣∣dr⃗′dA

∣∣∣∣∣ =
∣∣∣∣∣dr⃗′dt

∣∣∣∣∣ dtdA = v
dt

dA
(6.28)

we find
dA = dt/n2. (6.29)

The choice (6.27) simplifies (6.26) to

d2r⃗′

dA2
= ∇⃗

(
1

2
n2v

)
. (6.30)

This equation is therefore a generalization of the F = ma optics formula (6.9): the left-hand
side is the second derivative of the position with respect to the chosen parameter whereas the
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right-hand side is a force expressed as the gradient of a potential energy. Moreover, the total
energy, written as the sum of the kinetic energy 1

2

∣∣∣dr⃗′/da∣∣∣2 and potential energy −n4v2/2,
vanishes because of (6.27):

1

2

∣∣∣∣∣dr⃗′dA

∣∣∣∣∣
2

− 1

2
n4v2 = 0. (6.31)

These equations hold for both massive and massless particles, choosing v(r⃗′) appropriately:

v =

c0n
−1 for light,

c0n
−1
(
1− c40Ψ

2

H2

)1/2
for particles.

(6.32)

In dealing with particle trajectories through (6.30) and (6.31) we can thus use the very well
known methods of Newtonian mechanics. Furthermore, we may also write an exact general-
relativistic formula by analogy to the classical one for particle motion in static and velocity-
independent potentials once we substitute

t → A, U → −n4v2/2, E → 0. (6.33)

We stress that this formalism applies in the isotropic coordinate system. To go back to standard
coordinates we can then simply transform the results thus obtained.

6.3 Refractive indices
In the previous section we dealt with objects whose outside metric is either the Schwarzschild or
Reissner-Nordström one. Before dealing with the quantum corrected metrics, let us first review
how to compute the refractive index for the classical case [39, 40]. We will then compute the
refractive index for the corrected metrics as a small variation of the respective classical result.

The general line element (6.5) in standard coordinates (t, r, θ, ϕ) for the Reissner-Nordström
metric is

ds2 =

(
1− 2GNM

r
+

GNq
2

r2

)
dt2 −

(
1− 2GNM

r
+

GNq
2

r2

)−1

dr2 − r2dΩ2. (6.34)

In isotropic coordinates (t, r′, θ, ϕ) the metric will take the form (6.6), with Ψ(r′) and Γ(r′) to
be determined. To find the transformation relating standard coordinates to the isotropic ones,
we equate the angular and radial part of these two metrics, finding

r2 = Γ−2(r′)r′2, (6.35)
g(r)−1 dr2 = Γ−2(r′) dr′2, (6.36)
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where
g(r) = 1− 2GNM

r
+

GNq
2

r2
. (6.37)

Dividing the second equation by the first to eliminate Γ we get

1√
g(r)

dr

r
=

dr′

r′
(6.38)

and integrating we find the relation

2r′ = (r −GNM) +
√

r2 − 2GNMr +GNq2, (6.39)

where we imposed that at large radial distances the two coordinates are equal. The inverse
transformation is

r = r′ +GNM +
G2

NM
2 −GNq

2

4r
. (6.40)

Having found the isotropic radius in terms of the standard one, we can compute Γ from (6.35),
whereas by a direct comparison of the two metrics (6.34) and (6.6) we have Ψ2(r′) = f(r′):

Ψ2(r′) =

(
1− G2

NM
2 −GNq

2

4r′2

)2(
1 +

GNM

r′
+

G2
NM

2 −GNq
2

4r′2

)−2

, (6.41)

Γ2(r′) =

(
1 +

GNM

r′
+

G2
NM

2 −GNq
2

4r′2

)2

, (6.42)

leading to a refractive index

n(r′) =

(
1 +

GNM

r′
+

G2
NM

2 −GNq
2

4r′2

)2(
1− G2

NM
2 −GNq

2

4r′2

)−1

. (6.43)

Let us define u ≡ 1/r and u′ ≡ 1/r′. When transforming from one coordinate to the other, it
is useful to use the following relations:

du′ = n du or dr′ = ΓΨ−1 dr, (6.44)
u′ = Γ−1u or r′ = Γr. (6.45)

Since we will deal with the extra terms coming from the quantum corrected metric components
expanding to second order in GN and q, it is useful to repeat this analysis in this expansion. Let
us start with the expansion and integration of (6.38), giving the relation between the standard
and isotropic radial coordinates:

ln(r′) = ln(r)− GNM

r
+

GNq
2

4r2
− 3G2

NM
2

4r2
+

G2
NMq2

r3
+O(G3

N) +O(q4). (6.46)
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If we now exponentiate and expand, we find

r′ ≃ r −GNM +
GNq

2

4r
− G2

NM
2

4r
+

G2
NMq2

4r2
, (6.47)

which coincides with the expansion of (6.39). Inverting the transformation and expanding we
have

r ≃ r′ +GNM − GNq
2

4r′
+

G2
NM

2

4r′
, (6.48)

which reproduces exactly (6.40). The resulting refractive index in terms of the isotropic radius
(6.47) is then

n(r′) = 1 +
2GNM

r′
− 3GNq

2

4r′2
+

7G2
NM

2

4r′2
− G2

NMq2

r′3
+O(G3

N) +O(q4), (6.49)

which coincides with the expansion of (6.43). Unfortunately, since the quantum corrected
metric components are often very complicated, once we find the isotropic radius as a function
of the standard one, we won’t always be able to invert this relation. Therefore it is also useful to
express the refractive index in terms of the standard coordinate, which upon expanding, yields

n(r) = 1 +
2GNM

r
− 3GNq

2

4r2
+

15G2
NM

2

4r2
− 3G2

NMq2

r3
+O(G3

N) +O(q4). (6.50)

Let us now compute the refractive indices of our quantum corrected metrics.

6.3.1 Quantum corrected Schwarzschild star
We consider the metric corrections in the large distance limit, which is well justified since
observed effects due to lensing are typically occurring on astrophysical distances.

The quantum corrected metric components are

f(r) = 1− 2GM

r
− (α + β + 3γ)128πG2

NM

r3
, (6.51)

g(r) = 1− 2GM

r
+

(α− γ)384πG2
NM

r3
. (6.52)

The resulting isotropic coordinate is

r′ ≃ r −GNM − G2
NM

2

4r
+

(α− γ)64πG2
NM

r2
, (6.53)

and the inverse transformation is

r ≃ r′ +GNM +
G2

NM
2

4r′2
− (α− γ)64πG2

NM

r′2
. (6.54)
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The refractive index in isotropic coordinates is thus

n(r′) = 1 +
2GNM

r′
+

7G2
NM

2

4r′2
+

64(β + 4γ)πG2
NM

r′3
+O(G3

N), (6.55)

whereas in standard coordinates it becomes

n(r) = 1 +
2GNM

r
+

15G2
NM

2

4r2
+

64(β + 4γ)πG2
NM

r3
+O(G3

N). (6.56)

6.3.2 Quantum corrected dark energy star
The quantum corrected metric components are

f(r) = 1− 2GM

r
− [α + β + 3γ − 3ω(α− γ)] 128πG2

NM

r3
, (6.57)

g(r) = 1− 2GM

r
+

[(α− γ − ω(3α + β + γ))] 384πG2
NM

r3
. (6.58)

The isotropic coordinate is found to be

r′ ≃ r −GNM − G2
NM

2

4r
+

[(α− γ − ω(3α + β + γ)]64πG2
NM

r2
, (6.59)

and the inverse transformation is

r ≃ r′ +GNM +
G2

NM
2

4r′2
− [(α− γ − ω(3α + β + γ)]64πG2

NM

r′2
. (6.60)

The resulting refractive index in isotropic coordinates is

n(r′) = 1 +
2GNM

r′
+

7G2
NM

2

4r′2
+

64(β + 4γ)(1 + ω)πG2
NM

r′3
+O(G3

N), (6.61)

whereas in standard coordinates it becomes

n(r) = 1 +
2GNM

r
+

15G2
NM

2

4r2
+

64(β + 4γ)(1 + ω)πG2
NM

r3
+O(G3

N). (6.62)

6.3.3 Quantum corrected Reissner-Nordström black hole
For the quantum corrected Reissner-Nordström black hole we have

f(r) = 1− 2GNM

r
+

GNq
2

r2
− 32πG2

Nq
2

r4

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γ − 3

2

)]
, (6.63)

g(r) = 1− 2GNM

r
+

GNq
2

r2
− 64πG2

Nq
2

r4

[
c̄2 + 2(β + 4γ) (ln(µr) + γ − 2)

]
. (6.64)
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The resulting isotropic coordinate is

r′ ≃ r −GNM +
GNq

2

4r
− G2

NM
2

4r
+

G2
NMq2

4r2

− 8πG2
Nq

2

r3

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γ − 7

4

)]
. (6.65)

As anticipated earlier, we can’t analytically invert this relation in order to find Γ as a function
of the isotropic radius and thus compute the refractive index n(r′). Therefore, we can only
express the refractive index in terms of the standard coordinate, which upon expansion yields

n(r) = 1 +
2GNM

r
− 3GNq

2

4r2
+

15G2
NM

2

4r2
− 3G2

NMq2

r3

+
24πG2

Nq
2

r4

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γ − 19

12

)]
+O(G3

N) +O(q4). (6.66)

6.3.4 Quantum corrected charged star
We report here the metric components for the quantum corrected Reissner-Nordström star for
the case I in the r ≫ Rs limit:

f(r) = 1− 2GNM

r
+

GNq
2

r2
− 1280πG2

Nq
2(α− γ)

3rR3
s

− 64πG2
N

r3

(
q2

2Rs

+M

)
(α + β + 3γ)

− 32πG2
Nq

2

r4

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γE − 3

2

)]
+O(G3

N),

(6.67a)

g(r) = 1− 2GNM

r
+

GNq
2

r2
− 1280πG2

Nq
2(α− γ)

3rR3
s

+
64πG2

N

r3

(
q2

2Rs

+M

)
(α− γ)

− 64πG2
Nq

2

r4

[
c̄2 + 2(β + 4γ) (ln(µr) + γE − 2)

]
+O(G3

N).

(6.67b)

The resulting isotropic coordinate is

r′ ≃ r −GNM +
GNq

2

4r
− G2

NM
2

4r
+

G2
NMq2

4r2
+

64πG2
NM(α− γ)

r2

(
q2

2Rs

+M

)
− 640πG2

Nq
2(α− γ)

3R3
s

− 8πG2
Nq

2

r3

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γ − 7

4

)]
. (6.68)
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Again, this transformation is not invertible and we can only express the refractive index in
terms of the standard coordinate:

n(r) = 1 +
2GNM

r
− 3GNq

2

4r2
+

15G2
NM

2

4r2
− 3G2

NMq2

r3
+

64πG2
N(β + 4γ)

r3

(
q2

2Rs

+M

)
+
1280πG2

Nq
2(α− γ)

3rR3
s

+
24πG2

Nq
2

r4

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γ − 19

12

)]
+O(G3

N)+O(q4).

(6.69)

For case II the results are the same with the only exception that the term proportional to R−3
s

vanishes.

6.4 Photon sphere
We will now analyze the presence of photon spheres [41], that is sphere made up of photons
moving in circular orbits around the source, for the metric of interest, motivated by the fact
that we have images of the photon spheres around the black holes Sgr A* at the center of
the Milky Way [81–86] and M87* at the center of the galaxy Messier 87 [87–90]. We start
by reviewing the classical results for the Schwarzschild and Reissner-Nordström metrics and
procede to compute the photon sphere radius for the quantum corrected metrics as a small
modification of the classical result.

The generic line element (6.5) for static and spherically symmetric spacetimes (setting now
c0 = 1) has two Killing vectors: k⃗ = ∂⃗t associated to invariance under time translations and
n⃗ = ∂⃗ϕ associated to invariance under rotations around the z-axis. Defining uµ ≡ dxµ/dλ as
the photon four-momentum, we have the two integral of motions

E = −kµu
µ = f(r)

dt

dλ
, (6.70)

L = nµu
µ = r2 sin2(θ)

dϕ

dλ
. (6.71)

Without loss of generality, we can restrict motion to be on the equatorial plane θ = π/2. Using
then the condition gµνu

µuν = 0 we find

f(r)

g(r)

(
dr

dλ

)2

+ V (r, E, L) = 0, (6.72)

where the effective potential is defined as

V (r, E, L) = f(r)
L2

r2
− E2. (6.73)
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Since we are interested in circular orbits we must impose

dr

dλ
= 0,

d2r

dλ2
= 0, (6.74)

which translate into the conditions for the potential

V (rp) = 0, V ′(rp) = 0. (6.75)

When V ′(rp) = 0, a geodesic of the γ metric that starts tangent to the sphere at r = rp remains
in it. This will create the so called photon sphere at rp that gives raise to a gravitational lensing
generating infinitely-many images. Solving the first equation (6.75) for the impact parameter
b ≡ L/E and then plugging it into the second equation we find that the latter is satisfied when

f ′(rp)rp − 2f(rp) = 0, (6.76)

which is equivalent to
d

dr

(
rp√
f(rp)

)
= 0. (6.77)

It can be shown that any spherically symmetric and static spacetime with an horizon at rH and
which is asymptotically flat must have a light sphere at a radius between the horizon radius and
infinity [105].

For the classical Reissner-Nordström metric we have

f(r) = 1− 2GNM

r
+

GNq
2

r2
, (6.78)

leading to the equation
r2 − 3GNMr + 2GNq

2 = 0, (6.79)

which has two solutions:

rp =
3GNM ±

√
9G2

NM
2 − 8q2

2
. (6.80)

We are of course interested in the outer solution and since we deal with the non-extremal case
for which q2 ≪ GM2, we can expand in the charge finding

rp = 3GNM − 2q2

3M2
+O(q4). (6.81)

In the zero charge limit we recover the Schwarzschild solution rp = 3GNM .
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6.4.1 Quantum corrected uncharged star
The Schwarzschild black hole doesn’t receive any correction at second order in curvature,
although it does at third order [15]. The photon sphere radius for the corrected black hole
has already been studied [106], therefore we shall focus only on the quantum corrected star of
Section 3. For this latter case we have, considering an observer far away from the star:

f(r) = 1− 2GNM

r
− (α + β + 3γ)128πG2

NM

r3
, (6.82)

leading to the equation

r3 − 3GNMr2 − (α + β + 3γ)320πG2
NM = 0. (6.83)

Similarly to what we did for the computation of the horizon radius in the previous sections, we
solve this equation perturbatively around the classical result rp = 3GNM . We first recast it as

r − 3GNM = (α + β + 3γ)
320πG2

NM

r2
, (6.84)

and solve setting the right-hand side to zero, finding rp = 3GNM . We then plug this result
on the right-hand side and solve the whole equation, thus getting the modified photon sphere
radius

rp = 3GNM + (α + β + 3γ)
320π

9M
. (6.85)

Similarly, for the dark energy star we find

rp = 3GNM + [α + β + 3γ − 3ω(α− γ)]
320πk

9M
. (6.86)

6.4.2 Quantum corrected Reissner-Nordström black hole
For the quantum corrected Reissner-Nordström black hole we have

f(r) = 1− 2GNM

r
+

GNq
2

r2
− 32πG2

Nq
2

r4

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γE − 3

2

)]
, (6.87)

leading to

r2 − 3GNMr + 2GNq
2 =

96πG2
Nq

2

r2

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γE − 5

3

)]
. (6.88)

Setting r = 3GNM on the right-hand side and solving the resulting equation we find

rp = 3GNM − 2q2

3M
+

32πq2

9GM3

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γE − 5

3

)]
+O(q4), (6.89)

where, as in the classical case, we expanded in the limit q2 ≪ GM2.
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6.4.3 Quantum corrected charged star
The quantum corrected charged star is more complicated and requires some care in order to
give a sensible result. We start with the simple case II of Section 4.3.2, that is when we impose
the perfect fluid condition on the whole energy-momentum tensor: T 1

1 = T 2
2 = T 3

3 . From
(4.133a) we have

f(r) = 1− 2GNM

r
+

GNq
2

r2
− 64πG2

N

r3

(
q2

2Rs

+M

)
(α + β + 3γ)

− 32πG2
Nq

2

r4

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γE − 3

2

)]
, (6.90)

where we used ρ0 = 3M/(4πR3
s) and fixed Rs = 2GNM , since for the photon sphere to be

observable the radius of the star has to be in the range 2GNM < Rs < 3GNM . The equation
we need to solve is then

r4 − 3GNMr3 + 2GNq
2r2 − (α + β + 3γ)80π

(
4G2

NM +
GNq

2

M

)
r

− 96πG2
Nq

2

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γE − 5

3

)]
= 0. (6.91)

Following the same steps as before we eventually find

rp = 3GNM +
2q2

3M
+ (α + β + 3γ)

320π

9

(
1

M
+

25

36

q2

GM3

)
+

32πq2

9GM3

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γE − 5

3

)]
+O(q4). (6.92)

For case I, where we impose perfect fluidity on the matter tensor alone, that is M1
1 = M2

2 =
M3

3 , from (4.114a) we have

f(r) = 1− 2GNM

r
+

GNq
2

r2
− 1280πG2

Nq
2(α− γ)

3rR3
s

− 64πG2
N

r3

(
q2

2Rs

+M

)
(α+ β + 3γ)

− 32πG2
Nq

2

r4

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γE − 3

2

)]
, (6.93)

leading to

r4 −
[
3GNM + (α− γ)

80πq2

GNM3

]
r3 + 2GNq

2r2 − (α+ β + 3γ)80π

(
4G2

NM +
GNq

2

M

)
r

− 96πG2
Nq

2

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γE − 5

3

)]
= 0. (6.94)
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Figure 6.2: Gravitational bending of light rays passing near a massive object, where ∆ϕ is the
total deflection angle and R is the distance of closest approach to the origin.

Thus we find

rp = 3GNM +
2q2

3M
+

80πq2

GM3

(
α− 31

81
γ

)
+ (α + β + 3γ)

320π

9

(
1

M
+

53

36

q2

GM3

)
+

32πq2

9GM3

[
c̄2 + 2(β + 4γ)

(
ln(µr) + γE − 5

3

)]
+O(q4). (6.95)

As a final remark on photon spheres, we note that while they are perfectly possible for black
holes (as recently observed for Sgr A* and M87*), gravastars and dark energy stars, the
existence of regular stars as those analyzed in Section 3 and 4 with a radius in the range
2GNM < Rs < 3GNM is dubious [107].

6.5 Bending of light rays
Light rays passing near a massive object will be bent by an angle ϕ with respect to their original
trajectory (see Fig. 6.2). Going back to orbits on the equatorial plane, we may write the general
relativistic expression for the deflection angle in analogy to the classical result [38]:

ϕ = L0

∫
1

r′2[2(E − U)− L2
0/r

′2]1/2
dr′ → L

∫
1

r′2[n4v2 − L2/r′2]1/2
dr′ (6.96)

where L0 = r′2dϕ/dt and L = r′2dϕ/dA are related through (6.29) as L = n2L0. Switching
to u′ = 1/r′, we may rewrite this result as

L2

[(
du′

dϕ

)2

+ u′2

]
− n4v2 = 0, (6.97)

and using the expression for the massive particle velocity (6.32) we find(
du′

dϕ

)2

+ u′2 − c20
L2

n2

(
1− c40Ψ

2

H2

)
= 0. (6.98)
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The same equation holds for photons once we send H → ∞. We can now go back to standard
coordinates using (6.44) and (6.45):(

du

dϕ

)2

+ u2Ψ2 − c20
L2

n2

(
1− c40Ψ

2

H2

)
= 0. (6.99)

Considering now the general Reissner-Nordström metric and differentiating with respect to ϕ
we get

d2u

dϕ2
+ u− GNMc60

L2H2
= −GNq

2c60
L2H2

u+ 3GNMu2 − 2GNq
2u3. (6.100)

Since we are interested in the deviation of light rays, we can now send H → ∞ in (6.100),
leading to

d2u

dϕ2
+ u = 3GNMu2 − 2GNq

2u3, (6.101)

and solve this differential equation perturbatively, i.e. we first set the right-hand side to zero
and obtain the zeroth-order solution

u =
sinϕ

R
, (6.102)

where R is the distance of closest approach to the origin. We can now plug this result in the
right-hand side of (6.101) and then solve to obtain the first-order solution

u =
sinϕ

R
+

3GNM

2R2

(
1 +

1

3
cos 2ϕ

)
+

3GNq
2

4R3
ϕ cosϕ− GNq

2

16R3
sin 3ϕ. (6.103)

At large distances r → ∞, u → 0 and the deflection angle becomes small ϕ → ϕ∞. We can
thus expand (6.103) as

0 =
ϕ∞

R
+

2GNM

R2
+

9q2ϕ∞

16R3
, (6.104)

and the total deflection ∆ϕ∞ = 2|ϕ∞| is:

∆ϕ∞ =
4GNM

R

(
1− 9GNq

2ϕ∞

16R2

)
+O(q4), (6.105)

where we expanded in the limit q2 ≪ GNM
2. We will now repeat these calculations for the

quantum corrected metrics of interest.

6.5.1 Quantum corrected Schwarzschild star
As we are interested in the r → ∞ limit, we shall consider the quantum correction (3.20) in
the r ≫ Rs limit, therefore we need to substitute

Ψ2 = 1− 2GNMu− (α + β + 3γ)128πG2
NMu3, (6.106)
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in (6.99) in the H → ∞ limit. Differentiating with respect to ϕ we get the differential equation
d2u

dϕ2
+ u = 3GNMu2 + 320πG2

NM(α + β + 3γ)u4. (6.107)

Plugging the zeroth-order solution (6.102) on the right-hand side we can solve the resulting
equation analytically thus getting the first-order solution

u =
sinϕ

R
+

3GNM

2R2

(
1 +

1

3
cos 2ϕ

)
+

120πG2
NM(α + β + 3γ)

R4

(
1 +

4

9
cos 2ϕ

)
− 8πG2

NM(α + β + 3γ)

3R4
cos 4ϕ. (6.108)

In the large distance limit this equation reduces to

0 =
ϕ∞

R
+

2GNM

R2
+

512πG2
NM(α + β + 3γ)

3R4
, (6.109)

and the total deflection ∆ϕ∞ = 2|ϕ∞| is

∆ϕ∞ =
4GNM

R
+

1024πG2
NM(α + β + 3γ)

3R3
. (6.110)

6.5.2 Quantum corrected dark energy star
Working again in the r ≫ Rs limit, we need to substitute

Ψ2 = 1− 2GNMu− [α + β + 3γ − 3ω(α− γ)]128πG2
NkMu3 (6.111)

in (6.99) in the H → ∞ limit. Differentiating with respect to ϕ we get the differential equation
d2u

dϕ2
+ u = 3GNMu2 + 320πG2

NkM [α + β + 3γ − 3ω(α− γ)]u4. (6.112)

Plugging the zeroth-order solution (6.102) on the right-hand side we can solve the resulting
equation analytically, finding the first-order solution

u =
sinϕ

R
+
3GNM

2R2

(
1 +

1

3
cos 2ϕ

)
+
120πG2

NkM [α + β + 3γ − 3ω(α− γ)]

R4

(
1 +

4

9
cos 2ϕ

)
− 8πG2

NkM [α + β + 3γ − 3ω(α− γ)]

3R4
cos 4ϕ. (6.113)

In the large distance limit this equation reduces to

0 =
ϕ∞

R
+

2GNM

R2
+

512πG2
NkM [α + β + 3γ − 3ω(α− γ)]

3R4
, (6.114)

and the total deflection ∆ϕ∞ = 2|ϕ∞| is

∆ϕ∞ =
4GNM

R
+

1024πG2
NkM [α + β + 3γ − 3ω(α− γ)]

3R3
. (6.115)
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6.5.3 Quantum corrected Reissner-Nordström black hole
In this case we have

Ψ2 = 1−2GNMu+GNq
2u2−32πG2

Nq
2u4

[
c̄2 + 2(β + 4γ)

(
ln
(µ
u

)
+ γE − 3

2

)]
, (6.116)

leading to the differential equation

d2u

dϕ2
+ u = 3GNMu2 − 2GNq

2u3

+ 96πG2
Nq

2u5

[
c̄2 + 2(β + 4γ)

(
ln
(µ
u

)
+ γE − 5

3

)]
. (6.117)

Comparing (6.117) to (6.101), we treat the extra terms of order O(G2
N) as a small perturbation

with respect to the O(GN) terms. Therefore, in order to solve this differential equation, we
plug in the O(G2

N) terms the zeroth-order solution (6.102) where now the deflection angle ϕ is
kept fixed at ϕ∞ = −2GNM/R. We work in this approximation because otherwise, if we were
to keep ϕ free in the logarithmic term, we would not get an analytical solution. Moreover, since
we are interested in the large distance limit, the terms proportional to u5 and u5 ln(µ/u) will
behave similarly in the u → 0 limit, therefore all these terms should be treated democratically
and evaluated on the classical solution. The result is then

u =
sinϕ

R
+

3GNM

2R2

(
1 +

1

3
cos 2ϕ

)
+

3GNq
2

4R3
ϕ cosϕ− GNq

2

16R3
sin 3ϕ

−96πG2
Nq

2

R5

{
c̄2 + 2(β + 4γ)

[
− ln

(
1

µR
sin

(
−2GNM

R

))
+ γE − 5

3

]}[
sin

(
2GNM

R

)]5
,

(6.118)

which, at first order in GN , reduces to the classical result (6.103). In the large distance limit:

0 =
ϕ∞

R
+

2GNM

R2
+

9q2ϕ∞

16R3
− 96πG2

Nq
2

R5
{c̄2 + 2(β + 4γ)

×
[
− ln

(
1

µR
sin

(
2GNM

R

))
+ γE − 5

3

]}[
sin

(
2GNM

R

)]5
, (6.119)

and the total deflection angle is

∆ϕ∞ =
4GNM

R
− 9G2

NMq2

4R3
− 192πG2

Nq
2

R5

{
c̄2 + 2(β + 4γ)

×
[
− ln

(
1

µR
sin

(
2GNM

R

))
+ γE − 5

3

]}[
sin

(
2GNM

R

)]5
+O(q4). (6.120)
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6.5.4 Quantum corrected charged star
For the electrically charged star we need to be more careful in the calculations. We start with
case I, for which we have

Ψ2 = 1− 2GNMu+GNq
2u2 − 128πG2

N(α + β + 3γ)

r3

(
q2

2Rs

+M

)
− 1280πG2

Nq
2(α− γ)u

3R3
s

− 32πG2
Nq

2u4

[
c̄2 + 2(β + 4γ)

(
ln
(µ
u

)
+ γE − 3

2

)]
, (6.121)

leading to the differential equation

d2u

dϕ2
+ u = 3GNMu2 − 2GNq

2u3 + 320πG2
N(α + β + 3γ)

(
q2

2Rs

+M

)
+

640πG2
Nq

2(α− γ)

R3
s

u2 + 96πG2
Nq

2u5

[
c̄2 + 2(β + 4γ)

(
ln
(µ
u

)
+ γE − 5

3

)]
. (6.122)

In order to solve this equation in such a way that it is in agreement with the results of the
previous sections, we keep terms of order O(u5) fixed on the classical result u = sin(ϕ∞)/R,
with ϕ∞ = −2GNM/R while evaluating all the other terms on the right-hand side of (6.122)
on the zeroth-order solution (6.102). We thus find

u =
sinϕ

R
+

3GNM

2R2

(
1 +

1

3
cos 2ϕ

)
+

3GNq
2

4R3
ϕ cosϕ− GNq

2

16R3
sin 3ϕ

+
320πG2

Nq
2(α− γ)

R2R3
s

(
1 +

1

3
cos 2ϕ

)
+

120πG2
N(α + β + 3γ)

R4

(
q2

2Rs

+M

)(
1 +

4

9
cos 2ϕ

)
− 8πG2

N(α + β + 3γ)

3R4

(
q2

2Rs

+M

)
cos 4ϕ

− 96πG2
Nq

2

R5

{
c̄2 + 2(β + 4γ)

[
− ln

(
1

µR
sin

(
−2GNM

R

))
+ γE − 5

3

]}[
sin

(
2GNM

R

)]5
,

(6.123)

and expanding we get

0 =
ϕ∞

R
+

2GNM

R2
+

9q2ϕ∞

16R3
+

1280πG2
Nq

2(α− γ)

3R2R3
s

+
512πG2

N(α + β + 3γ)

3R4

(
q2

2Rs

+M

)
− 96πG2

Nq
2

R5

{
c̄2 + 2(β + 4γ)

[
− ln

(
1

µR
sin

(
−2GNM

R

))
+ γE − 5

3

]}[
sin

(
2GNM

R

)]5
.

(6.124)
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The total deflection angle is thus

∆ϕ∞ =
4GNM

R
− 9G2

NMq2

4R3
+

1024πG2
N(α + β + 3γ)

3R3

(
q2

2Rs

+M

)
+

2560πG2
Nq

2(α− γ)

3RR3
s

− 192πG2
Nq

2

R5

{
c̄2 + 2(β + 4γ)×

[
− ln

(
1

µR
sin

(
2GNM

R

))
+ γE − 5

3

]}
×
[
sin

(
2GNM

R

)]5
+O(G3

N) +O(q4).

(6.125)

For case II we have

Ψ2 = 1− 2GNMu+GNq
2u2 − 128πG2

N(α + β + 3γ)

r3

(
q2

2Rs

+M

)
− 32πG2

Nq
2u4

[
c̄2 + 2(β + 4γ)

(
ln
(µ
u

)
+ γE − 3

2

)]
, (6.126)

which is equal to (6.121) without the (α − γ) term. Therefore all the previous results apply
also in this case once we set terms proportional to (α− γ) to zero.

6.6 Gravitational redshift
In geometrical optics, when a light ray travels from a region with a given refractive index n1

to a region with a different index n2, its velocity and wavelength change but not its frequency.
Therefore we have the general relation

λ(r⃗ ′
1)n(r⃗

′
1) = λ(r⃗ ′

2)n(r⃗
′
2), (6.127)

where λ is the wavelength. We can easily extend this to gravitational redshift. Consider the
coordinate distance |∆r⃗ ′

s| between two successive crests or valleys of a light wave as emitted
by a source at r⃗ ′

s. Now let |∆r⃗ ′
o| be the coordinate distance between two successive crests or

valleys of the same light wave as measured by an observer at r⃗ ′
2. In analogy with geometrical

optics we may write:
|∆r⃗ ′

s|n(r⃗ ′
s) = |∆r⃗ ′

o|n(r⃗ ′
o). (6.128)

From (6.6), the physical wavelength λ is given by

λ(r⃗ ′) = Γ−1(r⃗ ′)|∆r⃗ ′| (6.129)

and hence we have
Γ(r⃗ ′

s)λ(r⃗
′
s)n(r⃗

′
s) = Γ(r⃗ ′

o)λ(r⃗
′
o)n(r⃗

′
o), (6.130)

67



which, using (6.8), reduces to

λ(r⃗ ′
s)Ψ

−1(r⃗ ′
s) = λ(r⃗ ′

o)Ψ
−1(r⃗ ′

o). (6.131)

For any astrophysical application, the observer is far away from the source thus Ψ(r⃗ ′
o) ≈ 1 and

the redshift reduces to
z ≡ λo − λs

λs

= Ψ−1(r⃗ ′
s)− 1. (6.132)

Therefore measuring the gravitational redshift of light and quantity related to it, e.g. the
luminosity distance, may also allow us to test the validity of the metric corrections.
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Chapter 7

Conclusions and outlook

The aim of this thesis was, on one hand, to extend the computation of quantum gravitational
corrections to a wider class of metrics and, on the other hand, to find observables in order to
experimentally test the theory. In the first part of the thesis, we used the linearized Einstein
equations, obtained from the Barvinsky-Vilkovisky unique effective action, to compute correc-
tions at second order in curvature to the metric of a charged star, modeled as a perfect fluid,
and to gravastars and dark energy stars.

We then proceeded to study implications of the metric corrections for the field of grav-
itational lensing, analysing how the modified metrics affect the propagation of light rays by
looking at deviations from the classical results for the photon sphere radius, the deflection
angle of light rays and the gravitational redshift. This was motivated by the large amount of
observations of lensing phenomena, among which stand out the observation of the photon ring
around the (possibly) black holes Sgr A* and M87*. These corrected observables, if measured,
could lead to further constraints on the value of the Wilson coefficients. Moreover, because
of the presence of quantum hairs in the metric outside of gravastars and dark energy stars,
which are instead absent for black holes as these do not receive corrections at second order
in curvature, the observables we calculated may allow us to experimentally distinguish black
holes from these other compact objects, adding to the existing literature of the tests proposed
with this aim.

A natural extension of this work is to study rotating objects, in particular Kerr black holes,
as these more closely describe astrophysical black holes. However, considerably more work
will need to be done in this case. First of all, as the Kerr metric is not spherically symmetric, one
has to generalize the action of the ln(□/µ2) operator on functions depending on both the radial
and angular coordinates. Furthermore, the system of differential equations for the perturbation
hµν one gets from the linearized Einstein equations will now be a system of coupled differential
equations with derivatives with respect to both the radial and angular coordinate. Once these
problems are solved, one can study the broad class of rotating objects filling the Universe, from
regular stars to exotic objects such as rotating gravastars.

Another continuation would be to look at the third order expansion, both in the Newton
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constant expansion performed in computing metric corrections and in the curvature expansion
in the unique effective action. However, as already second order effects are much smaller then
the usual terms one finds from general relativity alone, a huge improvement in the experimental
technology is needed in order to be able to detect these effects.

What the complete theory of quantum gravity is remains elusive. In this thesis we set out
to explore some phenomenological implications of the Barvinsky-Vilkovisky unique effective
action, in the hope that, one day, the results here obtained can help to test and eventually shine
some light on the theory of quantum gravity.
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Appendix A

Dealing with ln
(
□
µ2

)
In this appendix we show how to calculate the action of the non-local operator ln(□/µ2) on
time-independent and spherically symmetric functions f(r), where r = |x⃗|:

ln

(
□
µ2

)
f(r). (A.1)

We shall distinguish between two cases [17]:

a) if ∃ ϵ > 0 such that f(r′) = 0 for |r′ − r| < ϵ, we find the result:

ln

(
□
µ2

)
f(r) =

1

r

∫ ∞

0

(
r′

r + r′
− r′

|r − r′|

)
f(r′)dr′; (A.2)

b) otherwise, if r > 0, f(r) ̸= 0 and ∃ ϵ > 0 such that f(r′) is smooth for |r′ − r| < ϵ, then
we find:

ln

(
□
µ2

)
f(r) =

1

r

∫ ∞

0

r′

r + r′
f(r′)dr′ − lim

ϵ→0+

{
1

r

∫ r−ϵ

0

r′

r − r′
f(r′)dr′

+
1

r

∫ ∞

r+ϵ

r′

r′ − r
f(r′)dr′ + 2f(r)[γE + ln(µϵ)]

}
, (A.3)

where γE is the Euler-Mascheroni constant and µ the renormalization scale.

Let us start by exploiting the time independence of the function f to express it in terms of its
Fourier transform f̂ :

ln

(
□
µ2

)
f(r) =

∫
d3k

(2π)3
ln

(
k2

µ2

)
eik⃗·x⃗f̂(k⃗), (A.4)
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where k = |⃗k|. Next, using the spherical symmetry of f we may write x⃗ = (0, 0, r) without
loss of generality so that

ln

(
□
µ2

)
f(r) =

1

(2π)2

∫ ∞

0

dk k2

∫ +1

−1

d(cos θ) ln

(
k2

µ2

)
eikr cos θf̂(k)

=
1

π2r

∫ ∞

0

dk k ln

(
k2

µ2

)
sin(kr)f̂(k).

(A.5)

We can then Fourier transform back by using the relation between the Fourier and Hankel
transforms for spherically symmetric functions in 3 dimensions [108]:

k1/2f̂(k) = (2π)3/2
∫ ∞

0

r3/2f(r)J1/2(kr)dr, (A.6)

where J1/2(kr) =
√

2
πkr

sin(kr) is a Bessel function. The Hankel transform of order ν of a
function f(r) is defined as

f̂ν(k) =

∫ ∞

0

f(r)Jν(kr)rdr, (A.7)

where Jν is a Bessel function of the first kind of order ν ≥ −1/2.
In order to understand (A.6) let us consider the 3-dimensional Fourier transform of a generic

function f(r⃗) defined as

f̂(k⃗) =

∫
R3

f(r⃗)e−ik⃗·r⃗dr⃗. (A.8)

Using the decomposition of plane waves into spherical harmonics Yl,m:

e−ik⃗·r⃗ = (2π)3/2(kr)−1/2

+∞∑
l=0

(−i)lJ1/2+l(kr)
l∑

m=−l

Yl,m(Ωk⃗)Y
∗
l,m(Ωr⃗), (A.9)

where Ωk⃗ and Ωr⃗ are the sets of all the spherical angles in the k⃗-space and r⃗-space, we can then
write the Fourier transform (A.8) in spherical coordinates as

f̂(k⃗) = (2π)3/2(k)−1/2

+∞∑
l=0

(−i)l
l∑

m=−l

Yl,m(Ωk⃗)

∫ ∞

0

J1/2+l(kr)r
3/2dr

∫
f(r⃗)Y ∗

l,m(Ωr⃗)dΩr⃗.

(A.10)
If we now expand f(r⃗) and f̂(k⃗) in spherical harmonics as

f(r⃗) =
∞∑
l=0

l∑
m=−l

fl,m(r)Yl,m(Ωr⃗), f̂(k⃗) =
∞∑
l=0

l∑
m=−l

Fl,m(k)Yl,m(Ωk⃗), (A.11)

then (A.10) simplifies to (A.6) for l = m = 0.
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We can now proceed to plug (A.6) into (A.5):

ln

(
□
µ2

)
f(r) =

4

πr

∫ ∞

0

dk

∫ ∞

0

dr′ ln

(
k

µ

)
sin(kr) sin(kr′)r′f(r′)

=
1

πr

∫ ∞

0

dk

∫ ∞

0

dr′ lim
δ→0+

{
f(r′)r′ ln

(
k

µ

)
×e−δk[eik(r−r′) + e−ik(r−r′) − eik(r+r′) − e−ik(r+r′)]

}
=

µ

πr

∫ ∞

0

dr′ lim
δ→0+

∫ ∞

0

dqf(r′)r′ ln(q)

× e−δµq[eiµq(r−r′) + e−iµq(r−r′) − eiµq(r+r′) − e−iµq(r+r′)],

(A.12)

where we substituted the momentum for q = k/µ and swapped the limit with the integration
over the momentum in the last line. For Re(α) > 0 we have in general:∫

dq ln(q)e−αq = − 1

α
[γE + ln(α)], (A.13)

thus we find

ln

(
□
µ2

)
f(r) =

µ

πr

∫ ∞

0

dr′f(r′)r′ lim
δ→0+

{
−γE + ln[δµ− iµ(r − r′)]

δµ− iµ(r − r′)
− γE + ln[δµ+ iµ(r − r′)]

δµ+ iµ(r − r′)

+
γE + ln[δµ− iµ(r + r′)]

δµ− iµ(r + r′)
+

γE + ln[δµ+ iµ(r + r′)]

δµ+ iµ(r + r′)

}
=

1

πr

∫ ∞

0

dr′f(r′)r′ lim
δ→0+

[
−γE + ln(µR−)− iϕ−

δ − i(r − r′)
− γE + ln(µR−) + iϕ−

δ + i(r − r′)

+
γE + ln(µR+)− iϕ+

δ − i(r + r′)
+

γE + ln(µR+) + iϕ+

δ + i(r + r′)

]
,

(A.14)

where R± =
√

δ2 + (r ± r′)2, ϕ± = arctan[(r ± r′)/δ] and we used the property that for a
complex number z = x+ iy =

√
x2 + y2eiθ the logarithm is

ln(z) = ln
(√

x2 + y2
)
+ i arctan

(y
x

)
. (A.15)

We see that the last two terms are regular and we can take the limit δ → 0+ directly whereas
the first two terms contain a pole at r = r′. Here is where we have to distinguish between the
two cases mentioned before:

a) since f(r′) = 0 in a neighborhood of r, there is no pole and we find the result (A.2);
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b) for f(r) ̸= 0 but bounded and sufficiently smooth we may rewrite (A.14) as

ln

(
□
µ2

)
f(r) =

1

r

∫ ∞

0

dr′
r′f(r′)

r + r′
− lim

ϵ→0+

1

r

{∫ r−ϵ

0

dr′
r′f(r′)

|r − r′|
+

∫ ∞

r+ϵ

dr′
r′f(r′)

|r − r′|

+
1

π

∫ r+ϵ

r−ϵ

dr′f(r′)r′ lim
δ→0+

[
γE + ln(µR−) + iϕ−

δ + i(r − r′)
+

γE + ln(µR−)− iϕ−

δ − i(r − r′)

]}
=

1

r

∫ ∞

0

r′f(r′)

r + r′
dr′ − 1

r
lim
ϵ→0+

[∫ r−ϵ

0

r′f(r′)

r − r′
dr′ +

∫ ∞

r+ϵ

r′f(r′)

r′ − r
dr′
]
+ L1,

(A.16)

where 0 < δ < ϵ before the limits are taken. Let us now focus on the last integral, namely:

L1 ≡ − 1

πr
lim
ϵ→0+

∫ r+ϵ

r−ϵ

dr′f(r′)r′ lim
δ→0+

[
γE + ln(µR−) + iϕ−

δ + i(r − r′)
+

γE + ln(µR−)− iϕ−

δ − i(r − r′)

]
.

(A.17)
By swapping the limit with the integral and defining a contour around the pole at r′ = r we
find

L1 = − 1

πr
lim
ϵ→0+

{
lim
δ→0+

∫ 2π

π

iϵeitdt(r + ϵeit)f(r + ϵeit)

×

γE + ln
(
µ
√
δ2 + ϵ2e2it

)
− i arctan

(
ϵeit

δ

)
δ − iϵeit

+
γE + ln

(
µ
√
δ2 + ϵ2e2it

)
+ i arctan

(
ϵeit

δ

)
δ + iϵeit

 .

(A.18)

Using the fact that f is locally smooth we can Taylor expand it as f(r + ϵeit) = f(r) +O(ϵ).
Therefore:

L1 =− f(r)

π
lim
ϵ→0+

 lim
δ→0k

∫ 2π

π

ieiϵtdt
γE + ln

(
µ
√
δ2 + ϵ2e2it

)
− i arctan

(
ϵeit

δ

)
δ − iϵeit

+O(ϵ)


− f(r)

π
lim
ϵ→0+

 lim
δ→0+

∫ 2π

π

ieiϵtdt
γE + ln

(
µ
√
δ2 + ϵ2e2it

)
+ i arctan

(
ϵeit

δ

)
δ + iϵeit

O(ϵ)


=− 4f(r)

π
lim
ϵ→0+

[
lim
δ→0+

arctan
( ϵ
δ

) [
γE + ln

(
µ
√
δ2 + ϵ2

)
+O(ϵ)

]]
=− 2f(r) [γE + ln(µϵ)] .

(A.19)
With this calculation, (A.16) reproduces the end result (A.3).
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Appendix B

Variational formulae

In this appendix we report some variational formulae useful for the calculation of the modified
equations of motion (2.22).

The Riemann curvature tensor is defined as

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ. (B.1)

The Riemann tensor depends only on the Christoffel symbols, therefore its variation can be
calculated as

δRρ
σµν = ∂µδΓ

ρ
νσ − ∂νδΓ

ρ
µσ + δΓρ

µλΓ
λ
νσ + Γρ

µλδΓ
λ
νσ − δΓρ

νλΓ
λ
µσ − Γρ

νλδΓ
λ
µσ. (B.2)

Since δΓ is the difference of two connections, it is a tensor and we can thus calculate its
covariant derivative:

∇λ(δΓ
ρ
νµ) = ∂λ(δΓ

ρ
νµ) + Γρ

σλδΓ
σ
νµ − Γσ

νλδΓ
ρ
σµ − Γσ

µλδΓ
ρ
νσ. (B.3)

We thus see that the variation of the Riemann tensor is given by the difference of two such
terms:

δRρ
σµν = ∇µ(δΓ

ρ
νσ)−∇ν(δΓ

ρ
µσ). (B.4)

From the definition of the Ricci tensor it then follows that

δRµν ≡ δRρ
µρν = ∇ρ(δΓ

ρ
νµ)−∇ν(δΓ

ρ
ρµ). (B.5)

As for the Ricci scalar
R = gµνRµν , (B.6)

we can write its variation as

δR = Rµνδg
µν + gµνδRµν = Rµνδg

µν +∇σ(g
µνδΓσ

νµ − gµσδΓρ
ρµ), (B.7)

75



where we used the previous result for the variation of the Ricci tensor and pushed the metric
inside the covariant derivative, which we are allowed to do since ∇ρg

µν = 0. The last term is
a total derivative and thus only yields a boundary term when integrated since the variation of
the metric δgµν vanishes at infinity, leaving us with

δR = Rµνδg
µν . (B.8)

However, when the variation of the Ricci scalar is multiplied by other terms, we cannot neglect
the term gµνδRµν . From the definition of the Christoffel symbol in terms of the metric, its
variation is

δΓλ
µν = δgλρgραΓ

α
µν +

1

2
gλρ (∂µδgνρ + ∂νδgµρ − ∂ρδgµν)

=
1

2
gλρ (∇µδgνρ +∇νδgµρ −∇ρδgµν)

= −1

2

(
gνα∇µδg

αλ + gµα∇νδg
αλ − gµαgνβ∇λδgαβ

)
,

(B.9)

where we used
δgµν = −gµαgνβδg

αβ. (B.10)

We then have

gµνδΓλ
µν = −∇αδg

αλ +
1

2
gαβ∇λδgαβ,

gµνδΓρ
ρµ = −1

2
gαβ∇νδgαβ.

(B.11)

From these and (B.5) we finally find

gµνδRµν = −∇µ∇νδg
µν + gµν2δg

µν . (B.12)
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