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ABSTRACT

Nowadays, the best theoretical framework we have to describe elementary par-
ticles’ physics is the Standard Model, whose main language consists of quantum
field theory. Historically, before its formulation, it has been attempted to make
Schrödinger’s quantum theory relativistic, in the framework of the so-called first
quantization. The aim of this thesis is to make the reader aware of the problems of
this procedure, necessary condition to understand the need to change paradigm and
develop a new theory, known as second quantization.

Since, in this context, the new fundamental physical entity is the quantum field,
we shall introduce field theory, starting from the classical description of electro-
magnetism, making use of a formalism to make Maxwell’s equations manifestly
covariant.

To obtain the latter directly from an action and to use the Lagrangian mechanics’
tools, it’s necessary to generalize the latter to a system with an infinite number
of degrees of freedom. This will be achieved initially by discretizing the space
and applying the known formalism into any elementary cell and, later, through a
variational principle.

Furthermore, we’ll try to apply quantum mechanics to a relativistic particle,
obtaining the Klein-Gordon equation, which will be interpreted as representing a
field whose quantum is a massive particle without spin. We’ll notice how, forcing
a particular global symmetry of this equation to be locally valid, it’ll be necessary
to add some terms on the Lagrangian which can be interpreted as an interaction
with the electromagnetic field. This allows us to introduce Gauge’s principle, which
is a fundamental tool to describe interactions in the Standard Model. Finally, this
principle will be critically analyzed, leading to the conclusion that it’s not correct to
distinguish between the object and the mediator of an interaction.





SOMMARIO

Il migliore quadro teorico che abbiamo attualmente a disposizione per descrivere
la fisica delle particelle elementari è il Modello Standard, il cui linguaggio prin-
cipale consiste nella teoria di campo quantizzato. Storicamente, prima della sua
formulazione, si è provato a rendere relativistica la teoria quantistica di Schrödinger,
nel contesto della così detta prima quantizzazione. Questa tesi si propone di far
comprendere al lettore le problematiche di tale procedimento, condizione necessaria
per capire l’esigenza di cambiare paradigma e di sviluppare una nuova teoria, nota
come seconda quantizzazione.

Poiché, in questo contesto, il nuovo ente fisico fondamentale è il campo quan-
tizzato, dovremo introdurre la teoria dei campi, partendo dalla descrizione classica
dell’elettromagnetismo, servendoci di un formalismo che renda le equazioni di
Maxwell manifestamente covarianti.

Per ricavare queste ultime direttamente da un’azione e usare gli strumenti della
meccanica Lagrangiana, è necessario generalizzare quest’ultima al caso di un siste-
ma con un numero infinito di gradi di libertà. Questo verrà realizzato dapprima
discretizzando lo spazio e applicando il formalismo noto all’interno di ogni cella
elementare e, successivamente, attraverso un principio variazionale.

Inoltre, si proverà ad applicare la meccanica quantistica a una particella relativisti-
ca, ottenendo l’equazione di Klein-Gordon, che verrà interpretata come descrivente
un campo il cui quanto sia una particella massiva priva di spin. Noteremo come,
imponendo che una particolare simmetria globale di questa equazione valga local-
mente, sarà necessario introdurre dei termini nella Lagrangiana che possono essere
interpretati come un’interazione con il campo elettromagnetico. Questo permetterà
d’introdurre il principio di Gauge, il quale è uno strumento fondamentale per descri-
vere le interazioni nel Modello Standard. Questo principio, infine, verrà analizzato
criticamente, portando alla conclusione che non sia corretto distinguere tra oggetto
e mediatore dell’interazione.
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CHAPTER 1

CALCULUS OF VARIATIONS

Since throughout this whole thesis we’ll refer to Euler-Lagrange equation, it is
appropriate to begin with some basic concepts about variational calculus. Its purpose
is to maximize or minimize functionals, namely, operators that map functions to
real numbers. We’ll use this mathematical tool to extract a particle’s equations of
motion from its Lagrangian, and then, using the functional derivative, we’ll seek
to generalize the formalism to continuous fields. Therefore, an introduction to
variational derivatives is necessary.

1.1 Introduction to variational calculus

Variational calculus concerns with functionals, so we should start from there.

Definition 1 (Functional). A functional is an operator that maps functions (or curves)
to real numbers.

In particular, we are interested in functionals which can be cast in the form

J [y] =

∫ b

a

dx f(x, y(x), y′(x)), (1.1)

subject to the boundary conditions

y(a) = ya, y(b) = yb. (1.2)

In order to chase a rigorous mathematical approach, we should define the space
in which y and f are defined, but since it is beyond our purposes, we should assume
that y(x) ∈ C2(a, b), i.e., the space of functions which have continuous first and
second derivative with respect to x, and f(x, y(x), y′(x)) is a function with continuous
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first and second partial derivatives with respect to all its arguments. These conditions
will ensure that all the quantities we’ll deal with have right behaviour.

From now on, we’ll deal with differentiable functionals, that is

Definition 2 (Differentiable). Let J [y] be a functional defined on some normed space
with norm ∥ ∥. It’s said to be differentiable if

∆J [y;h] ≡ J [y + h]− J [y] = ϕ[h] + ε∥h∥, (1.3)

where ϕ[h] depends linearly on h and ∥h∥ → 0 as ε→ 0. h = h(x) is the increment of
the variable y = y(x). The linear part of the increment ∆J , ϕ[h], is called the variation
of the functional and is denoted by δJ [y;h].

Leaving aside further technicalities about the normed space in which to define
the functional and the uniqueness of the variation, let’s move on defining what we
mean for extremum, or rather, what is a maximum or a minimum for the functional
considered.

Definition 3 (Extremum). Recalling the definition 2, a curve y = y(x) is called an
extremum of a differentiable functional J [y] if δJ [h] = 0 for every admissible h.

Furthermore, we shall make use of the following lemma.

Lemma L.1 (Fundamental lemma of the calculus of variations). If M(x) ∈ C(a, b)

and if ∫ b

a

dxM(x)η(x) = 0

for every η(x) ∈ C1(a, b) such that

η(a) = η(b) = 0,

then
M(x) = 0

for all x ∈ [a, b].

Proof. Let’s tackle the problem by contradiction. Suppose that M(x) is nonzero at
some point in (a, b). Without any loss of generality, let’s suppose it is strictly positive.
Then, by continuity, it is also positive in some interval [x1, x2] ⊂ [a, b].
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x

η(x)

a x1 x2 b

Figure 1.1 Definition of η(x).

If we set, as depicted in fig. 1.1,

η(x) =

(x− x1)
2(x− x2)

2 if x ∈ [x1, x2],

0 otherwise,

then η(x) obviously satisfies the hypothesis of the lemma. However,∫ b

a

dxM(x)η(x) =

∫ x2

x1

dxM(x)(x− x1)
2(x− x2)

2 > 0,

since the integrand is positive. This contradicts our starting hypothesis, therefore it
must be

M(x) = 0, x ∈ (a, b),

and the continuity of the function guarantees it vanishes at a and b too. ■

1.2 Euler-Lagrange equation

Let’s now consider the variational problem of our interest, that is, we want to
find an extremum of the functional (1.1) with the conditions (1.2). We are able to
prove that the extremum curve must satisfy the Euler-Lagrange equation.

Theorem T.1. The curve y = y(x) ∈ C2(a, b) is an extremum of the functional

J [y] =

∫ b

a

dx f(x, y(x), y′(x))
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on the space of curves passing through the points y(a) = ya and y(b) = yb, precisely when

d

dx

( ∂f
∂y′

)
− ∂f

∂y
= 0 along the curve y(x). (1.4)

Proof. Suppose we give y(x) an increment h(x), where, in order for the function

y(x) + h(x) (1.5)

to continue to satisfy the boundary conditions (1.2), it must be

h(a) = h(b) = 0. (1.6)

Then, since the corresponding increment of the functional equals

∆J = J [y + h]− J [y] =

∫ b

a

dx
[
f(x, y + h, y′ + h′)− f(x, y, y′)

]
,

it follows by Taylor’s theorem that

∆J =

∫ b

a

dx
[∂f
∂y

(x, y, y′)h+
∂f

∂y′
(x, y, y′)h′

]
+O(h2).

According to the definition 2, the variation of J [y] is

δJ =

∫ b

a

dx
[∂f
∂y

(x, y, y′)h+
∂f

∂y′
(x, y, y′)h′

]
,

and it must be zero for all admissible h for y to be an extremum.
Integrating by parts∫ b

a

dx
∂f

∂y′
h′ =

(
h
∂f

∂y′

)∣∣∣b
a
−
∫ b

a

dxh
d

dx

( ∂f
∂y′

)
and using the condition (1.6), we can write

δJ =

∫ b

a

dx
(∂f
∂y

− d

dx

∂f

∂y′

)
h = 0, ∀h

and finally, using the lemma L.1 we obtain the Euler-Lagrange differential equation

d

dx

( ∂f
∂y′

)
− ∂f

∂y
= 0. ■
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x

y(x)

x0 xi xn+1

Figure 1.2 Subintervals.

Remark. To visualize the order of Taylor’s expansion we may write

h(x) = εη(x), (1.7)

where ε is an infinitesimal parameter and η(x) an arbitrary function.
Further, since we are interested in first order variations, neglecting terms smaller

than ε in our Taylor’s expansions, from now on we shall be slightly imprecise and
write

δJ ≃ J [y + h]− J [y] = J [y + εη]− J [y].

1.3 Functional derivative

Discrete limit of a functional. Sometimes it is convenient to think about function-
als as the limit of a suitable n-variables function. We shall apply this concept to
introduce the functional derivative and look for a generalization.

Let’s consider again the functional (1.1) subject to the conditions (1.2) and divide
the interval [a, b], in which y(x) is defined, in n + 1 subintervals delimited by the
points

a = x0, x1, . . . , xn, xn+1 = b,

as shown in fig. 1.2.
Replacing the curve y = y(x) by the polygonal line with vertices

(x0, y0), (x1, y1), . . . , (xn, yn), (xn+1, yn+1),
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where yi ≡ y(xi), it is possible to approximate the functional (1.1) by the sum

J(y1, . . . , yn) ≡
n∑

i=0

f
(
xi, yi,

yi+1 − yi
∆x

)
∆x, (1.8)

where ∆x = xi+1 − xi = (b− a)/(n+ 1). Since y0 = a and yn+1 = b are fixed, eq. (1.8)
is a function of n-variables, namely y1, . . . , yn.

Let’s take the derivative with respect to a particular yk

∂J(y1, . . . , yn)

∂yk

and evaluate the limit as n→ ∞.
Since yk appears in only two terms of (1.8), corresponding to i = k and i = k − 1,

we find that

∂J

∂yk
=
∂f

∂y

(
xk, yk,

yk+1 − yk
∆x

)
∆x

+
∂f

∂y′

(
xk−1, yk−1,

yk − yk−1

∆x

)
− ∂f

∂y′

(
xk, yk,

yk+1 − yk
∆x

)
.

(1.9)

We divide both sides by ∆x, in order to avoid a nontrivial result,

1

∆x

∂J

∂yk
=
∂f

∂y

(
xk, yk,

yk+1 − yk
∆x

)
− 1

∆x

[ ∂f
∂y′

(
xk−1, yk−1,

yk − yk−1

∆x

)
+
∂f

∂y′

(
xk, yk,

yk+1 − yk
∆x

)]
.

(1.10)

As ∆x→ 0, the expression (1.10) converges to

δJ

δy
≡ ∂f

∂y
(x, y, y′)− d

dx

∂f

∂y′
(x, y, y′), (1.11)

called functional or variational derivative of the functional (1.1).
Recalling the Euler-Lagrange equation (1.4), it guarantees that the variational

derivative of the functional under consideration vanishes at every point.

Differential in multivariate calculus. From what we’ve seen until now, we could
infer a similarity between the extremum of a function and that of a functional.
Indeed, in both cases the respective derivative must vanish. Since the intention
is studying a functional about its extremum, it’s useful to carry on this similarity
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to define the functional derivative in a more general way. Before that, let’s briefly
review some aspects of the differential calculus for standard multivariate functions.

Let’s consider a function f : A→ R, where A ⊂ Rn. Given an arbitrary increment
x → x+ h, f is differentiable if exists a vector m ∈ Rn such that

f(x + h) = f(x) + ⟨m,h⟩+ o(|h|), |h| → 0, (1.12)

where ⟨ , ⟩ is the usual euclidean scalar product and |.| the usual norm. The linear
term ⟨m,h⟩ is called differential of the function and is expressed by df . Setting
h = |h|h1 and ek = (0, . . . , 1, . . . , 0), where h1 is the versor of h and e1, . . . , en the
canonical base of Rn, the directional derivative with respect to λ1, where |λ1| = 1, is
defined as

∂f

∂λ1

≡ lim
ε→0

f(x+ ελ1)− f(x)

ε
. (1.13)

If we set λ1 = ei, we obtain the i-th component of the gradient. We can now
prove that

m = ∇f(x). (1.14)

Proof. Using the definition (1.13) with λ1 = ek and by (1.12), we have

∂f

∂xk
(x) = lim

ε→0

f(x+ εek)− f(x)

ε
= lim

ε→0

⟨m, εek⟩+ o(|ε|)
ε

= lim
ε→0

(mk + o(1)) = mk,

showing (1.14). ■

Another property of differential functions is

f

∂λ1

(x) = ⟨∇f(x),λ1⟩. (1.15)

Proof. Using (1.13), (1.12) and (1.14),

∂f

∂λ1

(x) ≡ lim
ε→0

f(x+ ελ1)− f(x)

ε
= lim

ε→0

⟨m, εh1⟩+ o(|ε|)
ε

= lim
ε→0

(⟨∇f(x),h1⟩+ o(1)) = ⟨∇f(x),h1⟩,

showing (1.15). ■

Combining (1.12), (1.14) and (1.15), for a differentiable function we can write

df = ⟨m,h⟩ =
n∑

k=1

∂f

∂xk
hk = |h| ∂f

∂h1

(x). (1.16)
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Functional derivative’s general definition As we’ve seen, a functional J [y] can
be thought as a function of infinitely many variables y(x). Therefore, we expect a
natural generalization for (1.16). Let’s try to guess its expression and an operative
method to compute it. Comparing (1.3) and (1.12), we can notice that the variation of
our functional is akin to the differential of a function, so an identity similar to (1.16)
should hold for δJ . It’s natural to replace the euclidean inner product with that
of L2, i.e., the space of square-integrable functions. Considering a variation of the
argument y(x) → y(x) + h(x), this would lead to

δJ =

∫
dx

δJ

δy
h(x), (1.17)

that turns out to be a coherent definition for the functional derivative δJ/δy. There-
fore, the latter is akin to the gradient of a multivariate function, and it expresses
how much the varied functional J [y + h] differs from the original one, that is, J [y].
Writing the variation as in (1.7), namely y(x) → y(x) + εη(x), from (1.16) we can
identify

∫
dx δJ

δy
η(x) with the directional derivative ∂f

∂h1
(x), defined by (1.13). This

leads to∫
dx

δJ

δy
η(x) = lim

ε→0

J [y(x) + εη(x)]− J [y(x)]

ε
=

d

dε

[
J [y(x) + εη(x)]

]
ε=0

, (1.18)

that, again, turns out to be correct and provides a method to compute the variational
derivative. It can be shown that ordinary derivatives’ properties also apply for
variational ones. For example, given two differentiable functionals J [y], K[y], with
y(x) and z(u) two differentiable functions, and α and β two constants, we have

αJ + βK

δy(x)
= α

δJ

δy
+ β

δK

δy
, (1.19a)

δJK

δy
=
δJ

δy
K + J

δK

δy
, (1.19b)

δJ [z(u)]

δy(x)
=
δJ [z(u)]

δz(y(x))

dz(u(x))

dy(x)
. (1.19c)

Return to Euler-Lagrange equation. Let’s apply the new formalism to the func-
tional (1.1) with conditions (1.2), to recover the Euler-Lagrange equation (1.4). It
can be said that, in order for y(x) to be an extremum of the functional J [y], the
variation δJ must vanish. As we shall see, in mechanics this is known as least action
principle. Indeed, considering a variation y(x) → y(x)+h(x) = y(x)+εη(x), by (1.17)
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and (1.18) we have

δJ =

∫
dx

δJ

δy
h(x) = ε

∫
dx

δJ

δy
η(x) = ε lim

ε→0

J [y(x) + εη(x)]− J [y(x)]

ε

= ε
d

dε

[
J [y(x) + εη(x)]

]
ε=0

= ε
d

dε

[∫ b

a

dx f(x, y + εη, y′ + εη′)

]
ε=0

= ε

∫ b

a

dx

[
∂f

∂y
η +

∂f

∂y′
η′
]
= ε

∫ b

a

dx

[
∂f

∂y
− d

dx

∂f

∂y′

]
η(x) +

∂f

∂y′
εη(x)

=

∫ b

a

dx

[
∂f

∂y
− d

dx

∂f

∂y′

]
h(x) = 0,

where we have integrated by parts and used (1.2). Using δJ = 0 and the fundamental
lemma L.1, we recover the Euler-Lagrange equation (1.4), as expected.





CHAPTER 2

CLASSICAL PARTICLE THEORY

The special theory of relativity is corroborated by so many experiments that every
physics theory should comply with it. In particular, we shall ensure the principle
of relativity to be valid and develop a formalism to make relativistic invariance
manifest. Since Lorentz transformations are those that yield the invariance of electro-
magnetism, we should start from there, looking for a covariant form for Maxwell’s
equations. Then, because of the strength of Lagrangian theory, and since the easiest
way to require Lorentz invariance for a system is to impose that its action is a scalar,
we should revise these aspects of classical mechanics, using the tools developed in
the previous chapter.

2.1 Lagrangian formalism

Let’s consider a classical system with n degrees of freedom, described by n–
generalized coordinates q(t) ≡ (q1(t), . . . , qn(t)) which correspond to a point in an
n–dimensional space called configuration space. We’ll call q̇(t) generalized velocities.

As time flows, the point q(t) moves in the configuration space because of the
change in the system’s state, tracing out a curve.

We’ll suppose that the system can be described through a function of q and q̇,
called Lagrangian

L = L(q, q̇, t). (2.1)

Higher order derivatives of q are not necessary, since from the Lagrangian we derive
the equations of motion, that are second order differential equations.
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Defining the functional action,

S[q] =

∫ tb

ta

dt L(q, q̇, t), (2.2)

we can apply the so-called principle of least action, or Hamilton’s principle:

Principle (least action). The motion of a mechanical system from q(ta) = qa to q(tb) = qb

is such that the action has an extremum. Namely,

δS = δ

∫ tb

ta

dt L(q, q̇, t) = 0. (2.3)

In other words, as showed by (1.4), the system follows the Euler-Lagrange
equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . , n. (2.4)

2.2 Special relativity and tensor notation

Metric Tensor. The special relativity can be summarized in two principles:

• The principle of relativity: the laws of physics are the same for all inertial ob-
servers. No preferred inertial system exists.

• The principle of the constancy of the speed of light: the speed of light in vacuum
has the same value c in all inertial frames of reference.

These two principles lead to the invariance of the quantity

ds2 = c2dt2 − dx2 − dy2 − dz2 (2.5)

under Lorentz transformations. Using Einstein’s notation, this quantity can be
written as

ds2 = ηµνdx
µdxν , (2.6)

where ηµν is the metric tensor

ηµν = diag(+1,−1,−1,−1) (2.7)

and xµ are the contravariant coordinates, defined by

xµ = (x0, x1, x2, x3) = (ct, x, y, z). (2.8)
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From now on we’ll observe the following convention: the Greek indices (µ, ν, . . . )
can assume values from 0 to 3, while the Latin indices (i, j, . . . ) from 1 to 3.

It’s useful to define the covariant coordinates xµ as

xµ = ηµνx
ν (2.9)

and the covariant metric tensor ηµν such that

ηµνηνρ = δµρ , xµ = ηµνxν , (2.10)

so that we can recast eq. (2.6) as

ds2 = ηµν dx
µ dxν = dxµ dx

µ = ηµν dxµ dxν .

Lorentz transformations. A point xµ in Minkowski’s space-time M with metric η
is called event. Two events are separated by a particular ds2, and, as shown in fig. 2.1,
considering its sign we can classify three types of separations:

• ds2 > 0: time-like separation.
• ds2 = 0: light-like or null separation.
• ds2 < 0: space-like separation.

We can define a Lorentz transformation as a linear transformation of the coordinates

x′
µ
= Λµ

νx
ν =

(∂x′µ
∂xν

)
xν (2.11)

such that the quantity ds2 = ηµν dx
µ dxν is invariant. Explicitly:

ηµνdx
′µdx′

ν
= ηµνΛ

µ
ρΛ

ν
σ dx

ρ dxσ = ηρσ dx
ρ dxσ.

By convention, considering Λµ
ν as a matrix, the first index represents its rows

while the second one its columns. However, the usefulness of the notation developed
is that we won’t have to worry about matrices anymore.

In conclusion, a Lorentz transformation is a linear transformation such that

ηµνΛ
µ
ρΛ

ν
σ = ηρσ, ηµνΛρ

µΛ
σ
ν = ηρσ. (2.12)



14 | Classical Particle Theory

ct

C

A
B

O
y

x

Figure 2.1 Lightcone in (2+1)-dimensions Minkowski’s space-time. A and O are time-
like separated, B and O are null separated and C and O are space-like separated.

In matrix notation, relation (2.12) reads

ΛTηΛ = η,

from which we can show that
detΛ = ±1. (2.13)

Proof. Using Binet’s theorem and that for a generic matrix A, det(A) = det
(
AT

)
, we

have
det

(
ΛTηΛη

)
= (det(Λ))2 det(η) = det(η),

the conclusion is straightforward. ■

Combining eq. (2.9), (2.10) and (2.11), we can find the Lorentz transformation for
the covariant coordinates xµ:

x′µ = ηµνx
′ν = ηµνΛ

ν
ρx

ρ = ηµνΛ
ν
ρη

ρσxσ, (2.14)

where, defining
Λ σ

µ ≡ ηµνΛ
ν
ρη

ρσ, (2.15)
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we can write the transformation (2.14) as

x′µ = Λ ν
µ xν . (2.16)

To conclude, it’s easy to prove that the matrix defined by eq. (2.15) is the inverse
transpose of Λ, namely

Λ τ
µ = (Λ−1,T )

τ

µ . (2.17)

Proof. Let’s multiply eq. (2.12) by ηστ

ηµνΛ
µ
ρΛ

ν
ση

στ = ηρση
στ ,

and using eq. (2.15) and (2.10)
Λµ

ρΛ
τ

µ = δτρ ,

from which it is immediate that eq. (2.17) must hold. ■

Tensor properties. Let’s now consider the Minkowski’s space-time M and a
generic Lorentz transformation:

x′
µ
= Λµ

νx
ν , x′µ = Λ ν

µ xν . (2.18)

We can define the following quantities:
• Scalars: quantities Φ(x) that are invariant under a Lorentz transformation:

Φ′(x′) = Φ(x).

• Contravariant 4-vectors: quantities V µ that transform like the coordinates xµ:

V ′µ(x′) = Λµ
νV

ν(x).

• Covariant 4-vectors: quantities Vµ that transform like the covariant coordinates
xµ:

V ′
µ(x

′) = Λ ν
µ Vν(x).

It’s immediate to show that a contravariant four-vector contracted with a
covariant one yields a scalar:

V ′µω′
µ = Λµ

νΛ
ρ

µ V
νωρ = δρνV

νωρ = V νων .
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• Tensors: a general (p, q) tensor is a quantity that transforms like:

T ′µ1...µp

ν1...νq
(x′) = Λµ1

α1
. . .Λµp

αp
Λ β1

ν1
. . .Λ βq

νq T
α1...αp

β1...βq
(x).

To each contravariant four-vector V µ corresponds a covariant four-vector and
vice versa,

V µ = ηµνVν ,

Vµ = ηµνV
ν .

In general, to lower or raise an index of a tensor, it must be contracted with the
metric tensor η. Following the convention (2.7), if we lower or raise the temporal
index of a four-vector, i.e., the zeroth component, the sign remains the same, while it
changes for a spacial index, i.e., an i-th component.

Given two four-vectors Aµ = (A0,A) and Bµ = (B0,B), their inner product is
defined as

A ·B = AµBµ = ηµνA
µBν = A0B0 −A ·B. (2.20)

They are orthogonal if A ·B = 0. Further, the absolute value of a four-vector is

A · A = AµAµ = (A0)2 −A ·A, (2.21)

from which we can distinguish three type of four-vectors, time-like if AµAµ > 0,
light-like if AµAµ = 0 or space-like if AµAµ < 0.

A (2, 0) tensor T µν is said to be symmetric if T µν = T νµ, while it’s antisymmetric if
T µν = −T νµ. A generic (2, 0) tensor T µν can be decomposed into a symmetric part
T (µν) and an antisymmetric part T [µν]:

T µν = T (µν) + T [µν], (2.22a)

T (µν) =
1

2
(T µν + T νµ), (2.22b)

T [µν] =
1

2
(T µν − T νµ). (2.22c)

In general, the contraction of a symmetric tensor with an antisymmetric one vanishes.
Given an antisymmetric (2, 0) tensor F µν , its dual is defined as

F̃ µν =
1

2
εµναβFαβ , (2.23)
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where εijkl is the Levi-Civita symbol, defined as

εijkl =


+1 if (i, j, k, l) is an even permutation of (0, 1, 2, 3).

−1 if (i, j, k, l) is an odd permutation of (0, 1, 2, 3).

0 otherwise.

(2.24)

The dual tensor F̃ µν is also antisymmetric.
From now on, we’ll deal with tensorial equations, that equate tensors of the same

rank. The benefit of this notation is that they would be manifestly Lorentz invariant.

Differentiation and integration. Let’s define a covariant vector for differentiation
in Minkowski’s space-time M, known as four-gradient,

∂µ =
∂

∂xµ
=

( ∂

∂x0
,
∂

∂xi

)
=

(1
c

∂

∂t
,∇

)
. (2.25)

Since the coordinates xµ behave as a contravariant four-vector, it’s easy to show that
∂µ is a covariant one.

Proof. Using Λµ
ν = ∂x′µ

∂xν and (Λ−1)µν = ∂xµ

∂x′ν , that can be derived from the Lorentz
transformation (2.11) and its inverse, and also eq. (2.17), we have

∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν
= (Λ−1)νµ

∂

∂xν
= (Λ−1,T ) ν

µ

∂

∂xν
= Λ ν

µ

∂

∂xν
,

showing that ∂µ transforms like xµ. ■

Applying the four-gradient to a scalar field ϕ(x), we obtain

∂µϕ(x) =
(1
c

∂ϕ

∂t
,∇ϕ

)
,

while applied to a vector field V µ(x) = (V 0,V ), it leads to the four-divergence, hence

∂µV
µ =

1

c

∂V 0

∂t
+∇ · V .

Contracting ∂µ with itself, yields the d’Alembertian operator:

□ ≡ ∂µ∂
µ =

1

c2
∂2

∂t2
−∇2.
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Considering now the integration properties, the volume element in Minkowski’s
space-time is

d4x = dx0 dx1 dx2 dx3 = c dt d3x, (2.26)

and it is Lorentz invariant.

Proof. Under a Lorentz transformation of the coordinates, x′µ = Λµ
νx

ν , the volume
element (2.26) transforms as

d4x′ = |J(x)|d4x,

where J(x) is the Jacobian of the transformation, namely

J(x) = det
{∂x′µ
∂xν

}
= detΛ.

Using eq. (2.13), we have
d4x′ = d4x, (2.27)

as claimed. ■

In analogy with R3, a hypersurface σ in (3+1)-dimensional Minkowski’s space-time
is a 3-dimensional surface. Its element dσµ can be written as

dσµ = nµ dσ,

where nµ is a unit four-vector orthogonal to dσµ. In particular, we are interested in
space-like hypersurfaces, characterized by the property that their points are separated
by a space-like distance:

x1
µ, x2

µ ∈ σ : (x1
µ − x2

µ)(x1µ − x2µ) < 0,

implying that nµ is time-like.
A space-like hyperplane is defined implicitly by the equation

n · x = λ,

where nµ is a time-like unit four-vector and λ a real parameter. Choosing the frame
of reference in which nµ = (1, 0, 0, 0), the previous relation is equivalent to

t =
λ

c
,
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that is R3 at time t = λ/c. In this particular case the hypersurface element is

dσµ = nµ dσ = (dx1 dx2 dx3, 0, 0, 0) = (d3x, 0, 0, 0). (2.28)

Finally, let’s seek for a generalization of Gauss theorem. If we consider a 4-
dimensional volume Ω and its boundary ∂Ω,∫

Ω

d4x ∂µV
µ(x) =

∫
∂Ω

dσµ V
µ(x). (2.29)

If certain properties are satisfied, the upper integral doesn’t depend on the spe-
cific hypersurface chosen. Let’s suppose that V µ(x) has vanishing four-divergence,
hence

∂µV
µ = 0,

and the volume of integration Ω is delimited by two space-like hypersurfaces σ1 and
σ2, and a time-like hypersurface σ∞. Then, by (2.29) we can write∫

Ω

d4x ∂µV
µ(x) = 0 =

∫
σ1

dσµ V
µ −

∫
σ2

dσµ V
µ +

∫
σ∞

dσµ V
µ,

where the unit four-vectors n1
µ and n2

µ are oriented in the same direction. Further,
let’s suppose that V µ approaches to zero fast enough, so that the integration on the
time-like surface vanishes. We have∫

σ1

dσµ V
µ =

∫
σ2

dσµ V
µ =

∫
σ

dσµ V
µ, (2.30)

meaning that the integral above is independent on the specific space-like hypersur-
face chosen. In particular, choosing the previously considered hypersurface with
element (2.28), we have

∂µV
µ = 0 =⇒

∫
d3xV 0(x) = const in t, (2.31)

where we are integrating over R3.

2.3 Charge and current densities

To introduce the charge and the current density of a system, let’s start considering
a system of N point-like particles, in which each particle has an electric charge en
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and a position xn(t) at time t. The charge density of the system is

ρ(x, t) =
N∑

n=1

ρn(x, t) =
N∑

n=1

enδ
3(x− xn(t)), (2.32)

where it has been used the Dirac’s delta (cf. App. A.2) to localize each charge at its
position.

The total charge of the system is

Q =

∫
V

d3x ρ(x, t) =
∑
n

en

∫
V

d3x δ3(x− xn(t)) =
∑
n

en,

where V is the volume containing the particles. In the last step we have used (A.7).
In general, we can define the current density of a particle as

jn(x, t) = ρn(x, t)
dxn

dt
(t), (2.33)

so the current density of the system is

j(x, t) =
∑
n

enδ
3(x− xn(t))

dxn

dt
(t). (2.34)

By substitution, it can be verified that (2.32) and (2.34) abide by the continuity
equation

∂ρ

∂t
+∇ · j = 0. (2.35)

Let’s now consider a generic system, that can be also continuous. The electric
charge dq contained in an infinitesimal volume d3x is

dq = ρ(x, t)d3x (2.36)

and the current flowing through an infinitesimal oriented surface dσ is

dI = j(x, t) · dσ, (2.37)

where dσ = dσn, n being a unit vector orthogonal to the surface.
The total charge enclosed in a volume V is

Q(t) =

∫
V

d3x ρ(x, t)
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and the total current flowing through a surface S at time t is

I(t) =

∫
S

j(x, t) · dσ. (2.38)

Again, the continuity equation (2.35) holds, indeed it’s an experimental law.
It’s now useful to exploit the formalism of sec. 2.2 to prove that ρ and j can be

combined into a four-vector, that will be useful to cast Maxwell’s equations in a
covariant form. The four-current is defined as

Jµ = (J0,J) = (cρ, j) (2.39)

or, equivalently, by (2.32), (2.34) and (2.39),

Jµ =
∑
n

enδ
3(x− xn(t))

dxn
µ

dt
(t), (2.40)

where xnµ = (ct,xn).
Let’s introduce a formal integration over t′ using Delta’s definition (A.6)

Jµ =

∫
dt′ δ(t− t′)

∑
n

enδ
3(x− xn(t

′))
dxn

µ

dt′

= c

∫
dt′ δ4(xµ − xn

µ(t))
∑
n

en
dxn

µ

dt′
,

where it has been used (A.13) and (A.11). It’s convenient to change the integration
variable to ds, since it is a scalar

Jµ = c

∫
ds

dt′

ds
δ4(xµ − xn

µ(t))
∑
n

en
dxn

µ

ds

ds

dt′

= c

∫
ds δ4(xµ − xn

µ(t))
∑
n

en
dxn

µ

ds
.

The last formulation makes evident that Jµ is a four-vector, since ds is a scalar, δ4(x)
is a scalar by (A.14), and xµ is a four-vector.

Lastly, considering (2.39), the continuity equation (2.35) can be written as

∂µJ
µ = 0. (2.41)
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2.4 Electromagnetism

Lorentz transformations (cf. sec. 2.2) yield the invariance of Maxwell’s equations.
Therefore, the covariance of those equations is obvious. Here, our purpose is to
make this covariance manifest, using the notation of sec. 2.2.

To begin with, Maxwell’s equations in CGS units1 are

∇ ·E(x, t) = 4πρ(x, t), (2.42a)

∇ ∧B(x, t)− 1

c

∂E(x, t)

∂t
=

4π

c
j(x, t), (2.42b)

∇ ·B(x, t) = 0, (2.42c)

∇ ∧E(x, t) +
1

c

∂B(x, t)

∂t
= 0. (2.42d)

The continuity equation (2.35), that, as already stated, must hold being an experi-
mental fact, is contained in (2.42).

Proof. Let’s derive eq. (2.42a) with respect to time,

∂

∂t
∇ ·E = ∇ · ∂E

∂t
= 4π

∂ρ

∂t
.

Taking the divergence of eq. (2.42b) and recalling that the divergence of a curl
vanishes, we have:

∇ ·
(
∇ ∧B − 1

c

∂E

∂t

)
= −4π

c
∇ · ∂E

∂t
=

1

c
∇ · j.

Using the previous relations, the conclusion is straightforward. ■

A general solution for the homogeneous equations (2.42c) and (2.42d) is provided
by the scalar and vector potentials, ϕ and A, defined as

B = ∇ ∧A, (2.43a)

E = −∇ϕ− 1

c

∂A

∂t
. (2.43b)

1In CGS system we impose ε0 = µ0 = 1.
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Given the above-mentioned potentials, the inhomogeneous equations (2.42a)
and (2.42b), describing their dynamics, become

∇2ϕ+
1

c

∂

∂t
(∇ ·A) = −4πρ, (2.44a)

∇2A− 1

c2
∂2A

∂t2
−∇

(
∇ ·A+

1

c

∂ϕ

∂t

)
= −4π

c
j. (2.44b)

Recalling that the divergence of a curl of a vector field and the curl of the gradient
of a scalar field vanish and that ∇∧ (∇∧A) = ∇(∇ ·A)−∇2A, everything can be
easily verified.

Maxwell’s equations (2.42) are invariant under gauge transformations, namely

A(x) → A′(x) = A(x) +∇χ(x), (2.45a)

ϕ(x) → ϕ′(x) = ϕ(x)− 1

c

∂χ

∂t
, (2.45b)

meaning that the simultaneous transformations (2.45) yield

E → E′ = E,

B → B′ = B.

χ is an arbitrary function, called gauge function. Moreover, notice that the trans-
formations (2.45) don’t involve a change in the system of reference, that is, there is
no transformation over the coordinates x.

Since the sources ρ and j can be gathered into a four-vector Jµ = (cρ, j), as seen
in sec. 2.3 by (2.39), we expect E and B, on the left side of eqs. (2.42), to be cast into
a tensor, in order to write the equations in a covariant form. Indeed, it is possible
through the field-strength or electromagnetic tensor, F µν ,

F µν = −F νµ =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 , (2.46)

that can also be written as

F 0i = −Ei F ij = −εijkBk.
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Using (2.39) and (2.46), Maxwell’s equations (2.42) become

∂µF
µν =

4π

c
Jν , (2.47a)

∂µF̃
µν = 0, (2.47b)

where F̃ µν is the antisymmetric dual field-strength tensor, defined, as in (2.23), by

F̃ µν =
1

2
εµναβFαβ . (2.48)

In alternative, eq. (2.47b) is equivalent to

∂µFνρ + ∂ρFµν + ∂νFµρ = 0. (2.49)

Using the field-strength tensor, we can derive two scalars,

F µνFµν = −2(E2 −B2), (2.50a)

F̃ µνFµν = −4E ·B, (2.50b)

that we’ll reclaim later.
As we have seen by (2.43), electromagnetism can be described using the potentials

ϕ and A. Since E and B are contained in the electromagnetic tensor F µν , we expect
ϕ and A to form a four-vector that should have a relation with F µν . It is called
four-potential, and it’s defined as

Aµ = (ϕ,A). (2.51)

From (2.43), (2.46) and (2.51) follows

F µν = ∂µAν − ∂νAµ. (2.52)

Using (2.52) in (2.47a) we have

□Aν − ∂ν(∂µA
µ) =

4π

c
Jν . (2.53)
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2.5 Gauge invariance

Making use of the four-potential (2.51), gauge transformations (2.45) read

Aµ(x) → A′µ(x) = Aµ(x)− ∂µχ(x), (2.54)

and (2.54) yield the invariance of the electromagnetic tensor (2.46),

F µν → F ′µν = ∂µA′ν − ∂νA′µ = F µν . (2.55)

This means that if Aµ(x) is a solution of (2.53), also A′µ(x) is.
Thus, the electromagnetic tensor doesn’t determine the four-potential uniquely,

and then the independent components of Aµ must be up to three, not four. Us-
ing (2.54), we can impose a condition on Aµ, called gauge fixing. To simplify our
computation, let’s write down the Lorenz gauge condition,

∂µA
µ = 0. (2.56)

More than being Lorentz invariant, this gauge is useful since yields a simpler
version of inhomogeneous Maxwell’s equations (2.53), namely

□Aν =
4π

c
Jν , (2.57a)

∂µA
µ = 0. (2.57b)

However, it doesn’t fix Aµ completely, since under a gauge transformation (2.54)
on Aµ itself, with the constraint that the gauge function is a plane wave, the trans-
formed potential A′µ leaves (2.57) invariant. Explicitly, this residual gauge freedom is

A′µ(x) = Aµ(x)− ∂µθ(x), (2.58a)

□θ(x) = 0. (2.58b)

Thus,Aµ has only two degrees of freedom, corresponding to the two polarizations
of light.
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2.6 Solution for Maxwell’s equations

Let’s consider a general source Jµ for the electromagnetic field. The solution of
Maxwell’s equations in Lorenz gauge, eq. (2.57), can be written as the sum of the
homogeneous solution and a particular one:

Aµ = Aµ
homo + Aµ

part.

While the homogeneous solution would lead to a plane wave, not particularly
interesting for our purposes, the particular solution problem requires the definition
of a Green function, an efficient method to tackle problems in quantum field theory,
as we shall see in due time.

Therefore, let’s define the Green function D for Maxwell’s equations (2.57). It is a
function of two point in Minkowski’s space-time M such that

D(t,x; t′,x′) : □xD(t,x; t′,x′) = δ4(x− x′). (2.59)

It represents the potential generated in x by a point-like source in x′. Since in M
there must be invariance under translations, D can only depend on the difference
between x and x′, namely

D = D(x− x′) = D(ct− ct′,x− x′).

Using the definition (2.59), eq. (2.57a) is satisfied by

Aµ(t,x) =
4π

c

∫
d4x′D(x− x′)Jµ(t′,x′). (2.60)

Proof. Using (2.60), since only D depends on x,

□xA
µ =

4π

c

∫
d4x′□xD(x− x′)Jµ(t′,x′)

=
4π

c

∫
d4x′ δ4(x− x′)Jµ(t′,x′) =

4π

c
Jµ(t,x),

where we have used (2.59) and (A.13), obtaining (2.57a). ■

Obviously, in order for (2.60) to be a solution of (2.57), it must also satisfy the
Lorenz gauge condition (2.57b). It can be verified, but we’ll omit this computation.
Let’s seek to find an explicit expression for D.
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To tackle the problem, let’s operate in Fourier’s space, writing, by (A.5),

D(x− x′) =
1

(2π)4

∫
d4k e−ikα(xα−x′α)D̃(k), (2.61)

where D̃(k) is the Fourier transform of D, defined by (A.4). Further, using (A.15),
the delta can be written as

δ4(x− x′) =
1

(2π)4

∫
d4k e−ikα(xα−x′α).

Substituting into the definition (2.59) yields

□x

[
1

(2π)4

∫
d4k e−ikα(xα−x′α)D̃(k)

]
=

1

(2π)4

∫
d4k e−ikα(xα−x′α).

Since the exponential is the only one that depends on x, the d’Alembertian acts only
on it, yielding

∂µe
−ikα(xα−x′α) = −ikµe−ikα(xα−x′α), ∂µ∂µe

−ikα(xα−x′α) = −kµkµe−ikα(xα−x′α).

Then, ∫
d4k (−kµkµ)e−ikα(xα−x′α)D̃(k) =

∫
d4k e−ikα(xα−x′α). (2.62)

Because of the completeness of the Fourier transform, eq. (2.62) implies

(−kµkµ)e−ikα(xα−x′α)D̃(k) = e−ikα(xα−x′α),

equivalent to

D̃(k) =
1

k2 − k0
2 , (2.63)

where we have set |k| ≡ k. Using (2.63) in (2.61) we have

D(x− x′) =
1

(2π)4

∫
d4k e−ikα(xα−x′α) 1

k2 − k0
2 .

Now, writing

d4k = dk0d3k and e−ikα(xα−x′α) = e−ik0(ct−ct′)eik(x−x′),
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Figure 2.2 Possible deformations of the integration path to go around the poles on
the real axis k0.

we obtain

D(x− x′) =
1

(2π)4

∫
d3k eik(x−x′)

∫
dk0

e−ik0(ct−ct′)

k2 − k0
2 . (2.64)

Notice that the index of the temporal component of a four-vector, in this case k0, can
be lowered or raised without changing of sign, because of the chosen metric (2.7).

Let’s first perform the integration over k0, defining for convenience

Jret(k) =

∫
dk0

e−ik0(ct−ct′)

k2 − k0
2 . (2.65)

Inspecting (2.65), it has two poles on the real axis, for k0 = ±k. Thus, since the
integrand is holomorphic, we can exploit the computation by the residue theorem
(cf. sec. A.3), by deforming properly the integration path to go around the poles.
However, it can be done in different ways, as depicted in fig. 2.2. Depending on the
choice, we would obtain Green functions with different physical interpretation, so
we should examine the implications in depth.

Let’s remark that the Green function D(x−x′), as defined in (2.59), represents the
potential measured in (t,x) and generated by a point-like and instantaneous source
positioned in (t′,x′). If we temporarily consider a point-like charge and we wish to
measure its field at (t,x), because of causality, we expect the field at time t to depend
on the behaviour of the charge at t′ < t. Therefore, in general, we should impose the
Green function (2.59) to vanish if t′ > t, implementing the so-called retarded Green
function, namely

Dret(t− t′;x− x′) = 0 if t < t′. (2.66)

In order to implement (2.66), while performing the integration (2.65), we must
deform the integration path Γr as shown in fig. 2.3. Indeed, if t < t′, by Jordan’s
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Re k0

Im k0

−k +k

t < t′

t > t′

−r +r

Figure 2.3 Deformation of the integration path to implement the retarded Green
function. The path drawn in continuous line is Γr.

lemma L.2, we must close the integration path in the upper half-plane, as showed
through the dashed line in fig. 2.3. Since there is no pole within this integration path,
for Cauchy’s theorem (A.16), the integral (2.65) vanishes, as we expect by (2.66).
Conversely, if t > t′, in order to avoid the exponential in (2.65) to diverge and by
Jordan’s lemma, we must close the integration path in the lower half-plane, leading
to the continuous line in fig. 2.3. In this case, we can use (A.28) and apply the residue
theorem (A.23). Then, we can compute (2.65) as

Jret(k) = lim
r→∞

∮
Γr

dk0
e−ick0(t−t′)

k2 − k0
2

= −2πi
∑
j

Res f(k0)e
−ick0(t−t′)|k0=k0j ,

(2.67)

where
f(k0) =

1

k2 − k0
2 ,

k0j are the poles of f(k0) within Γr and the minus sign is due to the orientation of Γr,
that is clockwise, as shown in fig. 2.3. In this case, since the poles k0 = ±k are simple
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poles, we can compute the residue by (A.22), namely

∑
j

Res f(k0)e
−ick0(t−t′)|k0=k0j =

∑
j

−e
−ick0(t−t′)

2k0
|k0=k0j

=
1

2k

[
eick(t−t′) − e−ick(t−t′)

]
=
i

k
sin [ck(t− t′)] .

(2.68)

Inserting (2.68) into (2.67) we obtain

Jret(k) =
2π

k
sin [ck(t− t′)] . (2.69)

Now, recalling the definition (2.65) and inserting (2.69) into (2.64) we have for
the retarded Green function

Dret(x− x′) = (2π)−3

∫
d3k

k
eik(x−x′) sin [ck(t− t′)] θ(t− t′), (2.70)

where the Heaviside step function

θ(t− t′) =

1, if t > t′,

0, if t < t′,
(2.71)

is used to implement the retarded condition (2.66).
To tackle the integral (2.70) it’s convenient to use polar coordinates. Since in M

there is invariance under rotations, it’s possible to rotate the system of reference in
order for x− x′ to be parallel to the polar axis. Acting this way, we can write

k · (x− x′) = |k||x− x′| cos θ = kR cos θ,

where θ is the angle between the polar axis and k, k ≡ |k| and R ≡ |x− x′|. Let’s
remark that x is the observation point, where the field is measured, whilst x′ is
the position of the source. Moreover, the volume element in polar coordinates is
d3k = k2 dk sin θ dθ dϕ. So, eq. (2.70) becomes

Dret = (2π)−3

∫ ∞

0

dk k sin [ck(t− t′)]

∫ 2π

0

dϕ

∫ π

0

dθ sin θ eikR cos θ θ(t− t′).
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Performing the angular integrations by setting ξ = cos θ we have

Dret(x− x′) = (2π)−2

∫ ∞

0

dk k sin [ck(t− t′)]

∫ +1

−1

dξ eikRξ θ(t− t′)

= (2π)−2

∫ ∞

0

dk k sin [ck(t− t′)]
eikR − e−ikR

ikR
θ(t− t′)

=
2

(2π)2R

∫ ∞

0

dk sin [ck(t− t′)] sin (kR) θ(t− t′)

=
1

(2π)2R

∫ ∞

−∞
dk sin [ck(t− t′)] sin (kR) θ(t− t′),

where the last step is a consequence of the fact that the integrand is even in k. Using
Euler’s formula

Dret(x− x′) =
1

4(2π)2R

∫ ∞

−∞
dk

[
e−ick(t−t′) − eick(t−t′)

] [
eikR − e−ikR

]
θ(t− t′),

and performing the multiplications, we have

Dret(x− x′) =
1

4(2π)2R

∫ ∞

−∞
dk

[
e−ik[c(t−t′)−R] − e−ik[c(t−t′)+R]

−eik[c(t−t′)+R] + eik[c(t−t′)−R]
]
θ(t− t′).

(2.72)

Recalling the integral representation of the Dirac’s delta (A.9), and the prop-
erty (A.8), since by (2.71) ik [c(t− t′) +R] > 0, the second and third term in the
integral (2.72) vanish. Indeed, the Dirac’s delta is different from zero only if its
argument vanishes and since in this case it is strictly positive, it must be zero. Using
again (A.9) for the remaining terms, we can write

Dret(x− x′) =
1

4π

δ [c(t− t′)− |x− x′|]
|x− x′|

θ(t− t′). (2.73)

Now, recalling (2.60), the potential related to the retarded Green function (2.73) is

Aµ
ret(t,x) =

4π

c

∫
d4x′D(x− x′)Jµ(t′,x′)

=
1

c

∫
d4x′

δ[c(t− t′)−R]

R
Jµ(t′,x′)θ(t− t′).
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x

ct

x

ct

x′

ct′

P
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Figure 2.4 The field at time t is influenced by the source at time t′ = t − R
c

, where
R = |x− x′|.

Writing d4x′ = dx0
′ dx′ = c dt′d3x′ and using (A.6) and (A.11) we have

Aµ
ret(t,x) =

1

c

∫
d3x

Jµ
(
t− R

c
,x′)

R
. (2.74)

The retarded potential (2.74) shows that the field at time t is influenced by the source
at time t′ = t− R

c
, where R = |x− x′|, as shown in fig. 2.4.

Now we would like to show the Lorentz invariance of (2.73). Using (A.12) we
can write, interpreting the square as a Minkowski’s square (2.21),

δ[(x− x′)2] = δ[(xα − x′
α
)(xα − x′α)] = δ[(x0 − x0

′)2 − |x− x′|2]

= δ[(x0 − x0
′)2 −R2] =

1

2R
[δ(x0 − x0

′ +R) + δ(x0 − x0
′ −R)] .

(2.75)

Multiplying (2.75) by θ(x0 − x0
′) we have

δ[(x− x′)2]θ(x0 − x0
′) =

1

2R
[δ(x0 − x0

′ +R) + δ(x0 − x0
′ −R)] θ(x0 − x0

′)

=
1

2R
[δ(x0 − x0

′ −R)] θ(x0 − x0
′),

(2.76)

where in the last step we have used that, since the Heaviside function requires
x0 − x0

′ > 0, the argument x0 − x0
′ + R of the delta can’t vanish and then the

delta must be zero. Substituting (2.76) into (2.73), we can write the retarded Green
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function as

Dret(x− x′) =
1

2π
δ
[
(xα − x′

α
)(xα − x′α)

]
θ(x0 − x0

′), (2.77)

that, obviously, is nonzero only if (xα − x′α)(xα − x′α) = 0 or rather, if x − x′ is a
light-like four-vector, as we expect (see fig. 2.4).

Furthermore, it can be shown that (2.74) satisfies the condition (2.57b), thus, it
represents a particular solution for Maxwell’s equations.





CHAPTER 3

CLASSICAL FIELD THEORY

Let’s think for a moment about the Einstein’s principle of relativity. Because of
the limited speed of propagation of information, we can’t think about interaction
between particles as instantaneous anymore. Instead, we should consider that if
we change the position of a particle, the others are influenced only after a certain
time interval. Therefore, the concept of a field mediating the interactions becomes a
very powerful tool to describe physics. So, we should think about interactions in the
following way: a particle interacts with a sort of field and then the latter interacts
with another particle, and so on, but the interactions must be separated by a certain
delay of time. Further, it’s natural to have a unified formalism to describe physical
entities, so we’ll apply Lagrangian theory also for fields. Therefore, we’ll seek to
generalize the formalism to continuous systems and apply it to find some important
equations, treating them as examples for now, but keeping in mind that the fields
considered represent physical particles. In particular, we’ll retrieve these equations
to interpret the Klein-Gordon field as representing a particle with spin 0 and mass
and the electromagnetic field the photon, with spin 1 and no mass. Finally, we’ll
seek to find Proca’s equation, to describe particles with spin 1 and mass.

3.1 A first model: the rod

Trying to generalize Lagrangian formalism for continuous systems, we aim
to show that it’s possible to view one of them as the limit of a suitable discrete
mechanical system.

We should start from a simplified model, studying a one dimensional elastic
rod that can undergo small longitudinal vibrations. We can think about the rod
as composed by an infinite number of massive particles with mass m, connected
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a

ηi−1 ηi

Figure 3.1 One dimensional elastic rod.

by massless identical springs with constant k and distanced a from each other, as
shown in fig. 3.1. Let ηi be the displacement of the i-th particle from its equilibrium
position. From classical mechanics, it is known that the kinetic and potential energy
of the system can be written as

T =
1

2

∑
i

mη̇i
2, V =

1

2

∑
i

k(ηi+1 − ηi)
2,

respectively. Being the system conservative, the Lagrangian can be written as
L = T − V , namely

L =
1

2

∑
i

[mη̇i
2 − k(ηi+1 − ηi)

2] =
1

2

∑
i

a
[m
a
η̇i

2 − ka
(ηi+1 − ηi

a

)2]
, (3.1)

where the last step retrace what we have done in (1.10) dividing and multiplying by
∆x, and will be useful while taking the limit as a→ 0.

The related Euler-Lagrange equations (2.4) for the Lagrangian (3.1) are

m

a
η̈i − ka

(ηi+1 − ηi
a2

)
+ ka

(ηi − ηi−1

a2

)
= 0. (3.2)

Let’s further suppose that the rod obeys to Hooke’s law, so that the force F
exerted on the rod is proportional to the elongation per unit length ξ

F = Y ξ, (3.3)
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where Y is Young’s modulus. Given two contiguous points of our discrete system,
the elongation per unit length can be written as

ξ =
ηi+1 − ηi

a
,

so that the force necessary to stretch the corresponding spring by this amount is

F = k(ηi+1 − ηi) = kaξ. (3.4)

Let’s consider the continuous limit. As a → 0, m/a → µ, which is the mass per
unit length of the rod. Comparing eq. (3.3) and (3.4), we can conclude that ka→ Y .
Further, in eq. (3.1) we should replace ηi by η(x),

ηi → η(x), (3.5)

where x is the position. We shall think about it as a merely continuous index,
replacing i. Then, we can write

ηi+1 − ηi
a

=
η(x+ a)− η(x)

a
→ dη

dx
(x).

Gathering the previous considerations, the Lagrangian (3.1) for the continuous
system becomes

L =
1

2

∫
dx

[
µη̇2 − Y

(dη
dx

)2]
, (3.6)

and the equation of motion (3.2) is

µ
d2η

dt2
− Y

d2η

dx2
= 0. (3.7)

Inspecting eq. (3.6), let’s write the Lagrangian as

L =

∫
dxL, (3.8)

where L is the Lagrangian density. In our example, it is

L =
1

2

[
µ
(dη
dt

)2

− Y
(dη
dx

)2]
, (3.9)

where the symbols of the total derivative d/dt and d/dx are not ambiguous because
of the independence between x and t.
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x
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t

t = t1

t = t2

Figure 3.2 Integration domain Ω with boundary ∂Ω.

3.2 From discrete to continuous systems

Let’s start from the previous example to extrapolate a general formalism compat-
ible with continuous fields.

Eq. (3.5) taught us that in classical field theory both space and time should be
considered as parameters. From now on, we’ll deal with the dynamics of ϕ(x, t),
which is a system with an infinite number of degrees of freedom. The following
considerations can be easily generalized for a set of fields ϕa(x, t), parametrized by
the index a.

Let Ω be the domain in which the field is defined, as showed in fig. 3.2, where
t can vary within the interval t ∈ [t1, t2] and x is defined in the subset V of the
three-dimensional space, so that Ω = [t1, t2]× V . Its boundary will be ∂Ω, consisting
of the points belonging to the surface SV = ∂V , at time t1 or t2.

In analogy with classical particle theory (cf. eq. (2.1)), we shall suppose that the
Lagrangian describing the continuous system can be cast in the form

L(ϕ(x, t), ϕ̇(x, t)), (3.10)

which depends on the values of the field and its time derivative, at a certain instant
t in [t1, t2] and at every point in V . Notice that the Lagrangian doesn’t depend
explicitly on x and t, meaning that we are considering a closed system.

Furthermore, inspecting the example of the rod, let’s try to apply the reasoning
in reverse. The continuous system (the rod) has been discretized by dividing the
1-dimensional space of the coordinates into cells of volume a. The resultant La-
grangian (3.1) depended on the values of the approximants of the field at each cell.
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Similarly, let’s discretize the volume V into tiny cells of volume δVi and call ϕi(t)

the approximant of the field in the i-th cell (its mean value). Then, the discretized
system will be described through a Lagrangian L∗(ϕi(t), ϕ̇i) depending on infinitely
many variables, and in the continuous limit it should be

L∗(ϕi(t), ϕ̇i) −−−→
δVi→0

L(ϕ(x, t), ϕ̇(x, t)). (3.11)

It’s convenient to think about the Lagrangian (3.10) as a functional of the func-
tions ϕ(x, t) and ϕ̇(x, t) and carry out an independent variation of the field at each
point x, namely

ϕ(x) → ϕ(x) + δϕ(x).

Extending eq. (1.17) to a functional of two functions, we can write

δL[ϕ, ϕ̇] =

∫
d3x

[ δL

δϕ(x, t)
δϕ(x, t) +

δL

δϕ̇(x, t)
δϕ̇(x, t)

]
. (3.12)

On the other hand, since the Lagrangian of the discretized system, L∗, defined
by eq. (3.11), is an ordinary function of the variables ϕi and ϕ̇i, its variation can be
written as

δL∗(ϕi, ϕ̇i) = L∗(ϕi + δϕi, ϕ̇i + δϕ̇i)− L∗(ϕi, ϕ̇i)

=
∑
i

( ∂L∗

∂ϕi(t)
δϕi(t) +

∂L∗

∂ϕ̇i(t)
δϕ̇i(t)

)
=

∑
i

1

δVi

( ∂L∗

∂ϕi(t)
δϕi(t) +

∂L∗

∂ϕ̇i(t)
δϕ̇i(t)

)
δVi,

(3.13)

where we have multiplied and divided by δVi, in analogy with (1.10) and (3.1).
Comparing eq. (3.12) and (3.13), since variations at distinct points are indepen-

dent of one another, we may expect the following identification

δL

δϕ(x, t)
≡ lim

δVi→0

1

δVi

∂L∗

∂ϕi(t)
, (3.14a)

δL

δϕ̇(x, t)
≡ lim

δVi→0

1

δVi

∂L∗

∂ϕ̇i(t)
, (3.14b)

where x belongs to the i-th cell.
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Further, since the Euler-Lagrange equations for the discretized system are

∂L

∂ϕi

− d

dt

∂L

∂ϕ̇i

= 0, (3.15)

using (3.14) in (3.15), we expect

δL

δϕ(x, t)
− d

dt

δL

δϕ̇(x, t)
= 0. (3.16)

Let’s inspect the Lagrangian (3.1) of the discretized version of the rod. It can be
written as the sum of the Lagrangians computed in each cell. It’s reasonable to expect
the same behaviour in the general case, since we don’t want different points in space
influence each other instantly, not to violate the propagation of information’s speed
limit. In addition, in the continuous limit of (3.1) the term (ηi+1 − ηi)/a approaches
to the gradient of the field. We suppose there is a similar property for the general
case. Summing up, we may write

L∗(ϕi(t), ϕ̇i(t)) =
∑
i

L∗
i (ϕi(t),∇ϕi(t), ϕ̇i(t))

=
∑
i

1

δVi
L∗
i (ϕi(t),∇ϕi(t), ϕ̇i(t))δVi,

where the last step will be useful while taking the continuous limit, which is

L(ϕ(t), ϕ̇(t)) =

∫
V

d3xL(ϕ(xµ),∇(ϕ(xµ)), ϕ̇(xµ)), (3.17)

where xµ ≡ (ct,x) and L is called Lagrangian density. For now, we’ll write xµ just
for notation convenience, but the generalization on Minkowski’s space is straight-
forward. The appearance of the field’s gradient in the Lagrangian density will be
useful to ensure its Lorentz invariance.

The action of the system is

S[ϕ] =

∫ t2

t1

dt L(t) =

∫ t2

t1

dt

∫
V

d3xL(xµ) = 1

c

∫
Ω

d4xµ L(xµ),

where the Lagrangian density has been defined as

L(ϕ(xµ),∇ϕ(xµ), ϕ̇(xµ)) ≡ lim
δVi→0

1

δVi
L∗
i (ϕi(t),∇ϕi(t), ϕ̇i(t)).
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Let’s finally consider arbitrary variations of the field ϕ(xµ) which vanish at the
boundary ∂Ω. Writing the Lagrangian as in (3.17), we can write its variation as

δL =

∫
d3x

[
∂L

∂ϕ(x, t)
δϕ(x, t) +

∂L
∂∇ϕ(x, t)

δ∇ϕ(x, t) + ∂L
∂ϕ̇(x, t)

δϕ̇(x, t)

]

=

∫
d3x

{[
∂L

∂ϕ(x, t)
−∇ ∂L

∂∇ϕ(x, t)

]
δϕ(x, t)− ∂L

∂ϕ̇(x, t)
δϕ̇(x, t)

}
,

(3.18)

and comparing the latter with (3.12), we can identify

δL

δϕ(xµ)
=

[ ∂L(xµ)
∂ϕ(x, t)

−∇ ∂L(xµ)
∂∇ϕ(xµ)

]
, (3.19a)

δL

δϕ̇(xµ)
=
∂L(xµ)
∂ϕ̇(xµ)

. (3.19b)

Using (3.19) in (3.16) we finally have the Euler-Lagrange equation for the contin-
uous system, namely

∂L
∂ϕ

− ∂µ
( ∂L
∂(∂µϕ)

)
= 0. (3.20)

3.3 Least action principle

Founded the Euler-Lagrange equation for a continuous system, we aim to show
that it’s possible to derive it from a variational principle, forcing the first variation of
the action to vanish. From now on we’ll call L simply Lagrangian.

Let’s suppose the system of interest is described through a Lagrangian

L(ϕ, ∂µϕ, xµ), (3.21)

which, this time, can be directly dependent on xµ, opening the possibility for the
field to interact with external sources. We suppose the domain is again Ω, with
boundary ∂Ω, as in fig. 3.2. Let’s perform a variation both of the field ϕ and of the
coordinates xµ, which vanishes on the boundary ∂Ω,

xµ → x′
µ
= xµ + δx′

µ
, (3.22a)

ϕ(x) → ϕ′(x) = ϕ(x) + δϕ(x), (3.22b)

δϕ = 0, δxµ = 0 on ∂Ω. (3.22c)
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Notice that we are considering a functional variation of ϕ, that is, ϕ and ϕ′ are com-
pared at the same point in spacetime x.

The action of the system is

S =

∫
Ω

d4xL(ϕ, ∂µϕ, xµ), (3.23)

and its variation, which follows from (3.22), is

δS =

∫
Ω

d4x′ L(ϕ′, ∂µϕ
′, x′

µ
)−

∫
d4xL(ϕ, ∂µϕ, xµ).

Following the least action principle 2.1, we shall impose δS = 0.
As seen by (2.27), a consequence of a Lorentz transformation is the invariance of

d4x. However, if we consider a general transformation, we would have

d4x′ = |J(x)|d4x = det
{∂x′µ
∂xν

}
d4x ≃

[
1 + ∂µ(δx

µ)
]
d4x, (3.24)

at first order in the variation δxµ.

Proof. In general
d4x′ = |J(x)|d4x,

where J(x) is the Jacobian of the transformation x→ x′, namely

J(x) = det

{
∂x′µ

∂xν

}
.

Since the transformation we relate to is (3.22a), we must compute

J(x) = det(δµν + ∂νδx
µ).

Now, for a generic matrix A, we can compute the determinant as

det{A} = eTr{lnA}.

In this case, to first order in δxµ, we have

Tr{ln (δµν + ∂νδx
µ)} ≃ Tr{∂ν∂xµ} = ∂µδx

µ,
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then, the Jacobian is
J(x) = e∂µδx

µ ≃ 1 + ∂µδx
µ,

as claimed. ■

Therefore, by (3.24), the variation of the action is

δS =

∫
Ω

d4x (δL+L∂µ(δxµ)) =
∫
Ω

d4x
[∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ)+

∂L
∂xµ

δxµ+L∂µ(δxµ)
]
.

Since δ(∂µϕ) = ∂µ(δϕ), we can write

∂L
∂xµ

δxµ + L∂µ(δxµ) = ∂µ(Lδxµ),

∂L
∂(∂µϕ)

∂µ(δϕ) = ∂µ

[ ∂L
∂(∂µϕ)

δϕ
]
− ∂µ

[ ∂L
∂(∂µϕ)

]
δϕ.

Gathering the previous considerations and using Gauss theorem we have

δS =

∫
Ω

d4x
[∂L
∂ϕ

− ∂µ

( ∂L
∂(∂µϕ)

)]
δϕ+

∫
∂Ω

dσµ

[ ∂L
∂(∂µϕ)

δϕ+ Lδxµ
]
, (3.25)

which must vanish as supposed above.
The second integral vanishes because of (3.22c), while the first one, taking into

account the fundamental lemma L.1, leads to

∂L
∂ϕ

− ∂µ
( ∂L
∂(∂µϕ)

)
= 0, (3.26)

showing that it’s possible to recover Euler-Lagrange equation from Hamilton’s
principle.

Let’s finally highlight the properties a well written Lagrangian must satisfy.
It must be real for the equations of motion to have a physical interpretation. In
addition, in order for the theory to be Lorentz invariant, its action, or equivalently,
its Lagrangian, must have the same property. Indeed, through (3.26), we would
obtain covariant equations of motion.
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3.4 Noether’s theorem

Noether’s theorem relates symmetries of the system to conserved quantities. Let’s
consider the following infinitesimal transformations of the coordinates and the field

xµ → x′
µ
= xµ + δxµ, (3.27a)

ϕ(xµ) → ϕ′(x′
µ
) = ϕ(xµ) + ∆ϕ(xµ), (3.27b)

where ∆ϕ(xµ) is the total variation of ϕ, not to be confused with the functional variation
δϕ(xµ) = ϕ′(xµ)− ϕ(xµ), computed at a fixed point of spacetime.

Let’s remark that the theorem can be applied for continuous transformations, not
discrete ones. To comprehend how the Lagrangian changes after (3.27a) and (3.27b),
let’s first find a relation, to first order in δx, between δϕ and ∆ϕ. Combining
eq. (3.22b) and (3.27b), we have

∆ϕ = ϕ′(x′)− ϕ(x) = ϕ′(x′)− ϕ(x′) + ϕ(x′)− ϕ(x) ≃ δϕ+ (∂µϕ)δx
µ. (3.28)

Furthermore, for later convenience, it’s useful to define the energy-momentum
tensor

θµν ≡ ∂L
∂(∂µϕ)

∂νϕ− δµνL. (3.29)

Let’s now consider (3.27a) and (3.27b), recalling that now Ω is an arbitrary hyper-
surface and there isn’t the requirement δxµ = 0 and δϕ = 0 on ∂Ω. By adding and
subtracting a term from (3.25) yields

δS =

∫
Ω

d4x
[∂L
∂ϕ

− ∂µ

( ∂L
∂(∂µϕ)

)]
δϕ

+

∫
∂Ω

dσµ

{ ∂L
∂(∂µϕ)

[δϕ+ (∂νϕ)δx
ν ]−

[ ∂L
∂(∂µϕ)

∂νϕ− δµνL
]
δxν

}
.

Using (3.28) and (3.29), we have

δS =

∫
Ω

d4x
[∂L
∂ϕ

− ∂µ

( ∂L
∂(∂µϕ)

)]
δϕ+

∫
∂Ω

dσµ

[ ∂L
∂(∂µϕ)

∆ϕ− θµνδx
ν
]
. (3.30)

Let’s suppose the system has a symmetry, in particular that S is invariant under

∆xµ = χµ
νδω

ν , ∆ϕ = Φµδω
µ, (3.31)
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where δων is an infinitesimal parameter, ν in general is a multiplet of indices, χµ
ν is

a matrix and Φµ a set of scalars. Ignoring the case in which the action varies by a
boundary term, we shall impose δS = 0. Besides, assuming that the transformed ϕ

follows the Euler-Lagrange equation (3.26) and using (3.31) in (3.30), we can write∫
∂Ω

dσµ

[ ∂L
∂(∂µϕ)

Φν − θµρχ
ρ
ν

]
δων = 0.

Inspecting the previous equation, since ων are arbitrary independent variables,
every term of the summation over ν must vanish. This leads to∫

∂Ω

dσµ

[ ∂L
∂(∂µϕ)

Φν − θµρχ
ρ
ν

]
= 0. (3.32)

Defining Noether’s current

Jµ
ν =

∂L
∂(∂µϕ)

Φν − θµρχ
ρ
ν , (3.33)

and using Gauss theorem in (3.32) and the arbitrariness of Ω, we obtain

∂µJ
µ
ν = 0, (3.34)

that, evidently, is a conservation equation for the current Jµ
ν , that follows from the

symmetry (3.31).
We are now in a position to define Noether’s charges as

Qν(σ) =

∫
σ

dσµ J
µ
ν , (3.35)

where σ is a space-like hypersurface that extends to infinity, covering all Minkowski’s
space-time. We’ll assume that the field and its derivatives vanish rapidly towards
space infinity. Because of the condition (3.34) and by (2.30), we can conclude that
the integral above is independent on the specific space-like hypersurface we choose.
Therefore, considering the surface with element (2.28) (cf. sec. 2.2), by (2.31) we have

Qν(t) =

∫
d3x J0

ν (x). (3.36)
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Integrating (3.34) over R3 we obtain

0 =

∫
d3x ∂µJ

µ
ν =

∫
d3x ∂0J

0
ν +

∫
d3x ∂iJ

i
ν .

If we suppose that J is zero at spacial infinity, the last term vanishes as a consequence
of 3-dimensional Gauss theorem. We then have

0 =

∫
d3x ∂0J

0
ν =

1

c

d

dt

∫
d3x J0

ν =
1

c

dQν

dt
,

where in the last step we have used (3.36).
Definitely, Noether’s theorem states that

dQν

dt
= 0, (3.37)

where Qν is the conserved quantity related to the symmetry (3.31), and J0
ν can be

interpreted as its density.

3.5 Scalar fields and Klein-Gordon Lagrangian

Let’s apply the formalism developed to study the dynamics of a generic real
scalar field ϕ(x). Recalling that the Lagrangian of the system must be real and
Lorentz invariant, it can be written as

L =
1

2
∂µϕ∂

µϕ− V (ϕ), (3.38)

where the first part is the kinetic term, while the second one represents any potential
depending on the field. Using Euler-Lagrange equation (3.26) yields

□ϕ+
dV

dϕ
= 0. (3.39)

Furthermore, if the scalar field is complex, namely ϕ(x) = ϕ1+iϕ2, the Lagrangian,
that must be real, is

L = ∂µϕ
∗∂µϕ− V (ϕ∗ϕ). (3.40)
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In this case ϕ1 and ϕ2, or equivalently, ϕ and ϕ∗, must be treated independently, and
by Euler-Lagrange equation (3.26) for ϕ and ϕ∗ we have, respectively

□ϕ∗ +
∂V

∂ϕ
= 0, (3.41a)

□ϕ+
∂V

∂ϕ∗ = 0. (3.41b)

The simplest case that can be studied is the Klein-Gordon field, whose potential is
V (ϕ) = 1

2
µ2ϕ2, with µ a real constant. Eq. (3.38) becomes

LR
KG =

1

2
∂µϕ∂

µϕ− 1

2
µ2ϕ2, (3.42)

and (3.39),
(□+ µ2)ϕ = 0. (3.43)

The generalization for a complex field, using (3.40) and (3.41) is straightforward,
yielding

LC
KG = ∂µϕ

∗∂µϕ− µ2ϕ∗ϕ, (3.44)

and

(□+ µ2)ϕ∗ = 0, (3.45a)

(□+ µ2)ϕ = 0. (3.45b)

If we look for a solution with a plane wave ansatz

ϕp(x) ≃ e−ikαxα

, (3.46)

with kµ = (k0,k) and xµ = (x0,x) = (ct,x), by substitution in (3.45), we would
obtain the following dispersion relation

−kαkα + µ2 = 0, (3.47)

that has interesting implications in quantum field theory, as we shall see.
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3.6 Lagrangian for electromagnetic field

Electromagnetic field in vacuum. Let’s recall that in covariant form electromag-
netism can be described through eq. (2.47a) and (2.47b), that, for clarity, are displayed
below

∂µF
µν =

4π

c
Jν ,

∂µF̃
µν = 0.

Concentrating on the equation giving the dynamics of the field, eq. (2.47a), it can be
written using the four-potential, through (2.52), as (2.53), namely

F µν = ∂µAν − ∂νAµ,

□Aν − ∂ν(∂µA
µ) =

4π

c
Jν .

As turns out studying the quantization of the electromagnetic field, it’s conve-
nient to proceed using the four-potential Aµ. Therefore, the Lagrangian L must
contain the four-potential Aµ and its first derivatives ∂µAµ. Further, electromag-
netism is invariant under gauge transformations (cf. sec. 2.5), so we expect the
Lagrangian to reflect this property. Finally, it must be Lorentz invariant. We should
use these guidelines to guess a form for L.

It’s convenient to write the Lagrangian using F µν , since, this way, it would
contain Aν and, by (2.55), it would be gauge invariant.

As seen in sec. 2.4, we can derive two scalars from the field-strength tensor F µν ,
that is, F µνFµν by eq. (2.50a) and F̃ µνFµν by eq. (2.50b). We could use one of these
to write the Lagrangian, but which one? Since F̃ µνFµν is a four-divergence and so
doesn’t contribute to the equations of motion, F µνFµν turns out to be the proper one.

Proof. Using the definition of the dual tensor (2.23) and eq. (2.52),

F̃ µνFµν =
1

2
εµνρτFρτFµν =

1

2
εµνρτ (∂µAν − ∂νAµ) (∂ρAτ − ∂τAρ)

=
1

2
εµνρτ [∂µAν∂ρAτ − ∂νAµ∂ρAτ − ∂µAν∂τAρ + ∂νAµ∂τAρ] .

Swapping two dummy indices in the parenthesis and exchanging the same
indices on the Levi-Civita symbol (2.24), changing sign since the latter is completely
antisymmetric, we can show that the four terms of the summation are identical. For
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example, let’s show that the second term is equal to the first one,

−1

2
εµνρτ∂νAµ∂ρAτ = −1

2
ενµρτ∂µAν∂ρAτ = +

1

2
εµνρτ∂µAν∂ρAτ .

Finally, we can write

F̃ µνFµν = 2εµνρτ∂µAν∂ρAτ = 2∂µ (ε
µνρτAν∂ρAτ )− 2εµνρτAν∂µ∂ρAτ

= 2∂µ (ε
µνρτAν∂ρAτ ) ,

where in the last step, the second term of the sum vanishes because it represents
a contraction in µ–ρ of a quantity that is antisymmetric in µ–ρ (i.e., εµνρτ ) and a
quantity that is symmetric (i.e., Aν∂µ∂ρAτ ). ■

Multiplied by a conventional constant, the Lagrangian of the electromagnetic
field with no sources is

L0
em = − 1

16π
FµνF

µν . (3.49)

Proof. Let’s apply Euler-Lagrange equation (3.26) to (3.49). Since L0
em contains only

F µν which, by (2.52), contains only the derivatives of Aµ, we have

∂L0
em

∂Aν

= 0.

Further, we have

∂L0
em

∂(∂µAν)
=
∂L0

em

∂Fρτ

∂Fρτ

∂(∂µAν)
= − 1

8π
F ρτ

(
δµρ δ

ν
τ − δµτ δ

ν
ρ

)
= − 1

8π
(F µν − F νµ) = − 1

4π
F µν .

Applying Euler-Lagrange equation

∂µ
∂L0

em

∂(∂µAν)
=
∂L0

em

∂Aν

, (3.50)

yields
∂µF

µν = 0,

that is Maxwell’s equation (2.47a) with no sources. ■

Electromagnetic field with sources. We aim to add a term to L0
em to represent

the sources. In particular, we expect a term that leads to (4π/c)Jν while applying
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Euler-Lagrange equation without any influence on L0
em. This can be achieved by

Lem = − 1

16π
FµνF

µν − 1

c
JµAµ. (3.51)

Applying (3.50) to (3.51), we would find (2.47a), as expected.
However, since (3.51) contains explicitly Aµ, performing a gauge transforma-

tion (2.54), Lem will change,

L′
em = − 1

16π
F ′
µνF

′µν − 1

c
JµA′

µ = − 1

16π
FµνF

µν − 1

c
JµAµ +

1

c
Jµ∂µχ = Lem +

1

c
Jµ∂µχ.

Nevertheless, we can write

Jµ∂µχ = ∂µ(J
µχ)− χ∂µJ

µ = ∂µ(J
µχ),

because of the continuity equation (2.41). Therefore, we have

L′
em = Lem +

1

c
∂µ(J

µχ),

and being the last term a four-divergence, it doesn’t contribute to the equations of
motion, that are, as a result, gauge invariant. Therefore, gauge invariance is related
to the conservation of charge.

Towards Proca’s equation. As known, the mediator of electromagnetic interactions
is the photon, a particle with spin 1 and no mass. Let’s consider the electromagnetic
field in vacuum, represented by L0

em, eq. (3.49). Interpreting the field Aµ as repre-
senting the photon, we expect L0

em not to contain any mass terms. On the other hand,
as we shall see, the Klein-Gordon field describes a particle with spin 0 and mass.
Inspecting eq. (3.42), we can guess that the quadratic term in ϕ represents the mass
term of the underlying particle. This turns out to be correct. Therefore, if we wish to
describe a particle with spin 1 and mass we could write the Lagrangian

Lproca = −1

4
FµνF

µν +
µ2

2
AρA

ρ (3.52)

and Euler-Lagrange equation (3.26) leads to the so-called Proca equation

□Aν − ∂ν(∂µA
µ) + µ2Aν = 0. (3.53)
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Proof. Using eq. (2.52)

Lproca = −1

2
∂µAν∂

µAν +
1

2
∂µAν∂

νAµ +
µ2

2
AρA

ρ,

so we have

∂Lproca

∂(∂µAν)
= −∂µAν + ∂νAµ = −F µν ,

∂Lproca

∂Aν

= µ2Aρδνρ = µ2Aν .

Applying Euler-Lagrange equation

∂µ
∂Lproca

∂(∂µAν)
=
∂Lproca

∂Aν

,

we have
∂µF

µν = −µ2Aν .

Using again (2.52) and changing sign yields

∂µ(∂
µAν − ∂νAµ) = −µ2Aν ,

the conclusion is straightforward. ■

An interesting property appears if we differentiate Proca’s equation (3.53). We
would obtain

∂ν∂µF
µν + µ2∂νA

ν = 0.

Since ∂ν∂µ is symmetric while F µν is antisymmetric, their contraction vanishes and
remains

∂νA
ν = 0, (3.54)

a condition similar to (2.56). However, while in electromagnetism it was related
to the specific choice of gauge fixing, here the condition must always be satisfied.
Therefore, we can cast Proca’s equation as

(□+ µ2)Aν = 0, (3.55a)

∂νA
ν = 0, (3.55b)

equivalent to four Klein-Gordon fields (4.24) with the constraint (3.54).





CHAPTER 4

RELATIVISTIC QUANTUM MECHANICS

As seen in chapter 3, it’s natural to apply Lagrangian formalism, other than for
particles, also for fields. In classical physics, where classical is meant to be non-
quantum, particles and fields are two distinguished entities, the former describing
localized objects and the latter extended physical quantities which allow interactions
to happen. In quantum field theory this dualism is outdated and replaced by a
unified physical entity: the quantum field.

This possibility arises trying to generalize Schrödinger equation to relativistic
particles. Indeed, this process leads to states with negative energy, which make
impossible the probabilistic interpretation that is so natural in quantum mechanics.
A way to overcome these difficulties is to give up on the particle interpretation and
try to describe a system of an infinite number of indistinguishable particles through
a field. That said, our road will be to follow the first approach, the so-called first
quantization, in the framework of relativistic quantum mechanics.

Therefore, we’ll deal with wave equations describing the dynamics of quantum
particles. In particular, we’ll approach Klein-Gordon field as describing a massive
particle with s = 0. The goal will be the scalar electrodynamics, which describes
interactions between the previously described particles and the electromagnetic field.
Then, we’ll seek for a general method to obtain an interaction theory from a free one,
leading to the gauge principle. Ultimately, we’ll approach the latter critically.
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4.1 Quantum mechanics in a nutshell

Let’s revise some concepts about the foundation of quantum mechanics. Particles
are described by wave functions ψ(x, t) obeying the Schrödinger equation

iℏ
∂ψ

∂t
= − ℏ2

2m
∇2ψ + Uψ. (4.1)

In particular, particles’ momentum p and energy E are related to wave functions’
angular frequencies ω and wave vectors k by the Planck-Einstein relations

E = ℏω,

p = ℏk,

that can be written in covariant form as

pµ = ℏkµ, pµ = (E/c,p), kµ = (ω/c,k). (4.3)

More precisely, it’s convenient to formulate the theory in Dirac’s notation, where
a state s of the system is codified by a normalized ket |ψ⟩ defined in a Hilbert space
H, while its observables Q are represented by a selfadjoint1 linear operator Â of H.
As known from linear algebra, being the operator selfadjoint, it always admits a
generalized orthonormal basis of eigenkets, fulfilling the following requirements,

Â |ξ⟩ = |ξ⟩x(ξ), (4.4a)

⟨ξ|η⟩ = δ(ξ, η), (4.4b)∫
|ξ⟩ dµ(ξ) ⟨ξ| = 1̂, (4.4c)

where dµ(ξ) is a suitable measure and δ(ξ, η) a generalized delta function, consisting
of the product of Dirac’s delta for continuous quantum numbers and the Kronecker’s
delta for discrete ones. Since the operator Â is Hermitian, its eigenvalues x(ξ) are
real.

In this context, Schrödinger’s equation becomes

iℏ
d

dt
|ψ(t)⟩ = Ĥ |ψ(t)⟩ . (4.5)

1A selfadjoint operator is a Hermitian one with the additional property of having an orthonormal
basis of eigenkets.
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Moreover, the result of a measurement of Q is not determined by s, however the
probabilities of the possible results are. In particular, the probability of a possible
outcome of a measurement of the observable within the numerical range χ is

ps,Q(χ) =

∫
xξinχ

dµ(ξ) |⟨ξ|ψ⟩|2, (4.6)

where the kets |ξ⟩ are a generalized orthonormal basis of eigenkets of Â and xξ are
the corresponding eigenvalues. In addition, the expectation value of the results of
the measurements of Q is given by

⟨Q⟩s =
∫

dµ(ξ)xξ|⟨ξ|ψ⟩|2, (4.7)

or, in general, for any real function f(x),

⟨f(Q)⟩s =
∫

dµ(ξ) f(xξ)|⟨ξ|ψ⟩|2. (4.8)

Furthermore, a set of compatible observables Q1, . . . Qn are represented by a set
of commuting selfadjoint linear operators Â1 . . . Ân, where Âi corresponds to Qi, and
they are said to be commuting if their commutator is vanishing, namely[

Âi, Âj

]
= ÂiÂj − ÂjÂi = 0. (4.9)

The generalization of the previous relations is straightforward.
Moving on, the unique, up to a phase, choices of the orthonormal basis |ξ⟩

associated with a complete set of commuting selfadjoint operators Âi is called
the Âi representation. The representative set ⟨ξ|ϕ⟩ of a ket |ϕ⟩ with respect to the
basis is called the representative set of |ϕ⟩ in the representation. In this context,
we are interested in the Schrödinger representation, consisting of the generalized
orthonormal basis |x⟩ of the position operator q̂. Relations (4.4) become

q̂ |x⟩ = |x⟩x, (4.10a)

⟨x′|x⟩ = δ(x′ − x), (4.10b)∫
|x⟩ d3x ⟨x| = 1̂. (4.10c)
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The representative ⟨x|ψ⟩ of a ket |ψ⟩ in the representation is the Schrödinger
wave function ψ(x) associated with |ψ⟩, namely

⟨x|ψ⟩ = ψ(x). (4.11)

In this representation, Schrödinger equation (4.5) becomes (4.1) and the position,
momentum, angular momentum and Hamiltonian operators q̂, p̂, l̂ and Ĥ act on
the basis bras ⟨x| as

⟨x| q̂ = x ⟨x| , (4.12a)

⟨x| p̂ = −iℏ∇x ⟨x| , (4.12b)

⟨x| l̂ = −iℏx ∧∇x ⟨x| , (4.12c)

⟨x| Ĥ =

[
− ℏ2

2m
∇x

2 + U(x)

]
⟨x| . (4.12d)

In Schrödinger representation (4.10), by (4.11), eq. (4.6) becomes

p(x, t) =

∫
d3x |⟨x|ψ⟩|2 =

∫
d3x |ψ(x)|2, (4.13)

and can be interpreted as the probability of finding the particle described by ψ at
position x at time t. Therefore, we can define a probability density

ρ(x, t) = ψ∗ψ. (4.14)

In addition, we can define a probability current density j(x, t) as

j(x, t) =
ℏ

2im
(ψ∗∇ψ − ψ∇ψ∗) , (4.15)

and show that ρ and j follows the continuity equation

∂ρ

∂t
+∇ · j = 0. (4.16)
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Proof. Supposing the potential is real and considering Schrödinger equation (4.1)
multiplied by ψ∗ and the conjugate equation multiplied by ψ,

iℏψ∗∂ψ

∂t
= − ℏ2

2m
ψ∗∇2ψ + Uψ∗ψ,

−iℏψ∂ψ
∗

∂t
= − ℏ2

2m
ψ∇2ψ∗ + Uψψ∗.

Subtracting them, we obtain

iℏ
(
ψ∗∂ψ

∂t
+ ψ

∂ψ∗

∂t

)
= − ℏ2

2m

(
ψ∗∇2ψ − ψ∇2ψ∗) .

The first parenthesis, by (4.14), is equivalent to the time derivative of the probability
density, while the second one can be written as

∇ (ψ∗∇ψ − ψ∇ψ∗) .

Using (4.15) the conclusion is straightforward. ■

This can be interpreted as the conservation of the probability, or rather, the
particle being, at any time, somewhere in space. This leads to the conclusion that a
non-relativistic quantum particle can’t be created or destroyed, and we can see this
if we take the non-relativistic limit of the energy,

E = mc2
√

1 +
p2

m2c2
= mc2 +

p2

2m
+ . . . (4.18)

Indeed, as c→ ∞, it would take an infinite amount of energy to create a particle.

4.2 From Schrödinger to Klein-Gordon equation

The easiest way to reach Schrödinger equation for a free quantum particle in
Schrödinger representation is to start from its classical Hamiltonian,

H =
p2

2m
, (4.19)
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and promote H and p to operators acting on the wave function ψ that describes the
particle. This can be achieved performing the following formal substitutions

H → Ĥ = iℏ
∂

∂t
, (4.20a)

p→ p̂ = −iℏ∇, (4.20b)

leading to (4.1). The natural generalization of this method for a relativistic free
particle would be starting from its Hamiltonian,

H =
√
p2c2 +m2c4, (4.21)

and perform the substitutions (4.20), obtaining

iℏ
∂ψ(x, t)

∂t
=

√
−ℏ2c2∇2 +m2c4 ψ(x, t). (4.22)

However, the previous equation contains the square root of a differential operator,
leading to a non-local theory that is difficult to interpret and to handle. A simpler
way to operate would be to remove the square root, starting from

H2 = p2c2 +m2c4 (4.23)

and then performing the substitutions (4.20). In this way, we would obtain the
Klein-Gordon equation (3.43), namely

(□+ µ2)ψ(x) = 0, (4.24)

where µ is a mass term, equivalent to

µ =
mc

ℏ
. (4.25)

Continuity equation. In analogy with Schrödinger equation, we wish to find a con-
tinuity equation like (4.16). Similarly as before, by subtracting eq. (4.24) multiplied
by ψ∗ and the conjugate equation multiplied by ψ, we obtain

ψ∗(□+ µ2)ψ − ψ(□+ µ2)ψ∗ = 0,

ψ∗∂µ∂
µψ − ψ∂µ∂

µψ∗ = ∂µ(ψ
∗∂µψ − ψ∂µψ∗) = 0.
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If we define the current Jµ as

Jµ =
1

2im
(ψ∗∂µψ − ψ∂µψ∗), (4.27)

it would satisfy the continuity equation ∂µJ
µ = 0. The time component of (4.27)

should be the probability density ρ, as before, but this interpretation can’t be correct,
since it’s not a positive definite quantity. Indeed, if we consider

J0 = − i

2m
(ψ∗∂0ψ − ψ∂0ψ

∗),

since the Klein-Gordon equation (4.24) is a second-order differential equation in
time, both ψ and ∂0ψ can be chosen arbitrarily as initial conditions, so J0 can also be
negative.

Plane wave solution. As seen in sec. 3.5, the plane wave solution for Klein-Gordon
equation leads to the dispersion relation (3.47). Since we are interested in relativistic
quantum particles, using Planck-Einstein relations (4.3) we find that the plane wave
is a solution of the equation if the mass-shell condition is satisfied, namely, it must
be

E2 = |p|2c2 +m2c4 =⇒ E = ±
√

|p|2c2 +m2c4 = ±Ep. (4.28)

Notice that, besides the expected solution with positive energy, there is the
possibility for the energy to be negative. Since the model hasn’t a lower boundary
for energies, this leads to an interpretative problem. In quantum field theory this
difficulty is overcome by reinterpreting the solution with E = −Ep as representing
antiparticles with positive energy.

Using again the Planck-Einstein relations (4.3), the plane wave solution (3.46)
becomes

ϕp(x) ∼ e−
i
ℏpαx

α

= e−
i
ℏEt+ i

ℏp·x.

Using the two possible energies (4.28), we can index the plane wave solutions by
the spacial momentum p and the sign of the energy, namely

ϕ+
p (x) = e−

i
ℏEpt+

i
ℏp·x,

ϕ−
p (x) = e+

i
ℏEpt− i

ℏp·x,

where, by convention, in ϕ−
p (x) we have substituted p → −p to make it the complex

conjugate of ϕ+
p (x).
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Therefore, using a conventional normalization, we can write a general solution
as a linear combination of the two plane waves, namely

ϕ(x) =

∫
d3p

(2π)3
1

2Ep

[
a(p)e−

i
ℏEpt+

i
ℏp·x + b∗(p)e+

i
ℏEpt− i

ℏp·x
]
. (4.30)

The complex conjugate is

ϕ∗(x) =

∫
d3p

(2π)3
1

2Ep

[
b(p)e−

i
ℏEpt+

i
ℏp·x ++a∗(p)e+

i
ℏEpt− i

ℏp·x
]
. (4.31)

Propagator. Let’s now consider an inhomogeneous Klein-Gordon equation, namely

(□+ µ2)ϕ(x) = −J(x), (4.32)

where J(x) is an arbitrary source and the minus sign is a convention. We can write a
general solution by the Green function method, used in sec. 2.6 to solve Maxwell’s
equations. In particular, a Green function G(x) for (4.32) is defined through

(□+ µ2)G(x) = −δ4(x), (4.33)

and the solution for (4.32) can be written as

ϕ(x) = ϕ0(x) +

∫
d4y G(x− y)J(y), (4.34)

where ϕ0(x) is a solution of the homogeneous equation (4.24).
As already seen, there are many ways to implement a Green function to propagate

information, depending on the boundary conditions chosen. In quantum field theory
it would be more correct to take the propagator into account, which is an operator
that propagates the quanta of a field. In this particular case, it can be defined as

∆(x− y) =
i

ℏ2c
G(x− y). (4.35)

Without pursuing this argument further, we have to say that, in order to solve the
negative energies’ problem, we can’t use the retarded Green function (2.66) anymore.
Instead, we should implement the so-called Feynman propagator: it propagates the
states with positive energy forward in time and those with negative energy back-
wards. This allows to reinterpret the latter as representing antiparticles with positive
energy. To implement this prescription, we should proceed as in sec. 2.6, writing the
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propagator in Fourier’s space and choosing a suitable integration path to avoid the
integrand’s poles.

Using (A.5) we’d have

G(x) =
1

(2π)4

∫
d4k e−ikαxα

G̃(k).

Using (A.15) we can write the delta as

δ4(x) =
1

(2π)4

∫
d4k e−ikαxα

,

and substituting into (4.33) leads to

(□+ µ2)

∫
d4k e−ikαxα

G̃(k) = −
∫

d4k e−ikαxα

,∫
d4k

[
kαk

α − µ2
]
e−ikαxα

G̃(k) =

∫
d4k e−ikαxα

.

Since the Fourier transform is complete, the last relation implies

G̃(k) =
1

kαkα − µ2
,

leading to

G(x) =
1

(2π)4

∫
d4k

e−ikαxα

kαkα − µ2
.

Using (4.3) and (4.25), we can refer to pµ rather than kµ, and write

G(x− y) =
ℏ2

(2π)4

∫
d4p

e−
i
ℏpα(x

α−yα)

pαpα −m2c2

=
ℏ2

(2π)4

∫
d3p e

i
ℏp·(x−y)

∫
dp0

e−
i
ℏp0(x0−y0)

(p0)2 − |p|2 −m2c2

=
ℏ2

(2π)4

∫
d3p e

i
ℏp·(x−y)

∫
dp0

e−
i
ℏp0(x0−y0)(

p0 +
Ep

c

)(
p0 − Ep

c

) ,
(4.37)

where in the last step we have used (4.28). We can notice that there are two poles
at pαpα −m2c2 = 0, corresponding to particles that respect the mass-shell relation,
called real particles. If pαpα − m2c2 ̸= 0 holds, the waves are thought to represent
particles that can’t propagate at large distances, called virtual particles.
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Re p0

Im p0

−Ep/c

+Ep/c

x0 − y0 < 0

x0 − y0 > 0

−r +r

Γ1

Γ2

Figure 4.1 Deformation of the integration path to implement the Feynman prop-
agator. The blue line, Γ1, is for x0 − y0 < 0 and allows propagating backward in
time negative energies p0 = −Ep/c. The red line, Γ2, is for x0 − y0 > 0 and allows
propagating forward in time positive energies p0 = +Ep/c.

Performing the integration over p0, we can implement the Feynman propagator
choosing the integration path in fig. 4.1. Indeed, for x0 − y0 < 0, we must close the
integration path in the upper half-plane to use Jordan’s Lemma L.2, as showed by
the blue line of fig. 4.1. Using (A.28) and the residue theorem (A.23), the final result
is propagating the pole p0 = −Ep/c backward in time. Similarly, for x0 − y0 > 0, we
must choose the red path of fig. 4.1, that entails the propagation in the future of the
pole p0 = +Ep/c.

Performing the computation,

I0 ≡
∫

dp0
e−

i
ℏp0(x0−y0)(

p0 +
Ep

c

)(
p0 − Ep

c

)
=

c

2Ep

∫
dp0 e

− i
ℏp0(x0−y0)f(p0),

where
f(p0) =

1

p0 − Ep

c

− 1

p0 +
Ep

c

.
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Moving on,

I0 =
c

2Ep

[
lim
r→∞

∮
Γ1

f(p0)e
− i

ℏp0(x0−y0)θ(y0 − x0) + lim
r→∞

∮
Γ2

f(p0)e
− i

ℏp0(x0−y0)θ(x0 − y0)

]
=
iπc

Ep

[∑
j1

Res f(p0)e
− i

ℏp0(x0−y0)|p0=p0j1
θ(y0 − x0)

−
∑
j2

Res f(p0)e
− i

ℏp0(x0−y0)|p0=p0j2
θ(x0 − y0)

]
,

where the minus sign is due to the orientation of Γ2 and p0j1 are the poles of f(p0)
within Γ1 and p0j2 within Γ2. Using Cauchy’s theorem A.16 and computing the
residue with (A.22), we’d obtain

I0 = −iπc
Ep

[
e−

iEp
ℏc (y0−x0)θ(y0 − x0) + e−

iEp
ℏc (x0−y0)θ(x0 − y0)

]
= −iπc

Ep

e−
iEp
ℏc |x0−y0|.

Inserting the last expression in (4.37), we can finally write the propagator (4.35) as

∆(x− y) =

∫
d3p

(2π)3
e

i
ℏp·(x−y) e

− iEp
ℏc |x0−y0|

2Ep

. (4.38)

Symmetries. The complex Klein-Gordon Lagrangian (3.44) is invariant under the
following global2 transformations,

ϕ(x) → ϕ′(x) = e−iαϕ(x), (4.39a)

ϕ∗(x) → ϕ′∗(x) = eiαϕ∗(x), (4.39b)

where α is a real constant. They are called first-kind gauge transformations. The
infinitesimal form is

δϕ(x) = −iαϕ(x), (4.40a)

δϕ∗(x) = iαϕ∗(x). (4.40b)

In relation to notation (3.31) used for Noether’s theorem, since this symmetry is
internal, meaning that there is no transformation over the coordinates, we have

χ = 0, Φ = −iϕ, Φ∗ = iϕ∗.

2Global means that the transformation is carried out in the same way over the entire space, or
equivalently, the parameter α is a constant.
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Therefore, the Noether’s current (3.33) is

Jµ =
∂L

∂(∂µϕ)
(−iϕ) + ∂L

∂(∂µϕ∗)
(iϕ∗).

Performing the computation, inserting the Lagrangian (3.44) in the previous
relation, we find

Jµ = i (ϕ∗∂µϕ− ϕ∂µϕ∗) , (4.41)

and the corresponding conserved charge by eq. (3.36) is

Q(t) =

∫
d3x J0(x) =

i

c

∫
d3x

[
ϕ∗∂ϕ

∂t
− ϕ

∂ϕ∗

∂t

]
.

4.3 Scalar electrodynamics

From now on, we shall assume c = ℏ = 1. As a consequence, it is µ = m.
In quantum field theory the Klein-Gordon field represents a free particle with

mass m and no spin. As we have just seen, if the field is complex, it admits a
conserved current (4.41). Let’s see that if we force the Lagrangian to be invariant
under local transformations of the kind (4.39), this current allows an interaction
with the electromagnetic field. Basically, we impose α = α(xµ) to depend on the
particular point of Minkowski’s space-time. This way, we can write the so-called
second-kind gauge transformations as

ϕ(x) → ϕ′(x) = e−iα(x)ϕ(x), (4.42a)

ϕ∗(x) → ϕ′∗(x) = eiα(x)ϕ∗(x), (4.42b)

or, infinitesimally,

δϕ(x) = −iα(x)ϕ(x), (4.43a)

δϕ∗(x) = iα(x)ϕ∗(x). (4.43b)

First, let’s notice that ∂µϕ doesn’t transform covariantly, meaning that its trans-
formation is different from that of ϕ. Indeed, we have3

∂µϕ(x) → ∂µϕ
′(x) = e−iα(x)∂µϕ− ie−iα(x)∂µα(x)ϕ(x).

3When there are no parentheses, the derivative ∂µ is intended to be applied only on the contiguous
term.
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Consequently, the Lagrangian (3.44) is no longer invariant under the transforma-
tions (4.42). Indeed, it transforms as

L → L′ = ∂µϕ
′∗∂µϕ′ −m2ϕ′∗ϕ′

= ∂µ
(
eiα(x)ϕ∗(x)

)
∂µ

(
e−iα(x)ϕ(x)

)
−m2ϕ∗(x)ϕ(x)

= L − i∂µα∂µϕ
∗ϕ+ i∂µαϕ

∗∂µϕ+ ∂µα∂
µαϕ∗ϕ

= L+ ∂µαJ
µ + ∂µα∂

µαϕ∗ϕ,

where we have used the definition (4.41).
As said before, we want the total Lagrangian to be invariant under gauge trans-

formations (4.42). This is possible if we suppose the existence of a four-vector Aµ

that couples to the current Jµ through a constant q, and transforms with the field as

Aµ(x) → A′
µ(x) = Aµ(x) +

1

q
∂µα(x). (4.44)

The term to add to L will be
L1 = −qAµJ

µ. (4.45)

Under the simultaneous transformations (4.42) and (4.44), the current (4.41) turns
into

Jµ → J ′µ = Jµ + 2∂µαϕ∗ϕ,

and the Lagrangian (4.45) into

L1 → L′
1 = L1 − 2qAµ∂

µαϕ∗ϕ− ∂µαJ
µ − 2∂µα∂

µαϕ∗ϕ.

Therefore, the variation of L+ L1 will be

L+ L1 → L′ + L′
1 = L+ L1 − ∂µα∂

µαϕ∗ϕ− 2qAµ∂
µαϕ∗ϕ. (4.46)

To make the total Lagrangian invariant under (4.42) and (4.44), we must add
another term, that is

L2 = q2AµA
µϕ∗ϕ. (4.47)
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Proof. The Lagrangian L2 transforms as

L2 → L′
2 = q2A′

µA
′µϕ′∗ϕ′

= q2
(
Aµ +

1

q
∂µα

)(
Aµ +

1

q
∂µα

)
ϕ∗ϕ

= L2 + ∂µα∂
µαϕ∗ϕ+ 2qAµ∂

µαϕ∗ϕ.

Combined with (4.46), we have

L+ L1 + L2 → L′ + L′
1 + L′

2 = L+ L1 + L2,

as claimed. ■

At this point the Lagrangian L+ L1 + L2 is invariant under the gauge transfor-
mations (4.42) and (4.44), but it’s still reasonable to suppose that the field Aµ itself,
other than interacting with the field’s current Jµ, contributes directly on the total
Lagrangian. Its contribution must be invariant under (4.44), and it’s immediate to
show that a correct term is given by

L3 = − 1

16π
F µνFµν , F µν ≡ ∂µAν − ∂νA

µ. (4.48)

Summing up (3.44), (4.45), (4.47) and (4.48), the total Lagrangian

Ltot = (∂µϕ+ iqAµϕ) (∂
µϕ∗ − iqAµϕ∗)−m2ϕ∗ϕ− 1

16π
F µνFµν (4.49)

is invariant under (4.42) and (4.44). It’s also known as scalar electrodynamics La-
grangian.

Let’s analyze what we’ve found. The free Klein-Gordon Lagrangian (3.44) is
invariant under global U(1) transformations4, with the Noether’s current (4.27)
linked to it. Imposing an invariance under local U(1) transformations leads to an
interaction theory. Indeed, the Lagrangian (4.48) represents the free electromagnetic
field (3.49), while (4.45) represents the coupling between the sources of the latter and
the four-potential, as in (3.51). Therefore, the gauge potentialAµ can be interpreted as
the electromagnetic vector potential (2.51), obeying the gauge transformation (2.54).
Clearly, α(x) = qχ represents the gauge function, while q is a coupling constant
between the charged field ϕ and the gauge field Aµ. In quantum field theory it’ll

4Group theory exceeds the purpose of this thesis, therefore we won’t analyze it. A U(1) transfor-
mation is, essentially, a rotation on a complex space.
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be the charge of a particle excitation of the quantum field. Summarizing, we can
interpret the electromagnetic field as a gauge field to be introduced with the aim to
guarantee invariance under local U(1) gauge transformations. Let’s finally remark a
very important aspect: gauge invariance requires that the gauge field is massless.
Indeed, a hypothetical mass term for the gauge field would have the form

Lmass =M2AµA
µ,

but this would make the total Lagrangian no longer invariant under the transforma-
tion (4.44).

A mathematical elegant way to derive the interacting theory (4.49) from the free
one (3.44) consists of replacing the derivatives ∂µ by the so-called covariant derivatives,

∂µϕ→ Dµϕ = (∂µ + iqAµ)ϕ, (4.50a)

∂µϕ
∗ → Dµϕ

∗ = (∂µ − iqAµ)ϕ
∗. (4.50b)

It’s easy to show that they transform as the field.

Proof. Let’s consider Dµϕ in (4.50a). Under (4.42) and (4.44), it transforms like

Dµϕ→ D′
µϕ

′ = ∂µϕ
′ + iqA′

µϕ
′

= e−iα [∂µϕ− i∂µαϕ] + iqe−iα

[
Aµ +

1

q
∂µα

]
ϕ

= e−iα [∂µ + iqAµ]ϕ = e−iαDµϕ.

Following step by step the computations with Dµϕ
∗ in (4.50b), we’d have

Dµϕ
∗ → eiαDµϕ

∗,

showing what was claimed. ■

4.4 Gauge invariance as a principle

The method explained in the previous section is known as gauge principle. It
consists of the replacement of the usual derivatives by the covariant ones, to obtain
an interaction theory from a free one. The gauge field Aµ is interpreted as a new
field with which the matter field interacts, and it has its own dynamics, that can be
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highlighted by its relation to a stress-field tensor that obeys some field equations,
like the electromagnetic tensor in the case studied.

Let’s revise this principle critically, starting from Michael Redhead’s suggestive
prompt [18]:

“The gauge principle is generally regarded as the most fundamental cornerstone
of modern theoretical physics. In my view its elucidation is the most pressing
problem in current philosophy of physics.”

Let’s retrace what we have done in the previous section with a slight change in
notation, consisting of the addition of q somewhere, as we shall see. The superscript
(m) will refer to the matter field, while (g) to the gauge field. The free Klein-Gordon
Lagrangian

L = ∂µϕ
∗∂µϕ−m2ϕ∗ϕ

is invariant under global, first-kind gauge transformation

ϕ(x) → ϕ′(x) = eiq
(m)αϕ(x),

and, by Noether’s theorem, there is an associated conserved current that obeys a
continuity equation,

Jµ(m) = iq(m) [ϕ∗∂µϕ− ϕ∂µϕ∗] ,

∂µJ
µ(m) = 0.

The free Lagrangian is required to be invariant under local, second-kind gauge
transformation

ϕ(x) → ϕ′(x) = eiq
(m)α(x)ϕ(x),

and it can be achieved by replacing the ordinary derivatives with the covariant ones,

∂µ → Dµ = ∂µ + iq(m)Aµ.

This procedure is equivalent to introduce a new vector potential Aµ(x) which trans-
forms as

Aµ(x) → A′
µ(x) = Aµ(x) +

1

q(m)
∂µα(x),
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and, as seen by (4.45), leads to an interaction term in the Lagrangian given by5

L(m)
int = −J (m)

µ Aµ. (4.52)

At this stage, we have done a merely internal change of coordinates. In order for
the theory to have a physical relevance, we need to link Aµ to a field-strength tensor
that obeys some field equations. This can be done by

F µν = ∂µAν − ∂νAµ,

interpreting it as the electromagnetic tensor.
As remarked by Holger Lyre [11], we can’t identify a piori Aµ and F µν as the elec-

tromagnetic potential and tensor. Indeed, let’s consider Maxwell’s electrodynamics.
It can be described by the Maxwell’s equations6

∂µF
µν = 4πJν(g),

∂µF̃
µν = 0,

where, now, F µν is precisely the electromagnetic tensor. As we can see, to describe
the dynamics of the field, we have to know its sources, represented by the four-
current

Jµ(g) = ρ(g)
dxµ

ds
,

where ρ(g) is the density of the field charge q(g) per volume element V and dxµ

ds
is the

four-velocity of V (see sec. 2.3). As seen by (3.51), the coupling term between Jµ(g)

and the four-potential Aµ is given by

L(g)
int = −J (g)

µ Aµ. (4.54)

Comparing (4.52) and (4.54), it’s natural to make the identification

Lint = L(m)
int = L(g)

int , (4.55)

but it comprises a subtle implication. Indeed, this is possible only by the prescription

q(m) = q(g), (4.56)

5Notice that, now, the term q(m) is absorbed in the definition of Jµ.
6Remember the convention c = ℏ = 1.
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which can be thought as a generalized equivalence principle, similar to the correspon-
dence between inertial and gravitational mass in general relativity.

Indeed, let’s suppose that (4.56) is not valid, namely

q(m)

q(g)
̸= 1.

This would mean that different types of particles of equal electric charge would
couple differently to the electromagnetic field. This isn’t what we observe, since the
experiments suggest that the coupling constant is universal.

In conclusion, both the gauge principle and the equivalence principle lead to the
natural combination of the matter field and the interaction field, which can be now
thought as the electromagnetic field without any ambiguity. This means that we
can’t think about the charge as a Klein-Gordon field’s property, and, therefore, in
an interacting system the division between source fields and fields mediating the
interactions is somewhat artificial.



APPENDIX A

MATHEMATICAL APPENDIX

A.1 Fourier transform

A Fourier transform is a mathematical transformation that associates to a function

f : Rn → C (A.1)

another function through the operation

(Ff)(k) = f̃(k) =

∫
Rn

dnx eik·xf(x), (A.2)

where ξ · x = ξ1x1 + · · ·+ ξnxn. Further, the inverse Fourier transform is defined as

(F̄f)(x) = 1

(2π)n

∫
Rn

dnk e−ik·xf̃(k), (A.3)

and one is the inverse transformation of the other.
The generalization to Minkowski’s space-time is straightforward. Indeed, con-

sidering the Minkowski’s inner product, kµxµ, defined by (2.20), we’d have

(Ff)(k) = f̃(k) =

∫
M

d4x eikαx
α

f(x) (A.4)

for the Fourier transform and

(F̄f)(x) = 1

(2π)4

∫
M

d4k e−ikαxα

f̃(k) (A.5)

for the inverse transform.
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A.2 Dirac’s delta

Being beyond our purposes, we won’t dwell on the details of distributions’ theory,
but we’ll formally define the Dirac’s delta as a “function” δ(x− x′) that, multiplied to
a sufficiently regular function f(x), and integrating over the real axis, yields∫ +∞

−∞
dx f(x)δ(x− x′) = f(x′). (A.6)

Integrating over the real axis,∫ +∞

−∞
dx δ(x− x′) = 1. (A.7)

It isn’t necessary to integrate from −∞ to +∞, since we’d have the same result
integrating over a finite interval that contains x′.

As follows, some useful properties.

• It is an even function,
δ(x− x′) = δ(x′ − x). (A.8)

• It can be thought as the inverse Fourier transform of the identity,

δ(x− x′) =
1

2π

∫ +∞

−∞
dx e−ik(x−x′). (A.9)

• The delta of a function f(x) can be computed as

δ[g(x)] =
∑
i

δ(x− xi)

|g′(xi)|
, (A.10)

where xi are simple zeroes of g(x), namely g(xi) = 0 and g′(xi) ̸= 0. In
particular, given a constant a, we can write

δ(ax) =
δ(x)

|a|
. (A.11)

• Another useful relation following by (A.10) is

δ(x2 − a2) =
1

2|a|
[δ(x− a) + δ(x+ a)] . (A.12)
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These relations can be easily generalized in an n-dimensional space and, in
particular, we can define the Dirac’s delta in Minkowski’s space-time as

δ4(xµ − x′
µ
) = δ(ct− ct′)δ(x− x′). (A.13)

The generalization of (A.7) obviously is∫
d4x δ4(x) = 1, (A.14)

and since d4x is a scalar by (2.27), this implies that δ4(x) is Lorentz invariant.
Finally, eq. (A.9) becomes

δ4(x− x′) =
1

(2π)4

∫
d4k e−ikα(xα−x′α). (A.15)

A.3 Residue theorem

Let’s first recall an important result for holomorphic functions.

Theorem T.2 (Cauchy’s integral theorem). Let f(z) be a holomorphic function in an
open, simply connected region D and γ a closed, simple, piecewise regular curve within D,
then ∮

γ

dz f(z) = 0. (A.16)

Let now f(z) have an isolated singularity in z = z0 and be holomorphic within a
disk centered in z0, except for z0 itself. The Laurent series of f about z0 is

f(z) =
∞∑
n=0

an(z − z0)
n +

a−1

z − z0
+

a−2

(z − z0)2
+ . . . (A.17)

Because of the singularity in z0, at least one of the coefficient a−n must not vanish. If
a−n is different from zero and all the successive coefficients vanish, namely

an+1 = an+2 = an+3 = · · · = 0, (A.18)

then z0 is said to be a pole of order n. If n = 1, that is, a−1 ̸= 0 and the other
coefficients with negative indices vanish, then z0 is a simple pole.

Let f(z) be holomorphic within an open region D except at a point z0 in D, where
f may have an isolated singularity. If γ is a closed simple curve, piecewise regular,
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within D, that contains z0, then the residue of f(z) at z = z0 is

Res f(z)|z=z0 ≡
1

2πi

∮
γ

dz f(z), (A.19)

where, for convention, γ is oriented counterclockwise, and the integral above doesn’t
depend on the particular choose of the curve. Remember that if the curve is oriented
clockwise, there must be a minus sign.

It’s easy to compute the residual if z = z0 is a simple pole. Indeed, we’d have

Res f(z)|z=z0 = lim
z→z0

(z − z0)f(z) (A.20)

or, equivalently, writing the function as

f(z) =
p(z)

q(z)
, q(z0) = 0, (A.21)

the residue is
Res f(z)|z=z0 =

p(z0)

q′(z0)
. (A.22)

Theorem T.3 (Residue Theorem). Suppose f(z) is holomorphic in a region D except for a
finite set m of isolated singularities. Suppose also γ is a simple, closed curve in D, oriented
counterclockwise, which contains the singularities. Then∮

γ

dz f(z) = 2πi
m∑
j=1

Res f(z)|z=zj . (A.23)

We are interested in integrals of the form

I =

∫ +∞

−∞
dx f(x)eix, (A.24)

where f(z) is holomorphic over the half-plane Im z ≥ 0, except a limited set of
singularities.

We can write I = limr→∞ Ir, with

I =

∫ +r

−r

dx f(x)eix, (A.25)

and consider an integral over the complex plane, with a path of integration that
coincide with the segment [−r,+r] and a semicircumference Cr with center O and
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Re z

Im z

−r +rO

Cr

Figure A.1 Integration path.

radius r, as shown in fig. A.1. Then, if we set Γr ≡ [−r,+r] ∪ Cr, we have

I =

∮
Γr

dz f(z)eiz =

∫ +r

−r

dx f(x)eix +

∫
Cr

dz f(z)eiz, (A.26)

where (A.26) can be computed with residue theorem (A.23). If we can prove that∫
Cr

dz f(z)eiz −−−→
r→∞

0, (A.27)

then we can compute (A.24) as

I = lim
r→∞

∮
Γr

dz f(z)eiz = 2πi
∑

Im zk>0

Res f(z)eiz|z=zk . (A.28)

Actually, eq. (A.27) is verified and is known as Jordan’s Lemma.

Lemma L.2 (Jordan’s lemma). If f(z) is defined on the superior half-plane Im z > 0 and if

lim
|z|→∞

f(z) = 0 (A.29)

in a circular sector subtended by the arc Cr,

Cr = {z = reiθ, θ1 ≤ θ ≤ θ2}, (A.30)

then ∫
Cr

dz f(z)eiz −−−→
r→∞

0. (A.31)

Similarly, if
lim
|z|→0

f(z) = 0, (A.32)
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then ∫
Cr

dz f(z)eiz −−→
r→0

0. (A.33)

If, instead of eiz we would have e−iz, we should have closed the integration path
Γr in the inferior half-plane Imz < 0, since in Imz > 0 e−iz diverges. Everything else
is akin to what we have just seen.
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