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“Puoi cambiare camicia se ne hai voglia

e se hai fiducia puoi cambiare scarpe

con scarpe nuove puoi cambiare strada

e cambiando strada puoi cambiare idee

e con le idee si cambia il mondo

ma il mondo non cambia spesso

allora la tua vera rivoluzione

sarà cambiare te stesso”

A. Mannarino, Vivere la vita.





Introduction

Over the past few decades, persistent homology (PH) has emerged as a crucial area

of modern algebraic topology [6, 23, 24], especially within the field of topological data

analysis (TDA). TDA integrates mathematics with data analysis, algebraic topology,

computational geometry, computer science, statistics, and related fields [19]. The foun-

dational concept of persistent homology was introduced by Frosini and Landi [7] and

later developed in its general form by Robins [21], Edelsbrunner [5], and Zomorodian

and Carlsson [25]. Persistent homology builds upon traditional homology by examining

how topological features evolve across different scales, which enhances its ability to char-

acterize complex geometric structures and uncover patterns in data that may be obscured

at a single scale. Its applications are broad, including image analysis [2], structural and

computational biology [9, 24], and complex networks [10, 20].

The appeal of this method lies in the fact that it is based on algebraic topology, which

offers a well-established theoretical framework for analyzing the qualitative features of

complex data. It is computable using linear algebra and is both stable and robust against

small perturbations in input data. Moreover, compared to ordinary homology, PH in-

troduces an additional dimension—the filtration parameter—which allows embedding

crucial geometric or quantitative information into topological invariants.

This work aims to introduce persistent homology and explore its application in identi-

fying lasso proteins—a unique class of proteins distinguished by a structural motif where

a segment of the protein chain forms a loop, which is pierced by another piece of the

same chain. This structure provides significant stability and resistance to degradation,

making lasso proteins a field of interest for drug design and molecular engineering, in-

cluding peptide-based therapies and bioengineering. We will specifically reference the

algorithm presented in [9], which is still an ongoing work.

Chapter 1 will cover preliminary concepts of simplices and simplicial complexes, essen-

tial for defining (simplicial) homology. Since homology computation requires a simplicial

complex as input, and the objects of interest are often not provided in this form, we will
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conclude the chapter with methods for constructing simplicial complexes, such as Čech

and Vietoris-Rips complexes. These constructions enable the association of a simplicial

complex with a point cloud—a finite collection of points in a metric space representing

a sample of our shape.

Chapter 2 will explore persistent homology, beginning with the concept of filtration.

We will present the formal definition of PH and discuss the two primary visualization

methods: barcodes and persistence diagrams. Additionally, we will address the robust-

ness and stability of the method, defining the bottleneck distance metric for comparing

persistence diagrams.

Finally, Chapter 3 will focus on applying persistent homology to identify lasso pro-

teins. We will provide a brief overview of the biological context of proteins and lasso

structures before presenting the theoretical framework that underlies the algorithm used

to detect these structures. A simple 2-dimensional example will illustrate the application

of this framework to a small set of points, followed by a brief description of the algorithm

pipeline as cited in [9].
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Chapter 1

Homology groups and simplicial

complexes

In this chapter, we begin by introducing simplicial complexes. This allows us to define

(simplicial) homology1, whose treatment is essential for discussing persistent homology.

Finally, we explain how to construct simplicial complexes. Unless otherwise noted, refer-

ences are made to [4, 6, 8, 23], particularly in Sections 1.1 and 1.3, while for more details

on homology theory, see [11, 14].

1.1 Simplicial complexes

Simplicial complexes are intuitively sets composed of points, line segments, triangles,

and their higher-dimensional counterparts. They provide a convenient combinatorial

description of certain metric spaces2. Thus, it is common practice to replace the original

spaces with simplicial complexes for concrete computations. Before presenting their

formal definition, we need to clarify some general concepts.

Definition 1.1. Let u0, . . . , uk ∈ Rd and λ0, . . . , λk ∈ R, with
∑k

i=0 λi = 1. The point

p =
∑k

i=0 λiui is called an affine combination of u0, . . . , uk, with coefficients λ0, . . . , λk ∈
R. The set of all affine combinations of the points u0, . . . , uk ∈ Rd is called the affine

hull of u0, . . . , uk.

Definition 1.2. The points u0, . . . , uk ∈ Rd are called affinely independent if, given

coefficients λ0, . . . , λk and µ0, . . . , µk in R such that
∑

i λi =
∑

i µi = 1, the equality∑
i λiui =

∑
i µiui holds iff λi = µi for all i.

1From now on, simplicial homology will simply be referred to as homology.
2This is not true for arbitrary metric spaces, but for “nice” ones. See [11] for further details.
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2 Homology groups and simplicial complexes

One can show that u0, . . . , uk ∈ Rd are affinely independent iff the vectors {u1 −
u0, . . . , uk − u0} are linearly independent.

Definition 1.3. Each affine combination x =
∑k

i=0 λiui with non-negative coefficients

is called a convex combination of u0, . . . , uk. Given U ⊆ Rd, the set of all convex

combinations of point of U defined as Conv(U) is called the convex hull of U .

If U = {u0, . . . , uk}, we will often write ⟨u0, . . . , uk⟩ in place of Conv(U). One can

prove that ⟨u0, . . . , uk⟩ is the smallest convex set containing u0, . . . , uk.

Definition 1.4. Let k, d ∈ N with k ≤ d. A geometric k-simplex σ in Rd is the convex

hull of an affinely independent family U = {u0, . . . , uk} ⊂ Rd, i.e., σ = ⟨u0, . . . , uk⟩. The

number k is called the dimension of the geometric simplex σ.

We use special names for the smallest simplices: vertex for 0-simplex, edge for 1-

simplex, triangle for 2-simplex and tetrahedron for 3-simplex as in Figure 1.1. We also

say that the empty set is the unique (−1)-simplex.

Figure 1.1: From left to right: a vertex, an edge, a triangle, and a tetrahedron.

Definition 1.5. If σ = ⟨u0, . . . , uk⟩ is a simplex, the convex hull of any subset of

{u0, . . . , uk} is called a face of σ. If τ is a face of σ, we write τ ≤ σ (or σ ≥ τ). If

τ ≤ σ and τ ̸= σ, we say that τ is a proper face of σ and write τ < σ (or σ > τ). If τ is

a (proper) face of σ, we say that σ is a (proper) coface of τ . We also define the boundary

bdσ of a simplex σ as the union of all proper faces of σ. The interior intσ of σ is the

set σ \ bdσ.

Remark 1.6. Let σ = ⟨u0, . . . , uk⟩. By considering the empty set as a subset of

{u0, . . . , uk}, the (−1)-simplex is a face of σ. Thus, the vertices ui, with i = 0 have

empty boundary, i.e., intui = ui, for i = 0, . . . , k.
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Geometric simplicial complexes

Now, we are ready to give the actual definition of a (geometric) simplicial complex in

Rd.

Definition 1.7. A (finite) geometric simplicial complex K ̸= {∅} is a set of simplices

such that

1. if σ ∈ K and τ ≤ σ, then τ ∈ K;

2. if σ1, σ2 ∈ K, then σ1 ∩ σ2 ≤ σ1 and σ1 ∩ σ2 ≤ σ2.

The dimension of a geometric simplicial complex is the maximum dimension of its sim-

plices. The body |K| of a geometric simplicial complex K is the union of all simplices

in K, endowed with the topology induced by the Euclidean topology in Rd. When K is

finite, the body |K| is compact, as a finite union of compact subspaces σ. A polyhedron

is the body of a geometric simplicial complex.

Formally speaking, a geometric simplicial complex K in Rd is a collection of simplices,

while the related body |K| is a subset of Rd. However, in geometric discussions, we

will often identify these two objects. Indeed, from this point forward, we will visualize

simplicial complexes by illustrating their body while implicitly assuming the underlying

simplicial structure.

We are now ready to describe the relationship between a metric subspace of Rd and

its combinatorial representation.

Definition 1.8. A triangulation of a topological space X is a homeomorphism from

X to a polyhedron. If a topological space X admits a triangulation, we say that X is

triangulable.

Example 1.9. Let K be a geometric simplicial complex. The identity map id : |K| →
|K| is a triangulation of the body of K.

We conclude this subsection with a useful definition.

Definition 1.10. Let K be a geometric simplicial complex. Every geometric simplicial

complex L such that L ⊆ K is called a subcomplexes of K. The subcomplex K(j) :=

{σ ∈ K : dim σ ≤ j} is called the j-skeleton of K. K(0) is also referred as vertex set of

K and denoted by the symbol VertK.
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Abstract simplicial complex

There is another way to describe simplicial complex. Rather than listing all its simplices

by providing the coordinates of their vertices, a more efficient approach is to represent

them abstractly. This method allows for a coordinate-free description, simplifying the

process of defining how the simplices fit together within the complex. For this reason,

we introduce abstract simplicial complexes.

Definition 1.11. A (finite) abstract simplicial complex is a finite family A ≠ {∅} of

sets such that if α ∈ A and β ⊆ α, then β ∈ A. Each element of an abstract simplicial

complex is called an abstract simplex (and of course is finite).

While geometric simplicial complexes capture the geometric aspects of a space such as

sizes, lengths, and shapes, in contrast, abstract simplicial complexes focus on topological

properties, representing the structure of the space up to homeomorphism.

The dimension of an abstract simplex α in A is |α| − 1, while the dimension of an

abstract simplicial complex A is the maximum dimension of any simplex in the complex.

Any (proper) subset of α ∈ A is called a (proper) face of α. The union of the abstract

simplices of A is called the vertex set of A, and denoted by the symbol VertA.

Every abstract simplicial complex B such that B ⊆ A is called a subcomplex of A.

Remark 1.12. The empty set is always included as an abstract simplex of dimension

−1.

Definition 1.13. Two abstract simplicial complexes A,B are isomorphic if there exists

a bijection ϕ : VertA → VertB such that α ∈ A implies that ϕ(α) = {ϕ(a) : a ∈ α} ∈ B
and β ∈ B implies that ϕ−1(β) = {ϕ−1(b) : b ∈ β} ∈ A. The map ϕ̄ : A → B induced by

the map ϕ is called an isomorphism between the abstract simplicial complexes A,B.

Example 1.14. Let K be a geometric simplicial complex as in Figure 1.2. As a ge-

ometric simplicial complex, K contains specific geometric simplices described by the

coordinates of their vertices. We can construct a corresponding abstract simplicial com-

plex L. Labelling the vertices as in figure, then:

L = {{a, c, d}, {a, b}, {b, c}, {c, d}, {d, a}, {a, c}, {a}, {b}, {c}, {d}}.

In this description, no coordinates are involved.

There is a connection between abstract simplicial complexes and geometric ones,

which implies that for any given geometric simplicial complex, an abstract simplicial
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Figure 1.2: A geometric complex labeled to be represented abstractly

complex can always be constructed, and vice versa. The former is a trivial consequence

of the definitions above.

Proposition 1.15. Let K be a geometric simplicial complex. Let Ab (K) be the set

whose elements are the subsets {u0, . . . , uk} of VertK such that ⟨u0, . . . , uk⟩ ∈ K. Then

Ab (K) is an abstract simplicial complex, and is called the vertex scheme of K. If an

abstract simplicial complex B is isomorphic to Ab (K), then K is called a geometric

realization of B.

The reverse direction is not as straightforward as the previous proposition, and prov-

ing it is beyond our current scope. For a complete proof see for instance [6].

Theorem 1.16 (Geometric Realization Theorem). Every abstract simplicial complex A
of dimension d has a geometric realization in R2d+1.

We conclude this subsection with a standard example, to clarify the previous concepts.

Example 1.17. The torus T is a topological subspace of R3. One can provide a triangu-

lation of that through the standard square model, as in Figure 1.2. By triangulating the

square and respecting the identifications, we obtain a structure of an abstract simplicial

complex L. Taking the geometric representation of L, L̃ and identifying the correspon-

dent simplices, we obtain an homeomorphism between the body of L̃ and T , our desired

triangulation.
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Figure 1.3: On the left: the torus arising from a square. On the right: a triangulation of a torus in

terms of an abstract simplicial complex.

Simplicial maps

In the same way as simplicial complexes offer a useful combinatorial framework for

representing metric spaces, there exists a natural combinatoric analog of continuous map,

the simplicial maps, which we now introduce. Let us begin with a useful proposition.

Proposition 1.18. Let K be a geometric simplicial complex. Every point x ∈ |K|
belongs to the interior of exactly one simplex of K.

Proof. Existence |K| =
⋃

σ∈K σ, x belongs to at least one simplex of K. Let τ be the

simplex that contains x with minimal dimension. If x ∈ ∂τ , then x belongs to a

face of τ against the minimality of it. Therefore, x ∈ intτ .

Uniqueness Let us suppose by absurd that x ∈ intσ1 ∩ intσ2. Then x ∈ σ1 ∩ σ2. Since

K is a geometric simplicial complex, τ is a face of both σ1 and σ2. If τ were a

proper face of σi, x would belong to ∂σi, which contradicts the condition x ∈ intσi,

for i = 1, 2. Therefore, σ1 = σ2.

Using this result, we can introduce the concept of barycentric coordinates. In particular,

let K be a geometric simplicial complex and {u0, u1, . . . , un} = VertK. Take x ∈ |K|.
By the Proposition 1.18 and Definition 1.2, there exists a unique σ = ⟨u0, u1, . . . , uk⟩
and unique λ0, . . . , λk with

∑k
i=0 λi = 1 and λi ≥ 0 for all i, such that x =

∑k
i=0 λiui.

By setting bi(x) = λi for 0 ≤ i ≤ k and bi(x) = 0 for k + 1 ≤ i ≤ n, we can write

x =
∑n

i=0 bi(x)ui, and we refer to the bi(x) as the barycentric coordinates of x in K.

We use these coordinates to construct a piecewise linear, continuous map between

(geometric) simplicial complexes (as they are linear and continuous on each simplex).
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Definition 1.19. Suppose K and L are geometric simplicial complexes. A map f : K →
L is a simplicial map if:

1. For each vertex u of K, its image f(u) is a vertex of L (we call the restricted map

f|Vert K
vertex map).

2. The induced map between the corresponding abstract simplicial complexes is sim-

plicial, i.e., if {u0, u1, . . . , uk} span a geometric simplex in K, then {f(u0), f(u1),

. . . , f(uk)} span a geometric simplex in L.

3. The map f is linear on simplices (in terms of barycentric coordinates), i.e.,

∀λi ∈ [0, 1] :
k∑

i=0

λi = 1, and ∀ui ∈ K(0), f

(
k∑

i=0

λiui

)
=

k∑
i=0

λif(ui).

1.2 Homology groups

Now that we have presented the combinatorial and algebraic prerequisites, we are ready

to define homology, our tool for detecting basic topological features such as the number

of components, holes, and voids in a simplicial complex (or in triangulable spaces).

Chains and boundary

Definition 1.20. Let K be a simplicial complex, either abstract or geometric, p be any

given dimension, and F a chosen field. A p-chain is a linear combination of p-simplices

in K, expressed as c =
∑k

i=1 aiσi, where the σi are the p-simplices in K and the ai are

their respective coefficients in F.

The field F could be, for instance, Z, R, or Zn, where n is a prime. In computational

topology, it is common to work with coefficients ai in Z2, so we will fix F = Z2. Under

this condition, a chain can be interpreted as the set of p-simplices for which ai = 1.

Two p-chains are added component-wise, like polynomials, and the p-chains together

with the addition operation form a free Abelian group called chain group and denoted

as (Cp(K,F),+), or simply Cp = Cp(K) if the operation is understood. Associativity

follows from associativity of addition modulo 2. The neutral element is 0 =
∑

0σi. The

inverse of c is −c = c since c + c = 0. Moreover, Cp is Abelian because addition modulo

2 is Abelian. For p less than zero and greater than the dimension of K, this group is

trivial, consisting only of the neutral element.
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Remark 1.21. It is straightforward to see that the chain group Cp(K) is also a vector

space over F, where scalar multiplication is defined componentwise.

Thinking of p-simplices of K as an abstract collection of linearly independent vectors, the

resulting linear space over F spanned by them is the chain group. By setting np(K) :=

dimCp(K), then Cp(K) is isomorphic to Fnp(K).

Remark 1.22. If p < 0 or p > dimK, we set Cp(K) := 0, i.e., the trivial vector space

over F.

Definition 1.23. Let σ = ⟨u0, u1, . . . , up⟩ be the p-simplex spanned by the listed vertices.

The boundary of σ is the sum of its (p− 1)-dimensional faces, which is

∂pσ =

p∑
j=0

⟨u0, . . . , ûj, . . . , up⟩,

where the hat indicates that uj is omitted3. For a p-chain c =
∑

aiσi, the boundary is the

sum of the boundaries of its simplices, i.e. ∂pc =
∑

ai∂pσi. Notice also that taking the

boundary commutes with addition, that is, ∂p(c+ c′) = ∂pc+ ∂pc
′. Hence, the boundary

defines an homomorphism ∂p : Cp → Cp−1 which maps a p-chain to a (p− 1)-chain. We

will therefore refer to ∂p as the boundary map for chains.

Definition 1.24. A chain complex C is a sequence of vector space Vp over a field F and

homomorphisms dp : Vp → Vp−1 indexed by the integer numbers, such that dp−1 ◦ dp is

the null homomorphism for any p ∈ Z. Each homomorphism dp is called a p-boundary

map. The elements of Vp, ker dp, Im dp+1 are respectively called p-chains, p-cycles and

p-boundaries. Sometimes, we will use the symbols Zp(C) to denote the p-cycles and Bp(C)

to denote the p-boundaries.

Proposition 1.25. Let K be a geometric simplicial complex, p ∈ Z. The sequence

C(K) := (Cp, ∂p)p∈Z is a chain complex.

Proof. We only need to prove that ∂p−1 ◦ ∂p(σ) is the null chain for any p ∈ Z. The

statement is trivial for p ≤ 0 and for p > dimK, because by Remark 1.22 Cp = 0

for p < 0 or p > dimK, thus ∂p is the trivial map. Therefore, we can assume that

0 < p ≤ dimK. Take a p-simplex σ = ⟨u0, . . . , up⟩ of K. Let us define the symbol σij

by setting

3If the coefficients are in a generic field, the boundary is defined as
∑p

j=0(−1)i⟨u0, . . . , ûj , . . . , up⟩.
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σij :=

⟨u0, . . . , ûi, . . . , ûj, . . . , up⟩, if i < j

null chain in Cp−2(K), if i ≥ j.

We have that

∂p−1 ◦ ∂p(σ) = ∂p−1

(
p∑

i=0

⟨u0, . . . , ûi, . . . , up⟩

)
=

p∑
i=0

∂p−1 (⟨u0, . . . , ûi, . . . , up⟩)

=

p∑
i=0

(
i−1∑
j=0

⟨u0, . . . , ûj, . . . , ûi, . . . , up⟩ +

p∑
j=i+1

⟨u0, . . . , ûi, . . . , ûj, . . . , up⟩

)

=

p∑
i=0

(
i−1∑
j=0

σji +

p∑
j=i+1

σij

)
=

p∑
i=0

(
p∑

j=0

σji +

p∑
j=0

σij

)

=

p∑
i=0

p∑
j=0

σji +

p∑
i=0

p∑
j=0

σij =

p∑
i=0

p∑
j=0

σij +

p∑
i=0

p∑
j=0

σij = 0,

where the last equality follows from the fact that the coefficients are in Z2.

We will denote the chain complex C(K) related to a chain group Cp = Cp(K) as

· · · ∂p+2−−→ Cp+1
∂p+1−−→ Cp

∂p−→ Cp−1
∂p−1−−→ · · ·

It will often be convenient to drop the index from the boundary homomorphism when the

dimension of the chain it applies to is clear. See Figure 1.4 for an intuitive representation

of a chain complex.

Figure 1.4: The chain complex consisting of a linear sequence of chain, cycle, and boundary groups

connected by boundary homomorphisms.
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Boundary matrices

Let K be a geometric simplicial complex. For computational purposes, the boundary

maps related to C(K) are typically represented as matrices with entries in Z2. Take

p ∈ Z and fix some bases of Cp(K) and Cp−1(k)4. The matrix Mp(K) corresponding to

∂p related to these bases is obtained as follows:

• The p-simplices of K are represented by columns.

• The (p− 1)-simplices of K are represented by rows.

• The entry at position (i, j) equals 1 if the i-th (p− 1) simplex is a face of the j-th

p-simplex, otherwise is equal to 0.

In particular, the boundary ∂pc of a chain c ∈ Cp(K) is obtained by multiplying the

boundary matrix with the natural representation of c in the chosen basis.

Figure 1.5: Geometric representation of the simplicial complex K, without the Cartesian coordinate

system.

Example 1.26. Consider the (abstract) simplicial complex

K = {{a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {c, d}, {a, b, c}}.

See Figure 1.5 for a geometric representation. For brevity, denote with abc the basis

vector that corresponds to the simplex {a, b, c} = C2(K). Similarly, we use ab, ac, ad, bc

and cd to denote the basis vectors of C1(K) and a, b, c, d to denote the basis vectors

related to C0(K). We order the bases of the vector spaces using lexicographic order. We

then have:

4As vector spaces over Z2, you can take the natural ones.
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abc

M2(K) =


1

1

0

1

0


ab

ac

ad

bc

cd

and

ab ac ad bc cd

M1(K) =


1 1 1 0 0

1 0 0 1 1

0 1 0 1 0

0 0 1 0 1


a

b

c

d

Homology

We are now finally ready to define homology. For that reason, we first make the following

preliminary observation.

Remark 1.27. Take a chain complex C = (Vp, dp)p∈Z. The fact that dp ◦ dp+1 ≡
0 immediately implies that Im dp+1 ⊆ ker dp, and hence the quotient vector space

ker dp/ Im dp+1 = Zp(C)/Bp(C) is well-defined.

Definition 1.28. Given a chain complex C = (Vp, dp)p∈Z, we define

Hp(C) = Zp(C)/Bp(C)

and call it the p-th homology group of C. Thus, for any given geometric simplicial

complex K and every p ∈ Z we will simply write Zp(K), Bp(K) and Hp(K) to denote

Zp(C(K)), Bp(C(K)) and Hp(C(K)). The vector space Hp(K) is called the p-th homology

group of K with coefficients in Z2. The dimension of Hp(K) as a Z2 vector space is called

p-Betti number, and it is denoted βp(K) := dimHp(K)5. For convenience, we will also

denote bp(K) := dimBp(K), zp(K) := dimZp(K).

Proposition 1.29. If K is a geometric simplicial complex, then βp(K) = np(K) −
bp(K) − bp−1(K) for any p ∈ Z.

Proof. Consider the dimensional equations for the linear maps ∂p : Cp(K) → Cp−1(K)

and πp : Zp(K) → Hp(K) = Zp(K)/Bp(K), where πp is the quotient projection map.

These equations state that np(K) − zp(K) = bp−1(K) and zp(K) = bp(K) + βp(K). Our

thesis immediately follows from these two equalities.
5Intuitively, it represents the number of p-dimensional holes.
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Remark 1.30. Let bp(K) := Bp(K). Since Bp(K) ⊆ Cp(K) for any index p, and Cp(K)

is the null space for every p < 0 and every p > dimK, it follows that bp(K) = 0 for

every p < 0 and every p > dimK. Moreover, fixing q = dimK, since Cq+1(K) is the null

space, bq(K) := dim ∂q+1(Cq+1(K)) = 0. Therefore, bp(K) = 0 for every p < 0 and every

p ≥ dimK.

Remark 1.31. Let K be a simplicial complex. When representing the boundary map

∂p as a matrix Mp(K), the rank of this matrix is bp(K).

More generally, since each p-th homology group associated with a geometric complex

is a finitely generated vector space over Z2, it is isomorphic to Zβp

2 . We will denote this

isomorphism as Hp(K) ∼= Fβp .

Example 1.32. Let us revisit Example 1.26. We can compute the homology of K:

firstly, b0(K) = 3 and b1(K) = 1. Moreover, bp(K) = 0 for every p < 0 and every p ≥ 2,

as stated in Remark 1.30. Hence, by Proposition 1.29, we have:

• β0(K) = n0(K) − b0(K) − b−1(K) = 4 − 3 − 0 = 1;

• β1(K) = n1(K) − b1(K) − b0(K) = 5 − 1 − 3 = 1;

• β2(K) = n2(K) − b2(K) − b1(K) = 1 − 0 − 1 = 0;

• βp(K) = np(K) − bp(K) − bp−1(K) = 0 − 0 − 0 = 0 for p ̸= 0, 1, 2.

It follows that H0(K) ∼= H1(K) ∼= Z2, while Hp(K) ∼= 0 for p ̸= 0, 1.

Induced maps

Let us consider two geometric simplicial complexes, K and L, and a simplicial map

f : K → L between them. Recall that concretely this means that f maps each simplex

of K linearly to a simplex of L. This induces a map from the chain groups of K to the

chain groups of the same dimension in L, which we will call the induced map. Induced

maps are particularly useful because they provide the property of functoriality with

respect to homology groups, which will become important in the next chapter when

discussing persistent homology. Let us formalize these concepts.

Definition 1.33. Let C = (Cp, ∂p)p∈Z and C ′ = (C′
p, ∂

′
p)p∈Z be two chain complexes. An

indexed family of homomorphisms φ = (φp : Cp → C′
p)p∈Z is called a chain map from
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C to C ′ if ∂′
p ◦ φp = φp−1 ◦ ∂p for every index p. Equivalently, if the following diagram

commutes:

Cp Cp−1

C′
p Cp−1

∂p

φp φp−1

∂′
p

If each homomorphism φp is an isomorphism, we say that φ is an isomorphism between

chain complexes.

This concept is important for the next proposition.

Proposition 1.34. Let φ = (φp : Cp → C′
p)p∈Z as above. Then, each map φp,∗ : Hp(C) →

Hp(C ′), defined by φp,∗([z]) := [φp(z)], is a well-defined homomorphism for every p ∈ Z.

If φ is an isomorphism between chain complexes, then each φp,∗ is also an isomorphism.

Proof. Take an element [z] in Hp(C), where z is a p-cycle. Since φ is a chain map, we

have ∂′
p(φp(z)) = φp−1(∂p(z)) = φp−1(0) = 0. This shows φp(z) is a p-cycle in C ′, which

means that [φp(z)] is an element of Hp(C ′).

If two elements [z′] = [z] in Hp(C) are equivalent, then z′ − z is a p-boundary. That

means there exists a (p + 1)-chain c ∈ Cp+1 such that z′ − z = ∂p+1(c). Applying φp, we

get φp(z
′) − φp(z) = φp(z

′ − z) = φp(∂p+1(c)) = ∂′
p+1(φp+1(c)). Thus, φp(z

′) − φp(z) is a

p-boundary in C ′, showing [φp(z
′)] = [φp(z)] in Hp(C ′).

Therefore, φp,∗ is well-defined.

The linearity of φp,∗ follows from the linearity of φp. If φ is an isomorphism, there

exists an inverse map φ−1 = (φ−1
p : C′

p → Cp)p∈Z which is also a chain map from C ′ to C.

It is an isomorphism because (φ−1
p ),∗ ◦ φp,∗([z]) = [φ−1

p (φp(z))] = [z]. This confirms that

φp,∗ is an isomorphism for each p ∈ Z.

Definition 1.35. Let φ = (φp : Cp → C′
p)p∈Z be a chain map from C to C ′. The indexed

family of homomorphisms φ∗ = (φp,∗ : Hp(C) → Hp(C ′))p∈Z defined above is called an

induced map from H(C) := (Hp(C))p∈Z to H(C ′) := (Hp(C ′))p∈Z.

The next result is not hard to prove (for a sketch of the proof, see [6]) and, by applying

Proposition 1.34, it provides the definition of induced map related to two (geometric)

simplicial complexes.
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Proposition 1.36. Take f : K → L a simplicial map. Consider fp# : Cp(K) → Cp(L)

the map that sends p-chain c =
∑

aiσi in Cp(K) to fp#(c) =
∑

aiτi, where

τi :=

f(σi), if dim f(σi) = p

0 as a chain in Cp(L), if dim f(σi) < p.

For p < 0 and p > dimK, we set fp# : Cp(K) → Cp(L) equal to the null map. The

collection of maps f# = (fp# : Cp(K) → Cp(L))p∈Z is a chain map from C(K) to C(L).

The fact that the induced map commutes with the boundary map implies that f#

takes cycles to cycles, f#(Zp(K)) ⊆ Zp(L), and boundaries to boundaries, f#(Bp(K)) ⊆
Bp(L). Therefore, it defines a map on the quotient spaces, which we refer to as the

induced map on homology, denoted by f∗ : Hp(K) → Hp(L).

We conclude this section with the following theorem (its proof follows straightfor-

wardly from the definition of the chain map induced by a simplicial map), which clarifies

what we mean by the property of functoriality.

Theorem 1.37. The map Fp taking each geometric simplicial complex K to Hp(K) and

each simplicial map f : K → L to the map f∗ : Hp(K) → Hp(L) (induced by the chain

map fp# is a covariant functor for every p ∈ Z, i.e.,

(g ◦ f)∗ = g∗ ◦ f∗.

1.3 Constructions of simplicial complexes

Since homology computations for simplicial complexes can be carried out algorithmically,

it is often advantageous to construct simplicial complexes that either compute the ho-

mology of an underlying space X or are closely related to it. To ensure that a simplicial

complex accurately computes the homology of X, a rigorous approach is to establish

a homotopy equivalence between X and the simplicial complex K, or between a space

homotopy equivalent to X and K. A homotopy equivalence is a map g : X → K such

that there exists a map f : K → X with f ◦ g homotopic to the identity map on X and

g◦f homotopic to the identity map on K. In this case, K and X are said to be homotopy

equivalent. If two spaces X and Y are homotopy equivalent, then their homology groups

Hp(X) and Hp(Y ) are isomorphic for all p (see [11] for a complete proof).

Various simplicial complexes can be derived from X. We introduce two of the most

used simplicial complexes in computational topology, Čech and Rips complexes.
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Čech complexes

Čech complexes are a special case of a general topological construction called nerve.

Definition 1.38. The nerve NrvF of a finite collection F of subsets of a nonempty set

X is the abstract simplicial complex, whose simplices are all the subcollections F ′ of F
such that ⋂

Y ∈F ′

Y ̸= ∅.

We can realize geometrically the nerve in some Euclidean space, as stated by Theorem

1.16, in order to talk about its topology and homotopy type (see Figure 1.6). One of

Figure 1.6: A family F of sets and a geometric realization of its nerve

the advantages of nerve complexes is that, in some cases, their homotopy type 6 is equal

to the union of the elements of the given collection. This is formalized by the following

theorem, which is proved for example in [23].

Theorem 1.39 (Nerve Theorem). Let F = {V1, . . . , Vk} be a finite collection of closed

convex subsets of Rd. Then NrvF and the set
⋃k

i=1 Vi have the same homotopy type, i.e.⋃k
i=1 Vi ≃ NrvF .

It follows that taking a topological space X and an open, finite covering F =

{U1, . . . , Un} of convex sets, then NrvF is homotopy equivalent to X, where F =

{U1, . . . , Un}7. The requirement on the sets can be relaxed without affecting the con-

clusion. Specifically, if X =
⋃

F∈F F is triangulable, all sets in F are closed, and all

non-empty common intersections are contractible8, then NrvF ≃
⋃

F∈F F (see [6] for

6The homotopy type of a space X is the class of topological space homotopic equivalent to X.
7Given a set U , the symbol U denotes the closure of that set.
8A space is contractible if it has the homotopy type of a point.
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details).

Definition 1.40. Let S be a finite set of points in Rd . The Čech complex of S with

radius r ≥ 0 is the abstract simplicial complex defined as follows:

Č(S, r) = Č(r) =

{
σ ⊆ S |

⋂
x∈σ

Bx(r) ̸= ∅

}
.

Figure 1.7: Two examples of Čech complexes.

It is easy to see that Č(S, r) is isomorphic to NrvF , with F = {B(s, r)}s∈S. Thus, by

the Nerve Theorem 1.39, we have Č(S, r) ≃
⋃

F∈F F . Furthermore, this observation can

be used to prove reconstruction results: given a closed, connected surface X in Euclidean

space, for each sufficiently small scale parameter r ≥ 0 and for each sufficiently dense

finite subset S ⊆ X, we have X ≃ Č(S, r), i.e., the homotopy type of the space X can

be reconstructed using Čech complexes.

Vietoris-Rips Complexes

From a computational point of view, Čech complexes are expensive to construct because

one has to check for large numbers of intersections. To circumvent this issue, one can

instead consider the Vietoris–Rips (VR) complex, which approximates the Čech complex.
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Definition 1.41. Let S be a finite set of points in Rd. Then the Vietoris-Rips complex

for S with radius r, denoted by VR(S, r) or simply VR(r), will be the abstract simplicial

complexes whose simplexes are all the subsets of S with diameter9 at most 2r. In symbols:

VR(r) = {σ ⊆ S | diamσ ≤ 2r}.

Remark 1.42. The condition diamσ ≤ 2r means that the distance between any two

vertices of σ is at most 2r. Thus, it immediately implies that if 0 ≤ r1 ≤ r2, then

Č(S, r1) ⊆ Č(S, r2) ⊆ VR(S, r2).

The containment relation can be reversed if we are willing to increase the radius of

the Čech complex by a multiplicative constant. Before stating this result, let us see some

preliminary notions.

Definition 1.43. For each non-empty compact set K ⊆ Rd, the unique closed ball

containing K and having minimum radius is called miniball of K.

Proposition 1.44. Let {p1, . . . , pn} ⊂ Rd. If F = {B̄1, . . . , B̄n} is the set of all closed

balls B̄i of center pi and radius r ≥ 0, for 1 ≤ i ≤ n, then these three properties are

equivalent:

1.
⋂n

i=1 B̄i ̸= ∅;

2. There exists a point z ∈ Rd, such that the closed ball of center z and radius r

contains {p1, . . . , pn};

3. The miniball of {p1, . . . , pn} has radius less than or equal to r.

Proof. 1) =⇒ 2) Just take a point z ∈
⋂n

i=1 B̄i. By symmetry, since z ∈ B̄i, pi ∈
B̄(z, r)10, for 1 ≤ i ≤ n.

2) =⇒ 3) It follows from the minimality of the radius of the miniball containing

{p1, . . . , pn}.

3) =⇒ 1) It is sufficient to observe that the center of the miniball containing

{p1, . . . , pn} belongs to
⋂n

i=1 B̄i.

9The diameter of a subset A ⊆ X of a metric space X is defined as diam(A) = supx,y∈A d(x, y). If A

is finite, it coincides with the max.
10It is the closed ball centered in z with radius r.
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Lemma 1.45 (Vietoris-Rips Lemma). Let S be a finite set of points in some Euclidean

space and r ≥ 0, then VR(r) ⊆ Č(
√

2r).

Sketch of the proof. Let M(σ) be the miniball of a k-simplex σ = {pi0 , . . . , pik} ∈ VR(r).

Call z the center of M(σ) and ρ its radius. It is sufficient to prove that

√
2ρ ≤ diamσ ≤ 2ρ.

Since this statement trivially holds for k = 0, let us assume that k ≥ 1 (and hence

ρ > 0). For a proof that
√

2ρ ≤ diamσ, see [8]. The inequality diamσ ≤ 2ρ follows from

the fact that σ ⊆ M(σ) and diamM(σ) = 2ρ.

Since σ ∈ VR(r), we know that diamσ ≤ 2r. It follows that
√

2ρ ≤ 2r, and hence

ρ ≤
√

2r. Therefore, the definition of Čech complex and Proposition 1.44 imply that the

collection σ′ of balls of radius
√

2r, whose centers belong to σ, correspond (their center)

to a simplex in Č(
√

2r). It follows that VR(S, r) ⊆ Č(S,
√

2r).



Chapter 2

Persistent Homology

In this chapter, we provide an overview of persistent homology, a natural extension

of traditional homology that measures how homological elements, such as components,

holes, and other features, persist, i.e., remain non-trivial, through the steps of a filtration.

To that end, we first introduce the concept of filtration, then provide a formal definition

of persistent homology, and finally present two ways to visualize it. We conclude this

chapter with a brief section on the stability of this method. Unless otherwise noted, we

refer to [6, 23, 4] for definitions and to [19, 23] for representations.

2.1 Filtrations

We begin by formally introducing the concept of a filtration of simplicial complexes,

which consists of a nested sequence of increasingly larger complexes that represent the

evolution of a growing simplicial complex. Filtrations can be either discrete or continu-

ous. We present both approaches: the discrete setting allows for a more straightforward

definition and visualization of persistent homology, while the stability of persistent ho-

mology relies on the continuous variation of a parameter1.

Discrete filtration

Definition 2.1. Let K be a simplicial complex. A (discrete) simplicial filtration F =

F(K) of K is a nested sequence of subcomplexes

F : ∅ = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km = K.

1This will be discussed in detail later. In essence, continuous variation ensures the continuity of

persistent homology.

19
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Figure 2.1: A filtration of simplicial complexes and its correspondent 0-dimensional barcode. The left

endpoint of each bar corresponds to the birth complex of a component. The right endpoint of each

bar corresponds to the terminal complex of a component. The color of each bar also appears on one

vertex (the representative of the component) and potentially on one edge (the edge, that terminates the

component).

which can also be expressed as a sequence of natural inclusion maps2 denoted by

F : ∅ = K0

i0,1
↪−→ K1

i1,2
↪−→ K2

i2,3
↪−→ . . .

im−1,m

↪−−−−→ Km = K.

Example 2.2. An example of a simplicial filtration is illustrated in Figure 2.1. The

nested simplicial complexes K1 ⊆ K2 ⊆ K3 ⊆ K4 are separated by vertical lines. K0

is omitted for simplicity. The horizontal arrows below, referred to as “bars”, form a

barcode, which visually represents the persistence of specific features. In this case, they

show the persistence of zero-dimensional homology classes, namely the components. We

will provide a more precise definition of a barcode later in this chapter.

Continuous Filtrations

Definition 2.3. A continuous filtration of a finite simplicial complex K is a collection

of subcomplexes {Kr}r≥0 of K such that:

∀r < q : Kr ⊆ Kq ⊆ K.

Definition 2.4. Given a simplicial complex K, let f be a filtration function3, i.e., an

2In general, is,t : Ks ↪−→ Kt
3It can be referred also as annotation function, monotonic function or simplex-wise monotone func-

tion, see for instance [6] or [4]
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annotation of each of the simplices of K by a real number such that σ ≤ τ ⇒ f(σ) ≤ f(τ).

The sublevel filtration associated to f is a continuous filtration consisting of sublevel

complexes Kr = f−1((−∞, r]) ⊆ K for r ∈ R.

Remark 2.5. The property σ ≤ τ ⇒ f(σ) ≤ f(τ) ensures that the sublevel sets

f−1((−∞, a]) are subcomplexes of K for every a ∈ R. Additionally, we need to set a

value a0 to get Ka0 = K0 = ∅, such as a0 = −∞.

The Rips and Čech filtrations, as defined in Chapter 1, are continuous filtrations of

this sort.

Example 2.6 (Čech Filtration). Let X be a metric space S ⊆ X be a finite subset. The

Čech filtration of S is the collection of abstract simplicial complexes {Č(S, r)}r≥0 along

with inclusions ir1,r2 : Č(S, r1) ↪→ Č(S, r2) for all r1 ≤ r2.

Example 2.7 (Rips Filtration). Let X be a metric space and let S ⊆ X be a finite subset.

The Rips filtration on S is the collection of abstract simplicial complexes {VR(S, r)}r≥0

along with inclusions ir1,r2 : VR(S, r1) ↪→ VR(S, r2) for all r1 ≤ r2. See the top part of

Figure 2.2 for an example.

Figure 2.2: (a) A finite set of points in R2 (for ϵ = 0) and the Vietoris-Rips filtration constructed from

it (for ϵ ranging from 0 to 2.1). (b) The barcode corresponding to the nested sequence of spaces shown

in (a), where solid lines represent the lifetimes of connected components and dashed lines represent the

lifetimes of holes.
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Given a discrete filtration, there is a straightforward extension of it as the sublevel

filtration of the annotation function. Conversely, for a continuous sublevel filtration

{Kr}r≥0 associated with a filtration function f , the most effective way to generate a

discrete filtration is to consider the index i as the index of the critical scale4 of the

continuous filtration. Formally, since K is finite by definition, Im f has finite cardinality.

Therefore, we can define the critical scales r1 < r2 < · · · < rk as the enumeration of the

image Im f = {r1, r2, . . . , rk}, and define Ki as the corresponding sublevel sets. This

finite filtration retains all the information about the changes in the original continuous

filtration.

Continuous filtrations conveniently model the geometric setup of standard filtrations.

On the other hand, discrete filtrations are a convenient finite description on which we

may develop algorithmic approaches.

2.2 Definition and Visualization

We are now ready to introduce the formal definition of persistent homology. Note that,

from this point forward, we will focus on discrete filtrations. However, the definition of

persistent homology can also be applied to continuous filtrations, with the appropriate

adjustments to the indices of the groups.

Definition 2.8. Let K be a simplicial complex, F = Z2
5, and p ∈ {0, 1, 2, . . . }. Given a

filtration

∅ = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km = K

of K, the corresponding p-dimensional persistent homology groups with coefficients in F
are the images of the maps (is,t)∗ : Hp(Ks;F) → Hp(Kt;F) for all 0 ≤ s ≤ t ≤ m. In

symbols:

Hs,t
p = Im(is,t)∗ for 0 ≤ s ≤ t ≤ m.

The corresponding ranks βp
s,t = rank(is,t)∗ are called persistent Betti numbers6.

Remark 2.9. By the functoriality of homology, i.e. (iu,t)∗ ◦ (is,u)∗ = (is,t)∗, we obtain a

sequence of homology groups

∅ = Hp(K0;F)
(i0,1)∗
↪−−−→ Hp(K1;F)

(i1,2)∗
↪−−−→ . . .

(im−1,m)∗
↪−−−−−→ Hp(Km;F) = Hp(K;F).

4A scale r of a continuous filtration is considered critical if at least one simplex appears at r.
5In this work we focus on Z2, but the definition is true for an arbitrary field.
6Note that βp

s,t is a non-increasing function in t and a non-decreasing function in s.
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As is the case with ordinary homology, each persistent homology group is determined

up to isomorphism by its Betti number. As we go from Ki−1 to Ki, we gain new homology

classes and we lose some when they become trivial or merge with each other. Intuitively,

the persistent homology groups consist of the homology classes of Ks that are “still alive”

in Kt. In the next section, we will see more precisely what does it mean to be still alive

and how to visualize this idea.

Barcodes

Let us fix a filtration K1 ⊆ K2 ⊆ . . . ⊆ Km = K of the simplex complex K, F = Z2

and p ∈ {0, 1, . . .}. As introduced in the previous section, the persistent Betti number

βp
s,t represents the dimension of the subspace of homology elements in Kt that have a

representative in Ks. More rigorously, it is the dimension of the collection of homology

elements in Ks that remain non-trivial in Kt, defined as βp
s,t = dimHp(Ks)/ ker(is,t)∗

7.

Barcodes, as mentioned above, provide a more intuitive representation of specific infor-

mation: the lifetime of homology classes. A bar [s, t) represents a homology element

that is born at s and terminates at t. Formally, we define:

1. βs,t represents the number of bars that begin at s and persist through t.

2. Homology born at s is defined as Hp(Ks)/(Im is−1,s)∗, where we quotient the ho-

mology classes that already have a representative in Ks−1. For formal reasons,

(i0,t)∗ is defined as the trivial map. The dimension of this homology is βs,s−βs−1,s,

which represents the number of bars that begin at s.

3. Homology terminating at t is defined as ker(it−1,t)∗. Its dimension is βt−1,t−1−βt−1,t,

since dim ker(it−1,t)∗ = dimHp(Kt−1)/Im(it−1,t)∗. This value corresponds to the

number of bars that terminate at t.

4. The quantity βs,t − βs−1,t measures the dimension of homology born at s that is

still alive at t. Specifically, βs,t − βs−1,t = dim((Im is,t)∗/Im(is−1,t)∗), i.e., the

dimension of homology classes in Hp(Kt) that have representatives in Ks, modulo

those already present in Ks−1. This represents the number of bars starting at s

and continuing through t.

5. The quantity ns,t = βs,t−1 − βs−1,t−1 − (βs,t − βs−1,t) indicates8 the dimension of

7Throughout the rest of this section, we will omit the superscript p indicating the fixed dimension.
8This can be interpreted as (the dimension of homology born at s and still alive at t− 1) minus (the

dimension of homology born at s and still alive at t).
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homology born at s that terminates at t, representing the number of bars that

begin at s and end at t.

6. Finally, ns,∞ = βs,m − βs−1,m represents the dimension of homology born at s that

persists through to the end of the filtration.

The p-dimensional barcode consists of intervals of the form:

i. [s, t) for 1 ≤ s < t ≤ m, and

ii. [s,∞) for 1 ≤ s < m.

Each interval can have different multiplicity: the number of intervals [s, t) is denoted

by ns,t, with 1 ≤ s < t ≤ ∞.

Example 2.10. We again turn our attention to the filtration in Figure 2.1. From the

Table 2.1 below, we can deduce that n2,3 = 1 − 1 − (2 − 3) = 1, and as a result,

there is 1 bar of the form [2, 3), as displayed in the figure. Similarly, we compute

n1,2 = n1,∞ = n2,∞ = 1 and n1,3 = n1,4 = n2,4 = n3,4 = n3,∞ = n4,∞ = 0

Persistence diagrams

Another well-established method for visualizing persistent homology is through persis-

tence diagrams, which are defined as follows. Given a barcode, as previously described,

we can represent each interval [s, t) as a pair of numbers and visualize it as a point (s, t)

in R2. Note that a point of the form (s,∞) cannot be directly represented on a plane,

so we select a y-coordinate above a certain value k, such as k + 1, to approximate ∞.

Each point (s, t) on a persistence diagram is assigned a multiplicity ns,t, which indi-

cates the number of intervals of the form [s, t).

The resulting collection of weighted points in the plane is known as a persistence

diagram. An example of this can be seen in Figure 2.3. A barcode encodes the same

information as a persistence diagram, but while the persistence of a bar is measured by

its length, the persistence of a point on a persistence diagram is measured by its distance

from the diagonal ∆ = {(x, x) | x ∈ R}. All points on a persistence diagram lie above

this diagonal. In theory, if bars of length zero [s, s) existed, they would correspond to

points on the diagonal (s, s).

Persistence diagrams are often preferred for visualizing persistent homology, espe-

cially when the number of points and bars is large, as their distribution tends to be
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Figure 2.3: A filtration along with the corresponding zero-dimensional barcode and persistence dia-

gram. The colors of bars match the colors of the corresponding points in the persistence diagram.

s \ t 1 2 3 4

1 2 1 1 1

2 / 3 2 2

3 / / 2 2

4 / / / 2

Table 2.1: Table of zero-dimensional

persistent Betti-numbers β0
s,t. Figure 2.4: The sum of multiplicities

of points in the blue quadrant with apex

(2, 3) is β2,3 by Lemma 2.11.
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well-represented in this form. Conversely, when the number of points and bars is small,

barcodes are often more descriptive.

As the multiplicities ns,t are defined using persistent Betti numbers βs,t, it turns out that

a reverse expression also exists.

Lemma 2.11 (Fundamental Lemma of Persistent Homology).

bs,t =
∑

s′≤s, t′>t

ns,t,

with t′ that could also take the value ∞.

The formula in the lemma can be verified explicitly. However, the statement is

apparent from the definitions, as βs,t represents the homology born at s or before and

terminating after t, while ns,t represents the homology born precisely at s and terminating

precisely at t.

Remark 2.12. Lemma 2.11 has a geometric interpretation in the context of persistence

diagrams (see Figure 2.4). It essentially states that βs,t is the sum of all multiplicities of

points in a persistence diagram that lie in the upper-left quadrant [0, s] × (t,∞]. In the

context of this interpretation, the formula for multiplicity

ns,t = bs,t−1 − bs−1,t−1 − bs,t + bs−1,t

is the expression of the square (s− 1, s] × [t− 1, t) in terms of such quadrants.

Remark 2.13. The Lemma 2.11 also implies that the information encoded in a barcode

or in a persistence diagram is precisely the same as the information encoded by persistent

Betti numbers.

2.3 Stability

Persistence is a measure-theoretic concept built upon algebraic structures, with its most

significant property being stability under data perturbations, which means that small

changes in the data result in only minor changes in the persistence. We can formalize

this statement using a simple tool, the bottleneck distance, that formalize the concepts

of similarity between persistence diagrams.
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Bottleneck distance

Suppose A = (a1, a2, . . . , am) and B = (b1, b2, . . . , bn) are persistence diagrams, i.e.,

ai and bJ are point above the diagonal in the first quadrant in the plane, with their

multiplicity, for all i = 1, . . . m and j = 1, . . . , n,

For a point v = (v1, v2) ∈ R2, let v̄ =
(
v1+v2

2
, v1+v2

2

)
∈ R2 be the point on the diagonal

∆ = {(z, z) | z ∈ R} which is the closest to v in d∞ (and also in d2) metric9.

Definition 2.14. Let A′ ⊆ A and B′ ⊆ B. A partial matching between A and B is a

bijective map φ : A′ → B′. The matching distance of such φ is defined as

dM(φ) = max

{
max
v∈A′

d∞(v, φ(v)), max
v∈A\A′

d∞(v, v̄), max
v∈B\B′

d∞(v, v̄)

}
.

Definition 2.15. Let µ(A,B) denote the collection of all partial matchings between A
and B. The bottleneck distance between persistence diagrams A and B is the minimal

matching distance between them, i.e.,

dB(A,B) = min
φ∈µ(A,B)

dM(φ).

Remark 2.16. Clearly, dB(A,B) = 0 if and only if A = B. Furthermore, dB(A,B) =

dB(B,A), and dB(A, C) ≤ dB(A,B) + dB(B, C) for persistence diagrams A,B, C, thereby

justifying its classification as a distance.

Examples of partial matchings are given in Figure 2.5. The unmatched points are

connected to the closest point on the diagonal. Note that the d∞(a, b) distance between

points a and b can be thought of as representing one half of the side length of the square

centered at a which has b on its boundary, as shown in the second line of the cited figure.

According to this, it is easy to see that the pair with the smallest matching distance is

the second from the left, and this quantity is the actual bottleneck distance dB.

Stability theorem

Now, we are ready to present one of the main theorem for stability of persistence diagrams

related to filtrations (for the proof, see [3]). More specific result, related to particular set

of functions along with stability theorem related to other concepts of distance between

persistence diagrams, can be found in [6] or [23].

9Recall that these two distances in Rd are defined as follows:

d∞(v, u) = maxi=1,2{|vi − ui|}, where v = (v1, v2) and u = (u1, u2).

d2(v, u) =
√

|v1 − u1|2 + |v2 − u2|2 (euclidean distance).
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Figure 2.5: In the first line, examples of partial matchings between the red and the blue persistence

diagrams, with points unmatched by φ being matched to the closest diagonal point; in the second line

the distances between pairs are demonstrated by the squares arising as the balls of the d∞ metric.

Theorem 2.17. Let K be a simplicial complex and f, g : K → R be two monotonic

functions. Let Dgp(f) and Dgp(g) denote the persistence diagrams related to the sublevel

filtration associated to f and g, respectively. For each dimension p, the bottleneck distance

between the diagrams is bounded from above by the d∞-distance between the functions,

dB(Dgp(f),Dgp(g)) ≤ ∥f − g∥∞10.

The essence of the theorem is that small perturbations of the input lead to small

changes in persistence diagrams. This property has a crucial impact in computer science

and practical applications: it ensures that minor variations in the positions of points in a

data cloud do not significantly alter the persistence diagram, thereby providing a robust

topological analysis even with imprecise data.

10Recall that ∥f − g∥∞ = d∞(f, g) = supx∈K |f(x)− g(x)|.



Chapter 3

Identifying Lasso Proteins with

Persistent Homology

In this chapter, we see how persistent homology can be applied to biology, by identifying

lasso structures in proteins. We start by introducing key concepts related to protein

structure and topology, focusing on lasso proteins. We then discuss how persistent

homology can be used to identify these lasso structures, in the last section. General

information on proteins is based on [1, 15], while the discussion on lasso proteins draws

from [18, 17, 16], and the final section references to [9].

3.1 Proteins: Structure Fundamentals

Proteins are one of the three main biological macromolecules, along with DNA and RNA.

These molecules are closely interconnected: DNA is transcribed into RNA, which is then

translated into proteins. Proteins carry out essential functions, including catalyzing

reactions, transporting molecules, coordinating cell processes, and providing structural

support. Studying protein structure is crucial, as their functions depend on their three-

dimensional shapes, which to a large extent is determined by their specific amino acid

sequences1.

1Predicting a protein’s tertiary structure from its sequence alone is difficult because of the complex-

ities involved in protein folding. However, if the structure of a related protein (from the same family)

is known, it is possible to accurately predict the tertiary structure through a computational technique

called homology modeling.

29
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Figure 3.1: The dehydration condensation of two amino acids to form a peptide bond (red) with

expulsion of water (blue)

Amino Acids: The Building Blocks of Proteins

While DNA and RNA are composed of four different nucleotides, proteins are composed

of 20 different amino acids. These basic units share a common structure, consisting of

a central carbon atom (the α-carbon Cα) bonded to an amino group (NH2), a carboxyl

group (COOH), a hydrogen atom, and an R-group or side chain. The R-group varies

between amino acids and determines their chemical properties2.

Amino acids are linked together by peptide bonds, which are formed through a dehy-

dration synthesis reaction between the carboxyl group of one amino acid and the amino

group of another. This bond formation results in a polypeptide chain (see Figure 3.1),

which then folds into a specific three-dimensional structure to form a functional protein.

Levels of Organization

The multiplicity of functions carried out by proteins arises from the vast number of

different shapes they can adopt. The three-dimensional structure of a protein is typi-

cally described at four different levels of organization: primary, secondary, tertiary, and

quaternary (see Figure 3.2).

Primary Structure The sequence of amino acids in a polypeptide chain is referred

to as its primary structure. This sequence is determined by the gene encoding of the

protein and is unique for each protein. It can vary greatly in length. Generally, when

a polypeptide consists of only a few amino acids, it is referred to as an oligopeptide (or

simply peptide). The average size of proteins is on the order of hundreds of amino acid

residues, although proteins composed of many thousands of amino acids are also known.

2There are four main categories of amino acids based on their side chains: aromatic, polar, non-polar,

and charged. See [15] for details.
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Figure 3.2: Increasing levels of organization in protein structure. The figure shows how a short segment

of 25 amino acids in the RNA polymerase II of S. cerevisiae folds into an α-helix, and subsequently

integrates within a subunit of the complete protein, which is composed of ten different subunits.

The primary structure dictates the higher levels of protein structure and ultimately its

function.

Secondary Structure The secondary structure guides the local folding of the polypep-

tide chain through interactions between backbone3 atoms. The most common secondary

structures are the α-helix and the β-sheet. In both cases, hydrogen bonds4 are crucial

for the formation and stabilization of these structures. Furthermore, since secondary

structures are localized, a single protein molecule can contain various regions with dif-

ferent secondary structures, increasing the complexity of the molecule. For this reason,

secondary structures are usually represented in a simplified manner through the ribbon

representation, where the backbone is shown as a strip to highlight the arrangement

of secondary structural elements, such as alpha-helices and beta-sheets. In particular,

α-helices are represented by coiled ribbons or thick tubes, β-sheets by arrows, and non-

repetitive coils or loops by lines or thin tubes. This visualization method simplifies

complex three-dimensional structures, making it easier to understand the overall folding

and organization of the protein (example in Figure 3.5).

Tertiary Structure The tertiary structure is the overall three-dimensional shape of a

single polypeptide chain, resulting from interactions between the R-groups of the amino

acids. These interactions can be weak, such as hydrogen bonding and Van der Waals

3The backbone is the main chain of a protein molecule. It consists in a repeated pattern: N-Cα-C’-

N-Cα-C’-N-Cα-C’, and so on, where each unit corresponds to one amino acid. N is the nitrogen of the

amide group, Cα is the alpha carbon, C’ is the carbonyl carbon.
4A hydrogen bond is a weak chemical bond formed when a hydrogen atom covalently bonded to a

highly electronegative atom (such as nitrogen, oxygen, or fluorine) interacts with another electronegative

atom with a lone pair of electrons. Electronegativity is the tendency of an atom to attract electrons.
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(a) α-helix structure (b) β-sheet structure

Figure 3.3: The secondary structures.

forces5, or strong, such as ionic interactions and disulfide bonds. Disulfide bonds are co-

valent linkages formed between the sulfur atoms of two cysteine residues within a protein.

Because of this, they are also known as SS-bonds, disulfide bridges, or cysteine bonds.

They are essential for the formation of lasso motifs, as we will see in the next section.

However, these interactions, in addition to being generally stronger than the hydrogen

bonds that stabilize an α-helix or a β-sheet, are also geometrically more variable. As a

result, the tertiary structures are far more complex and diverse than secondary structures

in proteins.

The tertiary structure is crucial for a protein’s functionality, as it determines the

spatial arrangement of the active sites and other functional regions of the protein.

Quaternary Structure Some proteins are composed of more than one polypeptide

chain. The quaternary structure refers to the arrangement and interaction of multiple

polypeptide chains (subunits) in a protein. Hemoglobin, for example, is a protein with

quaternary structure, composed of four subunits. The quaternary structure is stabilized

by the same types of interactions that stabilize tertiary structure.

5Van der Waals forces are weak, non-covalent interactions that arise from transient dipole moments

caused by the random movement of electrons, which induce dipoles in neighboring molecules. See [15]

for details.
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3.2 Protein topology: the lasso proteins

In recent years, it has become clear that the conventional framework of folding (with the

subdivision between primary, secondary and tertiary structure in general) is not sufficient

to describe at least 6% of the proteins in the Protein Data Bank (PDB)6 [22]. These

proteins exhibit complex entanglements, forming structures such as knots7, slipknots8

and non-trivial lassos. In this case, the nontrivial topology of the protein chain occurs

when disulfide bonds (introduced in Section 3.1) or other kinds of bridges are positioned

in such a way that a portion of the protein forms a closed loop (called covalent or cysteine

loop [16]), through which another segment threads. In many cases, the threading occurs

during the protein’s folding process and remains locked for stability reasons.

Classification of complex lassos

Complex lasso proteins can be classified based on the number of piercings through the

minimal surface9 spanned by the covalent loop (classification introduced in [16]; see Fig-

ure 3.4). Specifically, four distinct classes of complex lasso proteins have been identified:

• Ln class (simple lasso): where the same tail pierces the surface n times;

• LSn class (supercoiling lasso [18]: where one tail pierces the surface n times and

winds the protein chain comprising the loop;

• LLi,j class (double lasso): where both tails pierce the surface i and j times, re-

spectively;

• LSLi,j class : where one tail pierces the surface i times in a supercoiling manner,

while the second tail pierces the surface in a simple manner.

Certain lasso motifs are associated with specific functions: L1 is common in binding,

antimicrobial, viral, and immune-related proteins, while L2 is often found in signaling

proteins. L3 motifs frequently appear in transport proteins. Although supercoiling and

LL structures are less common, they are frequently found in adhesion proteins (see Figure

3.5 for an example of supercoiling lasso).

6The Protein Data Bank (PDB) is a database for the three-dimensional structural data of large

biological molecules such as proteins and nucleic acids.
7A knot is defined as embedding of the circle S1 in the 3-dimensional sphere S3
8Proteins that have knotted sub-chains despite their overall backbone chain being unknotted [12].
9A minimal surface is a surface with local minimal area (see [13] for details). This condition of a

minimal area removes the ambiguity in a definition of such a surface
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Figure 3.4: Various types of complex lasso motifs. Top row, left to right: L1 (single lasso), L2 (double

lasso), L3 (triple lasso); bottom row, left to right: LS (supercoiling) and LL1,1 (two-sided lasso).

Figure 3.5: Protein 1zd0 in ribbon representation (left), with smoothed backbone (middle), and in

schematic representation (right). The gray portion spanned by the protein’s backbone in orange is closed

by a disulfide bond (yellow) and is pierced twice in the same direction by the N terminal
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Biological role and application

Around 18% of proteins with disulfide bridges have complex lasso [18], and they have

been identified across various organisms, suggesting their evolutionary significance and

potential functional diversity. Many bacterial lasso peptides, for example, have been

identified as antibiotics due to their ability to inhibit enzymes or disrupt cellular processes

in pathogens. Their tightly knotted structure is believed to contribute to their stability

and resistance to proteolytic degradation, enhancing their longevity and effectiveness in

hostile environments [18]. Similarly, lasso proteins found in eukaryotic systems have been

implicated in signaling, transport, and regulatory roles, where their mechanical stability

plays a critical role in maintaining functional integrity [16].

Identifying and studying lasso complexes is essential because their unique topology

can have a big impact on a protein’s stability, folding mechanisms, and biological func-

tions. Their remarkable thermal and mechanical stability, along with their resistance

to degradation, makes them great candidates for drug design, especially in developing

peptide-based therapies that need to stay active over extended periods. Additionally, due

to their distinct topology, lasso proteins are also being explored as scaffolds for molecular

design, where their structure can be modified or functionalized for specific applications

in nanotechnology and bioengineering.

3.3 Detecting lasso proteins

Persistent homology has demonstrated a wide range of applications, from biological sys-

tems [2, 24] to social sciences [20] and neuroscience [2, 10]. Recently, it has proven

particularly effective for detecting lasso topologies in proteins, thanks to the introduc-

tion of a valuable algorithm [9] that is still being refined.

This algorithm offers a robust framework for identifying lasso topologies in proteins

and presents several advantages over commonly used methods such as minimal surfaces

analysis [17, 18]. To begin with, persistent homology is notably robust to noise, which

is crucial given the variability and imperfections often present in protein structure data.

It is also more computationally efficient compared to minimal surface methods and can

identify topological features at multiple scales, making it well-suited for analyzing the

complex, multi-scale nature of protein structures.

However, there are challenges as well. While the algorithm is generally faster and

more efficient for simple and well-behaved structures compared to other methods, calcu-

lating persistent homology for large and complex protein structures can still be compu-
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tationally intensive. Furthermore, interpreting results can be challenging, as comparing

persistence diagrams is not always straightforward and may require careful interpretation

and supplementary analysis.

A Theoretical Perspective on the Framework

Detecting lasso topologies in proteins using persistent homology involves several steps:

1. Representation of the Protein Structure. The first step is to represent the

protein’s three-dimensional structure as a point cloud, where each point corre-

sponds to the position of an atom in the protein. This can be done by representing

only the backbone atoms or including the side chains as well.

2. Filtration Process. From the point cloud, we construct a nested sequence of

simplicial complexes, such as Vietoris-Rips or Čech complexes (see Chapter 2). The

choice of filtration method significantly affects the detection of lasso structures, as

it influences how the protein’s topological features are revealed across different

scales.

3. Persistent Homology Computation. Persistent homology is computed by

tracking the birth and death of homological features as the filtration progresses.

For lasso detection, the focus is typically on identifying persistent zero- or one-

dimensional homology classes.

4. Interpretation of Results. The persistence diagram or barcode generated from

the analysis is then interpreted. This is a crucial step, which will be explained in

more detail in the next section. Intuitively, if the analyzed protein contains a lasso

motif, an intersection occurs between the disk spanned by the covalent loop and

one terminus of the protein. By sequentially adding atoms from the termini and

comparing the persistence diagrams of the isolated covalent loop with the covalent

loop plus the added atom, a significant difference between the diagrams will appear

when the intersection occurs.

What does it mean for persistence diagrams to be significantly different? Several

criteria can be applied, such as comparing the lifetimes of one-dimensional ho-

mology classes or summing the lifetimes of each one-dimensional class along the

filtration. However, the most effective method has been proven to be the bottleneck

distance (see Section 2.3).
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A simplified model: the decagon

To understand how the algorithm identifies lasso motifs, we analyze its behavior in a

simplified two-dimensional model. We consider a set of points arranged as the vertices of

a regular decagon, representing the atoms in a covalent loop. Specifically, we examine two

cases: a decagon without a center, consisting only of the 10 vertices {A1, . . . , A10} = S,

and a decagon with an additional central point, which we denote by C (see Figures 3.6i.a

and 3.6ii.a; both decagons are constructed from a circle with a radius of 4). The central

point represents the intersection between the disk bounded by the covalent loop and one

of the two ends of the protein, giving rise to the lasso motif. Note that, for simplicity,

this point was placed at the center, but it could have been positioned anywhere inside

the decagon.

From the point cloud, we constructed a nested sequence of Vietoris-Rips simplicial

complexes by increasing the radius r of the balls centered at the vertices.10

Given the nature of the model, the persistent homology analysis, which tracks the life

of homology classes (both 0-dimensional and 1-dimensional), was carried out intuitively

(without matrix computations, which are required for more complex models). This

analysis produced the barcodes and persistence diagrams shown in Figures 3.7 and 3.8.

Let us now analyze the persistent homology of the two cases, referring to the snapshots

in Figures 3.6i and 3.6ii, which show the process of constructing the Rips filtration.

Zero-Dimensional Persistent Homology

Decagon without the center (S) Initially, we have 10 disconnected vertices, each

representing a separate connected component (Figure 3.6i.a). As the radius r increases,

edges form between the vertices when the balls centered at each vertex intersect. The

first edges appear at r = 2.47
2

(see Figure 3.6i.c), which corresponds to the minimum

distance between adjacent vertices on the decagon. All vertices eventually merge into a

single connected component. The barcode for zero-dimensional homology (Figure 3.7.a)

shows this merging process, with the single connected component persisting indefinitely

(represented as a bar extending to infinity).

Decagon with the center (S∪{C}) When the central point C is added, the number

of connected components at r = 0 increases to 11 (see Figure 3.6ii.a). As before, edges

between the vertices emerge at r = 2.47
2

, and the number of components reduces to two

10Remember that, for a fixed r ∈ [0, 4], a simplex σ ∈ VR(S, r) iff diamσ ≤ 2r iff d2(x, y) ≤
2r ∀x, y ∈ σ (see Definition 1.41). Intuitively, a new edge emerges when two balls intersect.
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(Figure 3.6ii.c). For r ≥ 2, the balls around the vertices intersect with the ball around C,

leading to the formation of new simplices and the eventual merging of the two remaining

components (Figures 3.6ii.d and 3.6ii.e). The barcode for zero-dimensional homology

(Figure 3.7.b) captures this progression.

One-Dimensional Persistent Homology

Decagon without the center (S) As the edges between vertices emerge at r = 2.47
2

(Figure 3.6i.c), a non-trivial loop forms. This loop persists until r = 7.61
2

, when the loop

is “filled in” by newly added simplices (Figure 3.6i.f), at which point the one-dimensional

homology class dies.

Decagon with the center (S ∪ {C}) In this case, the central point influences the

formation and lifespan of the one-dimensional homology classes. A loop forms at r = 2.47
2

(Figure 3.6ii.c), but due to the central point, this loop is filled in much earlier (at r = 2),

as simplices form between the vertices and the center (Figure 3.6ii.d). Thus, the one-

(i) (a) Points with their mutual distances, which serve as a reference for determining the values of r at which new

complexes are added. (b) VR(S, 0.8) (c) VR(S, 1.3), where the edges of the decagon become apparent as r ≥ 2.47
2

. (d)

and (e) VR(S, 2.64) and VR(S, 3.32), where new simplices emerge, but the homology remains unchanged. (f) VR(S, 3.38),

where the union of the simplices forms a single convex connected component.
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(ii) (a) Points with their mutual distances, as before. (b) Simplicial complex VR(S ∪ {C}, 0.8), where each connected

component is still separate. (c) VR(S ∪ {C}, 1.3), where the edges of the decagon become apparent as r ≥ 2.47
2

. (d)

VR(S ∪ {C}, 2.1), where the balls centered at the vertices and the center intersect, covering the central hole with new

simplices. (e) VR(S ∪ {C}, 2.69), where new simplices emerge, but they do not alter the homology of the complex.

Figure 3.6: Rips filtration for the decagon without (i) and with (ii) the center.

dimensional homology class dies earlier than in the case without the center, as reflected

in the barcode (Figure 3.7.b).

In summary, the key differences between the two cases are as follows:

• Zero-dimensional homology : In both cases, all vertices eventually merge into a sin-

gle connected component, but the case with the center initially has one additional

component, affecting the merging process. This difference is visible in both the

barcodes (Figure 3.7) and the persistence diagrams (Figures 3.8).

• One-dimensional homology : The main distinction lies in the lifespan of the non-

trivial loop in one-dimensional homology. In the decagon without the center, the

loop persists longer (until r = 7.61
2

, giving it a lifespan of 2.57). In contrast, in the
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Figure 3.7: Barcodes of persistent homology. (a) Barcode related to zero-dimensional persistent

homology. (b) Barcode related to one-dimensional persistent homology.

Figure 3.8: Persistence diagrams. (a) and (b) are the zero-dimensional persistence diagrams for the

decagon with and without the center, respectively. (c) and (d) are the one-dimensional persistence

diagrams for the decagon with and without the center, respectively.
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Figure 3.9: Bottleneck distance between persistence diagrams.

case with the center, the loop is filled in much earlier (at r = 2, giving it a lifespan

of 0.76), due to the connections between the vertices and the central point.

To further highlight the differences, we can calculate the bottleneck distance between

the persistence diagrams. Figure 3.9 shows an example of partial matchings between the

persistence diagrams related to one-dimensional homology. According to the definition,

the bottleneck distance between the two is represented by the diagram on the right.

Obviously, the framework we have just discussed is applied to much larger and more

complex datasets, in 3 dimensions, by the algorithm we mentioned. See Figure 3.10,

which shows a lasso protein identified through minimal surface analysis, to understand

the complexity of the dataset typically used.

The algorithm

We conclude this section by showing the pipeline followed by the algorithm to detect lasso

structures. More details regarding the implementation, optimization, and efficiency of

this algorithm can be found in [9].

• The algorithm starts by loading the (x, y, z) coordinates of each atom in the protein

from a provided file. It is possible to choose whether to include all atoms, including

the side chains, or just the backbone of the protein.

• Based on information from the Lassoprot database11, the protein is divided into

11A server and database dedicated to proteins with lasso structures. It allows users to analyze new
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Figure 3.10: Structure of the glutamate-like receptor GLR3.2 ligand-binding domain in complex with

glycine, on the left. Minimal surface spanned by the covalent loop and its triangulation, on the right.

At the bottom, the chain sequence. The cysteines in orange delimit the covalent loop.

three distinct sections: the loop, the head, and the tail. This segmentation is

crucial for isolating the loop for further analysis.

• To increase the resolution of the method, additional atoms (typically 1 or 2) are

inserted between the original atoms in the loop. This step refines the structure and

enhances the precision of the persistent homology calculations, thereby reducing

the likelihood of false negatives.

• The persistent homology of the loop is computed independently.

• Each atom in the head and tail is considered individually. For each atom, the

persistent homology of the combined set of the loop and that atom is calculated.

This comparison allows for the detection of interactions between the head or tail

and the loop.

• The bottleneck distance is then measured between the persistent homology of the

loop alone and that of the loop combined with each individual atom from the head

protein structures and includes a comprehensive database with detailed information about proteins

with lasso structures previously analyzed. The resource is accessible at the following link https://

lassoprot.cent.uw.edu.pl/.

https://lassoprot.cent.uw.edu.pl/
https://lassoprot.cent.uw.edu.pl/
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or tail. This distance quantifies the difference in topological features between the

two scenarios.

• A graph of all these distances is constructed. The graph is then smoothed to

remove noise and highlight significant changes.

• The maxima of the smoothed graph are identified, as these correspond to the points

where the head or tail intersects with the loop.

• Finally, any maxima below a predefined threshold are discarded, ensuring that only

the most significant intersection points are retained.
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