
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Informatica

Developing a Smart and Customizable

LED Matrix Platform:
The Mosaico Ecosystem

Relatore:
Montori Federico

Presentata da:
Coppola Marco

II Sessione
Anno Accademico 2023/2024

Keywords:

IoT

COAP

BLE

Open Source

Raspberry Pi

C++

Python

Docker

Flutter

PHP

Laravel

LED Matrix Smart Gadget

Abstract

Mosaico è una piattaforma open-source progettata per facilitare la creazione e la vi-
sualizzazione di contenuti personalizzati su matrici LED. A differenza delle soluzioni
commerciali, che spesso limitano le possibilità di personalizzazione, Mosaico offre
agli utenti la flessibilità di progettare e configurare ”widget” su misura per le loro
specifiche esigenze. Questi widget consentono la visualizzazione di dati e altri con-
tenuti sotto forma di dashboard personali, offrendo uno strumento versatile per una
vasta gamma di applicazioni, dalla visualizzazione di informazioni a funzionalità
interattive.

Basato su hardware economico come il Raspberry Pi Zero W, Mosaico impiega uno
stack di comunicazione ottimizzato che utilizza COAP per lo scambio efficiente di
dati e Bluetooth Low Energy (BLE) per il rilevamento dei dispositivi. La sua ar-
chitettura modulare permette agli utenti di creare, condividere ed eseguire dinami-
camente i contenuti senza la necessità di ricompilazione, favorendo un ambiente
collaborativo e supportando l’espansione continua del sistema.

Offrendo una soluzione altamente personalizzabile, aperta e conveniente, Mosaico
arricchisce il campo dei display digitali e dei dashboard personali, fornendo una
piattaforma scalabile sia per gli appassionati che per gli sviluppatori.

Abstract

Mosaico is an open-source platform designed to facilitate the creation and display
of personalized content on LED matrices. Unlike commercial solutions that often
restrict customization, Mosaico provides users with the flexibility to design and
configure custom ”widgets” tailored to their specific needs. These widgets enable
the visualization of data and other content in the form of personal dashboards,
offering a versatile tool for a range of applications, from information display to
interactive features.

Built on affordable hardware like the Raspberry Pi Zero W, Mosaico employs an op-
timized communication stack utilizing COAP for efficient data exchange and Blue-
tooth Low Energy (BLE) for device discovery. Its modular architecture allows users
to build, share, and dynamically execute content without recompilation, fostering a
collaborative environment and supporting continuous system expansion.

By offering a highly customizable, open, and cost-effective solution, Mosaico en-
hances the field of digital displays and personal dashboards, providing a scalable
platform for both hobbyists and developers.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Open Source . 2

2 State of the art 3

3 Objectives 5
3.1 Mobile app . 5
3.2 Raspberry Pi Software . 5
3.3 Web Platform . 6
3.4 Additional Features . 6

4 Project architecture 7
4.1 Networking . 7

4.1.1 Constrained Application Protocol (COAP) 8
4.1.2 Bluetooth Low Energy (BLE) 9
4.1.3 GIT Integration for Widget Management 10
4.1.4 REST . 11

4.2 Widgets . 12
4.2.1 Widget Types . 12
4.2.2 Anatomy of a Widget . 12

5 The Hardware 15
5.1 The SBC . 15
5.2 The Matrix . 16
5.3 The Matrix Bonnet . 17
5.4 Future Upgrades . 17

6 The Software 19
6.1 C++ Module . 19

6.1.1 The Canvas . 21
6.1.2 Drawables . 21
6.1.3 Loading Widgets at Runtime 23
6.1.4 Canvas buffer . 28

6.2 Python Module . 32
6.3 Cross Compiler . 34
6.4 Simulators . 35

6.4.1 The X11 Simulator . 37
6.4.2 The Web Simulator . 37

7 The Client 39
7.1 Showcase . 40

7.1.1 Home . 40
7.1.2 Matrix Control . 40
7.1.3 Installed Widgets . 41
7.1.4 Widget Store . 42
7.1.5 Slideshows . 42

7.2 Configuration Generator . 43
7.2.1 Example . 44
7.2.2 Result of the Configuration 45
7.2.3 Assets Management . 45
7.2.4 Field Attributes . 46
7.2.5 Multiple configurations . 46

7.3 Device Discovery . 47
7.4 Caching . 48
7.5 Design Patterns . 48

7.5.1 BLoC for Installed Widgets Feature 49
7.5.2 BLoC for Widget Store Interactions 51

8 The Cloud 53
8.1 Widget manager . 54
8.2 API . 55

8.2.1 Rate Limiter . 55
8.3 Landing Page . 56
8.4 Documentation . 58

9 Testing and deployment 59
9.1 Benchmarks . 59

9.1.1 CPU Usage . 59
9.1.2 Memory Usage . 60
9.1.3 Conclusion . 61

9.2 Latency . 62
9.2.1 Protocol Performance: CoAP 62

9.3 User Feedback . 63
9.4 Deployment . 63

9.4.1 Self-Hosting . 64
9.4.2 AppStore and PlayStore . 64

10 Conclusion 67

Chapter 1

Introduction

Mosaico is a free and open-source platform that enables users and developers to
create, share, and display custom content on an LED matrix. These pieces of con-
tent, called widgets, can be uploaded to the widget store for others to browse,
download, and install on their personal matrix devices.

Developers can mark their widgets as configurables, allowing users to submit mul-
tiple configurations for the same widget. For example, an image widget can be
configured to display different images based on user input.

Some examples of widgets:1

Image Date and Time Dice roll List

The platform consists of multiple applications that work together seamlessly to
deliver dynamic, customizable content to a Raspberry Pi-driven LED matrix.

1Screenshots taken from the Mosaico simulator, not the actual LED matrix device

1

https://github.com/mosaico-widgets/image-widget
https://github.com/mosaico-widgets/date-and-time
https://github.com/mosaico-widgets/d6
https://github.com/mosaico-widgets/list

1.1 Motivation

The growing demand for interconnected devices capable of communication in con-
strained environments has fueled the rapid expansion of the Internet of Things
(IoT). As a tech enthusiast, I was naturally drawn to this world when I moved
into my own home, where I sought to make every electronic device “smart” futher-
more, I have always enjoyed having control centralized in a single place, like a
dashboard—somewhere I can display dynamic information for everything I want to
monitor.

Nevertheless, building a real-time content display system in an IoT environment
presents several challenges, such as constrained bandwidth and low computational
power. This thesis focuses on overcoming these obstacles by developing an IoT-
based display system that leverages CoAP and BLE to efficiently deliver real-time
dynamic content to an LED matrix driven by a Raspberry Pi.

1.2 Open Source

The Mosaico project has been developed and released under the AGPL-3.0 license,
a copyleft open-source license designed to ensure that modifications and derivative
works are freely available to the community. The full project code, including the
various components of the platform, is publicly accessible for review, modification,
and redistribution. The project’s source code is organized and hosted on GitHub
and can be found at the following 2. Additionally, a separate organization dedicated
to the collection and publication of community-created widgets is available 3.

Open-source software plays a pivotal role in advancing technological innovation and
promoting collaborative development. By adopting an open-source model, Mosaico
not only enables users to benefit from the transparency and adaptability of the
software but also fosters an ecosystem where developers and hobbyists alike can
contribute enhancements, fix bugs, and create new functionalities that serve the
needs of the broader community. This collective effort accelerates the development
process, often yielding more secure, stable, and feature-rich software than propri-
etary alternatives.

Furthermore, the Mosaico ecosystem is designed to embrace these open-source values
not only in the core platform but also in the development and sharing of widgets.

By leveraging the open-source model, Mosaico aspires to build a self-sustaining,
innovative community that thrives on shared knowledge and collective growth.

2https://github.com/orgs/mosaico-matrix
3https://github.com/orgs/mosaico-widgets/

2

https://github.com/orgs/mosaico-matrix
https://github.com/orgs/mosaico-widgets/

Chapter 2

State of the art

The concept of a remote-controlled LED matrix is not new, with numerous products
available on platforms such as Amazon, and even more on Aliexpress. Typically,
these products consist of a basic LED matrix combined with a mobile application,
offering a limited range of functionalities. These usually include image display,
clock features, and simple text scrolling, forming a standard set of operations that
is largely identical across the various models on the market.

However, I quickly realized that none of these commercial solutions met my ex-
pectations. These devices are closed systems, restricting customization options and
preventing users from adapting the system to their specific needs or preferences.
This restrictive nature severely limits the potential for innovation and creativity,
which is essential for users seeking more than just basic functionality.

This lack of flexibility, combined with my growing passion for open-source soft-
ware—where users and developers are key contributors—led me to create Mosaico.
Unlike proprietary solutions, Mosaico is built around the principles of openness and
customizability, offering users full control over the system. Inspired by well-known
open-source projects such as Homebridge1 and Flipper Zero2, I envisioned an envi-
ronment where both users and developers could collaboratively expand the system’s
capabilities.

Another key advantage of Mosaico is its affordability. The hardware components
required to build the platform are both inexpensive and widely available, making
the system accessible to a broad range of users. In contrast to the high costs often
associated with commercial LED matrix products, Mosaico runs on simple, off-the-

1Homebridge: https://homebridge.io/
2Flipper Zero: https://flipperzero.one/

3

https://homebridge.io/
https://flipperzero.one/

shelf components like the Raspberry Pi Zero W or similar single-board computers
(SBCs) and a standard LED matrix. These components, readily available through
various retailers, offer a cost-effective solution without sacrificing functionality.

Moreover, the open-source nature of the project ensures that software updates and
improvements are continuously developed by the community, free of charge. Users
are no longer dependent on a single vendor for updates or feature expansions, avoid-
ing subscription fees or costly upgrades, as is often the case with commercial sys-
tems. This approach democratizes the technology, allowing hobbyists, developers,
and individuals alike to experiment, create, and innovate without significant finan-
cial barriers.

In summary, Mosaico’s reliance on inexpensive, easily sourced components not only
makes it a highly cost-effective alternative to commercial LED matrix solutions, but
it also reinforces the project’s core mission: to empower users to fully customize,
extend, and share their creations, all while keeping expenses to a minimum. This
affordability, combined with the open-source ethos, positions Mosaico as a flexible,
powerful, and budget-friendly option for anyone looking to explore the full potential
of LED matrices.

4

Chapter 3

Objectives

This project is aimed at building three major components, each with its own specific
requirements and constraints:

3.1 Mobile app

The end-user interface for discovering new widgets, installing them, displaying them
on the matrix device, controlling the matrix, and checking its status.

• Ease of use: The app must be intuitive, visually appealing, and easy to
navigate.

• Performance: It should be fast, responsive, and reactive to user inputs,
providing a seamless experience.

• Automatic Device Discovery: The app should automatically discover and
pair with the matrix device to simplify the user experience.

• Caching Mechanisms: To minimize resource consumption on the constrained
matrix device, the app must implement caching strategies that reduce unnec-
essary data requests and processing overhead.

3.2 Raspberry Pi Software

This is the core software running on the Raspberry Pi, responsible for communicating
with the mobile app and controlling the LED matrix through hardware wiring.

• Efficiency: The software must be optimized for power and memory usage,
given the limited resources of the Raspberry Pi.

5

• Modularity and Customizability: The system should be modular, allowing
developers to easily create and add new widgets dynamically, without the need
of a re-compilation.

• Documentation: Clear and detailed documentation is essential to guide de-
velopers who wish to create or modify widgets, ensuring the platform’s ex-
tendibility.

3.3 Web Platform

This encompasses the REST API for the widget store, the project website, docu-
mentation, and the developer dashboard for uploading and managing widgets.

• Deployment: The web platform should be easily deployable on standard
cloud or on-premise environments.

• Design: The user interface should be intuitive and visually appealing to en-
hance user engagement and usability.

3.4 Additional Features

Beyond the core components, I thought of additional features to further enhance
the project:

• Simulator: Allow users to have a playground to try out things before buying
the actual hardware matrix (or to speed up the development of widgets)

• IDE: A dummy Desktop software to rapidly get into widget development,
providing a widget template and an easy connection to the matrix to preview
and debug widgets

• Cross-Platform Support: Ensure that the mobile app functions seamlessly
across multiple platforms (iOS, Android and Desktop)

• Extensibility: The project should be designed in a way that makes it easy
to integrate additional features or technologies (e.g., adding support for more
IoT protocols or other smart devices).

• Community Engagement: Actively engage with the open-source commu-
nity through forums, contribution guidelines, and issue tracking to foster col-
laboration and improve the project over time.

6

Chapter 4

Project architecture

4.1 Networking

When developing an IoT project, selecting an appropriate networking stack is a
crucial design consideration. In the case of Mosaico, this choice is particularly sig-
nificant due to the system’s diverse components and their interactions. It is essential
to evaluate communication protocols carefully to achieve an optimal balance among

7

performance requirements such as speed, resource efficiency, and functionality while
considering the limitations imposed by the hardware and specific use cases. Each
layer of the networking stack fulfills a distinct role, and a well-structured combi-
nation of protocols is necessary to ensure that the system operates efficiently and
remains scalable over time.

4.1.1 Constrained Application Protocol (COAP)

The primary communication protocol used in Mosaico between the mobile applica-
tion and the Raspberry Pi is the Constrained Application Protocol [SHB14] (COAP).
COAP is an Internet Engineering Task Force (IETF) standard designed explicitly
for constrained devices in IoT environments, and it proved to be a more suitable
alternative to previously considered options like raw TCP sockets and REST-based
servers.

Initially, the project employed a basic TCP socket for communication, providing
low-level control over data transfer between the mobile app and the Raspberry Pi.
While TCP sockets offer the advantage of simplicity and direct control, they lack the
higher-level abstractions and features that are essential for a scalable and maintain-
able architecture. Communication over raw sockets quickly became cumbersome and
error-prone due to the absence of structured methods for defining request/response
patterns, error handling, and state management.

In an attempt to overcome these limitations, the next iteration of the project moved
towards implementing a traditional REST server on the Raspberry Pi. REST, based
on HTTP, is a well-established protocol that provides an organized method for
communication through well-defined endpoints using methods like GET, POST,
PUT, and DELETE. It allowed for more structured interaction between the mobile
app and the Raspberry Pi, introducing features like query parameters, headers, and
status codes. However, while REST is robust, it is also relatively resource-heavy.
Running a fully-fledged REST server on the Raspberry Pi, a resource-constrained
device, proved to be overkill for the application’s needs. The overhead of managing
HTTP headers, complex request/response formats, and other RESTful conventions
unnecessarily taxed the Raspberry Pi’s limited processing power and memory.

The inefficiency of using REST on constrained hardware prompted a deeper ex-
ploration of alternatives, leading to the introduction of COAP, a protocol tailored
for constrained environments. My supervisor suggested COAP as a middle ground
between the simplicity of raw TCP and the complexity of REST, and it has since
become the core protocol for communication in Mosaico.

COAP is a specialized web transfer protocol designed for use in IoT environments,
offering a much lighter alternative to REST while retaining many of its familiar

8

semantics. COAP follows the same request-response model as REST, supporting
methods like GET, POST, PUT, and DELETE, and allows for interaction with
endpoints using URIs. However, COAP significantly reduces the protocol overhead
by employing a binary message format instead of the text-based HTTP. Additionally,
COAP runs over UDP instead of TCP, making it more lightweight and responsive,
especially in scenarios where reliable packet delivery is not critical for every message.

In practical terms, COAP provided Mosaico with a streamlined and efficient com-
munication stack that did not impose the same processing and memory overheads as
HTTP-based REST. It offered the right balance between simplicity and structure,
making it a perfect fit for the constrained environment of the Raspberry Pi. More-
over, COAP allows arbitrary payloads to be transmitted, enabling flexible commu-
nication patterns between the mobile app and the Raspberry Pi without introducing
unnecessary complexity.

4.1.2 Bluetooth Low Energy (BLE)

While COAP forms the backbone of the communication between the mobile app
and the Raspberry Pi, it relies on an IP-based protocol, which necessitates that the
Raspberry Pi be connected to a network and that its IP address is known to the
app. However, in practical scenarios, especially during initial setup, the Raspberry
Pi may not yet be connected to the internet or assigned an IP address. This posed
a critical challenge in ensuring a seamless and intuitive setup experience.

At first, I considered two potential solutions:

1. Configure the Raspberry Pi as a WiFi access point, allowing the mobile app
to communicate directly with it via a local connection.

2. Utilize a different communication method that does not rely on a router or
existing network connection.

The first approach, while feasible, was discarded because setting up the Raspberry
Pi as a WiFi access point seemed somewhat convoluted and less elegant. Instead, I
chose to implement a Bluetooth Low Energy (BLE) solution, which offered a more
straightforward and reliable way to handle the initial setup without requiring any
pre-existing network configuration.

In this BLE-based approach, the Raspberry Pi operates a GATT (Generic Attribute
Profile) server alongside the COAP server. The BLE server is primarily responsible
for three main tasks:

1. Discovery:The BLE server advertises a service that the mobile app can detect
during a BLE scan. This allows the app to discover the nearby Raspberry Pi

9

without needing its IP address or requiring internet connectivity.

2. Wi-Fi Configuration: Once connected via BLE, the mobile app can send
Wi-Fi credentials (SSID and password) to the Raspberry Pi, allowing it to join
a network. This eliminates the need for manual configuration, simplifying the
setup process significantly.

3. IP Address Retrieval: After the Raspberry Pi connects to the network, the
mobile app can request the local IP address through BLE. The Pi responds
with its IP, enabling the app to switch over to COAP for further communica-
tion.

This BLE implementation was a game-changer in the Mosaico setup process, al-
lowing users to quickly and easily connect the Raspberry Pi to their local network
without needing to interface with routers or manually configure network settings.
BLE’s low power and short-range capabilities made it ideal for this purpose, offering
a seamless handoff to COAP once the network connection was established.

This approach demonstrates how BLE can complement IP-based protocols like
COAP in IoT environments by handling the initial device discovery and configu-
ration stages, creating a more user-friendly and efficient setup experience.

4.1.3 GIT Integration for Widget Management

One of the core principles behind Mosaico is maintaining openness and accessibility
within the ecosystem. To ensure that all community-contributed widgets remain
open source—and to also minimize storage demands on the Mosaico server—the
download and distribution of widgets from the app store to the Raspberry Pi is
handled via public GIT repositories.

When developers create a widget, they can link their repository directly to the wid-
get’s entry on the Mosaico developer dashboard. This means that users downloading
the widget from the app store are pulling the most up-to-date version directly from
the developer’s public GIT repository.

This method not only promotes transparency by allowing anyone to browse the
widget’s source code but also simplifies maintenance for developers. When they
push new updates to their repository, the changes are automatically reflected in the
app store, allowing users to seamlessly update their installed widgets.

By leveraging GIT, Mosaico fosters a collaborative, open-source environment where
the community can share, improve, and build on each other’s work with minimal
friction.

10

4.1.4 REST

The REST protocol is another key component utilized in Mosaico, primarily for
communication between the mobile app and the Mosaico store API. As a widely-
adopted protocol, REST is an ideal choice for exchanging structured data in a
lightweight format like JSON. This ensures compatibility and ease of integration
between different components of the Mosaico ecosystem.

On the mobile app side, REST facilitates smooth interactions with the app store,
allowing users to browse, search for, and manage widgets. REST also serves the
Raspberry Pi software when a user installs a new widget. When an installation
request is made, the Pi retrieves essential information—such as the GIT repository
URL where the widget’s source code is hosted and other relevant metadata—via
the REST API. This data is then stored in a local indexed database for future use,
ensuring that Mosaico remains responsive even when offline.

The decision to use REST here is guided by the need for a reliable, feature-rich,
yet easy-to-use communication protocol. This setup allows Mosaico to seamlessly
integrate the app store with the Raspberry Pi, offering a smooth experience for both
developers and end users.

11

4.2 Widgets

Widgets are the central primitive of the Mosaico ecosystem. They can be thought
of as small applications that users can search for, install, and run locally on their
matrix through the app store. The Mosaico platform allows anyone to contribute
by developing widgets via the developer portal, requiring only a basic knowledge of
Python.

4.2.1 Widget Types

Mosaico widgets are categorized into three distinct types:

Static Widgets
These can be displayed on the
matrix immediately upon in-
stallation.

Configurable Widgets
These require additional config-
uration before they can be dis-
played.

Dynamic Widgets
These require real-time user in-
teraction while they are being
displayed.

4.2.2 Anatomy of a Widget

We stated what the widgets are and how they play a central role inside the Mosaico
ecosystem but how are they actually made? At their core, Mosaico widgets are
projects comprised of three primary components:

1. Widget Script: This is the core of the widget, written in Python, and is
responsible for rendering visuals on the matrix.

Simple example of a widget that displays "Hello World"

It retrieves its configuration from the config form

from mosaico import widget, config

Create text

text = widget.createText()

12

text.setText(config["text"])

text.setHexColor(config["color"])

text.setFont(config["font"])

text.moveTo(2,30)

No need to update each frame

def loop():

pass

2. Configuration Form: A JSON file that defines a form to be presented in the
client app, collecting input from the user if the widget requires configuration.

{

"form": {

"title": "Text",

"description": "Write custom text on the matrix.",

"fields": [

{

"text": {

"type": "string",

"label": "Text",

"required": true,

"placeholder": "Enter the text you want to display"

},

"color": {

"type": "color",

"label": "Color",

"required": true,

"placeholder": "Choose the color for the text"

},

"font": {

"type": "font",

"label": "Font",

"required": true,

"placeholder": "Select a font"

}

}

]

}

}

13

3. Metadata: This is a manifest file written in JSON, containing essential in-
formation for both the rendering engine (e.g., frame rate, whether the widget
is configurable) and the app store platform (e.g., widget name, description,
version).

{

"name": "Text",

"description": "Displays custom text on the matrix.",

"widget_version": "1.0",

"software_version": "1.0",

"author": "murkrow",

"fps": 20,

"configurable": true

}

14

Chapter 5

The Hardware

The first challenge I faced while designing the project was finding the best yet
cheapest hardware to power the system efficiently, ensuring it could handle the
required tasks without exceeding budget constraints, while also providing flexibility
and scalability for future upgrades.

Raspberry Pi Zero W Adafruit RGB Matrix Bonnet Standard 64x64 LED Matrix

5.1 The SBC

The most critical decision was selecting the processing unit, and I realized that I
needed a single-board computer (SBC) with the following characteristics:

• Sufficient computational power for handling both graphical rendering and net-
working operations

• Broad connectivity options, such as WiFi, Bluetooth, and GPIO pins for ex-
ternal peripherals

15

• Cost-effective, as affordability was a primary concern

• Highly customizable, to allow flexible development and integration with other
components

Initially, I considered two options: the Raspberry Pi and the ESP32, both
equipped with built-in Bluetooth and WiFi. The ESP32 is a fantastic microcon-
troller, known for its low power consumption and versatility in IoT applications.
It’s gaining immense popularity due to its ultra-low cost—priced as low as 5 eu-
ros—yet powerful enough to build impressive and innovative projects. However,
after evaluating my project’s requirements, I opted for the Raspberry Pi Zero W
due to its Linux support, which I believed would provide better flexibility and facili-
tate more advanced functionalities, such as running a full operating system, handling
networking tasks, and interacting with various software libraries.

I chose the Raspberry Pi Zero W for several reasons:

• Operating System Support: With a lightweight, CLI only Linux-based OS
like DietPi, I could leverage a vast ecosystem of software tools and libraries,
enabling more complex operations that would be harder to achieve on a mi-
crocontroller like the ESP32.

• Connectivity: The Raspberry Pi Zero W comes with built-in WiFi and
Bluetooth, making it ideal for connecting to the internet and integrating with
other wireless devices.

• Size and Power Consumption: Despite being a fully capable computer,
the Raspberry Pi Zero W is compact and consumes minimal power, which was
important for keeping the hardware cost-effective and portable.

• GPIO Pins: The GPIO pins offer a wide range of possibilities for connecting
sensors, LEDs, and other hardware components, making it easy to extend the
platform with additional functionality.

5.2 The Matrix

When it came to selecting the LED matrix, I was faced with a wide array of options,
each offering different resolutions, sizes, brands, and even color configurations. The
first decision I had to make was regarding the resolution, which would directly impact
the amount of information the display could render. The two primary options I
considered were a rectangular 64x32 matrix or a square 64x64 matrix. After careful
consideration, I ultimately chose the 64x64 matrix. This resolution struck the perfect
balance for my needs: it wasn’t too large, which kept the overall system compact

16

https://dietpi.com/

and cost-effective, yet it provided enough screen real estate to display a substantial
amount of information, ensuring that the display would be both functional and
visually appealing.

5.3 The Matrix Bonnet

Although it would have been possible to manually wire the Raspberry Pi directly
to the LED matrix, I decided to invest in the Matrix Bonnet for several reasons.
For just a few euros, the bonnet offered a much safer, more reliable, and easier
solution compared to manual wiring. It not only simplifies the connection process
but also reduces the risk of damaging the components due to incorrect wiring. The
Matrix Bonnet is specifically designed for use with Raspberry Pi boards, allowing for
seamless integration and a cleaner, more stable setup. It handles all the necessary
data and power connections without the hassle of complex wiring, which saved me
significant time and effort during development. The bonnet is just one of the many
incredible products developed by Adafruit Industries, which are designed to make
open-source DIY projects like this not only accessible but also well-documented and
enjoyable1.

5.4 Future Upgrades

While the current setup meets the initial goals of the project, I have plans for
several future upgrades to enhance both functionality and user experience. I am
considering integrating new sensor types, such as environmental sensors or cameras,
to add real-time data collection capabilities.

1https://www.adafruit.com

17

https://www.adafruit.com

18

Chapter 6

The Software

One of the main challenges in developing the software was selecting the right pro-
gramming language. As mentioned previously3.2, I needed the software to be both
high-performing and flexible. A compiled language was essential, as a scripting lan-
guage wouldn’t be able to handle the rendering of complex widgets, especially when
trying to push the limited power of the Raspberry Pi to its limits. This led to
the immediate exclusion of languages like Python and JavaScript. Although C and
C++ were obvious choices due to their efficiency, I initially sought something more
modern and sophisticated. However, after some experimentation, I found that the
.NET runtime wasn’t suitable for the Pi, and alternatives like Java and Rust didn’t
provide the same performance gains I achieved with C++ that in the end emerged
as the best option.

6.1 C++ Module

I began by creating a minimal prototype capable of turning individual pixels on and
off on the matrix. Fortunately, there was an excellent project on GitHub by Hzeller
1 that offered a solid C++ implementation, covering the fundamental functionality
I needed to get started, including:

• Direct manipulation of individual pixel colors

• Filling the entire matrix with color

• Creating an in-memory canvas to draw on while displaying something else on
the matrix, allowing for smooth transitions when swapping

1https://github.com/hzeller/rpi-rgb-led-matrix

19

https://github.com/hzeller/rpi-rgb-led-matrix

• Loading .bdf fonts and converting text to pixels

Given the goal of providing modularity, it made sense to define a class that each Wid-
get could inherit from, allowing them to implement their own methods. Each widget
is designed to encapsulate its internal workings, exposing only a single method: ren-
derNextFrame. Similar to a sprite in a game engine, the widget’s responsibility
is simply to determine where to paint pixels in the next frame—no more, no less.
Here’s an example of a widget that draws a simple rectangle:

class RectangleWidget : public Widget

{

int width, height, x, y;

Color color;

RectangleWidget(int width, int height, int x, int y, Color color)

{

this.width = width;

this.height = height;

this.x = x;

this.y = y;

this.color = color;

}

void renderNextFrame(Canvas *canvas)

{

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

canvas->SetPixel(x+i, y+j, color.r, color.g, color.b);

}

}

}

}

20

At this point my application is very simple but working and it looks something like
this:

int main(int argc, char *argv[]) {

Logger::logInfo("Mosaico is starting");

// Init matrix

RGBMatrix::Options matrix_options;

matrix_options.rows = 64;

matrix_options.cols = 64;

// Other config stuff

// Create matrix object

RGBMatrix *matrix = RGBMatrix::CreateFromOptions(matrix_options);

// Create a widget

Widget runningWidget = new RectangleWidget(w,h,x,y,color);

// Main loop

while (true) {

matrix->clear();

runningWidget->renderNextFrame(matrix);

// delay here to ensure 30Hz refresh rate

}

}

6.1.1 The Canvas

As you may have noticed, the renderNextFrame method accepts a Canvas object
as a parameter instead of directly manipulating the matrix. This approach aligns
with one of the SOLID principles: dependency inversion [Mar]. The widgets do
not need to know the specifics of the matrix; they interact with it as if it were a
simple canvas to paint on. This abstraction not only simplifies the widget code but
also allowed for greater flexibility as the project evolved.

6.1.2 Drawables

As I continued developing widgets, I found myself repeatedly writing similar code,
particularly for drawing shapes and text. This repetition led to the creation of
the Drawable concept—a base class that allowed me to store common shapes and
figures as objects. This abstraction made it easier to create and manipulate these
elements consistently across different widgets.

21

The Drawable class encapsulates shared functionality such as position, color, and
animation, providing a unified interface for handling visual elements. Here’s a sim-
plified structure of the Drawable class hierarchy:

22

At this point I had to edit the Widget class in order to correctly register and render
drawables.

class Widget {

private:

// Drawables to be rendered

std::vector<Drawable*> registeredDrawables;

public:

/// Add a new drawable to the widget drawable list

void registerDrawable(Drawable* drawable);

/// Remove a drawable from the widget drawable list

void unregisterDrawable(Drawable* drawable);

/// Clear all drawables

void clearDrawables();

void renderNextFrame(Canvas* canvas) {

// Call the inheriting widgets to do their job

render(canvas);

// Drawables should be now updated, draw them

for (Drawable* drawable : registeredDrawables) {

drawable->draw(canvas);

}

}

protected:

Widget();

/// Pure virtual method to be overridden inheriting widgets for rendering

virtual void render(Canvas* canvas) = 0;

};

This basic setup was enough to get things up and running, enabling me to create
more complex widgets.

6.1.3 Loading Widgets at Runtime

At this stage, I had a straightforward method for creating new widgets and drawing
shapes efficiently. If someone wanted to contribute to the project and add a new
widget, they would clone the project, create a new C++ class that inherits from
Widget, write the necessary code, compile the app again, and submit a pull request.

While this approach would work, it lacked flexibility. Every time a developer added
a new widget, users would need to update their software to access it. This wasn’t
ideal for a modular and dynamic system.

23

In a meeting with my supervisor, we explored the idea of treating widgets like ”plug-
ins” or encoded strings that the C++ program could decode in real time to display
dynamic content. Although this concept was easier said than done, the potential
excited me, and I immediately began experimenting with different approaches to
find the best solution.

Custom Encoding

My first thought was to create a custom encoding format for widgets, something akin
to JSON or YAML but optimized for my needs. I imagined a frame-based system
where I could specify what to render at each frame, perhaps even introducing a
simple mock language to handle loops and conditionals. However, this approach
proved too limiting and complex, especially for achieving the flexibility I desired. It
was soon discarded.

Lua vs. ChaiScript

I quickly realized that the only way to provide developers with the maximum flexibil-
ity for widget creation was to embed a Turing-complete scripting language. Drawing
from my limited knowledge of game development, I knew that popular games often
use Lua for custom levels and dynamic content creation 2.

Lua, being lightweight and having a C-based interpreter, seemed like a good candi-
date. I embedded Lua into my application, allowing it to interface with my C++
code. Initially, this appeared to be the solution, but several issues arose:

• Integration complexity: Mapping complex C++ types such as drawables, the
canvas, and various helper functions to Lua proved cumbersome and overcom-
plicated.

• Syntax dissatisfaction: I found Lua’s syntax unintuitive and less modern than
I wanted for widget development. I aimed for a scripting language that would
feel clean, readable, and enjoyable to write.

After further research, I discovered ChaiScript 3, a lightweight, JavaScript-like em-
bedded scripting language designed specifically for C++. Its integration was much
simpler than Lua, with easier mapping of types and classes. I liked how the imple-
mentation was progressing, and I finally got a working solution. Below is a demo
of the first widget written in ChaiScript, where I comment out parts of the code in
real-time, and they are rendered immediately on the matrix!

2https://create.roblox.com/docs/scripting
3https://chaiscript.com/

24

https://create.roblox.com/docs/scripting
https://chaiscript.com/

Creation of a Text drawable Creation of 4 rectangles

Set text in random colors in the loop() function Animate everything to fade away

This solution allowed the engine to interpret and render widgets in real-time, with
no recompilation required—an exciting milestone!

ChaiScript Limitations

While ChaiScript was a solid fit, I eventually realized its limitations:

• Language popularity: The language is mostly straightforward and easy to
use but is far from being popular. In fact, there are few resources online to
learn how to use it, and it’s not frequently updated.

• Language modularity: Chaiscript has no standard modules. While the
community has created a few for tasks such as math functions and JSON
deserialization, any additional functionality like a REST client or file manage-
ment requires wrapping C++ libraries manually.

Discovering Pybind11 and Python Integration

After further research, I discovered Pybind11 [W. 17], a library that enables seamless
embedding of the Python interpreter within C++ code. Despite my initial reserva-
tions about Python, its vast modularity—achieved through pip packages—and its

25

popularity made it an attractive alternative to ChaiScript.

With Pybind11, mapping C++ classes to Python objects is nearly effortless, requir-
ing only minimal class declarations. This allowed me to tap into Python’s full power
while maintaining the performance and flexibility of my C++ engine.

PYBIND11_EMBEDDED_MODULE(mosaico, m) {

// Bind color class

py::class_<Color>(m, "Color")

.def(py::init<int, int, int>());

// Binding the MatrixWidget class

py::class_<MatrixWidget>(m, "MatrixWidget")

.def("createRectangle", &MatrixWidget::createRectangle)

.def("createImage", &MatrixWidget::createPPM)

.def("createText", &MatrixWidget::createText)

.def("createCanvas", &MatrixWidget::createCanvas)

.def("remove", &MatrixWidget::unregisterDrawable)

.def("setPixel", &MatrixWidget::setPixel)

.def("clear", &MatrixWidget::clearDrawables);

// Bind the Drawable class

py::class_<Drawable>(m, "Drawable")

.def("moveTo", &Drawable::moveTo)

.def("translateBy", &Drawable::translateBy)

.def("translateXBy", &Drawable::translateXBy)

// a lot of other stuff

}

26

The last thing to do is to create a DynamicWidget class that will inherit from
Widget and will invoke the python script to get a new canvas each frame or to
register drawables:

class DynamicWidget : public MatrixWidget {

public:

DynamicWidget(std::string widgetPath, std::string configurationPath){

// Get files from path and parse metadata

if (!initializePaths() || !readMetadata()) {

validWidget = false;

Logger::logError("Widget initialization failed");

} else {

validWidget = true;

Logger::logDebug("Widget loaded successfully");

}

// Register C++ -> Python bindings

bindObjectsToPython();

// Load the widget script and execute everything except the loop function

py::exec(widgetScriptString);

}

void renderNextFrame(Canvas* canvas) override {

try {

// Execute the loop function

py::exec("loop()");

} catch (const py::error_already_set &e) {

Logger::logError("Error while executing loop function: " + std::string(e.what()));

validWidget = false;

canvas->Fill(RED_COLOR);

}

}

}

27

6.1.4 Canvas buffer

The prototype now seems quite ready but there is a single problem left: every
widget, even if as far as it is concerned is writing on a Canvas, it is still using the
real matrix under the hood to render pixels, this can cause problems for scenarios
like this:

// Main loop

while (true) {

matrix->clear();

// Matrix is full black here

veryComplexWidget->renderNextFrame(matrix); // will write pixel by pixel

// Content is now displayed

}

It is obvious that writing single pixels directly on a matrix is a problem for widgets
that requires a bit of computation between pixel and pixel and will result in image
flickering. Luckily the library I used provided me two useful methods:

// Create a new buffer to be used for multi-buffering. The returned new

// Buffer implements a Canvas with the same size of thie RGBMatrix.

// You can use it to draw off-screen on it, then swap it with the active

// buffer using SwapOnVSync(). That would be classic double-buffering.

//

// You can also create as many FrameCanvas as you like and for instance use

// them to pre-fill scenes of an animation for fast playback later.

FrameCanvas *CreateFrameCanvas();

// This method waits to the next VSync and swaps the active buffer with the

// supplied buffer. The formerly active buffer is returned.

FrameCanvas *SwapOnVSync(FrameCanvas *other, unsigned framerate_fraction = 1);

By incorporating these methods into the code, I effectively resolved the flickering
issue. This approach enabled smooth rendering by leveraging double-buffering, en-
suring that complex widgets could perform the necessary computations without
directly writing pixels to the matrix, thus eliminating visual artifacts.

28

I then decided to separate a bit of concerns and I started working on a CanvasBuffer
class. Since my intent was not to write on the real matrix anymore but to create a
set of canvas to swap on the matrix at some point in time, I also seized the occasion
to make these canvases even more generic by giving them the possibility to be of
arbitrary sizes, they still needed to be smaller than the hardware matrix itself but
they could occupy for example the bottom half of the screen, the top left quarter
etc. I called this class CanvasLayer and it looks like this:

/// A CanvasLayer is a layer that can be painted on by a widget.

/// Allows to create composite widgets to be displayed on the matrix.

/// Can be narrower or shorter than the matrix.

class CanvasLayer : public Canvas {

private:

// Pixels are stored in a list to allow for

// easy iteration and manipulation

std::list<Pixel> pixels;

public:

CanvasLayerPosition pos;

CanvasLayer(CanvasLayerPosition position = CanvasLayerPosition::FULL);

~CanvasLayer();

// Will actually write pixels on another canvas (even the matrix)

void paintOntoCanvas(Canvas *canvas, int xOff = 0, int yOff = 0);

int width() const;

int height() const;

void Fill(Color color);

void SetPixel(int x, int y, Color color);

void Clear();

CanvasLayer *Clone();

void setBorder(Color color);

void setPadding(int padding);

int getPixelCount();

};

29

As you may notice, the CanvasLayer class simply implements the Canvas interface.
The principle of dependency inversion mentioned before 6.1.2 allowed me to do this
upgrade while being completely transparent to objects that worked with a Canvas.

This is what the CanvasBuffer class looked like:

/// This class is responsible for buffering the canvas frames

/// This is useful when you want to render multiple widgets on the matrix and be able to show them all at once

/// The buffer will be able to swap the frames on the matrix without flickering

class CanvasBuffer {

private:

MatrixDevice *matrix;

std::list<Canvas*> buffer;

public:

CanvasBuffer(MatrixDevice *matrix, int bufferSize) {

this->matrix = matrix;

for (int i = 0; i < bufferSize; i++) {

buffer.push_back(matrix->CreateFrameCanvas());

}

}

// This can be called multiple time for the current frame

// Is basically used to compose the final composite frame

// to later swap on the matrix using loadNextFrameOnMatrix()

void paintPartialLayerOnCurrentFrame(CanvasLayer *canvasLayer) {

auto *currentFrame = buffer.front();

canvasLayer->paintOntoCanvas(currentFrame);

}

// Uses the frame crafted with the method above to swap it on actual matrix

void loadNextFrameOnMatrix() {

// Swap current frame on matrix

auto *currentFrame = buffer.front();

buffer.pop_front();

matrix->SwapFrameCanvas(currentFrame);

buffer.push_back(currentFrame);

// Prepare next frame

auto *nextFrame = buffer.front();

nextFrame->Clear();

}

};

30

This is the high-level view of the whole final rendering software:

31

6.2 Python Module

Initially, my intention was to develop the entire software in C++. However, it
became evident that a significant amount of time was being wasted on implementing
basic functionalities, such as making remote API calls, deserializing JSON objects,
or managing simple data in a local SQLite database.

As I have grown accustomed to working with higher-level abstractions that facilitate
productivity and enable the maintenance of clean, organized codebases, it became
apparent that achieving similar levels of efficiency in C++—a language not primarily
designed for such tasks—was considerably more challenging.

The complexity escalated when I attempted to set up a BLE GATT (Bluetooth
Low Energy Generic Attribute) server in C++. I discovered that no high-level
abstractions existed for this purpose in any of the available C++ libraries. In
contrast, I found an easy-to-use and powerful Python library called Bless4.

This realization led me to a pivotal decision: to shift the networking and data
management logic from C++ to Python, thereby leveraging Python’s simplicity
and robust ecosystem. This move allowed the C++ module to focus on a single,
well-defined responsibility: rendering pixels and handling graphics efficiently.

The Python module is designed to serve three primary purposes:

• Enable auto-discovery of the matrix for the client application via BLE.

• Establish a lightweight LAN COAP server to receive and process commands
from the client app.

• Manage persistent data, such as user-specified widget configurations using a
simple relational SQLite database.

4https://pypi.org/project/bless/

32

https://pypi.org/project/bless/

To facilitate communication between the C++ and Python modules, I implemented
a Unix socket, allowing seamless inter-process communication between the two lan-
guages.

This is a complete specification of the possible commands that the COAP server
can receive:

This is an example interaction between the user, the app, the Python module and
the C++ module:

33

6.3 Cross Compiler

One of the more challenging aspects of developing a complex C++ application is the
creation of a makefile that accurately links all required modules and libraries. This
challenge becomes even more pronounced when targeting a different architecture, as
in the case of compiling for the ARMv6 CPU of the Raspberry Pi Zero W.

Compiling directly on the Raspberry Pi proved impractical, as each compilation
took between 10 to 20 minutes to generate an executable—an unacceptable delay
for iterative development.

After extensive experimentation, I successfully identified a working cross-compilation
toolchain tailored to the ARMv6 architecture 5. This discovery significantly opti-
mized the build process, reducing compile times to less than a minute. To streamline
the development workflow, I created a Bash script that automates the compilation,
establishes an SSH connection to the Raspberry Pi, and uses rclone to swiftly trans-
fer the build artifacts to the device before launching the application.

Though this setup took considerable time to establish, it drastically accelerated the
development process, allowing for rapid testing and debugging on the Raspberry
Pi.

5https://github.com/tttapa/docker-arm-cross-toolchain/

34

https://github.com/tttapa/docker-arm-cross-toolchain/

6.4 Simulators

Web simulator X11 windowed simulator Real matrix

Even with cross-compilers meticulously configured, the process of compiling and
syncing files continued to be a significant drain on development time. Furthermore,
given that I am frequently away from home, I sought a solution that would allow
me to work on the project remotely, without the need for the physical hardware.
Clearly, carrying the matrix and Raspberry Pi with me at all times was not a
practical option. This led me to explore the idea of developing a matrix simulator
from scratch.

Initially, the task appeared daunting, as I anticipated that a substantial amount of
time and effort would be required to implement such a simulator. However, once
again, the design principles employed throughout the application—particularly the
use of dependency inversion—proved to be immensely beneficial.

One of the key architectural decisions in the project was to ensure that, aside from
the application’s entry point, no other modules would have direct knowledge of the
matrix hardware. Instead, all modules interact with a generalized abstraction—a
Canvas interface. This meant that, in order to implement the simulator, I only
needed to create a new class that conformed to the Canvas interface, and dynami-
cally switch between the actual hardware matrix and the simulator based on specific
conditions.

These conditions were introduced through a pre-processor argument passed during
the compilation process, enabling the system to determine whether to instantiate
the actual hardware or the simulated matrix. Subsequently, I modified the main
application logic to utilize a MatrixBuilder class, which abstracts the creation of the
matrix, making it agnostic to the specific implementation (hardware or simulation).
The MatrixBuilder class is a simple factory that returns a MatrixDevice object,

35

based on the conditions provided during compilation.

class MatrixBuilder

{

public:

static MatrixDevice* build()

{

#if SIMULATION

return new X11Matrix();

#elif WEB

return new MatrixStream();

#else

return new HardwareMatrix();

#endif

}

};

The output of the MatrixBuilder is a MatrixDevice object, which is a custom class
I developed to encapsulate the various matrix implementations. This wrapping was
necessary because the matrix class provided by the library could not be directly
modified. Thus, I introduced a custom class to act as an intermediary, wrapping
the existing library class.

class HardwareMatrix : public MatrixDevice {

private: RGBMatrix *matrix;

public:

HardwareMatrix() {

// Configure the RGBMatrix

RGBMatrix::Options matrix_options;

rgb_matrix::RuntimeOptions runtime_opt;

// Create the RGBMatrix object

RGBMatrix *matrix = RGBMatrix::CreateFromOptions(matrix_options, runtime_opt);

this->matrix = matrix;

}

Canvas* CreateFrameCanvas()

{

return matrix->CreateFrameCanvas();

}

void SwapFrameCanvas(Canvas *canvas){

matrix->SwapOnVSync((FrameCanvas*)canvas);

}

This design provided the necessary flexibility, allowing me to switch between dif-

36

ferent matrix implementations without significant modifications to the underlying
logic. The use of a wrapper class ensured compatibility with the existing library
while offering the opportunity to extend functionality when necessary.

6.4.1 The X11 Simulator

The X11-based simulator serves as a graphical approximation of the actual matrix
hardware. By leveraging the X11 windowing system, it simulates the behavior of
the matrix display in a window on the desktop environment, replicating the visual
effects and behavior of the matrix as a 1:1 replica of the original. This is the actual
simulator I used while developing the application since is the better performing one.

6.4.2 The Web Simulator

The web-based simulator provides a more accessible, platform-independent alter-
native, allowing users to interact with the system remotely. It is composed of two
main components: a C++ module responsible for rendering frames, which serializes
them as an array of RGB values and transmits them through a UNIX socket, and
a Python server built with Flask. The Flask server receives the data, processes it,
and transmits it in real-time via WebSockets to an HTML page, also served through
Flask, where the live stream is rendered for users to interact with.

This design offers real-time simulation capabilities and enables users to experience
the system without the need for physical hardware. A publicly accessible instance
of this simulator has been deployed to allow users to test Mosaico, available at
https://matrix.murkrowdev.org/.

37

https://matrix.murkrowdev.org/

38

Chapter 7

The Client

Installed Widgets Matrix Control Slideshow Editor Widget Store

Creating a companion client for my project was a relatively straightforward task,
given my extensive experience as a mobile app developer. However, the distinctive
element of this particular app is the use of the Flutter framework. Having worked
with both native and web development technologies, I was intrigued by Flutter’s po-
tential, especially since it is a well-regarded, Google-supported framework designed
for cross-platform development. Flutter allows developers to create applications for
various platforms with minimal additional effort, using a single codebase.

39

7.1 Showcase

7.1.1 Home

Upon launching the application, the user is greeted by a tabbed interface that divides
the app into two primary sections: the Installed Widgets page and the Slideshows
page. A floating action button located at the center of the bottom navigation
bar changes its function depending on the active tab. When viewing the Installed
Widgets page, the button displays a shopping bag icon, which opens the widget
store when clicked. On the Slideshows page, the button instead shows a ”plus”
icon, which initiates the creation of a new slideshow.

Widgets Tab Slideshows Tab

7.1.2 Matrix Control

At the top of the screen, a sliding panel displays essential information such as the
connection status and the currently active widget. Pulling the panel down reveals
further details about the matrix connection, including additional configuration op-
tions. Users can perform actions such as stopping playback or manually inputting
the matrix’s address.

Connecting to Matrix Matrix Connected Matrix Not Reachable

40

7.1.3 Installed Widgets

This is the default screen presented when the app launches. It lists all the widgets
currently installed on the matrix, which have been downloaded from the store. Users
can activate a widget by simply tapping on it. If the widget does not require
further configuration, it will be displayed immediately on the matrix. However, if
it is configurable, a configuration selector will prompt the user to choose a specific
configuration before activating the widget.

No Widgets Installed Installed Widget Actions Configuration Selector

41

7.1.4 Widget Store

The widget store provides users with a space to discover new widgets. A main page
lists all available widgets, each represented by a tile. By clicking on a tile, users can
view more detailed information about the widget, including an image carousel, a
rich markdown description, and details about the widget’s author and source code.
Notably, all widgets in the store must be uploaded to a publicly accessible repository,
ensuring that the ecosystem remains entirely open-source.

Store Overview Installing a Widget Widget Details

7.1.5 Slideshows

Slideshows are sequences of widgets displayed consecutively on the matrix. This
feature is particularly useful when users prefer to cycle through multiple widgets
rather than display a single one continuously.

Creating a new slideshow is intuitive. Users are presented with cards containing two
fields: a widget selector and a duration field where they can input the display time
in seconds. If the selected widget is configurable, a third field will appear, allowing
users to select a specific configuration for that item.

42

A floating action button in the bottom-right corner expands to provide three actions:

• Plus Icon: Adds a new slideshow item card.

• Save Icon: Saves the current slideshow or creates a new one.

• Play Icon: Saves and immediately plays the current slideshow on the matrix.

Slideshows Page Create a New Slideshow Edit an Existing Slideshow

7.2 Configuration Generator

Configurable widgets 4.2.1 require a mechanism to collect data from users in order
to configure the widget appropriately. Developers can create a configuration file in
JSON format, which will be parsed by the configuration generator to dynamically
create a form. This form allows the user to input the necessary data to configure
the widget.

This design decision was crucial to ensuring that developers could create new wid-
gets without needing to concern themselves with user interface design, while also

43

maintaining consistency in the configuration process across widgets from different
developers.

7.2.1 Example

A simple example of a configuration file to display a list of items is shown below:

{

"form": {

"title": "Shopping List",

"description": "Configure your

widget here",

"fields": [

{

"name": {

"type": "string",

"label": "Name",

"required": true,

"placeholder": "Enter the

name of this list"

},

"color": {

"type": "color",

"label": "Color",

"required": true,

"placeholder": "Choose the

color of the title"

},

"items": {

"type": "string[]",

"label": "Shopping items",

"required": true,

"placeholder": "Insert your

items here"

}

}

]

}

}
Figure 7.1: Client rendered form

44

7.2.2 Result of the Configuration

The data collected from the user through the configuration form is saved in a JSON
file. This file is parsed by the C++ engine when the specific widget with that
configuration is loaded. Accessing the data from the configuration is straightforward
in Python, as illustrated by the following example:

config contains all the data from the configuration

from mosaico import widget, config

Create title

text = widget.createText()

text.setText(config["name"])

text.setHexColor(config["color"])

text.moveTo(2,0)

text.setFont("9x18")

Create items

items = []

bullets = []

for i in range(0, len(config["items"])):

Create bullet

bullets.append(widget.createRectangle())

bullets[i].setSize(2,2)

bullets[i].moveTo(4,16)

bullets[i].translateYBy((i*7) + 5)

bullets[i].setHexColor(config["color"])

Create entry

items.append(widget.createText())

items[i].setFont("4x6")

items[i].setText(config["items"][i])

items[i].moveTo(8,14)

items[i].translateYBy((i*7) + 5)

def loop():

pass

Figure 7.2: Result on ma-
trix

7.2.3 Assets Management

Each widget configuration is stored as a .tar.gz archive, which is essentially a
compressed file that contains all the data submitted by the user. This compression
facilitates faster transfers. Inside the archive, there is a .json file that holds the
configuration details, as well as any additional binary files (e.g., images or other

45

assets) uploaded by the user. A helper function is available to easily retrieve the
path to these assets within the archive, simplifying access to the resources when
needed.

7.2.4 Field Attributes

All fields share the following common attributes, regardless of their type:

• Name (required): The unique identifier for the field within the configuration
file. Note: You cannot use the same name for different fields

• Type (required): Specifies the data type of the field. The type can be one
of the following:

– string: A simple text field.

– string[]: An array of strings.

– color: A color picker field.

– image: An image upload field. Special Attributes:

∗ Dimensions: Specifies the image dimensions, as an object containing:

· width: The image width in pixels.

· height: The image height in pixels.

– select: An font selector between one of the available. Special At-
tributes:

∗ options: An array of strings, one will be selected by the user

– font: An font selector between one of the available.

• Label: The label displayed to the user in the configuration form to help them
understand the purpose of the field.

• Required: A boolean value that indicates whether the field is mandatory.

• Placeholder: A placeholder text shown when the field is empty, providing
guidance to the user about what to enter.

7.2.5 Multiple configurations

Obviously it would not make sense to create a configuration for one use only, once a
configuration for a specific widget is created and user gave it a name, it will always

46

be possible for them to list all the created, delete them or edit them using the
appropriate

7.3 Device Discovery

One of the essential features of the application is the automatic discovery mechanism,
enabling seamless connectivity to a matrix device without requiring complex setup or
manual configuration. The goal is to ensure that the application can autonomously
identify and connect to any available matrix nearby.

Communication with the matrix device is handled through CoAP. However, in order
to initiate this communication, the application must first obtain the IP address of
the Raspberry Pi hosting the matrix. To address this challenge, a BLE GATT server
is set up alongside the CoAP server. The GATT server exposes a service named
Mosaico, identified by a constant UUID, which the application can use to recognize
the presence of a matrix. A simple BLE scan allows the application to detect this
service and establish a connection.

The following algorithm outlines the process for automatically discovering and con-
necting to a matrix:

Algorithm 1 Device discovery

Ensure: Returns the matrix IP if successfully pinged, or null if all attempts fail
prefs← get preferences instance
lastKnownMatrixIp← get stored value from prefs
if lastKnownMatrixIp ̸= null and pingMatrix(lastKnownMatrixIp) then

return lastKnownMatrixIp
end if
if not BLEDeviceConnected() then

searchAndConnectBleDevice() ▷ Attempt BLE connection
end if
ensureBleDeviceConnected()

ipFromBle← matrixBleService.getMatrixIp()

if ipFromBle ̸= null and pingMatrix(ipFromBle) then
prefs.setString(’matrixIp’, ipFromBle)

return ipFromBle
end if
return null

If the automatic discovery process is unsuccessful, users can manually set the matrix
IP address via the Set Manual Matrix Address option in the device control panel,

47

allowing them to connect to the matrix manually.

7.4 Caching

The constrained capabilities of the Raspberry Pi Zero W represent the primary
limitation in the Mosaico ecosystem. While its core function is to render dynamic
content on the LED matrix, it also operates as both a COAP and BLE server, facili-
tating communication with the mobile application. The dual responsibilities placed
on the Pi necessitate careful management of system resources to avoid overburdening
the device, particularly when handling frequent network requests.

To mitigate unnecessary strain on the Raspberry Pi, Mosaico employs efficient
caching mechanisms within the mobile client. This reduces redundant calls to the
COAP server, especially for frequently accessed data such as installed widgets, cre-
ated slideshows, and widget configurations. The caching strategy is straightforward
yet effective: commonly requested services are retrieved once, typically when users
initially open the app or navigate to specific sections that trigger those requests.
Subsequent interactions with these services do not require re-querying the COAP
server unless there is a change, such as the installation of a new widget. In such
cases, the cache is intelligently updated in memory without fully refreshing the entire
dataset.

The use of caching not only improves the user experience by speeding up interactions
but also reduces the overall communication overhead on the Raspberry Pi, ensuring
that its limited resources are efficiently utilized. By implementing an in-memory
cache for frequently accessed data, Mosaico reduces the need for repetitive data
fetching, which would otherwise place undue load on the system. This approach
ensures the platform remains responsive, even on the resource-constrained Raspberry
Pi Zero W.

From a broader perspective, this resource-conscious design exemplifies how careful
consideration of hardware limitations can be balanced with software optimizations to
maintain system performance. By integrating caching strategies, Mosaico achieves a
more scalable solution while prolonging the lifespan and effectiveness of the hardware
within the IOT ecosystem.

7.5 Design Patterns

In the mobile application development of Mosaico, the BLoC (Business Logic
Component) design pattern was utilized to manage and maintain the app’s state
in a scalable and organized manner. The separation of concerns provided by BLoC

48

ensures that the UI reacts to changes in the app’s state efficiently, promoting cleaner,
testable, and maintainable code.

BLoC acts as the intermediary between the UI and the business logic of the appli-
cation, where each BLoC listens to events and emits corresponding states. This
makes it ideal for applications where user interactions and changes in data need to
be reflected dynamically across different parts of the UI.

7.5.1 BLoC for Installed Widgets Feature

An excellent example of BLoC in action can be seen in the Installed Widgets
Page. This page showcases widgets that users have installed on their LED matrix
devices. Using a combination of BlocListeners and BlocBuilders, the UI dynam-
ically updates based on external events such as matrix connections or widget store
interactions.

return MultiBlocListener(

listeners: [

BlocListener<MatrixDeviceBloc, MatrixDeviceState>(

listener: (context, state) {

// Only refresh installed widgets if connected to a new matrix

if (state is MatrixDeviceConnectedState && state.newConnection) {

context.read<MosaicoInstalledWidgetsBloc>()

.add(LoadInstalledWidgetsEvent());

}

},

),

BlocListener<MosaicoStoreBloc, MosaicoStoreState>(

listener: (context, state) {

// Refresh when new widgets are available from the store

if (state is MosaicoStoreLoadedState) {

context.read<MosaicoInstalledWidgetsBloc>()

.add(LoadInstalledWidgetsEvent());

}

},

),

],

child: BlocBuilder<MosaicoInstalledWidgetsBloc, MosaicoInstalledWidgetsState>(

builder: (context, state) {

// Handle different states (Loading, Loaded, Error)

// and provide the appropriate UI response.

// Loading

49

if (state is MosaicoInstalledWidgetsLoading) {

return Center(child: Center(child: LoadingMatrix()));

}

// Loaded

if (state is MosaicoInstalledWidgetsLoaded) {

if (state.installedWidgets.isEmpty) {

return const EmptyPlaceholder(

hintText: "No widgets? Install some from the store!");

}

// Show installed widgets tiles

}

// Error

if (state is MosaicoInstalledWidgetsError) {

return EmptyPlaceholder(

hintText: state.message,

onRetry: () {

context

.read<MosaicoInstalledWidgetsBloc>()

.add(LoadInstalledWidgetsEvent());

},

);

}

// Not connected?

return const EmptyPlaceholder(

hintText: "Connect to matrix to see installed widgets");

},

),

);

In this code, the InstalledWidgetsPage listens for events from multiple BLoCs:

• MatrixDeviceBloc triggers updates when a new connection is made to an
LED matrix device.

• MosaicoStoreBloc listens for changes in the widget store, refreshing the
installed widgets list when new widgets are available for installation.

This dynamic reaction between BLoCs allows different parts of the app to remain in
sync, minimizing redundant requests and ensuring that data is updated only when
necessary.

50

7.5.2 BLoC for Widget Store Interactions

In the Mosaico Store, when a user installs a new widget, the MosaicoStoreBloc
processes this event by calling the appropriate repository to handle the widget in-
stallation. Once completed, the store emits an updated state that is listened to by
other components, like the Installed Widgets Page, so the newly installed widget
appears without additional user action.

This interaction emphasizes the power of BLoC to coordinate state changes across
different sections of the app. When a new widget is installed, the state is updated
across all relevant UI components in real-time.

By employing the BLoC pattern, the app benefits from a well-structured and re-
sponsive design where state changes in one area, such as the widget store, can im-
mediately reflect in another, like the list of installed widgets. This approach reduces
unnecessary API calls and ensures the app provides an efficient user experience.

This section highlights the practical advantages of the BLoC pattern, reinforcing its
role in handling complex state management tasks in a clean and modular way.

51

52

Chapter 8

The Cloud

For the back-end side of my application, I chose a tech stack that I thoroughly enjoy
working with: Laravel, MariaDB, and Filament, all fully dockerized and running on
an Ubuntu VM hosted on my personal home server.

• Laravel: As a PHP framework, Laravel offers a robust and elegant solution
for building scalable, secure, and maintainable back-end applications. It pro-
vides built-in features like routing, ORM (Eloquent), middleware, and more,
allowing me to focus on the business logic of Mosaico rather than boilerplate
code.

• MariaDB: For the database, I selected MariaDB because it is a community-
developed fork of MySQL and provides excellent performance, scalability, and
open-source benefits. Its compatibility with MySQL made it a straightforward
choice for integration with Laravel’s Eloquent ORM.

• Filament: As an admin panel generator, Filament enables me to create highly
interactive admin interfaces with minimal effort. It integrates seamlessly with
Laravel, allowing me to manage widgets and user data from a sleek UI while
offering powerful tools like forms, tables, and resource management.

• Dockerization: To ensure the application is easy to maintain and deploy, I
containerized the entire stack using Docker. Dockerization provides isolation
for each component and eliminates the ”it works on my machine” problem by
creating consistent environments across development and production.

• Ubuntu VM: The server runs on an Ubuntu virtual machine hosted on my
personal home server. This setup gives me full control over the deployment
process and allows for flexibility in configuring and maintaining the environ-
ment.

53

This stack not only aligns with my technical preferences but also ensures that Mo-
saico’s back-end is scalable, flexible, and easy to manage, making it a solid founda-
tion for the future development of the platform.

8.1 Widget manager

The Widget Manager serves as the portal through which developers can contribute
their widgets to the community by uploading them to the store. To streamline the
onboarding process, account creation and widget submission are facilitated by a
simple ”Sign in with GitHub” option, requiring only a single tap to initiate. This
reduces friction and ensures ease of access for new contributors.

Upon signing in, developers gain immediate access to their dashboard, where they
can view a list of previously developed widgets, create new ones, or modify existing
submissions.

Login with GitHub Developer’s Widgets

The user interface has been designed to be intuitive and accessible, ensuring that
developers can easily manage their contributions. Developers are required to provide
the following information for each widget submission:

• Name of the widget

• An icon representing the widget

• A short tagline or description, displayed beneath the widget’s name

• A comprehensive markdown description, which will appear on the store page

• A series of images, presented in a carousel on the store page

• A link to a valid Git repository, from which the widget can be downloaded

Once all necessary fields have been completed and the developer saves their submis-
sion, the widget becomes immediately available to the community.

54

Edit Widget Edit Widget - Continued

8.2 API

In the Laravel project, a straightforward REST API is implemented, offering a user-
friendly interface for interacting with the Mosaico app store. The API endpoints
are designed to be simple and intuitive:

8.2.1 Rate Limiter

Given that the only authenticated section of the application is the developer’s dash-
board, the API remains open for public access, allowing users to browse and utilize
its features. However, this accessibility introduces potential vulnerabilities, such as
Distributed Denial of Service (DDoS) attacks or spam requests. To mitigate these
risks and protect the application’s logic as well as its database from excessive strain,
a rate limiting mechanism has been implemented. This mechanism restricts the
number of incoming requests from a specific IP address, effectively blocking those
that exhibit suspicious behavior.

55

8.3 Landing Page

A well-designed and visually appealing landing page is crucial as the introductory
interface for my project. To achieve this, I focused on creating a catchy, minimalistic,
and attractive design that effectively captures the essence of Mosaico while ensuring
user engagement. The aesthetic appeal of the landing page not only draws users
in but also facilitates intuitive navigation, enabling visitors to quickly locate the
information and features they seek.

The website can be accessed at https://mosaico.murkrowdev.org. From this cen-
tral hub, users can explore all the web-based functionalities of the application. This
includes access to the developer dashboard, which allows for seamless interaction
with the platform’s development tools, as well as links to the project’s GitHub
repository, where users can contribute to or modify the source code. Additionally,
comprehensive documentation is provided, guiding users through the various fea-
tures and capabilities of Mosaico. This multi-faceted approach ensures that users
have all the necessary resources at their fingertips, fostering an environment of col-
laboration and innovation within the community.

Call to action Hardware components

56

https://mosaico.murkrowdev.org

Widgets Widgets showcase

The ecosystem FAQ

57

8.4 Documentation

When developing an open-source project, the importance of well-structured and
comprehensive documentation cannot be overstated. Effective documentation serves
as a vital resource for users and developers alike, providing essential guidance and
facilitating engagement with the project. For this purpose, I utilized MkDocs1,
a powerful static site generator that enables the creation of documentation using
Markdown. This tool allows for the automatic generation of a well-formatted and
organized static HTML website, which is readily deployable within my main Laravel
project.

The documentation is accessible at the following URL: https://mosaico.murkrowdev.
org/docs. It provides a general overview of the Mosaico project, outlining its ob-
jectives and features. However, the primary focus of the documentation is directed
towards widget developers aspiring to create and publish widgets in the app store.
By offering detailed instructions, examples, and best practices, the documentation
aims to empower developers to effectively engage with the Mosaico ecosystem, fos-
tering creativity and collaboration within the community.

1https://www.mkdocs.org/

58

https://mosaico.murkrowdev.org/docs
https://mosaico.murkrowdev.org/docs
https://www.mkdocs.org/

Chapter 9

Testing and deployment

9.1 Benchmarks

The final version of the Mosaico software has been tested for performance on the
actual Raspberry Pi hardware, focusing on both CPU and memory usage. These
tests yielded satisfactory results, especially considering the hardware limitations of
the Raspberry Pi Zero.

9.1.1 CPU Usage

The CPU performance was measured across various scenarios, ranging from idle
states (with no widgets displayed) to the execution of the most complex widget
available. As shown in the figure below, the CPU usage started at approximately
60% when no widgets were active, increasing to nearly 80% when displaying the
most demanding widget.

59

CPU performance on a Raspberry Pi Zero (Single Core 1GHz)

These results are particularly noteworthy considering the Raspberry Pi Zero operates
with a single-core 1GHz processor. Despite these hardware constraints, Mosaico
demonstrates a considerable degree of efficiency, with room for further optimization.
This provides confidence that even more complex widgets can be handled with only
marginal increases in CPU load.

9.1.2 Memory Usage

Memory consumption was another key area of focus during performance testing. The
use of a lightweight operating system, such as DietPi, proved to be a wise choice, as
it minimized the overall system resource usage while maintaining sufficient memory
for the app’s modules to function efficiently.

60

I achieved excellent results
even regarding RAM us-
age, with both my app
modules occupiyng only
about 15% of the total sys-
tem memory while DietPI
allowed to run using only
about 17% of total system
usage. Remember that
the Raspberry Pi Zero has
only about 477Mb of us-
able memory so my soft-
ware used about 70Mb of
memory. System RAM utilization

9.1.3 Conclusion

The performance benchmarks highlight that Mosaico runs efficiently on a minimal
system setup like the Raspberry Pi Zero, utilizing only a modest portion of CPU
and memory resources. This efficiency allows for a seamless user experience without
overburdening the hardware, and it opens the door for future optimizations that
can further improve performance. These findings underscore the app’s capability to
run effectively even on low-powered devices, making it accessible to a wider range
of users.

61

9.2 Latency

9.2.1 Protocol Performance: CoAP

In assessing the overall responsiveness and snappiness of the Mosaico app, one of
the primary metrics evaluated was the performance of the Constrained Application
Protocol (CoAP), which is the key communication protocol used to control the
matrix features. Given the constrained environment in which the system operates,
particularly on a Raspberry Pi Zero, it was crucial to determine how well CoAP
could handle request processing and data transfer between system components.

The results of the testing were highly satisfactory. As predicted, CoAP demon-
strated excellent performance, with the majority of basic requests—such as acti-
vating, stopping, or switching widgets—being processed in approximately 100 mil-
liseconds. This level of efficiency is particularly impressive when considering the
hardware limitations. The minimal latency observed during the testing indicates
that CoAP is well-suited for real-time interactions between the app and the matrix
device, ensuring a smooth user experience even under constrained conditions.

One notable exception to the generally fast performance was the installation of new
widgets from the app’s store, which took approximately 8 seconds. This longer
duration can be attributed to two main factors: the need to download files from an
external Git repository and the relatively slow storage access speeds of the Raspberry
Pi Zero. While this delay is understandable, particularly in a resource-constrained
environment, it highlights an area for potential optimization in future iterations of
the system.

CoAP proved to be an efficient and reliable protocol for managing communication
between the app and the matrix device, delivering swift responses in most use cases
while leaving room for improvement in more resource-intensive operations like widget
installations.

62

9.3 User Feedback

User feedback has played a pivotal role in refining Mosaico, especially given the
project’s complexity and its reliance on hardware that might not be readily available
to all testers. To address this, I developed web simulators 6.4.2 that allowed users
to interact with the app in a virtual environment, greatly expanding the range of
people able to provide feedback.

Testers identified several key areas for improvement, including both functional bugs
and UI/UX enhancements. For example, some users pointed out issues such as
notification stacking, where notifications could overlap in an unintuitive way. This
feedback was instrumental in identifying and resolving the problem before the official
release.

Moreover, several testers suggested improvements for transitions between widgets,
which have now been implemented to create a smoother, more visually appealing
experience. Others noted that adding additional widget features, such as previews
of fonts or new widgets ideas.

Overall, the feedback provided by early testers has been invaluable in refining the
app and ensuring that Mosaico is more intuitive, stable, and feature-rich for all
users.

9.4 Deployment

Perhaps one of the least glamorous but most critical aspects of software develop-
ment is the deployment process. Transitioning the entire project, along with its
various dependencies, to a new machine can be both technically challenging and
time-consuming. Ensuring that the development environment mirrors the produc-
tion environment is essential for a seamless deployment, but achieving this can often
be fraught with difficulties.

Fortunately, over the past few years, I have been utilizing Docker, which has dras-
tically streamlined my development and deployment processes. Docker enables the
creation of isolated, containerized environments that replicate the production en-
vironment with minimal overhead. This ensures consistency between local devel-
opment and live deployment, significantly reducing the likelihood of environment-
specific issues. For this project, I employed a set of custom scripts to dockerize the
Laravel application1, alongside all required services such as the database and proxy,
to get the entire application up and running smoothly.

1https://github.com/codexdevelopment-it/dockerized-laravel

63

https://github.com/codexdevelopment-it/dockerized-laravel

9.4.1 Self-Hosting

A relatively recent but highly rewarding endeavor I embarked upon is self-hosting.
About a year ago, I ventured into this fascinating domain, purchasing a dedicated
server to host all my internal and public services, thereby eliminating the need to
rely on external VPS providers. Self-hosting not only grants full control over the
infrastructure but also reduces long-term operational costs, as I am no longer paying
recurring fees to third-party hosting providers.

The server’s infrastructure is virtualized using Proxmox2, a robust, open-source
platform for enterprise-level virtualization. Proxmox’s comprehensive feature set
includes a web-based interface that simplifies the management of virtual machines
(VMs), containers, software-defined storage, and networking. This has greatly en-
hanced my ability to manage complex projects and services efficiently.

When deploying a new project, I simply create a new Linux Container (LXC) with
Docker support, clone the repository, and execute a predefined bash script to initiate
the deployment process. The entire system is up and running in minutes. Addition-
ally, I configure a new subdomain for the project and use a reverse proxy with auto-
matic HTTPS support3 to direct traffic to the corresponding container. One of the
key advantages of this setup is the ease with which I can manage backups—thanks to
Proxmox’s virtualized storage volumes, I can create incremental backups of entire
disks rather than backing up individual files, significantly simplifying the backup
and restore process.

This self-hosting infrastructure has provided me with a highly flexible, cost-effective,
and scalable environment in which I can develop, deploy, and manage my projects
with ease.

9.4.2 AppStore and PlayStore

Publishing the application on both the Apple App Store and Google Play Store was
a pivotal moment in making my project accessible to a broad audience. Since I
used Flutter as the core development framework, the cross-platform compatibility
significantly simplified the process of handling Android fragmentation. With Flutter,
I was able to write a single codebase that worked seamlessly across both platforms,
ensuring that the user experience was consistent and smooth on various devices.

The app only requires Bluetooth and photo access, both of which are essential
for configuring the LED matrix widgets. Bluetooth is used for connecting to the
matrix device, while photo access allows users to upload images for specific widgets.

2https://www.proxmox.com/
3https://caddyserver.com/

64

https://www.proxmox.com/
https://caddyserver.com/

Beyond these two permissions, the project has a strict policy against data collection
or remote storage. Staying true to the open-source philosophy, the app does not
collect or store user data in any remote database, offering users more control and
privacy. This adherence to privacy meant that the often tedious privacy approval
process became much smoother, as there was no sensitive data being transferred or
stored, allowing for a quicker review.

Being fully open-source further reinforces the transparency of the application. Users
can inspect the code, ensuring that no hidden data collection mechanisms exist,
which adds trust and aligns with the core values of user empowerment and privacy.

65

66

Chapter 10

Conclusion

The core achievements of this project can be distilled into the successful development
of the mobile app, Raspberry Pi software, and web platform, each aligned with
the outlined goals. The mobile app offers an intuitive, responsive user experience
with seamless matrix control and caching mechanisms that reduce strain on the
Raspberry Pi. The Raspberry Pi software itself remains efficient, modular, and
well-documented, allowing developers to easily create or modify widgets. The web
platform is both visually appealing and easily deployable, serving as the backbone
for the widget store and developer interactions.

One of the project’s most important long-term objectives lies in its open-source na-
ture. By embracing open-source principles, the project encourages collaboration,
transparency, and customization, offering more value to users. No data is collected,
preserving user privacy, and the entire platform is designed to benefit from commu-
nity engagement. The next phase of this project will focus on pushing it further
into open-source channels, gaining momentum through developer contributions, user
feedback, and widespread adoption. Through community involvement, the platform
can continue to grow, integrate new features, and enhance functionality, paving the
way for a sustainable, innovative future.

67

68

Bibliographical references

[Mar] Bob Martin. The dependency inversion principle. https://condor.

depaul.edu/dmumaugh/OOT/Design-Principles/dip.pdf.

[SHB14] Zach Shelby, Klaus Hartke, and Carsten Bormann. The Constrained Ap-
plication Protocol (CoAP). RFC 7252, June 2014.

[W. 17] W. Jakob, J. Rhinelander, D. Moldovan and others. pybind11 – Seamless
operability between C++11 and Python, 2017.

69

https://condor.depaul.edu/dmumaugh/OOT/Design-Principles/dip.pdf
https://condor.depaul.edu/dmumaugh/OOT/Design-Principles/dip.pdf
https://github.com/pybind/pybind11/graphs/contributors
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11

70

Acknowledgements

This project would not have been possible without the incredible contributions from
the open-source community. A special thanks goes to Henner Zeller for his brilliant
C++ library to control the LED matrix1 and to Adafruit for their LED matrix
bonnet and setup guide2. The Nlohmann JSON library3, pybind114, aiocoap5, and
bless6 libraries provided seamless integration between Python and C++, ensuring
robust communication between modules. Tools such as GitPython7 and Docker8

significantly streamlined the development and deployment processes.

A huge thank you also goes to JetBrains for their educational licenses of IDEs like
PHPStorm9, CLion10, and PyCharm11, which greatly facilitated the development
across different project components.

Lastly, while ChatGPT12 proved invaluable in mastering Flutter and Python and
speeding up development processes, it was used as a learning aid rather than a
coding substitute, reinforcing concepts and helping resolve challenges faster without
replacing the core development effort.

1https://github.com/hzeller/rpi-rgb-led-matrix
2https://learn.adafruit.com/
3https://github.com/nlohmann/json
4https://github.com/pybind/pybind11
5https://github.com/chrysn/aiocoap
6https://github.com/kevincar/bless
7https://github.com/gitpython-developers/GitPython
8https://www.docker.com/
9https://www.jetbrains.com/phpstorm/

10https://www.jetbrains.com/clion/
11https://www.jetbrains.com/pycharm/
12https://chat.openai.com/

71

https://github.com/hzeller/rpi-rgb-led-matrix
https://learn.adafruit.com/
https://github.com/nlohmann/json
https://github.com/pybind/pybind11
https://github.com/chrysn/aiocoap
https://github.com/kevincar/bless
https://github.com/gitpython-developers/GitPython
https://www.docker.com/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/clion/
https://www.jetbrains.com/pycharm/
https://chat.openai.com/

	Introduction
	Motivation
	Open Source

	State of the art
	Objectives
	Mobile app
	Raspberry Pi Software
	Web Platform
	Additional Features

	Project architecture
	Networking
	Constrained Application Protocol (COAP)
	Bluetooth Low Energy (BLE)
	GIT Integration for Widget Management
	REST

	Widgets
	Widget Types
	Anatomy of a Widget

	The Hardware
	The SBC
	The Matrix
	The Matrix Bonnet
	Future Upgrades

	The Software
	C++ Module
	The Canvas
	Drawables
	Loading Widgets at Runtime
	Canvas buffer

	Python Module
	Cross Compiler
	Simulators
	The X11 Simulator
	The Web Simulator

	The Client
	Showcase
	Home
	Matrix Control
	Installed Widgets
	Widget Store
	Slideshows

	Configuration Generator
	Example
	Result of the Configuration
	Assets Management
	Field Attributes
	Multiple configurations

	Device Discovery
	Caching
	Design Patterns
	BLoC for Installed Widgets Feature
	BLoC for Widget Store Interactions

	The Cloud
	Widget manager
	API
	Rate Limiter

	Landing Page
	Documentation

	Testing and deployment
	Benchmarks
	CPU Usage
	Memory Usage
	Conclusion

	Latency
	Protocol Performance: CoAP

	User Feedback
	Deployment
	Self-Hosting
	AppStore and PlayStore

	Conclusion

