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Abstract
We consider braid groups up to homotopy. Recently in [16] it was found a new

presentation for homotopy braid groups, more symmetric than the classical one, and
implying that P̃n is isomorphic to RPn. This presentation was found using a topologic

approach. In this work we find the same presentation by a combinatorial approach.
Then we focus on surface braids and welded braids, giving an overview of the groups

and of the results existing in the literature regarding their homotopy.

Sommario
Consideriamo i gruppi di trecce omotopiche. Recentemente, in [16], è stata trovata una
nuova presentazione per i gruppi di trecce omotopiche, più simmetrica di quella classica,
da cui si deduce che P̃n è isomorfo a RPn. La presentazione è stata trovata usando un

approccio topologico. In questa tesi ritroviamo la stessa presentazione mediante un
approccio combinatorio. Poi trattiamo trecce su superfici e trecce welded, facendo una
panoramica dei gruppi e dei risultati esistenti in letteratura riguardo ai loro quozienti

omotopici.
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Introduction

The study of braid groups started in 1891 with the work of Hurwitz, who considered
them as fundamental groups of configuration spaces of n points in the complex plane.
However, the first proper definition was given in 1925 by Artin [1]. He described a braid
geometrically as the equivalence class, up to isotopy, of a collection of paths, called strands,
in the cylinder D2× [0, 1], monotones with respect to the second coordinate, provided that
the set of the initial points on the disc and the set of the endpoints on the disc coincide
and different strands never intersect. He gave a presentation for braid groups, and also for
their pure subgroups, which consist of the elements whose endpoints are not permuted.

Over the course of the century, braid groups were further defined in several different
ways, e.g. as mapping class groups of a punctured disc or as subgroups of the group of
automorphisms of the free group Fn.

Artin was also interested in studying homotopies between geometric braids. He defined
two geometric braids isotopic when one can be deformed into the other by a continuous
map such that at any time of the deformation it gives back a braid with the same end-
points. Then he defined two geometric braids homotopic if one can be deformed into the
other by a continuous map that fixes the endpoints, and such that different strands never
intersect, but allowing each strand to self-intersect itself during the deformation. In his
paper of 1947 [2], he asked if the group of braids with n strands under the homotopy
relation was the same as the group of braids with n strands under isotopy. The problem
remained unsolved for years, until Goldsmith, in 1974, proved in her work [12] that isotopy
and homotopy for braids are not the same, and gave a first presentation for the homotopy
braid groups. Further studies on the subject followed; among the most recent, we want
to recall the work of Liu [19] in 2015, and the one of Graff [16] in 2022. The latter gave a
more symmetric presentation for the homotopy braid groups, using an unusual approach
which involved claspers, and proved that there is an isomorphism between the group of
pure braids under homotopy and the reduced pure braid group, which is the subgroup
where every generator commutes with all its conjugates. His results will be extended in
his PH.D. thesis.

Braids are versatile objects, which lead to several generalizations such as virtual braids,
loop braids, welded braids or surface braids. From such generalizations arise other studies
on homotopy.

Surface braid groups, first defined by Zariski during the 1930s, were studied throughout
the century, and a first presentation was given by Scott [23] in 1970. Instead of considering
a braid on the disc, as in the classical case, one can define it in the same geometric terms
on a surface. Braid groups on a surface can also be considered from several points of
view, e.g. as fundamental groups of configuration spaces of points on a surface, or as
mapping class groups on a surface. The study of homotopy for surface braids is quite
recent. Indeed, a first presentation of homotopy pure surface braid groups has been given
by Yurasovskaya [24] in 2008.
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Another example of a recent study on homotopy is the one of welded braids, which
can be seen as a 4-dimensional generalization of classical braids. Welded braids can be
described from several points of view and admit different names in each case. They have
been considered topologically as ribbon braids, which are embeddings in B3 × [0, 1] of n
disjoint copies of the oriented annulus S1 × [0, 1] with some specific properties. Ribbon
braids can be described by three and two dimensional diagrams, namely braid broken
diagrams and welded diagrams. They can be seen also as mapping class groups of a
trivial link of unknotted circles in B3 under the name of loop braids, as conjugating
automorphisms of the free group, or as fundamental groups of the configuration space of
a trivial link of unknotted circles. A survey on the equivalent definitions of welded braids
can be found in [8].

The study of pure welded braids and pure surface braids up to homotopy requires the
use of string links. A string link can be obtained by removing the monotony condition
from the definition of pure braid. A classical result by Habegger and Lin [18] shows that
every string link is link-homotopic to a pure braid. Therefore, it is equivalent to study
pure braids up to homotopy or string links up to homotopy. In the same way, study-
ing homotopy for surface and welded pure braids can be much easier if approached as
surface and welded string links. This is the approach chosen in the surface context by
Yurasovskaya [24], but also by Audoux, Bellingeri, Meilhan and Wagner, who studied ho-
motopy for welded braids in [3] and [4]. In particular, they stated a result comparable to
Habegger-Lin’s classical one, which says that every welded string link is link-homotopic to
a welded pure braid. Using this method, they managed to give an isomorphism between
the group of welded pure braids up to homotopy and the group of conjugating automor-
phisms of the reduced free group. These results were extended by Darné [9], who gave a
presentation of pure welded braid groups up to link-homotopy. However, many problems
on the classification of welded string links up to homotopy are still open.

In this work, we consider homotopy for classical braids and we focus on finding the
presentation given by Graff by using a combinatorial approach, with techniques similar
to the ones used by Murasugi-Kurpita [20] and Liu [19]. It is still an open problem if
this presentation has an equivalent in the surface and welded context; apparently, it is
unlikely that there is an isomorphism between pure welded braids up to homotopy, pure
surface braids up to homotopy and the reduced version of these groups up to isotopy.

The rest of this work is devolved to giving an overview of the above mentioned groups
and on the results existing in the literature regarding their homotopy.

In Chapter 1 we introduce braids, providing several equivalent definitions, and we
give a presentation for braid groups. Then we introduce homotopy of braids and we
recall the presentations of the homotopy braid groups given by Goldsmith [12] and Liu
[19]. Chapter 2 focuses on homotopy for surface braids. In Chapter 3 we introduce and
present the state of the art of welded braids and welded string links up to link-homotopy.
Finally, in Chapter 4, we prove two combinatorial lemmas before stating our main result
on homotopy for classical braids.
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Chapter 1

Braid groups

We start this thesis with an introduction to the braid groups. Braids were initially studied
as fundamental groups of configuration spaces of n points in the complex plane, but the
first proper definition is a geometric one which has been given by Artin in 1925 (see [1]).
Then, other approaches led to several different definitions which has been proved to be
equivalent over the years.

In this work, we have chosen to start by the geometric definition, which is of immediate
comprehension and which is really useful to discuss homotopy. Afterwards, we state some
other definitions, and we give partial proofs of their equivalence. The first one is in terms
of configuration spaces, the second one involves mapping class groups, and the third one
concerns automorphisms of the free group. The first part of this chapter ends with a
presentation for the braid group given by Artin and some basic properties. Most of the
results of this first part are taken from [10] and [15].
The second part of this chapter deals with the definition of homotopy for classical braids
and Goldsmith’s results on braids up to homotopy, and ends with a presentation for
homotopy braid groups recently given by Liu.

1.1 Braids, Artin’s classical definition
Let I denote, from now on, the unit interval [0, 1]. Let p1, . . . , pn be distinguished points
on the real axis inside the complex plane C.

Definition 1.1.1. A n-component braid or n-braid β = (β1, . . . , βn) is a collection of n
paths

βi : I → C× I 1 ≤ i ≤ n

called strands, such that

1) the strands βi(I) are disjoint;

2) βi(t) ∈ C× {t};

3) there exists a permutation π ∈ Sn such that βi(0) = (pi, 0) and βi(1) = (pπ(i), 1).

When π is the identity, the braid is called a pure braid.

5
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Every braid can be represented by a 2-dimensional diagram, called braid diagram,
which is a projection of the images of the βi to the plane R× I, as we can see in Figure
1.1. By convention, t = 0 is usually drawn as top of the braid. In order to carry all the
information, in each crossing we indicate graphically which strand goes over the other by
erasing a small neighborhood of the underpassing strand.

Figure 1.1: Braid diagram.

We define the product of two braids as a composition of paths, where the final end-
points of one braid are attached to the initial endpoints of the second one. More precisely,
the product of the braid (f1(t), . . . , fn(t)) with the braid (g1(t), . . . , gn(t)) is the braid
(h1(t), . . . , hn(t)), where

hi(t) =
{

fi(2t) 0 ≤ t ≤ 1/2
gπf (i)(2t− 1) 1/2 ≤ t ≤ 1.

The heights of the two braids are scaled by 1/2 and then they are stacked one on
top of the other, so the operation is usually called stacking and reparametrizing product.
There is an example of product of two braids in Figure 1.2: we use the convention of not
rescaling the heights, so that we can draw increasingly complicated braids.

β1 β2 −→ β1β2

Figure 1.2: Product of braids.

Two braids are called isotopic if one can be deformed into the other by a continu-
ous map such that at any time of the deformation we still have a braid with the same
endpoints.

Definition 1.1.2. Let β and β′ be two n-braids in C× I. We say that β is isotopic to β′

if there exists a continuous map

H : (C× I)× I −→ C× I
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where H(x, t, s) := Hs(x, t)
such that:

1) Hs(x, t) is an homeomorphism ∀s ∈ I;

2) H0 = id;

3) (H1 ◦ β1, . . . , H1 ◦ βn) = (β′
1, . . . , β′

n);

4) Hs|C×{0,1} = id;

5) Hs ◦ βi(t) ∈ C× {t} ∀t ∈ I.

Isotopy is an equivalence relation for braids. The set of isotopy equivalence classes of
all n-braids with the product forms a group denoted by Bn. From now on, we will use
the word braid to indicate an equivalence class of braids, and we will always omit the
symbol [ ] for the classes: the abuse of notation is justified since we will always work up
to isotopy. The identity element is the trivial braid, that is, β = (β1, . . . , βn) such that
each strand βi is the line segment connecting pi×{0} and pi×{1}. The inverse of a given
braid is obtained by taking its reflection through the plane C× {1

2}. Pure braids form a
subgroup of Bn, denoted by Pn.

We denote by σi, for 1 ≤ i ≤ n − 1, the braid whose only crossing is the one created
by the (i + 1)-st strand passing in front of the i-th strand, as shown in Figure 1.3.

Remark 1.1.3. It is easy to understand that the group Bn is generated by σ1, . . . , σn.
In fact, given any braid β we can find an element in the same isotopy class having its
finitely many crossings at different horizontal levels. The braid β can be read from top
to bottom as a product of the σi and their inverses.

Figure 1.3: A generator σi for the braid group.

1.2 Braids as fundamental groups of configuration
spaces

Let us consider the configuration space of n ordered distinct points in the complex plane
C, which is

Mn = {(z1, . . . , zn) ∈ Cn | zi ̸= zj,∀i ̸= j}.

Once we define the hyperplane Hij = {(z1, . . . , zn) ∈ Cn | zi = zj} ∈ Cn for 1 ≤ i < j ≤ n,
and the union of the hyperplanes D = ⋃

1≤i<j≤n Hij, we can see Mn as the complement of
D in Cn:

Mn = Cn \D.



8 CHAPTER 1. BRAID GROUPS

The union of hyperplanes D is usually called the big diagonal.
The symmetric group Σn acts on Mn by permuting coordinates. The quotient of Mn by
this action is the configuration space of n unordered points in C, which we can denote by

Nn = Mn/Σn.

The braid group on n strands Bn can be seen also as the fundamental group of Nn. Since
the configuration space above defined is path connected, we will always omit the choice
of a basepoint for the fundamental group.
Since a braid is a tuple (f1, . . . , fn) where fi(t) ∈ C × {t}, we have that the intersection
with each plane C × {t} is a point in the configuration space Nn. In this way, we can
think of a braid β = (β1(t), . . . , βn(t)) as tracing out a loop of n-point configurations in C
as t increases from 0 to 1. This identification gives the isomorphism. In this configuration
space model, the generator σi of Bn described above corresponds to the element of π1(Nn)
given by the loop of n-point configurations in C where the i-th and (i+1)-st points switch
places by moving in a clockwise fashion, as indicated in Figure 1.4, and the others n-2
points remain fixed.

i i + 1

Figure 1.4: A standard generator of Bn in the configuration space model.

Remark 1.2.1. The pure braid group on n strands, Pn, is the fundamental group of Mn.
That is Pn

∼= π1(Mn).

1.3 Braids as mapping class groups of a punctured
disc

The braid group Bn can be seen also as a mapping class group.

Definition 1.3.1. Let S be a compact, connected, orientable surface, with boundary ∂S,
and for n ≥ 0 let Qn be a finite subset of int(S) consisting of n distinct points. Let
Homeo+(S, Qn) denote the group of orientation-preserving homeomorphisms of S that
leave Qn setwise invariant and restrict to the identity on ∂S. The group is endowed with
the compact-open topology.
The n-th mapping class group of S, denoted MCG(S, n), is the group of isotopy classes
of elements of Homeo+(S, Qn), where isotopies are required to fix the boundary pointwise
and Qn setwise.

MCG(S, n) = π0(Homeo+(S, Qn)).

So, it can be equivalently written as

MCG(S, n) = Homeo+(S, Qn)/ Homeo0(S, Qn)
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where Homeo0(S, Qn) is the connected component of the identity in Homeo+(S, Qn).
It is straightforward to check that MCG(S, n) is indeed a group whose isomorphism

class does not depend on the choice of Qn. If n = 0 we write simply Homeo+(S) and
MCG(S) for the corresponding groups.

Remark 1.3.2. In the literature there are sometimes slightly different definitions of
MCG(S), which take diffeomorphisms instead of homeomorphisms or homotopy classes
instead of isotopy classes. The resulting groups are isomorphic.

We give one result on mapping class groups of the closed disc D2 that is used in the
definition of braids as mapping class groups on the punctured disc. This result was proved
by Alexander in 1923 and states that any homeomorphism ϕ of D2 that is the identity on
the boundary ∂D2 is isotopic to the identity on D2, through homeomorphisms that are
the identity on ∂D2.

Lemma 1.3.3. The group MCG(D2) is trivial.

Proof. Identify D2 with the closed unit disc in R2. Let ϕ : D2 → D2 be a homeomorphism
which is the identity on ∂D2. We define

F (x, t) =
{

(1− t)ϕ( x
1−t

) 0 ≤ |x| < 1− t

x 1− t ≤ |x| ≤ 1

F (x, 1) is the identity map of D2, so the result is an isotopy F from ϕ to the identity.

Let us consider the unitary closed disc D2 with n marked points. We can show that
the mapping class group MCG(D2, n) is isomorphic to the braid group Bn.

To show this we start by considering an homeomorphism ϕ of D2 that leaves invariant
the set of marked points and that is the identity on ∂D2. Since ϕ is an homeomorphism
of D2 that is the identity on the board, if we ignore the marked points we can use the
Alexander lemma (see Lemma 1.3.3) to say that it is isotopic to the identity on D2. The
isotopy F between ϕ and id moves the marked points around the interior of D2, which we
can identify with C, and takes them back to where they started, creating a loop in π1(Nn)
which corresponds to a braid. It is not difficult to show that this association gives a well
defined map from MCG(D2, n) to Bn, which is a group isomorphism. A full proof, using
short exact sequences, can be found in [10]. Hence braids can be seen as mapping classes
of the punctured disc.

Remark 1.3.4. If we denote by PMCG(D2, n) the subgroup of MCG(D2, n) which
elements are the isotopy classes of homeomorphisms that leave invariant the set of market
points pointwise, we have Pn

∼= PMCG(D2, n).

Under the isomorphism between Bn and MCG(D2, n), each generator σi corresponds
to the isotopy class of a homeomorphism of the disc with n marked points that has support
a twice-punctured disc and is described on this support by Figure 1.5.

i i + 1 i i + 1

Figure 1.5: A half-twist.
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1.4 Braids as automorphisms of the free group

Dn

1 i n... ...

xi

Figure 1.6: The loops x1, . . . , xn are free generators of π1(Dn).

Let Fn = F (x1, x2, . . . , xn) be the free group of rank n. Artin in [1] gives also a
characterization of the braid groups in terms of automorphisms of the free group.
Let us denote by Dn the disc D2 with n punctures. We remark that the fundamental group
of the n times punctured disc Dn is the free group of rank n: π1(Dn) = π1(Dn, ∗) = Fn.
If we fix the base point ∗, say in the boundary of Dn, we can take as free generators the
loops x1, . . . , xn depicted in Figure 1.6. If we consider braid β ∈ Bn as a mapping class
group, i.e. as an homeomorphism of Dn in itself, up to isotopy, then β acts on π1(Dn) as
a isomorphism: it respects the concatenation of loops, and is bijective, as β−1 yields the
inverse action. Hence β induces an automorphism of Fn, and this gives a representation:

ρ : Bn −→ Aut(Fn)
β 7−→ ρβ.

The automorphism ρβ can be easily described in the case β = σi, by giving the images
of the generators of Fn under ρσi

. We have that

ρσi
(xi) = xi+1

ρσi
(xi+1) = x−1

i+1xixi+1
ρσi

(xj) = xj if j ̸= i, i + 1.

In Figure 1.7 and 1.8 the action of σi on the generators xi and xi+1 is depicted.
The automorphism ρσ−1

i
can be deduced from ρσi

. For a general braid β written as a
product of σ1, . . . , σn−1 and their inverses, the automorphism ρβ is the composition of the
automorphisms corresponding to each letter.

Dn

1 ni i + 1

xi

σi

Dn

1 ni i + 1

xi+1

Figure 1.7: Action of σi on the generator xi.

Artin in [2] showed that ρ is well defined by topological arguments, but we can see it
coming easily from the presentation of Bn that is given in the next section.
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Dn

1 ni i + 1

xi+1

σi

Dn

1 ni i + 1

x−1
i+1xixi+1

Figure 1.8: Action of σi on the generator xi+1.

Remark 1.4.1. For every β ∈ Bn, the automorphism ρβ sends each generator xj to a
conjugate of a generator.

Remark 1.4.2. For each i = 1, . . . , n − 1, we have ρσi
(x1 · · ·xn) = x1 · · ·xn. In fact,

x1 · · ·xn corresponds to a loop that runs parallel to the boundary of Dn, enclosing the n
points, so it’s not deformed by any braid (up to isotopy), as we can see in Figure 1.9.

Dn

1 ni i + 1

x1 · · ·xn

Figure 1.9: The loop x1 · · ·xn.

Artin in [1, 2] proved that these two conditions are not only necessary, but also suf-
ficient for an element of Aut(Fn) to be induced by a braid, or equivalently to be in the
subgroup ρ(Bn) of Aut(Fn).

Theorem 1.4.3 ([1, 2]). An automorphism β ∈ Aut(Fn) belongs to Bn if and only if β
satisfies the following conditions:

1) β(xi) = aixπ(i)a
−1
i , 1 ≤ i ≤ n;

2) β(x1 · · ·xn) = x1 · · ·xn

where π ∈ Sn and ai ∈ Fn.

1.5 Some properties of braid groups
We recall here some properties of braid groups, specifically the ones we are interested in
for this work. For a more complete overview of braid groups’ properties we suggest the
readers to refer to [15].
We start by giving two short exact sequences which involve braid groups, already known
by Artin [1].
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The first one is really simple. To each braid in Bn we can associate the permutation
it induces on its strands, that is, an element of the symmetric group Σn. This yields a
well defined group homomorphism η from Bn to Σn, and the kernel of η is the subgroup
of Bn formed by the braids inducing the trivial permutation, alias the pure braid group
Pn. This led to the exact sequence

1→ Pn → Bn
η→ Σn → 1. (1.1)

The second exact sequence we consider, relates pure braid groups of distinct indices.
Given a pure braid β ∈ Pn+1, by removing its last strand we obtain a pure braid β̃ ∈ Pn.
This yields a well defined homomorphism ρ : Pn+1 → Pn which is clearly surjective. The
kernel of this map consists of the braids in Pn+1 whose first n strands form the trivial
braid. Up to isotopy, every element of this subgroup can be seen with the first n strands
vertical and the n + 1-st which moves around them. If we look at this kind of elements as
loops in the configuration space, they correspond to a motion of the n + 1-st point, where
the points 1, . . . , n do not move. This is equivalent to a motion of a point in the n-times
punctured plane Cn. Hence, the kernel of the map ρ is isomorphic to π1(Cn), which is
isomorphic to Fn. The resulting short exact sequence is:

1→ Fn
ι→ Pn+1

ρ→ Pn → 1. (1.2)

In this exact sequence, if Fn is freely generated by x1, . . . , xn, we can define

ι(xi) = (σ−1
n · · ·σ−1

i+1)σ2
i (σi+1 · · · σn)

for i = 1, . . . , n. This is the pure braid where the n-th strand passes behind the strands
n − 1, . . . , i + 1, passes in front of the i-th strand, and again behind all the strands
i, . . . , n− 1, and all other strands are trivial.
There is a natural splitting Pn−1 → Pn obtained by adding an extra strand, and so we
see that Pn

∼= Fn−1 ⋊ Pn−1. A full proof of the correctness of this splitting, based on the
approach with configuration spaces, can be found in [15].

Remark 1.5.1. Braid groups are torsion free: in fact, there is no way of obtaining the
trivial braid by the product of a given braid β with itself finitely many times. There are
several ways to prove it, according to the distinct approaches to the braid group; for a
full exposition we suggest the reader to refer to [15].

1.6 Artin’s presentation
The braid group on n strands Bn has been proved by Artin [1] to have a presentation
which is stated in the next theorem. However, Artin did not give a detailed proof of the
correctness of this presentation. There are in the literature various proofs of this result,
most of which use the short exact sequences described in last section. One can use the
fact that P2 ∼= Z, and use the Reidemeister-Schreier method applied to Sequence 1.2 to
construct a presentation of Pn, by induction on n. Then one can use Sequence 1.1 to
deduce that the presentation given for Bn is correct.

We are going to give here a less technical proof, based on an argument by Zariski. We
believe it is of more immediate comprehension, and it uses also some techniques similar
to the ones that we use in the following.
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Theorem 1.6.1. The braid group Bn has a presentation with generators σ1, σ2, . . . , σn−1
and the following relations:

1) σiσi+1σi = σi+1σiσi+1 for i = 1, 2, . . . , n− 2;

2) σiσj = σjσi for |i− j| > 1 and i, j = 1, 2, . . . , n− 1.

Proof. It is easy to see, just by depicting the corresponding geometric braids, that relations
1) and 2) hold in Bn. Now, let W = σe1

i1 · · ·σ
em
im

be a word in σ1, . . . , σn−1 and their inverses,
and suppose that the braid determined by W is trivial. We must show that one can obtain
the trivial word starting with W , and applying only the relations in the statement of the
theorem, together with insertions or deletions of subwords of the form (σ∓1

i σ±1
i ). Since

we already showed in Remark 1.1.3 that the elements σi generate the braid group, this
proves the theorem.

For every k = 0, . . . , m, let jk be the position of the n-th puncture at the end of
the motion represented by σe1

i1 · · ·σ
ek
ik

(being the identity for k = 0). As W represents
the trivial braid, it is clear than j0 = jm = n. Let us set also αi = σiσi+1 · · ·σn−1, for
i = 1, . . . , n− 1, and αn = 1. Then αi represents a braid that sends the i-th puncture to
the n-th position.

Using only permitted insertions, we can transform our word W into:

W = (α−1
j0 σe1

i1 αj1)(α−1
j1 σe2

i2 αj2) · · · (α−1
jm−1σem

im
αjm).

This holds as αj0 = αjm = 1.
Each parenthesized factor has one of the following forms:

1. (σ−1
n−1 · · ·σ−1

i )σi(σi+1 · · ·σn−1). This is clearly equivalent to the trivial word, so it
can be removed.

2. (σ−1
n−1 · · ·σ−1

i )σ−1
i (σi+1 · · ·σn−1). We will denote this word x−1

i .

3. (σ−1
n−1 · · ·σ−1

i )σi−1(σi−1 · · ·σn−1). We will denote this word xi−1.

4. (σ−1
n−1 · · ·σ−1

i )σ−1
i−1(σi−1 · · ·σn−1). This is clearly equivalent to the trivial word, so it

can be removed.

5. (σ−1
n−1 · · ·σ−1

i )σ±1
k (σi · · ·σn−1) with k < i − 1. In this case, σ±1

k commutes with the
other letters, so by using permitted relations we can replace this word by the letter
σ±1

k .

6. (σ−1
n−1 · · ·σ−1

i )σ±1
k (σi · · ·σn−1) with k > i. Then, using the braid relations one has

σk(σi · · ·σn−1) = (σi · · ·σn−1)σk−1.

Therefore the above word is equivalent to σ±1
k−1.

So, by the above procedure, we have replaced our original word W by a word in
σ1, . . . , σn−2, x1, . . . , xn−1 and their inverses. It is important that σn−1 and σ−1

n−1 never
appear in this writing alone, but always as parts of some word x±1

i .
Now, for i = 1, . . . , n− 2 and j = 1, . . . , n− 1, the word σ−1

i xjσi can be written as a
product of x1, . . . , xn−1 and their inverses, by using only permitted relations. Notice that
we use ABC to indicate that we manipulate the elements in the box.
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1. If i < j − 1 one can slide σi to the left and the resulting word is xj.

2. If i = j − 1, that is j = i + 1, one has the following:

σ−1
i xi+1σi = σ−1

i (σ−1
n−1 · · ·σ−1

i+2) σ2
i+1 (σi+2 · · ·σn−1)σi

= (σ−1
n−1 · · ·σ−1

i+2)σ−1
i σ2

i+1σi(σi+2 · · ·σn−1)

= (σ−1
n−1 · · ·σ−1

i+2) σ−1
i σi+1σi σ−1

i σi+1σi (σi+2 · · ·σn−1)

= (σ−1
n−1 · · ·σ−1

i+2)σi+1σi σ−1
i+1σi+1 σiσ

−1
i+1(σi+2 · · ·σn−1)

= xi+1xix
−1
i+1,

where the last equality is obtained just by permitted insertions.

3. If i = j one has

σ−1
i xiσi = σ−1

i (σ−1
n−1 · · ·σ−1

i+2σ
−1
i+1)σ2

i (σi+1 σi+2 · · ·σn−1)σi

= σ−1
i (σ−1

n−1 · · ·σ−1
i+1) σ2

i σi+1σi (σi+2 · · ·σn−1)

= σ−1
i (σ−1

n−1 · · · σ−1
i+1)σi+1 σiσ

2
i+1(σi+2 · · ·σn−1)

= σ−1
i (σ−1

n−1 · · ·σ−1
i+2)σi σ2

i+1(σi+2 · · ·σn−1)

= (σ−1
n−1 · · ·σ−1

i+2)σ2
i+1(σi+2 · · ·σn−1)

= xi+1.

4. If i > j, one has σixj = xjσi, as one can see by sliding σi to the right, using the
obvious relation at each time. Hence if i > j one has σ−1

i xjσi = xj.

It is clear that the above equations also imply that σixjσ
−1
i can be written as a word in

x1, . . . , xn−1 and their inverses. The resulting word is xj if either i < j − 2 or i > j, it is
xi if i = j − 1, and it is x−1

i xi+1xi if i = j.
Therefore, starting with the word W , once we have rewritten it as a word in σ1, . . . , σn−2,

x1, . . . , xn−1 and their inverses, we can collect all the σ±1
i on the right, so that we can

write:

W = W1W2

where W1 is a word in x1, . . . xn−1 and their inverses, and W2 is a word in σ1, . . . , σn−2
and their inverses.

Finally, we just need to notice that, as recalled above, by the split exact sequence (1.2),
one has Pn

∼= Fn−1 ⋊ Pn−1, so every pure braid can be decomposed in a unique way as a
product of a braid in ι(Fn−1) and a braid in Pn−1 (with the usual inclusion of Pn−1 into
Pn). We remark that ι(Fn−1) is the free subgroup of Pn freely generated by x1, . . . , xn−1.
Hence, as W is pure (W represents the trivial braid), the decomposition W1W2 is unique,
meaning that W1 represents the trivial element in Fn−1 and W2 represents the trivial
element in Pn−1. As x1, . . . , xn is a free set of generators of Fn−1, it follows that W1 can
be reduced to the trivial word by a sequence of permitted deletions. Therefore W = W2,
which is a word in σ1, . . . , σn−2 and their inverses representing the trivial braid in Bn−1.
The result then follows by induction on n. The base step with P1 and F1 is trivial.
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Remark 1.6.2. It follows from the presentation of Bn that B2 ∼= Z.

Remark 1.6.3. From the presentation of Bn it is easy to see that the abelianization of
Bn is Z and that this Z is generated by the image of any σi under the abelianization map
Bn → Z. In fact, if we take a commutator [σi, σi+1], this is equivalent to

σiσi+1σ
−1
i σ−1

i+1 = σ−1
i+1σi.

If we quotient for all the commutators we have σi = σi+1, all the generators become the
same, and the only thing that remains is the sign. The abelianization map Bn → Z is the
length homomorphism which counts the signed word length of elements of Bn in terms of
the standard generators.

It was Artin again, in 1947, who gave the first presentation for the pure n-braid group.
We state this result below.

Proposition 1.6.4. [2] The pure n-braid group Pn has a presentation with generators
Ai,j where Ai,j = σj−1σj−2 · · ·σi+1σ

2
i σ−1

i+1 · · ·σ−1
j−2σ

−1
j−1 for 1 ≤ i < j ≤ n and the following

relations:

1) Ar,s ⇌ Ai,j if 1 ≤ r < s < i < j ≤ n or 1 ≤ r < i < j < s ≤ n;

2) Ar,sAr,jA
−1
r,s = A−1

s,j Ar,jAs,j if 1 ≤ r < s < j ≤ n;

3) Ar,sAs,jA
−1
r,s = A−1

s,j A−1
r,j As,jAr,jAs,j if 1 ≤ r < s < j ≤ n;

4) A−1
i,j As,jAi,j ⇌ Ar,i if 1 ≤ r < s < i < j ≤ n.

Where the elements Ai,j of the presentation represent the braid in Figure 1.10 and ⇌
means that the two elements commute.

i j

Figure 1.10: The generator Ai,j of Pn.

Remark 1.6.5. Relation 4) is equivalent to

Ar,iAs,jA
−1
r,i = [A−1

i,j , A−1
r,j ]As,j[A−1

i,j , A−1
r,j ]−1,

where [a, b] is the commutator of the elements a and b.

Remark 1.6.6. Since all the defining relations for Pn are commutations, we have that
the abelianization of Pn is a free abelian group with one generator for each generator of
Pn. Thus

P ab
n
∼= Z(n

2).
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1.7 Homotopy of braids
Now we introduce the concept of homotopy of braids, which is essential for this work.

Definition 1.7.1. Let β and β′ be two n-braids in C× I. We say that β is homotopic to
β′ if there exists a continuous map

H : (C× I)× I −→ C× I

where H(x, t, s) := Hs(x, t)
such that:

1) H0 = id;

2) (H1 ◦ β1, . . . , H1 ◦ βn) = (β′
1, . . . , β′

n);

3) Hs|C×{0,1} = id;

4) Hs ◦ βi(I) ∩Hs ◦ βj(I) = ∅ for i ̸= j.

Basically, the difference between homotopy and isotopy is that during an homotopy
deformation each strand is allowed to self-intersect itself, while during an isotopy defor-
mation this is forbidden.

Definition 1.7.2. Homotopy is an equivalence relation for braids. Let us denote by B̃n

the group of equivalence classes of n-braids under the homotopy relation, and by P̃n the
group of equivalence classes of pure n-braids under the homotopy relation.

Two isotopic braids are also homotopic, but two homotopic braids are not necessarily
isotopic. The question of whether homotopy and isotopy were the same for braids has
long been unanswered. The answer, with an example of two homotopically equivalent
but not isotopically equivalent braids, was given by Goldsmith in [12], together with
a presentation for the homotopy braid groups. In Figure 1.11 we report Goldsmith’s
example, which shows an homotopy from an isotopically non trivial braid to the trivial
braid. In the following we recall Goldsmith’s results on homotopy.

Let Πn : Bn → B̃n be the map which sends every n-braid to its homotopy equivalence
class. This map is clearly onto, therefore Bn/ ker(Πn) is isomorphic to B̃n.

Proposition 1.7.3. [12] The kernel of Πn is the normal subgroup of Bn generated by
[Ai,j, gAi,jg

−1], where g ∈ ⟨Ai,i+1, Ai,i+2, . . . , Ai,n⟩ and 1 ≤ i < j ≤ n.

From this result, Goldsmith obtains the first presentation for B̃n stated in the following
theorem:

Theorem 1.7.4. [12] The set of equivalence classes of n-braids under homotopy forms a
group, denoted by B̃n, which has generators σ1, . . . , σn−1 and the following relations:

1) σiσi+1σi = σi+1σiσi+1, for i = 1, 2, . . . , n− 2;

2) σiσj = σjσi, for |i− j| > 1 and j = 1, 2, . . . , n− 1;

3) Aj,k ⇌ gAj,kg−1, if 1 ≤ j < k ≤ n, where g is an element of the subgroup of Pn

generated by Aj,j+1, Aj,j+2, . . . , Aj,n.
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Figure 1.11: Goldsmith’s example.

Another interesting presentation for B̃n is the one given by Liu in [19]. He first states
the following result:

Lemma 1.7.5. [19] The set of every [Ai,j, gAi,jg
−1] and the set of every [Ai,j, hAi,jh

−1],
where g ∈ ⟨Ai,i+1, Ai,i+2, ..., Ai,n⟩, h ∈ ⟨A1,j, A2,j, ..., Aj−1,j⟩ and 1 ≤ i < j ≤ n, have the
same normal closure.

With Lemma 1.7.5, Liu shows that

Proposition 1.7.6. [19] The presentation of B̃n can be stated either with the relation

Aj,k ⇌ gAj,kg−1 where 1 ≤ j < k ≤ n and g ∈ ⟨Aj,j+1, Aj,j+2, Aj,n⟩,

or with the relation

Aj,k ⇌ gAj,kg−1 where 1 ≤ j < k ≤ n and g ∈ ⟨A1,k, A2,k, Ak−1,k⟩.

1.8 String links
We end this chapter by introducing the notion of string links. If we take a pure braid and
we eliminate the monotony condition we obtain a so called string-link.

Definition 1.8.1. Let p1, . . . , pn be distinguished points on the real axis inside the com-
plex plane C. A n-component string link s = (s1, . . . , sn) is a collection of n paths

si : I → C× I 1 ≤ i ≤ n

called strands, such that
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1) the strands si(I) are disjoint;

2) si(0) = (pi, 0) and si(1) = (pi, 1).

String links on n strands, with the usual product given by stacking and reparametrizing
and the trivial braid as the identity, form a monoid, denoted by SLn. The pure braid
group Pn is embedded into the monoid of string-links on n strands.

We are interested in string links because of their connection to pure braids up to
homotopy.

Homotopy for string-links is defined in the same way it is defined for braids: two
string-links are link-homotopic if there is a homotopy between them fixing the boundary,
and such that the distinct components remain disjoint during the deformation. During
the course of the deformation each strand is allowed to pass through itself but not through
other strands.

A result by Habegger and Lin [18] in 1990 states that any string-link is link-homotopic
to a pure braid. Thus, considering string-links up to link-homotopy is analogous to
considering pure braids up to homotopy, and there is an isomorphism

SLn/h ∼= P̃n,

where SLn/h is the group of equivalent classes of n-string-links up to link homotopy.



Chapter 2

Surface braid groups

Surface braid groups are a natural generalization of the classical braid groups and of
fundamental groups of surfaces. They were first defined by Zariski during the 1930’s
(braid groups on the sphere had been considered earlier by Hurwitz), were re-discovered
by Fox during the 1960’s, and were used subsequently in the study of mapping class
groups. We are interested in giving an idea of what a surface braid is through some
equivalent definitions, and to state a presentation for the group.

The first part of this chapter is taken from [17], the second one with the presentation
from [14], the third one about homotopy from [24].

2.1 Surface braids as a collection of paths
Let M be a compact connected surface, not necessarily orientable, and let P = {P1, . . . , Pn}
be a set of n distinct points of M .

Definition 2.1.1. A braid over M based at P is an n-tuple γ = (γ1, . . . , γn) of paths,
γi : I −→M , such that:

1) γi(0) = Pi for 1 ≤ i ≤ n;

2) γi(1) ∈ P for 1 ≤ i ≤ n;

3) {γ1(t), . . . , γn(t)} are n distinct points of M , ∀ t ∈ I.

In accordance with notation for classical braids, we will call γi the i-th strand of γ for
1 ≤ i ≤ n.
If γi(1) = Pi for all i = 1, . . . , n, the braid is said to be pure.

Two braids are said to be equivalent if there exists a homotopy which deforms one of
them into the other, provided that at any time we have a geometric braid based at P .

The product of two surface braids is defined by composing the strand of the first braid
which ends at Pi with the i-th strand of the second braid. Equivalence classes of n-strands
surface braids form a group with the product defined above, denoted by Bn(M), and pure
braids form a normal subgroup denoted by PBn(M).

2.2 Geometric braids on a surface
A closely related point of view on surface braids can be obtained defining them as geo-
metric braids.

19
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Let M be a connected surface, and let P = {P1, . . . , Pn} be a set of n distinct points
of M .

Definition 2.2.1. A geometric n-braid in M is a collection β = (β1, . . . , βn) consisting
of n arcs βi : I →M × I, i = 1, . . . , n, called strands, such that:

1. βi(0) = (Pi, 0) for 1 ≤ i ≤ n;

2. βi(1) ∈ P × {1} for 1 ≤ i ≤ n;

3. The strands are pairwise disjoint: βi(t) ̸= βj(t), i ̸= j, ∀t ∈ I and ∀i, j ∈ {1, . . . , n}.

4. The strands are strictly monotone with respect to the t-coordinate: ∀t ∈ I each
strand meets the subset M × {t} in exactly one point.

Under this point of view it is easier to picture what a surface braid is, as we can see
in Figure 2.1.

x1 x2 x3

β1 β2 β3

M × {0}

M × {1}

Figure 2.1: A geometric 3-braid with M equal to the 2-torus.

Two geometric braids are equivalent if there exist an isotopy, which keeps the endpoints
of the strands fixed, from one to the other through n-braids (the strands remain pairwise
disjoint during the isotopy). The set of equivalence classes of geometric surface braids,
equipped with the usual stacking and reparametrizing product, form a group which is
isomorphic to the surface braid group seen in the previous section.

In fact, given a surface braid (γ1(t), . . . , γn(t)), then β = (β1, . . . , βn), where βi(t) =
(γi(t), t) for all i = 1, . . . , n and t ∈ I is a geometric n-braid. Conversely, if we reparametrise
each strand of a geometric n-braid β so that βi(t) is of the form (γi(t), t), for i = 1, . . . , n
and t ∈ I, where γ = (γ1(t), . . . , γn(t)) satisfies the opportune conditions for any t ∈ I, we
obtain a surface braid seen as above as a collection of paths in M . The transition from a
geometric n-braid to the collection of paths may be realized geometrically by projecting
the strands lying in M × I onto the surface M .

Remark 2.2.2. Clearly if M is equal to C or to the 2-disc D2 then

Bn(M) ∼= Bn and PBn(M) ∼= Pn.

2.3 Surface braid groups as fundamental groups of
configuration spaces

Definition 2.3.1. Let Fn(M) denote the n-th configuration space of M defined by:

Fn(M) = {(p1, . . . , pn) ∈Mn| pi ̸= pj for all i, j ∈ {1, . . . , n}, i ̸= j}.
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We equip Fn(M) with the topology induced by the product topology on Mn. A
transversality argument shows that Fn(M) is a connected 2n-dimensional open manifold.
There is a natural free action of the symmetric group Σn on Fn(M) by permutation
of coordinates. The resulting orbit space Fn(M)/Σn, denoted by Dn(M) is the n-th
permuted configuration space of M , and may be thought of as the configuration space of
n unordered points. Since it is a quotient of Fn(M), Dn(M) is connected too.

As we already pointed out in the previous chapter, Fn(M) can be described also as
Mn \D, where D denotes the big diagonal of Mn:

D = {(p1, . . . , pn) ∈Mn| pi = pj for some 1 ≤ i < j ≤ n}.

It has been proved by Fox and Neuwirth that surface braids can be seen as fundamental
groups of configuration spaces on a surface. Notice that the fact that Fn(M) and Dn(M)
are connected implies that the isomorphism classes of π1(Fn(M)) and π1(Dn(M)) do not
depend on the choice of basepoint.
Theorem 2.3.2. [11] Let n ∈ N. Then Pn(M) ∼= π1(Fn(M)) and Bn(M) ∼= π1(Dn(M)).

This theorem leads to an immediate observation:
Remark 2.3.3. Since F1(M) = M , we have that B1(M) ∼= P1(M) ∼= π1(M). The braid
groups of M may be seen as generalizations of its fundamental group.

Also, we can notice that the natural inclusion ι : Fn(M) ↪→ Mn induces a homomor-
phism of the corresponding fundamental groups (we know that (π1(M))n = π1(Mn)):

ι̃ : Pn(M)→ (π1(M))n.

The inclusion j : D2 ↪→ Int(M) of a topological disc D2 in the interior of M induces a
homomorphism j̃ : Pn → Pn(M) that is injective for most surfaces. A well known result
from Birman [6] is, in fact, that given M a compact, orientable surface different from S2,
then the inclusion j : D2 ↪→M induces an embedding Pn ↪→ Pn(M).

If M is different from S2 and RP2 then Goldberg showed that the following short
sequence is exact:

1→ ⟨Im(j̃)⟩N ↪→ Pn(M) ι̃→ (π1(M))n → 1

where ⟨Im(j̃)⟩N denotes the normal closure of Im(j̃) in Pn(M).

2.4 Surface braids as mapping class groups
Another well known interpretation of surface braid groups is the one which sees them as
mapping class groups. Let M be a compact, connected surface. In particular, if we take
a surface M different from S2, RP2, the torus or the Klein bottle, there is a short exact
sequence:

1→ Bn(M)→MCG(M, n)→MCG(M)→ 1.

For these surfaces the braid group Bn(M) is thus isomorphic to the kernel of the homo-
morphism that corresponds geometrically to forgetting the marked points. It is easy to
see that if M = D2, then MCG(D2) = {1} for the Alexander’s lemma (see Lemma 1.3.3)
and we find again Bn(D2) ∼= MCG(D2, n).

If M is S2, RP2, the torus or the Klein bottle, one can find some similar sequences, a
bit more complicated. A complete proof of these results can be found in [17].
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2.5 Some properties of surface braid groups
Similarly to what happened for Bn, to each braid in Bn(M) we can associate the per-
mutation it induces on its strands, that is, an element of the symmetric group Σn. This
yields a well defined group homomorphism η from Bn(M) to Σn, and the kernel of η is the
subgroup of Bn(M) formed by the braids inducing the trivial permutation, alias PBn(M).
This leads to the exact sequence

1→ PBn(M)→ Bn(M) η→ Σn → 1.

A lot of the properties of surface braid groups are specific to some surfaces, namely S2 and
RP2. In fact, their braid groups are quite different from all the other cases: for example,
they possess elements of finite order, while the braid groups Pn(M) and Bn(M) for all
the other surfaces are torsion free.

We are not discussing here properties of the surface braid groups of the sphere and
the projective plane, but we refer the reader to [17].

2.6 Geometrical representation of surface braids
We are interested in giving a geometrical representation of what a surface braid is. Since
the discussion about homotopy will be set in the case in which M is a closed orientable
surface of genus g ≥ 1, from now on we focus on this case. We represent M as a polygon L
of 4g sides, identified each with its opposite, as in Figure 2.2. Then a braid is represented
in the cylinder L× I as on the left of Figure 2.3. In the same figure, on the right, we have
a representation of the same braid as a loop in the configuration space of n points on the
surface M represented as the polygon L.

α1

α2g

α2g

α1

α2

α2g−1

α2g−1

α2

Figure 2.2: The polygon L representing M .

What is different from the disc case is that a strand can go through a wall of the
cylinder and appear from the other side.

2.7 A presentation for surface braid groups
Many mathematicians computed presentations of surface braid groups. Among them, we
recall Zariski [25], who gave a presentation in 1937, and Scott [23] in 1970. Over the last
century, others gave presentations for specific surface braid groups such as the one over
the sphere S2. More recently, there have been presentations of surface braid groups given
by González-Meneses [14], Gonçalves and Guaschi [13], and Bellingeri [5].
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Figure 2.3: Two ways to see a braid on a surface.

We state here the presentation given by González-Meneses [14] in 2001, because it is
the one used in the studies on homotopy of Yurasovskaya [24] and Lima [22] that we are
going to present in the following. The results of this section are taken from [14].

Let us start by defining the generators of Bn(M). We choose the n base points along
the horizontal diameter of L, as shown in Figure 2.4. Now, given r, 1 ≤ r ≤ 2g, we define
the braid a1,r as follows: its only nontrivial strand is the first one, which goes through the
r-th wall. Just for notation, the first strand will go upwards if r is odd, and downwards
otherwise. We also define, for all i = 1, . . . , n−1, the braid σi as in the same figure. Note
that σ1, . . . , σn−1 are the classical generators of the braid group Bn. It has been proved
that the set {a1,1, . . . , a1,2g, σ1, . . . , σn−1} is a set of generators of Bn(M).

α2k+1

α2k+1

P1 Pn P1 Pn

α2k

α2k

PnP1 Pi Pi+1

Figure 2.4: Elements of Bn(M): from the left, a1,2k+1, a1,2k and σi.

We observe that the classical relations in Bn:

σiσi+1σi = σi+1σiσi+1 for i = 1, 2, . . . , n− 2;
σiσj = σjσi for |i− j| > 1 and i, j = 1, 2, . . . , n− 1,

still hold in Bn(M). Also, if i ∈ {2, . . . , n − 1} and r ∈ {1, . . . , 2g}, then the non-trivial
strands of σi and the one of a1,r may be taken to be disjoint, as pictured in Figure 2.5.
This implies that these two braids commute. Hence we have:

a1,rσi = σia1,r

for 1 ≤ r ≤ 2g and i ≥ 2. Now, in order to find more relations between the set of
generators, we do the following construction: denote by sr the first strand of a1,r, for all
r = 1, . . . , 2g, and consider all the paths s1, . . . , s2g. We can cut the polygon L along
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PnP1Pi Pi+1

αr

αr

Figure 2.5: The braid a1,rσi.

them, and glue the pieces along the paths a1,1, . . . , a1,2g. We obtain another polygon of
4g sides which are labeled by s1, . . . , s2g (see in Figure 2.6 the case of a surface of genus
2, the general case is analogous). We will call this new polygon the P1-polygon of M ,
since all of its vertices are identified to P1, while L will be called the initial polygon. We
obtain in this way a new representation of the surface M .

PnP1

α4

α3 α2

α1

α4

α3α2

α1

s4
s3 s2s1

P1 Pn

s1

s2 s3

s4

s1

s2s3

s4

α1

α2
α3

α4

P1

P1

P1

P1

P1

P1

P1

Figure 2.6: The initial and the P1-polygons of a surface of genus 2.

We will use the P1-polygon to show three more relations in Bn(M). For instance,
consider the product of braids a1,1 · · · a1,2ga−1

1,1 · · · a−1
1,2g. If we look at P1-polygon, we see

that it is equivalent to the braid on Figure 2.7. Also, this one can be seen in the ini-
tial polygon as a braid that does not go through the walls, namely, an element of Bn,
the classical braid group. Then , we can easily see that it is equivalent to the braid
σ1 · · · σn−2σ

2
n−1σn−2 · · ·σ1. So we have:

a1,1 · · · a1,2ga−1
1,1 · · · a−1

1,2g = σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ1.

Now, for each r = 1, . . . , 2g − 1, we define the braid:

A2,r = σ1(a1,1 · · · a1,r−1a
−1
1,r+1 · · · a−1

1,2g)σ−1
1 .

We will use the P1- polygon to see how it looks like. In the left hand side of Figure 2.8,
we can see a braid which is equivalent to A2,r (if r is odd, the other case being analogous).
If we cut and glue to see this braid in the P1-polygon, we obtain the situation of the right
hand side of Figure 2.8. That is, A2,r can be seen as a braid whose only nontrivial strand
is the second one, which goes upwards and crosses once the r-th wall sr. Note that, unlike
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P1 Pn P1

s1

s2g

s2g

s1

Figure 2.7: The braid a1,1 · · · a1,2ga−1
1,1 · · · a−1

1,2g.

αr αr−1

α3
α2
α1
α2g

α2g−1
α2g−2

αr+1αr
αr−1

α3

α2

α1

α2g

α2g−1

α2g−2

αr+1

P1P2

sr sr+1sr−1

s2g−1

s2g

s1
s2

sr−1srsr+1

s2
s1

s2g

s2g−1

P1 P2

Figure 2.8: The braid A2,r in the initial polygon and in the P1-polygon.

the case of a1,r, the path A2,r always points upwards in the P1-polygon, no matter the
parity of r. Therefore we have seen that the braid A2,r can be represented by a geometric
braid, whose only non trivial strand can be taken disjoint from all the paths st, t ̸= r.
This implies that

a1,tA2,r = A2,ra1,t, 1 ≤ t ≤ 2g, 1 ≤ r ≤ 2g − 1, t ̸= r.

Now, we finish our set of relations by considering the commutator of the braids (a1,1, · · · , a1,r)
and A2,r, for all r = 1, . . . , 2g − 1. In Figure 2.9 we can see a sketch of the homotopy
which starts with this commutator and deforms it to a braid equivalent to σ2

1. Therefore,
we obtain the relation:

(a1,1 · · · a1,r)A2,r = σ2
1A2,r(a1,1 · · · a1,r), 1 ≤ r ≤ 2g − 1.

González-Meneses [14] proved that this are the only relations needed in the presentation
of Bn(M). We refer the reader to [14] for the proof. We give here his presentation of the
n-braid group on a surface.

Theorem 2.7.1. [14] If M is a closed, orientable surface of genus g ≥ 1, then Bn(M) has
a presentation with generators σ1, . . . σn−1, a1,1 . . . a1,2g, and the following relations:

1) σiσi+1σi = σi+1σiσi+1, for i = 1, 2, . . . , n− 2;

2) σiσj = σjσi, for |i− j| > 1 and i, j = 1, 2, . . . , n− 1;

3) a1,1 · · · a1,2ga−1
1,1 · · · a−1

1,2g = σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ1;

4) a1,rA2,s = A2,sa1,r, for 1 ≤ r ≤ 2g, 1 ≤ s ≤ 2g − 1 and r ̸= s;
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sr

sr

P2P1

s1

sr

sr

P2P1

s1

sr

sr

P2P1

s1

Figure 2.9: The braid [a1,1 · · · a1,r, A2,r].

5) (a1,1 · · · a1,r)A2,r = σ2
1A2,r(a1,1 · · · a1,r), for 1 ≤ r ≤ 2g − 1;

6) a1,rσi = σia1,r, for 1 ≤ r ≤ 2g and i ≥ 2.

Before giving the presentation of PBn(M), let us define the generators for this group.

1. Let ai,r be the braid such that the i-th strand goes through the r-th wall. This
strand will go upwards if r is odd, and downwards otherwise. The other strands are
trivial.

2. Let Ti,j = σiσi+1 · · ·σj−2σ
2
j−1σj−2 · · · σi+1σi be the braid that starts in Pi, goes

around Pj from the back and turns back to Pi passing in front of Pj, . . . , Pi+1,
and where all the other strands are trivial.

The braids defined previously are given in Figure 2.10.

P1 Pi Pn

α2k+1

α2k+1

P1 Pi Pn

α2k

α2k

P1 Pi Pj Pn

Figure 2.10: The braids ai,r and Ti,j.

In order to give the relations we need to define also

Aj,r = aj,1 · · · aj,r−1a
−1
j,r+1 · · · a−1

j,2g for 2 ≤ j ≤ n and 1 ≤ r ≤ 2g − 1.

If we denote by si,r the i-th strand of ai,r, for any i ∈ {2, . . . , n} we can define the
Pi-polygon as we defined the P1-polygon: we cut L along si,1, . . . , si,2g and glue along
ai,1, . . . , ai,2g.

Then, like in the representation of A2,r in the P1-polygon, Aj,r can be represented in
the Pi-polygon (for 1 ≤ i < j), as the braid in Figure 2.11 whose only nontrivial strand
is the j-th one, which goes upwards and crosses once the r-th wall si,r. Note that this
representation does not depend on i, but it is only valid when i < j.
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si,r

si,r

PjPi

Figure 2.11: Aj,r in the Pi-polygon.

Now, let us enunciate the presentation of PBn(M). For details about the relations
and the proof, see [14].

Proposition 2.7.2. [14] The group PBn(M) admits a presentation with generators ai,r,
being 1 ≤ i ≤ n and 1 ≤ r ≤ 2g, and Tj,k, 1 ≤ j < k ≤ n, and relations:

1) a−1
n,1a

−1
n,2 · · · a−1

n,2gan,1an,2 · · · an,2g =
n−1∏
i=1

T −1
i,n−1Ti,n;

2) ai,rAj,s = Aj,sai,r, for 1 ≤ i < j ≤ n, 1 ≤ r ≤ 2g, 1 ≤ s ≤ 2g − 1 and r ̸= s;

3) (ai,1 · · · ai,r)Aj,r(a−1
i,r · · · a−1

i,1 )A−1
j,r = Ti,jT

−1
i,j−1, for 1 ≤ i < j ≤ n, 1 ≤ r ≤ 2g − 1;

4) Ti,jTk,l = Tk,lTi,j, for 1 ≤ i < j < k < l ≤ n or 1 ≤ i < k < l ≤ j ≤ n;

5) Tk,lTi,jT
−1
k,l = Ti,k−1T

−1
i,k Ti,jT

−1
i,l Ti,kT −1

i,k−1Ti,l, for 1 ≤ i < k ≤ j < l ≤ n;

6) ai,rTj,k = Tj,kai, r, for 1 ≤ i < j < k ≤ n or 1 ≤ j < k < i ≤ n and 1 ≤ r ≤ 2g;

7) ai,r(a−1
j,2g · · · a−1

j,1Tj,kaj,2g · · · aj,1) = (a−1
j,2g · · · a−1

j,1Tj,kaj,2g · · · aj,1)ai,r,
for 1 ≤ j < i ≤ k ≤ n;

8) Tj,n =
j−1∏

i=1
a−1

i,2g · · · a−1
i,1 Ti,j−1T

−1
i,j ai,1 · · · ai,2g

 aj,1 · · · aj,2ga−1
j,1 · · · a−1

j,2g.

2.8 Homotopy for pure surface braid groups
Homotopy for surface braids is defined in accordance with the case of classical braids.
Two braids γ and γ′ on a surface M are homotopic if there is an homotopy of the strands
in M × I, fixing the endpoints, and deforming γ to γ′ such that the images of different
strands remain disjoint during the deformation.

In [24], Yurasovskaya studies homotopy for pure surface braids with the application of
homotopy string links over a surface as an intermediate step due to their link-homotopical
equivalence to pure surface braids. We recall here some of the main results of her work.

Definition 2.8.1. Let M be a closed, connected and orientable surface of genus g ≥ 1.
Let I be the unit interval I and let P = {P1, . . . , Pn} be a set of n distinct points of M .
Let I1, . . . , In be n copies of the interval I and denote with ⊔n

i=1 Ii the disjoint union of
these intervals.
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A string link σ on n strands over a surface M is a smooth or piecewise linear proper
embedding

σ :
n⊔

i=1
Ii →M × I

such that σi(0) = (Pi, 0) and σi(1) = (Pi, 1).

A string link over a surface can be seen as a pure braid on a surface without the
monotony requirement. Every pure braid on a surface is a string link in itself.

Definition 2.8.2. We say that two string links σ and σ′ are link-homotopic if there is a
homotopy of the strands in M × I, fixing M × {0, 1}, and deforming σ to σ′, such that
the images of different strands remain disjoint during the deformation.

During the course of the deformation, each individual strand is allowed to pass through
itself but not through other strands.

The following result is due to Fenn and Rolfsen:

Theorem 2.8.3. Every n-strand string link over a surface M is link-homotopic to a pure
braid.

This theorem allows us to use the term link-homotopy pure braids instead of string
links.

Define Hn(M) the set of all pure braids in PBn(M) which are link-homotopic to the
trivial braid. Hn(M) is a normal subgroup of PBn(M). In fact, the product of two link-
homotopically trivial braids produces a link homotopically trivial braid, and the inverse
of a link-homotopically trivial braid is also link-homotopically trivial; also, if β is link-
homotopically trivial, for any x ∈ PBn(M), xβx−1 is clearly link-homotopically trivial.

Let us denote by P̃Bn(M) the set of link-homotopy classes of string links over the
surface M , which will be called simply homotopy string links over surfaces. It has been
proved that P̃Bn(M) is a group, isomorphic to PBn(M)/Hn(M).

Proposition 2.8.4. [24] The set P̃Bn(M) equipped with the usual product is a group
isomorphic to the quotient of the pure braid group PBn(M) by the subgroup of link-
homotopically trivial braids Hn(M):

P̃Bn(M) ∼= PBn(M)/Hn(M).

This result comes from the observations above: we know that each string link is link-
homotopic to a pure braid, and that P̃Bn(M) can be seen as the quotient PBn(M)/Hn(M).
Since Hn(M) is normal, P̃Bn(M) is a group that inherits from PBn(M) the product and
the inverse.

In [24], Yurasovskaya studies the case where S is a closed orientable surface of genus
g ≥ 1 with a single puncture, and finds a presentation for P̃Bn(S) using methods similar
to the ones applied by González-Meneses to find Presentation 2.7.1. Then, considering
M a closed orientable surface of genus g ≥ 1 and S as the surface obtained by deleting
a single point from M she finds a map between the groups of homotopy pure braids over
S and those over M . She computes the kernel of the map and using the presentation of
P̃Bn(S) she finds the presentation for P̃Bn(M) that is stated in the following.
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The presentation of P̃Bn(M) has the same generators set as PBn(M) and the same
relations with one more relation, defined by the commutator

[fti,jf
−1, gti,jg

−1] = 1,

where ti,j = σiσi+1 · · ·σj−2σ
2
j−1σ

−1
j−2 · · ·σ−1

i+1σ
−1
i and f, g ∈ F (2g + n− i), i = 1, . . . , n. We

recall that F (2g + n− i) is the notation for the free group π1(S \ Pn−i, Pi) generated by

{{ai.r} ∪ {ti,j}; i + 1 ≤ j ≤ n, 1 ≤ r ≤ 2g}},

where S is the surface M with a single point deleted and Pn−i = {Pi+1, . . . Pn}.
In [24, Chapter 4] there is the following description of π1(S \ Pn−i, Pi): it is seen as

a free subgroup of PBn(S), which is denoted by F (2g + n − i). The strands based at
{P1, . . . , Pi−1, Pi+1, . . . , Pn} are trivial and go vertically down. The Pi-based strand winds
around the straight strands based at {Pi+1, . . . , Pn} and through the walls of M × I.
Generators of the free subgroup F (2g + n − i) correspond precisely to those of π1(S \
Pn−i, Pi).

Proposition 2.8.5. [24] The group P̃Bn(M) admits a presentation with generators ai,r,
being 1 ≤ i ≤ n and 1 ≤ r ≤ 2g, and tj,k, 1 ≤ j < k ≤ n, and relations:

1) a−1
n,1a

−1
n,2 · · · a−1

n,2gan,1an,2 · · · an,2g =
n−1∏
i=1

T −1
i,n−1Ti,n;

2) ai,rAj,s = Aj,sai,r for 1 ≤ i < j ≤ n, 1 ≤ r ≤ 2g, 1 ≤ s ≤ 2g − 1 and r ̸= s;

3) (ai,1 · · · ai,r)Aj,r(a−1
i,r · · · a−1

i,1 )A−1
j,r = Ti,jT

−1
i,j−1 for 1 ≤ i < j ≤ n, 1 ≤ r ≤ 2g − 1;

4) Ti,jTk,l = Tk,lTi,j for 1 ≤ i < j < k < l ≤ n or 1 ≤ i < k < l ≤ j ≤ n;

5) Tk,lTi,jT
−1
k,l = Ti,k−1T

−1
i,k Ti,jT

−1
i,l Ti,kT −1

i,k−1Ti,l for 1 ≤ i < k ≤ j < l ≤ n;

6) ai,rTj,k = Tj,kai,r for 1 ≤ i < j < k ≤ n or 1 ≤ j < k < i ≤ n and 1 ≤ r ≤ 2g;

7) ai,r(a−1
j,2g · · · a−1

j,1Tj,kaj,2g · · · aj,1) = (a−1
j,2g · · · a−1

j,1Tj,kaj,2g · · · aj,1)ai,r for 1 ≤ j < i ≤
k ≤ n;

8) Tj,n =
j−1∏

i=1
a−1

i,2g · · · a−1
i,1 Ti,j−1T

−1
i,j ai,1 · · · ai,2g

 aj,1 · · · aj,2ga−1
j,1 · · · a−1

j,2g;

9) [fti,jf
−1, gti,jg

−1] = 1 where 1 ≤ i < j ≤ n and f, g ∈ F (2g + n + i).

We have Ti,j = ti,j · · · ti,i+1.

Remark 2.8.6. In [22, Remark 2.18], it is shown that the relation

[fti,jf
−1, gti,jg

−1] = 1, f, g ∈ F (2g + n + i)

can be replaced by the relation

[ti,j, hti,jh
−1] = 1, h ∈ F (2g + n + i)

This will be useful for some considerations that we are going to do in Chapter 4. Next
proposition is due to Yurasovskaya, but we recall it in the version of Lima, [22, Corollary
2.1.9].
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Proposition 2.8.7. Hn(M) is the smallest normal subgroup of PBn(M) generated by
the commutators [ti,j, hti,jh

−1] as in the above relation.

Hn(M) = ⟨{[ti,j, hti,jh
−1] 1 ≤ i < j ≤ n, h ∈ F (2g + n + i)}⟩N ,

where ⟨ ⟩N denotes the normal closure.

In the same work, Lemma 3.3.2, Lima proves also the following result.

Proposition 2.8.8. [22] It is possible to define an injective homomorphism

fn : P̃n → P̃Bn(M).



Chapter 3

Welded braid groups

Welded braids can be seen as a generalization in 4 dimensions of braids on the disc.
Differently from the previous cases, they were studied under various points of view, each
with a different name, and the proofs of the isomorphisms between all these groups were
given at a later time. In this chapter, we follow the work of Damiani, who collected the
different viewpoints in [8]. We start by defining ribbon braids, which are the topological
counterparts of welded braids, and then we define welded diagrams and welded braid
groups, stating the isomorphism between these groups and the groups of ribbon braids.
Lately we give a definition of welded braids in terms of mapping class groups, in terms of
fundamental groups of configuration spaces, and as automorphisms of Fn, which allows
us to draw an easy comparison with the group of braids on the disc. We recall also the
presentation given by Brendle and Hatcher in [7].

3.1 Ribbon braids
Before giving the definition we set some notation. Let us consider B4 ∼= B3 × I. For any
submanifold X ⊂ Bm ∼= Bm−1 × I, with m = 3, 4, we denote:

1) ∂εX = X ∩ (Bm−1 × {ε}), with ε ∈ {0, 1};

2) ∂∗X = ∂X \ (int(∂0X) ∪ int(∂1X));

3)
∗

X = X \ ∂∗X.

Definition 3.1.1. The image of an immersion Y ⊂ X is said to be locally flat if and
only if the couple (Y, X) is locally homeomorphic to the couple (Rk, Rm) for some k ≤ m,
except on ∂X or ∂Y , where one of the R summands should be replaced by R+.

Definition 3.1.2. Given Y1, Y2 two submanifolds of Bm, their intersection Y1 ∩ Y2 ⊂ X
is said to be flatly transverse if and only if it is locally homeomorphic to the transverse
intersection of two linear subspaces Rk1 and Rk2 in Rm, for some positive integers k1, k2 ≤
m, except on ∂X, ∂Y1 or ∂Y2, where one of the R summands should be replaced by R+.

Definition 3.1.3. Given two submanifolds Y1, Y2, ribbon discs are intersections D =
Y1 ∩ Y2 ⊂ R4 that are isomorphic to the 2-dimensional disc, such that D ⊂ int(Y1),
int(D) ⊂ int(Y2) and ∂D is an essential (i.e. not homotopic to a point, a puncture, or a
boundary component) curve in ∂Y2.

We are now ready to give the definition of ribbon braids.

31
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Definition 3.1.4. [8] Let D1, . . . , Dn be a collection of discs in B2 and let Ci = ∂Di be
the oriented boundary of Di. Let A1, . . . , An be locally flat embeddings in

∗
B4 of n disjoint

copies of the oriented annulus S1 × I. We say that

b =
⊔

i∈{1,...,n}
Ai

is a geometric ribbon braid if:
1) the boundary of each annulus ∂Ai is a disjoint union Ci ⊔ Cj, for Ci ∈ ∂0B

4 and
for some Cj ∈ ∂1B

4. The orientation induced by Ai on ∂Ai coincides with the
orientation of the two boundary circles Ci and Cj;

2) the annuli Ai are fillable, in the sense that they bound immersed 3-balls ⊂ R4 whose
singular points consist in a finite number of ribbon discs;

3) it is transverse to the lamination
⋃
t∈I

B3 × {t} of B4, which means that at each

parameter t the intersection between b and B3 × {t} is a collection of exactly n
circles;

4) the orientations of the circles are concordant, at each parameter t, to the orientations
of the circles that compose the boundary of the annulus.

If condition 1) is replaced by
1) ∂Ai = Ci × {0, 1} for all i ∈ {1, . . . , n} and orientation induced by Ai on ∂Ai

coincides with that of Ci,
we obtain a pure geometric ribbon braid.
Two ribbon braids are said to be equivalent if there is an isotopy between them, which is a
continuous deformation that sends one to the other fixing the boundary circles. Damiani
proved in [8] a theorem from which we deduce that equivalence for ribbon braids can be
expressed, as for braids on the disc, with an ambient isotopy of R4 that brings one to the
other.
Theorem 3.1.5. [8] Every isotopy of a geometric ribbon braid F : b×I → B3×I extends
to an isotopy G : (B3 × I)× I → B3 × I which is the identity on the boundary.

The proof of this theorem uses techniques which involve the approach as fundamental
groups and mapping class groups explained in the next sections, together with sophis-
ticated tools of algebraic topology. Product of ribbon braids is given by stacking and
reparametrizing. The trivial ribbon braid U =

⊔
i∈{1,...,n}

Ci × I is the unit element for this

product. Equivalence classes of geometric ribbon braids up to continuous deformations
through the class of continuous ribbon braids fixing the boundary circles, equipped with
the product above defined, form a group, that we denote by rBn.
Definition 3.1.6. Pure ribbon braids form a subgroup of rBn, denoted by PrBn.

We have that PrBn coincides with the kernel of the homomorphism from rBn to the
group of permutations Σn that associates to a ribbon braid the permutation induced on
the boundary circles.
There are two ways to represent diagrammatically ribbon braids, respectively in 3 and 2
dimensions: in the former case via broken surface diagrams and in the latter via welded
diagrams; let us see how they work.
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3.2 Braid broken surface diagrams
As for classical braids, we can consider a projection in general position of a ribbon braid
in the 3-dimensional space: in this case we obtain a braid broken surface diagram, which
we define in the following.

Definition 3.2.1. Let A1, . . . , An be locally flat embeddings in
∗

B3 of n disjoint copies of
the oriented annulus S1 × I. We can say that

S =
⋃

i∈{1,...,n}
Ai

is a braid broken surface diagram if:
1) for each i ∈ {1, . . . , n}, the oriented boundary ∂Ai is the disjoint union Ci ⊔ Cj,

for Ci in ∂0B
3 and for some Cj in ∂1B

3. The orientation induced by Ai on ∂Ai

coincides with the orientation of one of the two boundary circles Ci and Cj;

2) it is transverse to the lamination
⋃
t∈I

B2 × {t} of B3, that is: at each parameter

t, the intersection between S and B2 × {t} is a collection of exactly n circles, not
necessarily disjoint;

3) the set of connected components of singular points in S, denoted by Σ(S), consists

of flatly transverse disjoint circles in (
n⋃

i=1
int(Ai)).

For each element of Σ(S), a local ordering is given on the two circle preimages. To
specify the order we erase a small neighborhood of the lower preimage in the interior of
the annulus it belongs to. We recall a lemma that allows us to state the correspondence
between ribbon braids and braid broken surface diagrams:
Lemma 3.2.2. [8] Any generic projection of a ribbon braid from B4 to B3 is a braid
broken surface diagram. Conversely any braid broken surface diagram is the projection
of a ribbon braid.

Moreover, there is a stronger result which involves symmetric braid broken surface
diagrams, defined below.
Definition 3.2.3. A braid broken surface diagram is said to be symmetric if for each
pair of preimage circles the following properties are satisfied:

1) one of the preimage circles is essential in
n⋃

i=1
int(Ai) and the other is not;

2) there is a pairing of the elements of Σ(S) =
⊔
r

{cr
1, cr

2} such that, for each r, the

essential preimages of cr
1 and cr

2:

(a) are respectively lower and higher than their non essential counterparts with
respect to the associate order;

(b) bound an annulus in
n⋃

i=1
int(Ai);

(c) this annulus avoids Σ(S).

Lemma 3.2.4 ([3, 8]). Any ribbon braid can be represented by a symmetric braid broken
surface diagram.
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3.3 Welded diagrams
Broken surface diagrams can be associated also to 2-dimensional diagrams, called welded
diagrams, whose definitions and properties we give in the following.

Definition 3.3.1. A strand diagram on n strands is a set of oriented arcs in R2, monotone
with respect to the second coordinate, from the points (0, 1), . . . , (0, n) to (1, 1), . . . , (1, n).
The arcs are allowed to have double points of three kinds, called classical positive, classical
negative and welded (see Figure 3.1). We call σi the elementary diagram representing the
i + 1-th strand passing over the i-th strand, and ρi the welded crossing of the strands i
and i + 1. We will denote by Dn the set of strand diagrams on n strands.

σi σ−1
i

ρi

i i + 1 i i + 1i + 1i

Figure 3.1: Crossings of a strand diagram.

Definition 3.3.2. A welded braid is an equivalence class of strand diagrams under the
equivalence relation given by planar isotopy and by four kinds of moves that we will show
graphically in Figures 3.2, 3.3, 3.4, 3.5 and which are called classical Reidemeister moves,
virtual Reidemeister moves, mixed Reidemeister moves and welded Reidemeister moves.
The equivalence is called welded Reidemeister equivalence.

←→ ←→

Figure 3.2: Classical Reidemeister moves.

Equivalence classes of n-strand diagrams by welded Reidemeister equivalence form a
group, denoted by WBn and called the welded braid group on n strands. The product is
the usual one given by stacking and rescaling, mirror image is the inverse and the trivial
diagram is the identity. As usual, the diagrams are read from top to bottom.
Passing through symmetric braid broken surfaces, 4-dimensional ribbon braids can be
described using 2-dimensional welded braids. Let b be a welded braid. We associate
to it a symmetric braid broken surface diagram in the following way. Consider B2 and
embed it as B2 × 1

2 into B3. Taken a tubular neighbourhood N(b) of b, we have that
∂εN(b) = ⊔i∈{1,...,n}Di × εi, where εi ∈ {0, 1}. Each crossing is sent to a 4-punctured
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←→ ←→

Figure 3.3: Virtual Reidemeister moves.

←→

Figure 3.4: Mixed Reidemeister moves.

sphere. Then, according to the partial order defined on the double points of welded braid
diagrams, we modify the sphere into the broken surfaces shown in Figure 3.6.

Given a welded braid b, being d the symmetric braid broken surface diagram associated
to b, we can define a map Tube : WBn 7−→ rBn that sends b to the ribbon braid associated
to d.

Proposition 3.3.3. [8] The map Tube : WBn 7−→ rBn is surjective.

3.4 Welded braid groups as mapping class groups.
Definition 3.4.1. In what follows we generalize to the 3-dimensional case the definition of
mapping class group given in Definition 1.3.1. Let M be a compact, connected, orientable
3-manifold with boundary, and N an orientable submanifold contained in the interior
of M , not necessarily connected or non-empty. Let Homeo+(M, N) be the group of
homeomorphisms f : M →M that fix ∂M pointwise, preserve orientation on both M and
N , and globally fix N . The multiplication in this group is given by the usual composition.
Homeo+(M, N) is a topological group when equipped with the compact-open topology.

←→

Figure 3.5: Welded Reidemeister moves.
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Figure 3.6: From welded diagrams to broken surface diagrams.

The mapping class group of a 3-manifold M with respect to a submanifold N , denoted
by MCG(M, N), is the group of isotopy classes of elements of Homeo+(M, N), where
isotopies are required to fix the boundary pointwise and N globally.

MCG(M, N) = π0(Homeo+(M, N)).

Every homeomorphism of that kind induces a permutation on the connected components
of N in the natural way. The pure mapping class group of a 3-manifold M with respect to
a submanifold N , denoted by PMCG(M, N), is the subgroup of elements of MCG(M, N)
that send each connected component of N to itself.

Definition 3.4.2. Let us fix n ≥ 1, and let C = C1
⊔ · · ·⊔ Cn be a collection of n

disjoint, unknotted, oriented circles, that form a trivial link of n components in R3. For
our purposes, we can assume in the following that C is contained in the xy-disk in the
3-ball B3. The loop braid group on n components, denoted by LBn, is the mapping class
group MCG(B3, C).

The pure loop braid group on n components, denoted by PLBn, is the pure mapping
class group PMCG(B3, C), that is the subgroup of MCG(B3, C) which elements are the
isotopy classes of homeomorphisms that send each connected component of N to itself.

3.5 Welded braid groups as fundamental groups of
configuration spaces

Definition 3.5.1. Let n ≥ 1, and let URn be the space of configurations of n Euclidean,
unordered, disjoint, unlinked circles in B3 lying on planes parallel to a fixed one. The
untwisted ring group URn is its fundamental group. Similarly, let PURn be the space of
configurations of n Euclidean ordered, disjoint, unlinked circles lying on planes parallel
to a fixed one. The pure untwisted ring group PURn is its fundamental group.
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Let p be the orbit projection PURn → URn that forgets the order of the circles. In [8]
it is shown that p is a regular n!-sheeted cover with Σn as group of deck transformations.
From this follows that PURn is a subgroup of URn, and we have the short exact sequence

1 −→ PURn −→ URn −→ Σn −→ 1.

Damiani proved in [8, Proposition 3.12], the following statement.
Proposition 3.5.2. For n ≥ 1, there are natural isomorphisms between pure untwisted
ring group PURn and the pure loop braid group PLBn, and between their respective
unordered versions URn and LBn.

Both these groups can be seen in an isomorphism with the group of ribbon braids on
n strands.
Proposition 3.5.3. [8] For n ≥ 1, there is an isomorphism between the pure ribbon
braid group PrBn and the pure loop braid group PLBn.
Proof. Let us start with an observation. Taken b a geometric ribbon braid, the transver-
sality forces b ∩ (B3 × {t}) to be the disjoint union of n circles, for all t ∈ I. This allows
us to think to a ribbon braid as a trajectory β = (C(1), . . . , Cn(t)) of circles in B3 × I.
Let us define now

ϕ(β) : I → PLBn

as the morphism defined by t → (C1(t), . . . , Cn(t)). By definition, ϕ(β) is a loop in
the configuration space PURn, and corresponds to an element of PLBn through the
isomorphism in Proposition 3.5.2. This map induces a bijection

ϕ∗ : PrBn → PLBn.

Indeed, two pure geometric braids β′ and β′′ are equivalent if and only if there is an
ambient isotopy of B3 × I from the identity map to an homeomorphism of B3 × I in
itself that maps β′ to β′′. That by construction would be an isotopy (so in particular a
homotopy) between the two associated loops in PLBn. Moreover products are preserved,
so ϕ∗ is a isomorphism.
Proposition 3.5.4. [8] For n ≥ 1, there is an isomorphism between the ribbon braid
group rBn and the loop braid group LBn.
Proof. As in Proposition 3.5.3 we fix an element β = (C1(t), . . . , Cn(t)) of rBn and we
define a map:

ϕ̂(β) : I → LBn

by t → (C1(t), . . . , Cn(t)). The element ϕ̂(β) is a loop in the configuration space URn.
This loop corresponds to an element of LBn through the isomorphism from Proposition
3.5.2. Then ϕ̂ induces a homomorphism

ϕ̂∗ : rBn → LBn.

We consider the following diagram:

1 PrBn rBn Σn 1

1 PLBn LBn Σn 1

ϕ∗∼= ϕ̂∗

It is commutative by construction of ϕ and ϕ̂. By applying the five lemma, the statement
is proved.
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3.6 A presentation for welded braid groups
Brendle and Hatcher gave a presentation for the untwisted ring groups URn:

Proposition 3.6.1. [7] For n ≥ 1 the group URn admits a presentation with generators
{σi, ρi}, with 1 ≤ i ≤ n− 1, and the following relations:

1) σiσi+1σi = σi+1σiσi+1, for i = 1, 2, . . . , n− 2;

2) σiσj = σjσi, for |i− j| > 1 and i, j = 1, 2, . . . , n− 1;

3) ρiρi+1ρi = ρi+1ρiρi+1 for i = 1, . . . , n− 2;

4) ρiρj = ρjρi for |i− j| > 1 and i = 1, . . . , n− 1;

5) ρ2
i = 1 for i = 1, · · · , n− 1;

6) ρiσj = σjρi for |i− j| > 1 and i = 1, . . . , n− 1;

7) ρi+1ρiσi+1 = σiρi+1ρi for i = 1, . . . , n− 2;

8) σi+1σiρi+1 = ρiσi+1σi for i = 1, . . . , n− 2.

The elements σi and ρi of the presentation represent the following loops in URn: we
place the n rings in a standard position in the yz-plane with centers along the y-axis,
then the σi is the loop that permutes the i-th and the (i + 1)-st circles by passing the
i-th circle through the (i + 1)-st. The loop ρi permutes them passing the i-th around the
(i + 1)-st. We can see both in Figure 3.7.

i i + 1

σi

i i + 1

ρi

Figure 3.7: The elements σi and ρi.

We recall that welded braids were initially introduced as a graphic representation of
the above presentation. Through this point of view, the generators σi and ρi can be drawn
as in Figure 3.8.

Figure 3.8: Generators σi and ρi.

There is also a presentation for PURn given by Brendle and Hatcher:

Proposition 3.6.2. For n ≥ 1, the group PURn admits a presentation with generators
αi,j for 1 ≤ i ̸= j ≤ n and relations:
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1) αi,jαk,l = αk,lαi,j if {i, j} ∩ {k, l} = ∅;

2) αi,kαj,k = αj,kαi,k for i, j, k pairwise distinct;

3) αi,j(αi,kαj,k) = (αi,kαj,k)αi,j for i, j, k pairwise distinct.

Each element αi,j of the presentation represents the movement of the i-th circle passing
through the j-th circle and going back to its position, as in Figure 3.9. The representation
through welded diagrams can be seen in Figure 3.10.

i j

αi,j

i + 1

. . .

Figure 3.9: The element αi,j.

i j

Figure 3.10: The element αi,j.

Remark 3.6.3. From the above result follows also the isomorphism between ribbon braids
and welded braids.

Proposition 3.6.4. [8] The map Tube : WBn 7−→ rBn is an isomorphism.

Proof. We know from Proposition 3.5.4 that rBn is isomorphic to LBn, and from Propo-
sition 3.5.2 that LBn is isomorphic to URn. From the above presentation we know that
URn is isomorphic to WBn. The map Tube was already known to be surjective from
Proposition 3.3.3. The result follows.

3.7 Welded braids as automorphisms of the free group
A definition of welded braid groups can be given also in terms of automorphisms of Fn.
We take the elements of Aut(Fn) of the following form:

σk :


xk 7−→ xk+1
xk+1 7−→ x−1

k+1xkxk+1
xl 7−→ xl if l ̸= k, k + 1
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The elements {σk} for 1 ≤ k ≤ n−1 generate the braid subgroup Bn of Aut(Fn) isomorphic
to the braid group on n strands (see which we have seen in Section 1.4). We add another
family of automorphisms:

ρi :


xi 7−→ xi+1
xi+1 7−→ xi

xj 7−→ xj if j ̸= i, i + 1

The elements ρi generate the permutation subgroup of S̄n of Aut(Fn). Both these set of
generators, σk and ρi, generate the permutation-conjugacy subgroup of Aut(Fn), denoted
by PCn and containing the automorphisms that send each generator in the conjugate of
some generator of Fn, in symbols:

α : xi 7−→ w−1
i xπ(i)wi

where π ∈ Σn and wi is an element of Fn. As widely explained in [8], there is an
isomorphism between the subgroup PCn of Aut(Fn) and the group URn. Moreover, there
is an isomorphism between the group of pure welded braids PURn and the subgroup of
the automorphisms of Fn that send each generator to a conjugate of itself, in symbols:

α : xi 7−→ w−1
i xiwi

where wi is an element of Fn. The subgroup is called basis-conjugation subgroup, denoted
by AutC(Fn), and it is generated by elements of the form:

αi,j :
{

xi 7−→ x−1
j xixj

xk 7−→ xk if k ̸= i, j

The correspondence between the elements of URn that we called σi, ρi and αi,j and
the automorphisms of PCn with the same name justifies the abuse of notation.

3.8 Ribbon tubes and welded string links
A similar notion can be given in order to study homotopy for welded braids. In the
ribbon context, the natural analogues of string links are the so called ribbon tubes. They
have been studied up to link-homotopy by Audoux, Bellingeri, Meilhan and Wagner in
[3], where they showed that every ribbon tube is link-homotopic to a pure ribbon braid
(result that can be considered the ribbon equivalent to Habegger-Lin’s classical one).

This section is taken from [3], and we want to recall some of their main results.
Furthermore, Darné [9] found a presentation for the group of pure welded braids up to
homotopy that is partially a consequence of the above mentioned work. We are going to
recall his presentation.

Definition 3.8.1. Let A1, . . . , An be locally flat embeddings in
∗

B4 of n disjoint copies of
the oriented annulus S1 × I. We say that

T =
⊔

i∈{1,...,n}
Ai

is a ribbon tube if:
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1) ∂Ai = Ci × {0, 1} for all i ∈ {1, . . . , n} and orientation induced by Ai on ∂Ai

coincides with that of Ci;

2) the annuli Ai are fillable, in the sense that they bound immersed 3-balls ⊂ R4 whose
singular points consist in a finite number of ribbon discs.

The set of ribbon tubes up to isotopy fixing the boundary circles is denoted by rTn.
Equipped with the stacking and reparametrizing product, and with unit element the
trivial ribbon tube

n⊔
i=1

Ci × I, rTn is a monoid.

Definition 3.8.2. An element of rTn is said to be monotone if it has a representative
which is flatly transverse to the lamination

⋃
t∈I

B3 × {t} of B4.

It is proved in [3, Proposition 2.4], that the subset of rTn whose elements are monotone
is a group for the stacking product. Also, two monotone ribbon tubes which are equivalent
in rTn are always related by a monotone isotopy, which is an isotopy moving only through
monotone objects ([3, Remark 2.26]).This implies that the group of monotone elements
of rTn is equal to the group of pure ribbon braids defined in Definition 3.1.6, so we are
going to denote it with PrBn.

Ribbon tubes can be described by broken surface diagrams, that we are going to
define here. As we could expect, they are the analogous of braid broken surface diagrams
defined in Definition 3.2.1, without the monotony requirement and where the associated
permutation is the identity.

Definition 3.8.3. Let A1, . . . , An be locally flat embeddings in
∗

B3 of n disjoint copies of
the oriented annulus S1 × I. We can say that

S =
⊔

i∈{1,...,n}
Ai

is a broken surface diagram if:

1) ∂Ai = Ci × {0, 1} for all i ∈ {1, . . . , n} and orientation induced by Ai on ∂Ai

coincides with that of Ci;

2) the set of connected components of singular points in S, denoted by Σ(S), consists

of flatly transvers disjoint circles in (
n⋃

i=1
int(Ai)).

There are two results that suggest, as for the case of ribbon braids, that broken
surface diagrams can be thought of as 3-dimensional representations of ribbon tubes.
These results are stated in [3, Lemma 2.13, Lemma 2.14], and they are:

Lemma 3.8.4. Any ribbon tube admits, up to isotopy, a projection to B3 which is a
broken surface diagram. Conversely any broken surface diagram is the projection of a
unique ribbon tube.

Lemma 3.8.5. Any ribbon tube can be represented by a symmetric broken surface dia-
gram.

Ribbon tubes can be represented also by welded string links diagrams.
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Definition 3.8.6. A n-component welded string link diagram is a locally flat immersion
L of n intervals

n⊔
i=1

Ii in
∗

B2, called strands, such that:

1. each strand Ii has boundary ∂Ii = {pi} × {0, 1} and is oriented from {pi} × {0} to
{pi} × {1}, where 1 ≤ i ≤ n;

2. the singular set Σ(L) of L is a finite set of flatly transverse points.
Moreover, for each element of Σ(L), a partial ordering is given on the two preimages.

We have three types of crossings, as for welded pure braids: positive, negative and welded
(when the two preimages are not comparable).
Definition 3.8.7. A welded string link diagram is said to be monotone if it is flatly
transverse to the lamination

⋃
t∈I

I × {t} of B2.

The set of welded string links up to isotopy, quotiented by the Reidemeister moves
defined in Figures 3.2, 3.3, 3.4, 3.5 and in Figure 3.11, forms a monoid with the stacking
product and with unit element the trivial diagram

n⋃
i=1

pi× I. The monoid will be denoted

WSLn. Monotone welded string links form a subset of WSLn with a group structure,

←→ ←→

Figure 3.11: other Reidemeister moves for welded string links (self-crossings).

which can be proved to be equivalent to PWBn. This allows us to denote also the subset
of monotone welded string links with PWBn, and to call his elements welded pure braids.

Similarly to the case of welded braids, we can define a map Tube: WSLn 7−→ rTn

which associates to a welded string link diagram L a symmetric broken surface diagram,
and a ribbon tube to the broken surface diagram. The entire procedure to define the
map Tube is explained in [3]. Differently from ribbon braids, it is still unknown whether
the correspondence between ribbon tubes and symmetric broken surface diagram up to
Reidemeister moves is injective. That leads to the following proposition:
Proposition 3.8.8. The map Tube: WSLn 7−→ rTn is well defined and surjective.

It is still unknown whether the map is also injective, but if we restrict it to monotone
objects on both sides we obtain an isomorphism: PWBn

∼= PrBn.



3.9. HOMOTOPY FOR PURE WELDED BRAID GROUPS 43

3.9 Homotopy for pure welded braid groups
Definition 3.9.1. Two welded string link diagrams are related by a self-virtualization if
one can be obtained from the other by turning a classical self-crossing (i.e. a classical
crossing where the two preimages belong to the same components) into a welded one.

The equivalence relation on WSLn generated by self-virtualization is called v-equivalence.
The quotient of WSLn under v-equivalence, which is compatible with the stacking prod-
uct, is denoted by WSLv

n. We denote by PWBv
n ⊂ WSLv

n the subset of elements having
a monotone representative.

Theorem 3.9.2. [3] Every welded string link is monotone up to self-virtualization.

We introduce now link-homotopy for ribbon tubes.

Definition 3.9.3. A singular ribbon tube is a locally flat immersion T of n annuli
n⊔

i=1
Ai

in
∗

B4 such that:

1) ∂Ai = Ci × {0, 1} for all 1 ≤ i ≤ n and the orientation induced by Ai on ∂Ai

coincides with that of Ci;

2) the singular set of T is a single flatly transverse circle, called singular loop, whose

preimages are two circles embedded in
n⋃

i=1
int(Ai), an essential and a non essential

one;

3) there exist n locally flat immersed 3-balls
n⋃

i=1
Bi such that:

(a) ∂∗Bi = int(Ai) and ∂εBi = Di × {ε} for all 1 ≤ i ≤ n, ε ∈ {0, 1};

(b) the singular set of
n⋃

i=1
Bi is a disjoint union of flatly transverse discs, all of them

being ribbon singularities but one, whose preimages are two discs, bounded by
the preimages of the singular loop, one in

n⋃
i=1

∂∗Bi and the other with interior

in
n⋃

i=1
int(Bi).

We say that a singular ribbon tube is self-singular if and only if both preimages of the
singular loop belong to the same tube component.

Definition 3.9.4. Two ribbon tubes T1 and T2 are said to be link-homotopic if and only
if there is a 1-parameter family of regular and self-singular ribbon tubes from T1 to T2
passing through a finite number of self-singular ribbon tubes.

We denote by rT h
n the quotient of rTn by the link-homotopy equivalence, which is

compatible with the monoidal structure of rTn. Furthermore, we denote by PrBh
n the

image of PrBn in rT h
n .

Now we recall one of the main results of [3], which can be considered a higher-
dimensional analogue of Habegger-Lin’s statement about homotopy for string links:
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Theorem 3.9.5. [3] Every ribbon tube is link-homotopic to a monotone ribbon tube.
Corollary 3.9.6. [3] The set rT h

n is a group for the stacking product.
In [3], this group is described with automorphisms of the Reduced Free group.

Definition 3.9.7. Let Fn be the free group of rank n. We denote by RFn the reduced
free group of rank n, which is the smallest quotient where each generator commutes with
all its conjugates.

RFn := Fn/{[xi, x−1xix] | 1 ≤ i ≤ n, x ∈ Fn}

It has been proved in [3] that there is a group isomorphism between ribbon tubes up
to link-homotopy and the group of basis-conjugating automorphisms of the reduced free
group.
Definition 3.9.8. We define AutC(RFn) the group of basis-conjugating automorphisms
of RFn, which are the automorphisms of RFn which send a generator in a conjugate of
itself.

AutC(RFn) := {f ∈ Aut(RFn) | ∀ 1 ≤ i ≤ n, ∃ x ∈ RFn, f(xi) = x−1xix}

Theorem 3.9.9. [3] There is an isomorphism between rT h
n and AutC(RFn).

In the same work, it has been proved that welded string links up to self-virtualization
are also isomorphic to basis-conjugating automorphisms of RFn. We recall here two last
results about welded string links up to self-virtualization.
Theorem 3.9.10. [3] The monoids WSLv

n, PWBv
n and AutC(RFn) are isomorphic.

Proposition 3.9.11. [3] The map Tube:WSLv
n 7−→ rT h

n is a well defined group isomor-
phism.

So, link-homotopy for ribbon tubes corresponds to self-virtualization moves in welded
diagrams.
Darné (see [9, Diagram 4.0.1]) showed that there is an embedding of the group of homotopy
pure braids into the group of basis-conjugating automorphisms of RFn.
Proposition 3.9.12. There is an embedding of P̃n into AutC(RFn).

We have that the group of homotopy pure braids embeds into the group of homotopy
pure welded braids. A presentation for the group of pure n-welded braids up to homotopy
has been given by Darné in [9], using the isomorphism with AutC(RFn).
Proposition 3.9.13. [9] For n ≥ 1, the group of homotopy pure welded braids on n
strands admits a presentation with generators αi,j for 1 ≤ i ̸= j ≤ n and relations:

1) αi,jαk,l = αk,lαi,j if {i, j} ∩ {k, l} = ∅;

2) αi,kαj,k = αj,kαi,k for i, j, k pairwise distinct;

3) αi,j(αi,kαj,k) = (αi,kαj,k)αi,j for i, j, k pairwise distinct;

4) [αi,j, w, αi,j] = 1, for j < i and w ∈ ⟨αi,k⟩k<i;

5) [αj,i, w, αk,i] = 1, for j, k < i and w ∈ ⟨αi,h⟩h<i;

6) [αi,j, w, αj,i] = 1, for i < j and w ∈ ⟨αj,k⟩k<j,k ̸=i,
where given three elements a, b, c, we have [a, b, c] := [a, [b, c]].



Chapter 4

A new presentation for the
homotopy braid groups

The goal of this thesis is to retrieve the more symmetric presentation for B̃n given by
Graff [16] using an algebraic approach instead of the topological one used in [16]. First,
we prove two lemmas.

Lemma 4.0.1. Let β be a pure n-braid of the form Aε
s,kA1,jA

−ε
s,k, with ε = ±1. Then, β

can always be written in the form gA1,jg
−1, where g is an element of the subgroup of Pn

generated by A1,2, A1,3, . . . , A1,n.

Proof. Let us prove the result for every braid of the form As,kA1,jA
−1
s,k, i.e. ε = 1. We

are using the relations given in the presentation of Pn in Proposition 1.6.4. Also, we
use ABC to indicate that we manipulate the elements in the box using the mentioned
relations. For 1 < s < j ≤ n,

As,jA1,jA
−1
s,j = A−1

1,s A1,sAs,jA
−1
1,s A1,sA1,jA

−1
1,s A1,sA

−1
s,j A−1

1,s A1,s

= A−1
1,sA

−1
s,j A−1

1,jAs,jA1,jAs,jA
−1
s,j A1,jAs,jA

−1
s,j A−1

1,jA
−1
s,j A1,jAs,jA1,s

= A−1
1,s A−1

s,j A−1
1,jAs,j A1,j A−1

s,j A1,jAs,j A1,s

= A−1
1,sA1,sA

−1
1,jA

−1
1,sA1,jA1,sA1,jA

−1
1,sA1,s = A−1

1,jA
−1
1,sA1,jA1,sA1,j.

For 1 < s < k < j ≤ n and 1 < j < s < k ≤ n, we have As,kA1,jA
−1
s,k = A1,j. For the case

1 < j < k ≤ n, it holds that

Aj,kA1,jA
−1
j,k = Aj,k A1,jA

−1
j,kA−1

1,j A1,j

= Aj,kA−1
j,kA−1

1,kA−1
j,kA1,kAj,kA1,j

= A−1
1,k A−1

j,kA1,kAj,k A1,j

= A−1
1,kA1,jA1,kA−1

1,jA1,j

= A−1
1,kA1,jA1,k.

For 1 < s < j < k ≤ n, we want to prove that As,kA1,jA
−1
s,k = [A−1

1,k, A−1
1,s]A1,j[A−1

1,s, A−1
1,k].
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This is equivalent to show that A1,j = [A−1
1,k, A−1

1,s]−1As,kA1,jA
−1
s,k[A−1

1,s, A−1
1,k]−1. We have

[A−1
1,k, A−1

1,s]−1As,kA1,jA
−1
s,k[A−1

1,s, A−1
1,k]−1

= A−1
1,sA

−1
1,kA1,sA1,kAs,kA1,jA

−1
s,kA−1

1,kA−1
1,sA1,kA1,s

= A−1
1,sA

−1
1,k A1,sA1,kA−1

1,s A1,sAs,kA1,jA
−1
s,kA−1

1,s A1,sA
−1
1,kA−1

1,s A1,kA1,s

= A−1
1,sA

−1
1,kA−1

s,kA1,kAs,kA1,sAs,kA1,jA
−1
s,kA−1

1,sA
−1
s,kA−1

1,kAs,kA1,kA1,s

= A−1
1,sAs,k A−1

s,kA−1
1,kA−1

s,kA1,kAs,k A1,sAs,kA1,jA
−1
s,kA−1

1,s A−1
s,kA−1

1,kAs,kA1,kAs,k A−1
s,kA1,s

= A−1
1,sAs,kA1,sA

−1
s,kA−1

1,sA1,sAs,kA1,jA
−1
s,kA−1

1,sA1,sAs,kA−1
1,sA

−1
s,kA1,s

= A−1
1,sAs,k A1,sA1,jA

−1
1,s A−1

s,kA1,s

= A−1
1,sAs,kA−1

s,j A1,jAs,jA
−1
s,kA1,s

= A−1
1,sA

−1
s,j As,jAs,kA−1

s,j A1,j As,jA
−1
s,kA−1

s,j As,jA1,s

= A−1
1,sA

−1
s,j A−1

j,kAs,kAj,k A1,jA
−1
j,kA−1

s,kAj,k As,jA1,s

= A−1
1,sA

−1
s,j A−1

j,kAs,kAj,kA−1
j,kA−1

s,kAj,kA1,jAs,jA1,s

= A−1
1,s A−1

s,j A1,jAs,j A1,s

= A−1
1,sA1,sA1,jA

−1
1,sA1,s

= A1,j.

Now, we prove the result for every braid of the form A−1
s,kA1,jAs,k, that is ε = −1. For

1 < s < j ≤ n, we have A−1
s,j A1,jAs,j = A1,sA1,jA

−1
1,s. For 1 < s < k < j ≤ n and

1 < j < s < k ≤ n, it holds that A−1
s,kA1,jAs,k = A1,j. Let Θn : Bn → Bn be the

strand-reversing automorphism of the n-braid group defined by Θn(σi) = σ−1
n−i when

1 ≤ i ≤ n − 1. As shown in [19, Lemma 0.2.5], we have Θn(Ai,j) = A−1
n−j+1,n−i+1.

Therefore, for 1 < j < k ≤ n, the equality

Θn(A−1
j,kA1,jAj,k) = An−k+1,n−j+1A

−1
n−j+1,nA−1

n−k+1,n−j+1

= A−1
n−j+1,nA−1

n−k+1,nA−1
n−j+1,nAn−k+1,nAn−j+1,n

= Θn(A1,jA1,kA1,jA
−1
1,kA−1

1,j)

implies that A−1
j,kA1,jAj,k = A1,jA1,kA1,jA

−1
1,kA−1

1,j . Moreover, for 1 < s < j < k ≤ n, the
relation

Θn(A−1
s,kA1,jAs,k) = An−k+1,n−s+1A

−1
n−j+1,nA−1

n−k+1,n−s+1

= [A−1
n−s+1,n, A−1

n−k+1,n]A−1
n−j+1,n[A−1

n−s+1,n, A−1
n−k+1,n]−1

= Θn([A1,s, A1,k]A1,j[A1,s, A1,k]−1)

implies that A−1
s,kA1,jAs,k = [A1,s, A1,k]A1,j[A1,s, A1,k]−1.

In conclusion, we showed that Aε
s,kA1,jA

−ε
s,k = gA1,jg

−1 for ε = ±1.

Lemma 4.0.2. Let β be a pure n-braid of the form hA1,jh
−1 with h ∈ Pn . Then, β

can always be written in the form gA1,jg
−1, where g is an element of the subgroup of Pn

generated by A1,2, A1,3, . . . , A1,n.
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Proof. We prove it by induction on the length of h. Suppose

h = Aε1
k1,s1Aε2

k2,s2 · · ·A
εm
km,sm

where εi = ±1. If m = 1, it is true due to Lemma 4.0.1. If it is true for m − 1, then it
can be written by inductive hypothesis as

hA1,jh
−1 = Aε1

k1,s1(Aε2
k2,s2 · · ·A

εm
km,sm

A1,jA
−εm
km,sm

· · ·A−ε2
k2,s2)A−ε1

k1,s1

= Aε1
k1,s1(h̃A1,jh̃

−1)A−ε1
k1,s1 , where h̃ ∈ ⟨A1,2, A1,3, . . . , A1,n⟩.

Let us say h̃ = Al1
1,t1Al2

1,t2 · · ·A
lp
1,tp

, with li = ±1. Then

Aε1
k1,s1(h̃A1,jh̃

−1)A−ε1
k1,s1 = Aε1

k1,s1((
∏

Ali
1,ti

)A1,j(
∏

A−li
1,ti

))A−ε1
k1,s1

= Aε1
k1,s1(

∏
Ali

1,ti
)A−ε1

k1,s1Aε1
k1,s1A1,jA

−ε1
k1,s1Aε1

k1,s1(
∏

A−li
1,ti

)A−ε1
k1,s1

=
∏

(Aε1
k1,s1Ali

1,ti
A−ε1

k1,s1)Aε1
k1,s1A1,jA

−ε1
k1,s1

∏
(Aε1

k1,s1A−li
1,ti

A−ε1
k1,s1).

According to Lemma 4.0.1, every element in the form Aε1
k1,s1A±li

1,ti
A−ε1

k1,s1 can be written as
h′A±li

1,ti
h′−1 and Aε1

k1,s1A1,jA
−ε1
k1,s1 can be written as h′′A1,jh

′′−1, where h′, h′′ are elements of
⟨A1,2, A1,3, . . . , A1,n⟩.
Then, β is in the form gA1,jg

−1 where g ∈ ⟨A1,2, A1,3, . . . , A1,n⟩.

This lemma is a useful tool to prove a more interesting result, which is stated in
next proposition: the commutator of a generator of Pn with the conjugate of the same
generator for a generic element of Pn is always homotopically trivial.

Proposition 4.0.3. Let β be a pure n-braid of the form β = [Aj,k, gAj,kg−1], g being an
element of Pn. Then β is homotopically trivial.

Proof. Let us denote Σj = σ−1
1 σ−1

2 · · ·σ−1
j−1. We know from [19, Lemma 0.2.4], that

ΣjAj,kΣ−1
j = A1,k. In order to prove that [Aj,k, gAj,kg−1] = 1, we conjugate [Aj,k, gAj,kg−1]

by Σj and we obtain

Σj[Aj,k, gAj,kg−1]Σ−1
j = [ΣjAj,kΣ−1

j , ΣjgAj,kg−1Σ−1
j ]

= [A1,k, ΣjgΣ−1
j ΣjAj,kΣ−1

j Σjg
−1Σ−1

j ]
= [A1,k, g̃A1,kg̃−1],

where ΣjgΣ−1
j = g̃ ∈ Pn. We know from Lemma 4.0.2 that g̃A1,kg̃−1 can be written as

hA1,kh−1, for some h ∈ ⟨A1,2, A1,3, . . . , A1,n⟩. Our commutator becomes [A1,k, hA1,kh−1].
From Goldsmith’s presentation of B̃n (Theorem 1.7.4), we know that a commutator of
this form is homotopically trivial. So,

Σj[Aj,k, gAj,kg−1]Σ−1
j = 1 in B̃n,

which implies

[Aj,k, gAj,kg−1] = 1 in B̃n.

The proof is complete.
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This last proposition shows that we can deduce the relation gAj,kg−1 ⇌ Aj,k in B̃n with
g ∈ Pn directly from the relation hAj,kh−1 ⇌ Aj,k in B̃n with h ∈ ⟨A1,2, A1,3, . . . , A1,n⟩.
The inverse is obvious. Thus we can replace the last relation in Goldsmith’s presentation
with this new one, finding a new presentation for B̃n:

Proposition 4.0.4. The set of equivalence classes of n-braids under homotopy B̃n has
generators σ1, . . . , σn−1 and the following relations:

1) σiσi+1σi = σi+1σiσi+1 for i = 1, 2, . . . , n− 2;

2) σiσj = σjσi for |i− j| > 1 and j = 1, 2, . . . , n− 1;

3) Aj,k ⇌ gAj,kg−1 if 1 ≤ j < k ≤ n and g is an element of Pn.

To obtain a similar presentation for P̃n, we recall here a Lemma proved in [16]:

Lemma 4.0.5. [16] The normal subgroup J ◁Bn generated in Bn by elements of the form
[Aij, λAijλ

−1] for λ ∈ Pn, seen as a subgroup of Pn, coincides with the normal subgroup
of Pn generated by elements of the form [Aij, λAijλ

−1], for λ ∈ Pn.

Proof. For k ∈ {1, . . . , n− 1}, 1 ≤ i < j ≤ n and λ ∈ Pn we compute:

σk[Aij, λAijλ
−1]σ−1

k =



[Ai+1j, λ1Ai+1jλ
−1
1 ] if i = k and j ̸= k + 1

[Ai+1j, λ2Ai+1jλ
−1
2 ] if j = k

Akk+1[Ai−1j, λ3Ai−1jλ
−1
3 ]A−1

kk+1 if i = k + 1
Akk+1[Aij−1, λ4Aij−1λ

−1
4 ]A−1

kk+1 if i ̸= k and j = k + 1
[Aij, λAijλ

−1] otherwise,

with λi ∈ Pn for i ∈ {1, 2, 3, 4}. Therefore the conjugates σk[Aij, λAijλ
−1]σ−1

k are always
conjugates of [Ai′j′ , λ′Ai′j′(λ′)−1] in Pn for some 1 ≤ i′ < j′ ≤ n and λ′ ∈ Pn and the proof
is done.

The previous lemma allows us to explicitely write a presentation for the set of equiv-
alence classes of pure n-braids under homotopy.

Corollary 4.0.6. The homotopy pure n-braid group P̃n has a presentation with genera-
tors Ai,j and the following relations:

1) Ar,s ⇌ Ai,j if 1 ≤ r < s < i < j ≤ n or 1 ≤ r < i < j < s ≤ n;

2) Ar,sAr,jA
−1
r,s = A−1

s,j Ar,jAs,j if 1 ≤ r < s < j ≤ n;

3) Ar,sAs,jA
−1
r,s = A−1

s,j A−1
r,j As,jAr,jAs,j if 1 ≤ r < s < j ≤ n;

4) A−1
i,j As,jAi,j ⇌ Ar,i if 1 ≤ r < s < i < j ≤ n;

5) Aj,k ⇌ gAj,kg−1 where 1 ≤ j < k ≤ n and g is an element of Pn.

Through this presentation we can easily find a connection between P̃n and the reduced
version of Pn.

Definition 4.0.7. Let G be a group normally generated by elements g1, . . . , gp. We
denote by

RG := G/⟨[gi, hgih
−1]|1 ≤ i ≤ p, h ∈ G⟩N

the reduced version of G, which is the smallest quotient where each generator commutes
with all its conjugates.
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Remark 4.0.8. The homotopy pure n-braid group is isomorphic to the reduced version
of Pn:

P̃n
∼= RPn.

Proof. Through the presentation in Corollary 4.0.6, P̃n is isomorphic to the quotient of
Pn by the relation Aj,k ⇌ gAj,kg−1 where 1 ≤ j < k ≤ n and g is an element of Pn. That
is by definition the reduced version of Pn.

This leads us to question if we can find a more symmetric presentation for P̃Bn(M)
and PrBh

n as we did in Corollary 4.0.6 for P̃n.
In the surface context, we think that a surjective map

gn : P̃Bn(M)→ RPBn(M),

could be found, where RPBn(M) denotes the reduced version of PBn(M), obtained
by quotienting out further relations. In order to do this, it is necessary to show that
the relation [ti,j, hti,jh

−1] = 1, h ∈ F (2g + n + i) is valid in RPBn(M), which is not
immediate, since the tij are not among the generators of PBn(M) given in Proposition
2.7.2. Also, we don’t know if this map could be an isomorphism. In fact, we don’t know
if the relation [Ti,j, gTi,jg

−1] = 1, g ∈ PBn(M) could be a direct consequence of the
relation [ti,j, hti,jh

−1] = 1, h ∈ F (2g +n+ i), and we don’t know if [ai,r, gai,rg
−1] = 1 with

g ∈ PBn(M) is true in P̃Bn(M), so we are not sure that the isomorphism could be find,
together with a more symmetric presentation.

In the welded context, it seems that we can not hope to apply a further symmetrization
of the presentation as we did in Corollary 4.0.6. The problem is still open, but we think
that through the presentation in 3.9.13 one should be able to show that the reduced pure
welded group and the homotopy pure welded group are not isomorphic.
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