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Abstract

Crowd density estimation and crowd dynamics analysis are critical tasks in mod-
ern urban management, event planning, and public safety. This thesis explores a range
of computer vision methodologies to estimate crowd density in the unique context of
Venice’s crowded public spaces. The study implements and evaluates several techniques,
including the state-of-the-art YOLOv8 object detection model, a custom U-Net for crowd
segmentation, a traditional background subtraction algorithm, and a novel approach
based on trajectory tracking. Each method is evaluated in terms of accuracy and com-
putational efficiency on both GPU-powered systems and resource-constrained devices
like the Raspberry Pi 5.

While YOLOv8 delivers high accuracy in low-density crowds, it struggles in dense
settings and demands substantial computational resources. In contrast, the U-Net-based
model shows reliable performance across both low and high-density scenarios, though its
counting accuracy can be imprecise. The traditional background subtraction approach
excels in real-time processing on low-power devices but its output tends to be less precise
and harder to interpret. The novel tracking-based approach offers a promising alterna-
tive for estimating crowd density by analyzing trajectory patterns, though quantitative
evaluation wasn’t possible and more research need to be conducted.

The results provide a comparative framework to guide the selection of crowd analysis
techniques based on the density of the crowd and the available computational resources.
This work not only contributes to the research in crowd analysis and computer vision,
but also lays the foundation for future research in real-time crowd management and
analysis.
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Chapter 1

Introduction

Crowds, consisting of individuals gathered within a specific physical space, have long
been subjects of interest in both social and computational fields. Nowadays, one of
the most interesting and active research topic of research within computer vision is
the analysis of crowds [1][2], driven by advances in machine learning, computational
power, and the vast amount of data generated daily from surveillance systems. These
holds significant potential for understanding crowd behaviour and movement patterns,
and preventing dangerous situations, but also requires effective analysis to extract value
[2]. As a result, crowd analysis has become a key aspect of urban management, public
safety and event planning. Crowd analysis encompasses a wide range of tasks, but
at its core, it can be roughly divided into the task of understanding crowd behaviour
[2], or measuring or estimating the number of people in a place, usually referred to
as crowd counting [3] or crowd density estimation. Crowd counting is a particularly
important task, because of the desire to make population estimates without physical
measurements. This is especially useful in unconstrained environments where multiple
entry and exit points exist and traditional methods of measurement, such as ticket sales or
turnstile counts, are impractical or impossible. The relevance of crowd analysis extends
far beyond academic curiosity. Attendance and density statistics are useful for measuring
the success of an event and the planning of future events. Understanding crowd density is
crucial in predicting potentially dangerous situations, such as stampedes or compressive
asphyxia, where overcrowding can lead to tragic consequences [4]. With more than
420,000 academic papers published on crowd analysis in the last decade (see Fig. 1.1), it
is evident that this field has many application across multiple domains, including urban
planning, public safety, and social behavior.

While many works in the literature focus on the analysis of available data to solve one
or more cited problems, or the creation and validation of mathematical [5] and physical
models [6][7] and simulations [8], this thesis takes a step back and specifically address the
first step in crowd analysis, which it the gathering of meaningful information from raw
visual data (video and image sources). The ability to interpret crowd density from video
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Figure 1.1: Occurrences of the keyword crowd analysis on Google Scholar from the year
2000.

feeds has immediate applications in public event management, transportation systems,
and emergency response. In cities like Venice, narrow alleyways and public squares
regularly host huge numbers of tourists, and effective crowd monitoring is essential.

This work explore a variety of methodologies that have been extensively studied in
the literature, including deep learning-based object detection, segmentation models, and
more traditional image processing techniques. For example, YOLOv8 [9] represents an
object detection framework that is often considered the state-of-the-art for real-time
applications [10][11]. Its ability to quickly detect and track individuals within a scene
makes it a popular choice for crowd counting and density estimation, particularly in
lower-density environments. However, as this thesis will demonstrate, YOLO struggles
in more densely packed scenarios, where individuals are more likely to overlap or occlude
one another, thus requiring alternative methods.
Another key model explored in this thesis is the U-Net architecture [12], which has been
successfully applied in various domains for tasks such as image segmentation, and it
was thus considered a natural candidate for crowd density estimation in this study. By
segmenting people’s heads in crowded environments, U-Net allows for a more refined
estimation of crowd density, even in highly congested spaces where object detection
models may fail.
In addition to deep learning approaches, this thesis also incorporates a more traditional
computer vision approach: background subtraction [13][14]. This technique is simpler
and less computationally intensive than deep learning models and can thus provide fast
and effective foreground detection, making it suitable for real-time crowd analysis on
low-power, CPU-only devices such as the Raspberry Pi. Background subtraction is
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less sophisticated than machine-learning-based methods, but remains a viable solution
for specific crowd monitoring tasks in constrained environments where computational
resources are limited.
Finally, this thesis introduces a novel approach to estimating crowd density based on
tracking individuals over time. By analyzing the features of people’s trajectories (such
as length and linearity), it is possible to infer crowd density without relying on precise
object detection, segmentation or tracking. This method offers a promising alternative
in cases where traditional detection and counting approaches fail due to crowd size or
occlusion.

The primary goal of this thesis is to evaluate the effectiveness of different methods
for crowd density estimation and dynamic reconstruction, particularly in the urban land-
scape of Venice. Each method offers distinct advantages and disadvantages depending
on the specific context in which it is applied. The thesis provides a comparative analy-
sis of these methods, with particular attention to their computational performance and
accuracy in both sparse and densely packed crowd scenarios.

Alongside with the broader context of crowd analysis literature, the thesis contributes
to improve public safety, urban planning, and event management through the effective
use of video data. The natural applications of this work extend beyond the only crowd
analysis: each sub-field of image/video analysis or computer vision needs a way to extract
data from cameras and thus it is a potential target of this research. Moreover, the ability
to extract features from a video can be useful in many other typically-uncorrelated fields,
such as wildlife monitoring, sports and physics (e.g. analysing the trajectory of a particle
from a video).

This thesis is organized as follows: the problem is first presented and related works are
reviewed to provide context and background. Next, selected models and algorithms are
explained in detail, implemented and applied to the available dataset of crowd scenes from
Venice. Their computational performance is then measured, comparing the suitability of
each method for real-time analysis on different hardware platforms, including a CUDA-
capable GPU and a Raspberry Pi 5. Finally conclusions are drawn and directions for
future development are outlined.
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Chapter 2

Related works

Methods of crowd counting can be broadly divided into two classes: pixel/feature-level
approaches and object-level approaches.

Usually, pixel-level approaches are based on traditional computer vision techniques
and are thus slim and fast. Most of this algorithms makes large use of background
(BG) subtraction: the differences lay on how the background is obtained and how the
foreground is interpreted in order to have an estimation of people count. Davies et al.
[15] used an edge detector and correlated the number of pixel feature to the number of
people in the scene, while Regazzoni et al. used vertical edges. Cho et al. [16] approach
was based instead on the ratio of foreground to background pixel counts in the scene.

Object-level analysis aims to extract and identify individual subjects in a scene and
consequently, tends to produce more accurate results when compared to pixel-based
methods. However, object-level approaches are generally only applicable to lower density
crowds, because the clutter and severe occlusion that occurs in high-density crowds make
such approaches much more challenging [4][1]. Nevertheless, many advances in object
detection was done thanks to the progress in Machine Learning [17] and nowadays, many
Deep Learning [18] models compete for the best performances. Usually, these networks
require training and the more or less extensive use of GPUs, as opposed to the previously-
cited traditional computer vision approaches.

In particular, Deep Neural Networks (DNNs) based on Convolutional Neural Net-
works (CNNs) [19], have emerged as the de facto standard approach for detecting objects
[20]. Among these, models of the YOLO [21] series are off-the-shelf networks that are
easy to use and have significantly increased in popularity due to their real-time perfor-
mance and accurate object localization capabilities. Indeed they are widely recognized
as a state-of-the-art algorithm when it comes to object detection [10][11]. From the
original paper in 2015 by Redmon et al. [21], YOLO has seen multiple iterations, up to
YOLOv10 [22] which is currently (Sept. 2024) only a Preprint under review. Briefly:
YOLOv2 [23] was released in 2016 and improved the original model, for instance by incor-
porating Batch Normalization [24] (see Appendix A.2 for detail); YOLOv3 [25], launched
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in 2018, further enhanced the model’s performance using a more efficient backbone net-
work and Spatial Pyramid Pooling [26]; YOLOv4 [27] was released in 2020, introducing
innovations like Mosaic Data Augmentation [28] and a new loss function; YOLOv5 [29]
further improved the model’s performance and added new features such as hyperparam-
eter optimization1 [30]; YOLOv6 [31] was open-sourced in 2022 and is in use in many
of the company’s autonomous delivery robots; YOLOv7 added additional tasks such as
pose estimation; YOLOv8 [9] introduced big improvements for enhanced performance
and efficiency; YOLOv9 [32] was published in Feb. 2024 and include improvements in
efficiency and accuracy in real-time detection.

In Fig. 2.1 the performances of YOLOv9 with respect to the previous versions is
plotted. The measured performance in the graph is the Average Precision (AP) over the
MS COCO dataset [33], a widely used benchmark for object detection models, consisting
of diverse images with complex scenes, that provides standardized evaluation metrics to
compare models. See in Appendix A.1 for the definition of Average Precision.

Other CNN-based networks have been used for crowd counting, like U-shaped net-
works (U-Nets): Cao et al. developed CrowdUNet [34], while Marcellino et al. [35] used
a modified U-Net with Scale Pyramid to count people.

To achieve the goals of this work, the analysis of the crowd dynamics (i.e., how crowd
detection changes over time) was considered useful to have a better understanding of
crowd density [36] (see section 3.4), so in the following, a brief review of tracking methods
is also presented.

The most successful methods currently available in literature can be broadly grouped
into three main categories [20]: tracking-by-detection [37][38][39], tracking-by-regression
[40][41][42], and tracking-by-attention [43][44][45]. In tracking-by-detection, detections
are computed independently for each frame and associated with tracks in subsequent
steps. Tracking-by-regression unifies detection and motion analysis, with a single mod-
ule that simultaneously locates the detections and their displacement w.r.t. the pre-
vious frame. Finally, in tracking-by-attention, an end-to-end deep tracker based on
self-attention [46] manages the life-cycle of a set of track predictions through the video
sequence.

Since the advent of deep learning, advances in object detection drove the community
towards tracking-by-detection [20]. Among the most successful works, SORT [47] uses a
combination of Kalman filter [48] and Hungarian algorithm [49] to associate detections
between different frames and thus reconstruct the dynamic of the detected object. Track-

1Hyperparameters are the parameters which must be configured before the training process start
(such as learning rate, batch size, number of layers or neurons) and they govern the behaviour of the
learning process, as opposed to the parameters (or weights) learned from the data. Hyperparameter
optimization is the process of determining the best set of hyperparameters that yields an optimal model,
by using cross-validation and choosing the set of values that maximizes a predefined loss function.
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Figure 2.1: Comparisons of the real-time object detectors on MS COCO dataset.
YOLOv9 method surpassed all previous methods in terms of object detection perfor-
mance. Image source [32]

tor [50] pushes tracking-by-detection to the edge by relying solely on an object detector
to perform tracking. CenterTrack [51] provides a point-based framework for joint detec-
tion and tracking based on CenterNet [52] Similarly, RetinaTrack [53] extends RetinaNet
[54] to offer a conceptually simple and efficient joint model for detection and tracking,
leveraging instance-level embeddings. More recently, DeepSORT [55][56] and ByteTrack
[57][58] further establish this paradigm, unleashing the full potential of YOLO [21][9]:
notably, it uses almost every predicted detection, and not only the most confident ones.

The downside of these works is that they utilise bounding boxes (i.e., rectangle boxes
that enclose detected objects) to perform both detection and tracking. Later on (section
3.4), it is discussed the need for a tracker that works with point detections and a simpler
version of SORT is presented for this purpose.
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Chapter 3

Working principle of selected models
and algorithms

In this chapter, some of the previously cited methods are better explained, and their
efficiency and limitations are discussed. These are: YOLOv8, a custom U-Net imple-
mentation, a backgroud-subtraction-based algorithm and, regarding tracking, a simpli-
fied implementation of SORT. Both YOLO and U-Net architecture are based on CNNs
and their core functionality is similar, but the way they are practically used and trained
is quite different.

Convolutional Neural Networks (CNNs) [19] are a class of deep learning [18] models
designed to analyze and process images. As opposed to traditional image processing
techniques, that relied on features like edges or contours, CNNs automatically learn
hierarchical feature representations from raw image data. Like all Artificial Neural Net-
works (ANNs), CNNs are comprised of neurons that self-optimise through learning [59].
Mimicking a biological neural network in animal brains, each neuron receives an input,
perform a operation and passes the result to a neuron on the next layer. The key aspect
of a CNN architecture is that hidden layers include one or more convolutional layers : a
layer that perform convolution between the input matrix (the image) and a kernel, (a
small square matrix). Considering images as discrete functions on a finite 2D domain,
the convolution operation between two images f and g can be defined as:

(f ∗ g)[m,n] =
M−1∑
j=0

N−1∑
k=0

f [j, k]g[m− j, n− k]

The weights of convolutions’ kernel is what is learnable and changes with training.
After each convolutional layer, the output is passed through a non-linear activation

function that introduce non-linearity into the model, enabling it to learn complex pat-
terns and preventing the vanishing gradient problem.

Then, pooling layers aim to gradually reduce the spatial dimension of the feature
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map, decreasing the number of parameters and the computational complexity of the
model. In CNNs, 2× 2 max-pooling layers are usually used, so the maximum value from
a 2× 2 window is selected and the dimension is thus scaled down to 1/4 of the original
size.

3.1 YOLO (You Only Look Once)

In Chapter 2, iterations of YOLO architecture up to YOLOv10 have been presented.
However, YOLOv8 has been used for this work. This choice was done because, while
YOLOv9 and YOLOv10 offer novel innovations, the improvements were considered to be
insufficient to reject the use of YOLOv8, which provides a reliable tool for this research.
In particular, YOLOv8 has a comprehensive documentation and tutorials [60] which
make it easier to understand, use in a custom code and debug if necessary. Moreover, it
has been available for a longer time and it has undergone extensive testing, improvements,
and community support since its release in January 2023. YOLOv9 is relatively new (Feb.
2024) and has fewer real-world applications and case studies available: as far as it can
be determined, only one real-world application [61] shows YOLOv9 usage and how it
exceed previous iterations’ performances. The same argument can be applied even more
so to the newer YOLOv10.

The name YOLO stands for You Only Look Once, referring to the fact that it is
able to accomplish the detection task with a single pass of the network, as opposed to
previous approaches that divided the task into two steps, where the first step detects
possible regions with objects and the second step run a classifier on the proposals [10].
To accomplish this, YOLO divides the input image into an S × S grid and predicts B
bounding boxes of the same class, along with its confidence for C different classes per
grid element. Each bounding box prediction consists of five values: Pc, bx, by, bh, bw,
where Pc is the confidence score for the box that reflects how confident the model is
that the box contains an object; bx and by are the coordinates of the box’s center, and
bh and bw are the height and width of the box. The output of YOLO is a tensor of
S×S× (B×5+C), optionally followed by non-maximum suppression (NMS) to remove
duplicate detections.

As already mentioned, YOLO is a CNN, and YOLOv1 architecture comprises 24 1×1
convolutional layers followed by 2 fully connected layers that predict the bounding box
coordinates and probabilities. All layers used Leaky ReLU [62]:

LReLU = max(ax, x) a < 1

except for the last one, which used a linear activation function. This simple architecture,
along with its novel full-image one-shot regression, made it much faster than the existing
object detectors but it had limitations. In particular, it could only detect at most two
objects of the same class in the grid cell (B = 2 in the original paper), limiting its ability
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to predict nearby objects. Also, it struggled to predict objects with aspect ratios not
seen in the training data.

YOLOv8 has a more complex architecture whose details are depicted in Fig. 3.1.
Briefly, convolution modules include Batch Normalization and SiLU (Sigmoid Linear
Unit) activation function [63], defined as:

SiLU(x) = x sigmoid(x) =
x

1 + e−x

These modules are alternated with the so-called C2f module, that combines high-
level features with contextual information to improve detection accuracy. In YOLOv8,
objectness, classification, and regression tasks are performed independently allowing each
branch to focus on its task and improves the model’s overall accuracy. In the output
layer, the sigmoid function is used as the activation function for the objectness score,
representing the probability that the bounding box contains an object, while softmax
function:

σ(z)i =
ezi∑C
j=1 e

zj
C ≥ 1

is applied for the class probabilities, representing the objects’ probabilities belonging to
each possible class.

3.2 U-Net

In this thesis, a custom U-Net to detect people’s head has been implemented and trained.
Using a UNet in crowd counting is not a new idea [34][35] , but here an original code
based on PyTorch was developed and it is available on GitHub alongside with testing and
documentation [64]. Among CNNs, U-Net has been chosen because it is particularly well-
suited for tasks where precise localization is essential: as opposed to YOLO’s bounding
boxes, U-Net provides pixel-wise segmentation and it is thus more suited for detecting
small, densily packed objects like heads in a crowd. Moreover, U-Net models are flexible
with input’s aspect ratio and are more practical for the available dataset of this project
(see section 4.1 for details).

The U-Net architecture was initially proposed in 2015 by Ronneberger et al. as a
solution to medical image segmentation problems [12], but it was quickly adopted for
many other tasks. It has a unique structure that makes it particularly effective for
tasks with high resolution inputs and outputs, like image segmentation, super resolution
(up-scaling low resolution to high resolution images), or diffusion models (transforming
Gaussian noise to newly generated images).

The U-Net model is based on a Fully Convolutional Neural Network (Fully CNN) [65]
and consists of two main parts: an encoder (contracting) path and a decoder (expanding)
path, which are connected through a bottleneck and skip connections.
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Figure 3.1: YOLOv8 structure. The model’s convolutional modules include a Bath
Normalization and SiLU activation function. These are alternated with C2f modules that
combines high-levele features with contextual information to improve detection accuracy.
Image source [10]
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• The encoder is responsible for extracting features from the input image. It reduces
the spatial dimensions of the image while increasing the number of channels. Every
stage in the encoder consists indeed of two 3x3 convolutions, each followed by
ReLU activation functions and a downsampling 2x2 max-pooling operator. As
already mentioned, this last is the equivalent of picking the largest value in a non-
overlapping window across the image, and in doing so the spatial dimensions are
halved and the number of channels doubled. The Rectified Linear Unit (ReLU)
activation function is used instead to introduce non-linearity into the network and
it is defined as ReLU(x) = max(0, x)

• The decoder is responsible for reconstructing the segmentation mask from the
compressed feature representation produced by the encoder. Each stage in the
decoder consists of upsampling operators followed by two 3x3 convolutions with
ReLU activation functions. The upsampling operation is typically done through
transposed convolutions and it restores the spatial resolution of the features that
were lost during the encoding phase, refining the segmentation boundaries.

• The encoder and decoder are symmetrical and one of the most distinctive features
of U-Net is the use of skip connections, that connect the encoder’s to the cor-
responding decoder’s layers. These connections directly transfer high-resolution
features from the contracting path to the expanding path, helping the network to
retain fine details that might otherwise be lost in the encoding process. To do that,
each skip connection takes a copy of the features from the encoder and concatenates
it onto its opposing stage in the decoder, meaning that subsequent convolutional
layers can operate over both the decoder’s and the encoder’s feature.
The intuition is that the decoded features might contain more semantic informa-
tion (i.e., in this region there is object x), whereas the encoded features contain
more spatial information (i.e., these are the pixels where the object is). Combining
both the encoder’s and the decoder’s feature together, one can in theory achieve
pixel-perfect segmentation.

• Finally, the bottleneck is the bridge between the intermediary features of the net-
work, where the decoder “switches” into the decoder. In this phase, the features
are downsampled with a 2x2 max pooling, then they are passed through a 3x3
convolutional layer with ReLU activation function and then they are upsampled
again by a 2x2 transposed convolution.

This design gives the model its name: the U-Net. The structure can be better understood
by looking at Fig. 3.2, which shows an example for a 4-layer U-Net, with 32x32 pixels
in the lowest resolution step.

As already mentioned, in this thesis work, a general U-Net architecture has been
implemented in Python using PyTorch (whereas the original implementation was in
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Caffe [66], a deep learning framework originally developed at University of California,
Berkeley): the full code, together with testing and documentation, can be found on
GitHub [64].
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3.3 Traditional computer vision algorithm

Throughout this work, a custom algorithm that uses traditional computer vision tech-
niques has been developed. This type of approach is simple, fast and doesn’t require
training nor GPU to perform real-time analysis. Its inference can also be performed in
real-time from a Raspberry PI, as shown in section 4.6. The downsides are that the
results are harder to interpret than those of the networks previously cited and it can
only be applied in videos or known scenarios, since it relies on background subtraction.
Also, still objects are usually not detected with this class of methods.

With background subtraction it is meant every technique which allows an image’s
foreground to be extracted for further processing. To achieve this, first the background
is obtained, then a simple pixel-wise subtraction of it from the image, gives the foreground
as the result. The background could be obtain in several ways [14][67][68][69], including
calculating for each pixel the median or average value over a set of different (random)
frames from a video. By doing this calculation for each of the 3 channels (red, green,
blue) an RGB version of the background can also be obtained. Another method consists,
starting from a blank background, in iteratively update it by performing a weighted sum
between it and the current frame, so that B(t+1) = B(t) + αF , where B(t) and F (t)

respectively indicate the background and current frame at discrete temporal step t. The
weight value α < 1 determines how fast the background is formed and changes: the
greater the weight α, the more the background is dependent on the current frame and
quickly changes with it [13].

The obtained foreground can then be processed to obtain useful data for crowd anal-
ysis: for instance, one of the simplest methods could be to apply a threshold and directly
correlate the number of non-zero pixels with the number of people in the current frame.
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3.4 Tracking people to estimate crowd density

In this section it is described an alternative method to estimate the crowd density which
is based on tracking. The fundamental principle of this approach is based on the idea that
the ability of people to move freely within a space is inversely proportional to the crowd’s
density. The core concept is to use few tracked individuals as “test particle” to infer the
“permeability” of the crowd: if the crowd is sparse, individuals can move relatively freely,
suggesting lower crowd density; on the other hand, if the individuals appear stationary
or constrained in their movement, it implies that the crowd is more packed, indicating
higher density. This can be quantitatively measured by tracking movement trajectories
across video frames and calculating metrics such as average displacement and speed.

The advantage of this technique is that it doesn’t require that all the people are
detected and tracked, but few of them are enough. However, the accuracy of the tracking
system (and thus of the detection) is crucial for it to work.

Trackers are usually designed to work with bounding boxes, but when dealing with
high density crowds, individuals are usually very occluded and their appearances and
bounding box’s sizes vary substantially, making the standard tracking methods not suit-
able in this case. For instance, despite being simpler than other trackers, even SORT
[47] uses both bounding box position and sizes.

Thus, a modified version of the SORT algorithm that exclusively utilizes point detec-
tions has been implemented, focusing solely on the detected positions of objects to solve
the Multiple Object Tracking (MOT) problem. While this simpler approach can lead
to inaccurate data associations (i.e., where one object may incorrectly be assigned the
identity of another between frames), this error is less significant when estimating crowd
density, which does not strictly require precise tracking of each individual.

Indeed, if the tracking algorithm incorrectly associates one person with another be-
tween consecutive frames due to crowd congestion, this is actually indicative of a dense
environment, since in such cases, the resulting trajectories will be short, overlapping, or
irregular, which reflects high density. In contrast, when the crowd is sparse and there are
few people, the tracking system, even if so simple, will correctly associate the peoples’s
position across frames, leading to a faster, straighter and smoother trajectory.

Using this reasoning, the tracking ability to handle dense scenes becomes less about
accuracy in person-to-person associations and more about the overall representation
of movement patterns, making this simplified approach very practical and effective for
crowd density estimation.

Examples of this novel methods are later shown in section 4.5, where YOLO tracking
method is used and trajectories drawn.

15



Chapter 4

Application and results

Here, the models and algorithms described in the previous chapter are applied to crowd
images and videos in the context of Venice, Italy and the results are discussed and
compared. The goal is to assess the performances of such models in tasks like crowd
density estimation, crowd counting and flow reconstruction.

4.1 The dataset

Over the years, the City Lab of University of Bologna has collected data from cameras
in Venice.

The dataset used in this work is composed of:

• 375 6016 × 4000 images, each matched with a list of coordinates for the people’s
head. Examples of those images can be seen in Fig. 4.1. The crowd density in
those images varies substantially, and the people count goes from a minimum of 18
people to a maximum of 3975. The location, camera angle, zoom level and field of
view are also variable, making the labelled dataset diversified.

• 35 FullHD (1920 × 1080), 5 minute videos at 3 fps, taken from three different
cameras placed in alleys; frames of which can be seen in Fig. 4.2

• 10 low-quality (768× 576), 5 minute videos at 8 fps, from a camera in Piazza San
Marco. Frames visible in Fig. 4.3.
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Figure 4.1: Examples from the labelled dataset. Green marks have been drawn at the
right coordinates to represent the label.
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Figure 4.2: Examples of frames from the video dataset. All the videos are 5 minutes
long, taken at different time of the day.

Figure 4.3: Frame examples from low-quality videos of Piazza San Marco.
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Figure 4.4: Example of pre-trained YOLO detection inference on an image of the dataset.
It is clearly visible how the model works only in low crowd density conditions.

4.2 YOLO

The version of YOLO YOLO8x, pre-trained on COCO dataset [33] was tested both for
detection on images and for tracking on videos. Example of results can be seen in Fig.
4.4 and Fig. 4.5 that shows detections and trackings respectively. Clearly, YOLO only
works in low-density crowd scenarios, which is expected, since the model has been trained
on detecting and classifying the whole body while in a high-density scenario, people are
usually severely occluded and only the upper part of the body is visible.

In Fig. 4.5, it is important to notice that, although not all the people are detected,
the ones correctly identified always maintain a unique ID. This allows to reconstruct
partial trajectories for some of people, which will be a useful information to estimate
crowd density as described in section 3.4. Also, it is true that people are only recognized
when they are closer to the camera, but the great majority of them are detected and
tracked with no false positive error. This means that in a moderate density situation
like the one in Fig. 4.5, it is possible and easy to count the number of people passing by
in an alley. Note however that it is difficult to quantify the correctness of the counting
for this study case, since no labels for videos are available.

The same argument could be applied as well for the other videos of alleys, even at
night time. Some frames of the tracking results on those videos can be seen in Fig. 4.6
and Fig. 4.7.
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Figure 4.5: Example of pre-trained YOLO tracking inference on four frames of a video
from the dataset. The model only detect less occluded people, but keep them tracked
with the same ID. The images are 6 frames (2 seconds) apart.

Figure 4.6: Example of pre-trained YOLO tracking inference on four frames of a video
shot at night time. The model only detect the most illuminated people on the foreground,
but surprisingly keep them tracked with the same ID. The images are 6 frames (2 seconds)
apart.
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Figure 4.7: Example of pre-trained YOLO tracking inference on four frames of a video
from the dataset. The model only detect the people on the front, but keep them tracked
with the same ID and counting them is thus feasible and easy. The images are 6 frames
(2 seconds) apart.
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Regarding the images of Piazza San Marco, the higher crowd density and the great
number of access points to the square make the previous logic inapplicable, so a version
of YOLO was trained to detect the people’s head with the aim to etimate their density
and number.

4.2.1 Training YOLO

YOLO is designed to work with bounding boxes, while the available labels in the dataset
consist only in coordinates of the heads’ center. An attempt to train YOLO has been
made anyway, by creating bounding boxes of a fixed size of 30px around the given
coordinates. The labelled dataset was divided into a train set (265 images, ∼ 70%) and
a validation set (110 images, ∼ 30%). Due to the relatively small number of images but
their large size, data augmentation techniques[70][71][72] were involved. For the training
set these consist of:

• a random horizontal flip with a probability of 0.5;

• a random small rotation in a range of ±5 degrees;

• a random crop of the image, that takes a random portion with an area between 0.1
and 1.0 times the area of the image. This transformation is followed by a resizing
step to ensure that all images fed to the model have the same size (256×256 pixels)

Instead, the transformations on the validation set should not contain any randomness in
order to ensure consistent evaluation results, so the validation images were just subjected
to a center crop of a fixed size (2048×2048 i.e., 8 times the 256×256 final size) followed
by a resizing to the same 256 × 256 pixels as the training images. Selecting the center
of the images not only avoid any randomness, but also makes the central area assume
more importance, and the model results better for that zone.

YOLOv8 was then trained for 100 epochs and the results are shown in Fig. 4.8,
where train and validation losses are plotted, alongside with precision and recall metrics
(see Appendix A.1 for the definition). Unfortunately, even if precision and recall seem
to gradually increase, and the training loss to slowly decrease, validation loss stays high
throughout the training. This indicates that the model is not able to generalize to unseen
data. Indeed, even when applied to the same images used in training, no detections at
all are performed, rendering the trained model completely useless. Therefore, no further
experimentation or usage of the model have been conducted, as its inability to perform
even on familiar data renders it unreliable for any practical purpose.

22



Figure 4.8: Results of YOLO training with the aim to detect people’s head. From left to
write, the plots show respectively validation loss value, training loss value, precision and
recall plotted against the 100 training epochs. The validation loss maintaining an high
value is an indication of poor generalization of the model, which indeed can’t predict
correct bounding boxes.

4.3 U-Net

To train a U-Net, images and corresponding segmentation masks are needed. As already
mentioned, the available labelled dataset for this project consists in 375 6016 × 4000px
images, each matched with a list of coordinates indicating the position of people’s head.
In order to use the U-Net on such a dataset, binary masks have been created, with a
circle centered on each (x, y) pair of coordinates.

In theory, the radius of each circle should vary according to the size of the head it
represents. In particular, people further away have a smaller apparent dimension than
the ones on the foreground. There are two easy way to account for the variable distance
between the camera and people:

• using two cameras with a known distance between the two, a binocular vision
approach could be applied [13][1];

• if the the geometry of the place is known, a perspective correction can be used in
order to get a rough 2D reconstruction from a single point of view (see Appendix
B.2 for details).

Unfortunately, given the the use of a single camera and the different locations and framing
of the photos, neither of the two methods could be used. Therefore, another approach
has been attempted: after detecting edges in each image using a Canny edge detection
[73] (as implemented in OpencCV [74]), small circles was expanded until they hit an
edge. In practice however, the results of this operation (Fig. 4.9b) are not really better
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(a) (b) (c)

Figure 4.9: Visual comparison between masks created using expanding circles and simple
circles with a fixed radius for an example image: (a) original image with green marks as
label; (b) binary mask created by expanding little circles until they hit an edge (detected
with Canny edge detector); (c) binary mask formed by circles with a fixed radius value
(15px).

then setting a single value for the radius of all circles (Fig. 4.9c) and the difference in
circles’ radius seems to be random and uncorrelated with the actual head dimension.
This is because even if it’s true that nearer people have apparently bigger heads, the
foreground portion of the image is also more detailed and this make so that more edges
are detected in that area.

Thus, the same value of 15 pixels has been set for each circle and binary masks
have been created. These are what it was then used to train an instance of the U-Net
previously described.

4.3.1 Training the U-Net

A U-Net with 4 layers, with 64, 128, 256, 512 channels respectively has been used to
perform the segmentation of people’s head. As for the training of YOLO model, the
labelled dataset was divided into a train set and a validation set and the same data
augmentation techniques were performed. The model was then trained for 1000 epochs.
At each epoch, the training and validation losses have been calculated. The chosen
loss function is the torch.nn.BCEWithLogitsLoss [75]: this combines a Sigmoid and a
Binary Cross Entropy (BCE) Loss in one single layer and can be described as:

l(x, y) = {l1 . . . lN}T , ln = −ωn [yn · log σ(xn) + (1− yn) · log(1− σ(xn))]

where N is the batch size.
In addition to monitoring the losses, on the validation set the accuracy and Dice

score [76][77] were calculated as well. Accuracy is just the ratio between the number of
correctly predicted pixels and the total number of pixels in the image, while Dice score
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Figure 4.10: Plot of the training and validation losses of the custom U-Net. The losses
values are plotted over the epochs. Both of them decreasing indicates that the model is
learning effectively without overfitting.

(also called F1-score) is the harmonic mean of Precision and Recall. See Appendix A.1
for definition’s details.

Fig. 4.10 shows the loss curves over the 1000 epochs, illustrating the model’s per-
formance on the training and validation sets. Both the training and validation losses
exhibit a descending trend as the number of epochs increases, indicating that the model
is learning effectively. The decrease in training loss reflects the model’s capacity to
fit the training data, while the reduction in validation loss demonstrates the model’s
generalization ability to unseen data.

In Fig. 4.11 one can see plots of accuracy and Dice score over the validation set.
Both metrics rapidly approach their maximum within the first ∼ 150 epochs and remain
consistently high throughout the training process, even if with slight fluctuations in later
epochs.
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(a) (b)

Figure 4.11: Plot of two metrics on the validation set over the 1000 epochs of training:
(a) Accuracy; (b) Dice score. Both metrics are better explained and defined in Appendix
A.1.

From these two images, a continuous decrease in both the training and validation
losses can be observed, while the accuracy and Dice scores quickly reach high values
and stabilized within the first epochs. This discrepancy between the behavior of the
losses and the one of the metrics can be explained by the differences in how they capture
model performance. In fact, the loss function is sensitive to small errors in prediction
boundaries: as the model trains, it continues to refine its predictions, resulting in a
steady decrease in loss. However, accuracy and Dice score focus on more global aspects
of prediction correctness, and they quickly stabilize once the model captures the major
structures in the data. These metrics are less sensitive to minor improvements in the
prediction boundaries, which explains why they plateau early while the losses continues
to decrease.

This hypothesis is also supported by a visual comparison of the model results: Fig.
4.12, 4.13 and 4.14 show the model’s prediction on a batch from the validation set at
different epochs. The model refines the prediction for each epoch, but it is generally
correct since the early ones. The slight decrease of accuracy and the greater fluctuations
in both the accuracy and the Dice score in Fig. 4.11 can also be justified: it’s easy to see
how in the last epochs, each head gets detected slightly better (thus the losses decrease),
but the overall prediction is noisier, making the prediction less accurate.
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Figure 4.12: Example of a batch from the validation dataset and the corresponding
binary mask consisting of a circle around head head.
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(a) Prediction at epoch 0

(b) Prediction at epoch 50

(c) Prediction at epoch 100

Figure 4.13: (1 of 2) Prediction of the model on the batch from Fig. 4.12 at
different training stage. It is clear how the general correctness of the model is
present since early epochs, but the model continue to refine the prediction.
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(a) Prediction at epoch 200

(b) Prediction at epoch 400

(c) Prediction at epoch 1000

Figure 4.14: (2 of 2) Prediction of the model on the batch from Fig. 4.12 at
different training stage. It is clear how the general correctness of the model is
present since early epochs, but the model continue to refine the prediction.
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In general, which is the stage of the training to use on the inference process strictly
depends on the model’s application: using the early weights the model is less accurate
but also less noisy and could be better for instance as a crowd density estimator, while
a model which is more accurate in defining the segmentation borders can be used for
crowd counting or in individual dynamic reconstruction, where it is more important to
distinguish and divide the people. Moreover, as an idea for future development, more
than one weight can be employed and a combination of their predictions be used as the
actual result. For instance a weighted sum of the result of different model’s weight in a
given pixel can represent the confidence level of such model. Of course, this results in
longer inference time and it was thus considered to be out of the scope of this work.

The trained U-Net model was then used to perform inference on other images. Among
the different model weights, the ones obtain after 700 epochs visually seemed to perform
the best on unseen data (namely, frames of the unlabelled videos), balancing between
segmentation precision and noise. The following discussion is thus based on these specific
model weights.

First, the model was re-applied to training and validation datasets, this time without
cropping the images. This was done as a further test on labelled dataset, and also to
get the prediction for the non-central part of the images as well. Processing the images
with no resizing would lead to bigger computational times and make the model detect
smaller details than heads, (example in Fig. 4.15). On the other hand, directly resizing
the 6016 × 4000 images to a small resolutions like 256 × 256 would certainly induce a
loss of details and wouldn’t maintain the aspect ratio, making the model’s predictions
ineffective. A good solution is something in the middle: each image was resized to 1/8 of
its original size (just like for the validation set during training) and then a sliding window
method could be applied: each resized image would be divided into 256×256 blocks and
the model would then be applied on each of them. However, this would increase the
computational time and the results of the model directly applied on the resized images
were considered good enough for the subsequent analysis, so the following figures and
discussion are based on of the model’s application over 752×500 images. In Fig. 4.16 it is
shown a visual comparison between a model’s thresholded prediction over an image from
the validation set during training (i.e., the prediction over the cropped image) and over
the same image but without cropping. The output of the model over the non-cropped
images has thinner and noisier prediction, which is expected due to the larger dimension
of the image where it was applied. The noise can be easily removed using erosion (see
Appendix B.1 for explanation) and the result of this operation is shown in Fig. 4.17.

In Fig. 4.18 the non-thresholded predictions are instead directly drawn over frames
of different video using a color map scale. It is visible how the model makes wrong
predictions, in those scenarios very different from the images used for training. For the
videos where the predictions are acceptable (e.g., upper-right in Fig. 4.18), those are
then converted to a binary image with a simple threshold and eroded to remove noise.

30



Figure 4.15: Result of the application of the U-Net trained for 700 epochs on a non-
resized image. The model incorrectly detects smaller features than heads, like edges of
people and objects.

(a) (b) (c)

Figure 4.16: Difference between the U-Net output applied on the same image from
the validation set during training (with a central crop) and after training (without).
As expected, the larger image is has thinner and noisier prediction than the original
cropped one. (a) Cropped binary mask; (b) results on the cropped image obtained
during training; (c) re-application of the model over the full image.
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Figure 4.17: Noise removal using erosion for the example image of Fig. 4.16c.

Figure 4.18: Example of U-Net inference on frames of different videos. No threshold is
applied on the model’s result. Many false positive error are visible, probably due to the
different scenario between the videos and the images from the dataset. In particular,
the image on the upper right is from a night-time video and the bottom ones are from a
camera angle much closer than the one of the images used for training. The video whose
frame is on the upper left shows instead good results, with few false positive errors.
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Figure 4.19: Example of two images and corresponding U-Net inference that present a
noticeable difference in framing, camera inclination and zoom level.

4.3.2 Crowd density estimation using the U-Net

A first estimate of the crowd density can be made simply by creating a correspondence
between the number of non-zero pixels in the U-Net output and the number of people
in the scene. However, calibrating such a correspondence is not a simple task when the
location and framing of each photo is different: the portion of the image that represent
the walkable area, the distance between people and the camera and its inclination are for
instance some of the factors to take into account. An example is shown in Fig. 4.19, which
shows two images with a noticeable difference in framing (with or without buildings),
camera angle and zoom level. However, once the camera’s position and zoom level are
set, the walkable space can be defined, perspective correction optionally performed and
the cited correlation easily established. It is in fact clear how denser areas produce a
greater concentration of non-zero pixels.
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Figure 4.20: Root Mean Square Error (RMSE) between predicted and true count for
both the training and validation set. The number of predicted counts was obtained by
counting the contours whose area is greater than Amin and the RMSE is dependent on
this threshold value.

4.3.3 Crowd counting and detection using the U-Net

From the eroded images, the number of people can be evaluated, performing the so-
called crowd counting. The simplest method is to detect and count the borders in the
binary image [13][14]. To account for eventual noise still present after the erosion, only
the contours with an area bigger than a certain threshold Amin is considered. This
approach was applied to both the training and the validation sets and the number of
people was calculated for different values of the threshold Amin. The mean square error
(MSE) between the predicted count and the true one was calculated and its square root
(RMSE) is plotted in Fig. 4.20. This also served to empirically obtain the optimal value
of the threshold and it is clear that it equals to zero. The reason can be understood by
looking at Fig. 4.21 which plots the predicted count against the true count for Amin = 0:
it is obvious that the number of people tends to approximately be the same, even for
a larger crowd. This is because, while this approach of counting borders is very simple
and fast, if two circles (i.e., two detected heads) touch even for a single pixel, they are
considered as a single contour and counted only once. So, Amin = 0 is the value that
minimizes the MSE simply because it maximizes the number of detections. Indeed in
Fig. 4.22, where it is shown the image with the largest crowd and the corresponding U-
Net prediction, it is clear that many circles can be identified, but they will be considered
as a single contour.
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Figure 4.21: Predicted count over true count for both the training and validation set.
The predicted count was obtained by counting the number of contours whose area is
greater than Amin = 0 (i.e., considering all contours). The predicted count tends to be
approximately the same regardless of the actual number of people present in the image.

Figure 4.22: The image from the dataset with the largest number of people (3975) and
the corresponding U-Net inference. It is clear that, even if the U-Net output is acceptable
and generally correct, most of the circles (i.e., detected people) are considered as a single
contour and thus counted only once. However if the location variables (distance from
the camera, zoom level, etc) are known, the number of white pixels can be associated to
the number of people.
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Figure 4.23: Root Mean Square Error (RMSE) between predicted count and true count
for both the training and validation set. The number of predicted count was obtained
by counting the local maxima of the distance function whose value is greater than dmin

and the RMSE is dependent on this threshold value. The distance is measured in pixels
and normalized between 0 and 1 for each image.

The implemented solution to this problem is the following: on the eroded binary
image of Fig. 4.17, a distance function [78][79] is calculated. This returns the distance
from the closest zero-value pixel at each location. Obviously, the distance function’s value
for a zero-value pixel is zero. Then, local maxima of this function correspond to centers
of circles, and it is thus the number of those maxima that are associated to the number
of people. Since zero-value pixels are also considered local maxima, a threshold dmin for
a minimum distance value on each maximum has to be used. Of course, higher values of
this parameter leads to fewer accepted detection and this threshold also allows to discard
eventual small point-like detection that could be noise. Similarly to what was done with
contours, the optimal threshold value dmin was empirically obtained by calculating the
MSE between predicted counts and true ones for different value of dmin. These are
plotted in Fig. 4.23, from which it is obtain that the optimal value is dmin ≃ 0.2. Note
that the distance value was normalized between 0 and 1, for each image individually.

Fig. 4.24 shows the predicted number of people against the true ones for dmin = 0.2.
The result is better then using the number of contours as in Fig. 4.21, but still has a
RMSE of ∼ 646 for the training set and ∼ 786 for the validation set.

Finally, the position of local maxima is used as the predicted position of people.
Results are shown in Fig. 4.25.
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Figure 4.24: Predicted count over true count for both the training and validation set. The
predicted count was obtained by counting the number of local maxima of the distance
function whose value is grater than dmin = 0.2.

(a) (b)

Figure 4.25: Examples of U-Net head detection using the distance function method.
The model obviously works better on the same type of images where it has been trained
(figure b), but correctly detects people’s head even in unseen images (figure a). In both
cases however, some false positive error are visible.
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4.4 Traditional algorithm

As already mentioned in section 3.3, getting the background is a crucial step in traditional
computer vision algorithms. This can be obtained “statically” (i.e., calculating the
median value for each pixel in different frames) or “dynamically” (i.e., performing a
weighted sum between the current frame and the background). In the work case of this
thesis, the first method was used, since it resulted to be more consistent and stable. In
fact, as the videos are not very long, the scene background doesn’t change much due
for instance to different illumination at various time or weather. In a real continuous
application it would be suitable instead to calculate the background using the weighted
sum method, with a small value for the weight to slowly account for those changes.

Once the background is obtained and subtracted from the current pixel, a threshold
is performed to obtain a binary image. Similarly to what is described in the previous
section, a density estimation can be obtain by correlating the number of non-zero pixels
with the number of people.

Regarding object detection, this traditional method doesn’t output circles over heads,
but instead detect all the moving pixels (i.e., the whole body of people), so the distance
function technique can’t be applied. This means that with an high density crowd, it is
not possible to detect the position of each person, since even a small touch between two
of them will result in only one detection. A general correspondence between the number
of non-zero pixels and the crowd density is all it can be established, since counting the
number of contour will lead to an underestimation of the people count. Note however that
labelled data on video are not available for this project, so no quantitative measurements
like in section 4.3.3 can be established.

Qualitatively, results of the traditional algorithm can be seen in Fig. 4.26, that shows
it performing over the same videos of Fig. 4.5. Some imperfections are visible and when
the detections of different people overlap, they are considered as a single contour.
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(a) (b)

(c) (d)

Figure 4.26: Application of the background subtraction algorithm to a video of a alley.
A threshold value of 30 (from the range [0, 255]) was empirically evaluated to work best
and used. (a) Gray-scale background obtained by taking the median pixel value out of
50 random frames; (b,c,d) Different frames of the resulted video with detected contour
drawn as blue lines. The images are 6 frames (2 seconds) apart.
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4.5 Tracking algorithm

As described in section 3.4, tracking people could be an alternative approach to estimate
crowd density. Results of YOLO tracking on videos of alleys is shown for instance in
Fig. 4.5. The YOLO model allows for accurate tracking of individuals by associating
detected objects across multiple frames. This enables the reconstruction of trajectories
for each person throughout the video. In the example shown in Fig. 4.27 the trajectories
found in the 900-frames-long video (approximately 5 minutes) are all plot together. A
general directional tendency emerges: the majority of paths aligns with a north-east to
south-west direction, indicating that crowd flow follows a common pattern, which can
be visualized as a rough vector field.

Furthermore, the characteristics of the trajectories suggest that the crowd is rela-
tively unconstrained in its movement: the fact that the trajectories are long and also
that some of them cross the dominant flow direction implies that individuals are not ob-
structed or packed closely together. In denser crowds, we would expect more erratic and
shorter paths as people navigate around one another, leading to increased interactions
and collisions in their trajectories. Here, the relatively smooth and linear paths indicate
a lower crowd density, correctly suggesting more open space for movement.

Note however that conducting a quantitative analysis of crowd density remains a
challenge due to the absence of labeled ground-truth data. Without accurate labels
indicating the true crowd density in each video frame, it’s difficult to establish a concrete
relationship between the observed trajectories and actual crowd density. In future works,
access to labelled datasets could enable a more robust quantitative analysis.
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Figure 4.27: Trajectories found by YOLO tracking method on the alley video of Fig. 4.5.
The paths being so long and with a prevailing direction is an indication of a free-flowing
crowd. Also, some trajectories that crosses this direction are visible, indicating that
people are not densely packed and movement against the general flow are feasible.
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Figure 4.28: YOLO and U-Net inference time using GPU. Both slightly increase at the
end, due to thermal throttling. The average inference time is 199.973 ms for YOLO and
only 84.977 ms for the U-Net.

4.6 Computational time analysis

In this chapter, computational time for the three methods are evaluated and compared,
using two different machines: a computer equipped with 16 GB of RAM and a CUDA
capable GPU: NVIDIA GeForce GTX 1050 Ti with Max-Q Design and a Raspberry Pi
5 with 4 GB of RAM.

The computational times of YOLO and U-Net inference when the GPU is used and
the models are applied to the same video of Fig. 4.5, 4.27 and 4.25a, are shown in
Fig. 4.28. The average time required to compute a frame is 199.973 ms for YOLO
and only 84.977 ms for the U-Net. Both of them slightly increase with time, due to
hardware overheating and the subsequent thermal throttling. YOLO employs basically
the same time for both the predicting and tracking methods. Also, since its output are
bounding boxes ready to be counted and individuated, the calculated times for the U-Net
comprehend the actual model inference plus the people counting algorithm that uses the
distance function method, described in section 4.3.3.

In Fig. 4.29 the same computational times using the Raspberry’s CPU are plotted.
The average time required to compute a frame in this case is 8.263 s for YOLO and 2.939
s for the U-Net. Note however that only the first 73 frames are plotted for YOLO, as
the Raspberry small RAM quickly saturated and the device halted.

Finally, the computational speed of the method based on background subtraction
was evaluated. This algorithm is designed in C++ to work with CPU and thus it is not
tested on GPU. The output performance is visible in Fig. 4.30 and the average time to
compute a single frame on the Raspberry is 48.24 ms.
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Figure 4.29: YOLO and U-Net inference time using CPU on a Raspberry PI 5. The
average inference time is 8.263 s for YOLO and 2.939 s for the U-Net.

Figure 4.30: Computational time needed to apply the BG-subtraction-based algorithm
from a Raspberry PI 5. The average time is 48.24 ms.
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Chapter 5

Conclusion and future work

In this work, different methodologies for analyzing crowd density in public spaces were
explored, with a focus on Venice as the working case. Venice is an interesting case study
for crowd counting, because the wide crowded squares and the narrow alleys offer a
great variety of situations and scenarios. Also, with the huge number of tourists that
annually visit the city, Venice is a perfect example of what is referred to as overcrowding.
This phenomenon can lead to potentially dangerous situations such as stampedes and
compressive asphyxia. Estimating crowd density is a crucial step to predict such tragic
scenarios.
In literature there exists different methods for crowd density estimation and dynamic
reconstruction, and the primary of this thesis was to evaluate the effectiveness of these
methods, with particular attention to their computational performances and accuracy.

The methods included the use of YOLOv8, a custom U-Net implementation, a tradi-
tional computer vision algorithm based on background subtraction, and a novel approach
based on tracking. Each method was examined, applied to real-world images and videos
from Venice’s squares and alleys, and evaluated for both performance and computational
efficiency. The speed measurements were conducted on both a CUDA-enabled GPU and
a Raspberry Pi 5, to assess their viability across different hardware platforms.

• YOLOv8 was selected as an off-the-shelf object detection model, known for its real-
time performances and considered as the state-of-the-art in lower density scenarios.
The model demonstrated strong performance in both detecting and tracking peo-
ple in less crowded environments, producing consistent bounding boxes that could
be used for both crowd counting and density estimation. However its performance
degraded significanlty in higher-density scenarios where it struggled to make ac-
curate predictions due to occlusions people. Additionally, YOLOv8 proved to be
computational expensive, requiring GPU to maintain a functional (and still low)
FPS rate in real-time scenarios, and was the slowest of the methods tested. An
attempt to fine-tune YOLOv8 to specifically detect people’s head was unsuccessful
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and no custom YOLO model could be used for this project, limiting its flexibility.

• The custom U-Net model developed for the crowd counting problem performed
segmentation tasks, with the goal of identifying individuals in the crowd. The
model was successfully trained to segment people’s head and its output is a binary
image in which people’s heads are represented as white circles. This provided an
effective means of crowd density estimation and counting. A correlation between
the number of white pixels in the mask and the crowd density can be established
if the camera parameters such as zoom and angle were known to account for per-
spective distortion, allowing for reasonable density estimates in both sparse and
dense crowd scenarios. However, while the method allowed for counting individ-
uals, it lacked precision in high-density situations due to occlusion and head size
variability. Computationally, U-Net performed faster than YOLO but still did not
achieve real-time performance on the Raspberry Pi 5, making it better suited for
offline processing or more powerful hardware.

• The traditional computer vision algorithm based on background subtraction demon-
strated significant advantages in terms of speed and efficiency. Designed to run
on CPU, this method achieved real-time performance even on the Raspberry Pi
5, making it particularly suitable for lightweight and constrained hardware. This
technique successfully detected foreground objects by subtracting a reference back-
ground image from the current frame. The foreground could then be used to
estimate crowd density again by counting the number of non-zero pixels. In lower-
density settings, with the appropriate steps such as threshold and simple morpho-
logical operations, the method was able to accurately detect people and track their
movements. However, since the model relies on video streams to generate the back-
ground image, it is restricted to dynamic video analysis and could not be applied
to labelled images to quantitatively measure its accuracy.

• An original concept was proposed in this work, which leverages people’s movement
trajectories to infer crowd density. This is based on the idea that in low-density
crowds, individuals movements and trajectories are smoother, longer and more lin-
ear, while in high-density situations, people’s trajectories become shorter and more
chaotic, as movement is constrained. This method does not require precise track-
ing of all individuals across frames, as any failure in tracking due to incorrect data
association and subsequent identity switching could still be interpreted as an indi-
cator of higher density. Despite the promising nature of this concept, quantitative
testing wasn’t possible, since no labelled videos are available. Nevertheless, the
approach has potential for future work, particularly in scenarios where trajectory
patterns can be captured over time.
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Future works may concentrate in the improvement of different aspects of this thesis,
starting from a better data acquisition that would lead to better labelled datasets and
a subsequent proper validation of the dynamic parts of the different models. Indeed,
this aspect requires some kind of ground truth for videos, while it was only available for
stationary images.

Improvements can also be done on the U-Net model, for instance by changing the
labelled masks and training it to output an heatmap, rather then a binary segmentation.
This would lead to some improvements in higher density scenarios, as an output image in
which pixels value reflects people’s density would carry greater information than just bi-
nary values. Regarding post process operations, better methods to get useful information
from binary outputs (either of the U-Net or the traditional algorithm) can be explored.
Cameras could be fixed, walkable area defined and perspective correction adopted. This
way, the more-than-once cited relation between number of pixels and people density can
finally be established.

Finally, more exploration are certainly needed regarding the the usage of trajectories
features to infer crowd density. The original concept seems to have good foundations, but
no proper validation nor even quantitative measures were performed. Future works may
develop in this direction, leveraging the good quality of state-of-the-art object trackers.

In conclusion, the methods explored in this thesis highlight the varying strengths and
limitations of different approaches to crowd density estimation. YOLOv8, while powerful
in low-density cases, suffers from high computational costs and struggles in denser scenes.
The U-Net segmentation model provides an effective way of counting and estimating
density through binary masks, and can be applied to static images, but still isn’t able to
achieve real-time performance. The traditional background subtraction method proves to
be computationally efficient and viable for real-time applications on low-power devices,
though it is limited to video-based analysis. Finally, the trajectory-based approach holds
promise but requires further validation with labeled data. Together, these methods
provide a comprehensive toolkit for analyzing crowd dynamics in urban settings, with
specific applications to real-world environments like Venice.
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Appendix A

Metrics and Optimization
Techniques in Object Detection

A.1 Object detection metrics

Intersection over Union (IoU) is the ratio of the intersection area to the union area of
the predicted bounding box and the ground truth bounding box. Indicating with A and
B the bounding box and the ground truth box:

IoU(A,B) =
A ∪B

A ∩B

The average precision (AP), traditionally called mean average precision (mAP), is the
commonly used metric for evaluating the performance of object detection models [10]. It
is based on precision and recall metrics: precision measure the accuracy of the model’s
positive predictions, while recall measures the proportion of actual positive cases that
the model correctly identifies. Using the definition of true positive (TP), true negative
(TN), false positive (FP) and false negative (FN), they can be defined as:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

There is often a trade-off between precision and recall: for example, increasing the num-
ber of detected objects (higher recall) can result in more false positives (lower precision).
To account for this trade-off, the AP metric calculates and averages the area under
the precision-recall curve (which plots precision against recall) at different confidence
thresholds.

Another metric that uses a combination of precision and recall is the Dice score (also
known as F1-score), which is the harmonic mean of Precision and Recall.

F1 =
2 · Precision ·Recall

Precision+Recall
=

2TP

2TP + FP + FN
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Finally, the accuracy is just the ratio between the number of correctly predicted pixels
and the total number of pixels in the image:

Accuracy =
TP + TN

TP + TN + FP + FN

A.2 Batch normalization

Batch normalization (also known as BatchNorm) is a technique proposed by Sergey Ioffe
and Christian Szegedy [24], which helps to stabilize and accelerate the training process
of artificial neural networks by normalizing the input data of each layer within a neural
network. The result is a faster convergence rate and improved generalization of the
model. The process of batch normalization it the following: first, given a mini-batch
B = {x1, x2, . . . , xm}, the mean µB and variance σ2

B are computed:

µB =
m∑
i=1

xi σ2
B =

1

m

m∑
i=1

(xi − µB)
2

Then each input is normalized:

x̂i =
xi − µB√
σ2
B + ϵ

where ϵ is an arbitrary small constant added to avoid division by zero and ensure nu-
merical stability. The resulting normalized values x̂i have zero mean and unit variance,
thus, they are scaled and shifted using the learnable parameters β and γ:

yi = γx̂i + β

allowing the network to retain the ability to represent complex transformations, as the
output of the normalized values are adjusted to any desired range.

Although batch normalization has become popular due to its strong empirical perfor-
mance, the working mechanism of the method is not yet well-understood and the reasons
behind its effectiveness remain under discussion.
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Appendix B

Image processing algorithms

B.1 Binary erosion of images

Erosion is a fundamental morphological operation, defined for binary images (but later
extended to grayscale as well) that shrink or “erode” the boundaries of the foreground
object (i.e., the white pixels). Erosion works by sliding a structuring element (a small,
predefined shape like a square or circle) across the image. For each pixel in the image, it
checks whether the structuring element completely fits within the foreground region. If
it does, the pixel remains white (1); otherwise, it is turned into a background pixel (0).
Essentially, the operation “erodes” the white regions by removing pixels that do not fit
the shape of the structuring element. For instance, if using a 3 × 3 square structuring
element, the algorithm will remove any white pixel that does not have at least eight
white neighbours.

Mathematically, let E be an integer grid, and A a binary image on E. The erosion
of the binary image A by the structuring element B is defined by:

A⊖B = {z ∈ E | Bz ⊆ A}

where Bz is the translation of B by the vector z: Bz = {b+ z | b ∈ B} ∀z ∈ B

B.2 Perspective correction

Perspective correction is a geometric transformation used in image processing to adjust
the apparent distortion of an object in an image due to the angle of viewing. This
technique is often used to make objects appear as if they are viewed from a perpendicular
perspective (i.e., from above for the case of this thesis). In fact, when an image is created,
the pixels representing an object in 3D space are projected onto a 2D plane (the image);
if the camera is not perpendicular to the object, this projection leads to geometric
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distortion. Perspective correction undoes this distortion by transforming the points in
the 2D image back into their correct positions.

The transformation typically uses four key points in the image, which correspond
to the corners of the distorted object (usually a rectangle appearing as a trapezoid, like
shown below). These points are then mapped to the corners of the actual shape, resulting
in a corrected, rectangular appearance:

A

B

H

A

B

The mathematical operation used for perspective correction is a homography trans-
formation, which relates the coordinates of the points in the distorted image to the
coordinates of the points in the undistorted image:x′

y′

w′

 = H

xy
1


where H is a 3 × 3 transformation matrix called homography matrix ; (x, y) are the
coordinates of the original point and (x′, y′) are the coordinates of the point after trans-
formation.

Given a set of points (typically four), the goal of perspective correction is to compute
the matrix H that maps the distorted image coordinates to the correct coordinates. This
is easily done using OpenCV [74] getPerspectiveTransform and warpPerspective

methods.
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