
Alma Mater Studiorum · University of Bologna

School of Science
Department of Physics and Astronomy

Master Degree in Physics

Towards a Digital Twin of Bologna:
Features Extraction and Semantic

Classification Using LiDAR

Supervisor:
Prof. Mirko Degli Esposti

Submitted by:
Tommaso Rondini

Academic Year 2023/2024



Upward, not Northward

Edwin A. Abbot
Flatland

1



Abstract

The development of an Urban Digital Twin has been become a shared objective for many
cities around the world. Airborne LiDAR has been one of the most used technologies
to reconstruct the urban environment, but an unified univocal method to analyse its
point cloud data has not been developed yet. The techniques differ on selected features,
algorithms and input data.

Within the bounds of Bologna Digital Twin, the aims of my thesis are:

• analyzing LiDAR data from a physical-geometrical point of view;

• to select features that extrapolate useful information in Bologna LiDAR from all
the features found in literature;

• to develop a model to classify point into defined classes, i.e., buildings, cars, grass,
rails, roads and trees. It does not have to be the best algorithm or scalable in other
contexts, but it must serve as a starting point for future developments.

I discovered how much the three-dimensional distribution of point cloud encompasses
information about the analyzed objects, therefore spatial features should be included in
the inputs of classification algorithm. The regulation of the feature extraction process
was conducted and the importance ranking of all the analyzed features was calculated.
A random forest model was developed to classify LiDAR points and it achieves 95% of
accuracy.
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Chapter 1

Introduction

1.1 Digital Twin

1.1.1 General information
Digital Twin constitutes one of the most relevant and influential innovations in the field
of digital transformation and Industry 4.0 [1]. It is a dynamic model that evolves in
parallel with its physical counterpart, representing the functioning of physical systems
belonging to the real world. This typology of models has gained increasing importance
with the emergence of the Internet of Things (IoT) [2] and cloud computing [3], facili-
tating integration and interconnection of enormous quantities of data generated by IoT
sensors installed in the physical environment, forming an interconnected ecosystem. The
Digital Twin allows organizations to make informed decisions through simulations and
optimization of decisions in real-time [4].

The characteristic value of the Digital Twin (DT) lies in its ability to connect the
physical world to the digital one, providing a simulated environment to test theories,
simulate scenarios, predict results and guide decisions without directly influencing the
physical element [5]. This is particularly useful in product lifecycle management, from
its conception to its disposal [3], as well as in the optimization of complex systems such
as energy or water networks, transport and urban infrastructure [6].

The notion of DT was first introduced in the early 2000s by Michael Grieves [1],
although its origins can be traced back to earlier concepts of simulation and visualiza-
tion of complex systems. For example, NASA, as early as the 1960s for space missions,
developed models called “twins” specifically for simulating and visualizing operations in
critical conditions, avoiding risks to the safety of astronauts during missions [7].

With the evolution of technologies related to IoT, big data and cloud computing, the
ability to develop and implement DTs has increased significantly, making this strategic
concept central to the transformation in various sectors. DTs have become complex sys-
tems that can simulate entire production chains, infrastructures and even cities, opening
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up unprecedented possibilities for more efficient management of resources, urban plan-
ning and mobility in smart cities.

1.1.2 Urban Digital Twin
Among the numerous applications of DT, Urban Digital Twins emerge as a particularly
innovative and transformative one. These models digitally simulate all the activities and
interactions that take place in real-time within urban environments. These data, which
cover aspects such as traffic flow, energy consumption, air quality, infrastructure and
public services, are fundamental for creating powerful tools available to administrators,
planners and citizens for more efficient urban management. The collection and the base-
ment of all these tools is an Urban Digital Twins

The power of Urban Digital Twins (UDTs) lies in their ability to model and forecast.
Like artificial intelligence for data processing and analysis, UDTs can anticipate the
consequences of infrastructure changes, policy decisions, extraordinary events, or long-
term development trends [8].

From an environmental point of view, UDTs play a fundamental role in sustain-
ability and mitigation of climate impacts. Through precise simulations, they facilitate
the optimization of resources and the reduction of CO2 emissions, in order to increase
the capacity of cities to adapt to climatic changes and orienting them towards a green
economy [9].

The innovative character of UDTs concerns the strengthening of citizen participation
and collaborative governance [10]. By offering interactive and intuitive digital platforms,
UDTs promote more direct citizen involvement in urban planning and management,
encouraging forms of feedback and suggestions.

In conclusion, UDTs represent powerful fundamental tools for revolutionizing cities,
making them more livable, ecological and inclusive. They represent the practical appli-
cation of the concept of “smart cities”, where the strategic integration of technology and
data aims to improve the quality of life and build resilient communities, ready to adapt
to future challenges [7].

1.2 LiDAR

1.2.1 General
LiDAR (Light Detection and Ranging) is a remote sensing instrument for determining
the distance to an object using laser pulse [11]. In detail, LiDAR (or LaDAR –Laser
Detection and Ranging– or laser altimetry) is a optical sensor technology that emits
intense, focused, mono-frequency beams and measures the time required for the reflected
beams to return [12]. Time, intensity and waveform of the returned signal are used to
calculate the interval or distance between objects, together with optical properties such
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Figure 1.1: An illustration about LiDAR operation. On the left a sketch about emission and
catching of the laser beam. On the right a sketch about multiple returns due to the canopy of
a tree. Credit by European Space Agency - ESA.

as reflection and absorption. Such technology is similar in operation to RADAR (Radio
Detection and Ranging), except that shorter wavelength are used than radio waves.
Generally, LiDAR devices work in the near-infrared region [13], but there are sensors
that work at both lower and higher frequencies [14] from infrared to visible, with the
purpose of enabling a multispectral analysis or allowing penetration of water and analyse
the seabed [15–17].

Fig. 1.1 shows how LiDAR technology works. The device emits a laser pulse; when
the impulse hits the object’s surface, the reflected part comes back to the device which
calculates the time taken to return and the fraction of energy received compared to the
one emitted. Since the pulse can be emitted far from the object’s surface, the footprint
can no longer be considered a point, but rather a surface. Thus, part of the pulse can be
reflected from a surface and another part from a different object below: this happens on
edges or on little objects (such as leaves) [18]. Multiple returns can be due to atmospheric
phenomena or bidirectional scattering distribution function in thin objects [19].

The deployment of this technology is associated with three categories: satellite, air-
borne, and terrestrial. The use of satellite is mainly related to the study of celestial
bodies, for example in searching for landing site [20–22]. Terrestrial systems are used
both on fixed mounts and on vehicles for the reconstruction of the environment. Many
companies in the autonomous driving sector use it [23–25]. Currently they are used for
augmented reality, too [26, 27].

The employing of planes, helicopter and drones to acquire airborne LiDAR permits
the acquisition of detailed information (with respect to satellite acquisition) of wide
areas [28]. It is commonly adopted in various fields: reconstruction of cities geography
and elements, hood and forest density and biodiversity studies, identification of water
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basins, and damage quantification after a disaster and so forth.
Tamburlin et al. [29] used LiDAR data of Italian Alps to distinguish three different

trees species. They proposed the height variation hypothesis: the higher the variation in
tree height, the more complex the overall structure of the forest and the higher the tree
species diversity. Hirschmann [30] analysed different metrics –canopy height, vegetation
arrangement, canopy cover, structural complexity, and leaf area and density– and their
spatial resolution (grain and extension) over which their structural metrics are calculated
to study biodiversity.

Tao et al. [31] proposed a method for determining the correct water surface depth
from green laser (532 nm) echoes alone in bathymetric LiDAR. Illig et al. [28] analysed
airborne blue wavelengths LiDAR data taken in the western zone of San Diego and in
water surrounding Iceland. They provided information about mixed layer depth variation
and dense plankton layer. The authors highlighted the merits of airborne LiDAR data
that allow scanning quickly wide areas with a resolution of the order of meters. The in
situ oceanographic measurements can difficultly achieve efficient coverage of wide areas,
whereas satellites have a resolution of the order of kilometres.

A quick comparison of LiDAR data before and after a disaster can be done to extract
roadways to assess road conditions [32]. Karantanellis et al. [33] used LiDAR and other
data to evaluate landslide hazard in the area of Red Beach on Santorini Island, comparing
the difference between two datasets acquired seven months apart. The research revealed
the accumulation area of failure and flow direction and allowed the quantification of the
mass movement.

1.2.2 LiDAR for cities
Since the early 2000s LiDAR data have been widely used for the classification of urban
scenarios [34]. The various techniques developed to reconstruct 3D models and digital
twins of cities differ according to the type of data available, preprocessing and classifica-
tion methods. Models usually divide the data into four classes: ground, low vegetation,
buildings and trees. Some models manage to distinguish also other categories (e.g. cars,
stretches of water, high voltage lines).

Different LiDAR sensors provide different LiDAR data. For each beam, it can be
saved information about only the returned signal [35] –so object distance and reflection
information–, or multiple-returns too –that allows to consider object complexity–, or the
whole waveform of the returned signal [36].

Since 2014 there have been commercial multispectral airborne LiDAR systems that
allow obtaining spectral information of the surface. Morsy et al. [14] used a system
that operates at three wavelength of 1550 nm, 1064 nm and 532 nm. It was very useful
to categorize points because some surfaces are not visible in the whole spectrum. For
example, water absorbs infrared radiations and reflects (at least in part) the green light
which allows it to well detect swimming pools.
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Some studies also use the point cloud and extract features from other data. This
happens because urban areas are usually complex and dynamic environments, which
makes it difficult to meet all the requirements in a single sensor [37]. Therefore, other
data are used to improve classification [38]. Guo et al. [39] combined multi-echoes LiDAR
data, full-waveform LiDAR data and multispectral images data to classify dense urban
areas. Awrangjeb et al. [40] used colour and texture information to classify point clouds
by integrating LiDAR data and multispectral orthophotos.

Many classification techniques and pipelines have only been used on LiDAR data or
with other information type. Morsy et al. [14] used a multivariate Gaussian decompo-
sition over their features histograms, after they had distinguished between ground and
elevated points through a classification bases on the slope and the difference of height
from the lowest point of a neighbourhood. Oliveira and Marçal [41] tested K-mean and
DBSCAN clustering methods, showing that the former outperforms the latter. Suárez
et al. [42]’s approach contains random forest and Gradient Boosting Machine classifiers
and convolution neural networks. Xu Fan [43] converted LiDAR point clouds into 2D
raster data and combined them with image data to extract various features and selected
a Support Vector Machine as classifier.

A turning point in the use of deep learning techniques was PointNet, which directly
uses 3D points as input [44]. The basis of this method consists of a succession of fully
connected layers. However it is not able to capture the spatial correlation between points.
In order to overcome this issue, alternative point-wise deep learning networks architec-
tures were developed such as SuperPoint Graph [45], PointCNN [46], and DGCNN [47].
Widyaningrum et al. [48] implemented the point-wise deep learning method Dynamic
Graph Convolutional Neural Network (DGNCC) trained on an existing 2D base map.
In 2017 Ruizhongtai Qi et al. [49] developed PointNet++, a hierarchical neural net-
work that applies PointNet recursively on a nested partitioning of the input point set.
By exploiting metric space distances, the network is able to learn local features with
increasing contextual scales, therefore spatial correlation is taken in consideration. This
neural network was applied to LiDAR data: it is an interpolation method that uses adap-
tive elevation weight to make full use of the objects in the airborne LiDAR point, which
exhibits discrepancies in elevation distributions [50].

1.3 Bologna dataset
Airborne data were commissioned by Comune di Bologna to Compagnia Generale Ri-
preseaeree (CGR) [51]. It was employed CityMapper-2 sensor manufactured by Leica
Geosystem [52]. It is equipped with six digital camera, two of which are nadiral –one
RGB and one in near infrared (NIR)– and the rest are inclined of 45◦. Image sensor
size is 14 192× 10 640 pixels and each pixel size is 3.76 µm. CityMapper-2 has a LiDAR
acquisition unit with acquire frequency at most 2MHz, while the beam wavelength is
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1064 nm. Per each beam it can get at most 15 echoes, storing return time and intensity.
In Fig. 1.2 there are CityMapper-2 specifications.

The plane was flying at speed and altitude so that the ground sample distance (i.e.,
how many meters the side of a pixel corresponds to in reality) was 5 cm on average and
the average density of LiDAR points was greater than 20 points/m2 with a resolution
of 10 cm. In addition to raw data, CGR provided pre-processed data. They assign to
each point red, green, blue and NIR indices, taken by photos. Furthermore, points were
categorized into ground and off-ground points through an algorithm. It is based on the
proposed one by Axelsson [53] in 2000, which uses progressive densification. The so found
ground points were then used to create the Digital Terrain Model (DTM) [54]. DTM
represents the share of bare ground, excluding buildings and high vegetation. Contra,
the Digital Surface Model (DSM) takes into account all the elements, excluding multiple
returns. It is like a bed sheet over the area. In Fig. 1.3 there is an example of DSM and
DTM in a realistic context.

The classified point clouds (plus RGB-NIR indices) are stored in LAS files [55], while
DTM and DSM are in ASCI binary ones. Each file covers a 500m × 500m area (aka
“tile”) of Bologna; there are 654 tiles. In Fig. 1.4 the subdivision of municipality into tiles
is shown.

Per each LiDAR point there is other information in addition to coordinates, RGB-
NIR and ground classification. Among them, CGR provides the return intensity, the
number of returns the beam has made and which return is that point among all the
returns of the beam. Unfortunately, there are some mistakes in the return data: in some
cases, the number of returns is greater than the number of returned points per beam.
Maybe it is due to the cleaning procedure carried out by CGR. In these cases I reordered
the return number of the points so that they are consecutive without gaps and I set
the number of returns as the number of returned points. The procedure may introduce
errors, especially if two consecutive beams with multiple echoes contain mistakes, but
statistically it is unlikely, since only a few beams have multiple echoes, and just three or
four of them contain mistakes in a tile.
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Leica CityMapper-2 product specifications

LEICA CITYMAPPER-2 POD
Consists of
Nadir RGB camera                             
Nadir NIR camera
Oblique RGB camera  
LiDAR Unit
GNSS/IMU
System Controller Module

1 x Leica MFC150
1 x Leica MFC150-NIR, monochrome
4 x Leica MFC150, viewing angle 45°
1 x Leica Hyperion2+ 
Integrated NovAtel SPAN 
Integrated

Height / diameter 745 mm / 408 mm (lower diameter) / 435 
(upper diameter)

Weight 57.5 kg 

Max. system frame rate 0.9 sec

Designed for installation in Leica PAV200 with Leica Pod Lifter Heavy Load

LEICA CITYMAPPER-2 VERSIONS
Leica CityMapper-2L
Nadir lenses
    RGB

    NIR

Leica D69.70/4.0 with 71 mm focal length 
41.2° FOV across track 
31.5° FOV along track
Leica D69.70/4.0-NIR with 71 mm focal length
41.2° FOV across track 
31.5° FOV along track

Oblique RGB lenses
    Left/Right

    Forward/Backward

Leica D69.112/4.0 with 112 mm focal length
45° ±10.1° FOV across track 
26.8° FOV along track
26.8° FOV across track 
45° ±10.1° FOV along track

RGB : NIR resolution 1 : 1.0

Nadir : Oblique focal 
length ratio

1 : 1.6

Flying height examples 380 m AGL @ 2cm GSD 
945 m AGL @ 5cm GSD 
1890 m AGL @ 10cm GSD 
3780 m AGL @ 20cm GSD

Leica CityMapper-2S

Nadir lenses
    RGB

    NIR

Leica D69.112/4.0 with 112 mm focal length 
26.8° FOV across track 
20.3° FOV along track
Leica D69.70/4.0-NIR with 71 mm focal length
41.2° FOV across track 
31.5° FOV along track

Oblique RGB lenses
    Left/Right

    Forward/Backward

Leica D69.146/4.8 with 146 mm focal length
45° ±7.8° FOV across track 
20.7° FOV along track
20.7° FOV across track 
45° ±7.8° FOV along track

RGB : NIR resolution 1 : 1.6

Nadir : Oblique focal 
length ratio

1 : 1.3

Flying height examples 600 m AGL @ 2cm GSD 
1490 m AGL @ 5cm GSD 
2980 m AGL @ 10cm GSD 
5960 m AGL @ 20cm GSD 

Leica CityMapper-2H

Nadir Lenses
    RGB

   
    NIR

Leica D69.146/4.8 with 146 mm focal length
20.7° FOV across track 
15.6° FOV along track
Leica D69.70/4.0-NIR with 71 mm focal length
41.2° FOV across track 
31.5° FOV along track

Oblique RGB lenses
    Left/Right

    Forward/Backward

Leica D69.189/5.6 with 189 mm focal length
45° ±6.0° FOV across track 
16.1° FOV along track
16.1° FOV across track 
45° ±6.1° FOV along track

RGB : NIR resolution 1 : 2.1

Nadir : Oblique focal length ratio 1:1.3
Flying height examples 780 m AGL @ 2cm GSD 

1940 m AGL @ 5cm GSD 
3880 m AGL @ 10cm GSD 
7760 m AGL @ 20cm GSD 

LEICA MFC150 / LEICA MFC150-NIR CAMERA HEAD
Sensor size (150MP) 14,192 x 10,640 pixels

Pixel size & type 3.76 um, BSI CMOS

Dynamic range 83 dB

Resolution A/D converter 14-bit

Data channel 14-bit proprietary compression

Motion compensation Mechanical FMC

Spectral bands
    Leica MFC150
    (Bayer pattern)

    Leica MFC150-NIR 

R (580 - 660 nm)    
G (480 - 590 nm)
B (420 - 510 nm)
NIR (720  - 850 nm, monochrome) 

Shutter Max. speed 1/1000 sec
Mechanical central shutter with up to 
500,000 cycles  
Field exchangeable 

Aperture Automatically controlled aperture 7 half 
f-stop steps

Lens mount Exchangeable lenses, positive mechanical 
connection

LEICA HYPERION2+ LIDAR UNIT 6

Laser wavelength 1,064 nm

Laser divergence 0.23 mrad (1/e²) nominal

Pulse repetition 
frequency 

Up to 2 MHz (height dependent)

Return pulses • Programmable up to 15 returns, including 
intensity 

• Full waveform recording option at down-
sampled rates

• Real-time waveform analysis and pulse 
extraction

• Multiple-Pulses-in-the-Air (MPiA): Up to 35 
MPiA zones simultaneously

• Ambiguity resolution for targets in multiple 
simultaneous MPiA zones 

• Gateless MPiA
Intensity digitisation 14 bits

Operation altitude1 300 - 5,500 m AGL

Scanner pattern Oblique scanning with options for
constant point density or constant
pulse rate

Scan speed Programmable, 60-150 Hz (120-300 scans 
per second)

Field of view 20 - 40°

Min. vertical separation 0.5 m
Vertical accuracy 2, 3, 4 < 5 cm 1 σ

Horizontal accuracy 2, 3, 4 < 13 cm 1 σ

Figure 1.2: It shows the CityMapper-2 specifications. LiDAR information is in the second
column. Credit by Leica Geosystem [52].
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Figure 1.3: On the top we see Digital Surface Model as a red line. The line connects only
higher points and not second returns. On the bottom there is the Digital Terrain Model as a
red line. It connects the ground points and ignores data about cars, trees and buildings. Credit
by 3dmetrica.
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Figure 1.4: The picture shows how the municipality of Bologna area is subdivided in tiles
of 500m × 500m. The tiles at the edges are incomplete and there are no data outside the
municipality boundary.
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Chapter 2

Point distributions

In this initial section, I investigate the distribution of points to gain a better under-
standing of our data and to perform geometric and physical analyses of the point cloud.
I studied densities and how they change in tiles with different percentage of trees and
buildings. These analyses will not be used directly to labelling point clouds, but they
are useful to set features parameters, such as neighbourhood radius (see Sec. 3.3 and
App. B) or segment-lidar resolution (see Sec. 4.1.1 and App. C).

These analyses are conducted to study point densities and how they change at differ-
ent scales. In order to evaluate different real situations, I executed density analyses over
four tiles: one has a high percentage of trees (Fig. 2.1a), one has a high percentage of
buildings (Fig. 2.1d) and the remaining two are intermediate (Fig. 2.1b and Fig. 2.1c).

2.1 Density
One of the most useful information is how many points per unit of area do we have. The
correct question would have be how many points per unit of volume because LiDAR are
three dimensional data, but they are almost always spread on a two dimensional surface
that lies in a three dimensional space. Furthermore, the aircraft flies at the same speed
all of the time, so the LiDAR device emits the same amount of pulses all over the type
of context whether it is flying over a forest or a built-up area, but the distribution in
height changes consistently whether it flies over trees or asphalt.

In light of all of this, I calculated the density this way: per each point I counted how
many points there were inside a vertical cylinder with a radius of 0.564m (a base area
of about 1m2) centred in the selected point. The histograms for the four tiles (Fig. 2.1)
are reported in Fig. 2.2, while their mean values are in the fifth column of Tab. 2.1.

Albeit the peak value shifts to higher density increasing the percentage of trees, the
histograms are very similar to each other. There is just one peak per graph with only
a right shoulder, which is bigger if there are more trees, highlighting higher density of
points. Probably it is due to a greater spread of points in all three dimensions and not
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(a) (b)

(c) (d)

Figure 2.1: These are the point clouds whose density I analysed. a) has got a high percentage
of trees and it has been taken over “via di Casaglia” and “via di Monte Albano”. b) and c) have
got both buildings and trees and they have been taken over “via Emilia” and “via Piave” (b)
and over “via del Carrozzaio” and “via Cerodolo” (c). d) has got a high percentage of buildings
and it has been taken over “via dell’Indipendenza” and “via Ugo Bassi”.
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only on a two dimensional surface

2.2 Trend at different scales
Since we are interested in the geometrical-physical model of LiDAR data, I conducted
an analysis about point density. It is preparatory to determine characteristics of neigh-
bourhood (shape and radius), which is used to calculate many features, as we shall see
in the next chapter and in App. B.

Two types of density have been studied. The first is the “common” one: per each point
I set a radius and count how many points there were in the sphere. The second is the
reverse: per each point I set a number of near points k and I found the minimum radius
of a sphere so that it contained at least k points. I want to specify that I am talking
about “density” but it is not exactly correct: I did not divide the number of points by
the area or the volume, I just analysed how the number of points changed by fixing the
radius and vice versa. These two analyses should be equivalent, but I executed both for
a practical reason: we might be more interested in finding the first one, but it is more
computationally demanding to execute with KD-Tree [56] (a very common and useful
tools with LiDAR data [57]). Once I succeded in proving that they are the same analysis,
we will always use the k-nearest density and then switch it.

If we consider just the first return per emitted pulses on a smooth surface, we expect
the number of points inside the sphere to grow as the square of the radius, even if we
are considering a sphere and not a circle. In the same conditions, the distance of the
k-nearest point should grow as the square root of k. However in reality we can find
irregular surfaces and, more importantly, multiple returns from the same emitted pulse.
This can change the relationship between sphere radius and k-nearest distance.

I calculated the k-nearest point distance with k between 2 and 6000 with a step of
100 and I calculated the number of points inside a sphere with a radius between 0.2m
and 12.0m with a step of 0.2m. Some of the histograms for the four tiles are shown in
App. A.

Per each histogram I calculated its mean value and mean error (blue square), then I
plotted them and evaluated a power law fit (red line). Since per each value in the plot we
have more than six million points, the error bars are not visible; their values are about
1× 10−3.

In Fig. 2.3 I report the k-nearest distance plots. The main trend is that the distance
grows as the square root of k, but there are fluctuations. In Fig. 2.3a it grows faster
than the other ones and it is related to the tile with many trees (Fig. 2.1a); the slowest
(Fig. 2.3d) is the density of Fig. 2.1d, so the tile with almost just buildings. The same
considerations are true for the number of points inside the sphere too (Fig. 2.4). All the
plots grow as the square of the radius, but the more trees there are in the tile the faster
they grow. In Tab. 2.1 I report all the coefficients of the fit functions for a fast check.
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Figure 2.2: Histograms of the number of points inside a vertical cylinder with radius 0.564m,
so with base area around 1m2. a) b) c) and d) are the histograms of tiles a) b) c) d) in Fig. 2.1,
respectively.
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Figure 2.3: They show the correlation between the k (x axis) and the distance from the k-th
point to the selected point (y axis). The data are blue squares and the error bars are not visible
since they are too small. The red line is a power fit with parameters (a and b) found through
Trust Region Reflective algorithm. We see that decreasing the number of trees (from a) to d)),
the b parameter grows up, so the curve bends less and grows faster.
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Figure 2.4: They show the correlation between the sphere radius (x axis) and the number of
points inside the sphere (y axis). The data are blue squares and the error bars are not visible
since they are too small. The red line is a power fit with parameters (a and b) found through
Trust Region Reflective algorithm. We see that decreasing the number of trees (from a) to d)),
the b parameter decreases, so the curve bends less and grows slower.
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Table 2.1: Power exponents of densities fit. In the first column there are the indices of the
analysed tiles: they are the same as Fig. 2.1, 2.3 and 2.4. In the second column there are the
number of points in the point cloud. In the third column there are b parameter values of k-
nearest distance density fits. In the fourth column there are b parameter values of number of
points inside a sphere of radius r. In the fifth column there are the mean values of points inside
a vertical cylinder with base area of 1m2. I do not report errors because they are very small.

Tile index Total points b parameter Density
k-nearest Radius Pts in 1m2

a 8889587 0.4293 2.245 43.508
b 7299399 0.4533 2.201 36.761
c 7087847 0.4672 2.116 34.054
d 6024754 0.4740 2.034 30.412
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Chapter 3

Features

This chapter presents the features selected from LiDAR data. With the exception of
RGB-NIR features, I will treat the LiDAR data as a point cloud, allowing for an exam-
ination of its geometric and physical characteristics.

In order to categorize points into buildings, cars, grass, rail, roads and trees, we need
to extract features from the point cloud. In literature there are many observables related
to LiDAR data and orthophotos, but we have chosen to ignore orthophotos for the time
being, except for the colours extracted from them (see Sec. 1.3). In Sec. 3.1 I briefly
summarize the LiDAR base variables that will be used, while in Sec. 3.2 the extracted
features are reported. They both will be used to create machine learning models to
automatically labelled the whole LiDAR Bologna dataset.

All the following figures show the feature values of point cloud related to the part of
the city shown in Fig. 3.1. It shows trees, buildings, roads, cars and a courtyard with
vegetation inside.

3.1 Provided features
As I wrote in Sec. 1.3 the LiDAR points were provided with many variables. The ones
that I chose as features are:

• intensity: the fraction of emitted energy that returns to the detector;

• return number: which return signal is between all the returned ones generated by
one emitted pulse;

• number of returns: how many return signals the emitted pulse generated;

• classification: whether the point is a ground or off-ground one.

Intensity provides information about the material of the hit object. A big fraction of
energy is lost every time as can be seen in Fig. 3.2a-left, but its values are sufficiently
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Figure 3.1: A picture of part of Bologna city used to show the feature characteristics. It
describes an area of 100m × 100m in the suburbs between “via Bainsizza” and “via Ragazzi
del ’99”. It contains trees, buildings, an artificial ground, cars and courtyard with vegetation
inside.

spread to be useful. In Fig. 3.2a-middle we are able to distinguish elements and in
Fig. 3.2a-right a threshold value of 1934 is set (intensity has not-normalized integer
values).

Return number and number of returns are scalar values and their range is between
one and eight, albeit CityMapper-2 is able to detect up to 15 returns per emitted beam.
In Fig. 3.2b and 3.2c we see their plots (without thresholds). It is clear that they are
useful for detecting trees, but they can get confuse with chimneys or other little objects.

Classification provides essential information about points (Fig. 3.2d). It is a boolean
variable. Its only caveat will be the misunderstanding with bridges (see Sec. 4.2.3).

3.2 Extracted features
Different features are calculated from various point cloud information. Some are obtained
from colours and near-infrared values, others from height; some are point qualities and
others are local characteristics. I split them into groups according to their input data and
I am going to describe each group in the following sections. I collected them in Tab. 3.1.

3.2.1 RGB-NIR features
All the observables of this group are punctual (depending only on information belonging
to the analysed point). They use indices calculated from RGB and NIR.

Normalized Difference Vegetation Index (NDVI) is a commonly used metric in LiDAR
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Figure 3.2: Intensity (a), return number (b), number of returns (c) and classification (d)
evaluated on a sub-tile of 100m × 100m (Fig. 3.1). For intensity I show histogram, plot and
threshold plot (at 1934). It distinguishes between road, canopies and roofs quite well. Return
number and number of returns highlights high complex surfaces (canopies edges and so on).
Classification achieves very good resolution, identifying cars and bushes with high precision.
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Table 3.1: Table of the calculated features. In the first column there is their group name, that
is the same of their section. In the second column there is their name and in the third one a
brief description of the group is provided.

Group Feature Description

RGB-NIR
NDVI Use RGB and NIR values to highlight vegetation

and waterNDWI
SSI

Height

N_h
Related to height of point over the ground and its

fluctuations
∆Z

MAD
∆Zfl

Covariance

Planarity Calculate the covariance of points distribution
inside neighbourhood and use eigenvalues to

describe its shape

Sphericity
Linearity
Entropy

Plane θ Find the local plane inside a neighbourhood and
analyse the normal directionσ2

θ

studies [58]. Its formula is

NDV I =
NIR−R

NIR +R
,

where R stands for red. It is typically used to identify vegetation since chlorophyll absorbs
red light and reflects infrared waves [59] (see Fig. 3.3a). The right hump of the peak in
Fig. 3.3a-left is related to vegetation. Indeed, applying a threshold at 0.2 we see how
NDVI distinguishes between trees and other elements (Fig. 3.3a-right).

Normalized Difference Water Index (NDWI) is usually employed to detect water [60,
61], but our data does not detect water since it absorbs the LiDAR beam wavelength.
However we decided to calculate it too, with the formula

NDWI =
G−NIR

G+NIR
,

where G is for green, because it also detects vegetation and can help NDVI (see Fig. 3.3b).
As with NDVI, we can use it to identify chlorophyll, as can be seen in Fig. 3.3b-left (left
hump of the double peak) and in Fig. 3.3b-right (threshold at −0.1).

Spectral Shape Index (SSI) is related with NDWI: the latter is not able to distinguish
between water and dark shadows, so SSI is generally evaluated to isolate them [61, 62].
In our case it is also used with vegetation, as it can be seen in Fig. 3.3c. It is not a
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normalized index, but a combination of red, green and blue values:

SSI = |R +B − 2G| .

It has no defined peak and therefore no good hand-threshold value. In Fig. 3.3c-right it
is set at 2970.

3.2.2 Height features
This group features are related to z coordinate. One is related to the Digital Terrain
Model, while two are defined thanks to analysed point neighbourhood. The last one
depends on multiple echoes.

The z coordinate in LAS files is the altitude, namely elevation above the sea. I define
N_h as the elevation above the ground [13]. To calculate it, I subtract from z the ground
altitude, which is the DTM value at that coordinates. It is clearly useful to distinguish
between ground and elevated points and between cars and trees or buildings, as shown
in Fig. 3.4a. In Fig. 3.4a-right I set the threshold at 3.8m and it clearly identifies trees
and buildings.

∆Z is a local observable: it is the gap between the analysed point z and the z of the
lowest point in the neighbourhood. It is useful to detect trees, where the canopy surface
is not regular, but generally to distinguish between ground and off-ground points [63]
(see Fig. 3.4b). The histogram (Fig. 3.4b-left) is complex and a threshold value is difficult
to define: I chose 0.5m but it detects both trees and little objects (cars, balconies and
others).

Median Averaged Distance (MAD) is the median of the distance between N_h of the
points in the neighbourhood of the analysed point and their median value:

MAD = median
i

[∣∣∣∣N_hi −median
j

(N_hj)

∣∣∣∣] i, j ∈ neighbourhood .

It highlights points whose neighbourhood has large variations of height (see Fig. 3.5a).
In their study, Cai et al. [13] showed how this feature includes information on many
other observables related to height value and variation. Setting threshold at 0.2m, we
remove the “flat” data (Fig. 3.5a-left) and we close off trees with a good (but not perfect)
accuracy (Fig. 3.5a-right).

∆Zfl is related to multiple echoes. It is the z gap between the first and the last return
of the same beam of the analysed point [63]. It assigns the same value per each point
that is an echo of the same beam and it is equal to zero for the just-one return beam. It
gets higher values for complex canopy, as shown in Fig. 3.5b. Of course the majority of
points take on null value as shown in Fig. 3.5b-left and ∆Zfl is not able to distinguish
between tree canopies and chimneys or other little objects and edges (Fig. 3.5b-right,
threshold 0.1m).
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Figure 3.3: NDVI (a), NDWI (b) and SSI (c) evaluated on a sub-tile of 100m×100m (Fig. 3.1).
On the left there are histograms of the index occurrences in the sub-tiles: we notice that they
are not trivial and there are some well defined peaks, especially in NDVI and NDWI histograms.
In the middle there are scatter plots of their values: all three distinguished between high and
low vegetation from the rest, but SSI is less spread. On the right there are scatter plots setting
a threshold value: 0.2, −0.1 and 2970 respectively.
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Figure 3.4: N_h (a) and ∆Z (b) evaluated on a sub-tile of 100m× 100m (Fig. 3.1). On the
left there are histograms of the index occurrences in the sub-tiles: we notice that they are not
trivial and there are some well defined peaks. In the middle there are scatter plots of their
values: N_h distinguishes between ground and off-ground; ∆Z between ground, buildings and
trees. On the right there are scatter plots setting a threshold value: 3.8m and 0.5m respectively.
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Figure 3.5: MAD (a) and ∆Zfl (b) evaluated on a sub-tile of 100m × 100m (Fig. 3.1). On
the left there are histograms of the index occurrences in the sub-tiles: we notice that MAD is
not trivial, while ∆Zfl has almost all value equal to zero. In the middle there are scatter plots
of their values: MAD identifies trees canopy; ∆Zfl highlights trees edges. On the right there
are scatter plots setting a threshold value: 0.2m and 0.1m respectively.
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3.2.3 Covariance matrix features
The following local features are related to the points distribution in a neighbourhood of
the analysed point. Indeed, we can interpret the local point cloud as a distribution in
three dimensions and therefore we can calculate its covariance matrix in relation to x, y
and z. Per each point p0 we find all near points and define a 3× 3 matrix where cell Cij

is equal to
Cij =

∑
k

(
pik − p̄i

) (
pjk − p̄j

)
i, j = {x, y, z} ,

where k is the index of the points inside the neighbourhood and p̄ is the mean value
of the points coordinates. Since the covariance matrix is hermitian (more precisely, it is
symmetrical), it can be always diagonalized with real eigenvalues. The covariance matrix
is positive semi-defined because

uTCu = V ,

where C is the covariance matrix, V is the variance of a linear combination of the variables
(x, y and z in our case) and u is a non-zero vector. It proves the positive semi-definition
because variances are always greater or equal to zero. From a physical point of view it
makes sense: its eigenvalues describe points scattering (variance) in the corresponding
eigenvectors directions, so they must be at least no-negative. We can describe the local
point cloud as being inside an ellipsoid with center in the analysed point, whose axes
directions are covariance matrix eigenvectors and axes lengths are the corresponding
eigenvalues.

From now on I will refer to the largest, the middle and the smallest eigenvalues as ℓ1,
ℓ2 and ℓ3, respectively. So ℓ1 belongs to the direction wherein points are most scattered,
i.e., the longest ellipsoid axis, while ℓ3 belongs to the directions wherein points are less
scattered, i.e., the shortest ellipsoid axis. They are very useful to identify near points
distribution, since if they have a spherical distribution, eigenvalues are almost equals
(Fig. 3.6a); if they have ellipsoidal distribution, eigenvalues differ (Fig. 3.6b); if points
lies on a plane, ℓ1 and ℓ2 are much larger than ℓ3 (Fig. 3.6c); else if points form a straight
line, ℓ1 is much larger than ℓ2 and ℓ3 (Fig. 3.6d). In Fig. 3.6 all the point clouds are
synthetically generated.

In order to quantify these behaviours, I defined some features:

• Planarity identifies near points which lie on a plane;

• Sphericity takes bigger values as points follow a more isotropic distribution;

• Linearity detects points on a straight line.
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Figure 3.6: Synthetic point clouds and eigenvalues of their covariance matrices. a) in spheric
clouds the eigenvalues are almost equal: points are isotropically distributed. b) when points
loose isotropy, eigenvalues differ. c) if points lie on a plane, the third eigenvalues is almost nil
compared to the other two. d) in a straight line just the first eigenvalues is not nil.
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Their formulae are [64]:

planarity =
ℓ2 − ℓ3

ℓ1
,

sphericity =
ℓ3
ℓ1
,

linearity =
ℓ1 − ℓ2

ℓ1
.

(3.1)

Observing Eq. 3.1 we notice that their sum is always 1, so they are normalized. For this
reason we can consider them as probabilities and calculate their Shannon entropy [65–
67]:

entropy = plan log

(
1

plan

)
+ spher log

(
1

spher

)
+ lin log

(
1

lin

)
.

Their behaviour is shown in Fig. 3.7 and 3.8. Planarity takes on high and homogeneous
values on flat surfaces, as building roofs and streets, while on trees it takes on lower and
irregular values (Fig. 3.7a). Its histogram has not separate peaks, so there is continuity,
but shows a great spread of values. The peak is related to artificial flat surfaces, while
the left-shoulder represents irregular elements (tree canopies). Setting a threshold is not
trivial: with 0.4 it distinguishes between canopies and other elements, but it is not exact
(Fig. 3.7a-right).

Sphericity usually takes on nil values, except for trees (Fig. 3.7b-left and -center) as
its histogram reveals. It is because point clouds are (almost) never exactly a sphere, so
sphericity does not assume all values between 0 and 1; however, if it is slightly bigger
than zero, it is significant. Indeed, with threshold sets at 0.06 it highlights canopies, cars,
chimneys and other small objects, as can be seen in Fig. 3.7b-right.

Linearity assumes almost all the possible values as it is shown in the histogram
(Fig. 3.8a-left), but it takes on higher ones on buildings and trees edges, as shown in
Fig. 3.8a-middle. Surfaces have values near the peak of ∼ 0.4, while edges have higher
linearity, but using this value as threshold we see that it does not achieve good results
(Fig. 3.8a-right).

Entropy reveals point cloud irregularity, i.e., where points distribution and trend
change suddenly, such as tree canopy, cars and chimneys (Fig. 3.8b). Its maximum value
is log(3) ≃ 1.099 and it happens when planarity, sphericity and linearity are equal (i.e.
equiprobable): it means that the cloud is highly irregular and it could be described as a
plane, a sphere and a straight line with the same degree of approximation. So irregular
data can be related to trees or little structures such as chimneys and cars. When two
indices are equiprobable and the third is zero, entropy is log(2) ≃ 0.693. The peak is
at ∼ 0.7 and it could be due to zero sphericity and same probability for planarity and
linearity, therefore on smooth objects. Using 0.8 as threshold in Fig. 3.8b-right, we split
data between regular/big surfaces and irregular/small objects.
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Figure 3.7: Planarity (a) and sphericity (b) have been evaluated on a sub-tile of 100m×100m
(Fig. 3.1). On the left there are histograms of the index occurrences in the sub-tiles: we notice
that they only have one peak, but they have shoulders that reveal different behaviours in
different real objects. The peak of planarity depicts flat surfaces and the left-shoulder represents
the irregular points, while sphericity peak describes all points with the sphericity equal to zero.
In the middle there are scatter plots of their values: they both are useful to distinguish between
artificial/regular surface and natural elements. On the right there are scatter plots setting a
threshold value: 0.4 and 0.06 respectively.
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Figure 3.8: Linearity (a) and entropy (b) have been evaluated on a sub-tile of 100m× 100m
(Fig. 3.1). On the left there are histograms of the indices occurrences in the sub-tiles: we
notice that they only have one peak, but they have shoulders that reveal different behaviours
in different real objects. Linearity highlights edges of buildings and canopy, while entropy
highlights small or complex elements. In the middle there are scatter plots of their values:
entropy is useful to distinguish between artificial/regular surface and natural elements, whereas
linearity reveals edges. On the right there are scatter plots setting a threshold value: 0.4 and
0.8 respectively.
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3.2.4 Plane inclination features
A very common feature about the neighbourhood is related to the inclination of the local
plane compared to the vertical (height) [63, 68]. Once selected the neighbour points, a
plane is defined that minimizes the distances between each point and itself. The distance
is usually the norm L1.2 [69]. It is a good compromise between L1 and L2, since L1.2

ascribes a intermediate weight to outliers while L1 ascribes no weight and L2 blames too
much. 1.2 is an heuristic and historic value and there is no reason why it should not be
another. Then, the vector perpendicular to the plane is evaluated and we calculate the
angle with the vertical, θ.

However, the neighbour points are too scatter to perform a good regression algorithm
and the program returns the starting plane parameter (horizontal plane with vertical
normal vector), so θ = 0◦ almost always.

So we decided to evaluate it in another way. As said in Sec. 3.2.3, the two eigenvec-
tors related to the two higher eigenvalues of the covariance matrix define the two most
scattered directions of the neighbourhood. Logically that a regression algorithm would
reach the same result, since the plane which minimizes the distances with the points is
orthogonal to the least scattered direction. Indeed, the two most scattered directions (so
the eigenvectors related to the two higher eigenvalues) lie in the space defined by the
plane. The advantage of using a covariance matrix rather than a regression method is
that the former is deterministic (at least theoretically, it depends on the software) and it
is already calculated for the other features. Furthermore, the regression method requires
more time to be executed –and as said before, it does not work well with our point cloud.

To calculate θ we just need to calculate the arcocosine of the scalar product between
the vertical versor k = (0, 0, 1) and the orthonormal eigenvector v3 related to the
smallest eigenvalue ℓ3:

θ = arccos (v3 · k) .
The sign of the normal vector to a plane is not unique, so when we calculate the angle
θ it can assume both positive and negative sign. Since the sign is not important, I take
the absolute value of it.

Once we have evaluated θ per each point, we can calculate another feature. We call
σ2
θ (theta variance) the variance of the θ angles at points inside the neighbourhood. So

per each point, we collect all the θ values of the points inside its neighbourhood (θ of the
point i is calculated using the neighbourhood of point i) and calculate the variance (σ2

θ

of point j is calculated using the θ values of points inside the neighbourhood of point j):

σ2
θj =

∑
i

(
θi − θ̂

)2

N − 1
, i = {indices of points in j neighbourhood} .

In Fig. 3.9 I report the histograms, the scatter and the threshold plots about θ and
σ2
θ . θ values range from 0◦ to 57◦ as shown in Fig. 3.9a-left. Theoretically, θ must range
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Figure 3.9: Theta (a) and Theta_variance (b) have been evaluated on a sub-tile of 100m×
100m (Fig. 3.1). On the left there are histograms of the index occurrences in the sub-tiles: we
notice that both have two peaks, θ at zero and one at ∼18◦, while σ2

θ at zero and at ∼ 0.2rad2.
In the middle there are scatter plots of their values: they both detect not horizontal surfaces,
but σ2

θ does it better. On the right there are the scatter plots are setting a threshold value: 26◦

and 0.13 rad2 respectively.

to 90◦ but probably points are mainly distributed horizontally in each neighbourhood,
so the third eigenvector is always nearer to the vertical direction than horizontal ones.
There is a peak near 18◦ due to the slope of roofs of the building with inner courtyard.
In Fig. 3.9a-middle θ takes zero value on the street, low values on roofs following their
slope and many values on canopies. With a threshold of 26◦ only a few points related to
canopies, cars and chimneys are highlighted.

The histogram of σ2
θ (Fig. 3.9b-left) has a spread peak at 0.22 rad2. Qualitatively,

Fig. 3.9b-middle allows distinguishing different elements quite well, but introducing a
threshold reveals that this parameter is not sufficient to label points well.
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3.3 Neighbourhood and Outliers
Many features are related to the characteristics of neighbouring points. Among the se-
lected features, those related to the neighbourhood are ∆Z, MAD, ℓ1, ℓ2, ℓ3, planarity,
sphericity, linearity, entropy, θ and σ2

θ . In literature the surround can differ in shape and
radius. The two most common shapes are spheric and cylinder along the z-axis, while
the radius varies between 1m and 15m.

The default spherical surround [13] is sometimes replaced by the cylindrical [63] one
because of the characteristics of point cloud. Since the points are usually distributed on
a plane except where multiple returns happen, the cylinder highlights the z spread and
should include all the returns of beams. However it is more sensible to outliers.

Outlier points measured elevation is unreasonably more or less from their neighbour-
ing points. Outliers are mainly measurements that do not conform the local surface
geometry and do not belong to the topography of the interested area [70]. The outliers
with too high elevation values are usually named “positive outliers”, while the others
with too low elevation values are called “negative outliers”. The outliers can be caused
by different sources. The positive ones have resulted from suspended objects such as
birds or planes that reflect laser beams at high altitudes. It is believed that negative
outliers depend on the reflection of beams among the glasses of buildings before they
are detected, just like the multi-path effect of GPS. These specular reflections result in
a longer travel time of the laser beams, so a lower elevation is calculated [71].

As said above, the radius varies widely. Behley et al. [72] emphasized the importance
of selecting an appropriate radius to enhance object detection accuracy in an urban
environment, suggesting that a radius of 1-2m is often affected for distinguishing between
closely spaced objects. Of course radius depends on point density too: Chehata et al. [63]
used a 15m radius for their point clouds with a density of 2.5 pt/m2.

I tried spherical and cylindrical shapes and I noticed that some features are more
defined with spherical surround (usually covariance matrix features and ∆Z), others
with cylindrical ones (MAD especially). Since computing both is very time demanding
and spherical is more canonical and more features are better with this shape, I selected
spherical neighbourhood.

To find a good radius, I calculated features setting radii equal to 0.5m, 1m, 1.5m,
2m and 3m and all of them are better defined with radii smaller or equal to 1m.

In App. B there is an in-depth analysis and figures related to different shapes and
radii.
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Chapter 4

Classifier

In this chapter I describe how I have created the random forest model to automatically
classify LiDAR points into buildings, cars, grass, rail, roads and trees. Firstly I clarify
how I labelled data, then why I chose random forest as classifier and how I trained and
tested it.

4.1 Labelling
The first issue in creating an automatic classifier was labelling LiDAR points to train
and test the machine learning model. Hand-labelling each point is impossible both for
the amount of time required and for a matter of visual resolution. Indeed, there are at
least 20 pt/m2, so if we wanted to distinguish each point from the others, we would not
see the context and we would not know what we are watching: either we distinguish each
point, or we reduce magnification and we could see point cloud as a picture.

We were searching for a semi-automatic technique to label data without introducing
bias. In fact, if we had used an already trained model or an unsupervised model (as the
K-mean algorithm), our model training and testing datasets would have been affected
by the errors made by the labelling algorithm.

In order to try to overcome this issue, I followed the pipeline shown in Fig. 4.1. In this
pipeline I used segment-lidar [73], a Python module that segments off-ground LiDAR
data through their RGB values. It works using Segment-Geospatial (SAMGeo) [74] to
benefit from Segment Anything Mode (SAM) [75] by Meta AI. In Sec. 4.1.1 I report a
brief description of these three packages.

As previously mentioned, this segmentation procedure is applicable only to off-ground
points. While segment-lidar offers a Cloud Simulation Filter to identify off-ground points
(Fig. 4.2c), we opted to use the pre-existing classification provided by CGR (Fig.. 4.2b).
This decision was made because we preferred to rely on classification values from a
company specializing in this field, likely using purpose-built software. Additionally, this
approach avoids introducing additional noise to the data.
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Figure 4.1: It is the diagram of the followed pipeline to create labelled LAS files starting from
LAS files just with features.

Since SAM works on the picture generated by segment-lidar, the wide of the LiDAR
point cloud is important. I decided to split each tile into 25 subtiles of 100m× 100m in
order to better segment objects without rendering the picture too grainy (an example
is shown in Fig. 4.3a). In App. C I illustrate how I selected this subtile size in order to
allow SAM to better distinguish between different environment elements and to detect
small objects too (e.g., cars).

I calculated the features before splitting the file, as many of these features are de-
pendent on the neighborhood of each point. This approach ensures that only points near
the edges of the entire tile are calculated without an isotropic surrounding, rather than
all points on the edges of the subtiles.

As shown in Fig. 4.1, I used the classification feature to create two LAS files: one with
only off-ground points (Fig. 4.3b), and the other with only ground points. Off-ground file
is segmented by segment-lidar (Fig. 4.3c), then I hand-labelled the segments where all the
points belong to the same class (tree, building and so on) (Fig. 4.3d). The unsegmented
or not well segmented points were not labelled.

On ground points, a more hand-made work is necessary. To select and label points I
used CloudCompare [76], a free tool that allows to view and manage LiDAR data and
other point cloud data. Unfortunately, CloudCompare allows only to manage classifica-
tion values of selected points; so, after the file has been labelled with labels saved in the
classification variable, I executed a Python script to store the labels as a new variable and
restore the original classification values (Fig. 4.3f). For this work I used LAS files with
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(a) RGB values (b) Classification values (c) CSF values

Figure 4.2: a) shows the RGB values of the LiDAR point cloud acquired near “via Corolano
Vighi” and “via Leone Tolstoi”. b) shows the classification values calculated by CGR, while c)
shows the results of Cloud Simulation Filter, both on the same tile. In yellow there are the
ground and in purple there are the off-ground points.

only ground points of the whole tile (Fig. 4.3e) –and not subtiles, since CloudCompare
allows to work on the scale in real time.

4.1.1 Segmentation algorithms
Here I report an overview of the three packages mentioned above.

Segment Anything Model SAM is a foundational computer vision model designed
for versatile image segmentation tasks. A foundation model, also known as large AI
model, is a machine learning or deep learning model that is trained on broad data such
that it can be applied across a wide range of use cases [77]. The Stanford Institute
for Human-Centered Artificial Intelligence’s (HAI) Center for Research on Foundation
Models (CRFM) created and popularized the term [78] describing any model that is
trained on broad data (generally using self-supervision at scale) that can be adapted (e.g.,
fine-tuning) to a wide range of downstream tasks [79].

SAM architecture includes three main components:

1. a powerful image encoder computes an image embedding;

2. a prompt encoder embeds prompts;

3. the two information sources are combined in a lightweight mask decoder that pre-
dicts segmentation masks.

By separating SAM into an image encoder and a fast prompt encoder / mask decoder,
the same image embedding can be reused with different prompts, amortizing the most
time and resource-expensive process (i.e., image embedding).
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(a) Subtile RGB (b) Subtile off-ground only

(c) Subtile segmented (d) Subtile labelled

(e) Tile ground only (f) Tile labelled

Figure 4.3: The pictures show: a) the RGB values of 100m × 100m subtile, b) only its off-
ground points, c) the subtile segmented by SAM and d) the subtile hand-labelled. e) shows only
the ground points of the whole tile shown in Fig. 4.2a, while f) shows the tile hand-labelled.
The label colours are: blue for natural ground; yellow for artificial ground; purple for vehicles;
orange for buildings; green for trees; light-grey for unlabelled.
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SAM leverages a massive dataset of over one billion masks across eleven million
images [75]. The huge amount of training data allows to overcome the principal task –
segmenting images given a prompt. The final goal is to produce a broadly capable model
that can adapt to many existing and new segmentation tasks via prompt engineering.
This capability is a form of task generalization [80]. In this way SAM can perform a
new, different task at inference time by acting as a component in a larger system. For
example, to perform instance segmentation (as in our case), a promptable segmentation
model is combined with an existing object detector.

In the paper about SAM, Kirillov et al. [75] tested four zero-shot transfer experi-
ments [81]: they evaluated SAM on datasets and tasks that were not seen during train-
ing. The SAM image encoder was a MAE [82] pre-trained ViT-H [83]. Vision Trans-
porters (ViTs) are a deep learning model that have shown promise in image segmentation
tasks [84]. Unlike convolutional neural networks, ViTs employ self-attention mechanisms
that allow them to model long-range dependencies and global context within images [85,
86]. This approach has demonstrated competitive performance in various computer vision
tasks, including remote sensing image segmentation [87].

One of the zero-shot transport experiments was instance segmentation. SAM achieved
reasonably close results, though certainly behind the benchmark model ViTDet [88], but
SAM masks are often qualitatively better. The authors hypothesize that VitDet learns
idiosyncrasies and biases from the datasets, while SAM can not do it because it is not
trained on them. In any case, the pro of a foundation model is the unnecessary long
training; no one expects it to outperform custom models.

Osco et al. [84] proved that SAM can be used with one-shot approach too. This
technique concerns feeding SAM with a single example (or “shot”) of a new class in order
to greatly improve the accuracy of inferences. Two of the best-known one-shot methods
for SAM are PerSAM and PerSAM-F [89]. Given a single image with a reference mask,
PerSAM localizes the target concept using a location prior to an initial estimate of where
the object of interest is likely to be. The second method freezes SAM parameters and
introduces two learnable weights for multi-scale masks. This one-shot fine-tuning variant
requires training only two parameters and can be done in as little as ten seconds to
enhance performance.

To overview the main features of SAM, we can summarize them as follows:

• interactive segmentation: users can provide prompts (e.g., points or bounding
boxes) to guide the segmentation process, enhancing its usability in real-time ap-
plications [90];

• zero-shot learning: SAM can generalize to new objects without additional training,
making it adaptable across various domains, including remote sensing [91, 92];

• one-shot learning: if just one example is provided to SAM, the trained model out-
performs zero-shot learning at inference time [84];
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• wide applicability: SAM has been successfully applied in diverse fields, such as auto-
matic crater detection on planetary surfaces and precision agriculture, showcasing
its versatility [93].

Segment Geospatial SAMGeo is an open-source Python package designed to sim-
plify the process of segmenting geospatial data with SAM. The package leverages pop-
ular Python libraries to provide a straightforward interface for users to segment remote
sensing images and to export the results in various formats, including vector and raster
data. The segmentation can be run automatically, interactively in a graphical user inter-
face (GUI), or by text prompts built upon Grounding DINO [94]. However, it is worth
noting that the text prompt approach has its limitations, which may require parameter
fine-tuning. SAMGeo aims to fill the gap in the Python ecosystem by providing a user-
friendly, efficient and flexible geospatial segmentation tool without the need for training
deep learning models [74].

Segment Lidar Segment-lidar projects off-ground LiDAR points into a plane and
it creates a picture using the RGB points features. The software allows to choose the
projecting plane and we decided to project points on the x−y plane, in order to prevent
overlapping of elevated-near structures.

The software allows to set the resolution of the image. Of course, it is a very important
parameter because it sets what and how SAM will “see” in the picture and this affects
the creation of segments. I chose a resolution of 0.25 which means that it creates an
image of 250× 250 pixels. I explain why I made this choice in App. C.

The generated image is comparable to a remote sensing image (airborne photo). It
is the input that SAMGeo needs, so it uses SAM to perform instance segmentation over
the generated image. We used the most detailed model type: ViT-H (rather than ViT-L
or ViT-B). Since SAM is a prompt-segmentation model, we could provide a text prompt
(e.g., “trees” or “cars”), but we noticed that it does not work correctly and the algorithm
is not able to use the prompt to increase the quality of the masks. It is the same problem
observed in SAMGeo.

In any case, when SAM returns masks over the image, segment-lidar recreates the
3D point cloud adding a variable to each point. In that variable it stores the segment
ID, so we have the original point cloud segmented.

4.2 Machine Learning

4.2.1 Random Forest
A decision tree is a widely utilized data mining technique that serves as a model for
classification and prediction. It structures data into a tree-like format, consisting of a
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root node, internal nodes, and leaf nodes, where each node represents a decision point
based on specific features of the data. This non-parametric method is adept at handling
large datasets without requiring complex parametric assumptions [95, 96].

A random forest (RF) model is an ensemble learning technique that constructs mul-
tiple decision trees during training and outputs the mode of their predictions for classifi-
cation or the mean prediction for regression tasks. This method is particularly effective
for handling complex datasets with numerous features and interactions. The key charac-
teristics of the RF model are:

• ensemble learning: RFs aggregate predictions from multiple decision trees, enhanc-
ing accuracy and robustness against overfitting [97];

• feature importance: they can evaluate the importance of various input features,
which aids in understanding the underlying data structure [98];

• versatility: RFs are applicable in diverse fields, such as predicting evapotranspi-
ration in arid regions [99] and forecasting COVID-19 cases using demographic
data [100];

• reduced overfitting: by averaging multiple trees, random forests mitigate the risk
of overfitting common in single decision trees [101];

• handling missing data: they can maintain accuracy even with incomplete datasets,
making them suitable for real-world applications[100].

While RFs are powerful, they may not always outperform simpler models in scenarios
with limited data or when interpretability is crucial.

RFs are increasingly utilized for classifying LiDAR point clouds due to their ro-
bustness, efficiency, and ability to handle high-dimensional data. This machine learning
technique excels in various applications, including urban object detection and vegetation
classification. In their article, Ko et al. [102] show how geometrical features are taken
advantage of RF models that achieve very high accuracy (greater than 91.2%). They are
also able to manage the curse of dimensionality, namely we can provide them with many
features without losing performance [103]. RFs identify which features are the most im-
portant and increase their weight: the automatic features selection is very useful in our
work because we are interested in finding the most informative ones.

4.2.2 Results
The labelled data have been collected and merged from tiles and subtiles in csv files.
There was a csv per each category: buildings, cars, grass, rails, roads and trees. Since
cars and rails were smaller datasets I needed to subsample the other ones in order to
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Table 4.1: The table reports the number of labelled points. In the second column there is the
number of all labelled points per class. In the third column there is the number of labelled
points used in the training dataset. In the fourth one there is the number of labelled points
used in the testing dataset.

Class Total Training Testing

Buildings 8919236 500000 125000
Cars 325040 260032 65008
Grass 6915368 500000 125000
Rails 525403 420322 105081
Roads 6918697 500000 125000
Trees 12942709 500000 125000

Sum 36546453 2680354 670085

avoid wrong behaviours by the model. In Tab. 4.1 I report the quantities of labelled
points in training and testing datasets.

To create the RF model I used the Yggdrasil Decision Forests [104] which creates a
RF composed by 300 decision trees.

The first model trained was used to select the neighbourhood radius of features (see
Sec. 3.2 and 3.3 and App. B). I used as input the training dataset where all the features
related to the neighbourhood (height, covariance and plane features of Tab. 3.1) had
been calculated with radius equal to 0.5m and 1.0m. We can not calculate both every
time because it is very time and memory-demanding, but I did it to select the most
useful radius. As can be seen in the first three columns of Tab. 4.2, where the second and
the third column show the weights – given by the RF model– of the features calculated
with radius equal to 0.5m and 1.0m respectively, the features calculated with wider
neighbourhood are usually more important than the other ones.

In the training of the final model I just provided the features evaluated in a sphere of
1.0m of radius –plus the point features. Features weights are reported in the last column
of Tab. 4.2. The confusion matrix [105] is shown in Tab. 4.3, while accuracies [106],
precision, recalls [107] and F1-score (or Dice coefficient) [108] metrics are in Tab. 4.4.

In Fig. 4.4 and 4.5 there are six tiles –not used in the training and testing datasets
and never hand-labelled or segmented– with their predicted labels.

4.2.3 Discussion
Generally the model achieves very good results, as can be seen in Tab. 4.3 and 4.4. The
total accuracy is up to 95%, so it is an excellent result since it is our first model to
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Table 4.2: The table reports weights of features in two RF models. The first column reports
the features. In the second and third columns there are the weights of a RF trained using
features calculated inside two neighbourhoods with radii equal to 0.5m and 1.0m, respectively.
The fourth column reports the weights in the RF with only neighbourhood features at just
1.0m radius, so the final model. Weights are provided by the RF model: higher weight means
a more important feature to categorize points.

Feature Both radius Final model
0.5m 1.0m 1.0m

∆Z 0.000404 0.005696 0.007417
MAD 0.000707 0.003768 0.007527
ℓ1 0.000124 0.001151 0.001116
ℓ2 0.001209 0.004273 0.005187
ℓ3 0.000084 0.015486 0.019792
Planarity 0.000763 0.000304 0.000239
Sphericity 0.000078 0.003074 0.007412
Linearity 0.000515 0.000298 0.000230
Entropy 0.000710 0.000122 0.000084
θ 0.000310 0.000813 0.001081
σ2
θ 0.000649 0.011548 0.015841

Intensity 0.039361 0.050976
Return number 0.000682 0.000785
Number of returns 0.000733 0.001203
Classification 0.398303 0.397365
NDVI 0.146232 0.151933
NDWI 0.181963 0.222114
SSI 0.005965 0.007657
N_h 0.119607 0.127376
∆Zfl 0.002112 0.002633
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Table 4.3: Confusion matrix of the final model. In the rows there are the hand labels, in
the columns there are the values predicted by the model. In each cell of the table there is the
number of points hand-labelled the rows, which are classified as column by the model. A perfect
model would create a diagonal matrix.

Prediction → Buildings Cars Grass Rail Roads Trees
Label ↓

Buildings 117827 5953 223 0 256 740
Cars 1942 61921 175 0 286 684
Grass 28 116 123737 608 136 374
Rails 0 0 1744 100306 3031 0
Roads 763 912 1114 12862 109322 26
Trees 352 560 269 0 1 123817

Table 4.4: Table reports accuracy, precision, recall and Dice coefficient per each class. The
model is the final RF. In the last row there is the total accuracy of the model and the average
values of the other metrics.

Class Accuracy Precision Recall F1

Buildings 0.943 0.974 0.943 0.958
Cars 0.953 0.891 0.953 0.921
Grass 0.990 0.972 0.990 0.981
Rails 0.955 0.882 0.955 0.917
Roads 0.875 0.967 0.875 0.919
Trees 0.991 0.985 0.991 0.988

Total 0.951 0.945 0.951 0.947
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(a)

(b)

(c)

Figure 4.4: On the left the point clouds show RGB values; on the right they show predicted
labels. Buildings are orange, cars are purple, grass is light blue, rail is black, roads are yellow,
trees are green.
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(a)

(b)

(c)

Figure 4.5: On the left the point clouds show RGB values; on the right they show predicted
labels. Buildings are orange, cars are purple, grass is light blue, rail is black, roads are yellow,
trees are green.
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categorize Bologna LiDAR data. Furthermore, in the edges there is no visible quality re-
duction, even if the neighbourhoods are incomplete. However, there are of most certainly
some classification mistakes.

Analysing the confusion matrix we notice that buildings are sometimes categorized as
cars and vice versa. As shown in Fig. 4.4b, sometimes metallic or small elements on the
top of roofs are predicted as cars, while buses are often categorized as buildings because
they are higher than the other cars. Exemplary is Fig. 4.5c, where the market of “Piazza
VIII Agosto” is in part a building and in part a car. I want to specify that in the training
and testing datasets there is nothing similar to a market.

Rails are often confused with roads and vice versa and it is comprehensible, whereas
most of the time rails are confused with grass (more than with roads) but grass is not
confused with rails as frequently. The percentage of rails classified as grass is 1.40%,
the vice versa is 0.49%. Probably it is a hand-labelling problem: it is common that on
railways grass grows, so it creates confusion inside the model. In Fig. 4.4a all the grass is
well classified and in Fig. 4.5b, where railways seem clean, there are a few points classified
as grass. In Fig. 4.4c it is different: since they are dead-end tracks there is low vegetation
in the ballast and they are categorized as grass.

There is confusion in roads with all the other classes except trees. I have already writ-
ten about roads and rail (see Fig. 4.5a) and we can imagine why there is confusion with
grass (for example on country roads or dirty roads). Probably roads are sometimes clas-
sified as cars or buildings because of bridges, where the classification features categorize
car points as off-ground.

The tree category is very well classified and reaches the highest values in all the
metrics. However some cars are categorized as trees. It could be due to vehicles parked
behind branches which may create confusion.
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Chapter 5

Conclusions

5.1 Summary
The purpose of this thesis work was to study the geometrical-physical model of point
cloud and provide automatic tools to categorize LiDAR data. It was done in sight of the
construction of the Digital Twin (DT) about municipality of Bologna.

DT are dynamic models with many advantages. By using some online sensors, they
allow to accurately simulate the real environment and analyse it in real-time, testing
theories, simulating scenarios and predicting results. All these things with the bonus of
no influencing the physical environment [5].

Urban Digital Twins (UDT) would be capable of simulating the whole city on many
levels: traffic flow, air quality, green area, power line, aqueduct, energy consumption [109]
and so on. In order to create one UDT, the first step is recreating the real environment
as a platform where simulations will be carried out.

LiDAR data have been widely employed to develop three dimensional maps of urban
environments [34]. Airborne LiDAR technology has got a good enough resolution and
sufficient easy acquisition method to make it the perfect instrument for this purpose.

I conducted analyses about point density and how it changes setting different neigh-
bourhoods. The first result was that there are on average more points per m2 than the
lower limit stated in the specification (see Sec. 1.3). Then, analysing how point dis-
tribution changes at different scales and types, I noticed that it differs on the (real)
environment on which the cloud is collected. This reveals that on trees more LiDAR
points are elicited, as expected from complex structures such as canopies because of
multiple returns per emitted pulse.

These initial assessments have suggested extracting geometrical features too, in ad-
dition to others related to height and colours. All the selected features –once the neigh-
bourhood parameters had been defined– have been supplied to a random forest model
to classify point by point the cloud in building, car, grass, rail, road or tree points.

The training and testing datasets were provided by some data about Bologna and
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hand-labelled for this purpose. Segment Anything Model [75] segmented off-ground points
through segment-lidar Python package [73], while I manually segmented ground points.
Then I hand-labelled the segments and I split the shuffled points into balanced training
and testing datasets.

The final results are sufficiently good for our purposes. Indeed, we were interested in
obtaining an initial coarse-grained model as a starting point for more complex models.
As shown in Tab. 4.4 it reaches a total accuracy of 95%, with lower category accuracy of
88%, while precision, recall and F1-score metrics are all above 87%. The other goal was
to select the most useful features. As reported in Tab. 4.2, now we have their ranking
and we found the better hyperparameters of the neighbourhood (a sphere with radius
1.0m).

5.2 Future improvements
The next step is trying to use other models to outperform current results. At the mo-
ment CINECA team is trying other machine learning models such as Boost Decisions
Forest [110] and Balanced Random Forest [111].

In addition, we are initiating a new approach. We are implementing Convolutional
Neural Network (CNN) on LiDAR. The core idea is to create three pictures on different
scales per each point, but rather than using RGB values, image channels will be some of
the features studied in this thesis work [68]. The images will be inputs of CNN, a truly
common deep learning model in figures analysis that achieves excellent results [112].

On the other hand, other data may be provided to the classifier. We are thinking
about integrating the real estate registry, both to outperform classification results and
to update the municipality archives. We are also interested in combining LiDAR with
orthophotos because many features can be extracted from them [13].

As far as the appearance of the DT is concerned, improvements and modifications
will evolve along with it. The classifier –and more generally the creation of the simulation
environment– will have to change to adapt and meet the demands of the DT. Therefore,
as long as the DT is updated and expanded, the classifier will have to be constantly
improved.
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Appendix A

Density histograms

In this appendix I report histograms about some of the values of k and radius in the
density analyses of Sec. 2.2.

In the first figure (A.1) I show the results of the k-nearest density. Each column
reports the same tile results: almost tree on the left, almost buildings on the right, and
intermediate ones in the middle. In Fig. A.2 there are results of the number of point
density. The columns have the same organization of the previous figure.

It is very difficult to extrapolate information just by watching the graphs. In the k-
nearest we see that tiles with trees have histograms spread on smaller ranges, highlighting
a higher concentration of points, but it is difficult to guess the mean value. In the number
of points inside the sphere we can make out the shift of the average toward greater values
when the percentage of trees increases, as we described in Fig. 2.4.

In the first row of Fig. A.2 the selected radius defines a sphere with volume about
1m3. We see that histograms are different from the ones with cylindrical shape and the
base area of 1m2 and that mean values do not follow the same raster order (higher
density for more trees) as can be seen in Tab. A.1.
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Figure A.1: The k-nearest neighbourhood distance histograms. The four columns report re-
sults about the tile a) b) c) and d) of Fig. 2.1, respectively. In the rows there are their histograms
with k equal to 10, 100, 2000, 4000 and 6000, respectively.
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Figure A.2: The number of points inside sphere histograms. The four columns report results
about the tile a) b) c) and d) of Fig. 2.1, respectively. In the rows there are their histograms
with radius equal to 0.640m, 2.0m, 3.0m, 5.0m and 12.0m, respectively.
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Table A.1: The table reports mean distances of the k-nearest point (first five rows) and the
mean numbers of points inside a sphere (last five rows). Their histograms are shown in Fig. A.1
and A.2, respectively. Second column report k values (first five rows) and radius values (last
five rows). In the third, fourth, fifth and sixth column there are the mean values (in meter the
first five, dimensionless the last five) of tile a) b) c) d) of Fig. 2.1, respectively.

Type Fixed a b c d

k-nearest

10 0.50855± 0.00006 0.50272± 0.00007 0.42894± 0.00006 0.48490± 0.00009
100 1.48714± 0.00011 1.57026± 0.00012 1.355722± 0.00016 1.5782± 0.0003
2000 5.3111± 0.0002 6.0491± 0.0004 5.5922± 0.0004 6.8608± 0.0007
4000 7.1674± 0.0003 8.3205± 0.0005 7.7615± 0.0004 9.6010± 0.0009
6000 8.5744± 0.0004 10.0409± 0.0006 9.3920± 0.0005 11.5980± 0.0009

radius (m)

0.640 17.771± 0.003 18.160± 0.003 23.193± 0.003 20.524± 0.003
2.0 217.92± 0.02 196.63± 0.02 247.55± 0.02 200.00± 0.03
3.0 557.81± 0.05 470.02± 0.06 572.59± 0.06 441.67± 0.07
5.0 1838.25± 0.17 1424.32± 0.17 1661.65± 0.15 1194.54± 0.18
12.0 13451.7± 1.2 9684.3± 1.2 10502.9± 0.9 6899.1± 0.9
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Appendix B

Neighbourhood selection

I have tested spherical and cylindrical shapes with different radii.

Delta Z In Fig. B.1 ∆Z with different surrounds are showed. We can see as spherical
neighbourhoods detect more elements, since cylindrical ones almost highlight buildings
edges. About the radius, 1m (Fig. B.1b) is the compromise between a good definition
(Fig. B.1c and B.1d are more blurred) and resolution (Fig. B.1a does not detect cars, for
examples).

MAD MAD values are showed in Fig. B.2. Spherical surrounds are less useful than the
cylindrical ones. About the radius, we can find the same considerations made for ∆Z: so
1m is the best.

Planarity Planarity calculated with cylindrical neighbourhoods is very blurred, even
with radius equal to 0.5m (Fig. B.3e). Using a spherical surround with 0.5m of radius
(Fig. B.3a) we obtain a high resolution, but it is affected by noise; so we prefer 1m of
radius (Fig. B.3b). Planarity with radius 0.5m and spherical shape (Fig. B.3a) is almost
always 0. Probably it is due to too few points in the neighbourhood: it is difficult to
find a plane, therefore a linear distribution is preferred. It can be a consequence of plane
fly: the fly direction creates a preferential low scale distribution direction, so a linear
distribution.

Sphericity There are not many differences between cylindrical and spherical neigh-
bourhoods (Fig.B.4). Maybe the cylindrical one (Fig.B.4f) is a bit better than the spher-
ical (Fig.B.4b) at 1m.

Linearity Linearity with cylindrical neighbourhoods is very blurred (Fig. B.5e, B.5f,
B.5g and B.5h). Radius 1m is the best choice in spherical neighbourhood (Fig. B.5b).
We notice that in Fig. B.5a (radius 0.5m, shape spherical) linearity is almost always 1,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure B.1: Different surrounds of ∆Z related to 100m× 100m subtile shown in Fig. 3.1. a),
b), c) and d) show ∆Z values with spherical surrounds with radius 0.5m, 1m, 2m and 3m. e),
f), g) and h) show ∆Z values with cylindrical surrounds with radius 0.5m, 1m, 2m and 3m.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure B.2: Different surrounds of MAD related to 100m× 100m subtile shown in Fig. 3.1.
a), b), c) and d) show MAD values with spherical surrounds with radius 0.5m, 1m, 2m and
3m. e), f), g) and h) show MAD values with cylindrical surrounds with radius 0.5m, 1m, 2m
and 3m.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure B.3: Different surrounds of planarity related to 100m×100m subtile shown in Fig. 3.1.
a), b), c) and d) show planarity values with spherical surrounds with radius 0.5m, 1m, 2m
and 3m. e), f), g) and h) show planarity values with cylindrical surrounds with radius 0.5m,
1m, 2m and 3m.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure B.4: Different surrounds of sphericity related to 100m×100m subtile shown in Fig. 3.1.
a), b), c) and d) show sphericity values with spherical surrounds with radius 0.5m, 1m, 2m
and 3m. e), f), g) and h) show sphericity values with cylindrical surrounds with radius 0.5m,
1m, 2m and 3m.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure B.5: Different surrounds of linearity related to 100m×100m subtile shown in Fig. 3.1.
a), b), c) and d) show linearity values with spherical surrounds with radius 0.5m, 1m, 2m and
3m. e), f), g) and h) show linearity values with cylindrical surrounds with radius 0.5m, 1m,
2m and 3m.

because planarity in the same condition is almost always 0 and in general sphericity is 0
except on canopies.

Entropy There are many differences in entropy changing shape and radius. In Fig. B.6a
entropy has very low value, while just with radius equal to 1m (Fig. B.6b) values are
greater. With radius 0.5m in a spherical neighbourhood, linearity is almost always 1,
so entropy is almost always 0. Neighbourhoods with radius greater than 1m generate
blurred entropy values. Cylindrical shapes (Fig. B.6e and B.6f) highlight buildings and
canopies edges, while spherical ones (Fig. B.6b) detect surfaces: each building roofs and
tree canopies are uniform.

Theta Cylindrical neighbourhoods create blurred values, as it is shown in Fig. B.7e,
B.7f, B.7g and B.7h. A small radius generates good feature, such as in Fig.B.7a and B.7b,
respectively 0.5m and 1m.

Theta variance All the neighbourhoods with radius greater or equal to 2m are blurred
(Fig.B.8c and B.8g). Cylindrical shapes highlight the profiles but not the edges, while
the spherical ones highlight local variations. The sharpest and useful neighbour is the
spherical one with radius equal to 0.5m (Fig. B.8a)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure B.6: Different surrounds of entropy related to 100m×100m subtile shown in Fig. 3.1.
a), b), c) and d) show entropy values with spherical surrounds with radius 0.5m, 1m, 2m and
3m. e), f), g) and h) show entropy values with cylindrical surrounds with radius 0.5m, 1m,
2m and 3m.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure B.7: Different surrounds of θ related to 100m × 100m subtile shown in Fig. 3.1. a),
b), c) and d) show θ values with spherical surrounds with radius 0.5m, 1m, 2m and 3m. e),
f), g) and h) show θ values with cylindrical surrounds with radius 0.5m, 1m, 2m and 3m.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure B.8: Different surrounds of σ2
θ related to 100m× 100m subtile shown in Fig. 3.1. a),

b), c) and d) show σ2
θ values with spherical surrounds with radius 0.5m, 1m, 2m and 3m. e),

f), g) and h) show σ2
θ values with cylindrical surrounds with radius 0.5m, 1m, 2m and 3m.
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Appendix C

Segmentation and Resolution

Segmentation
As mentioned in Sec. 4.1, the use of SAM requires some thoughts about the tile size.
Since LiDAR data are converted into pictures, resolution and objects size in the picture
are important.

In order to manage these aspects, I took an original tile of 500m×500m (Fig. C.1a),
then I spit it in four subtiles of 250m×250m (Fig. C.1b), twenty-five subtiles of 100m×
100m (Fig. C.1c) and one hundred subtiles of 50m×50m (Fig. C.1d). Then, I segmented
the whole tile and all the subtiles, using classification variable to define which points do
not belong to the ground. In the second column of Tab. C.1 I report the number of
segments detected in the whole surface if it has been split or not. It is evident that the
size of the segmented point cloud causes how many segments SAM can detect on the
same 500m× 500m surface.

In Fig. C.2, the detected segments of one subtile per tested size and of the whole tile
are shown (they are the same subtiles and tile of Fig. C.1). The number of segments per
each of them is reported on the third column of Tab. C.1. A thorough analysis reveals
that, using the whole tile (Fig. C.2a) or the 250m× 250m subtiles (Fig. C.2b), cars are
rarely detected and many elements are grouped together (mixed segments). Obviously,
using 50m × 50m subtiles (Fig. C.2d) more segments are detected and the probability
of mixed segments is very low, but there is more noise too (many segments contain only
very few points). Additionally, it is difficult to visually identify what those points are
related to, so the hand-labelling procedure would be very hard (it is due to LiDAR points
density).

After all these considerations, I chose to segment and hand-label subtiles of 100m×
100m (Fig. C.2c): they are small enough to segment cars and create a few mixed seg-
ments, but they are not too small to prevent a good visualization or too many small
segments.
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(a) 500m× 500m tile (b) 250m× 250m subtile

(c) 100m× 100m subtile (d) 50m× 50m subtile

Figure C.1: a) shows the RGB values of the LiDAR point cloud acquired near “via Corolano
Vighi” and “via Leone Tolstoi”. b), c) and d) show RGB values of parts of the same point cloud
with different enlargement: 250m × 250m, 100m × 100m and 50m × 50m respectively. The
red bounding-box in the first three limits the point cloud of the next enlargement.
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(a) 500m× 500m tile (b) 250m× 250m subtile

(c) 100m× 100m subtile (d) 50m× 50m subtile

Figure C.2: a) shows the segments of the LiDAR point cloud acquired near “via Corolano
Vighi” and “via Leone Tolstoi”. b), c) and d) show segments of parts of the same point cloud
with different enlargement: 250m × 250m, 100m × 100m and 50m × 50m respectively. The
red bounding-box in the first three limits the point cloud of the next enlargement.
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Resolution
As said in Sec. 4.1.1, segment-lidar allows to set the resolution of the generated image
form LiDAR off-ground point cloud.

We can see the different generated images about a subtile (Fig. C.3a) setting res-
olution at 0.1, 0.25 and 1.0 respectively in Fig. C.3b, C.3c and C.3d. The number of
pixels –and so their corresponding real size– changes consistently. If resolution is 1.0
over a 100m× 100m subtile, segment-lidar generates an image of 100 px× 100 px. So if
resolution is 0.25 and 0.1 it generates 250 px×250 px and 1000 px×1000 px respectively.

I applied the segmentation algorithm. In Tab. C.2 I reported the resolution, the
number of segments in all the subtiles of the original tile and the number of segments in
the subtile shown in Fig. C.3. We can notice that increasing the resolution the number
of segments increases. It is a realistic trend as a higher resolution increases details.
Graphically, it seems to improve segments quality too, at least between resolution 1.0
(Fig. C.3d) and 0.25/0.1 (Fig. C.3c and Fig. C.3b). Indeed, some real elements are
merged or wrong split between them at 1.0. On the other hand, 0.1 resolution sometimes
oversplits elements.

We must not watch just segmentation results, we have to take care of resolution
consistency. LiDAR resolution is fixed and generating an image with more fine-grain
resolution means using unrealistic data. All the tiles that I analysed have got at least
6 × 106 points, usually around 7 × 106. Since they cover an area of 500m × 500m,
their density is at least 24 p/m2. These results are confirmed by Sec. 2.1. If they had
a regular grid structure, they would have been 20.4 cm distant one each other and we
would have had 4.9 points per meter. Therefore we would have had 490 points per side
in a 100m× 100m subtile.

I set the resolution at 0.25 because the generated image would have 250 px× 250 px,
almost half of LiDAR points. In this way we avoid scatter pixels over a black background
as in Fig. C.3b but we try to take advantage of the whole information provided by the
point clouds.
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Table C.1: Table of the number of segments in tile and subtiles. The first column reports the
size of the tile. The second one reports the number of segments in the whole 500m × 500m
surface if it is split in subtiles or not. The third column reports the number of segments in the
subtile shown in Fig. C.1 and C.2.

Segments number
Size whole tile single subtile

500 383 383
250 1002 260
100 1656 94
50 3285 45

Table C.2: The table shows the number of segments identified by SAM setting different
resolution values in segment-lidar. In the first column there is the resolution parameter. In the
second one there is the number of segments found in the whole tile. In the third column there
is the number of segments found in the subtile shown in Fig. C.3a.

Segments number
Resolution whole tile single subtile

0.10 1656 112
0.25 1456 86
1.0 926 59
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(a) Subtile (b) Res. 0.1 (c) Res. 0.25 (d) Res. 1.0

Figure C.3: a) point cloud (top) and only off-ground points (bottom) of the subtile showing
RGB values. b) c) and d) generated images (top) and segments (bottom) of the same subtile
calculated by segment-lidar with resolution equal to 0.1, 0.25 and 1.0 respectively. The gener-
ated images are 1000 px× 1000 px, 250 px× 250 px and 100 px× 100 px respectively.
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