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Introduction

The study of symmetries is widely regarded as one of the most elegant top-
ics in mathematics. In modern times, the interest for symmetries has been
responsible for the development of many branches such as group theory and
combinatorics, from Galois theory to many areas of algebraic topology. In-
evitably, the core of this trending interest can be found in the study of reflec-
tional symmetries. Their comprehension has been possible only through the
development of Weyl and Coxeter groups theory. In particular, by studying
a discrete group of reflections, one can take advantage of a wide variety of
both geometric and algebraic tools to better understand how it behaves, such
as chambers, walls, root systems and specific group presentations. Since the
works of Hermann Weyl, the interest for some of these tools and techniques
grew to give birth to new and independent areas of interest, in the works
of Harold Coxeter, Jaques Tits and many others. As an example, Coxeter
groups theory itself and the study of hyperplane arrangements are both car-
ried on and still studied nowadays. Coxeter groups theory in particular made
it possible to better understand many algebraic aspects of reflection groups,
and offered a way to address the problem of their classification, which is still
not totally solved. At the same time, the new tools developed made it pos-
sible for new questions and constructions to be formulated. In general, from
a finite Coxeter group one can construct a new group, called its braid group.
The presentation of the braid group can be shown to be very closely related
to the one of its Coxeter group, and its geometrical meanings mime many of
its properties. From the generalization of braid groups a new important class
of groups was defined: Artin groups, destined to take place by right among
the most misterious objects in modern mathematics.

Taking a closer look to the theory, one recognizes that many known groups
admit a Coxeter group presentation; as an example, symmetric and dihedral
groups are cases of spherical (i.e., finite) Coxeter groups. The braid group of
the symmetric group is known as the braid group on n-strands, or coharsely
the braid group, that can be tought as the group of the possible crossing
moves on n strands generating a braid. Many classic problems in group the-
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ory become particularly intriguing when contextualized to the braid group,
mainly because of this realization, such as the word problem and the obvious
questions about its torsion freeness and its center. The works that allowed to
find a solution for the word problem in the braid group are mostly the ones
by Frank Garside. His insights were particularly profund: it turned out that
the theory he developed could be extended to a wide class of groups, called
Garside groups. The features of Garside theory, as it was later carried on in
the works of many scholars such as Luis Paris and Patrick Dehornoy, are the
presence of a group with a given generating set, and the choice of an element
called Garside element, for which the factorization poset with respect to the
given set of generators has some given properties. The main result of the
whole theory can be summed up in what follows: the Hasse diagram of the
poset embeds in the Cayley graph of the monoid, which embeds in the Cayley
graph of the group; this allows to solve the word problem in the group, and to
construct a finite KpG, 1q, with many important consequences. Recently, a
new approach to Garside theory has been proposed, considering posets called
combinatorial Garside structures. The aim is to make some requiremets to a
labelled poset so that it can be found as a factorization poset for a Garside
element in some Garside group. That group can be recovered from the poset,
so that in the poset the information of a whole Garside structure (namely,
the triple formed by a group, a generating set for the group and a Garside
element in the group) is already cointained. This modern approach is par-
ticularly useful when it comes to apply the results from Garside theory to
braid groups. In fact, it can be shown that in every spherical Coxeter group
the factorization posets of some elements with respect to opportune sets of
generators are combinatorial Garside structures. The Garside group aris-
ing from those structures can be shown to be always the braid group of the
spherical Coxeter group. This makes it possible to solve the word problem
in braid groups, and construct finite Kpπ, 1qs.

The results mentioned are more historically interesting than it seems at
first sight. This approach has actually made it possible to prove the famous
Kpπ, 1q-conjecture in the spherical case, stating that the braid group of every
spherical Coxeter group admits a finite Kpπ, 1q. In very recent times, it has
been possible to prove the conjecture also in the case of Artin groups (the
analogs of braid groups for an arbitrary Coxeter group) arising from Coxeter
groups of the so-called affine type, in the work of Mario Salvetti and Giovanni
Paolini. The conjecture is still open for the remaining two classes of Coxeter
groups: hyperbolic and higher-rank Coxeter group.

In this dissertation, we present Garside theory with particular interest
to the modern approach through combinatorial Garside structures, and then
introduce the techniques and the tools that make it possible to recover the
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two combinatorial structures inside the symmetric group. To do so, we will
consider two different presentations for the symmetric group, and for each
find an element that we will show to be a Garside element. Finally, we will
define and give a brief presentation of the braid group, and show that the
groups arising in the two cases of combinatorial Garside structures found are
bot isomorphic to the braid group, thus exemplifying what mentioned in the
special and most suggestive case of the braid group.
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Foundational material

We start by outlining very briefly some material that will be useful in the
following. Material in this section includes some notions regarding poset
theory, in particular the definition of labeling on a given poset and the lattice
property; the section closes with a useful lemma about lattices. In the second
section, our interest will shift to the construction of Cayley graphs and the
length function.

Poset combinatorics

We call a poset a partially ordered set, i.e a set endowed by a reflexive, an-
tisymmetric, transitive relation, called partial order relation and often noted
ď.

Let pP,ďq be a poset. It is said to be bounded if exists an element 1̂ P P
such that @x P P : x ď 1̂ and another element 0̂ P P such that @x P P : 0̂ ď x.
It is said to be graded if every maximal chain has the same length. It is said
to be of finite height if it has no infinite chain.

Example 0.0.1 (The product poset.). Let P1 “ pP1,ď1q, P2 “ pP2,ď2q two
posets. We call the product poset of P1 and P2 the poset

P1 ˆ P2 “ pP1 ˆ P2,ďq

where the relation ď holds between two elements pp1, p2q and pq1, q2q if and
only if p1 ď1 q1 and p2 ď2 q2.

Particular interest has the following class of relations.

Definition 0.0.2 (Covering relations). A relation x ď y is called a covering
relation if whenever x ď z ď y, it holds that z “ x or z “ y. We say that x
covers y.

In fact, one can observe that these relations are the ones represented in the
Hasse diagram of a poset, since the knowledge of such relations is sufficient to

1



determine the whole poset structure. In fact, every relation in P that is not
a covering relation breaks in a sequence of covering relations. The sequence
is not unique in general. A sequence of covering relations x1 ď x2 ď ¨ ¨ ¨ ď xk

is called a chain. The set of chains starting with x1 and ending with xk will
be noted rx1, xks.

In general, we will note a poset pP,ďq with P and consider it as endowed
by the partial order relation ď, without any further comments. We consider
a poset P , and the set formed by all the relations in P , i.e. the set RpP q “

tpx, yq P P 2 |x ď yu, an arbitrary set L that we will call set of labels and a
set-theoretic map Λ : R Ñ L, called labelling with labels in L.

Definition 0.0.3. A poset P is a labelled poset if it endowed by a set L of
labels and a labelling Λ with labels in L.

Remark 0.0.4. Having an arbitrary set L and a map Λ1 from the set of cover-
ing relations CRpP q to L, there is a way to induce a labelling Λ with labels
in LangpLq the language of words with letters in L, i.e. the class of sets of
words with letters in L, so that the restricted map

Λ : CRpP q Ñ L

coincides with Λ1. To see this, first consider the chain x1 ď x2 ď ¨ ¨ ¨ ď xk

with xi ď xi`1 for every i. This chain corresponds to a sequence of covering
relations xi ď xi`1 for each of which we have Λ1px1, x2q, so that by reading
the labels Λ1px1, x2q, . . .Λ1pxk´1, xkq we get a word in LangpLq. Whenever we
have x ď y, one can set Λpx, yq to be the class of the words read on chains
in rx, ys, thus getting a labelling of the whole poset.

We now leave labellings to consider a special property that a poset can
have, and that will be crucial in the following.

Definition 0.0.5. We pose for every couple of elements x, y P P the element
x ^ y as, when it exists, the greatest among the elements that are smaller
than both x and y, and call it their meet. If such an element exists for every
couple of elements in P , the poset is called a meet semilattice. Conversely,
we pose x _ y as, if it exists, the lowest among the elements that are greater
than both x and y, and call it their join. If such an element exists for every
couple of elements in P then it will be called a join semilattice. If a poset is
both a join and meet semilattice, it is called a lattice.

Example 0.0.6. We consider the class PpXq of the subsets of a given set X,
with the partial order relation given by inclusion. There exists a lowest subset
containing both Y1 and Y2, which is clearly the union Y1 Y Y2. There exists
also a greatest subset contained in both, which is the intersection Y1 X Y2.
Thus, PpXq under the partial order relation given by inclusion is a lattice.
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Example 0.0.7. The set of all partitions of a given set P has a natural order
of inclusion. We say that a partition A is included in another partition B
if every class of the first partition is included in some class of the second,
and we set in that case B ď A. We now consider the partition whose classes
are obtained by intersecting some two classes of A, and observe that setting
A ^ B to be this partition, pP,ď,^q is a meet semilattice. On the other
hand, consider the following relation; for any a P A, b P B respectively in
two classes A and B, we set a „ b if and only if A X B ‰ ∅. This is
an equivalence relation, and induces a partition. We set A _ B to be this
partition, and pP,ď,_q is a join semilattice. Thus pP,ď,^,_q is a lattice.

Example 0.0.8. Let P1, P2 two posets. We consider their product poset as
in example 0.0.1. If P1, P2 are lattices, then P1 ˆ P2 is a lattice. In fact, if
p1 ^ q1 “ r1 in P1 and p2 ^ q2 “ r2 in P2 then pp1, q1q ^ pp2, q2q “ pr1, r2q in
P1 ˆ P2. The same holds for joins.

The following lemma outlines a sufficient condition for a bounded, finite
height poset to be a lattice;

Lemma 0.0.9. Let P be a finite join-semilattice for which there exist a unique
minimal element. Then P is a lattice.

Cayley graphs and length function
We start by recalling some basic facts about group combinatorics. The fist
definition we give is of a useful tool in group combinatorics that we will use
consistently.

Definition 0.0.10 (Length function1). Let G be a finitely generated group with
presentation xS | R y. Among the words s1 ¨ ¨ ¨ sk, with si P S, representing
the element w P G, we define the length of w to be the lowest k:

lpσq “ mintk | s1 ¨ ¨ ¨ sk “ σ, si P Su

Words representing the element g P G that realize this length are called
reduced words for g.

Length functions play a fundamental role in understanding the way fac-
torizations for a given element in a group behave. There is a nice geometric
interpretation for length functions. To see it, we should make the following
construction, that will be useful in the following.

1This term usually refers to a much wider class of objects, and the object of this
definition is often referred to as word metric. Since this is the only case we will be
interested in, though, we choose to use this terminology.
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Definition 0.0.11 (Cayley graph). Let G a finitely generated group, with S
set of generators. We construct an oriented, labelled graph as follows; we
take the 0-skeleton to be the set of the elements in G, and we take for each
g P G and each s P S an oriented edge labelled s from g to g ¨ s (respectively,
s ¨ g). The resulting graph is called right (respectively, left) Cayley graph for
pG,Sq and will be noted CayleypG,Sq.

Unless otherwise specified, Cayley graphs are usually considered to be
right Cayley graphs.

As mentioned, we can interpret the length of an element g as the number
of edges crossed by the shortest path among the ones starting in the vertex
corresponding to the identity element and ending in the vertex corresponding
to the element g, and crossing only edges in the orientation-wise direction.

In general, we will deal with a special case of Cayley graphs, for which in
the considered group G every generator is an involution (i.e. every generators
g satisfies g2 “ e). In that case we will use a sort of involution convention,
meaning that oriented edges of the Cayley graphs will be crossed orientation-
wise when multiplying a firts time by the corresponding generator, and a
second time counterorientation-wise when multiplying again, gettin back to
the starting point. We will apply this convention without any additional
comment.
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Chapter 1

Combinatorial Garside structures

Garside structures firstly appeared in Garside’s works on the word problem
in braid groups [10], and arise naturally from the combinatorics not only of
symmetric groups (and thus braid groups), but of a wider class of objects1.
This section is intended as a brief presentation rather that a proper intro-
duction to Garside theory; in subsection 1.1 notions of Garside theory will
be introduced from a combinatorial point of view following the ideas of [5]
and [14], by outlining the combinatorial properties of the group-theoretical
objects from Garside theory. The link with classical Garside structures will
then be sketched, and a solution for the word problem will be given for
the arbitrary Garside structure in subsection 1.2. We will then in 1.3 leave
this presentation to outline another application of the theory, regarding the
construction of finite Kpπ, 1qs for groups arising from combinatorial Garside
structures; this will be done in full generality for arbitrary Garside groups,
relying on the notions introduced.

1.1 Garside structures and Garside groups
From now on, let P be a bounded, graded poset of finite height with a
labelling given by a function Λ on the relations, with L set of labels on
covering relations. In practical situations, we will define the labels only on
covering relations and consider the labelling to be induced as in remark 0.0.4.

We now will make some assumptions on P and its labelling. Let PrepP q

be the union on x P P of all sets of the form r0̂, xs, corresponding to the
1Actually, combinatorial Garside structures arise in general from the combinatorics of

Coxeter groups in both the spherical and affine case (see e.g. [14]) and have proved to be
effective tools to deal with the combinatorial structure of such groups, ultimately leading
to answers to many questions regarding both Coxeter and Artin groups (see [13] for a
survey on the whole topic).
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Figure 1.1: Two examples of combinatorial Garside structures

set of all prefixes appearing in some word in r0̂, 1̂s, and similarly SufpP q the
union of sets of the form rx, 1̂s, corresponding to the set of all suffixes.

Definition 1.1.1 (Combinatorial Garside structures). Let P be a bounded,
labelled, graded poset of finite height.

• P is said to be balanced if PrepP q “ SufpP q;

• P is said to be group-like if for every x ď y ď z, x1 ď y1 ď z1 in P ,
if labels on two corresponding relations coincide, then labels on the
third coincide (e.g. if P is group-like, Λpx, yq “ Λpx1, y1q and Λpy, zq “

Λpy1, z1q imply Λpx, zq “ Λpx1, z1q);

• P is said to be Garside-like if it is both balanced and group-like;

• P is said to be a combinatorial Garside structure if is Garside-like and
a lattice;

Example 1.1.2. The Hasse diagram in figure 1.1 on the left has edges labelled
a and b. The represented poset P is graded, bounded and of finite height. It
holds that PrepP q “ ta, b, ab, ba, aba, babu “ SufpP q, so that P is balanced.
Also, triangles that form are labelled with just one word, so that the poset
is group-like as a consequence of the construction in remark 0.0.4. We have
therefore the Garside-like property. On the other hand, the lattice property
holds since if x divides y then x ^ y “ x and x _ y “ y, while if x and y
are not ordered then x ^ y “ 0̂ and x _ y “ 1̂. Then, P is a combinatorial
Garside structure. We leave the poset on the right for the considerations of
the reader.
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In general, it is possible to define a group from a combinatorial Garside
structure, presented using L as set of generators, and relations equating any
two words in r0̂, 1̂s:

GpP q :“ xx P L | w1 ¨ w´1
2 @w1, w2 P r0̂, 1̂s y.

Example 1.1.3. Conside the poset on the left in figure 1.1. Associated to this
poset we find the group

GpP q “ x a, b | aba “ baby.

We again leave the group obtained from the poset on the right for the con-
siderations of the reader.

While a feature of this approach is to define a group GpP q starting from
a poset, classical Garside theory proceeds in the opposite direction, starting
with a group G and constructing a poset P in the following sense. Given a
finitely generated group G with S set of generators, S also naturally generates
a monoid M in G. Assume that G was such that for every element x P M
there is a bound on the length of factorizations of x in G. The choice of
an element δ P M gives place to a labelled, bounded poset of finite height
obtained from its left or right divisors in G under the relation given by
divisibility: FactpG,S, δq. Assume that the choice of δ P G was such that
FactpG,S, δq is balanced and a lattice.

Definition 1.1.4. A group G for which the latter construction is possible is
called a Garside group; pG,S, δq as outlined is said to be a Garside structure;
δ is said to be a Garside element for G.

Remark 1.1.5. This construction does not produce a combinatorial Garside
structure, in general. In fact, not always FactpG,S, δq as a poset is graded;
an example is shown in figure 1.2. When it is, pG,S, δq is said to be a graded
Garside structure, and in that case FactpG,S, δq is a combinatorial Garside
structure in the sense of definition 1.1.12.

This makes posets defined in 1.1.1 special cases of factorization posets
obtained from Garside structures; a justification for this will be complete in
remark 1.2.6.

2A characterization of those Garside structures pG,S, δq such that FactpG,S, δq is a
combinatorial Garside structure exists. One can observe that FactpG,S, δq as a poset
is graded if and only if a function sending every element of S in 1 extends to a group
homomorphism from G in Z. A group G is called weakly-graded if a weaker condition
holds: there exists some function from S to the positive integers which extends to a
group homomorphism from G to Z. There exists a bijective correspondence between
combinatorial Garside structures as in 1.1.1 and weakly-graded Garside groups. A detailed
proof can be found in [5].
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Figure 1.2: Bounded, finite-height, balanced, group-like poset that is not
graded.

1.2 Garside monoids and word problem in Garside
groups

1.2.1 Garside monoids

Let pG,S, δq a Garside structure. As mentioned, the set S of generators also
generates a monoid M inside G. Following from the properties of Garside
structures, the monoid:

1. is atomic (i.e. is generated by its indivisible elements and there is a
bound in the length of factorizations on these elements);

2. left and right cancellation laws hold (since it was obtained inside a
group);

3. any two elements of M admit a least common multiple and a greatest
common divisor on both the left and the right;

4. there exists an element δ such that the left and right divisors of δ form
the same finite set of generators for M (because of the choice of δ);

Definition 1.2.1 (Garside monoid). A monoid M satisfying the properties
listed is called a Garside monoid. When obtained inside a Garside group G,
it is called its positive monoid and is noted G`.

The condition for a monoid to be left and right cancellative, and to admit
right common multiples, is often referred to as “right Ore condition" (respec-
tively, “left Ore condition"). Right Ore condition implies that the monoid
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embeds in its group of right fractions, isomorphic to the group of left frac-
tions (a complete study along with a justification for this assertion is found
in [6, p.351 etc.]). A Garside group G is thus also isomorphic to the group of
fractions of its Garside monoid M (since the group of fractions for M will be
a subgroup in G containing the set S of generators). The following theorem
regarding groups of this form will be used in section 1.3. A complete proof
is the object of [7] and [8].

Theorem 1.2.2. Let G be the group of right fractions of a right- and left-
cancellative monoid M for which the partial order relation given by right
divisibility has no infinite descending chain, and every couple of elements
admits a lowest common right multiple3. Then G is torsion free.

In the special case of Garside groups obtained from combinatorial Garside
structures, the positive monoid can be recovered from poset P by the monoid
presentation

MpP q :“ xx P L | w1 ¨ w´1
2 @w1, w2 P r0̂, 1̂s y.

The following theorem justifies the name “combinatorial Garside structures";
a proof is discussed in [5].

Theorem 1.2.3. If P is a combinatorial Garside structure, then MpP q is a
Garside monoid, and its group of fractions is isomorphic to GpP q.

Example 1.2.4. For combinatorial Garside structure on the left in figure 1.1,
this construction yields the monoid

MpP q “ x a, b | aba “ bab y.

This monoid is a special case for what is called the positive braid monoid.
The study of the word problem in braid groups was the main reason for which
positive braid monoids were studied, leading ultimately to Garside theory.

Example 1.2.5. The lattice of the subsets of a given set presented in example
0.0.6 for a finite set is an example of what is called a Boolean lattice. Finite
Boolean lattices such as this are combinatorial Garside structures. For a
set of cardinality k, the monoid obtained from this combinatorial Garside
structure is Nk, while the group is Zk. In this example the fact that the
group G obtained from the combinatorial Garside structure is the group of
fractions for M is particularly evident.

3A monoid with those properties is sometimes called a right cancellative right Gaussian
monoid. Groups that are groups of fractions of Gaussian monoids are referred to as
Gaussian groups.
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Remark 1.2.6. As an immediate consequence we have the following. Consider
a poset P with covering relations labelled with labels in L, and GpP q the
group constructed as above from P . Then pGpP q, L, 1̂q is a Garside struc-
ture, where 1̂ is the element in GpP q represented by any word in r0̂, 1̂s. This
also means that the Hasse diagram HassepP q embeds in the Cayley graph
CayleypMpP q, Sq, that embeds in CayleypGpP q, Sq. As a consequence, for a
combinatorial Garside structure pG,S, δq, the factorization poset FactpG,S, δq

is found inside the Cayley graph of G with respect to the generating set S.
All the facts listed are studied in detail and generalized in [5].

1.2.2 A solution for the word problem in Garside groups

The presence of a monoid with the properties listed has proved over time
to be an effective tool when dealing with word and conjugacy problems in
groups, and this was in fact the reason for which the deriving structure was
originally studied in [10] in the special case of braid groups (cf. section 3).
We will present the solution for the word problem associated to an arbitrary
Garside group, as obtained in [9]. Proofs of the results presented in this
subsection are the object of the cited paper. From now on, we will adopt
the notation G` for Garside monoids, as they will be supposedly have been
obtained from a Garside group G whose word problem we are concerned with.

Let pG,S, δq be a Garside structure and G` the positive monoid associ-
ated to G. We will refer to divisors of δ in G` as simple divisors. The set of
simple divisors will be noted D. Because of the choice of δ, they form a set
of generators for G`. We need firstly to solve the word problem in G`.

Definition 1.2.7 (Greedy normal form). For k P N, d1, . . . , dk P D such that
di “ pdi ¨ ¨ ¨ dkq^δ for every i “ 1, . . . , k, the expression d1 ¨ ¨ ¨ dk is called a left
greedy normal form. Conversely, if di “ δ ^ pd1 ¨ ¨ ¨ diq for every i “ 1, . . . , k,
the expression d1 ¨ ¨ ¨ dk is called a right greedy normal form.

Note that the definition relies on the properties of Garside monoids when
supposing right and left greatest common divisors exist. The form provides
an algorithmic solution to the word problem in the monoid G`, as it satisfies
the following property:

Proposition 1.2.8. Let G` be a positive monoid. Every g P G can be ex-
pressed in a unique left greedy normal form. The same holds for right greedy
normal form.

Example 1.2.9. For the group in example 1.1.3, which we recall was presented
as

B3 “ x a, b | aba “ baby

10



element δ “ aba “ bab is a Garside element, so pB3, ta, bu, aba “ babq is a
Garside structure. Consider the element a2b2ab in the monoid B`

3 . Its left
greedy normal form is apabqδ, since ab ^ δ “ ab, a2b ^ δ “ a in B`

3 , and
apabqδ “ a2b2ab in B`

3 .
Since M an arbitrary Garside monoid is cancellative, the partial order

given by divisibility in M can be extended to a partial order in its group
of fractions G, which coincides with the partial order given by divisibility in
G. This can be done by posing g ď h if and only if g´1h P M , where M
is seen as set-theoretically included in G (this clearly is the case for positive
monoids).

The correspondence between the partial order relation induced by divisi-
bility in both M and G makes it possible to extend the solution for the word
problem in M to the one in G. In fact, the multiplication of g P G by a
suitable integer power of δ is such that the product lies in G`, so that the
result can be expressed in (left) greedy form. This gives a normal form for
the elements in the group G.

Definition 1.2.10 (Deligne normal form). For k P N , n P Z, d1, . . . , dk P D
such that d1 ¨ ¨ ¨ dk is in G` and in left greedy normal form and d1 ‰ δ, the
expression d1 ¨ ¨ ¨ dk ¨ δn is called a Deligne normal form.

Theorem 1.2.11. Let G be a Garside group. Every g P G can be expressed
uniquely in Deligne normal form.

From now on, the Deligne normal form of an element g P G will be noted
DNFpgq. Deligne normal forms clearly provides a criterion to solve the word
problem in G.
Example 1.2.12. Let G1 “ pG1, S1, δ1q and G2 “ pG2, S2, δ2q two Garside
structures. Then

G1 ˆ G2 “ pG1 ˆ G2, S1 ˆ S2, pδ1, δ2qq

is in fact a Garside structure; the poset FactpG1 ˆ G2, S1 ˆ G2, pδ1, δ2qq is
actually the product poset as in example 0.0.1 obtained from the two posets
FactpG1, S1, δ1q and FactpG2, G2, δ2q. In particular we could define from this
observation in the obvious way the product combinatorial Garside structure.
We incidentally observe that the lattice property holds from the observations
in example 0.0.8. It is natural to refer to G1 ˆ G2 as to the product Garside
structure. Let g1 an element in G1 with Deligne normal form d11 . . . d

1
sδ

n
1 and

another element g2 in G2 with form d21 . . . d
2
t δ

m
2 . We can obtain the Deligne

normal form for pg1, g2q as follows. First observe

pg1, g2q “ pd11 . . . d
1
sδ

n
1 , d

2
1 . . . d

2
t δ

m
2 q
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. Assume n ď m and s ď t`m´n. One can adjust the length of the normal
forms to form a factorization with elements of S1 ˆ S2 or pδ1, δ2q. In fact
pg1, g2q can be written as the product of: n factors of the form pδ1, δ2q; m´n
factors of the form pd1m`i, δ2q for i “ 0, . . . ,m ´ n ´ 1; s ` n ´ m factors of
the form pd1i , d

2
t´s´m`n`iq for i “ 1, . . . , s ` m ´ n ´ 1; t ´ s ´ m ` n factors

of the form pe1, d
2
i q for i “ 1, . . . , t ´ s ´ m ` n ´ 1. We get therefore

pe1, d
2
1q ¨ ¨ ¨ pd11, d

2
t´s´m`nq ¨ ¨ ¨ pd1m, δ2q ¨ ¨ ¨ pδ1, δ2q.

This is actually the Deligne normal form for pg1, g2q in the product Garside
structure. We leave to the considerations of the reader the structure

ˆ

G1 ˚ G2

xδ1δ2δ
´1
1 δ´1

2 y
, S1 Y S2, δ1δ2 “ δ2δ1

˙

.

We now dive a little more in the combinatorics of Garside groups, by
observing some symmetries of the set of simple divisors D.

Definition 1.2.13 (Complements). For d P D, an element d˚ P D such that
dd˚ “ δ is called right complement for d. An element ˚d P D such that
˚dd “ δ is called left complement for d.

Obviously d˚ is a left divisor for δ, while ˚d is a right divisor. By the choice
of δ, this means that D is closed under the operation of taking complements,
and the application from D into itself induced by taking complements is
clearly injective (since a Garside monoid is cancellative), so that these oper-
ations define a bijection of D in itself. Another bijection of D in itself arises
from the following property;

Proposition 1.2.14. For every d P D there exist a permutation σ of the ele-
ments of D such that for every d P D

σpdq ¨ δ “ δ ¨ d.

Consequently,

• there exists a natural m such that δm is central

• if d is a product of irreducible elements, then σpdq is also a product of
irreducible elements.

The link between the two bijections is given by observing that from the
definition of complements it follows that

˚dδ “ δd˚

so that σpd˚q and ˚d coincide. They express therefore the same symmetry,
somehow. The following result unveils a useful property of DNFs, and will
be useful in the following.

12



Lemma 1.2.15. Let d1 ¨ ¨ ¨ dk be a word in G` in left greedy normal form,
where d1 ‰ δ, η P D. The left greedy normal form for d1 ¨ ¨ ¨ dk ¨η begins with
at most one ∆.

Proof. It is clear that right multiplication by η P D can produce no right
factor δ or one righ factor δ (if it coincides with some right complement).
We observe that if δ2 ď d1 ¨ ¨ ¨ dk ¨η with the right order, then g ¨δ2 “ d1 ¨ ¨ ¨ dk
for some g P G`. By using permutation σ as in 1.2.14 one gets

δ ¨ σ´1
pgq ¨ δ “ d1 ¨ ¨ ¨ dk

and then

δ ¨ σ´1
pgq ¨

˚ η “ d1 ¨ ¨ ¨ dk

which is absurd, since it would mean that δ left divides d1 ¨ ¨ ¨ dk in left greedy
normal form, where d1 ‰ δ.

1.3 The construction of finite Kpπ, 1qs

We now leave the ongoing brief presentation of Garside theory and its appli-
cations to word problems to take a much closer look to another application:
the construction of finite Kpπ, 1qs for the abitrary Garside group. The con-
struction will be very explicit, and will rely heavily on the solution presented
for the word problem in the arbitrary Garside group. We start with the con-
struction of a Kpπ, 1q in the special case of combinatorial Garside structures.

Definition 1.3.1 (Order complex and interval complex). We associate to P
graded poset the simplicial complex obtained by taking as vertices the el-
ements of P as a set, and as simplices the descending chains in P , with
attachment maps given by recursively identifying a facet in a simplex (cor-
responding to a maximal subchain) to the simplex representing said chain.
This complex will be called order complex (or geometric realization) of P
and noted ∆pP q. Note that edges (1-simplices) are naturally oriented by the
poset structure. If P is labelled, then the extended labelling on descending
chains determines a labelling for every simplex in ∆pP q. We quotient the
order complex by identifying every vertex, and then inductively identifying
simplices of the same dimension with the same label. The complex obtained
is called interval complex of P and is noted KpP q.

13
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Figure 1.3: Order complexes for posets in figure 1.1. The interval complexes
are obtained identifying edges with same labels, facets with edges pairwise
identified and tetrahedra with facets pairwise identified.

If P has a minimal element 0̂, then ∆pP q is contractible (being a cone
on KpP ´ t0̂uq). This is the case for P combinatorial Garside structure. Let
pG,S, δq be a Garside structure such that FactpG,S, δq is a combinatorial
Garside structure (see Remark 1.1.5). The action of GpP q on vertices by left
(right) multiplication extends linearly over simplices to an action on ∆pP q.
The quotient of ∆pP q under the action is KpP q. In fact, the action of G
is transitive on vertices, and since P is balanced and group-like, the same
holds for the action on 1-simplices with same labels; therefore, by induction
on the dimension of simplices and by group-like-ness, the same holds for the
action on simplices of higher dimension with same labels). The group GpP q

is a Garside group by remark 1.2.6, and is therefore torsion-free by theorem
1.2.2. The action of GpP q on ∆pP q is therefore a covering action (since it is
the extension of a free action of a torsion-free group on vertices of a simplicial
complex). We have therefore that KpP q is a KpGpP q, 1q.

This idea, valid in the special case of combinatorial Garside structures,
generalizes to arbitrary Garside structures. We start with the following gen-
eral construction.

Definition 1.3.2 (Flag complex). A flag complex is a simplicial complex where
every complete sub-graph on n-vertices in the 1-skeleton of an pn´1q-simplex.

Let pG,S, δq a Garside structure in G, with D set of simple divisors.
Recalling that D is a generating set for G, and observing that a flag complex
is identified by its 1-skeleton, we set EpG,Dq the (unique) flag complex
having as 1-skeleton the (right) Cayley graph CayleypG,Dq. The argument
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used in the previous case for the action of G extends identically to this
setting, so that we find a covering action of G on EpG,Dq. It is known that
the quotient space will have fundamental group isomorphic to G.
Remark 1.3.3. In the special case of a Garside structure for which FactpG,S, δq

is a combinatorial Garside structure, by remark 1.2.6 the construction of
EpG,Sq is linked to the construction of the order complex as in 1.3.1. In
fact, for P combinatorial Garside structure, EpGpP q, P q is tiled with copies
of ∆pFactpG,S, δqq. Clearly, the copies will be identified by the action
of G, so that the complex KpG,Dq coincides with the interval complex
KpFactpG,S, δqq. Nonetheless, while for combinatorial Garside structures
the contractibility of ∆pP q (and thus the KpGpP q, 1q property for KpP q) is
easily granted, contractibility for the complex EpG,Dq is less obvious4.

We now will show that EpG,Dq is contractible, thus proving for the
general Garside structure pG,S, δq the existence of a finite KpG, 1q. We
consider the subcomplex of EpG,Dq constructed as follows. By construction,
every vertex of EpG,Dq is associated to an element in G. This means that one
can consider Deligne’s normal forms of the vertices as in definition 1.2.10.
In particular, we consider those vertices whose DNF contains no factor δ,
i.e. those vertices for which n in definition 1.2.10 is 0. We restrict the
Cayley graph (as a graph) to these vertices, by considering the subgraph
that contains the vertices listed and only the edges that connect two such
vertices in the original graph. The flag complex on this graph will be a
subcomplex of EpG,Dq, and will be noted ẼpG,Dq.
Remark 1.3.4. The complex ẼpG,Dq can be tough as constructed as follows.
We take a vertex for every coset of the cyclic subgroup generated by the
Garside element δ. For every coset, taking a representatative and considering
its DNF up to the power of δ is a well posed operation. Therefore, we can
consider for each vertex (i.e. for each coset) a left greedy normal form. Two
vertices are connected by an oriented edge whenever their left greedy normal
forms differ by a multiplication for some d P D ´ tδu. Edges can be labelled
with d. Now, ẼpG,Dq is obtained by taking the flag complex from this graph.

This remark in fact makes one guess a “product" structure for EpG,Dq,
induced by projecting a DNF on its greedy normal form part and along the
exponent n as in 1.2.10. Next proposition formalizes this intuition.

Proposition 1.3.5. The complex EpG,Dq is homeomorphic to the product
ẼpG,Dq ˆ R.

4Althought it is possible to show contractibility for the complex EpG,Dq in an easier
way in the special case of combinatorial Garside structures, by using the fact that complex
EpGpP q, P q is tiled with copies of ∆pP q which we know to be contractible. Some ideas
are found in [5] and [14]
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Proof. We will use the coharse notations E and Ẽ, considering P and D
fixed. On R we consider the simplicial complex structure given by taking Z
as 0-skeleton and edges connecting each integer to its following. This induces
a simplicial complex structure on the product Ẽ ˆ R in the following way.
This product complex is tiled by objects of the form σˆI where σ is a simplex
and I is either tnu or rn, n`1s for some n. In the former case we already have
the cell structure. In the latter case, we can operate a subdivision of σˆ I to
give it a cell structure. Vertices of ∆ ˆ t0u will have the form a0 ă ¨ ¨ ¨ ă ak
with ai ď δ for each i, and ak ď a0δ. Then,

ta0δ
n

ă ¨ ¨ ¨ ă akδ
n

ă a0δ
n`1

u, . . . , takδ
n

ă a0δn ` 1 ă ¨ ¨ ¨ ă akδ
n`1

u

induces a simplicial cell structure on the “prism” ∆ˆ rn, n`1s. As observed,
we have natural projections from the 0-skeleton of E onto the 0-skeleta of Ẽ
and R defined via the Deligne normal forms. Let g P G with Deligne normal
form DNFpgq “ d0 ¨ ¨ ¨ dkδ

n. We define πd to be the map sending g to d0 ¨ ¨ ¨ dk
and πδ the map sending g to n. The map πd sends vertices of E onto vertices
of Ẽ, while πδ can be viewed as sending the vertices of E onto elements of
the infinite cyclic group generated by δ, which can be identified with Z inside
R, so that πδ sends vertices in vertices of the complex structure we gave to
R. We now extend πd and πδ linearly over simplices, forming two continuous
maps from E to Ẽ and R respectively. Since E, Ẽ and R are flag complexes,
they are uniquely determined by their 1-skeleta. Then, to check that those
maps are well-defined, it suffices to show that πd and πδ take edges of E to
edges or vertices of their target spaces, so that they take the 1-skeleton of E
onto the 1-skeleta of Ẽ and R respectively. For the rest of this discussion,
fix an edge e in E and let a P G`, δ not smaller that a, and µ P D such that
the bounding vertices of e correspond to the group elements aδn and aδn ¨ µ.
By definition of σ this second element is aσnpµqδn.

First we prove our claim for πδ. Element aσnpµq is divisible by δ at most
one time by lemma 1.2.15, so that only two cases can take place when we
take the Deligne normal form for aδnµ. If δ does not divide a we have that

DNFpaδn ¨ µq “ DNFpaσn
pµqqδn.

If δ divides a, then a “ bp˚rσnpµqsq for some b, for which

DNFpaδn ¨ µq “ DNFpbqδn`1

. We have immediately that e is sent to the vertex n by the linear extension
of πδ in one case, and in the edge rn, n` 1s in the other. We now turn to πd.
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Clearly πdpaδnq “ a. Turning to πdpaσnpµqδnq, we have that if a is not right
divisible by ˚pσpµqq then no δ factor forms, so that

πdpaδnµq “ aσn
pµq

in this case, while if a “ b ¨˚ σnpµq then

πdpaδnµq “ a ¨
˚

pσn
pµq.

In each case, unless µ “ δ, the elements corresponding to the bounding
vertices of e differ by the multiplication for some element in D, so that e is
sent to an edge by the linear extension of πd. If µ “ δ, however, e is sent to
a vertex.

We have obtained two maps, that we can regard as a continuous map
h : E Ñ Ẽ ˆ R, defined as

hpgq “ pπdpgq, πδpgqq.

This map is obviously a bijection (it is injective by uniqueness of Deligne
normal forms, and obviously surjective). On the other hand there is also an
obvious map ℏ : E Ñ Ẽ ˆ R such that on the vertices

ℏppa, nqq “ a ¨ δn.

Again, we have to check that this map sends the 1-skeleton of the product
complex into the 1-skeleton of E. We consider ad edge e in Ẽ ˆ R. We call
its bounding vertices pa, nq and pb,mq. Up to switching them, it must be
m “ n or m “ n ` 1, and aδn ă bδm ă aδn`1. We check the two cases.

If m “ n then the inequality becomes a ă b ă aδ, so that b “ aµ with
µ ă δ (so that µ P D). This implies that

ℏppb,mqq “ aµδn

which is connected to aδn by an edge labelled σ´nµ in E. On the other hand,
if m “ n ` 1 then the inequality becomes a ă bδ ă aδ, so that b ă a, that
means b “ aµ´1 for some µ P D. This implies bδ “ aµ˚ so that

ℏppb,mqq “ aδnσ´n´1
pµ˚

q

so that there is again an edge labelled σ´n´1pµ˚q connecting the two images.
We conclude the desired homeomorphism.

In order to prove that EpG,Dq is contractible, it is now sufficient to prove
contractibility for ẼpG,Dq. To do this, we need to introduce a useful tool:
the descending link of a vertex.
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Definition 1.3.6. Let X a simplicial complex endowed by a map F : X0 Ñ R.
Then the descending link of a vertex v LkÓpvq is defined as the link of v inside
the subcomplex spanned by the vertices w such that F pwq ď F pvq.

The following result will be used to show contractibility for ẼpG,Dq; as
a reference, one can consult [1].

Lemma 1.3.7. Let a simplicial complex X for which there exists a map F :
X0 Ñ R that is linear over each simplex, has discrete image and is noncostant
on edges. If every vertex in X has contractible descending link with respect
to F , then X is contractible.

Proposition 1.3.8. The complex ẼpG,Dq is contractible.

Proof. We again will write Ẽ in place of ẼpG,Dq. First we need to construct
the map F as in lemma 1.3.7. We consider ∥a∥ for an element a P G to be the
maximal length of a word for a in the indivisible elements of D. We define
the map ν : Ẽ Ñ R on the 0-skeleton of Ẽ as follows: for each vertex we
know there is a corresponding element a P G; we set therefore νpvq “ ∥a∥,
and then extend the map by linearity over simplices. Note that the linearity
of ν over every simplex is granted by construction.

We now want to show that F is non-constant on edges. We recall what
was observed in remark 1.3.4 elements corresponding to vertices of Ẽ are coset
representatives for the infinite cyclic subgroup generated by δ. We consider
the two possibilities: for a P G` with a ě δ and d P D, d ‰ δ, the left greedy
normal form of a ¨d begins with at most one δ. If it contains no δ, then a ¨d is
a coset representative for the same coset, and νpa ¨dq “ ∥a ¨d∥ ě ∥a∥`∥d∥ ą

∥a∥. Otherwise we have that a “ bσpd˚q for some coset representative b P G`,
and right multiplication by d corresponds to the presence of an edge from b
to a. Again, νpaq “ ∥bσpd˚q∥ ě ∥b∥ ` ∥σpd˚q∥ ą ∥b∥.

We now turn to prove that the descending link of every vertex is con-
tractible. We begin by reading every vertex v of Ẽ as the coset represen-
tative a P G` such that its left greedy normal form does not begin with δ.
By unfolding the definition of descending link, we know that we have to con-
sider the subcomplex induced by vertices tw P Ẽp0q | ∥w∥ ď ∥v∥, and w ¨ d “

a for some d P Du. Therefore vertices of LkÓpvq are in correspondance with
those d P D such that δ ď a¨d. We consider now the right greedy normal form
for a, say d1 ¨ ¨ ¨ dk with dk “ δ^a, then δ ă a¨d ðñ δ “ δ^pa¨dq “ δ^dkd.
This occurs exactly when d˚

k ď d. Thus the descending link is the subcom-
plex spanned by the simple divisors d P Dztδu that are greater than the right
complement of δ^a, and the vertex corresponding to pδ^aq˚ is a cone point
for LkÓpvq, so that is is contractible.
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Chapter 2

Combinatorial Garside structures in
symmetric groups

In this chapter, we will consider two combinatorial Garside structures arising
from Σn symmetric group on n formal objects. The first combinatorial Gar-
side structure mimes the one originally introduced by Garside in [10] while
studying braid groups in the classic Artin presentation (see chapter 3). This
structure is then regarded widely as “classic". The second one arises from
the much more recent publication [2], where an alternative presentation for
the braid group is discovered and studied, leading to the so called “dual"
structure. We will for each structure define it by recovering it in some fac-
torization poset in the symmetric group, and observe that the definition of a
combinatorial Garside structure is satisfied. The two structures we will study
are in fact unique: in the symmetric group no other combinatorial Garside
structure can arise, as follows from the general studies in [11].

We start by constructing the following partial order relation on Σn; this
definition adapts [3].

Definition 2.0.1 (Weak Bruhat order in the symmetric group). Let Σn be the
symmetric group, S generating set for Σn. In this setting we define the right
weak Bruhat order (ďR) and left weak Bruhat order (ďL) as follows. For
u,w P Σn

• u ďR w if w “ u ¨ s1 ¨ ¨ ¨ sk, where si P S, so that lpuq “ lpwq ` i, for
1 ď i ď k.

• u ďL w if w “ sk ¨ ¨ ¨ s1 ¨ u, where si P S, so that lpwq “ lpuq ` i, for
1 ď i ď k.

Remark 2.0.2. Note that u ďR v ðñ v´1 ďL u´1. Clearly, this partial
order relation depends on the choice of generating sets for Σn. We mention
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that in terms of words, the relation u ďR w means that u appears as a prefix
in some reduced word representing w in Σn, while u ďL w means that u
appears as a suffix in one of such words.

Remark 2.0.3. By orienting edges in the right (left) Cayley graph of Σn with
respect to generators S in the crescent direction for the length function, we
recover the Hasse diagram of the weak right (left) Bruhat order with respect
to S.

2.1 Classic structure

We start by considering Σn as generated by the set Sn “ tσi | 1 ď i ď n´1 u

where σi is the transposition pi, i`1q, under the following relations for distinct
σi, σj P S:

σ2
i “ e

σiσjσi “ σjσiσj if |i ´ j| “ 1

σiσj “ σjσi if |i ´ j| ą 1

which we will call respectively involution, commutation and braid relations.
This presentation is sometimes called Coxeter-Moore presentation, though we
will eventually refer to it as classic presentation, to distinguish it from the
dual one we will introduce in this chapter. A detailed discussion of the fact
that this set of generators and relations presents Σn is beyond the pourpose
of this dissertation, but we will nonetheless in the following cite and prove
the main theorem that justifies this assertion (see theorem 3.2.3), though
with different intentions.

Remark 2.1.1 (Notations). We will adopt the notation σi as above for spe-
cific elements in Sn the set of generators for Σn as above. However, when
referring to an arbitrary element in Sn we will often note it s, we will also
write S in place of Sn when n is obvious from the context or unimportant.
Symbols σ, τ will be used to note arbitrary permutations in Σn. The set of
all transpositions will be noted Tn :“ tpi, jq | 1 ď i ă j ď nu. Again, the
arbitrary element in Tn will be noted t, and index n will be dropped when
obvious or unimportant.
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2.1.1 Permutahedra and permutahedron order

We consider the action of Σn on Rn by permutation of coordinates. Permu-
tation σ P Σn acts by

σ

¨

˚

˚

˚

˝

x1

x2
...
xn

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

xσp1q

xσp2q

...
xσpnq

˛

‹

‹

‹

‚

.

Transposition pi, jq P Tn acts as the reflection through the hyperplane of
equation xi “ xj, and in particular generator σi P Sn acts as the reflection
through the hyperplane of equation xi “ xi`1. This action can be obtained
as a linear group representation in the following way.

We start by defining the simple roots of Σn in Rn as the vectors of the
form

αi :“ ei ´ ei`1

for any i “ 1, . . . , n ´ 1. Though a general introduction of root theory is be-
yond the purpose of this dissertation, simple roots are a useful combinatorial
tool to outline the following construction. We define for each σi P S

ρipvq “ v ´ 2
xv, αiy

xαi, αiy
αi

for every v in Rn. Note that αi is orthogonal to hyperplane Hi : xi “ xi`1

for any i “ 1, . . . , n ´ 1, so that ρi is exactly the reflection through Hi. This
extends to a unique group homomorphism ρ : Σn ãÑ On toward the group of
orthogonal matrices, for which the image of transposition pi, jq is in fact the
reflection through the hyperplane of equation xi “ xj as expected (i.e., the
hyperplane orthogonal to vector ei ´ ej which we choose so that i ă j).

Note that there is a space fixed by the action of every element of Σn:
Span p1, . . . , 1q. One can in fact consider the situation so far pictured as
projected on the orthogonal space, which is the copy of Rn´1 given by the
equation x1 ` ¨ ¨ ¨ `xn “ 0. One can formally observe that the representation
given for the symmetric group is not indecomposable, as it splits as the
direct sum of two irreducible representations of Σn: the trivial dimension
one representation and the dimension n´1 representation. The set of simple
roots form a basis for this subspace, since they are n´1 linearly independent
vectors lying in this subspace. We will from now on consider this “reduced
action".

Remark 2.1.2 (Notations). In accordance with the construction of the linear
group representation as above, we will note in general the reflection associated
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to transposition t with ρptq. Corresponding hyperplane will be Hptq. An
exception will be made only for elements of S, for which ρi :“ ρpσiq, with
corresponding hyperplane Hi.

Remark 2.1.3. It is known that T set of all transpositions is the conjugacy
closure of S. We have therefore that the set of the hyperplanes tHptq | t P T u

is closed under the action of reflections through one of such hyperplanes. In
other words, ρptq for any t P T acts as a permutation of the hyperplanes. To
see that, we observe that reflection through hyperplane ρptqHpt1q is actually
ρptqρpt1qρptq´1, but since ρ is a homomorphism this is ρpt ¨ t1 ¨ t´1q, and since
T is closed under conjugation in Σ this is ρpt2q for some t2 P T , so that
ρptqHpt1q is Hpt2q.

We now fix n. We call a chamber every connected component of the
complementary space

Rn´1
z

ď

tPTn

Hptq.

Hyperplanes touching a chamber are called its walls. If chamber C has
Hpt1q, . . . , Hptiq, . . . , Hptkq as its walls, it follows from the argument in re-
mark 2.1.3 that the chamber on the opposite side of Hptiq has

Hptit1tiq, . . . , Hptiq, . . . , Hptitktiq

as set of walls. As a quick remark, we observe that since conjugation by a
fixed element is a group automorphism, the number of walls for the arbitrary
chamber is fixed.

There exists a chamber that has H1, . . . , Hn´1 as walls. To see this,
consider the original action of Σn on Rn. Each hyperplane H1, . . . , Hn´1

divides the space in two halves. We consider for each Hi the half space
tx P Rn | xi ď xi`1u. The region

C “

n´1
č

i“1

tx P Rn
| xi ď xi`1u

is constituted by points which verify x1 ď ¨ ¨ ¨ ď xn´1, so that points in its
walls verify xi “ xi`1 for some i, and therefore lie in some Hi. The region is
also uncrossed by any hyperplane of the form Hptq with t P T , because points
in the interior of the region cannot satisfy xi “ xj. Region C is therefore a
chamber and has H1, . . . , Hn´1 as walls. We will choose one of such chambers
and call it fundamental chamber.

Definition 2.1.4 (Σn-permutahedron). We choose a point in the fundamental
chamber that has same distance from every wall of the fundamental chamber,
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Figure 2.1: Σ4-permutahedron

and call it Pe. The image of Pe through ρi lays on the opposite side of
hyperplane Hi. We connect Pe and ρipPeq with an edge, crossing hyperplane
Hi, and label the edge with σi. We repeat the process for each wall of the
fundamental chamber, each time finding an edge crossing an hyperplane Hj

and labelling it σj. Now we consider the image P 1 :“ ρiPe; it was found in a
chamber that has (we shift now to a more exaustive notation)

ρpσiqHpσ1q, . . . , Hpσiq, . . . , ρpσiqHpσn´1q

as walls, and is connected to Pe by an edge that crosses Hpσiq. We take the
image ρpσiσjσiqP

1 by reflecting through hyperplane ρpσiqHpσjq, connect P 1

and this new point with an edge and label it σj. We proceed like this induc-
tively, each time crossing hyperplane ρpσqHpσkq for some σ with an edge and
labelling it with σk. Up to rescaling, we find the 1-skeleton of a polyhedron
(i.e. the 2-skeleton of a polytope) having each edge of length 1, called the
Σn-permutahedron (or simply permutahedron when n is unimportant).

By construction, the permutahedron has a reflection symmetry for each
t P T . In the former construction, if the path from vertex Pe to vertex P
is labelled s1, . . . , sk for some s1, . . . , sk P S we can consider vertex P to
correspond to the element s1 ¨ ¨ ¨ sk in Σn, or to sk ¨ ¨ ¨ s1; in the former case
we will call the labelled polihedron right permutahedron (since we choose to
look at successive crossings of labelled paths as right multiplications among
the labels), whereas in the latter case we will call it left permutahedron.
When vertices Pσ and Pτ correspond to permutations σ and τ differing by
a multiplication for some s P S, there will be and adge between Pσ and
Pτ labelled s, so that in general ρiPτ “ Pτ ¨σi

in the right permutahedron,
ρiPτ “ Pσi¨τ in the left permutahedron. Up to considering multiplication
by generator s as crossing an edge labelled s (coherently with the involution
relations), we recover the right (left) Cayley graph of Σn in the 1-skeleton of
the right (left) Σn-permutahedron.

23



s 1

s 1

s
1

s
1

s1

s1

s1

s
1

s
2

s
2

s 2

s 2

s2

s2

s2

s 2

s 3

s3

s
3

s
3

s3

s 3
s
3

s 3

Figure 2.2: The oriented, labelled 1-skeleton of the Σ4-permutahedron. We
choose to draw only the “visible” part of the polytope.

Example 2.1.5. We will constuct as an example the first nontrivial permu-
tahedron, i.e. the one for n “ 3. We consider thus the action of Σ3, as
generated by tσ1, σ2u on R3 by permutation of coordinates. Reflection hy-
perplanes are therefore the ones of equations Hpσ1q : x “ y, Hpσ2q : y “ z
and Hpp1, 3qq : x “ z. The reduced action is the one on the copy of R2

generated by vectors α1 and α2, i.e.,
¨

˝

1
´1
0

˛

‚,

¨

˝

0
1

´1

˛

‚.

This action is hysomorphic to the action of Σ3 on the euclidean space R2

with the geometry induced by the standard scalar product in R3. That
scalar product is associated to the following matrix1, expressed with respect
to the basis tα1, α2u,

ˆ

2 ´1
´1 2

˙

.

Generators act as reflections through hyperplanes that are the lines of

1In general, one gets the Cartan matrix of type An´1.

24



equations (expressed in coordinates with respect to the basis above) Hpσ1q :
y “ 0, Hpσ2q : x “ 0 and Hpp1, 3qq : x ´ y “ 0.

α1 ` α2

α2

α1

Hpσ1q

Hpp1, 3qq

Hpσ2q

Now we choose as fundamental chamber the one at the far right in the
picture, i.e. the one in which lies α1 ` α2. Here we pose the point Pe, and
take its images with respect to the reflections ρpσ1q and ρpσ2q which we note
ρ1 and ρ2, respectively through hyperplanes Hpσ1q and Hpσ2q: We connect
Pe to each image with an edge, which we label respectively σ1 and σ2.

Hpσ1q

Hpp1, 3qq

Hpσ2q

σ1

σ2

Pe

ρ1pPeq

ρ2pPeq

We consider now ρ1pPeq. It lies in a chamber that has Hpp1, 3qq and Hpσ1q
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as walls. Hyperplane Hpp1, 3qq here is the image of Hpσ2q through reflection
ρ1, so that the image of ρ1pPeq on the other side of Hpp1, 3qq is ρ1ρ2ρ1pPeq.
We draw this point, and connect it to ρ1pPeq with an edge labelled σ2. We
do likewise for ρ2pPeq.

Hpσ1q

Hpp1, 3qq

Hpσ2q

σ1

σ1

σ2

σ2

Pe

ρ1pPeq

ρ2pPeq

ρ1ρ2ρ1pPeq

ρ2ρ1ρ2pPeq

We conclude the permutahedron by taking the images of the last two
vertices, which are both Pδ :“ ρ2ρ1ρ2ρ1ρ2pPeq “ ρ1ρ2ρ1ρ2ρ1pPeq.

Hpσ1q

Hpp1, 3qq

Hpσ2q

σ1

σ1

σ2

σ2

σ2

σ2

Pe

ρ1pPeq

ρ2pPeq

ρ1ρ2ρ1pPeq

ρ2ρ1ρ2pPeq

Pδ

We now turn back to the general setting. Consider in Rn a point Qe

in SpanpPeq external to the permutahedron, and consider on the edges the
distance function with respect to Qe. There is a natural orientation on any
edge induced by orienting every edge in the direction of the vertex on which
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the distance function is maximal (i.e. the furthest vertex from Qe). Every
edge in the 1-skeleton is thus oriented, since no hyperplane contains Qe, and
therefore no edge has both vertices equidistant from Qe.

This induces a total relation order on each pair of vertices connected by
an edge:

P ďperm P 1
ðñ DistpQe, P q ă DistpQe, P

1
q

whenever P and P 1 are connected by an edge in the permutahedron. In
general, this generates a partial order relations for vertices of the permutahe-
dron. There is nonetheless also an order induced on the elements in Σn. Since
vertices of the permutahedron and permutations are in bijection (though not
canonically), the order relation can be described equivalently using both, but
specifying if the order refers to the vertices-permutations association on the
left or right permutahedron. For two elements σ, τ P Σn we say

σ ďperm,L τ

if there is a path from Pσ to Pτ on the edges of the left permutahedron in
which every edge is crossed orientation-wise. For two elements σ, τ P Σn we
say

Pσ ďperm,R Pτ

if there is a path from Pσ to Pτ on the edges of the right permutahedron in
which every edge is crossed orientation-wise.

Example 2.1.6. In example 2.1.5 we have found the Cayley graph of Σ3 as
expected. In fact, we can label each vertex coherently with the path we cross
from Pe to get there, and orient each edge as described, obtaining exactly
the oriented, labelled Σ3-permutahedron.

σ1

σ1

σ2

σ2σ2

σ2

Pe

Pσ1

Pσ2

Pp132q

Pp123q

Pp13q

We observe that this is exactly the poset in example 1.1.2.
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We will now call weak order the weak right Bruhat order (or equiva-
lently the right permutahedron order when considering it on the vertices of
the right permutahedron) and note it ď, the right permutahedron will be
referred to as permutahedron; the oriented and labelled 1-skeleton of the Σn-
permutahedron will be noted Mn or M (when n is obvious or unimportant).
The following results are symmetrical in the statement for left weak Bruhat
order and left permutahedra.

Remark 2.1.7 (Geometric-combinatorial features). Paths in Mn from Pe to
a vertex Pσ correspond to words respresenting σ in Σn. In fact, if such a
path crosses edges labelled s1, ¨ ¨ ¨ , sk (repetitions of elements in this ordered
list are allowed) then σ “ s1 ¨ ¨ ¨ sk. Reduced words correspond to minimal
paths (which we observe to be edge-paths in which every edge is crossed
orientation-wise), so that lpσq is also the length of any of such paths. Facets
of any dimension of the permutahedron have also a strong combinatorial
meaning. In fact, since we find the Cayley graph for Σn in the oriented
labelled 1-skeleton of the permutahedron, facets of arbitrary dimension con-
taining Pe as a vertex represent subgroups of Σn generated by some subset
of Sn. We will call those facets parabolic facets, and will refer to such sub-
groups as parabolic subgroups of Σn. By construction, for every subset of
labels there exist one of these facets such that labels on its edges form ex-
actly that set. We observe that since multiplication in Σn induces in the
obvious way a transformation from the permutahedron in itself that sends
k-facets in k-facets, by the structure of Cayley graphs and this last observa-
tions, an arbitrary facet with given labelling on the edges corresponds to a
coset of some parabolic subgroup, which is found in correspondance with the
parabolic facet with the same labelling. Also, we find the Cayley graph of
the parabolic subgroup in the 1-skeleton of the parabolic facet, by inducing
on it the same labelling ans orientation that it has inside the permutahedron.
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Figure 2.3: The two possibilities for the shape of a 2-facet in a permuta-
hedron are found in correspondance with the two possible labellings of the
edges in a parabolic 2-facet. Parabolic 2-facets, in turn, are found in corre-
spondance with the two possible parabolic subgroups with two generators,
up to hysomorphisms: the two generators either satisfy the braid relation
(left) or they commute (right). Vertices in the image are labelled as if they
were found inside the Cayley graph of the parabolic subgroup. Note that the
hexagonal facet is also a copy of the Σ3-permutahedron. This is an example
for a more general fact: since some parabolic subgroups of Σn are isomorphic
to some Σm, we find copies of the Σm-permutahedron as some facets of the
Σn-permutahedron.

The following lemma makes it easier to understand the geometric struc-
ture of the 2-skeleton of the permutahedron.

Lemma 2.1.8. the action of Σn on the 2-facets of the permutahedron with
same labels on the edges is transitive.

Proof. As we observed while captioning figure 2.3, there are only two possible
shapes for parabolic 2-facets, corresponding to the two possible isomorphism
classes of parabolic subgroups with two generators: the hexagonal and the
squared facets. The square facet labelled with a, b is stabilized by the action
of te, a, b, ab “ bau (note that ab “ ba since squared parabolic-facets occur
whenever two generators commute). On the other hand, an hexagonal facet
labelled with a, b is stabilized by the action of te, a, b, ab, ba, aba “ babu. Since
Σn has n! elements, this means that the orbit of the facet has n!{4 elements
if it is squared, and n!{6 if it is hexagonal. This is also the number of facets
with that shape and labelling, since such facets are found in correspondance
to cosets of the parabolic subgroup represented by the choosen parabolic
facet, as observed in remark 2.1.7.
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This means that the 2-skeleton of the permutahedron is tiled with hexag-
onal and squared facets, each labelled as we observed, and that patabolic
2-facets form a set of representatives for the classes of labellings on 2-facets
of the permutahedron.

Proposition 2.1.9 (Permutahedron order and weak Bruhat order coincide).
The partial order relation geometrically induced on vertices of the right (left)
Mn coincides with weak right (left) Bruhat order on Σn, meaning that for
every σ,τ P Σn and Pσ,Pτ corresponding vertices on the permutahedron,

σ ďperm,L τ ðñ σ ďL τ

σ ďperm,R τ ðñ σ ďR τ.

Proof. Whenever σ ďperm,R τ , there is a minimal path from Pσ to Pτ on the
oriented labelled 1-skeleton of the right permutahedron. By running on a
minimal path from Pe to Pσ and then on that minimal path from from Pσ

to Pτ one finds a minimal path from Pe to Pτ . By reading labels on the
edges crossed by the paths, we have thus completed a reduced word for σ
to a reduced word for τ , so that a reduced word for σ appears as a prefix
for a reduced word for τ . By 2.0.2, this means σ ďL τ . On the other hand,
this argument can be used on the opposite direction, so that the proof is
concluded.

2.1.2 The factorization poset of the longest element

We now turn to prove that there exists a maximal element for the weak order,
and its factorization poset is a combinatorial Garside structure.

Lemma 2.1.10 (Inversions lemma). Let σ P Σn. We note with ipσq the number
of inversions of σ, i.e. the number of couples 0 ď i ă j ď n such that
σpiq ą σpjq. Then ipσq coincides with the length of σ with respect to the set
of generators Sn. In particular, for each n there exists a unique element ω0

in Σn such that its length is maximal.

Proof. Multiplication by σi P Sn only swaps σpiq and σpi`1q, so ipσq changes
by at most one. Then lpσq is bounded below by ipσq. On the other hand,
if σ ‰ e then σpi ` 1q ă σpiq for some i, so that left multiplication by σi

decreases ipσq by one. This means that one reaches e by exactly ipσq left
multiplications by generators in Sn. The maximal length is therefore

npn ´ 1q

2

and is reached only by the “order swapping" permutation, i.e. the one for
which ω0piq “ n ` 1 ´ i.
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Definition 2.1.11. For n fixed, we will call ω0 as in 2.1.10 the longest element.

We mention that the structure of ω0 as a product of generators is

σn´1 ¨ ¨ ¨ σ1 ¨ σn´1 ¨ ¨ ¨ σ2 ¨ ¨ ¨ σn´1 ¨ σn´2 ¨ σn´1.

This fact follows immediately from its definition.
Note that by following any length-maximizing minimal chain on the per-

mutahedron we have to find the longest element (since it is the unique element
with such length). This means that maximal chains in the permutahedron
correspond to reduced factorizations for the longest element with respect to
Sn set of generators. By maximality of the longest element with respect to
the weak order, every reduced word can be completed to a reduced word for
ω0, meaning that every minimal path from e to a vertex of the permutahe-
dron can be completed to a maximal chain. This proves that M coincides
with the factorization poset for ω0 with respect to S.

For every n the poset P given by the elements of Sn with the weak order
is bounded, graded and has finite height. In fact, we have that P is bounded
by e and ω0, has a natural gradation induced by the length function, and
has finite height since Σn is finite. The proof for the lattice structure follows
from the general results in [4], where it is proven that in general the poset
constructed with the technique we used for the permutahedron, starting from
any hyperplane arrangement that induces a simplicial tiling on the unitary
sphere is a lattice. The result, although, was originally proven by Deligne.
The previous justification for the holding of the lattice property was included
to suggest a more geometric approach to the problem, but we will also give
for sake of completeness a proof of algebraic flavour using inversions (see
lemma 2.1.10).

Lemma 2.1.12. The lattice structure holds for P .

Proof. We already know from lemma 2.1.10 that the inversions of a permuta-
tion coincide with its length with respect to S. There is more: by definition
of weak Bruhat order, for any σ, τ P Σ the relation σ ď τ holds if and only
if Iσ Ď Iτ where I is the set of inversions of the permutation. A known
characterization for inversion sets is the following: a set of couples of indices
is an inversions set for some permutation if and only if both the set and its
complementary are transitive. By using this characterization one can observe
that for any Iσ and Iτ , by posing σ _ τ the permutation identified by

Iσ_τ “ Iσ Y Iτ

where the overline denotes the transitive closure, one gets a join-semilattice.
Thus since Σ is finite and has a unique minimal element, it is a lattice by
lemma 0.0.9.
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As anticipated, we now consider the (right) factorization poset Pn :“
FactpΣn, Sn, δq, or simply P :“ FactpΣ, S, δq when n is obvious or unimpor-
tant. For fixed n, since M coincides with the right Cayley graph for Σ we
have that M also coincides with the Hasse diagram for P , so that the group-
like property is automatically granted by the properties of Cayley diagrams.
By previous results in this subsection we already have that P is a bounded,
graded poset of finite height which is group-like and a lattice.

We now consider the sets PrepP q and SufpP q as in section 1.1. By
remark 2.0.2, whenever σ ď τ in the weak order, it means that there is a
minimal path from Pe to Pτ that starts with a minimal path from Pe to Pσ.

Lemma 2.1.13. Poset P is balanced.

Proof. We first observe that if s1 ¨ ¨ ¨ sk is a word representing an element
σ P Σ, then sk ¨ ¨ ¨ s1 represents its inverse. There follows that an element
and its inverse have same length. We consider now an element sk ¨ ¨ ¨ s1 in
PrepP q. Its inverse s1 ¨ ¨ ¨ sk corresponds to a minimal length path from Pe to
Ps1¨¨¨sk on M . We can complete it to form a length maximizing minimal path
on which we read the word s1 . . . sk ¨ sk`1 ¨ ¨ ¨ sm (otherwise, the poset would
not be graded, which it is). This word will represent the longest element by
its uniqueness. The inverse sm ¨ ¨ ¨ sk`1 ¨ sk ¨ ¨ ¨ s1 has same length, thus still
represents ω0, again by uniqueness. This means that there is a minimal path
of maximal length on M labelled with those labels, so that sk ¨ ¨ ¨ s1 is also in
SufpP q. The inverse inclusion can be proved with the same technique.

We have thus proved P to be a combinatorial Garside structure, so that
results from chapter 1 hold.

2.2 Dual structure

We now turn to consider another set of generators for Σn: the set of all
transpositions Tn. Factoring elements with respect to this set gives place to
another partial order relation on Σ. This “dual" order has many interest-
ing combinatorial properties, both on its own and when compared with the
classical structure. It is known that conjugacy classes in Σ correspond to
classes of cyclic structures, in particular T is closed under conjugacy, and we
already referred to the fact that it is the closure of S. This has important
combinatorial consequences.
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Lemma 2.2.1. Let σ P Σn a permutation with cyclic structure c1 ¨ ¨ ¨ ck. Then
its length with respect to the factorization by elements in Tn is

lT pσq “

k
ÿ

i“1

p|ci| ´ 1q

where |ci| is the number of indexes that ci permutes.

Proof. We consider the set of formal indices 1, . . . , n realized by n distinct
labelled formal points. We also consider a factorization of c1 ¨ ¨ ¨ ck as a re-
duced product of transpositions, say t1 ¨ ¨ ¨ tl, where l is by definition lT pσq.
If ti permutes indices xi and yi, we draw an edge between xi and yi as formal
points. We repeat this operation for each i, obtaining a graph. Remove from
the graph the isolated points (since they represent indices fixed by the per-
mutation). Let C be the number of connected components of the resulting
graph. For every ci, points corresponding to indices permuted ciclically by ci
must lay in the same connected component of the graph. Also, it is known
that for an arbitrary graph with n connected components, drawing l edges
causes the number of connected components to be at least n ´ l. We have
thus that

n ´ l ď C ď k

where n is the number of points in the graph (i.e., by construction, the
number of indices that appear in some cycle ci, . . . , ck), so that l ě n ´ k.
If we show that there exists a word for σ with length n ´ k then the lemma
will be proved (n ´ k is actually the expected length). This word exists, in
fact for every cycle

pi1 . . . ihq “ pih´1ihqpih´2ih´1q . . . pi1i2q

that is a word of length h´ 1, so that σ can be written as a product of n´ k
transpositions by writing each cycle in this form and taking their product.

It is an immediate consequence that length is constant over conjugacy
classes; in particular, every n-cycle in Σn has the same length: n ´ 1. We
now observe another important consequence. Let a reduced factorization
t1 ¨ ¨ ¨ tk for an element σ. The conjugate σ1 “ τστ´1 can be factored in
τt1τ

´1 ¨ ¨ ¨ τtkτ
´1, corresponding to t1

1 ¨ ¨ ¨ t1
k. This is a word for σ1, and is

reduced since if any two terms t1
i ¨ t1

i`1 cancel, then τti ¨ ti`1τ
´1 would also

cancel, so that the original reduced word for σ was not reduced in the first
place. This argument shows that conjugacy sends divisors for a permutation
σ in divisors for the conjugate σ1 giving place to isomorphic factorization
posets. Thus, it is not restrictive to choose an n-cycle arbitrarily. For the
rest of this chapter, we will fix n and an n-cycle c in Σn.
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2.2.1 Non-Crossing Partitions

We will now introduce an important tool to deal with the combinatorics of
factorizations of c. Definitions and results in this subsection partially follow
or adapt [12].

Definition 2.2.2. For all pairs (i,j) of distinct formal indices, we define δpi, jq

and call it distance between i and j the least k such that

ckpiq “ j.

The definition is well posed, since for every choice of c the orbit of every
formal index under the repeated action of c is the whole set of n formal
indexes, i.e. ti, cpiq, c2piq, . . . , ck´1piqu “ t1, . . . , nu. It also holds for every
choice of two distinct formal indices i, j that

δpi, jq ` δpj, iq “ n

since n is the order of c in Σn.

Definition 2.2.3. Given two disjoint pairs of formal indices i, j and k, l, we
say that the pairs are crossed if the integer δpi, jq is between the lesser and
greater of the the two integers δpi, kq and δpi, lq, else the two are uncrossed.
Two disjoint subsets X and Y of the set of formal indices 1, . . . , n are said to
be noncrossing if there does not exist i, j P X and k, l P Y all distinct such
that i, j and k, l are crossed pairs. Otherwise they are crossing. Finally, we
call noncrossing partition a partition of the set of formal indices t1, . . . , nu

in which any two distinct classes are noncrossing.

Noncrossing partitions can be visualized geometrically on the n-gone with
vertices labelled clockwise (or counterclockwise) with labels

1, cp1q, c2p1q, . . . , cn´1
p1q.

We will note the counterclockwise labelled n-gone as N . Note that we identify
the vertices with their labels. Unfolding the definition, pairs i, j and k, l are
crossed if the repeated application of c to i finds one among k and l, but not
both, before getting to j. Thus, if we draw an edge between vertices i and
j, and between k and l on the n-gone, we will find two crossing edges if the
pairs were crossing, or uncrossing edges if the pairs were uncrossing.
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Figure 2.4: Pairs 2, 5 and 1, 3 are crossing with respect to c “ p15324q, while
pairs 1, 3 and 2, 4 are noncrossing.

Remark 2.2.4. This construction is already useful: it is now intuitively easy
to see (and prove) that if i, j and k, l are crossed/uncrossed, then j, i and k, l
are crossed/uncrossed, and likewise i, j and l, k.

Two sets of indices X and Y are noncrossing if no pair of distinct indices
in X crosses some pair of distinct indices in Y . Since we can visualize cross-
ing/noncrossing pairs as crossing/noncrossing edges, we have that X and Y
are noncrossing if and only if the convex hull of the set of vertices on N
corresponding to elements of X does not cross the convex hull of the vertices
on N corresponding to elements of Y .

1

5

3

2 4

1

5

3

2 4

Figure 2.5: Classes t1, 3, 2u and t4, 5u are crossing with respect to c “

p15324q, while classes t2, 3, 5u and t1, 4u are noncrossing.

Finally, a noncrossing partition can be viewed as a partition of the vertices
of N such that no two classes give place to intersecting convex hulls.
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2

46

3

1 5

Figure 2.6: The partition tt1, 2, 4u, t3, 6u, t5uu is noncrossing with respect to
the cycle c “ p152463q.

Remark 2.2.5. Let ℶ be a partition of the set of indices t1, . . . , nu. A singleton
is a class of ℶ containing just one index. Note that a singleton and any
other class in ℶ will always be noncrossing. Moreover, let a class and a
singleton tju in the noncrossing partition ℶ such that that there is some
index i in the class for which i and j find themselves to be the two vertices
of an edge in the labelled n-gone (i.e., cpiq “ j or vice versa). Then the
noncrossing partition obtained from ℶ by joining that class and j is still
noncrossing. There is another important operation on a noncrossing partition
that produces a noncrossing partition. Imagine to draw a straight line that
cuts the convex hull representing a class in a noncrossing partition in two,
and touches no vertex of N . This operation divides the indices in that class
in two sets. The partition of indices obtained by replacing the original class
of the noncrossing partition with the two new classes is again noncrossing.

1

5

3

2 4

1

5

3

2 4

Figure 2.7: A cut in a noncrossing partition as described gives place to
another noncrossing partition.
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The set of noncrossing partitions has a natural partial order relation given
by inclusions of classes, i.e. for any two noncrossing partitions ℵ1 and ℵ2, we
set ℵ1 ďNCP ℵ2 if and only if any class in ℵ1 is contained in some class of ℵ2.

We need just another construction to prove the main result of this sub-
section.

Definition 2.2.6. We call noncrossing closure of partition ℵ, and note it with
ℵ, the noncrossing partition obtained as follows. For every two crossing
classes of the partition, we merge them together to form a unique class. We
proceed like this, until there are no more crossing couples of classes left.

In the visual construction, we can represent as above the partition ℵ on
N by drawing the convex hulls of the sets of vertices corresponding to classes
of ℵ. For every pair of intersecting convex hulls, we take the convex hull of
the union of the two classes of vertices, until there is no intersecting couple
of convex hulls left. Classes of vertices in resulting convex hulls individuate
a partition of formal indices, which we recognize to be ℵ.

1

5

3

2 4

1

5

3

2 4

Figure 2.8: The noncrossing closure of partition tt1, 2u, t3u, t4, 5uu with re-
spect to c “ p15324q is tt1, 2, 4, 5u, t3uu.

We recall (see example 0.0.7) that the set of all partitions of a given set
form a lattice, with the two operations ℶ1 Y ℶ2 and ℶ1 X ℶ2, respectively
representing the least fine of the partitions more fine than ℶ1 and ℶ2 and the
most fine of the partitions less fine than both ℶ1 and ℶ2.

Proposition 2.2.7. The set of noncrossing partitions with the partial order
ďNCP as above and the operations

ℵ1 ^ ℵ2 “ ℵ1 X ℵ2
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ℵ1 _ ℵ2 “ ℵ1 Y ℵ2

forms a lattice.

Proof. We start by proving a useful lemma;

Lemma 2.2.8. For every partition ℶ of t1, . . . , nu, every noncrossing partition
less fine than ℶ is also less fine than ℶ.

Proof. If ג is a partition less fine than ℶ, every class B of ℶ is contained in
a class G of .ג We consider two classes G1, G2 of ג and two classes B1, B2

of ℶ such that B1 Ď G1 and B2 Ď G2. If ג is a noncrossing partition, then
G1, G2 are noncrossing, so that also B1, B2 are. There follows that each
time two classes in ℶ are crossing, they are contained in the same class of .ג
Therefore, every class of the noncrossing closure ℶ is contained in some class
of ,ג proving ג ďNCP ℶ

We now observe that if ℵ1 and ℵ2 are noncrossing partitions, then ℵ1 X

ℵ2 is also a noncrossing partition. In fact, every class of ℵ1 X ℵ2 is an
intersection of a class of ℵ1 and a class of ℵ2. Since two distinct classes of ℵ1

are noncrossing, the same will be true for their intersections with two distinct
classes of ℵ2.

Moreover, if ℵ1 and ℵ2 are two noncrossing partitions, for every noncross-
ing partition ℵ for which ℵ ďNCP ℵ1,ℵ2 it holds that ℵ ďNCP ℵ1 Y ℵ2. In
fact, every partition less fine than ℵ1 and ℵ2 is less fine than ℵ1 Y ℵ2, and
if one such partition is also noncrossing, it is less fine than ℵ1 Y ℵ2 by the
lemma above.

We conclude this subsection by thew following useful remark.

Remark 2.2.9. Though the property for a partition to be uncrossing depends
on the choice of the cycle c, the structure of the poset of partitions for n
fixed does not. In fact, we could have considered the poset of noncrossing
parititons on the unlabelled n-gone, thinking of a noncrossing partition as
a partition for which the geometric interpretation of the property of being
noncrossing holds. The resulting poset must be the same for every choice of
the numeration of the vertices, which corresponds to the choice of a cycle c.
This means that the elements in the poset found from noncrossing partitions
of a cycle c depend on the choice of c, but the isomorphism class of posets
does not.
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2.2.2 The factorization poset of an n-cycle

In this subsection, we will use noncrossing partitions from previous subsection
to describe the factorization poset of an n-cycle, by finding that the poset
formed by noncrossing partitions and the one formed by factorizations of the
n-cycle are actually isomorphic. Using this fact, we will be able to show that
this poset is also a combinatorial Garside structure. We keep c an arbitrary
n-cycle fixed in Σn with n also fixed, unless otherwise specified.

Definition 2.2.10. Let σ P Σ a permutation, and c1 . . . ck its cyclic structure.
We note with

ℸpσq

the obvious partition of indices induced by c1, . . . , ck, where fixed points are
considered as singletons.

Example 2.2.11. Permutation p147qp25q in Σ7 induces the partition of in-
dices tt1, 4, 7u, t2, 5u, t3u, t6uu. This partition is crossing with respect to
c “ p1234567q.

To get back from a partition of indices to a permutation, we use the
following convention. Once c is fixed, we represent the partition on the n-
gone as usual, and write down the cycles ci by reading the indices in every
convex hull in counterclockwise order.

Example 2.2.12. Consider the partition of indices tt1, 4, 7u, t2, 5u, t3u, t6uu

from the previous example. While there is no ambiguity when computing
cycles corresponding to classes t2, 5u, t3u and t6u, class t1, 4, 7u could corre-
spond to p147q or p174q. If we choose to set c “ p1246375q then we find the
former, while by setting c “ p1276345q we get the latter.

Lemma 2.2.13. Let σ be a permutation in Σ. Then σ divides c if and only if
ℸpσq is a noncrossing partition for c.

Proof. We prove the first implication by induction on the number m of orbits
for σ. If σ “ c1 ¨ ¨ ¨ ck this number is k plus the number of fixed points. If
m “ 1 then σ “ c and the assert is proved. Otherwise, we write σ “ σ1pijq

for some σ1, i and j such that lpσq “ lpσ1q ` 1. Since l increases, indices
i and j must lie in the same class of ℸpσ1q so that multiplication by pijq

splits the class in two distinct classes, as pictured in figure 2.9, this can be
deduces from lemma 2.2.1. The number m for σ1 is thus less that the one
for σ, therefore by inductive hypothesis ℸpσ1q is a noncrossing partition for
c. Thus the same holds for ℸpσq, since it was obtained by splitting in two a
class in a noncrossing partition (see remark 2.2.5).
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c´1
2 pjq

c1piq

i j

Figure 2.9: Multiplying a cycle by an opportune transposition splits the cor-
responding class, while multiplying by an opportune transposition we merge
two classes.

We now turn to prove the inverse implication: if ℸpσq is a noncrossing
partition then σ divides c. We compute the cyclical structure of σ as outlined
before, with respect to c which is fixed since the very beginning of this section.
We call m the number of classes in ℸpσq, and proceed by induction on this
number. Note that m is again equal to k number of disjoint cycles in the
cyclic structure of σ plus the number of indices fixed by σ. If m “ 1 then
σ “ c. For m ą 1, we consider two indices i, j such that they lie in two
adjacent vertices of the labelled n-gone, but are contained in two different
classes of ℸpσq. Up to relabelling the cycles, we suppose i P c1 and j P c2.
The next index we read in c1 following our convention will be then c1piq. The
situation so far is pictured in 2.9. Note that transposition pc1piqjq commutes
with every ci as long as i ‰ 1, 2, and

c1 ¨ c2 ¨ pc1piqjq

is just the cycle
pc1piq ¨ ¨ ¨ ij ¨ ¨ ¨ c´1

2 pjqq,

so that σ ¨ pc1piqjq has one orbit less that σ. If ℸpσq was a noncrossing
partition, that the same holds for ℸpσ ¨ pc1piqjqq by the geometry of N . By
inductive hypothesis, we have that σ ¨ pc1piqjq divides c, and there follows
immediately that σ divides c.

Lemma 2.2.14. Let σ1, σ2 such that both divide c. Then σ1 divides σ2 if and
only if ℸpσ1q is finer than ℸpσ2q, i.e.,

σ1 ď σ2 ðñ ℸpσ1q ďNCP ℸpσ2q.

40



Proof. It is sufficient to show the assert in the case σ2 “ σ1pijq with lpσ2q “

lpσ1q ` 1. Let σ1 “ c1 ¨ ¨ ¨ ck cyclic structure. In order for the length to
increase, i and j must lie in two different classes of ℸpσ1q, as follows from
lemma 2.2.1. Then, ℸpσ2q is obtained from ℸpσ1q by breaking a class in two
classes (the opposite operation of the merging of two classes pictured in figure
2.9), and clearly this operation gives place to a noncrossing partition.

On the other hand, if ℸpσ1q ďNCP ℸpσ2q then ℸpσ1q is obtained from ℸpσ2q

by merging some classes together. It is sufficient to deal with the case in which
only two classes are merged. We note c1 and c2 the two corresponding cycles.
Merging the two classes corresponds to the multiplication by an opportune
transposition (again, the concept is pictured in figure 2.9). There follows
immediately σ1|σ2. It also holds lpσ2q “ lpσ1q ` 1 because we have merged
two cycles together, and again by lemma 2.2.1.

We conclude the poset isomorphism, and again call the poset found P .
We now turn to prove that, with labels induced by the natural labelling of
FactpΣn, Tn, cq with labels in Tn, poset P is a combinatorial Garside struc-
ture. It is of course bounded and of finite height since it was obtained as a
factorization poset in a finite group, and is also graded. By the same reason
it is group-like, and by proposition 2.2.7 it is a lattice. What is left to prove is
that P is balanced. This will be done only in chapter 3, after the introduction
of a useful piece of technology: Hurwitz action of the braid group.
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Chapter 3

Braid groups

In this final chapter, we will firstly define braid groups as arising from the
algebraic topological context, and then show that groups arising from the
combinatorial Garside structures we found within the symmetric group Σn

are both isomorphic to the braid group on n strands Bn. This will be done
by computing a presentation for the group arising from the combinatorial
Garside structure in each case; We recall from chapter 1 that, when a combi-
natorial Garside structure P forms, we can obtain a group by using the labels
in the structure as generators and relations equating any two words read on
maximal chains. We will also show that the presentation from the “classic"
combinatorial Garside structure is equivalent to Artin’s presentation for the
braid group on n strands, and that the presentations arising from both ap-
proaches give place to isomorphic groups. By results in chapter 1, this will
lead to the fact that the braid group is a Garside group, so that we have
an explicit solution for the word problem and the construction of a finite
KpBn, 1q for any n.

3.1 Braid groups

We start by considering the space constructed starting from the action of Σ
by permutation of coordinates on Cn. As in section 2.1, where the action
was on Rn, this action can be viewed as an action by reflections through
the hyperplanes that have the same equation as the ones in Rn, but should
be intended in the complex variable. We again consider the complementary
space of the union of the hyperplanes. While in Rn this complementary space
would have been a disjoint union of contractible cones, each of which we called
chamber, in the complex setting the complementary space has nontrivial
topological structure. We are in particular interested in its fundamental
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group. Note that we are not yet considering the space obtained by quotienting
by the action, but just the complementary space of the union of the reflecting
hyperplanes. We can picture an element in this space by viewing its n distinct
(since otherwise it would have laid on some removed hyperplane) as n distinct
ordered points on the complex plane.

Definition 3.1.1. The space formed by the possible configurations of n distinct
ordered points on the complex plane is called the space of ordered configura-
tions of n distinct points. It will be noted ConfOrdn or ConfOrd when n is
obvious or unimportant.

To compute its fundamental group, one can start by considering a loop
based at some x0 in

Cn
z

ď

tPTn

HC
ptq

where we have noted with HCptq the hyperplane in Cn that has the same
equation as Hptq from section 2.1.1. When the path variable t varies, in the
n-points model one would see each point move along a distinct loop in C. In
fact, we can view the path

γprq “

¨

˚

˝

γ1prq
...

γnprq

˛

‹

‚

in ConfOrd based at x0 as n distinct paths γ1, . . . , γn in C, each based
at its corresponding γip0q which is the i-th coordinate of x0. Those new n
loops in C will be covered simultaneusly as t varies in r0, 1s. Moreover, since
γ was a path in the complementary of the hyperplanes, at any given time
γiptq ‰ γjptq for any i, j, since otherwise γ would cross an hyperplane at the
time t. By mapping the value of each loop as t varies, one gets a braid for
which the initial and final position of the labels (as read on the start and on
the end of the strands) coincide.
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Definition 3.1.2. The fundamental group

π1pConfOrdnq

is called the pure braid group on n strands and will be noted PBn, or PB
when n is obvious or unimportant.

We now let Σ act as a group of reflections on ConfOrd. Points in the
quotient space correspond to classes of elements in the known complementary
space for which an opportune permutation of coordinates takes the one in the
other. To visualize one of such classes on the complex plane as for elements
of ConfOrd, we will consider n distinct points on the complex plane, but
without ordering them.

Definition 3.1.3. The space formed by the possible configurations of n distinct
unordered points on the complex plane is called the space of configurations
of n distinct points. It will be noted Confn, or Conf when n is obvious or
unimportant.

Note that Conf can be obtained as a quotient of ConfOrd by letting Σ
permute the order of the n distinct ordered points in an element of ConfOrd.
This operation is the same as the one performed on the complementary space
of the hyperplanes, but viewed in the complex plane model. The two quo-
tients actually give place to a covering map from ConfOrd to Conf with n

45



sheets. When trying to compute its fundamental group, we can use the same
technique as for ConfOrd. The main difference is that now a loop based at
x̃0 P Conf is induced by any path in the complementary space of the hy-
perplanes from one and another. In particular, we get many more braids,
since a strand of the braid is not bounded to take its complex value in itself
anymore, but can reach any other complex value in the initial configuration.
We get therefore any braid.

Definition 3.1.4. The fundamental group

π1pConfnq

is called the braid group on n strands and will be noted Bn, or B when n is
obvious or unimportant.

Remark 3.1.5 (From braids to permutations). In general a braid induces a
permutation of the labels on the strands. To determine the permutation we
use the covering structure ConfOrd Ñ Conf. Fix a point x̃0 in the fiber of the
basepoint x0. A braid b P B lifts to a unique path starting at x̃0 and ending
in some other x̃0

1 also in the fiber. Both x0 and x1
0 are in the same class since

they lay in the fiber of a commune point, so that they differ by a permutation
of coordinates. We take that permutation to be the permutation associated
to b. Geometrically, we can see the permutation by reading the indices on
the strands as they appear before and after having crossed the strands. One
can observe that different choices of x0 correspond to different choices of a
labelling on the n unlabelled points of x̃0. This construction thus depends
on the choice of x̃0, but the permutation does not.

The braid pictured induces the trivial permutation. In general the con-
sideration in remark 3.1.5 yields a surjective homomorphism π : B Ñ Σ for
which the kernel is PB since pure braids induce the trivial permutation (as
they are loops in ConfOrd, so that they connect the choosen x̃0 to itself). We
have therefore that the quotient of B with respect to the normal subgroup
PB is isomorphic to Σ. This can be viewed also as a result concerning the
covering structure. In fact, from well-known facts about coverings we get
that the group of deck transformations is hysomorphic to Σ (corresponding
to the fact that the deck transformations correspond to re-labellings of the
n points) and the quotient of B with respect to PB is exactly Σ.

It is beyond the purpose of this dissertation to calculate a presentation for
B, but it was already known to Artin that the geometric braid group has the
following presentation, and trough some technology (see [15]) it is possible to
show that it is also a presentation for the space Confn, as expected. We will
call this presentation Artin presentation. It consists in the set of generators
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Sn, subject to braid relation and commutation relation as in 2.1, but not
involutions. I.e.,

σiσjσi “ σjσiσj if |i ´ j| “ 1

σiσj “ σjσi if |i ´ j| ą 1.

This way of presenting the symmetric group has a strong geometrical
meaning. In fact, it reflects the realization of a braid by crossings of n
strands whose upper ends are disposed in a line. Generator σi corresponds
to the geometrical act of crossing the i-th and pi ` 1q-th strand. Relations
express the equivalences pictured in figure 3.1.

Figure 3.1: Generators si and sj with |i ´ j| ą 1 commute (first row), while
for |i ´ j| “ 1 they do not, but σiσi`1si “ σi`1σiσi`1 hold (second row).

3.2 Matsumoto’s property and classic structure
We fix n. Our task will be now to obtain a presentation for the group
found from the classic structure in Σ. We recall that this group is the one
presented using S as set of generators and the relations equating every two
words read on maximal chains in the poset from classic structure. To find
an explicit presentation, we will recall a property of symmetric groups, the
exchange property, and then prove that in the symmetric group the so-called
Matsumoto’s property holds. This will lead to a presentation that we will
recognize to coincide with Artin’s presentation.

First, we recall what the exchange property is, adapting [3]. On the same
text the topic is discussed in detail and a proof is given.
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Lemma 3.2.1 (Exchange property for Σ). Let r ě 1 fixed and s1 ¨ ¨ ¨ sr,
s1
1, ¨ ¨ ¨ s1

r be two reduced words for the same permutation µ, where si, s
1
i P S

for every i “ 1, . . . , r. Then for some q P{1,. . . r} there exists a reduced word
for µ of the form s1

1s1 ¨ ¨ ¨ ŝq ¨ ¨ ¨ sr.

The following theorem states a crucial property in the study of the com-
binatorics of the symmetric group. As mentioned in chapter 2, this theorem
implies that the relations we used to present the symmetric group as gen-
erated by S are sufficient to construct this group. Since the study of the
Coxeter-Moore presentation for the symmetric group is beyond the pour-
pose of this dissertation, we choose nonetheless to present this result only
now, since using it we will manage to show our claims. We start with some
definitions.

Definition 3.2.2. Let w “ s1 ¨ ¨ ¨ sr a reduced word with si P S for every i “

1, . . . , r. Whenever two elements σi, σj with |i´ j| ą 1 find themselves to be
in two consecutive positions in w, we call commutation move the substitution
σiσj ÞÑ σjσi in the word. Whenever two elements σi, σj with |i ´ j| “ 1 find
themselves to be in two consecutive positions in w, we call braid move the
substitution σiσjσi ÞÑ σjσiσj in the word. We say two words on the set of
generators S are classic equivalent if one can be turned in the other by a
finite number of application of commutation and braid moves.

It is a trivial check that the property of being classic equivalent gives
place to an equivalence relation.

Theorem 3.2.3 (Matsumoto’s property). Any two reduced factorizations with
elements in S for the same permutation are classic equivalent.

Proof. We consider again a permutation µ and two reduced words represent-
ing µ in Σn, say w “ s1 ¨ ¨ ¨ sr and w1 “ s1

1, ¨ ¨ ¨ s1
r. We proceed by induction

on the length of µ, which we observe to be r. If r “ 1 the assertion clearly
holds.

If s1 “ s1
1 or sr “ s1

r then the assertion holds by applying the inductive
hypothesis to the reduced words resulting for s1µ “ s1

1µ or srµ “ s1
rµ respec-

tively, from our original reduced words. Assume then that this case does not
occur.

By the exchange property there exist a reduced word for µ of the form
w2 “ s1

1s1 ¨ ¨ ¨ ŝx ¨ ¨ ¨ sr for some x. By our previous observation, w and w2

are classic equivalent since their first letter coincide. We observe that if w1

is equivalent to w2 then it is also equivalent to w. If x ă r then w1 and w2

coincide again by the observation, since their last letter coincide. We have
only one case left: the one for which x “ r in the word obtained by applying
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the exchange property. We are assuming therefore w2 “ s1
1s1 ¨ ¨ ¨ sr´1. Again

applying the exchange property to w and w2, µ has a reduced word of the
form w3 “ s1s

1
1 ¨ ¨ ¨ ŝy ¨ ¨ ¨ sr´1 Moreover, the deletion in that word must take

place strictly after s1
1, since otherwise we would get an unreduced word.

Again by the first observation, w and w3 are equivalent. If we showed w2

and w3 are equivalent, we would have concluded. We now therefore claim
that w “ s1

1s1 ¨ ¨ ¨ ŝx ¨ ¨ ¨ sr and w1 “ s1s
1
1 ¨ ¨ ¨ ŝy ¨ ¨ ¨ sr´1 (where 1 ď y ă r ´ 1)

are classic equivalent.
If r “ 2 the result is true. In fact, in that case we have that s1s

1
1 “ s1

1s1
and they are distinct (since the length is 2), so that a commutation move is
possible. We assume therefore r ą 3. If y ă r´1 again the assertion holds by
the initial observation, so that our actual claim is that w1 “ s1s

1
1s1 ¨ ¨ ¨ sr´2

is classic equivalent to w. Since w1 is reduced, we have that s1 ‰ s1
1 and

s1s
1
1 ‰ s1

1s1. Therefore s1 and s1
1 are σi and σj where |i ´ j| “ 1. A braid

move is thus sufficient to conclude the proof.

Remark 3.2.4 (Geometric interpretation). By what we exposed through sec-
tion 2.1.1, minimal paths in the labelled, oriented 1-skeleton of the permu-
tahedron connecting Pe to Pσ correspond to reduced factorizations for σ.
We also know, in particular by remark 2.1.7 and the consequences of lemma
2.1.8, which the shapes of the 2-facets are and how they are labelled and their
edges oriented. Let f “ s1 ¨ ¨ ¨ sk a reduced factorization for σ. If a commuta-
tion relation can be applied turning f into the new reduced factorization f 1,
then two adjacent generators si, si`1 in the factorization commute. On the
permutahedron, this means that the path corresponding to f crosses the two
edges of a squared 2-facet labelled with tsi, si`1u. The path corresponding to
f 1 on M thus coincides with the path for f everywhere except for the edges
of that squared facet: if the path for f crossed two edges, then the path for f 1

crosses the other two. An analogous consideration can be done for the braid
relations, corresponding to changing the path on the border of an hexagonal
facet. We will call those moves on minimal paths on the permutahedron
squared and hexagonal moves. Both moves are depicted in figure 3.2.

Matsumoto’s property can be formulated purely in terms of minimal paths
and squared or hexagonal moves, as follows.

Proposition 3.2.5 (Matsumoto’s property on the permutahedron). Any two
minimal paths on M connecting Pe and a vertex Pσ can be obtained the one
from the other by finite applications of squared and hexagonal moves.

The poset we are interested in is again the one found in section 2.1, real-
ized by M and FactpΣ, S, ω0q. Generators are the elements of S by construc-
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Figure 3.2: The effect of the application of commutation and braid moves
to reduced words on corresponding minimal paths on the 1-skeleton of the
permutahedron. Switching from the path on the left to the one on the right,
a squared and an hexagonal move are being applied.

tion of the labelling on M , and relations are the ones equating words read on
any two minimal paths connecting Pe to Pω0 . In particular, words read on
two minimal paths differing by a squared or hexagonal move are equated, so
that (since they differ on a squared or hexagonal 2-facet of M and coincide
everywhere else) applying right and left cancellativity we get braid and com-
mutation relations. On the other hand, relation of such form are enough to
present the group, since by Matsumoto’s property the equivalence between
any two words read on any two minimal paths connecting Pe to Pω0 can be
obtained by finite applications of braid and commutation relations. Thus we
get that the group arising from classic combinatorial Garside structure in Σn

has exactly Artin’s presentation for the braid group on n strands.
Example 3.2.6. It was already observed that poset on the left in figure 1.1
was a combinatorial Garside structure. It was also noted that it is the classic
combinatorial Garside structure taking place in Σ3. Its Garside group is the
braid group on 3 strands, B3. Thus we have that the braid group on 3 strands
is a combinatorial Garside structure, we have a solution for the word problem
in this group and we can construct a finite Kpπ, 1q, which is depicted on the
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left in figure 1.3.

3.3 Hurwitz transitivity and dual structure
In this section we will be concerned with the computation of a presentation
for the group arising from dual structure, and with a proof of the isomorphism
with the classic braid group. The first task will be accomplished through a
construction indirectly due to Hurwitz, consisting in an action of braid group
B itself on the reduced factorization sets of the n-cycles with transpositions.
As a byproduct of the transitivity of this action, we will obtain a complete
set of relations to present the group arising from dual structure. Moreover,
this presentation will be used to show that the group it individuates and the
braid group Bn are isomorphic. We still keep n fixed.

Definition 3.3.1 (Hurwitz action). Let Rednpcq be the set of the reduced
factorizations of the n-cycle c with elements in T . We consider the action
of Bn´1 on it defined for the generators of Bn´1 as follows: the image of
factorization pt1, . . . , tn´1q through σi has each component unchanged except
for components ti and ti`1, which are changed respectively in titi`1ti and ti.
The resulting action H will be called Hurwitz action.

We observe that this action is indeed an action of the braid group Bn. In
fact, whenever |i ´ j| “ 1, a quick calculation shows the coincidence

Hpσiσjσiq “ Hpσjσiσjq

and whenever |i ´ j| ą 1 in a similar fashion we check

Hpσiσjq “ Hpσiσjq.

The morphism H is therefore a homomorphism, and thus we have an action
of B expressed with respect to Artin’s presentation.

Proposition 3.3.2. Hurwitz action is transitive on reduced factorizations of
an n-cycle with elements in T . I.e., for any c and for any two reduced
factorizations w1, w2 P Rednpcq there exists a braid b P Bn´1 for which

Hpbqpw1q “ w2.

Proof. We proceed by induction on n´ 1, which we observe to be the length
of every n-cycle in Σn as we know from lemma 2.2.1. Let

pijq ¨ t1 ¨ ¨ ¨ tn´2
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a reduced factorization for c, so that

pijq ¨ c “ t1 ¨ ¨ ¨ tn´2.

We can assume i “ 1 and c “ p123 . . . nq since this change can be operated
through conjugations and conjugations do not affect the combinatorics we
are interested in, as we know from section 2.2. A straightforward calculation
shows that

p1jq ¨ c “ p123 . . . j ´ 1q ¨ pj . . . nq.

We can rearrange t1 ¨ ¨ ¨ tn´2 using commutations (that can be interpreted
as Hurwitz moves whenever they are possible) to form the product of two
factorizations, one for p12 . . . j ´ 1q and the other for pj . . . nq. Up to rela-
belling, we can assume that t1 ¨ ¨ ¨ tj´2 was a factorization for the first cycle,
and tj´1 ¨ ¨ ¨ tn´2 was a factorization for the second cycle.

By inductive hypothesis, the action of Bj´1 on the reduced factorizations
of p123 . . . pj ´ 1qq is transitive, and so is the action of Bn´j on the reduced
factorizations of pj . . . nq. Up by identifying Bj´1 with the subgroup of Bn´1

generated by the first j ´ 2 generators, and Bn´j with the subgroup of Bn´1

generated by the last n ´ j ´ 1 generators, we have that by acting with the
generators listed, we can change t1 ¨ ¨ ¨ tn´1 in every desired factorization. In
particular through the application of Hurwitz moves of Bn we can get the
factorization p12qp23q ¨ ¨ ¨ pj ´ 2, j ´ 1q for the first cycle as the first fragment
of the factorization and the factorization pj, j ` 1q ¨ ¨ ¨ pn´ 1, nq as the second
fragment. Through Hurwitz moves thus we get

c “ p1jqp12qp23q ¨ ¨ ¨ pj ´ 2, j ´ 1q ¨ ¨ ¨ pj, j ` 1q ¨ ¨ ¨ pn ´ 1, nq.

But then, by applying Hpσ´1
1 ¨ ¨ ¨ σ´1

j´2q we get the factorization

p12qp23q ¨ ¨ ¨ pj ´ 2, j ´ 1qpj ´ 1, jqpj, j ` 1q ¨ ¨ ¨ pn ´ 1, nq.

Since we proved that any given factorization for the n-cycle can be taken
in the one exhibited, we have the desired transitivity.

Remark 3.3.3. We start by observing what happens when we repeatedly
apply the same Hurwitz move Hpσiq to a reduced word for c. We consider
therefore the two distinct transpositions t1 and t2, in position i and i ` 1
respectively in the reduced factorization considered for c.

we assume firstly that the two indices switched by t1 and the ones switched
by t2 have no index in common, so that they commute and therefore t2t1t2 “

t1. Then Hpσiq acts as
t1, t2 ÞÑ t2, t1 ÞÑ t1t2.
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Note that since t1 and t2 are found as successive factors in a reduced factor-
ization of the n-cycle, they switch two pairs of indices that are noncrossing
with respect to that n ´ cycle. To see this, consider t1 ¨ ¨ ¨ tk, t1 ¨ ¨ ¨ tk`1|c; in
order for the length to increase by one by multiplying by ptk`1q, this per-
mutation needs to merge together two classes in ℸpt1 ¨ ¨ ¨ tkq to form another
noncrossing partition, as can be seen from the explicit computation of the
length function with respect to the cyclic structure of a permutation, in
lemma 2.2.1. We draw the edge corresponding to tk in the geometric repre-
sentation of ℸpt1 ¨ ¨ ¨ tkq merging together two classes as in figure 2.9. At this
point, the edge corresponding to transposition tk`1 needs to merge together
two new classes; in particular it cannot cross any convex hull corresponding
to a class, in particular the indices it swaps and the indices swapped by tk
form two noncrossing couples.

On the other hand, assume the two pairs of indices have an index in
common, so that t1 “ pijq and t2 “ pjkq for some i ă j ă k. Then the
Hurwitz move acts as

t1, t2 ÞÑ t2, pikq ÞÑ pikq, t1 ÞÑ t1, t2.

Hurwitz moves therefore act as either the commutation move or the move

pijqpjkq ÞÑ pjkqpkiq ÞÑ pkiqpijq ÞÑ pijqpjkq

which we will refer to as dual braid move for reasons that will be clear in the
following. This last observation has an interpretation in terms of the shape
of poset P . In fact, from the transitivity of Hurwitz action we get that for
any two maximal chains in P we can transform the one in the other by finite
applications of either commutation or dual braid moves. While we already
observed what effect a commutation move has on the chains in section 3.2,
we observe that a dual braid move acts as depicted in figure 3.3.

First we have to pay the debt we contracted in chapter 2: proving the
balancedness for the dual poset.

Proposition 3.3.4. Poset P found as the dual structure in Σ is balanced.

Proof. Let t1 ¨ ¨ ¨ tk P PrepP q. Then there is some reduced factorization
t1 ¨ ¨ ¨ tk ¨ tk`1 ¨ ¨ ¨ tn´1 for the fixed c. Then by applying Hurwitz move

Hpσk ¨ ¨ ¨ σn´2q

we have the reduced factorization t1 ¨ ¨ ¨ tk´1t
1
k`1 ¨ ¨ ¨ t1

n´1tk. By repeadetly ap-
plying Hurwitz moves of the same type we have the reduced word t2

k`1 ¨ ¨ ¨ t2
n´1t1 ¨ ¨ ¨ tk,

so that we have proved PrepP q Ď SufpP q. The same argument but with the
use of the action of the inverses of elements in S shows the inverse inclusion,
so that the poset is balanced.

53



a

b c

b

a

c

Figure 3.3: The effect of the application of dual braid moves to reduced words
on corresponding maximal chains of the dual structure.

We consider the poset found in section 2.2 inside Σ. We again have to
form a group by using the set of labels as generators and relations equating
words on any two maximal chains. The set of labels is T by construction of
the poset as FactpΣ, T, cq, so that we have T as set of generators. Relations
equating any two maximal chains in particular equate two chains differing
by a commutation or dual braid move, so that for any four distinct indices
i, j, k, l,

pijqpjkq “ pjkqpkiq “ pkiqpijq

and, whenever i, j and k, l are noncrossing pairs,

pijqpklq “ pklqpijq

also are relations in the resulting group (see remark 3.3.3). By Hurwitz tran-
sitivity, those relations are enough to present the group, since they express
exactly the moves corresponding to Hurwitz action, which we know to be
transitive. This new group will be noted Γn (or simply Γ as always when n
is obvious or unimportant) and is presented by T as set of generators,

pijqpjkq “ pikqpijq “ pjkqpikq

for any three indices i ă j ă k,

pijqpklq “ pklqpijq

for any two noncrossing couple i, j and k, l.
The dual presentation arises geometrically by considering the braid group

as realized intertwining strands disposed in a circle. Consider in fact n strings
labelled with indices 1, . . . , n. One end of each strands is fixed so that the
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ends of the strands form a circle, and the strands are free to dangle. The
generator pijq of the dual presentation corresponds to the act of switching
the free end of strands i and j, by making them move the one around the
other counterclockwise (obviously the counterclockwise sense was chosen ar-
bitrarily).

This interpretation makes it intuitively easy to see why two generators
pijq and pklq commute only if the four indices form two noncrossing couples.

i

jk

l

Figure 3.4: When i, j and k, l are crossing pairs, the crossing of strands i
and j and the crossing of strands k and l do not commute, since the crossed
strands block any attempt to move the crossing between the latter above the
crossing between the former.

Example 3.3.5. On the right in figure 1.1 we find the dual combinatorial
Garside structure from Σ3. The resulting group is

xa, b, c | ab “ bc “ cay

for which the quotient of the object depicted on the right in figure 1.3 is a
finite Kpπ, 1q.

Lemma 3.3.6. The interval complexes arising from the two combinatorial
Garside structures in Σ3 are homotopically equivalent. In particular the
dual interval complex can be deformation retracted on a copy of the classic
interval complex.
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Proof. We consider the order complex arising from the dual approach - as
pictured on the right in figure 1.3. It is equivalently obtained by quotienting
along the labelled arrows the following spaces.

a

b

d

b

c

d

c

a

d

We start by deformation retracting the first triangle onto the two edges
labelled a and b. Thus in the second triangle the edge labelled d is now
attached along the edges a and b, both crossed orientation-wise, and similarly
happens in the third triangle. We watch now the second triangle, which has
now the depicted attachment maps.

b

c

a

b

c

a

a

b

It is already evident how this object is the desired space. We make it
evident by deformation retracting c in the triangle on the left on the edges
labelled b and a. Thus in the third triangle the attachment maps have become
the ones of the following complex;

b

b

b a

a

a

This last object then appears to be a deformation retract of the initial
object.
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In the following this special case for the interval complex will play a
fundamental role. We will note coharsely the dual interval complex of Σ3

labelled a, b, c with Dpa, b, cq and the classic interval complex labelled a, b
with Cpa, bq.

Proposition 3.3.7. The group Γ is isomorphic to B.

Proof. The general idea for this proof is to construct a cell complex of di-
mension 2 such that its fundamental group is presented as Γ. Through an
algorithm, it will be deformed to become another 2-complex with fundamen-
tal group the braid group in Artin presentation. We will show that the final
and initial space for wvwery step of the algorithm are homotopic equivalent,
and that the algorithm ends in a finite number of steps. Also, some calcu-
lations will be necessary to make sure that no 2-cell in the original complex
induces some relation in the final complex other that Artin’s relations.

First, we construct the initial complex. To do this, we consider the com-
plete graph on n vertices, with the vertices labelled with integers 1, . . . , n.
We consider in particular the model obtained from the regular n-gone by la-
belling the vertices counterclockwise. Each edge of the graph has as bounding
vertices two vertices with indices i ă j. We label the edge pijq and orient
the edge from i toward j. This object will be noted F . We now identify
the vertices of the graph with a single vertex, getting a wedge sum of ori-
ented circles, each labelled with a transposition. We now will attach some
2-complexes to induce the opportune relations. Whenever a triangle forms
in F with vertices labelled i ă j ă k, we attach a copy of Dppijq, pjkq, pikqq

along the oriented circles with same labels, respecting orientations. When-
ever two edges labelled pijq, pklq are noncrossing in F , we attach a square
on the circles with those labels inducing a commutation in the fundamental
group. We call the resulting 2-complex G.

We now consider the following operation on G. Take a triangle in F
labelled i ă j ă k. Attached on the edges pijq, pjkq, pikq in G we find a copy
of Dppijq, pjkq, pikqq. By lemma 3.3.6, we can deformation retract it on a
copy of Cppijq, pjkqq. There is more: the edge in D that was attached to
pikq now is attached along pijq´1pjkqpijq, meaning that we have eliminated
a generator in the fundamental group of G. Moreover, we have obtained a
homotopically equivalent 2-complex. We will refer to this operation as to the
killing of pikq in the triangle i, j, k (we will assume by using this notation
that i ă j ă k).

We now consider the following algorithm. For every edge pikq from i to
k in F we call k ´ i the covering number of pikq, and note it λ. The edges
pj, j ` 1q with i ď j ď k ´ 1 are called covered edges of pikq.
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11 12 13

14

15

16

p39q

Figure 3.5: The edge p39q here has λ “ 6. Thick edges are the covered edges.

For each λ “ n ´ 1, . . . , 2 we consider the values of i for which i ` λ ă n,
so that for those values of i it holds that pi, i ` λq is an edge in F . For each
of those values of i, we kill pi, i ` λq in the triangle i, i ` 1, i ` λ.

The triangle on which a given step of the algorithm operates has not been
touched at some earlier step of the algorithm; in fact for fixed λ and i ‰ j
the triangles i, i` 1, i`λ and j, j ` 1, j `λ have no edge in common, and for
each λ only edges with covering number λ are killed. The algorithm is thus
well-posed. It also ends in a finite number of steps since the edges are finite.

We consider the space obtained at the end of the algorithm. Each circle
labelled pikq has been deformation retract onto some path on the circles
labelled as the covering edges of pikq. In particular at each step of the
algorithm we have written the generator pikq of the fundamental group as
σ´1
i pi ` 1, kqσi (where σi is usual notation). Prosecuting the algorithm, we

have killed every edge that crossed the interior of F , leaving only edges
corresponding to elements in S. In the last step of the algorithm (for λ “ 2)
we have attached an hexagon along each couple of circles labelled σi, σi`1, and
a square is present for each pair of circles labelled σi, σj with |i´ j| ą 1 from
the very beginning of the algorithm since they were noncrossing. Thus, the
fundamental group of the resulting space is generated by Artin generators,
and Artin relations hold. The hexagonal and squared 2-cells attached on
the original complex are still there. All what is left to check is that those
2-cells do not induce relations other that the ones already expressed by Artin
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relations.
The hexagon attached at the algorithm step operating on the triangle

i, i ` 1, i ` λ induces the relation

σipi ` 1, i ` λqσi “ pi ` 1, i ` λqσipi ` 1, i ` λq.

Later steps of the algorithm induce substitutions of the form

pi ` 1, i ` λq “ σ´1
i`1pi ` 2, i ` λqσi`1,

“retracting” circles corresponding to edge pikq on the circles corresponding to
the edges covered by pikq, so that the relation induced in the fundamental
group of the resulting space is of the form

s1s
´1
2 ¨ ¨ ¨ s´1

k´1sksk´1 ¨ ¨ ¨ s2s1 “

s´1
2 ¨ ¨ ¨ s´1

k´1sksk´1 ¨ ¨ ¨ s2s1s
´1
2 ¨ ¨ ¨ s´1

k´1sksk´1 ¨ ¨ ¨ s2
(3.1)

while by the same reasoning squares induce relations of the form

s´1
1 ¨ ¨ ¨ s´1

k´1sksk´1 ¨ ¨ ¨ s1 ¨ s´1
i ¨ ¨ ¨ s´1

l´1slsl´1 ¨ ¨ ¨ si “

s´1
i ¨ ¨ ¨ s´1

l´1slsl´1 ¨ ¨ ¨ si ¨ s´1
2 ¨ ¨ ¨ s´1

k´1sksk´1 ¨ ¨ ¨ s2.
(3.2)

Note that since squares were attached along pairs of circles corresponding
to noncrossing pairs of edges in F , ts1, . . . , sku and tsi, . . . , slu are disjoint.
Note also that, although in general si ‰ σi, it is true that if s1 “ σi then
sj “ σi`j. Our claim is that those two equations can be realized through the
application of Artin relations. We will prove this claim in the following two
lemmas.

Lemma 3.3.8. A finite sequence of applications of Artin relations realizes
equation 3.1.

Proof. We proceed by induction on k. For k “ 1 we get an Artin relation.
We consider now the general case. First we multiply each side by s´1

2 ¨ ¨ ¨ s´1
k´1

getting

s1s
´1
2 ¨ ¨ ¨ s´1

k´1sksk´1 ¨ ¨ ¨ s2s1s
´1
2 ¨ ¨ ¨ s´1

k´1 “

s´1
2 ¨ ¨ ¨ s´1

k´1sksk´1 ¨ ¨ ¨ s2s1s
´1
2 ¨ ¨ ¨ s´1

k´1sk,

then we apply on both sides the substitution s´1
k´1sksk´1 “ sksk´1s

´1
k

which is a trivial consequence of Artin relations.
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s1s
´1
2 ¨ ¨ ¨ sksk´1s

´1
k ¨ ¨ ¨ s2s1s

´1
2 ¨ ¨ ¨ s´1

k´1 “

s´1
2 ¨ ¨ ¨ sksk´1s

´1
k ¨ ¨ ¨ s2s1s

´1
2 ¨ ¨ ¨ s´1

k´1sk

Now, sk commutes with each sj with j ă k.

sks1s
´1
2 ¨ ¨ ¨ s´1

k´2sk´1sk´2 ¨ ¨ ¨ s2s1s
´1
2 ¨ ¨ ¨ s´1

k´2s
´1
k s´1

k´1 “

sks
´1
2 ¨ ¨ ¨ s´1

k´2sk´1sk´2 ¨ ¨ ¨ s2s1s
´1
2 ¨ ¨ ¨ s´1

k´2s
´1
k s´1

k´1sk

After the application of s´1
k s´1

k´1sk “ sks
´1
k´1s

´1
k , we have that sk (the head

of each side) and s´1
k s´1

k´1 (the tail of each side) cancel on both sides;

s1s
´1
2 ¨ ¨ ¨ s´1

k´2sk´1sk´2 ¨ ¨ ¨ s2s1s
´1
2 ¨ ¨ ¨ s´1

k´2 “

s´1
2 ¨ ¨ ¨ s´1

k´2sk´1sk´2 ¨ ¨ ¨ s2s1s
´1
2 ¨ ¨ ¨ s´1

k´2sk´1

so that we conclude by inductive hypothesis once we multiply each side
by sk´2 ¨ ¨ ¨ s2.

Lemma 3.3.9. A finite sequence of applications of Artin relations realizes
equation 3.4.

Proof. We again proceed by induction, but twice. We start by observing that
for k “ 1, l “ i we have an Artin relation.

For the arbitrary k and l “ i we have

s1 ¨ ¨ ¨ sk´1sks
´1
k´1 ¨ ¨ ¨ s´1

1 ¨ si “

si ¨ s2 ¨ ¨ ¨ sk´1sks
´1
k´1 ¨ ¨ ¨ s´1

2 .
(3.3)

By substituting sk´1sks
´1
k´1 “ s´1

k sk´1sk and commutations (we observed
that si is not in ts1, . . . , sku since the original edges were noncrossing),

s´1
k s1 ¨ ¨ ¨ sk´2sk´1s

´1
k´2 ¨ ¨ ¨ s´1

1 ¨ si ¨ sk “

s´1
k si ¨ s2 ¨ ¨ ¨ sk´1sks

´1
k´1 ¨ ¨ ¨ s´1

2 sk.
(3.4)

By cancelling out sk and s´1
k we conclude by inductive hypothesis on k.

By an analogue induction on l ´ i one concludes the proof.

The proof is concluded, since the homotopical equivalence between the
starting complex and the final complex yields a group isomorphism between
Γ and B as required.

In conclusion we have a second finite KpBn, 1q for each n, and results in
chapter 1 apply.
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