
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Matematica

Recognition of Collapsible Complexes

and its NP-completeness

Tesi di Laurea in Geometria Computazionale

Relatore:

Chiar.mo Prof.

Giovanni Paolini

Presentata da:

Giuseppe Aristodemo

Anno Accademico 2023/2024





loading...





Introduzione

Dato uno spazio topologico, è naturale chiedersi se esso sia contraibile; formalmente,

si definisce il problema della contraibilità e se ne studia la decidibilità. Questa è una

domanda a cui non è ovvio poter rispondere, poiché i concetti appena menzionati sono

molto astratti. Ci si restringe quindi a una classe più “concreta” di spazi, i complessi

simpliciali, e si definisce la collassabilità, una proprietà che implica la precedente, ma

che può essere meglio studiata da un punto di vista combinatorico.

Questa tesi si focalizza sullo studio della collassabilità di complessi simpliciali, analiz-

zandone inoltre la complessità computazionale. La trattazione è suddivisa in quattro

capitoli più un’appendice.

Il primo capitolo fornisce i preliminari necessari in seguito. Più precisamente, vengono

prima introdotti i poset, ossia insiemi parzialmente ordinati; successivamente vengono

definiti i complessi simpliciali astratti e se ne analizzano le proprietà.

Nel secondo capitolo viene introdotta la Teoria di Morse Discreta; in particolare, si

definisce il concetto di collassamento simpliciale di un complesso e si studiano condizioni

che permettano di valutare quando e come un complesso sia collassabile a un suo sot-

tocomplesso. I concetti chiave sono quelli di matching aciclico e oggetto universale; il

primo è una particolare relazione sul diagramma di Hasse del complesso e il secondo è

un poset che, in un certo senso, ne descrive tutte le sequenze possibili di collassamenti.

Il risultato più importante in questo capitolo è il Patchwork Theorem, strumento che ci

darà un modo per costruire più agevolmente matching aciclici. Infine dimostreremo tre

risultati notevoli che daranno anche un’idea di come la Teoria di Morse viene applicata.

Dedicato all’introduzione di concetti necessari dell’informatica teorica, il terzo capi-

tolo tratta la complessità computazionale; in particolare vedremo come un problema

viene codificato e descritto in termini formali, e come viene descritta la difficoltà nel

risolverlo. A seguire approfondiremo quest’ultimo concetto introducendo le riduzioni ed

esse ci permetteranno di dimostrare quando, in un certo senso, un problema è più o meno

difficile di un altro. Ciò porterà in modo naturale alla definizione di NP-completezza e

vedremo alcuni esempi di problemi notevoli.

i



ii INTRODUZIONE

Il quarto e ultimo capitolo tratta la parte centrale della tesi, ovvero il problema del ri-

conoscere quando un complesso simpliciale di dimensione d sia collassabile o meno ad un

suo sottocomplesso di dimensione k; ciò si riassume in (d, k)-Collapsibility. In parti-

colare, seguiremo l’approccio di Malgouyres e Francés ripercorrendone la dimostrazione

dell’NP-completezza del problema nel caso in cui d = 3 e k = 0; in altre parole, è

NP-completo decidere se un complesso di dimensione 3 sia collassabile ad un punto. In

seguito vedremo come questo risultato può essere esteso e citeremo risultati analoghi

al precedente, in particolar modo quelli di Tancer. Chiude il problema un articolo di

Paolini, in cui viene dimostrata l’NP-completezza nei casi rimanenti.

In conclusione, il risultato finale è l’NP-completezza di (d, k)-Collapsibility per

d ≥ k + 2, eccetto il caso di (2, 0)-Collapsibility, che si mostra essere risolvibile in

tempo polinomiale. La decidibilità in tempo polinomiale vale anche per il caso rimanente,

(k + 1, k)-Collapsibility.

In appendice si trova la dimostrazione dell’NP-completezza di un problema notevole,

CIRCUIT-SAT, e uno sketch di dimostrazione dell’indecidibilità per quanto riguarda il

problema della contraibilità.



Contents

Introduzione i

1 Preliminaries 1

1.1 Posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Abstract Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Polyhedral Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Discrete Morse Theory 9

2.1 Acyclic Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Universal Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Patchwork Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Three classical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 NP-completeness 21

3.1 Problems and complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Some NP-complete problems . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Recognition of Collapsibility 33

4.1 Approaching the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 The Reduction Gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Collapsibility of K(Φ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Collapsing Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Appendix 53

Bibliography 57

iii





Chapter 1

Preliminaries

1.1 Posets

Definition 1.1. A partially ordered set (or poset, for short) (P,≤) is a set P together

with a binary relation ≤, satisfying the following axioms:

(i) for all t ∈ P , we have t ≤ t (reflexivity);

(ii) if s ≤ t and t ≤ s, then s = t (antisymmetry);

(iii) if s ≤ t and t ≤ u, then s ≤ u (transitivity).

We say that two elements s and t of P are comparable if s ≤ t or t ≤ s; otherwise s

and t are incomparable, denoted by s || t. A chain is a poset in which any two elements

are comparable.

We say that P has a 0̂ if there exists an element 0̂ ∈ P such that 0̂ ≤ t for all t ∈ P .

Similarly, P has a 1̂ if there exists 1̂ ∈ P such that t ≤ 1̂ for all t ∈ P . We denote by P̂

the poset obtained from P by adjoining a 0̂ and 1̂. On the other hand, we denote with

P the poset obtained by removing 0̂ and 1̂, when they exist.

Example 1.2.

Let n ∈ N \ {0}. The set [n]1 with its usual order forms a poset with the property that

any two elements are comparable.

An order-preserving map (also called a poset map) between two posets P and Q is

ϕ : P → Q with the following property:

s ≤ t in P ⇐⇒ ϕ(s) ≤ ϕ(t) in Q.

Such a map is called an isomorphism between P and Q if it is a bijection and its inverse

is also order-preserving.

1With this symbol we simply denote the set {1, 2, . . . , n}.

1



2 1. Preliminaries

Lattices

An important class of posets are lattices. If P is a poset and s, t ∈ P , then an upper

bound of s and t is an element u ∈ P such that s, t ≤ u. A join is a least upper bound,

that is, an upper bound u of s and t satisfying u ≤ v for any other upper bound v.

If a least upper bound of s and t exists, then it is clearly unique and is denoted s ∨ t.
Similarly we define the meet s ∧ t, that is, the greatest lower bound, when it exists.

A lattice L is a poset for which every pair of elements has a join and a meet. Thus we

can see ∨ and ∧ as operations and in a lattice:

• the above operations are associative, commutative, and idempotent;

• s∧ (s∨ t) = s = s∨ (s∧ t) (absorption laws); s∧ t = s ⇐⇒ s∨ t = t ⇐⇒ s ≤ t.

Clearly all finite lattices have a 0̂ and 1̂.

1.2 Abstract Simplicial Complexes

Definition 1.3. A finite abstract simplicial complex is a finite set A together with

a collection ∆ of subsets of A such that if X ∈ ∆ and Y ⊆ X, then Y ∈ ∆.

We denote the abstract simplicial complex simply by ∆. An element v ∈ A such that

{v} ∈ ∆ is called a vertex. We denote the set of all vertices of ∆ by V (∆). When ∆

consists of all subsets of A, it is called a simplex, and is denoted by ∆A. The sets σ ∈ ∆

are called simplices, and those that are contained in no other simplex of ∆ are called

maximal.

Given two finite abstract simplicial complexes ∆1 and ∆2 such that σ ∈ ∆1 implies

σ ∈ ∆2, we say that ∆1 is an abstract simplicial subcomplex of ∆2, written ∆1 ⊆ ∆2.

We also define the dimension of each simplex, which is 1 less than its cardinality as a

set. The dimension of a finite abstract simplicial complex is said to be the maximum of

the dimensions of its simplices, denoted by dim∆.

Clearly, ∆1 ⊆ ∆2 implies dim∆1 ≤ dim∆2.

Definition 1.4. Let ∆1 and ∆2 be two finite abstract simplicial complexes. A simplicial

map from ∆1 to ∆2 is a map f : V (∆1) → V (∆2) such that σ ∈ ∆1 implies f(σ) ∈ ∆2.

We simply write f : ∆1 → ∆2.

Remark 1.5.

• The identity map is a simplicial map from an abstract simplicial complex onto

itself.



1.2 Abstract Simplicial Complexes 3

• If ∆1 ⊆ ∆2, we have a natural simplicial inclusion map.

• The composition of two simplicial maps is again a simplicial map.

• If f is bijective and simplicial, its inverse is not necessarily simplicial.

• If A is a finite set, any f : V (∆) → A induces a simplicial map f : ∆ → ∆A.

Definition 1.6. Let ∆1 and ∆2 be abstract simplicial complexes, and let f : ∆1 → ∆2

be a simplicial map. Then f is called an isomorphism of abstract simplicial complexes

if it is a bijection and its inverse is also a simplicial map. In this case we say that the

two complexes are isomorphic.

An important class of simplicial maps are isomorphisms f : ∆ → ∆; these maps are

called automorphisms of ∆ and they forms a group denoted by Aut(∆).

We associate a standard combinatorial gadget to an abstract simplicial complex: its

face poset.

Definition 1.7. The face poset of ∆ is denoted F(∆) and it is the poset consisting of

all nonempty simplices of ∆, with the partial order induced by the inclusion relation on

the set of simplices.

Recall that for a poset (P,<), a linear extension L is a total order <L on the set

of elements of P such that for any x, y ∈ P , we have x <L y whenever x < y; clearly,

(P,<L) is a chain.

We can also think of a linear extension as a poset map L : (P,<) → (P,<L), where

L : P → P is simply the identity map.

Example 1.8. For an arbitrary abstract simplicial complex ∆, a standard linear extension

of the face poset F(∆) is obtained by setting σ <L τ whenever dimσ < dim τ , and

choosing an arbitrary order for each set of simplices of the same dimension.

Simplicial Join

The following is a classical construction that produces new abstract simplicial com-

plexes from old ones.

Definition 1.9. Let ∆1 and ∆2 be two abstract simplicial complexes whose vertices are

indexed by disjoint sets. The join of ∆1 and ∆2 is the abstract simplicial complex ∆1∗∆2

is V (∆1) ∪ V (∆2), and the set of simplices is given by

∆1 ∗∆2 = {σ ⊆ V (∆1) ∪ V (∆2) | σ ∩ V (∆1) ∈ ∆1 and σ ∩ V (∆2) ∈ ∆2}.



4 1. Preliminaries

Clearly, we have commutativity: the joins ∆1 ∗ ∆2 and ∆2 ∗ ∆1 are isomorphic. In

this sense, we have also associativity.

Joining with the abstract simplicial complex consisting of a single vertex is also called

coning. We can also take a join with the abstract simplicial complex with n vertices and

no simplices of dimension 1 and higher; this is called the n-coning.

1.3 Polyhedral Complexes

Given an abstract simplicial complex, we would like to associate a topological space

to it. In order to accomplish this, we need to define some geometric objects.

Let A be a set of n+ 1 affine independent points in RN , with N ≥ n. A geometric

n-simplex σ is the convex hull of A. The convex hull of the subsets of A are called

subsimplices of σ.

The standard n-simplex is the convex hull of the standard unit basis in Rn+1.

More generally, given a finite set A, we have the vector space RA, whose coordinates

are indexed by the elements of A; correspondingly, for any subset B ⊆ A, we can define

the standard B-simplex in RA as the one spanned by the subset of the standard unit

basis indexed by elements in B.

Definition 1.10. Given a finite abstract simplicial complex ∆, we define its standard

geometric realization to be the topological space obtained by taking the union of stan-

dard σ-simplices in RV (∆), for all σ ∈ ∆.

Any topological space homeomorphic to the standard geometric realization of ∆ is called

its geometric realization, and it is denoted by |∆|. However, with an abuse of nota-

tion, most of the time we will simply denote it ∆.

Recall that a convex polytope P is a bounded subset of Rd that is the solution of a

finite number of linear inequalities and equalities. Equivalently, it is the convex hull of

a finite set of points.

A subset F ⊆ P is called a face of P if there exists a linear function f on Rd such that

f(x) = 0, for all x ∈ F , and f(x) ≥ 0, for all x ∈ P .

Definition 1.11. A geometric polyhedral complex Γ in Rn is a collection of convex

polytopes in Rn such that:

(i) every face of a polytope in Γ is itself a polytope in Γ;

(ii) the intersection of any two polytopes in Γ is a face of each of them.



1.3 Polyhedral Complexes 5

Most of the terminology carries over from the simplicial context. One important

property worth observing is that a direct product of two geometric polyhedral complexes

is again a geometric polyhedral complex.

Let us now define a more general family of complexes:

1. We start with a discrete abstract set of points; this is called the 0-skeleton. Then,

we proceed by induction on the dimension of the attached faces.

2. At step d we attach the d-dimensional faces.

Each face is represented by some convex polytope P in Rd. To attach it we need a

continuous map f : ∂P → X, where X denotes the part of the complex constructed

in the first d − 1 steps. The attaching map should induce a homeomorphism

f |∂P : ∂P → f(∂P ), and this homeomorphism should preserve the cell structure;

the cell structure on ∂P is the polytopal structure, and the one on f(∂P ) is induced

from the gluing process.

When a cell is obtained by gluing the polyhedron P on the complex, we simply say that

the cell is P .

When a topological space can be obtained by the above gluing procedure it is called a

polyhedral complex.

Actually, we will only discuss about generalized simplicial complexes, which are

polyhedral complexes with simplices as cells.

Geometry of the Simplicial Join

One can define the join of arbitrary topological spaces. Let I denote the closed unit

interval [0, 1].

Definition 1.12. Let X and Y be two topological spaces. The join of X and Y is the

topological space X ∗ Y defined as follows:

X ∗ Y = I ×X × Y
/
∼

where the equivalence relation ∼ is given by

• (0, x, y) ∼ (0, x, ỹ), for all y, ỹ ∈ Y ;

• (1, x, y) ∼ (0, x̃, y), for all x, x̃ ∈ X.

Observe that for two abstract simplicial complexes ∆1 and ∆2 we have

|∆1| ∗ |∆2| ∼= |∆1 ∗∆2|,



6 1. Preliminaries

where on the right side we take the simplicial join.

In fact, given geometric realizations of ∆1 in Rm and ∆2 in Rn, we can obtain a ge-

ometric realization of ∆1 ∗ ∆2 in Rm+n+1 as follows. Identify Rm with the subspace

{(x1, . . . , xm, 0, . . . , 0) ∈ Rm+n+1 | (x1, . . . , xm) ∈ Rm}, and identify Rn with the sub-

space {(0, . . . , 0, y1, . . . , yn, 1) ∈ Rm+n+1 | (y1, . . . , yn) ∈ Rn}. Take now the induced

embeddings of |∆1| and |∆2| into Rm+n+1 and let |∆1 ∗∆2| be the union of convex hulls

of pairs of simplices: one from ∆1 and one from ∆2.

Example 1.13. Let m and n be natural numbers. Then we have

Sm ∗ Sn ∼= Sm+n+1.

To see this, note that in general the join is associative, that is, (X ∗Y )∗Z ∼= X ∗ (Y ∗Z).
Therefore

Sm ∗ Sn ∼= S0 ∗ · · · ∗ S0︸ ︷︷ ︸
m+1

∗S0 ∗ · · · ∗ S0︸ ︷︷ ︸
n+1

∼= S0 ∗ · · · ∗ S0︸ ︷︷ ︸
m+n+2

∼= Sm+n+1.

1.4 Examples

Simplicial Flag Complexes

For a graph G and a subset S ⊆ V (G) of its vertices, we let G[S] denote the corre-

sponding subgraph, and if it is complete we call it a clique.

Definition 1.14. Given an arbitrary graph G, we let Cl(G) denote the abstract simplicial

complex whose set of vertices is V (G) and whose simplices are all subsets S ⊆ V (G) such

that G[S] is a complete graph.

The abstract simplicial complex Cl(G) is called a flag complex in algebraic topology,

while it is called a clique complex in combinatorics.

Given a graph G, a set of vertices S ⊆ V (G) is called independent if for all v, w ∈ S

we have (v, w) ̸∈ E(G).

Definition 1.15. For an arbitrary graph G, the independence complex of G, de-

noted Ind(G), is the abstract simplicial complex whose set of vertices is V (G) and whose

simplices are all the independent sets of G.

Remark 1.16. Given a graph G, we denote with G the complement graph, that is, a graph

on the same vertices such that (u, v) ∈ E(G) if and only if (u, v) ̸∈ E(G).

Since independent sets of G are the same as the cliques of G, we see that Ind(G) is

isomorphic to Cl(G) as abstract simplicial complexes.



1.4 Examples 7

Order complexes

Another classical example is the order complex of a poset.

Definition 1.17. Let P be a poset. Define the order complex ∆(P ) to be the abstract

simplicial complex whose vertices are all elements of P and whose simplices are all finite

chains of P , including the empty one.

Example 1.18.

• If A is a totally ordered, finite set, then ∆(A) = ∆A.

• Let On = {a11, . . . , a1n, a21, . . . , a2n}, with the partial order generated by api > aqi+1,

for all p, q ∈ {1, 2}, i = 1, . . . , n − 1. Then the order complex of On is the join

of n copies of S0. This can be realized as the boundary of a polytope called a

cross-polytope; in particular, it is homeomorphic to Sn−1.

• Let n ∈ N, and let Bn be the set of all subsets of [n], partially ordered by inclusion,

called the boolean lattice. One can see that ∆(Bn) is isomorphic to the barycentric

subdivision of the boundary of an (n−1)-simplex; in particular, it is homeomorphic

to Sn−2.

• Let n ∈ N. The partition lattice Πn is the poset whose elements are all the set

partitions of [n], and the partial order is that of refinement. The partition lattice

has a minimal element (1)(2) . . . (n) and a maximal element [n]. We will show that

∆(Πn) is homotopy equivalent to a wedge of (n− 1)! copies of Sn−3.



8 1. Preliminaries



Chapter 2

Discrete Morse Theory

Let ∆ be a generalized simplicial complex, and let σ and τ be simplices of ∆ such

that:

(i) τ ⊂ σ, in particular dim τ < dimσ;

(ii) σ is a maximal simplex, and no other maximal simplex contains τ .

We call a simplicial collapse of ∆ the removal of all simplices γ such that τ ⊆ γ ⊆ σ.

If additionally, we have dim τ = dimσ− 1, then this is called an elementary collapse.

When for two generalized simplicial complexes ∆1 and ∆2 there exists a sequence of

collapses leading from ∆1 to ∆2, we write ∆1 ↘ ∆2.

Proposition 2.1. A sequence of collapses induces a strong deformation retraction, and

in particular, a homotopy equivalence.

Remark 2.2. Note that an elementary collapse is possible if and only if there exists a

simplex τ whose link in ∆ consists of a single vertex v; the simplex σ is then given by

the span of σ and v.

The combinatorial encoding of a set of collapses is best provided by a matching

consisting of a collection of pairs of cells (τ, σ) such that τ ⊂ σ, and dimσ = dim τ + 1.

Morse theory examines when such a matching can be turned into a sequence of collapses.

2.1 Acyclic Matchings

Definition 2.3. A partial matching in a poset (P,<) is a partial matching in the

underlying graph of its Hasse diagram, i.e., it is a subset M ⊆ P × P such that:

• (a, b) ∈M implies b ≻ a;

9



10 2. Discrete Morse Theory

• each a ∈ P belongs to at most one element in M .

When (a, b) ∈M , we write a = d(b) and b = u(a).

A partial matching on P is said to be acyclic if there is no cycle

b1 ≻ d(b1) ≺ b2 ≻ d(b2) ≺ · · · ≺ bn ≻ d(bn) ≺ b1 (2.1)

with n ≥ 2, and all bi ∈ P being distinct.

A popular, more intuitive way to reformulate the acyclicity condition is the following.

Given a poset P , we can orient all edges in its Hasse diagram so that they point from

the larger element to the smaller one. After that, given a partial matching M , change

the orientation of the edges in M to the opposite one. Now, the matching is acyclic if

and only if the obtained oriented graph has no cycles. Acyclic matchings are also called

Morse matchings.

Given a partial matching, we can intuitively think about pairs as internal collapses.

The idea is to remove all the matched elements in some appropriate order, so that the

homotopy type of the underlying space remains the same. An unmatched element is said

to be critical, and we denote the set of critical elements by C(P,M).

From now on we only consider finite posets. We have the following relationship

between acyclic matchings and linear extensions.

Theorem 2.4. A partial matching on P is acyclic if and only if there exists a linear

extension L of P such that the elements a and u(a) follow consecutively in L, for all

a ∈ P .

Proof. Assume that we have a linear extension L satisfying the property, and that at the

same time, we have a cycle as in (2.1). Set ai = d(bi), for i = 1, . . . , n. Then we have

bi+1 ≻ ai =⇒ ai <L bi+1 =⇒ ai <L ai+1,

since ai+1 and bi+1 follow consecutively in L. Thus an >L an−1 >L · · · >L a1 >L a0 = an,

yielding a contradiction.

Assume now that we have an acyclic matching, and let us define L inductively. Let

Q be the set of elements that are already ordered in L; we start with Q = ∅. Let W

denote the set of minimal elements in P \Q. At each step we have one of the following

cases.

Case 1. One of the elements c in W is critical.

In this case, we simply add c to the order L as the largest element, and proceed with

Q ∪ {c}.



2.1 Acyclic Matchings 11

Case 2. All elements in W are matched.

Consider the subgraph of P \ Q induced by W ∪ u(W ). Orient its edges as described

above, i.e., they should point from the larger element to the smaller one, except when

these two elements are matched, in which case should be oriented in the opposite way.

Call this oriented graph G.

If there exists an element a ∈ W such that the only element in W ∪ u(W ) smaller than

u(a) is a itself, then we can add a and u(a) on top of L, and proceed with Q∪{a, u(a)}.
Otherwise, observe that the outdegree of u(a) in G is positive, for each a ∈ W . On

the other hand, the outdegrees in G of all a ∈ W equal to 1. Therefore outdegrees

of all vertices in G are positive, then we conclude that G must have a cycle, and this

contradicts the acyclicity of the matching.

We would also like to characterize acyclic matchings via a special class of poset maps.

Definition 2.5. Given two posets P and Q, a poset map φ : P → Q is said to have

small fibers if for any q ∈ Q, the fiber φ−1(q) is either empty or consists of two

comparable elements.

Remark 2.6. Since φ is a poset map, if for some q ∈ Q the fiber consists of two elements,

then one of these must actually cover the other one.

Therefore, to any poset map with small fibers φ we can associate a partial matching

M(φ) consisting of all fibers of cardinality 2.

Theorem 2.7. For any poset map with small fibers φ : P → Q, the partial matching

M(φ) is acyclic.

Vice versa, any acyclic matching on P can be represented as M(φ), for some poset map

with small fibers φ.

Proof. Since φ : P → Q is a poset map, then the induced matching M(φ) is acyclic: for

if it were not, there would exist a cycle as in (2.1), and φ would map this cycle to a set

of distinct elements q1 > q2 > · · · > qt > q1 of Q, for some t, yielding a contradiction.

Conversely, by Theorem 2.4, given an acyclic matching on P , there exists a linear

extension L of P such that the elements a and u(a) follow consecutively in L. By gluing

them together in this order we define a poset map with small fibers from P to a chain.

Notice how at some point in the proof of Theorem 2.7, we have defined a poset map

with small fibers onto a chain. These maps are especially important, and we give them

a separate name.



12 2. Discrete Morse Theory

Definition 2.8. A poset map with small fibers φ : P → Q is called a collapsing order

if it is surjective, and Q is a chain.

If M is an acyclic matching on P , we say that a collapsing order φ is a collapsing

order for M if M(φ) =M . In this case, the chain Q gives us the order in which we can

perform the collapsing sequence.

2.2 Universal Object

In this section we show that for any poset P , and any acyclic matching on it, there

exists a universal object : a poset whose linear extensions enumerate all allowed collapsing

orders.

Definition 2.9. Let P be a poset, and let M be an acyclic matching on P . We define

the universal object U(P,M) to be the poset whose set of elements is M ∪ C(P,M),

and whose partial order is the transitive closure of the elementary relations given by

S1 ≤U S2, for S1, S2 ∈ U(P,M) if and only if x ≤ y, for some x ∈ S1 and y ∈ S2.

Intuitively, we think of elements ofM as subsets of P of cardinality 2, while we think

of elements of C(P,M) as subsets of P of cardinality 1. Broadly speaking, U(P,M) is

obtained from P by gluing each matched pair together to form a single element, then

the partial order is that induced by the one in P .

5 6 8 7

4

1 2 3

P

q

8

6
5

7

4
3

2

1

U(P,M)

Figure 2.1: An example of a universal poset. Circles indicate

elements with fibers of cardinality 2.

Theorem 2.10 (Universality of U(P,M)).

For any poset P , and for any acyclic matching M on P , we have:

(1) the partial order on U(P,M) is well-defined;



2.2 Universal Object 13

(2) the induced quotient map q : P → U(P,M) is a poset map with small fibers;

(3) the linear extensions of U(P,M) are in 1-to-1 correspondence with collapsing orders

for M .

More precisely, this correspondence is given by the composition of the quotient map with

a linear extension.

Proof. To prove the first part we need to check the three axioms of partial orders. Re-

flexivity and transitivity are obvious, since in Definition 2.9 we have taken the transitive

closure. We need to prove only the antisymmetry. Assume that it does not hold, so we

have X, Y ∈ U(P,M) such that X ≤U Y, Y ≤U X, and X ̸= Y . Choose a sequence

X <U S1 <U · · · <U Sp <U Y <U T1 <U · · · <U Tq <U X, (2.2)

with the minimal possible p and q. All the sets S1, . . . , Sp and T1, . . . , Tq must have

cardinality 2, since we choose p and q to be minimal.

Let us discuss first the case p = q = 0. If |X| = |Y | = 1, say X = {x} and Y = {y},
then we have x ≤ y and y ≤ x, implying x = y.

If |X| = 1 and |Y | = 2, say X = {x} and Y = (a, b), then b > x and x > a, and this gives

b > x > a, contradicting the assumption that b covers a. By symmetry of (2.2), this

argument includes also the case |Y | = 1, |X| = 2, so we now assume that |X| = |Y | = 2.

In this case X <U Y <U X is a cycle, contradicting the acyclicity of our matching.

Now, we deal with p+q ≥ 1. Assume first |X| = |Y | = 1, say X = {x} and Y = {y}.
If p = 0 and q = 1, let T1 = (a, b), then we have x ≤ y, b ≥ y, and x ≥ a; that leads us

to b ≥ y ≥ x ≥ a, implying x = y, since b covers a. Again by symmetry, we take care of

the case p = 1 and q = 0 as well.

Without loss of generality, we can now assume that p+ q ≥ 2, or |Y | = 2 and p+ q ≥ 1.

In the first case,

S1 <U · · · <U Sp <U T1 <U · · · <U Tq

gives a cycle, contradicting the acyclicity of the matching; in the second case such a cycle

is given by

S1 <U · · · <U Sp <U Y <U T1 <U · · · <U Tq.

For the second part, if x < y in P and x ∈ X, y ∈ Y , for X, Y ∈ U(P,M), then

X ≤ Y by Definition 2.9. So q is a poset map, also the fibers are small from the proof

of the first part.

Now we prove the last part. Given a linear extension l : U(P,M) → Q, the composi-

tion l ◦ q : P → Q is a poset map with small fibers, and it is surjective since both l and



14 2. Discrete Morse Theory

q are.

Conversely, let φ : P → Q be a collapsing order for M . Since φ is surjective, φ−1 is

nonempty for every x ∈ Q; actually, we have a bijection between sets φ−1, for x ∈ Q,

and elements of U(P,M). We set l(q(φ−1(x))) := x, for each x ∈ Q, thus l ◦ q = φ as

set maps. Now, observe that an elementary relation S ≥ T , for S, T ∈ U(P,M), implies

that there exist x ∈ S and y ∈ T such that x ≥ y, which implies φ(x) ≥ φ(y), since φ is

order-preserving, then l is order-preserving as well; notice that all relations are just the

transitive closures of the elementary ones.

Thus, we factor φ through U(P,M), and we get the desired 1-to-1 correspondence.

2.3 Patchwork Theorem

Viewing the poset maps with small fibers as the central notion of the combinatorial

part of discrete Morse theory is very useful for the structural explanation of a standard

way to construct acyclic matchings on fibers of a poset map.

Definition 2.11. A poset fibration is a pair (B,F), where

• B is a poset, thought of as the base of the fibration;

• F = {Fx}x∈B is a collection of posets, indexed by the elements of B, thought of as

individual fibers.

Associated to such a fibration, we define a poset E(B,F) whose set of elements is⋃
x∈B Fx, and with the order relation given by α ≥ β if either α, β ∈ Fx and α ≥ β in

Fx, for some x ∈ B, or α ∈ Fx, β ∈ Fy, and x > y in B. This poset is called the total

space.

We also have a poset map p : E(B,F) → B defined by p(α) = x if α ∈ Fx. In particular,

we have p−1(x) = Fx, for all x ∈ B. This is the projection map of the total space to the

base space, whose preimages are the fibers.

The notion of poset fibration satisfies the following universal property.

Theorem 2.12 (Decomposition theorem).

For an arbitrary poset fibration (B,F), where F = {Fx}x∈B, and an arbitrary poset P ,

there is a 1-to-1 correspondence between:

• poset maps φ : P → E(B,F);

• pairs (ψ, {gx}x∈B), where both ψ : P → B and gx : ψ−1(x) → Fx are poset maps,

for each x ∈ B.



2.4 Three classical results 15

Under this bijection, the fibers of φ are the same as the fibers of the maps gx.

Proof. Let us define a bijection. One direction is trivial: given a poset map φ : P →
E(B,F), composing it with the projection map p : E(B,F) → B gives us the poset map

ψ : P → B, then we obtain the poset maps gx by taking the appropriate restrictions of

φ.

In the opposite direction, assume that we have a poset map ψ : P → B and a

collection of poset maps gx : ψ−1(x) → Fx, for all x ∈ B. Now define φ : P → E(B,F)

by taking the value of the reasonable fiber map:

φ(α) := gψ(α)(α),

for all α ∈ P . If we have α, β ∈ P such that α > β, then ψ(α) ≥ ψ(β), since ψ is a poset

map. Now if ψ(α) = ψ(β), we have gψ(α)(α) ≥ gψ(α)(β) = gψ(β)(β), since gψ(α) is a poset

map. Otherwise, we have ψ(α) > ψ(β), so gψ(α)(α) > gψ(β)(β) by the definition of the

partial order on the total space.

The decomposition theorem is often used as a rationale to construct an acyclic match-

ing on a poset P : first map P to some other poset Q, then construct acyclic matchings on

the fibers of this map; these matchings will “patch together” to form an acyclic matching

for P .

Theorem 2.13 (Patchwork theorem).

Let φ : P → Q be a poset map, and assume that we have acyclic matchings on subposets

φ−1(q), for all q ∈ Q. Then the union of these matchings is an acyclic matching on P .

Proof. Consider the poset Q as the base space, and the fibers maps gq given by the

acyclic matchings on the subposets φ−1(q).

The decomposition theorem states that there exists a poset map from P to the total

space of such a fibration, and that the fibers of this map are the same as the fibers of

the maps gq. Since the second are given by acyclic matchings, we have a poset map from

P with small fibers that corresponds exactly to the union of acyclic matchings on the

subposets φ−1(q), for q ∈ Q.

2.4 Three classical results

Internal collapses on the boundary of a simplex

Let ∆ be the boundary of an n-dimensional simplex. We see that F(∆)\{0̂} = B̄n+1;

see Example 1.18. Consider the following matching M on B̄n+1:

(S, S ∪ {1}) ∈M for all S ⊆ {2, . . . , n+ 1}.



16 2. Discrete Morse Theory

Clearly, in this way we obtain an acyclic matching; in particular, the only critical sim-

plices are {1} and {2, . . . , n+ 1}. It follows that ∆ ≃ Sn−1.

Independence complexes of strings and cycles

For an arbitrary integer n ≥ 1, we denote with Ln the graph consisting of n vertices

and n− 1 edges that connect these vertices forming a string.

Proposition 2.14. For any n ≥ 1, we have

Ind(Ln) ≃


Sk−1, if n = 3k;

pt, if n = 3k + 1;

Sk, if n = 3k + 2.

Proof. We can assume that the vertices of Ln are labeled 1 through n in the same

sequence as they occur along the string. Let k denote the maximal integer such that

3k ≤ n. Furthermore, let C be a chain with k + 1 elements labeled as follows:

c3 > c6 > · · · > c3k > cr.

We define a map φ : F(Ind(Ln)) → C in the following way. The simplices that contain

the vertex labeled 3 get mapped to c3; the simplices that do not contain the vertex

labeled 3, but contain the one labeled 6 get mapped to c6; the simplices that do not

contain the vertices labeled 3 and 6, but contain the one labeled 9, get mapped to c9;

and so on. Finally, the simplices that do not contain any of the vertices labeled 3, . . . , 3k,

all get mapped to cr (r stands for “the rest”).

Clearly, this map is order-preserving, since if one takes a larger simplex, it will have more

vertices, and so its image may only go up in the chain.

Let us now define acyclic matchings on the fibers of C under φ. We split our argument

into three cases.

Case 1. First we consider the fiber φ−1(c3). For any simplex σ ∈ φ−1(c3) we have 3 ∈ σ,

thus 2 ̸∈ σ. Therefore pairing σ with σ ∪ {1} provides a matching that is well-defined

and acyclic.

Case 2. Next, we consider φ−1(c6), . . . , φ
−1(c3k). Let t be an integer such that 2 ≤ t ≤ k.

The fiber φ−1(c3t) consists if all simplices σ such that 3, 6, . . . , 3t− 3 ̸∈ σ, while 3t ∈ σ.

Since 3t− 1 ̸∈ σ, the pairing (σ, σ ∪ {3t− 2}) provides a well-defined acyclic matching.

Case 3. Finally, we consider the fiber φ−1(cr). Now we have three subcases.

If n = 3k + 1, then this fiber is a face poset with a cone with apex in n; in particular,

the pairing (σ, σ ∪ {n}) provides an acyclic matching with only one critical cell {n}.



2.4 Three classical results 17

Therefore by Theorem 2.13 Ind(L3k+1) is collapsible.

If n = 3k, we see that φ−1(cr) is a face poset of the boundary of a k-dimensional

cross-polytope1, which is homeomorphic to Sk−1. Again by Theorem 2.13 we have that

Ind(L3k) is homotopy equivalent to Sk−1.

If n = 3k+2, we see that φ−1(cr) is a face poset of the boundary of a (k+1)-dimensional

cross-polytope, which is homeomorphic to Sk. The rest is the same, and we conclude

that Ind(L3k+2) is homotopy equivalent to Sk.

Note that the above proof actually yields a stronger statement: in fact we get a

collapsibility instead of just contractibility. In particular, we get a sequence of collapses

leading to a precise sphere, sitting inside Ind(Ln) as a subcomplex.

Now, for an arbitrary integer n ≥ 2, we let Cn denote the cycle with n vertices

labeled 1, . . . , n. The homotopy type of the independence complexes of cycles can be

easily described as well.

Proposition 2.15. For any n ≥ 2, we have

Ind(Cn) ≃

Sk−1 ∨ Sk−1, if n = 3k;

Sk−1, if n = 3k ± 1.

Proof. Let k denote the maximal integer such that 3k ≤ n + 1, and let the chain C be

defined on the same way as in Proposition 2.14. Let also φ : F(Ind(Cn)) → C be the

order-preserving map described by the same rule as the one in Proposition 2.14. Now

we look for acyclic matchings on the fibers.

First, the matchings on the fibers φ−1(c6) through φ
−1(c3k) are in the same way as

in Proposition 2.14, and they are again well-defined and acyclic, without critical cells.

The remaining two cases are a bit different.

The fiber φ−1(c3) is the same as the face poset of Ind(Ln−3) with an added minimal

element. Thus taking the acyclic matching for Ind(Ln−3) and extend it by matching the

critical 0-cell with the minimal element yields a new acyclic matching. Now if n = 3k+1,

this matching has no critical cells at all. Otherwise, if n = 3k or n = 3k − 1, it has one

critical cell of dimension k − 1.

Finally, we describe an acyclic matching on φ−1(cr) by considering three cases.

If n = 3k − 1, we know that 3, 6, . . . , 3k ̸∈ σ; where with our conventions 3k = 1.

Therefore, we have a face poset of a cone with apex in 2, hence the pairing (σ, σ ∪ {2})
gives a well-defined acyclic matching with one critical cell {2}.
If n = 3k, then we have a face poset of the join of k copies of S0. Denote the sets of

1See Example 1.18.



18 2. Discrete Morse Theory

vertices of these k copies by {x1, y1}, . . . , {xk, yk}, and consider the pairing (σ, σ∪{xi}),
where i is the minimal index such that yi ̸∈ σ. This is a well-defined acyclic matching

with critical cells {x1} and {y1, . . . , yk}.
If n = 3k + 1, then we have a face poset of k − 1 copies of S0 and one of Ind(L3).

Denote the sets of vertices of these k − 1 copies by {x1, y1}, . . . , {xk−1, yk−1}, and let

{xk, yk, zk} be the vertices of Ind(L3), with yk being the middle vertex. Consider now

the same pairing: (σ, σ∪{xi}), where i is the minimal index such that yi ̸∈ σ. We obtain

a well-defined acyclic matching with critical cells {x1} and {y1, . . . , yk}.

The face poset of the partition lattice

Recall the partition lattice Πn introduced in Preliminaries.

Theorem 2.16. For n ≥ 3, the simplicial complex ∆(Π̄n) is homotopy equivalent to a

wedge of (n− 1)! spheres of dimension n− 3.

Proof. The statement is clearly true for n = 3, so from now on we assume n ≥ 4 and

proceed by induction. Set α := (1)(2, 3, . . . , n), and let Q to be the interval consisting

of all partitions having a singleton block (1) with reversed order, that formally is ,

Q := [0̂, α]op. We define an order-preserving map φ : F(∆(Π̄n)) → Q by the following

rule:

F(∆(Π̄n)) ∋ c 7→ q ∈ Q, with q being the minimal element that can be added to c.

Let us analyze this rule; take c ∈ F(∆(Π̄n)), assume c = (π1 < π2 < · · · < πt), and

consider two cases.

Case 1. If α ≥ πt, then φ(c) = α.

Case 2. If α ̸≥ πk and either α ≥ πk−1 or k = 1, then φ(c) = πk ∧ α.2

In other words, find the smallest partition πk in c where 1 is a part of a non-singleton

block B, and then partition B into (1) and B \ {1}. This explanation also shows that

the minimal element in this rule is unique, thus the map is well-defined.

This map is order-preserving, since we note that if the chain is increased, then the

minimal possible element of Q, that is, the maximal possible element of [0̂, α] that can

be added to this chain will either remain the same or increase in Q.

By Theorem 2.13 it is now sufficient to construct acyclic matchings on the fibers of

φ. We have two cases.

Case 1. Let S = φ−1((1)(2) . . . (n)). Clearly, the poset S is actually a disjoint union

2The wedge ∧ here represents the lattice operation; see the Lattices subsection in Chapter 1.



2.4 Three classical results 19

S = S2∪· · ·∪Sn, where Si is the subposet consisting of all chains containing the element

(1i)(2) . . . (i−1)(i+1) . . . (n), for i = 2, . . . , n. Furthermore, each Si is actually a copy of

F(∆(Π̄n−1)) ∪ {0̂}. By induction, there exists an acyclic matching on F(∆(Π̄n−1)) that

has one critical cell in dimension 0 and (n − 2)! critical cells in dimension n − 4. Now,

in F(∆(Π̄n−1)) ∪ {0̂} this matching can be extended to have only the top-dimensional

critical elements, since we can match with 0̂ the remaining one. When considered in Si,

these maximal chains consist of n − 2 elements; therefore they corresponds to critical

simplices of dimension n− 3 in ∆(Π̄n).

Case 2. Let S = φ−1(π), for π ̸= (1)(2) . . . (n). The matching rule in this case is to add

π to the chain if it is not there already; otherwise, remove it. Clearly this gives an acyclic

matching. The only critical element is the chain consisting of only π: This corresponds

to one critical cell of dimension 0.

To summarize, we get (n − 1)(n − 2)! = (n − 1)! critical cells of dimension n − 3

and one critical cell of dimension 0. Therefore we may conclude that ∆(Π̄n) is homotopy

equivalent to a wedge of (n−1)! spheres of dimension n−3. These spheres are enumerated

by the critical cells of dimension n− 3.



20 2. Discrete Morse Theory



Chapter 3

NP-completeness

The running time of an algorithm on a particular input is the number of instructions

and data access executed. Clearly, how we compute these costs should be independent

of any particular computer. We agree that executing each line of pseudocode requires a

constant amount of time; this viewpoint reflects how the pseudocode would actually be

implemented.

Actually, we make one more simplifying abstraction: we are interested in the order

of growth of the running time.

3.1 Problems and complexity

Polynomial-time solvability

An abstract problem Q is a binary relation on a set I of problem instances and

a set S of problem solutions. Q is called a decision problem if it is a function and

S = {0, 1}.
The theory of NP-completeness restricts attention to decision problems and, in this case,

we can view an abstract decision problem as a function mapping I to {0, 1}.
An encoding of a set S of abstract objects is a mapping e : S → {0, 1}∗, where

{0, 1}∗ is the set of binary strings. A computer algorithm actually takes an encoding of

an instance as input. The size of an instance i is the length of its string e(i) and we

denote it by |i|.
A concrete problem is a problem whose instances are binary strings. We say that

an algorithm solves a concrete problem in O(T (n)) time if, when its input is a problem

instance of length n = |i|, the algorithm’s output is produced in O(T (n)) time.

A concrete problem is polynomial-time solvable if there exists an algorithm that

21



22 3. NP-completeness

solves it in O(nk) time for some constant k. The complexity class P is the set of concrete

decision problems that are polynomial-time solvable.

Encodings map abstract problems to concrete problems and so we would like to

extend the definition of polynomial-time solvability to abstract problems. Unfortunately,

it depends on the encoding but, in practice, the actual encoding of a problem makes little

difference to the polynomial-time solvability.

We say that a function f : {0, 1}∗ → {0, 1}∗ is polynomial-time computable if there

exists a polynomial-time algorithm A that, given any input x ∈ {0, 1}∗, produces as

output f(x). We say that two encodings e1 and e2 of a set I are polynomially related

if there exist two polynomial-time computable functions f12 and f21 such that, for any

i ∈ I, we have f12(e1(i)) = e2(i) and f21(e2(i)) = e1(i).

Lemma 3.1. Let Q be an abstract decision problem on an instance set I, and let e1 and

e2 be polynomially related encodings on I. Then, e1(Q) ∈ P if and only if e2(Q) ∈ P.

Proof. We prove the forward direction, then the backward one is symmetric.

Suppose that e1(Q) can be solved in O(nk) time for some constant k. Suppose also that

for any problem instance i, we can compute the encoding e1(i) from e2(i) in O(n
c) time

for some constant c, where n = |e2(i)|. Solving problem e2(Q) on input e2(i) requires

the computation of e1(i), and then we run the algorithm for e1(Q) on e1(i). Converting

encodings takes O(nc) time, and therefore |e1(i)| = O(nc), since the output of a serial

computer cannot be longer than its running time. Then, the problem on e1(i) is solved

in O(|e1(i)|k) = O(nck) time, which is polynomial.

A formal-language framework

An alphabet Σ is a finite set of symbols. We denote the set of all strings over Σ by

Σ∗. A language L over Σ is a subset of Σ∗. We denote the empty string by ε and the

empty language by ∅.
From the point of view of language theory, the set of instances for any decision

problem Q is simply Σ∗, where the alphabet Σ is {0, 1}. We can view Q as a language

L = {x ∈ {0, 1}∗ : Q(x) = 1}.
We say that an algorithm A accepts a string x ∈ {0, 1}∗ if the algorithm terminates on

x and its output A(x) is 1; if the algorithm terminates on x and A(x) = 0 we say that

A rejects x.

A language L is decided by an algorithm A if every string in L is accepted by A and

every string not in L is rejected by A. L is decided in polynomial time if it is decided



3.1 Problems and complexity 23

and if exists a constant k such that, for any length-n string x, the algorithm correctly

decides whether x ∈ L in O(nk) time.

Using this framework, we can provide an alternative definition of P:

P = {L ⊆ {0, 1}∗ : L is decided in polynomial time by some algorithm A}.

In fact P is also the class of languages that can be accepted in polynomial time.

Theorem 3.2. P = {L : L is accepted in polynomial time by an algorithm }.

Proof. The class of languages decided in polynomial time is a subset of the class of

languages accepted in polynomial time, then we need only to show that if L is accepted

by a polynomial-time algorithm, we also have a polynomial-time algorithm that decides

L.

Let A be an algorithm that accepts L in O(nk) time for some constant k. Then we

have another constant c such that A accepts L in at most cnk steps. Now let A′ be an

algorithm that, given any input string x, simulates cnk steps of A. After these steps, A′

inspects the behavior of A.

If A has accepted x, then A′ accepts x by giving a 1 in output. Otherwise, if A has not

accepted x, then A′ rejects x by giving a 0 in output. Running A′ increase the running

time of A only by a polynomial factor, ans thus A′ is a polynomial-time algorithm that

decides L.

Polynomial-time verification

We define a verification algorithm as being a two-argument algorithm A, where

one argument is the input string x and the other is a string y called a certificate. Such

an algorithm verifies an input string x if there exists a certificate y such that A(x, y) = 1.

The complexity classNP is the class of languages that can be verified by a polynomial-

time algorithm. Formally, a language L belongs to NP if and only if there exists a

two-input polynomial-time algorithm A and a constant c such that

L = {x ∈ {0, 1}∗ : ∃ y with |y| = O(xc) such that A(x, y) = 1}.

We can see that P ⊆ NP, since if there is a polynomial-time algorithm to decide L,

it can be converted in a two-argument algorithm that simply ignores any certificate.

A definitive answer for whether P = NP is unknown.



24 3. NP-completeness

3.2 Reducibility

One way that sometimes works for solving a problem is to recast it as a different one.

If a problem Q reduces to another problem Q′, then Q is “no harder to solve” than Q′.

We say that a language L1 is polynomial-time reducible to a language L2, written

L1 ≤P L2, if there exists a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗

such that for all x ∈ {0, 1}∗

x ∈ L1 if and only if f(x) ∈ L2.

The function f is the reduction function, and a polynomial-time algorithm that computes

it is a reduction algorithm.

Lemma 3.3. If L1 ≤P L2, then L2 ∈ P implies L1 ∈ P.

Proof. Let A2 be a polynomial-time algorithm that decides L2, and let F be a polynomial-

time reduction algorithm that computes the reduction function f , which reduces L1 to

L2.

We now construct a polynomial-time algorithm A1 that decides L1. For a given input

x ∈ {0, 1}∗, A1 uses F to transform x into f(x), and then it uses A2 to establish whether

f(x) ∈ L2. The output of A1 is that of A2.

NP-completeness

We can now define the set of NP-complete languages.

A language L is NP-complete if:

(i) L ∈ NP;

(ii) L′ ≤P L for every L′ ∈ NP.

If a language satisfies property 2 is said to be NP-hard. NPC is the class of NP-

complete languages. This class has the following important property.

Theorem 3.4. If any NP-complete problem is polynomial-time solvable, then P = NP.

Proof. Suppose that exists L ∈ P ∩ NPC. For any L′ ∈ NP, we have L′ ≤P L by

definition of NP-completeness. Thus, by Lemma 3.3, we also have L′ ∈ P, which proves

the statement.

The following lemma provides a foundation for proving that a given language is NP-

complete.



3.3 Some NP-complete problems 25

Lemma 3.5. If exists L′ ∈ NPC such that L′ ≤P L, then L is NP-hard. If, in addition,

we have L ∈ NP, then L is NP-complete.

Proof. Since L′ is NP-complete, for all L′′ ∈ NP, we have L′′ ≤P L
′. We also have L′ ≤P L

by supposition, thus by transitivity we prove L′′ ≤P L, which is the NP-hardness of L.

Now, proving the second statement is trivial.

3.3 Some NP-complete problems

We have discussed the notion of NP-completeness, but until now, we have not proved

that any problem is NP-complete. Once we prove that at least one problem is NP-

complete, polynomial-time reductions become tools for proving that other problems are

NP-complete.

CIRCUIT-SAT

A boolean combinational element is any circuit element that has a constant num-

ber of boolean inputs and outputs, and that performs a well-defined function. For the

circuit-satisfiability problem we need only logic gates.

x ¬x
0 1

1 0

(a) NOT

x y x ∧ y
0 0 0

0 1 0

1 0 0

1 1 1

(b) AND

x y x ∨ y
0 0 0

0 1 1

1 0 1

1 1 1

(c) OR

Figure 3.1: Three basic logic gates and their truth tables.

A boolean combinational circuit consists of one or more boolean combinational ele-

ments interconnected by wires so that there are no cycles. The number of element inputs

fed by a wire is called the fan-out of the wire. If no element output is connected to a

wire, the wire is a circuit input. Likewise, if no element input is connected to a wire, it

is called a circuit output. For the purpose of defining the circuit-satisfiability problem,

we limit the number of circuit outputs to 1.



26 3. NP-completeness

A truth assignment is a set of boolean input values. We say that boolean combi-

national circuit is satisfiable if there exists a satisfying assignment, that is, a truth

assignment that raise a 1 in the circuit output.

The circuit-satisfiability problem is: “Given a boolean combinational circuit made

up by AND, OR, and NOT gates, is it satisfiable?”. In order to formalize this question,

we must introduce a standard encoding for circuits.

The size of a boolean combinational circuit is the number of boolean combinational

elements plus the number of wires in the circuit. We agree on a graph-like encoding that

maps any given circuit C into a binary string ⟨C⟩ whose length is polynomial in the size

of C. We can now define

CIRCUIT-SAT = {⟨C⟩ : C is a satisfiable boolean combinational circuit}

Out

x3

x2
x1

Figure 3.2: An example of a boolean combinational circuit.

Example 3.6. Observe that the circuit in fig. 3.2 is satisfiable, since the input ⟨x1 =

1, x2 = 1, x3 = 0⟩ sets the output to 1.

On the other hand, if we substitute one of the two OR gates on the right with an AND

gate, then the circuit is no longer satisfiable.

Given a circuit, one can determine whether is satisfiable by simply checking all its

possible input assignments. Unfortunately, if the circuit has k inputs, this strategy

requires to check up to 2k possible assignments.

Lemma 3.7. CIRCUIT-SAT belongs to NP.

Proof. We provide a two-input, polynomial-time algorithm A that verifies CIRCUIT-

SAT. One of the inputs to A is a boolean combinational circuit C—actually a standard

encoding of it. The other input is a certificate corresponding to an assignment of a



3.3 Some NP-complete problems 27

boolean value to each of the wires in C.

The algorithm A works as follows. For each logic gate in C, it checks that the value

provided by the certificate on the output wire is consistent with the actual wire output,

which is obtained through the computation of inputs by the logic gate. Then, if the

output of the entire circuit is 1, algorithm A outputs 1. Otherwise, the output of A is 0.

Whenever a satisfiable circuit C is given as input to A, there exists a certificate whose

length is polynomial in the size of C that causes A to output a 1. On the other hand,

if A has an unsatisfiable circuit as input, no certificate can mislead A into outputting 1.

A also runs in polynomial time.

Now we have to show that the language is NP-hard.

A computer program is stored in the computer’s memory as a sequence of instructions.

A typical instruction encodes an operation to be performed, addresses of operands in

memory, and an address where the result should be stored. A special memory location,

called the program counter, keeps track of which instruction is to be executed next. We

call any particular state of the computer memory a configuration.

When an instruction executes, it transforms the configuration, and so we think of an in-

struction as mapping one configuration to another. The computer hardware that realizes

this mapping can be implemented as a boolean combinational circuit.

Lemma 3.8. CIRCUIT-SAT is NP-hard.

The proof requires some computer science technicalities and we omit it for a better

readability. It can be found in Appendix.

Now the next statement follows by definition thanks to these two lemmas.

Theorem 3.9. CIRCUIT-SAT is NP-complete.

SAT

This problem has the historical honor of being the first problem ever shown to be

NP-complete.

We formulate the formula satisfiability problem in terms of the language SAT. An

instance of SAT is a boolean formula ϕ composed of:

(i) n boolean variables: x1, . . . , xn;

(ii) m boolean connectives, i.e. any boolean function with one or two inputs, and one

output;

(iii) parentheses.



28 3. NP-completeness

Follows an example of such a formula:

ϕ = ((x1 → x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2.

Without loss of generality, we assume that there are no redundant parentheses.

A boolean formula can be encoded in a string with a length that is polynomial in n+m.

So we have:

SAT = {⟨ϕ⟩ : ϕ is a satisfiable boolean formula}

Theorem 3.10. Satisfiability of boolean formulas is NP-complete.

Proof. A certificate consists of a satisfying assignment; the verifying algorithm simply

replaces each variable in the formula with its corresponding value and then evaluates the

expression. Now we show that CIRCUIT-SAT ≤P SAT.

To express any boolean combinational circuit as a boolean formula we can simply look

at the gate that produces the circuit output and inductively express each of the gate’s

input as formulas. Unfortunately, this method does not amount to a polynomial-time

reduction.

To overcome this problem, for each wire xi in the circuit C, the formula ϕ has a variable

xi. To express how each gate operates, construct a small formula using the variable of

its incident wires. The formula has the form of an “if and only if”, with the variable for

the gate’s output on the left and on the right a logical expression representing the gate’s

function on its inputs. Each of these small formulas is called a clause.

The formula ϕ describing C produced by the reduction algorithm is the AND of the

circuit output variable with the conjunction of gate clauses.

If C has a satisfying assignment, then each wire has a well-defined value, and the output

of C is 1. Therefore, when we assign values to variables in ϕ, each clause evaluates to 1,

and thus the conjunction does as well. On the other hand, if some assignment causes ϕ

to evaluate to 1, the circuit C is satisfiable by an analogous argument.

Example 3.11. If we consider the circuit in fig. 3.2, executing the reduction algorithm

described above leads us to the following formula:

ϕ = x10 ∧ (x4 ↔ ¬x3)

∧ (x5 ↔ (x1 ∨ x2))

∧ (x6 ↔ ¬x4)

∧ (x7 ↔ (x1 ∧ x2 ∧ x4))

∧ (x8 ↔ (x5 ∨ x6))

∧ (x9 ↔ (x6 ∨ x7))

∧ (x10 ↔ (x7 ∧ x8 ∧ x9)).



3.3 Some NP-complete problems 29

Where each xi represents a gate’s output as shown below.

x4

x5

x6

x7

x8

x9 x10

x3

x2
x1

3-CNF-SAT

Reducing from SAT is a more convenient way to prove NP-completeness. However,

the reduction algorithm must handle any input formula, and this can lead to a huge

number of cases to consider. It is usually simpler to reduce from a restricted language

of boolean formulas, that is 3-CNF-SAT.

A literal in a boolean formula is an occurrence of a variable or its negation. A clause

is the OR of two or more literals. A boolean formula is in 3-conjunctive normal form,

or 3-CNF, if it is expressed as an AND of clauses and each of them contains exactly three

distinct literals.

The language 3-CNF-SAT consists of encodings of boolean formulas in 3-CNF that are

satisfiable.

Theorem 3.12. Satisfiability of 3-CNF boolean formulas is NP-complete.

Proof. The argument from the proof of Theorem 3.10 to show SAT ∈ NP applies equally

well here. Therefore, by Lemma 3.5, we only need to reduce in polynomial time SAT to

3-CNF-SAT.

We break the reduction algorithm in three basic steps.

First, construct a binary tree for ϕ, with literals as leaves and connectives as internal

nodes. If the input formula contains a clause such as the OR of several literals, using

associativity we can parenthesize the expression so that every internal node in the re-

sulting tree has just one or two children.

Now we introduce a variable yi for the output of each internal node, like in the proof of

Theorem 3.10. So the original formula can be expressed as the AND of the variable at

the root of the tree and a conjunction of clauses describing the operations of each node.



30 3. NP-completeness

The formula ϕ′ obtained is a conjunction of clauses ϕ′
i, each of which has at most three

literals. However, these clauses are not yet ORs of three literals.

The second step of the reduction converts each clause ϕ′
i in CNF. We construct a

truth table for ϕ′
i by evaluating all possible assignments to its variables; now, using the

assignments that evaluate to 0, we build a formula in disjunctive normal form—an OR

of ANDs—that is equivalent to ¬ϕ′
i. Then negate this formula and use De Morgan’s laws

lead us to a CNF formula ϕ′′
i .

At this point, each clause of ϕ′ has been converted into a CNF formula ϕ′′
i , and thus ϕ′

is equivalent to the CNF formula ϕ′′ consisting of the conjunction of the ϕ′′
i . Also, each

clause of ϕ′′ has at most three literals.

The final step transforms the formula so that each clause has exactly three distinct

literals. From ϕ′′, we construct the 3-CNF formula ϕ′′′ that uses two auxiliary variables,

p and q. For each clause Ci of ϕ
′′, we distinguish three cases:

• If Ci contains three distinct literals, then we simply include Ci as a clause of ϕ′′′.

• If Ci contains exactly two distinct literals, that is, if Ci = (l1 ∨ l2), then include

(l1 ∨ l2 ∨ p) ∧ (l1 ∨ l2 ∨ ¬p) as clauses of ϕ′′′.

• If Ci contains just one distinct literal l, then include (l ∨ p∨ q)∧ (l ∨ p∨¬q)∧ (l ∨
¬p ∨ q) ∧ (l ∨ ¬p ∨ ¬q) as clauses of ϕ′′′.

We can see that ϕ′′′ is satisfiable if and only if ϕ is satisfiable. We have already seen

that the construction of ϕ′ from ϕ preserves satisfiability. The second step produces ϕ′′,

which is algebraically equivalent to ϕ′. Then the third step produces ϕ′′′ that is effectively

equivalent to ϕ′′, since any assignment to the variables p and q produces a formula that

is algebraically equivalent to ϕ′′.

To conclude we need to show that the reduction can be computed in polynomial time.

Constructing ϕ′ from ϕ introduces at most one variable and one clause per connective in

ϕ. Then ϕ′′ is obtained from ϕ′ introducing at most eight clauses for each clause from

ϕ′, since each clause contains at most three variables, and so its truth table has at most

eight rows. In the end the construction of ϕ′′′ from ϕ′′ introduces at most four clauses

for each on in ϕ′′.

Example 3.13. Here is an example of how the reduction algorithm constructs ϕ′′′ from

ϕ = ((x1 → x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2.



3.3 Some NP-complete problems 31

We first construct

ϕ′ = y1 ∧ (y1 ↔ (y2 ∧ ¬x2))

∧ (y2 ↔ (y3 ∨ y4))

∧ (y3 ↔ (x1 → x2))

∧ (y4 ↔ ¬y5)

∧ (y5 ↔ (y6 ∨ x4))

∧ (y6 ↔ (¬x1 ↔ x3)),

then for each clause we proceed with step two.

We show an example with the clause ϕ′
1 = (y1 ↔ (y2 ∧ ¬x2)) that describes its truth

table, the corresponding DNF formula, and the equivalent CNF formula.

y1 y2 x2 ϕ′
1

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

¬ϕ′
1 =(y1 ∧ y2 ∧ x2) ∨ (y1 ∧ ¬y2 ∧ x2)

∨ (y1 ∧ ¬y2 ∧ ¬x2) ∨ (¬y1 ∧ y2 ∧ ¬x2),

¬ϕ′′
1 =(¬y1 ∨ ¬y2 ∨ ¬x2) ∧ (¬y1 ∨ y2 ∨ ¬x2)

∧ (¬y1 ∨ y2 ∨ x2) ∧ (y1 ∨ ¬y2 ∨ x2).

In this specific case the third step is unnecessary.



32 3. NP-completeness



Chapter 4

Recognition of Collapsibility

A classical question often considered in algebraic topology is whether some topologi-

cal space is contractible. We can consider this question as an algorithmic question, that

is, we consider the topological space as an input for an algorithm (say as a finite simpli-

cial complex1). It turns out that this question is undecidable by a result of Novikov [3];

we briefly discuss this in Appendix.

An important, algorithmically recognizable, subclass of contractible complexes is the

class of collapsible complexes. We focus on the computational complexity of the col-

lapsibility problem. First we talk about previous results and we show that this question

is NP-complete even if we restrict the input to 3-dimensional complexes; further we will

show some corollaries, and we will finish asking the question in the remaining cases. The

first main result, proved by Tancer [7], is the following.

Theorem 4.1. It is NP-complete to decide whether a given 3-dimensional simplicial

complex is collapsible.

Clearly, this problem belongs to NP (it is just sufficient to guess a right sequence of

elementary collapses), thus the nontrivial part is showing its NP-hardness. Moreover, by

attaching a d-simplex to the complexes used in the proof of Theorem 4.1 it is easy to ob-

serve that the statement is also valid if we replace “3-dimensional” with “d-dimensional”

for any d ≥ 4. More details can be founded in the conclusion; see Section 4.5.

Previously, Eğecioğlu and Gonzalez [4] showed that it is NP-complete to decide

whether a given 2-dimensional complex can be collapsed to a point by removing at

most k triangles, where k is a part of the input. As pointed out by Joswig and Pfetsch

[5] and by Malgouyres and Francés [6], this problem becomes polynomial-time solvable

1Many topological spaces cannot be represented as finite simplicial complexes. However, we only

consider those that can be represented in this way.

33



34 4. Recognition of Collapsibility

when k is fixed. In particular, deciding whether a 2-dimensional complex collapses to

a point is polynomial-time solvable. The same approach yields the fact that deciding

whether a d-complex collapses to a (d− 1)-complex is polynomial-time solvable; we will

prove this fact later in the dedicated subsection.

Furthermore, Malgouyres and Francés have shown that it is NP-complete to decide

whether a given 3-dimensional complex collapses to some 1-dimensional one, and the

approach in the proof of Theorem 4.1 relies, in a significant part, on this work.

Using the result of Eğecioğlu and Gonzalez, Joswig and Pfetsch also proved that it

is NP-complete to decide whether there exists a Morse matching with at most c critical

cells, where c is a part of the input.

Theorem 4.1 can be reformulated in terms of Morse matchings in the following way.

Theorem 4.2. It is NP-complete to decide whether a given 3-dimensional simplicial

complex admits a perfect Morse matching2.

Proof. Thanks to the results obtained in Chapter 2, we can use the fact that a simplicial

complex K collapses to a point x if and only if it admits a Morse matching such that

K \ {x, ∅} contains no critical cells. Therefore, K is collapsible if and only if it admits a

perfect Morse matching. Consequently, Theorem 4.2 is equivalent to Theorem 4.1.

In this chapter we work with finite abstract simplicial complexes; If K is such a

complex we simply say that a k-face is a face in K of dimension k. In particular 0-

dimensional, 1-dimensional, and 2-dimensional faces are vertices, edges, and triangles,

respectively.

Let σ be a nonempty non-maximal face of K. We say that σ is free if it is contained in

only one maximal face τ of K. Let K ′ be the simplicial complex obtained from K by

removing σ and all faces above it, that is,

K ′ := K \ {ϑ ∈ K : σ ⊆ ϑ}.

Thus K ′ arises from K by the elementary collapse induced by σ and τ . We say that

a complex K collapses to a complex L if there exists a sequence of complexes (K1 =

K,K2, . . . , Km−1, Km = L), called a sequence of elementary collapses, such that Ki+1

arises from Ki by an elementary collapse for any i ∈ {1, . . . ,m − 1}. A simplicial

complex K is said to be collapsible if it collapses to a point.

Let (K1 = K,K2, . . . , Km−1, Km = L) be a sequence of elementary collapses. Then it is

easy to see that for every η ∈ K \ L there is a unique complex Ki such that η ∈ Ki and

η ̸∈ Ki+1. So we say that η collapses at step i.

2A Morse matching (acyclic matching) is said to be perfect if it admits a single critical cell, and this

cell is also a point.



35

Collapsibility with constraints

In further constructions, we will encounter the following situation: given a complex

L glued to some other complexes forming a complex M , we will know some collapsing

sequence of L and we will want to “use” this sequence for M . This might or might not

be possible.

Definition 4.3. Let M be a simplicial complex and L be a subcomplex of M . We define

the constrain complex of the pair (M,L) as

Γ(M,L) := {ϑ ∈ L : ϑ ⊆ η for some η ∈M \ L}.

Clearly, the constrain complex is a subcomplex of L. Now we have a sufficient condi-

tion that tells us when a collapsing sequence for L induces a collapsing sequence for the

whole complex M .

Lemma 4.4. Let M be a complex, L a subcomplex of M , and Γ = Γ(M,L). Assume

that L collapses to L′ containing Γ. Then M collapses to

M ′ := L′ ∪ (M \ L).

Proof. Let (L1 = L,L2, . . . , Lm−1, Lm = L′) be a sequence of elementary collapses. Let

σi be the face of Li which is collapsed in order to obtain Li+1 and let τi be the unique

maximal face in Li containing σi. We set Mi = Li ∪ (M \L). The assumption ensure us

that all faces inMi containing σi belong to Li. Therefore (M1 =M,M2, . . . ,Mm−1,Mm =

M ′) is a sequence of elementary collapses.

Collapsibility in codimension 1

Here we prove that collapsibility in codimension 1 is polynomial-time solvable; this

is only a complementary result, and it is not needed in further proofs. For this purpose,

we need the following proposition. It implies that we can collapse an input d-complex K

greedily3, and with this algorithm, we obtain a (d−1)-complex if and only if K collapses

to a (d− 1)-complex L.

Proposition 4.5. Let K be a d-complex which collapses to a (d− 1)-complex L and to

some d-complex M . Then M collapses to a (d− 1)-complex.

3An algorithm is said to be greedy if it locally makes the optimal choice at each step; see Cormen [1,

Chapter 15].



36 4. Recognition of Collapsibility

Proof. Let (K1 = K,K2, . . . , Km−1, Km = L) be a sequence of elementary collapses,

where the collapse from Ki to Ki+1 is induced by faces σi and τi; since L is a (d − 1)-

complex, without loss of generality we can assume dim τi = d and dimσi = d − 1 for

all i. We observe that every d-dimensional face of K is τi for some i. If M is already a

(d− 1)-complex we conclude, otherwise let j be the smallest index such that τj belongs

toM ; we also observe that no τi with i < j belongs toM as a consequence of our choices.

Now, since σj is free in Kj, the only d-faces of K containing σj might be τi with i ≤ j.

Thus, τj is the unique d-face of M containing σj, so σj can be collapsed. If M is

still d-dimensional, we repeat the procedure, and after finitely many steps we obtain a

(d− 1)-complex.

4.1 Approaching the problem

In this section we describe the approach of Malgouyres and Francés[6], and we in-

troduce auxiliary constructions; further, we will explain how Tancer [7] follows their

approach modifying some steps in order to obtain his result.

The reduction is done from the 3-satisfiability problem. Given a 3-CNF formula Φ, Mal-

gouyres and Francés construct a 3-dimensional complex C(Φ) such that C(Φ) collapses

to a 1-complex if and only if Φ is satisfiable. They compose C(Φ) of several smaller

complexes that we call gadgets.

For every literal ℓ in the formula they introduce a literal gadget C(ℓ). The gadgets C(ℓ)
and C(ℓ̄) (ℓ̄ is the negation of ℓ) are glued along an edge so that a major part of only

C(ℓ) or only C(ℓ̄) can be collapsed in the first phase of collapsing. Another gadget is the

conjunction gadget Cand glued to literal gadgets via clause gadgets so that Cand can be

collapsed if and only if every clause contains a literal ℓ such that the major part of C(ℓ)
was already collapsed, that is, if and only if Φ is satisfiable. As soon as Cand is collapsed,

it makes few other faces free allowing the whole complex to collapse to a 1-dimensional

one. Now this resulting complex contains many cycles, thus it cannot be collapsed to a

point.

Intuitively, our idea relies on filling the cycles of the resulting 1-complex so that we can

proceed with other collapsings. However, we cannot fill the cycles in an obvious way,

since we do not know a priori which complex we obtain. Additionally, filling these cycles

could potentially introduce other collapsing sequences which could yield to collapsing

the complex even if the formula were not satisfiable.

We are going to construct a simplicial complex K(Φ) which collapses to a point if



4.1 Approaching the problem 37

and only if Φ is satisfiable4. We reuse literal and conjunction gadgets of Malgouyres and

Francés; we need to replace, though, their simple clause gadget. For this construction

we need to introduce Bing’s house, and we also need disk gadgets to fill the cycles in the

resulting 1-complex (despite the name, they will not be topological disks but only some

contractible complexes).

Bing’s Rooms and Bing’s houses

Bing’s house is a simplicial complex obtained by gluing two smaller complexes called

Bing’s rooms (depicted in fig. 4.1). Bing’s room with a thin wall is a complex con-

taining only 2-dimensional faces, whereas Bing’s room with a thick wall contains one

3-dimensional block obtained by thickening one of the walls. Both rooms contain two

holes in the ground floor and one hole in the roof. If now, starting from the room with

a thick wall, we collapse5 away the thick wall, we obtain Bing’s room with a collapsed

thick wall. Note that in fig. 4.1, on the right, the left bottom edge of the collapsed wall

is still present.

Figure 4.1: Bing’s rooms

If we rotate the ground floor of one of the rooms and we glue the two rooms together

along the ground floor, we obtain Bing’s house with one thin and one thick wall (fig. 4.2a).

Similarly, we can obtain Bing’s house with two thin walls or Bing’s house with two thick

walls.

We also need to introduce Bing’s house with three rooms. First we consider the base

floor as in fig. 4.2b; it consists of three squares with holes (assume that also these holes

are square), glued together. Now we consider three Bing’s rooms with thick walls labeled

1, 2, and 3. The room labeled i is glued to the two squares with label i so that the gray

part of one of the squares labeled i is the place where the thick wall of the room is glued

to the base floor.6

4In fact, K(Φ) will always be contractible (not in a natural way), but we do not need this fact.
5This is not only a cells removal, but an actual collapse in terms of Discrete Morse Theory.
6We do not have to distinguish whether the rooms are glued to the base floor from below or from

above, since we could not place them in such a way simultaneously in 3D.



38 4. Recognition of Collapsibility

(a) Bing’s house with two rooms (b) Base floor

Figure 4.2

The resulting complex is the Bing’s house with three rooms (and three thick walls).

This complex is contractible, and it can be shown in a similar way as the contractibility

of classical Bing’s house.

It will also be convenient to work with Bing’s house with three rooms where the thick

walls are collapsed; in particular, we let collapse each of them to the edge on the base

floor, and we obtain Bing’s house with three collapsed walls. In fig. 4.3 we provide an

example with two rooms only; edge xi is the only remaining edge of the thick wall in

room i after collapsing the wall. Observe that x1, x2, and x3 are the only free faces of

Bing’s house with three collapsed walls; see fig. 4.7 for the base floor.

Figure 4.3: Two blocks of Bing’s house with three collapsed

walls. The edges marked with e are glued together.

Now, in order to obtain simplicial complexes we triangulate our gadgets. It will not

be important how precisely we triangulate pieces of dimension 2 or less. An example

of triangulation for the middle level of Bing’s house with one thick and one thin wall is

shown in fig. 4.4a; we only need to keep in mind that triangulations have to be compatible



4.2 The Reduction Gadgets 39

with intersections. Also, in some cases we will need gadgets with many prescribed edges

in some part of the triangulation, with the number of these edges depending on the

size of the 3-CNF formula; in such cases we require that the size of the triangulation is

polynomial in the number of the prescribed edges.

Thick walls are the only 3-cells appearing in our constructions, and for these cells we

use triangulations of Malgouyres and Francés (fig. 4.4b); in particular, the thick wall is

subdivided into four prisms 012389, 014589, 236789, and 456789. Then, each prism is

subdivided into two simplices (which are not shown in the picture). This triangulation

allows collapsing the thick wall into a smaller complex; for example, the middle picture

in fig. 4.4b shows a collapsing used when obtaining Bing’s room with a collapsed thick

wall from Bing’s room with a thick wall.

(a) A suitable triangulation (b) Collapsings of the thick wall

Figure 4.4

4.2 The Reduction Gadgets

Here we show details of the construction described at the beginning of the chapter:

given a 3-CNF formula Φ, we construct a 3-dimensional simplicial complex K(Φ). We

assume that every clause contains exactly three literals and that no clause contains a

literal and its negation.

This complex will consists of several gadgets. For each of them we also need to find some

appropriate collapsing sequence (we usually postpone the proof of the existence of such

a sequence so that the technical details are left to the end).

Literal gadget

First we recall the literal gadget K(ℓ, ℓ̄) (by Malgouyres and Francés) for every pair

of literals ℓ and ℓ̄, then we glue it to other gadgets in a different way. It consists of two

smaller parts X(ℓ) and X(ℓ̄) glued together in a suitable way.



40 4. Recognition of Collapsibility

SetX(ℓ) to be Bing’s house with two thick walls; see fig. 4.5. It contains two distinguished

edges e(ℓ) and f(ℓ), and it also contains a path p(ℓ) joining their common vertex with

the upper thick wall.7 Recall that we are using the particular triangulation of the upper

thick wall described in Section 4.1; the path p(ℓ) enters the upper wall in vertex 0 and

it continues to vertex 8. Analogously, we construct X(ℓ̄).

Figure 4.5: The complex X(ℓ) from the literal gadget.

The gadget K(ℓ, ℓ̄) is obtained gluing X(ℓ) and X(ℓ̄) together along edge 89. We

rename the common vertex 8 to uℓ,ℓ̄, since it will be significant for further constructions.

Now, we have the following lemma describing a sequence of collapses for the literal

gadget. The statement also says that at least one of f(ℓ), f(ℓ̄) has to be collapsed before

collapsing the whole gadget to a 2-complex.

Lemma 4.6.

(1) K(ℓ, ℓ̄) collapses to a complex that contains only p(ℓ), e(ℓ) and f(ℓ) from X(ℓ) while

it contains almost all X(ℓ̄) except the upper thick wall, which was collapsed to a thin

wall; see fig. 4.4b right, removing edge 89.

(2) Let L(ℓ, ℓ̄) be the complex resulting in item 1 without the edge e(ℓ). This complex

further collapses to the union of the paths p(ℓ), p(ℓ̄) and the edge e(ℓ̄).

(3) Let T (ℓ) be any of the two triangles containing e(ℓ) and T (ℓ̄) be any triangle con-

taining e(ℓ̄). Before collapsing both T (ℓ) and T (ℓ̄), at least one of the edges f(ℓ),

f(ℓ̄) must be collapsed.

Item 3 is already proved by Malgouyres and Francés [6]. We sketch here that if neither

f(ℓ) nor f(ℓ̄) is collapsed, then only one of the two upper thick walls can be collapsed in

order to make its edge 01 free. Thus, only one of the triangles might become free before

collapsing f(ℓ) or f(ℓ̄). We postpone the proof of items 1 and 2 to Section 4.4.

7This path contains neither e(ℓ) nor f(ℓ).



4.2 The Reduction Gadgets 41

Conjunction gadget

Now we define the conjunction gadget Kand. In K(Φ), instead of having a gadget for

every single conjunction, we have a single copy Kand representing them all.

This gadget is Bing’s house with one collapsed thick wall and one thin wall with several

distinguished edges and vertices. See fig. 4.6 on the left.

For every pair ℓ, ℓ̄ of literals, we create an anchor-shaped tree A(ℓ, ℓ̄) composed of uℓ,ℓ̄,

p(ℓ), p(ℓ̄), f(ℓ) and f(ℓ̄) from K(ℓ, ℓ̄) and also of newly introduced edge a(ℓ, ℓ̄) and vertex

vand. See fig. 4.6 on the right. Next we glue all trees A(ℓ, ℓ̄) in vertex vand obtaining a

tree A.

Figure 4.6: Conjunction gadget

Finally, we denote with eand the only free edge of Kand and we glue A to the lower

left wall of Kand. Note that every literal gadget is glued to the conjunction gadget.

As soon as we have introduced all gadgets, we will see that Kand is glued to other gadgets

only along A and eand. The following lemma states that collapsing Kand needs eand to

be free first in whole K(Φ) and only then we can continue with collapsing Kand. On the

other hand, once we make eand free, we can collapse the complex to A.

Lemma 4.7.

(1) Kand collapses to A.

(2) Before collapsing any triangle containing one of f(ℓ), f(ℓ̄), the edge eand has to be

collapsed

We prove item 1 in Section 4.4; item 2 is explained in [6].

Clause gadget

Next we introduce the clause gadget : for a clause c = (ℓ1 ∨ ℓ2 ∨ ℓ3) we set K(c) to

be Bing’s house with three collapsed walls with several distinguished edges and paths.



42 4. Recognition of Collapsibility

In particular, the only three free edges of K(c) are labeled (ℓi, c); see fig. 4.7. We also

label three paths p(ℓi, c) connecting the center of the base floor with (ℓi, c) (we assume

that the path do not contain (ℓi, c)). Finally, we distinguish one other edge, labeled eand,

going from the center inside the base floor. This last edge is glued together with the

edge of the conjunction gadget with the same label so that the central vertex of the base

floor becomes the vertex vand. We have the following facts.

Lemma 4.8.

(1) K(c) collapses to a complex composed of eand, three paths p(ℓi, c), and two of the

three edges (ℓi, c).

(2) Any collapsing of K(c) starts with one of the edges (ℓi, c).

Item 2 easily follows from the fact that the only free faces of K(c) are the three edges

(ℓi, c). The proof of item 1 is rather postponed to Section 4.4.

Figure 4.7: Base floor of the clause gadget

Disk gadget

Lastly, for every pair of literals ℓ, ℓ̄ we construct the disk gadget D(ℓ, ℓ̄). We first

consider Bing’s house with one collapsed thick wall and one thin wall; see fig. 4.8a. We

label the only free face of this complex with e(ℓ) and glue it to the edge e(ℓ) of K(ℓ, ℓ̄).

Now we choose a vertex on the edge connecting the left an the bottom wall and label it

vand. We also glue this vertex to the vand of the conjunction gadget. The edge connecting

vand and one of the vertices of e(ℓ) is labelled by b(ℓ). Next, for every clause cj containing

ℓ we make a copy of p(ℓ, cj) and (ℓ, cj), starting in vertex vand. In particular, the complex

described above is glued to the complexes K(cj) along these paths and edges. We denote

the resulting complex with B(ℓ). For B(ℓ̄) we proceed analogously.



4.3 Collapsibility of K(Φ) 43

The following lemma ensures that if the edge e(ℓ) become free, then this complex can

be collapsed (inside whole K(Φ)) to a complex composed of the distinguished edges and

paths.

Lemma 4.9.

(1) B(ℓ) collapses to the 1-complex composed of b(ℓ), paths p(ℓ, cj), and edges (ℓ, cj).

(2) Any collapsing of B(ℓ) starts with the edge e(ℓ).

As usual, item 1 is proved in Section 4.4; item 2 follows as in the previous lemma.

(a) Complex B(ℓ) (b) Disk gadget

Figure 4.8

Now we can construct D(ℓ, ℓ̄) by filling two cycles with a disk (fig. 4.8b). The first

cycle is formed by b(ℓ), p(ℓ) and a(ℓ, ℓ̄), the second one by b(ℓ̄), p(ℓ̄) and a(ℓ, ℓ̄). Now

the construction of D(ℓ, ℓ̄) is finished and we have already described all gluings, so this

concludes the construction of K(Φ).

4.3 Collapsibility of K(Φ)

In this section we prove Theorem 4.1 showing that K(Φ) is collapsible if and only if

Φ is satisfiable.

Satisfiable formulas

First we assume that Φ is satisfiable, and we also fix one satisfying assignment. We

want to construct a collapsing sequence for K(Φ) proceeding in several steps. By K(i)(Φ)

we denote the complex obtained after performing i-th step of collapsing. We also denote

gadgets in a similar way, for example, K
(i)
and is K(i)(Φ) ∩Kand.



44 4. Recognition of Collapsibility

1. For every literal ℓ we “partially” collapse K(ℓ, ℓ̄) as in Lemma 4.6. Note that

the constrain complex of (K(Φ), K(ℓ, ℓ̄)) consists of p(ℓ), p(ℓ̄), e(ℓ), e(ℓ̄), f(ℓ) and

f(ℓ̄); therefore Lemma 4.4 induces collapsing on whole K(Φ). Now if ℓ has positive

occurrence in the assignment, we let X(ℓ) collapse to p(ℓ), e(ℓ) and f(ℓ) while in

X(ℓ̄) only its upper thick wall collapses to a thin one. After this, the edge e(ℓ) is

free.

Once we have gradually performed this collapsing for all literals with positive oc-

currence, we do not “miss” negative ones since for every input variable u exactly

one literal of u and ¬u has positive occurrence.

2. Next we collapse B(ℓ) as stated in Lemma 4.9. At this step, the constrain complex

of (K(1)(Φ), B(1)(ℓ)) = (K(1)(Φ), B(ℓ)) contains only b(ℓ), paths p(ℓ, cj), and edges

(ℓ, cj), thus collapsing from Lemma 4.9 induces collapsing ofK(1)(Φ) by Lemma 4.4.

From now on we will use this lemma many other times without mentioning it.

3. Now for every clause c at least one of the edges (ℓi, c) became free, since the assign-

ment is satisfying. Then, every clause gadget collapses to the 1-complex described

in Lemma 4.8. The constrain complex of (K(2)(Φ), K(2)(c)) is a subcomplex of the

complex formed by paths p(ℓj, c) and edges (ℓj, c), with j ̸= i.

4. Here we focus on the edge eand; at the beginning, it was contained in triangles of

clause gadgets and in a single triangle of the conjunction gadget. All triangles of

clause gadgets were collapsed in previous steps, so eand is now free. Lemma 4.7

allows us to collapse Kand to A, and also the constrain complex of (K(3)(Φ), K
(3)
and)

is A.

5. In this step, we will collapse literal and disk gadgets. The crucial fact is that the

edges f(ℓ) and f(ℓ̄) are already free, thus Lemma 4.6 allows us to proceed with

collapsing K(4)(ℓ, ℓ̄). Now e(ℓ̄) is free as well as all remaining edges of p(ℓ) and

p(ℓ̄), so we can easily collapse B(ℓ̄) thanks to Lemma 4.9 and consequently also

D(ℓ, ℓ̄).

6. In the end, we have a collection of paths starting from vand that can be easily

collapsed to vand itself.

Non-satisfiable formulas

To conclude, we show that K(Φ) is not collapsible when Φ is not satisfiable.

Suppose that K(Φ) is collapsible, then in particular some triangle of Kand has to be



4.4 Collapsing Sequences 45

collapsed at some step. Consider the first step in which such a triangle has to be collapsed.

Now, according to Lemma 4.7, the edge eand has to be made free before this step. By

Lemma 4.8 for every clause c there is a literal ℓ(c) in it such that the edge (ℓ(c), c)

was made free prior this step, thus by Lemma 4.9 the edge e(ℓ(c)) had to be made free

previously. Recall now that no triangle of Kand was collapsed yet, therefore only one of

the edges e(ℓ) and e(ℓ̄) can be collapsed at this stage, according to Lemma 4.6. This

leads us to a satisfying assignment for Φ: set a variable u to TRUE if e(u) was collapsed,

FALSE otherwise.

4.4 Collapsing Sequences

Here we prove technical lemmas used in the previous sections (the order of proofs is

changed for convenience).

Proof of Lemma 4.7(1). Recall that we want to collapse the conjunction gadget to the

tree A; see fig. 4.6. First, we collapse the wall below eand and then the lowest floor

(except edges in A). Next we collapse all walls that were attached to the lowest floor.

After this, we obtain the complex depicted in fig. 4.9: this is a 2-sphere with a hole and

with A attached to it. It is easy to conclude the collapsing sequence (proceeding in the

direction of the arrows).

Figure 4.9: An intermediate step in collapsing Kand.

Proof of Lemma 4.8(1). In order to collapse the clause gadget (fig. 4.7), we will provide a

collapsing to the union of paths p(ℓi, c) and edges (ℓ2, c), (ℓ3, c); other cases are analogous.

We will assume that Bing’s room number 1 is above the base floor and that the number

2 is below the base floor as in fig. 4.10 on the left.

Since (ℓ1, c) is allowed to be collapsed, we can collapse the left wall of room 2 and then

the bottom one. Next, we can collapse all walls of room 2 perpendicular to the base



46 4. Recognition of Collapsibility

floor, so we obtain a complex as in fig. 4.10 on the right. After this, we collapse the

interior of the 23 square so that left edges of (ℓ2, c) become free. Then the room 3 can be

collapsed in a similar way as we did with room 2; note that, after this step, only (ℓ2, c),

p(ℓ2, c) and part of p(ℓ1, c) remain of the 23 square. Finally, we can collapse room 1 in

a similar fashion taking care that eand be left uncollapsed.

Proof of Lemma 4.6(1). First, we collapse the thick wall of X(ℓ̄) as shown in fig. 4.4b,

on the right. After this the edge 89, in common with X(ℓ), becomes free. Then we can

collapse the thick wall of X(ℓ) so that the upper Bing’s room of it becomes Bing’s room

with collapsed thick wall. At this point, the rest of X(ℓ) can be collapsed in the same

way as in the proof of Lemma 4.7 while keeping p(ℓ) and f(ℓ).

Figure 4.10: Rooms of the clause gadget while collapsing it

Proof of Lemma 4.6(2). As soon as we are allowed to collapse f(ℓ̄), the lower thick wall

of X(ℓ̄) can be collapsed obtaining Bing’s room with collapsed thick wall from the lower

room. Now we can collapse X(ℓ̄) in similar way as in the proof of Lemma 4.7 while

keeping the prescribed subcomplex; clearly, the roles of the lower and upper rooms are

interchanged.

Proof of Lemma 4.9(1). Here we use the same collapsing procedure as in the proof of

Lemma 4.7. We just remark that the wall below e(ℓ), split by b(ℓ), is collapsed in

two stages. First we collapse the half containing e(ℓ); then the lowest floor of B(ℓ) is

collapsed, and we finish collapsing the second half of this wall.



4.5 Conclusion 47

4.5 Conclusion

We have shown that it is NP-complete to decide whether a 3-dimensional complex

is collapsible, that is, it collapses to a point. Here we mention a few corollaries of this

result, and we also analyze the remaining cases.

We set up question (d, k)-Collapsibility asking whether a given d-dimensional

complex collapses to some k-dimensional one, where d > k ≥ 0 are fixed.

The above result shows that (3, 0)-Collapsibility is NP-complete; moreover, observe

that it is not difficult to extend it showing that (d, k)-Collapsibility is NP-complete

for any d ≥ 3 and k ∈ {0, 1}. For this we only need to attach a d-simplex to vand

and remark that if Φ is not satisfiable, then any collapsing of K(Φ) yields a complex of

dimension 2 or more (we also remark that the case d ≥ 3 and k = 1 has been already

examined from the construction of Malgouyres and Francés [6]).8

As we mentioned before in the chapter, it is not hard to prove polynomial-time solvability

of (d, k)-Collapsibility whenever d ≤ 2, and also in the codimension 1 case; see

Proposition 4.5.

Answering the question completely

In the remaining cases, when d ≥ k + 2 (d ̸= 2), it is reasonable to believe that the

problem is also NP-complete. In fact, we now extend previous results with the following

theorem, proved by Paolini [8].

Theorem 4.10. The (d, k)-Collapsibility problem is NP-complete for d ≥ k + 2,

except for the case (2, 0).

For this purpose, in Theorem 4.11 we show a polynomial-time reduction of (d, k)-

Collapsibility to (d+ 1, k + 1)-Collapsibility; the main result will then follow by

induction, with the base cases given by NP-completeness of (3, 1)-Collapsibility and

(d, 0)-Collapsibility (d ≥ 3).

Recall that “collapsibility to some k-dimensional subcomplex” is equivalent to “existence

of an acyclic matching such that the critical cells form a k-dimensional subcomplex”, see

Chapter 2. Also observe that, given an acyclic matching with no critical simplices of

dimension d > k, one can always remove from it the arcs between its simplices obtaining

a new acyclic matching where the critical simplices form now a subcomplex of dimension

k.
8Similarly, given a 1-complex we can attach it to vand, then our 3-dimensional complex collapses to

this fixed 1-complex. This shows that it is NP-complete to decide whether a 3-dimensional complex

collapses to a fixed 1-complex.



48 4. Recognition of Collapsibility

Theorem 4.11. Let d > k ≥ 0. Then there is a polynomial-reduction from (d, k)-

Collapsibility to (d+ 1, k + 1)-Collapsibility.

Proof. LetX be an instance of (d, k)-Collapsibility, that is, a d-dimensional simplicial

complex. Let V = v1, . . . , vr be the vertex set of X. Now we construct an instance X ′

of (d+ 1, k + 1)-Collapsibility as follows.

Let n be the number of simplices in X. Introduce new vertices w1, . . . , wn+1, and define

X ′ as the simplicial complex on the vertex set V ′ = v1, . . . , vr, w1, . . . , wn+1 given by

X ′ = X ∪
{
σ ∪ {wi} | σ ∈ X, i = 1, . . . , n+ 1

}
.

Note that this is the (n + 1)-coning introduced in Section 1.2. Thus X ′ has n(n + 2)

simplices. Broadly speaking, we obtain X ′ from X by attaching n+ 1 cones of X to it.

We now prove that X is a yes-instance of (d, k)-Collapsibility if and only if X ′ is a

yes-instance of (d+ 1, k + 1)-Collapsibility.

Suppose first that X is a yes-instance of (d, k)-Collapsibility. Then there exists

an acyclic matching M on X such that all critical simplices have dimension at most k.

We construct a matching M′ on X ′ as follows:

M′ =
{
(σ, σ ∪ {w1}) | σ ∈ X

}
∪
{
(τ ∪ {wi}, σ ∪ {wi}) | (τ, σ) ∈ M, i = 2, . . . , n+ 1

}
.

(4.1)

In terms of collapses, this matching correspond to collapsing the first cone together with

X, and every other “base-less” cone by itself (as we are collapsing X). Note that the

critical simplices of M′ do not form a subcomplex of X ′, even when the critical simplices

of M form a subcomplex of X.

Now we prove that M′ is acyclic by considering the set P = {w1, . . . , wn+1} with the

partial order

wi < wj if and only if i = 1 and j > 1.

Let φ : X ′ → P be the poset map given by

φ(σ) =

wj if σ contains wj for some j ≥ 2;

w1 otherwise.

Thus M′ is a union of matchings M′
j on each fiber φ−1(wj). The arcs of M′

1 define a

cut of the Hasse diagram of φ−1(w1), then the matching M′
1 is acyclic on φ−1(w1). The

Hasse diagram of each φ−1(wj) for j ≥ 2 is isomorphic to the Hasse diagram of X ∪ {∅}
via the map σ ∪ {wj} 7→ σ, and the matching M′

j maps to M. Then each M′
j is acyclic



4.5 Conclusion 49

on φ−1(wj), since M is acyclic on the Hasse diagram of X.

By the Patchwork Theorem 2.13, M′ is acyclic on X ′.

The set of critical simplices of M′ is

Cr(X ′,M′) = {w1} ∪
{
σ ∪ {wi} | σ ∈ Cr(X,M) ∪ {∅}, i = 2, . . . , n+ 1

}
.

In particular, all critical simplices have dimension at most k + 1. Therefore X ′ is a

yes-instance of (d+ 1, k + 1)-Collapsibility.

Vice versa, suppose now that X ′ is a yes-instance of (d+ 1, k + 1)-Collapsibility.

Thus we have an acyclic matching M′ on X ′ such that all critical simplices have dimen-

sion at most k + 1. X contains n simplices, and there are n+ 1 cones, then there exists

an index j ∈ {1, . . . , n+ 1} such that(
σ, σ ∪ {wj}

)
̸∈ M′ for all σ ∈ X.

That is, simplices containing wj are only matched with simplices containing wj. Thus

we can construct a matching M on X as follows:

M =
{
(τ, σ) | τ, σ ∈ X such that

(
τ ∪ {wj}, σ ∪ {wj}

)
∈ M′

}
.

Note that if there is some 0-dimensional simplex σ = {v} ∈ X such that ({wj}, {v, wj}) ∈
M′, then {v} ∈ Cr(X,M). The Hasse diagram of X injects into the one of the j-th cone

via the map σ 7→ σ ∪ {wj}, and so M maps to M′. Therefore M is also acyclic, and its

set of critical simplices is

Cr(X,M) =
{
σ ∈ X | σ ∪ {wj} ∈ Cr(X ′,M′) or

(
{wj}, σ ∪ {wj}

)
∈ M′

}
.

In the first case σ ∪ {wj} has dimension at most k + 1, and in the second one σ is

0-dimensional. In particular, all critical simplices have dimension at most k. Therefore

X is a yes-instance of (d, k)-Collapsibility.

The following examples clarify the constructions described above from a geometrical

viewpoint.

Example 4.12. Let X be the simplicial complex depicted in fig. 4.11 on the left, with its

associated acyclic matching M next to it. In this case, using the same notation as in

the proof, n = 3. Thus we construct the simplicial complex X ′ from X by attaching 4

cones of X to it; see fig. 4.11 on the right. Now, from M, we define an acyclic matching

M′ associated with X ′. In fig. 4.12 we show the Hasse diagram of X ′ with the arrows

describing M′: triangular arrows represent the relations given by the first set in (4.1)

and classic arrows represent the relations given by the second set.



50 4. Recognition of Collapsibility

Figure 4.11: An elementary simplicial complex X with an as-

sociated acyclic matching on its Hasse diagram, and the com-

plex resulting from the reduction in the above proof.

Figure 4.12: The Hasse diagram of X ′ with the resulting

acyclic matching M′.

As mentioned before, we can always ignore some matchings in order to make the set

of critical simplices a subcomplex of X ′. In fig. 4.12 we highlight in light blue the

critical simplices given by M′, while we highlight in orange the new critical simplices

obtained by removing the corresponding matching. Geometrically, we have the situation

depicted in fig. 4.13, in which we describe the collapsing sequence for X ′ that gives

us a 1-complex. Therefore we performed a reduction from (1, 0)-Collapsibility to

(2, 1)-Collapsibility.

Figure 4.13: From left to right, the collapsing sequence on

X ′ provided by the matching resulting from the reduction.



4.5 Conclusion 51

Example 4.13. Let us give as input a more complicated simplicial complex X, like the

one in fig. 4.14. Now n = 10 and we only describe individually each cone Ci over X

forming9 X ′, since the obtained complex X ′ is no more embeddable in R3; see fig. 4.17.

For i = 2, . . . , 11 the acyclic matching M′
i defined on the Hasse diagram of Ci does

not change, and we describe it in fig. 4.15 (arrows and colours have the same meaning

already described in the previous example). The acyclic matching M′
1 defined on the

Hasse diagram of C1, meanwhile, differs from the others; it is depicted in fig. 4.16.

Figure 4.14: A 2-complex X next to its Hasse diagram with

an associated acyclic matching.

Here these cones are not considered as independent spaces, but we deal with them as

components of X ′. Hence in the diagram of C1 we see orange highlights coming from

Ci; e.g., if we start from the simplices marked in blue and we want the set of critical

simplices to be a subcomplex, then we need to add {v1} to it and so we mark it in orange

and consequently we remove the associated matching in C1. In this example we have a

reduction from (2, 1)-Collapsibility to (3, 2)-Collapsibility.

Figure 4.15: Hasse diagram of Ci

9As described in the proof, the cones are then glued along their “base”, that is, the complex X.



52 4. Recognition of Collapsibility

Figure 4.16: Hasse diagram of C1

To sum up, the (d, k)-Collapsibility admits a polynomial-time solution when

d = k + 1, and also for the case (2, 0) [5, 6, 7]. For (3, 1)-Collapsibility we have

NP-completeness [6], and in previous sections we show how to extend this result to

(d, k)-Collapsibility for k ∈ {0, 1} and d ≥ 3 [7]. Finally, using this as the base step

and Theorem 4.11 as the induction step, we prove Theorem 4.10.

Figure 4.17: Cone Ci over X



Chapter 5

Appendix

CIRCUIT-SAT

Here follows a proof of Lemma 3.8, that shows NP-hardness of CIRCUIT-SAT.

Proof. Let L be any language in NP. Thus there exist an algorithm A that verifies L in

polynomial time. We construct an algorithm F that uses A to compute the reduction

function f .

Let T (n) denote the worst-case running time of A on length-n input strings, and let

k ≥ 1 be a constant such that T (n) = O(nk) and the length of certificate is O(nk) as

well.

The idea of the proof is to represent the computation of A as a sequence of configu-

rations. We consider each configuration as composed by different parts: the program for

A, the program counter, the input x, the certificate y, and working storage. The combi-

national circuit M , which implements the computer hardware, maps each configuration

ci to the next one ci+1, starting from c0. Algorithm A writes its output to some location

when it finishes executing. After A halts, the output value never changes. Thus, if the

algorithm runs for at most T (n) steps, the output appears as one of the bits in cT (n).

The reduction algorithm F constructs a single combinational circuit that computes all

configurations produced by a given initial configuration. The idea is to connect together

T (n) copies of M . The output of the i-th circuit, which produces ci, feeds into the input

of the (i + 1)st circuit. Thus, the configurations, rather than being stored in memory,

simply reside as values on the wires connecting the copies.

More precisely, when F receive an input x, it computes n = |x| and then it constructs

a combinational circuit C ′ consisting of T (n) copies of M . The input to C ′ corresponds

to a computation on A(x, y), and the output is the configuration cT (n). Now, algorithm

F modifies C ′ to construct C = f(x).

53



54 5. Appendix

First, it wires the inputs to C ′ corresponding to the program for A, the initial program

counter, the input x, and the initial state of these values in memory. Thus, the only

remaining inputs correspond to the certificate y.

Second, it ignores all outputs from C ′, except for the bit of cT (n) corresponding to the

output of A. This circuit C, so constructed, computes C(y) = A(x, y) for any input y of

length O(nk). The reduction algorithm F , when provided an input x, computes C and

outputs it.

We now must show that F correctly computes f , and that it runs in polynomial time.

Let us show that C is satisfiable if and only if there exists y such that A(x, y) = 1.

Suppose that there exists a certificate y of length O(nk) such that A(x, y) = 1. Then,

once we have applied the bits of y to the inputs of C, the output is C(y) = 1. For the

other direction, suppose that C is satisfiable. Thus, there exists an input y to C such

that C(y) = 1, and we conclude that A(x, y) = 1.

The number of bits required to represent a configuration is polynomial in n, since the

program for A has a constant size, the length of the input x is n, and the length of the

certificate y is O(nk). Since the algorithm runs for at most O(nk) steps, the amount of

storage required by A is polynomial in n as well.

The combinational circuit M implementing the computer hardware has size polynomial

in the length of a configuration, and hence, it is polynomial in n. Lastly, the circuit C

consists of O(nk) copies of M , so the size is polynomial in n.

Figure 5.1: The sequence of configurations produced by an

algorithm A running on an input x and certificate y.



55

Unrecognizability of Contractible Complexes

We first talk about complexes of dimension at least 5; we only sketch a proof of the

following theorem.

Theorem 5.1 (Novikov). For every d ≥ 5, it is algorithmically undecidable whether a

given simplicial complex of dimension d is contractible.

The proof of this theorem easily follows from [3, §15].

Sketch of proof. Novikov shows the existence of an efficiently constructible sequence Mj

of d-manifolds such that Mj is a ball if and only if π1(Mj) is trivial, and it is algorith-

mically undecidable whether π1(Mj) is trivial. In order to finish the proof, we need to

know that Mj can be efficiently constructed as a simplicial complex. This can be done

by inspecting the proof in [3] with not too much effort.

The dimension 5 in Theorem 5.1 can be dropped to 4, if we greedily collapse 5-

dimensional simplices. On the other hand, the contractibility question is trivially poly-

nomial-time solvable for complexes of dimension at most 1, since it is equivalent with

recognition of trees. Lastly, regarding complexes of dimension 2 or 3, the question is

open to our best knowledge.





Bibliography

[1] T. H. Cormen, Introduction to Algorithms, MIT Press, Cambridge, 2022.

[2] D. Kozlov, Combinatorial Algebraic Topology, Springer, Berlin, 2008.

[3] I. A. Volodin et al, The problem of discriminating algorithmically the standard three-

dimensional sphere, Russ. Math. Surv. 29 (1974), 71-172.

[4] Ö. Eğecioğlu and T. F. Gonzalez, A computationally intractable problem on sim-

plicial complexes, Computational Geometry 6 (1996), no. 2, 85-98. https://doi.

org/10.1016/0925-7721(95)00015-1.

[5] M. Joswig and M. E. Pfetsch, Computing optimal Morse matchings, SIAM Journal

on Discrete Mathematics 20 (2006), 11-25. https://doi.org/10.48550/arXiv.

math/0408331.

[6] R. Malgouyres and A. R. Francés, Determining whether a simplicial 3-complex col-

lapses to a 1-complex is NP-complete, Discrete geometry for computer imagery,

Lecture Notes in Computer Science, vol. 4992, Springer, Berlin, 2008, 177-188.

https://doi.org/10.1007/978-3-540-79126-3_17.

[7] M. Tancer, Recognition of Collapsible Complexes is NP-Complete, Discrete

& Computational Geometry 55 (2016), 21–38. https://doi.org/10.1007/

s00454-015-9747-1.

[8] G. Paolini, Collapsibility to a Subcomplex of a Given Dimension is NP-Complete,

Discrete & Computational Geometry 59 (2017), 246-251. https://doi.org/10.

48550/arXiv.1703.06983.

57

https://doi.org/10.1016/0925-7721(95)00015-1
https://doi.org/10.1016/0925-7721(95)00015-1
https://doi.org/10.48550/arXiv.math/0408331
https://doi.org/10.48550/arXiv.math/0408331
https://doi.org/10.1007/978-3-540-79126-3_17
https://doi.org/10.1007/s00454-015-9747-1
https://doi.org/10.1007/s00454-015-9747-1
https://doi.org/10.48550/arXiv.1703.06983
https://doi.org/10.48550/arXiv.1703.06983




Acknowledgements

I would like to thank my supervisor, Giovanni Paolini, for assisting me with his

helpfulness in all that concerns this project.

A special thank goes to my entire family, without whom I would not have made it

through this journey. Thank you especially for allowing me to follow my passions and

for always encouraging me to do so, by supporting me with all your love and much more.

But thank you also for your patience, because I know how much of a procrastinator and

how stubborn I can be at times. I promise you that I will keep trying more and more to

step out of my comfort zone.

Least but not last, thanks to all my friends, who have helped me in countless ways

to enjoy the good times, and especially to face the bad ones. I’m sure we’ll continue to

have never-ending fun moments, like cooking together our favourite dish1. I would also

like to spend some time fixing electrical sockets during an evening with friends.

1Cappelletto in brodo di fagiano.


	Introduzione
	Preliminaries
	Posets
	Abstract Simplicial Complexes
	Polyhedral Complexes
	Examples

	Discrete Morse Theory
	Acyclic Matchings
	Universal Object
	Patchwork Theorem
	Three classical results

	NP-completeness
	Problems and complexity
	Reducibility
	Some NP-complete problems

	Recognition of Collapsibility
	Approaching the problem
	The Reduction Gadgets
	Collapsibility of K(Phi)
	Collapsing Sequences
	Conclusion

	Appendix
	Bibliography

