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Abstract

Re-implementing sequential algorithms with parallelization support often leads to
a tangible improvement in the time and throughput of the execution. Designing
for multithreading is especially beneficial in the context of long and slow compu-
tations such as discrete event simulation, where even a relatively small increment
in throughput may cut down simulation time by a significant cumulative margin.
Discrete event simulation is a notoriously challenging domain to parallelize due to
the complexity of the nature of the discrete events and the necessity to account for
and resolve the causality conflicts. A truly deterministic solution is difficult and
is not always possible for some of the more complex simulation models and do-
mains. However, some compromises may be reached by relaxing the determinism
constraints and adopting the so-called optimistic approach to conflict resolution,
sacrificing some degree of predictability and determinism for performance.

Furthermore, when considering the goodness of a solution, a simple naive ap-
proach is not sufficient. The programming languages running on the Java Virtual
Machine (JVM) have certain quirks and properties that must be taken into con-
sideration to produce valuable and insightful results. Hence adopting a thorough
method of testing and benchmarking is necessary.

The recent developments in the Java programming language have introduced novel
solutions to structuring multithreaded code such as virtual threads that compete
with a more mature analogous implementation found in the Kotlin programming
language.

This thesis project explores the optimistic parallelization of a general discrete
event simulator ”Alchemist”, building a robust benchmarking harness and testbed
and comparing the results of equivalent implementations of the algorithm in tra-
ditional Java threads, the new Java virtual threads, and the consolidated Kotlin
co-routines.
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Chapter 1

Introduction

1.1 Computer Simulation

Computer simulations are defined as the use of a mathematical/logical model as

an experimental vehicle to answer questions about a referent system[PN94]. In

simple terms, computer simulation is a step-by-step process in which a real-world

system is modeled by an approximation defined as a mathematical model in a

computer system consisting of states and variables representing various dynamic

aspects of the simulation. The simulation computes and updates the system’s

state at a given time (t) and then advances the time to t+1 and so on. Once

the simulation is complete, the sequence of variables is saved as datasets, which

can then be translated into a visualization. Alternatively, a visualization could be

performed live in some kind of graphical interface. Computer simulations are used

in many real-world studies and applications such as pandemic response, cancer

treatment, crowd dynamic movements, city traffic, financial markets, and many

more. Over time, computer simulation has demonstrated benefits for: [LTF+18]

1. Visualizing complex interactions in dynamic systems

2. Providing results much faster than would be possible in real time

3. Allowing “what if” analysis when changes to an actual system are difficult

to implement, costly, or impractical.
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1.1. COMPUTER SIMULATION

Figure 1.1: Simulation Of Air Moving Through Lungs

With the computation power of modern supercomputers, simulation is more

advanced than ever and is evolving at a rapid pace, and with the computational

resources at their disposal, simulations can achieve notable results and run an

ever-increasing number of nuanced scenarios of very complex systems. However,

due to the complex nature of the simulations, and the possible amount of variables

processed to handle in case of larger simulations, even small-scale optimizations

can lead to great gains in terms of speed of computation, which leads to being

able to run more simulations in less times, hence achieving more results and more

insights with less resources.

A common way to speedup the simulation computations is to parallelize the core

algorithm. Modern processors have multiple available cores that can be used to

compute task results in parallel. By re-thinking the simulation algorithm, we can

use all of the available cores and resources to compute simulation in parallel. It

is however notably complex to parallelize simulations as the algorithm needs to

account for conflicts that may arise due to simulating events that may have mutual

causality effects.

2 CHAPTER 1. INTRODUCTION



1.2. DISCRETE EVENT SIMULATION

1.2 Discrete Event Simulation

Computer simulations are often used to study complex systems of dynamic objects

and their interactions. Simulations are especially useful in enabling observers to

measure and predict how the functioning of an entire system may be affected by

altering individual components within that system. Typically a simulation is rep-

resented by a mathematical model in which parameters may be tuned to produce

different observable outcomes.

Discrete Event Simulation (DES) is a form of computer-based modeling method-

ology characterized by the ability to simulate dynamic behaviors of complex sys-

tems and interactions between individuals, populations, and their environments.

Although DES simulation models are typically a simplification of reality, they have

proven useful as a tool to conduct ”what-if” analyses with operational scenarios

and rules tailored to the desired use cases. DES has proven particularly useful in

healthcare applications and biochemistry domains.

DES models real-world systems as a set of logically separate processes that dis-

cretely progress through time at discrete intervals. The core concepts of DES

are

� entities - Entities are domain objects that possess a set of attributes. An

example of an entity is a Internet Of Things (IoT) device.

� attributes - Attributes are features that are possessed by an entity and carry

some kind of defined information. An example of an attribute could be a

serial number of an IoT device.

� events - Events are loosely defined as functions over an entity that are per-

formed given certain conditions. Events may affect the state of an event

and create or remove other scheduled events. An example of an event is a

message received by an IoT device.

� resources and queues - Resources represent services used by an entity. In

particular, a resource may have consumption constraints on the number of

CHAPTER 1. INTRODUCTION 3
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entities that may use it. If a resource is unavailable to an entity that required

it, the entity gets put into a queue. Typically queues follow either first-in-

first-out (FIFO) or last-in-first-out (LIFO) policies. An example of a resource

could be a message consumer and a queue is a message inbox inside an IoT

device.

� time - Time is a fundamental component of DES. A simulation runs an

explicit simulation clock initiated at the start of the simulation model run

that keeps track of time and advances at discrete intervals.

DES can model many real-life situations that require complex systems of in-

teracting actors that model real-world events and situations. An example of a

DES use case is a simulation of the 2017 Turin Stampede, where an event of panic

occurred in a packed crowd resulting in over 1500 injured people and 2 casual-

ties. This simulation has been achieved with Alchemist chemical-oriented DES

simulator 1. This simulation modeled human psychology in panicky situations and

lead to insights into the consequent physical interactions caused by the behavior

of cognitive agents2.

1.3 Parallel Discrete Event Simulation

Parallel Discrete Event Simulation (PDES) is simply a DES designed to be exe-

cuted on a parallel computer. Projects in discrete event simulation possess several

characteristics that distinguish them from most software-intensive efforts[PN94]:

� Time - the which clearly establishes an ordering of behavioral events in the

referent system and delimits the potential for parallel execution of the pro-

posed model. This characteristic is that which has placed DES in the fore-

front of challenge for those interested in parallel computation.

1https://alchemistsimulator.github.io/index.html
2https://alchemistsimulator.github.io/showcase/2022-turin/index.html
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Figure 1.2: Simulation Of 2017 Turin Stampede

� Correctness - The existence of the referent system in most projects and the in-

sistence that model behavior reflect system behavior within some prescribed

tolerance levels forces a definitive statement of correctness that admits no

renegotiation of requirements. A consequent relaxation of the tolerance levels

oc- curs with a clear admission of deficiency.

� Computational Intensiveness - While model development costs are consid-

erable, as is the human effort throughout the period of operation and use,

the necessity for repetitive sample generation for statistical analysis and the

testing of numerous alternatives forces concerns for execution efficiency that

are seen in few software-intensive projects.

Sequential DES usually processes a large amount of data and require a sub-

stantial amount of time to execute. Parallelizing DES yields a tangible reduction

of processing time which leads to more timely results and opportunities to run

more simulations of more scenarios. Another benefit is more efficient resource

utilization. Modern consumer-grade machines are often equipped with multi-core

processors that can run tasks in parallel. Sequential simulations only utilize one

of the available cores, hence only a fraction of the available resources. Beyond

consumer-grade machines, clusters and cloud systems have an option of dynam-
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ically allocating more resources allowing to scale the computation power to the

desired level. For PDES, there are two basic classes of parallel computers:

� shared memory 1.3(a) - common memory is shared by processors which are

accessed with synchronization mechanisms such as locks.

� distributed memory 1.3(b) - each processor has its memory, and communica-

tions between processors are exchanged by messages in some kind of physical

or virtual network.

Figure 1.3: Parallel Computers Memory Models

Implementing PDES is very challenging as DES relies on the sequentiality of the

events. At each time step a DES dequeues and executes the event with the smallest

timestamp. The event’s execution may affect other events and the environment and

change the timestamp of the other events in the queue. Preserving sequentiality

is not an issue in a regular sequential DES as the events are processed one at

a time and changes to the environment are applied before processing the next

event, whereas it is a major challenge in PDES as multiple events are processed

in parallel. This leads to a possibility of causality errors, which in simple terms is

an errors that occures when a future event is influencing the past event:

1. Let events E1, E2 with timestamps T1, T2 where T1 < T2
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2. If E1 changes a state variable used by E2, E1 must be executed first

This poses a challenging question: how can a simulation be sure that E2 gets

executed after E1? This is a trivial problem to solve in a sequential DES, but most

PDES strategies assume that processes do not have access to shared-state variables,

so some kind of sequencing constraints mechanism must be applied. Sequencing

constraints are by their nature highly complex and data-dependent as we cannot

know how E1 affects E2 without simulation E1 first and thus applying its effects.

An event execution can affect other events through a complex network of causes

and effects. No general solution exists for sequencing constraints, however, we can

categorize the sequencing constraints strategies as:

� Conservative - No causality errors can occur. It requires a complex strategy

to determine if an event can be processed, i.e. if all the events that can affect

the candidate event have been processed.

� Optimistic - Allows causality errors to occur. A detection and recovery

strategy can be applied to roll back the error state.

Optimistic PDES strategies are considered to be the best for a general-case

solution, while conservative strategies are best in cases where a good look-ahead

can be achieved. However, it should be noted that conservative approaches do not

scale easily and are not robust to small changes in the applications. Ultimately

the choice of the best strategy is highly problem-dependent.

1.4 Designing Parallel Systems

To design a parallel system, the problem must be analyzed to identify exploitable

concurrency to choose the most appropriate parallel architecture. Typically a

problem can be decomposed in terms of:

� Tasks - the problem can be naturally decomposed into a collection of inde-

pendent tasks (divide-at-impera principle) e.g. producer/consumer pattern

� Data - The problem’s data can be decomposed into independently processed

units e.g. matrix multiplication

CHAPTER 1. INTRODUCTION 7
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Another important point to consider are resources and dependencies of the

decomposed tasks or data units. In particular temporal and resource dependencies

must be accounted for. Taking into consideration decomposition and dependencies,

a most fitting parallel architecture is chosen. Several conceptual classes for parallel

architectures are proposed in literature [CG89]:

� Result parallelism - Typical for data decomposition strategies, the system is

designed around the result of an independent unit of processing computed

in parallel

� Specialist parallelism - The system is designed around a logical network of

independent agents (logical processes) specialized in a specific task within

the context of a global computation pipeline. The agents typically consume

the results of the other agents in a pipeline to construct the final aggregated

result.

� Agenda parallelism - The system is designed around an agenda of tasks

where generalist agents are dynamically assigned from the available pool to

the items in the agenda according to the current pending step in the process.

The classes of the architecture are not mutually exclusive and the optimal de-

sign often lies in between. Reasoning in terms of the classes of architecture helps

in viewing the problem from different perspectives to find the best-fitting solution.

Beyond the conceptual classes, several specific architectures are typically consid-

ered first when designing a parallel implementation:

� Masters-Workers - The architecture is composed of coordinated agents.

– master (manager) - The agent used to assign units of work (tasks) to A

dynamic set of worker agents and aggregate their results.

– worker - Agents used to compute units of work and produce partial or

intermediate results. In some implementations, a worker may become

a master for other workers in a tree-like fashion.

A typical example of this pattern is fork-join implementations.
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� Filter-Pipeline - The architecture is composed of a pipeline of chained agents

applying a partial transformation or an action to the data in the pipeline’s

step. Agents can be classed as

– generators -Aagents initiating the pipeline by generating data.

– filters - Agents applying a transformation step to a unit of data to be

passed on to the next agent in the chain.

– sinks - Agents collecting the results and terminating the pipeline.

This pattern is used in Java parallel steams or Appache Spark data pipelines.

� Shared-Space - The architecture is composed of a set of independent agents

interacting indirectly through some kind of shared space where information

items may be put, queried, or removed. An example of shared spaces are

tuple spaces and actor systems.

� Announcer-Listener - The architecture better known as event-driven com-

posed of

– announcers - Agents posting an event to a topic channel.

– listeners - Agents registered to consume an event upon posting on a

topic channel.

This architecture is particularly popularized with modern asynchronous dis-

tributed systems such as microservices and WebSockets.

1.5 Parallelism in JVM

Java and the JVM platform is a popular choice when designing and implementing

parallel systems. When designing JVM parallel systems, an important considera-

tion to account for is the disparity between application’s demand and available

resources decreases the application performance. On one side, if the applica-

tion demand is represented by its degree of parallelism and required resources

exceed the available processor capability, the system will exhibit low scalability.

CHAPTER 1. INTRODUCTION 9
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On the other side, low application demand means that the system might be under-

utilized[CCH11]. The trade-off is between scalability and efficient resources uti-

lization.

The JVM platform presents multiple options of various paradigms and approaches

for designing parallel systems. Discussing these options is a broad topic that is

best viewed in the historical context of the platform’s evolution. For the scope

of this thesis, we present a brief overview of Java’s concurrency options with a

comparison to the similar options available in Kotlin.

Platform Threads

One of the first and simplest options for concurrency in Java is the platform

threads. Java exposes an Application Programming Interface (API) to create a

thin wrapper around an Operating System (OS) thread. A platform thread runs

Java code on its underlying OS thread, and the platform thread captures its OS

thread for the platform thread’s entire lifetime. Consequently, the number of

available platform threads is limited to the number of OS threads3. The execution

is synchronized and governed by low-level mechanisms such as locks, mutex, and

semaphores. While powerful, this approach is usually deemed too low-level by

today’s standards due to the complex and error-prone nature of such a low-level

concurrency framework.

�
1 Runnable r1 = () -> { System.out.println("Thread is created and running

successfully ..."); };

2 Thread t1 = new Thread(r1 , "My Thread");

3 t1.start ();
� �

3https://kotlinlang.org/
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Executors

As of Java Development Kit (JDK) 5 Java offers a new higher-level concurrency

abstraction, the Executors API framework. Executors framework provides a way

to create (thread) pools of workers to be used in a task-based concurrency architec-

ture: a unit of work is submitted to a thread pool and the results may be retrieved

or flow synchronized via the ”Future” asynchronous concurrency abstractions. In

addition to basic task-based submission, an implementation of the Fork-Join ar-

chitecture was also introduced. Fork-Join pools allow for tasks to generate and

submit child tasks, hence the ”fork” part, and await their results, hence the ”join”

part.

�
1 ExecutorService executorService = Executors.newFixedThreadPool (10);

2

3 Callable <String > callableTask = () -> {

4 TimeUnit.MILLISECONDS.sleep (300);

5 return "Task’s execution";

6 };

7

8 List <Callable <String >> callableTasks = new ArrayList <>();

9 callableTasks.add(callableTask);

10 callableTasks.add(callableTask);

11 callableTasks.add(callableTask);

12

13 List <Future <String >> futures = executorService.invokeAll(callableTasks);
� �

Parallel Streams

With the introduction of lambda streams in JDK 8, a new concurrency model

was offered: parallel streams. Parallel streams are an effort to naturally and easily

extend the regular sequential streams with the parallel pipeline concurrency model.

�
1 List <Integer > listOfNumbers = Arrays.asList(1, 2, 3, 4);

2 int sum = listOfNumbers.parallelStream ().reduce(0, Integer ::sum) + 5; // sum is

equal to 5
� �
CHAPTER 1. INTRODUCTION 11
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Virtual Threads

With the upcoming release of JDK, 21 comes a major change in Java’s concur-

rency model: virtual threads. These new features are a fruit of the ”project

Loom” OpenJDK initiative and are factually a major shift in Java’s concurrency

landscape. With a few simple changes platform threads can now become ”virtual”

threads. A virtual thread isn’t tied to a specific OS thread. A virtual thread still

runs code on an OS thread. However, when code running in a virtual thread calls

a blocking I/O operation, the Java runtime suspends the virtual thread until it

can be resumed. The OS thread associated with the suspended virtual thread is

now free to perform operations for other virtual threads4.

�
1 ExecutorService executorService = Executors.newVirtualThreadPerTaskExecutor (); //

very simple to refactor existing code

2

3 Callable <String > callableTask = () -> {

4 TimeUnit.MILLISECONDS.sleep (300);

5 return "Task’s execution";

6 };

7

8 List <Callable <String >> callableTasks = new ArrayList <>();

9 callableTasks.add(callableTask);

10 callableTasks.add(callableTask);

11 callableTasks.add(callableTask);

12

13 List <Future <String >> futures = executorService.invokeAll(callableTasks);
� �

Kotlin Co-routines

The introduction of virtual (also called ”light-weight”) threads is not a completely

novel concept on the JVM platform. The Kotlin programming language has im-

plemented a similar concurrency idea over the JDK 8 threads called coroutines. A

4https://docs.oracle.com/en/java/javase/20/core/
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Figure 1.4: Java Virtual Threads Conceptual Scheme�
1 val job = launch {

2 delay (1000L)

3 println("World!")

4 }

5 println("Hello")

6 job.join()

7 println("Done")
� �
coroutine is an instance of suspendable computation. It is conceptually similar to

a thread, in the sense that it takes a block of code to run that works concurrently

with the rest of the code. However, a coroutine is not bound to any particular

thread. It may suspend its execution in one thread and resume in another one5.

1.6 Benchmarking Parallel Architectures on JVM

Benchmarks are not a straightforward matter, especially because they do not al-

ways represent real-world usage patterns. It is often quite easy to produce the

outcome you want, so skepticism is a good thing when looking at benchmark re-

sults6. This is especially true for benchmarking code on the JVM platform, given

that the JVM is an adaptive virtual machine. When benchmarking the JVM, the

5https://kotlinlang.org/docs/home.html
6https://www.oracle.com/technical-resources/articles/java/
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peculiarities of the platform should be taken into consideration, such as garbage

collection cycles, Just In Time (JIT) compilers, and unwanted optimizations due

to the narrowness of micro benchmarking only specific parts and control flow paths

of the code.

Furthermore, a distinction between micro and macro benchmarking should be

made.

� Micro-benchmarking - benchmarking a specific, usually performance critical,

piece of the entire code base.

� Macro-benchmarking - benchmarking the entire program’s execution, or at

least a meaningful part of it.

Fortunately, these issues are well-known and multiple options for meaningful

benchmarking are available. The de-facto standard in the Java benchmarking

world is the Java Microbenchmark Harness (JMH) framework.

JMH

JMH is a tool developed under the OpenJDK umbrella that allows users to spec-

ify benchmarks through Java annotations, using a syntax that is similar to the

well-known JUnit framework[CBLA19]. JMH provides a very solid foundation for

writing and running benchmarks whose results are not erroneous due to unwanted

virtual machine optimizations. JMH itself does not prevent the pitfalls that we

exposed earlier, but it greatly helps in mitigating them. JMH is popular for writ-

ing microbenchmarks, that is, benchmarks that stress a very specific piece of code.

However JMH is a general-purpose benchmarking harness, so it is also useful for

concurrent and macro benchmarks7.

The key concepts in JMH are:

7https://www.oracle.com/technical-resources/articles/java/
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Figure 1.5: JVM Architecture

� Benchmark modes - determines what kind of metrics should be gathered

from the benchmark runs

� Warmup phase - Before executing the benchmark, JMH performs a warmup

phase by running the benchmark multiple times to ensure that JVM is fully

optimized and resembles an ideal setup for an application

� Forking - Forking helps simulate the number of threads that should be used

to measure the benchmark’s performance

Although there are multiple benchmark modes in JMH, they essentially mea-

sure the performance in terms of:

� Throughput Mode - measures the number of method invocations that can
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be completed within a single unit of time.

� Time-based Modes - test out the time it takes for the single invocation of

the method. In particular, the following modes are available:

– Average Time - measures the average time it takes for the single exe-

cution of the benchmark.

– Sample Time - measures the total time it takes for the benchmark

method to execute, including minimum and maximum execution time

for a single invocation.

– Single Shot Time - runs a single iteration of the compared methods

without warming up the JVM.

The basic configuration is usually sufficient for macro-benchmarks, however

when running micro-benchmarks, some further considerations such be taken into

account such as constant folding, dead code elimination, and other configurable

hints to avoid undesired optimizations by the JIT compiler.

Lastly, the environment running the benchmark needs to be taken into consid-

eration as the different hardware will produce different results. It is important to

benchmark on the machine as close as possible to the production deployment node,

or in the case of a consumer application, on an array of various consumer-grade

machines.

1.7 Chemical-Oriented Simulation

Chemical-oriented simulation represents an innovative and novel approach to simu-

lation by combining both principles of (bio)chemistry and computer science. Tradi-

tionally, chemical-oriented simulation deals with the virtualization and simulation

of chemical systems by modeling molecules, concentrations, energy, and reactions

where computation can be seen as chemical reactions between data represented as

molecules floating in a chemical solution[BFR06]. The intricate dynamics of chem-

ical systems, characterized by random events and fluctuations at the molecular

level, pose significant challenges to traditional deterministic modeling approaches.
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Stochastic simulation algorithms exploit the principles of probability theory to

capture the inherent randomness and variability of chemical systems. While de-

terministic models assume perfect knowledge of the precise initial conditions and

interactions, stochastic simulation takes into account the inherent uncertainties

and fluctuations that occur due to molecular-level interactions, environmental fac-

tors, and the inherent variability of biological systems. As a result, these algo-

rithms allow researchers to simulate and analyze the behavior of chemical systems

with greater fidelity, capturing the full spectrum of possible outcomes and un-

covering emergent properties that may not be evident in deterministic models.

However the principles and the ideas behind the chemical-oriented simulation are

not exclusive to the (bio)chemical domain. One such example is the Alchemist 8

simulator, which is a highly extensible state-of-the-art generalist DES simulator

based on chemical oriented simulation models.

1.8 Alchemist Simulator

The properties of complex and emergent computational systems characterized by

situatedness, adaptivity, and self-organization are not confined solely to the tra-

ditional conception of (bio)chemistry. The Alchemist simulation framework 9 ex-

tends the basic computational model of chemical reactions to general use cases

while maintaining high performance and extensibility for complex computational

systems [PMV13], such as pervasive computing systems. in other words, Alchemist

allows to model systems of possibly mobile, interconnected, and communicating

agents that operate and interact with the system according to a set of chemical-like

laws.

Alchemist Metamodel

The Alchemist simulator 10 bridges the gap between traditional chemical comput-

ing and DES by extending the basic computational model of chemical reactions

to complex computational systems, benefiting from the performance of the former

8https://alchemistsimulator.github.io/index.html
9https://alchemistsimulator.github.io/index.html

10https://alchemistsimulator.github.io/index.html
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and the emerging complexity of the latter. Alchemist’s algorithm is based on an

optimized version of Gillespie’s SSA called Next Reaction[Gil77], suitably extended

with the ability to handle a dynamic environment that allows for the addition and

removal of reactions, data items, and connections. The meta-model and simulation

framework are designed to be generic, and as such can have a wide range of applica-

tions such as pervasive computing, social interactions, and topological interactions.

Alchemist achieves three key properties of complex systems: Situatedness, Adap-

tivity, and Self-organization by modeling a mapping between computational ab-

stractions onto chemical abstractions in a cohesive meta-model. An agent-oriented

perspective is adopted to describe the meta-model by considering an agent as an

autonomous entity that performs actions on the system based on stimuli received

from the environment and encapsulates the strategy for choosing among the set

of available actions. Consequently, the agent’s state can be modeled as a set of

”molecules” and its internal behavior through a set of chemical-type reactions that

may or may not be enabled based on the perception of the external environment.

Agents perceive the environment through the molecules that come from the en-

vironment and enter its boundaries. Multiple agents, which constitute a society,

can communicate by exchanging molecules with neighboring agents. Finally, the

environment is responsible for connecting agents and defining their neighborhood.

Figure 1.6: Alchemist Reactions Model
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In summary, The key concepts of Alchemist are:

� Molecules - data template described by a concentration value and a set of

properties.

� Reactions - with a more extensive definition than traditional chemistry. A

reaction is modeled as a set of conditions (Boolean functions) on the state

of the system, which trigger the execution of a set of actions.

� Neighborhood - The concept of the neighborhood must be extended beyond

the physical concept of agents within a radius and be able to represent other

types of relationships such as, for example, human relationships.

� Propensity function - a function of reaction speed, conditions, and the state

of the environment.

Figure 1.7: Alchemist Metamodel
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Incarnations

Alchemist is designed for flexibility and extensibility. These goals are achieved by

a very loose interpretation of molecule and concentration concepts. While these

terms have a very precise definition in traditional chemistry, in Alchemist they are

simply composed of:

� generic identifier

� piece of data

An incarnation includes a type definition of concentration, and possibly a set of

specific conditions, actions, and (rarely) environments and reactions that operate

on such types. In practical terms, an incarnation is a concrete instance of the

Alchemist meta-model. As of the time of writing of this thesis, the following

incarnations are available:

� Sapere Incarnation [ZOA+15] [PMV11] - The first available stable incarna-

tion. The core concept of this incarnation is the usage of Live Semantic

Annotation (LSA).

� Protelis Incarnation 11- The goal of the Protelis language is to make it easier

to build a resilient and well-behaved networked system out of an assortment

of different potential mobile devices. Protelis is designed for the paradigm of

”aggregate programming”, a way of thinking about and decomposing prob-

lems that can be solved with a network of distributed sensors and computers.

� Biochemistry Incarnation 12 - models biochemical reactions of biological cells

that share a common environment

� Scafi incarnation 13 - ScaFi (Scala Fields) is a Scala-based library and frame-

work for Aggregate Programming. It implements a variant of the Higher-

Order Field Calculus (HOFC) operational semantics, which is made avail-

able as a usable domain-specific language (DSL), and provides a platform

11https://protelis.github.io/
12https://alchemistsimulator.github.io/explanation/biochemistry/
13https://scafi.github.io/
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and API for simulating and executing Aggregate Computing systems and

applications.

1.9 Project Goals and Motivations

Alchemist simulations are powerful and expressive, however, the complex nature

of the engine has a notable cost in terms of speed. The goal of this thesis project

is to attempt to improve the current speed of the simulation computation by re-

designing the DES alchemist core into a PDES. This is a daunting problem to

solve, both given the inherent complexity of implementing a PDES, and the com-

plexity of the simulator. To achieve the desired results, we may allow for the

relaxation of some of the simulation constraints. In particular, for the benefit of

simulation speed-up, we may accept some degree of non-determinism caused by

causality errors and control flow based on the non-deterministic thread schedul-

ing. These relaxed constraints should not excessively degrade the quality of the

simulation, so some kind of mitigation policy or strategy should be designed. The

new PDES mode should also not replace the original DES core but be presented as

an alternative a user can optionally opt-in. This requires a substantial redesign of

the current simulator’s launch configuration as the current Command Line Inter-

face (CLI) implementation does not have the flexibility and extensibility required

to configure a complex simulation launch. Furthermore, an option to arbitrarily

override some of the simulation parameters is needed to allow for easier automated

launches via configuration templates and scripts. Finally, the performance of the

PDES should be properly and thoroughly benchmarked to assert that the benefits

over the sequential execution outweigh the costs. Given the available options for

modern concurrent architectures on the JVM, the PDES should be implemented

in each, and performances compared to find the best fitting concurrency imple-

mentation for this case.
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Chapter 2

Analysis

After a preliminary study, the following key deliverable parts of the project have

been identified:

� Launch Configuration Rework

� Parallel Engine

� Benchmark Harness

Alchemist multi-project structure

Alchemist utilizes the Gradle build automation system. Gradle is a task-based

build automation tool for multi-language software development. It controls the

development process in the tasks of compilation and packaging to testing, deploy-

ment, and publishing and is highly extensible. One of the project structure options

offered by Gradle is the multi-project build. A multi-project build in Gradle con-

sists of one root project, and one or more subprojects. This structure helps to

create natural boundaries of the different independent modules of the project and

loosen the coupling.

Alchemist currently consists of the following modules:

� alchemist-api

� alchemist-engine
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� alchemist-euclidean-geometry

� alchemist-full

� alchemist-fxui

� alchemist-grid

� alchemist-implementationbase

� alchemist-incarnation-biochemistry

� alchemist-incarnation-protelis

� alchemist-incarnation-sapere

� alchemist-incarnation-scafi

� alchemist-loading

� alchemist-maintenance-tooling

� alchemist-maps

� alchemist-multivesta-adapter

� alchemist-physics

� alchemist-sapere-mathexp

� alchemist-smartcam

� alchemist-swingui

� alchemist-test

� alchemist-ui-tooling

� alchemist-web-renderer

The scope of the project will mainly affect the api, engine, loading and imple-

mentationbase modules.
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2.1 Launch Configuration Rework

Alchemist is historically launched via CLI and configured with a list of command

line parameters. The parameters are parsed and based on the given parameters

a simulation launcher is chosen from the pool of the available launchers. The

launcher is then responsible for loading and governing the execution of a simula-

tion. The actual configuration of the simulation (i.e. the layout of the molecules,

reactions, etc...) is given in a separate configuration file in Yet Another Markup

Language (YAML) format.

For example, a launch of a simulation defined in the file simulation.yml that

runs for fifty steps in a headless mode is configured with the following CLI param-

eters:

�
1 -y simulation.yml -hl -t 50
� �

Where

� -y simulation.yml is the path to the simulation configuration file

� -hl hints that the launcher to be used is ”headless”

� -t 50 tells that the simulation is to end after fifty time units

Therefore, the parameters can be grouped into three categories:

� simulation configuration path - a unique and mandatory parameter that

contains the path to the simulation configuration file.

� launcher hints - typically a flag used to hint at what loader is to be used.

� launcher parameters - typically a path to the additional configuration file,

or a flat value that a certain simulation launcher can recognize and use.

Alchemist design is governed by the principles of extensibility and modularity.

While this CLI design was sufficient in the earlier iterations of the simulator, it
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does not scale well, as every time a new simulation launcher is added, new configu-

ration parameters need to be hard coded and added to the growing list of possible

options. In particular, in the context of this thesis project, we would require a

complex launch configuration to decide what mode an engine should run in (par-

allel or regular) and provide additional configuration values such as the level of

parallelism, contextually for the type of engine chosen.

For the needs of this project and for the benefit of the project as a whole, a

CLI redesign is proposed. There are several considerations to be made about the

historical CLI implementation.

1. A lot of the complexity is brought from the launcher choice system, the

flags, and the hints interact with a Service Loader design pattern-based sys-

tem that dynamically loads the possible implementation of the launcher and

based on priorities governed by the flags, the best matching candidate is

chosen.

2. The simulation file contains the actual simulation configuration and some of

the newest additions to the file configuration have supplanted the need for

the CLI parameters, for example, the termination conditions.
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Figure 2.1: Alchemist Launcher Priority System

The new CLI design should address these two points and streamline the con-

figuration without sacrificing flexibility and modularity.

2.2 Parallel Engine

The simulator implementation is based on two key data structures:

� Dynamic Indexed Priority Queue: a binary tree of reactions proposed in

Gibson and Bruck (2000). Each node stores a reaction whose putative oc-

currence time is less than that of each of its children so that the next reaction

to be executed is always in the root of the tree and can be accessed in con-

stant time. In Alchemist it is extended over the original definition to allow

insertion and removal of dynamic nodes.

� Dynamic Dependency Graph: an oriented graph in which nodes are triggered

reactions and arcs connect a reaction r to all those that depend on it, i.e.,

those whose activation time must be updated with the execution of r

CHAPTER 2. ANALYSIS 27



2.2. PARALLEL ENGINE

The algorithm can be summarized with the following pseudo-code:

1: cur_time = 0

2: cur_step = 0

3: for each node n in environment do

4: for each reaction nr in n do

5: generate a new putative time for nr

6: insert nr in DIPQ

7: generate dependencies for nr

8: while cur_time < max_time and cur_step < max_step do

9: r = the next reaction to execute

10: if r’s conditions are verified then

11: execute all the actions of r

12: for each reaction rd which depends on r do

13: update the putative execution time

14: generate a new putative time for r

To parallelize this sequential DES algorithm, several considerations must be

made. Firstly, we should decide between data-oriented and task-oriented ap-

proaches to parallelization. The data-oriented approach makes more sense as we

can divide the queue of events into batches, i.e. sequences of events to be processed

in parallel. The second consideration to be made is how to handle causality errors,

in other words, whether we should adopt optimistic or pessimistic PDES architec-

ture. While pessimistic would be preferable to keep the simulation reproducible

and accurate, the cost of development of such an algorithm is very large due to

the inherent complexity of pessimistic PDES, and the pessimistic approaches tend

to break and require additional work when changing existing algorithm, which

would compromise Alchemist’s guiding principles of modularity and extensibility.

When adopting an optimistic PDES architecture we allow for causality errors to

happen. A rollback mechanism would be optimal to maintain simulation determin-

ism, however, this would require events to be able to be ”undone” and simulation

state snapshots to be maintained which is very complex. An alternative approach

would be to accept causality errors and limit their impact on the downstream

events. Considering batched processing of the events, we can limit causality errors
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to the bounds of the batch. A more intuitive way to view this solution is to imag-

ine that the events in the batch would have happened within a small enough time

bound to have their order of processing not influence the rest of the simulation in a

significant way. This would require a strategy to build batches given on scheduled

time proximity.

The proposed changes to support batch processing of the events are:

1: cur_time = 0

2: cur_step = 0

3: for each node n in environment do

4: for each reaction nr in n do

5: generate a new putative time for nr

6: insert nr in DIPQ

7: generate dependencies for nr

8: while cur_time < max_time and cur_step < max_step do

9: r[] = the next reactions batch to execute

10: results = for each r in r[] create and submit task

11: if r’s conditions are verified then

12: execute all the actions of r

13: for each reaction rd which depends on r do

14: update the putative execution time

15: generate a new putative time for r

16: await results

2.3 Benchmark Harness

To understand the impact of parallelization on the simulator, a robust benchmark

testbed is needed. Several benchmarking harnesses are available for the JVM

platform, the de-facto standard is the JMH framework. There are multiple options

on how to integrate benchmarking into the Alchemist project. Benchmarking could

either be treated as a test source dependency for each module of the project, which

makes sense in context of micro-benchmarking of specific parts of the codebase,
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or it can be integrated as a stand-alone module in the Alchemist multi-module

project. The latter approach is adopted as it makes more sense in the context of

macro-benchmarking.

JMH

JMH is a Java harness for building, running, and analyzing nano/micro/milli/-

macro benchmarks written in Java and other languages targeting the JVM1.

There are multiple options for running the JMH engine:

� Command Line

� IDE plugin

� Build Systems

Since Alchemist is built using the Gradle build automation system, it would

make more sense to utilize its jhm integration. This integration consists of a plugin

that scans the source set for runnable benchmarks and runs them, outputting the

aggregated results into a text file.

Typically JMH benchmarks are inserted into the source sets of the projects as

if they were unit tests. This approach makes sense in the context of micro-

benchmarking, where the output results of the critical parts can be parsed and

automatically checked for performance regressions, but since for the scope of the

project, we require macro benchmarks, a separate module that runs the simulator

as if it were run by a user is preferable.

JHM offers multiple scoring based on either operations throughput or execution

time:

� Throughput - Measures the number of operations per second, meaning the

number of times per second your benchmark method could be executed.

1https://github.com/openjdk/jmh
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� Average Time - Measures the average time it takes for the benchmark method

to execute (a single execution).

� Sample Time - Measures how long time it takes for the benchmark method

to execute, including max, min time, etc.

� Single Shot Time - Measures how long time a single benchmark method

execution takes to run. This is good to test how it performs under a cold

start (no JVM warm up). All Measures all of the above.

While time-based scoring could be interesting, since we are benchmarking the

system as a whole and not the core algorithm, external dependencies and events

may skew the time-based metrics. So the throughput is the better choice here.

Another important aspect to consider when setting up successful benchmarks are

the forking parameters i.e. forks - how many times the benchmark will be ex-

ecuted and warmup - how many times a benchmark will dry run before results

are collected. Multiple forked runs are important to achieve compilation profile

separation and the natural execution variance due to external OS and hardware

dependencies and events. Running benchmarks with at least a few forks will av-

erage out the variables and produce results that represent the average execution

better. Warmups are also important due to the nature of the just-in-time compi-

lator, dry runs would enable its dynamic optimizations and ensure that the tested

run is representative of a real execution. For the macro benchmarks of the project,

the jam default warmup parameter is suitable, while the fork parameter is set to

3, lower than the default.

testbed

A baseline with the DES alchemist implementation should be scored to base the

performance score comparison on. Parallel algorithms are sensitive to the amount

of resources available, so good testbeds should target different resource scenarios.

Alchemist is typically run on consumer-grade hardware, so it would make sense

to test against the common resource configurations. The following test cases have

been selected:
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� single thread, DES implementation - This tests the baseline to which the

parallel solutions are compared.

� 4 threads, PDES implementation - 4 cores are typical of lower-grade con-

sumer processors, this test should saturate such a processor

� 8 threads, PDES implementation - 8 cores are typical of higher grade con-

sumer processors, this test should saturate such a processor

To build the testbed, each of these tests should be tested on the cartesian prod-

uct of possible additional PDES configurations to understand how tuning variables

may affect the execution.

Several different multithreading options are currently available on the JVM plat-

form. To choose the most appropriate option, the testbed should be run on each,

and scores compared. Furthermore, different JDK versions may affect the per-

formance of the same implementation as the compiler produces a more efficient

bytecode. The most insightful comparison is to compare classic Java threading

options with the new virtual threads and Kotlin co-routines. Each of the testbeds

is to be tested with the following implementations:

� JDK 11 - classic executors

� JDK 11 - kotlin co-routines

� JDK 19 - classic executors

� JDK 19 - virtual threads executors

� JDK 19 - kotlin co-routines
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Design

3.1 Launch Configuration

CLI Redesign

As previously stated, Alchemist is configured via the CLI options. The goal of the

project is to move the launch configuration into the simulation configuration file.

The CLI needs to be streamlined and redesigned. The following CLI interface is

proposed:

� subcommand - If the application has a rich command line interface and

executes different actions with different arguments, subcommands can be

useful. A subcommand is the first positional argument in the cli and is used

to contextualize the following parameters. This allows for the rich multi-

modal launcher.

� option - Command line entity started with some prefix (-/–) and can have

value as next entity in command line string.

� argument - Command line entity whose role is connected only with its posi-

tion.

The only subcommand required for the scope of the project is run which con-

textualizes a simple simulation launch. Two options are proposed: –verbosity, to

indicate the logging verbosity, as it is configured outside of the simulation model,
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and –overrides, to provide manual CLI overrides as a valid YAML string to the

simulation configuration. Lastly, the only argument is the simulation configuration

file descriptor.

In practical terms, this is an example of the expected complete CLI

run the simulation.yaml --verbosity info --overrides "foo: bar"

Arbitrary Model Overrides

Applying overrides to the configuration file can be approached from many angles.

For this project, a simple approach is adopted. The overrides are provided as a CLI

option with a valid YAML as an argument. The override yaml is then merged with

the original configuration file. The following acceptance criteria for the override

system are proposed:

� Overrides should be arbitrary and allow for variable type changes.

� Overrides should be able to override complex objects and not just the values.

� Overrides should be able to create new variables.

The overriding module is best placed inside the simulation model loading logic,

just before the simulation model map is interpreted, in this way, the overriding is

transparent for the rest of the systems.
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Figure 3.1: Configuration Overriding Design Diagram

Simulation Model

To parse and interpret the YAML configuration file, Alchemist utilizes a propri-

etary system called Arbitrary Class Loading System (ACLS)1 that loads arbitrary

types conforming to the expected interface (or Scala trait). The expected type

depends on where the class is requested. The principle behind the system is to

map YAML properties to arbitrary Java or Kotlin classes. To achieve that, Al-

chemist uses Kotlin’s (and most importantly Java’s) Reflection and Introspection
2 capabilities. The YAML structure is parsed where:

� type - The name of an instanceable class compatible with the expected in-

terface. It can be either a qualified name or a simple name.

� parameters - The list of parameters the constructor of type should be passed.

Alchemist automatically provides contextual information to the constructors.

1https://alchemistsimulator.github.io/reference/yaml/index.html
2https://kotlinlang.org/docs/reflection.html
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For example, this YAML property:

�
1 deployments:

2 type: Point

3 parameters: [0, 0]
� �
Is used to construct the following Java object:

�
1 public Point(final Environment <?, P> environment , final double x, final double y)

{

2 ...

3 }
� �
The ACLS system can be summarized with the following diagram:
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Figure 3.2: ACLS Design Diagram

Where

� Yaml Configuration - Loaded YAML configuration file. It is provided as a

map of variables.

� SimulationModel - Converts an alchemist model defined as a Map into a

loadable simulation environment and relative exports.

� Loader - Instanced loadable simulation environment.

� SyntaxElement - Describes the interpretable syntax elements in the configu-

ration map, it also describes the interface for the constructable class.

� Type - Interface of the constructable class described by SyntaxElement.

� Type Implementation - Constructable class of the described type.

To bring configuration into the simulation model, the following actions must

be taken:
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� The Loader interface should be expanded with a method exposing the parsed

simulation launch configuration.

� Syntax should be updated to include the simulation launcher configuration.

A natural choice is to directly instance the Launcher type from the simula-

tion model. Launcher is an entity that can take responsibility for performing

an Alchemist run, hence the configuration for the specific Launcher is simply its

constructor parameters. The complete simulation launch architecture can be con-

densed with the following diagram:

Figure 3.3: Alchemist Launcher Architecture Design

3.2 Parallel Engine

PDES Algorithm Design

As stated previously, the intent is to implement an optimistic PDES that allows for

causality errors within the bounds of a timeframe. In other words, at each batch

step of the simulation, a batch of the events is retrieved from the queue. The

events in the batch are processed in parallel and the changes are applied dynami-

cally and independently. The batch step awaits the results of all the batch events

before advancing the simulation steps by the size of the batch and repeats the

process until the termination conditions are met (time, step, empty event queue,
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etc.....). We can assume that the simulation is synchronized after the end of each

batch (time window) processing and that no event with the timestamp less than

the maximum of the time window will be met.

An important thing to consider is the size of the processing batches. Since each

event processing can be seen as an independent task, in a traditional parallel sys-

tem the best way to utilize the available resources is to have the number of tasks

equal to the available threads for processing. However, while this naive implemen-

tation may have optimal resource utilization, the resulting batch of a fixed size may

have the events of a sparse time distribution. In other words, while the causality

errors of the events that would have been scheduled at a closer time proximity

may have a lesser impact on the simulation outcome, larger time gaps may reduce

the quality of the simulation. Hence, an alternative method to build a batch is

proposed, the events from the queue get added to the batch while the scheduled

time difference is lesser than a certain tunable value. We name this method epsilon

batch. In summary, the following batch construction methods are proposed:

� Fixed Size Batch - Given an integer n, a batch is the next n events in the

queue

� Epsilon Batch - Given a value epsilon, a batch is the next m events in the

queue where t(e2)− t(e1) < epsilon

The simulation may have output monitors attached to the execution, for exam-

ple, GUI publishers. There is an important consideration to be made as to when

and how to signal the results to the monitors. Two options are proposed:

� Aggregate - Only the latest simulation state is sent to the output monitors.

� Replay - The simulation states are stored and sent to the output monitors

in their temporal order.

Batch Engine Design

The core of the Alchemist’s DES algorithm is found in the Simulation interface.

The actual sequential implementation is found in the Engine class. The engine is

composed of the two core data structures:
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� DependencyGraph - an interface for an implementation of the Dynamic De-

pendency Graph

� Scheduler - an interface for an implementation of the Dynamic Indexed Pri-

ority Queue

Figure 3.4: Alchemist Simulation Design

There is no need to re-implement the parallel engine from scratch as a lot

of the ancillary logic is already present in the Engine class. The PDES part of

the algorithm requires changes to the simulation step logic, where before a step

would have processed a single event, in the batch engine a single step processes

a batch of the events. For this purpose, the step is extracted as a new protected

method inside the Engine class. The parallel engine is therefore implemented in

the BatchEngine class that extends the base Engine class.

The scheduler should also be changed to be able to retrieve a batch of events
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from the queue instead of a single event. The logic for batch construction is left

up to the implementation of the interface. We propose an extension to the Sched-

uler interface: BatchedScheduler. As per the proposed algorithm specification, two

concrete implementations are provided

� ArrayIndexedPriorityFixedBatchQueue - naive fixed size batch implementa-

tion

� ArrayIndexedPriorityEpsilonBatchQueue - epsilon dynamic batch implemen-

tation

Figure 3.5: Alchemist Parallel Simulation Design
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Batch Engine Configuration

As for the launcher configuration, the engine is optionally configured inside the

simulation configuration file by using the ACLS 3. The configuration is mapped to

the EngineConfiguration type which is implemented with the following subtypes:

Figure 3.6: Alchemist Engine Configuration Design

The required engine and its dependencies such as Scheduler are constructed

according to the configuration type. If no configuration is provided, it will default

to the sequential one.

3.3 Benchmark Harness

The benchmarking harness is to be implemented in a stand alone repository that

imports Alchemist as a dependency. This project relies on the Gradle JMH plugin

and exposes the benchmarking as a gradle task. The benchmarks are exposed as

methods in the Benchmarks class inside the JMH sourceset. The simulations run

the entire Alchemist execution via the ”main” method parametrized to the desired

3https://alchemistsimulator.github.io/reference/yaml/index.html
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run configuration. The results are stored in a simple .txt file in the output folder.

The following benchmarks are proposed:

� sequential run

� parallel run 4 threads, fixed size batch

� parallel run 8 threads, fixed size batch

� parallel run 4 threads, epsilon batch

� parallel run 8 threads, epsilon batch

Each runs the same simulation with the same temporal termination conditions.

The operations throughput for each benchmark is measured.
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Chapter 4

Implementation

4.1 CLI Refactor

Original Alchemist implementation relied on the Apache-cli external Java depen-

dency. The entire cli parsing system was rewritten using Kotlinx-cli, which is a

Kotlin-native cli dependency. Kotlinx-cli is a pure Kotlin implementation of a

generic command-line parser that aims to be Declarative, Platform-agnostic, and

Hackable1. There are 2 base entities: option and argument.

� Option - command line entity started with some prefix (-/–) and can have

value as next entity in command line string.

� Argument - command line entity whose role is connected only with its posi-

tion.

Command line entities can be of several types:

� ArgType.Boolean

� ArgType.Int

� ArgType.String

� ArgType.Double

1https://github.com/Kotlin/kotlinx-cli
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� ArgType.Choice

� Custom Type

If the application has a rich command line interface and executes different ac-

tions with different arguments, subcommands can be useful.

The implementation provides the following entities:

� simulationFile - Argument entity, file containing simulation configuration to

be executed.

� verbosity - Option entity, Simulation logging verbosity level, a choice of one

of the values from the available logging levels.

� overrides - Option entity, multiple, valid YAML files used to override simu-

lation config. files are applied sequentially.

In addition to that, a subcommand ”run” is provided. While no other possible

commands are currently available, the choice to add a subcommand is an effort to

future-proof the development of the next cli features in Alchemist.

Therefore, an example of the launch is

run the simulation.yaml --verbosity info --overrides "foo: bar"

4.2 Arbitrary YAML Override

Alchemist treats the loaded YAML configuration files as maps (i.e. dictionary

data structure) of other maps or variables. To arbitrarily override a piece of

the configuration, a simple map-merging algorithm is sufficient. The designed

algorithm is a simple recursive map traversal:
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�
1 fun mergeInto(key: String , value: Any?, newMap: MutableMap <String , Any?>) {

2 when (value) {

3 is MutableMap <*, *> -> {

4 if (

5 value.isNotEmpty () &&

6 newMap[key] is MutableMap <*, *>

7 ) {

8 val currentTreeNode = newMap[key] as MutableMap <*, *>

9 value.forEach { entry ->

10 if (

11 entry.key is String &&

12 currentTreeNode.isNotEmpty () &&

13 currentTreeNode.keys.toList ()[0] is String

14 ) {

15 mergeInto(entry.key as String , entry.value ,

currentTreeNode as MutableMap <String , Any?>)

16 }

17 }

18 } else {

19 newMap[key] = value

20 }

21 }

22

23 else -> newMap[key] = value

24 }

25 }
� �

4.3 Benchmarking Tests

JMH benchmarks are annotation-driven. The JMH engine will scan the source

sets for methods annotated with @Benchmark and infer the configuration from

the rest of the JMH annotation.

All of the benchmarks run the same simulation, the newly implemented config-

uration override system can be leveraged to re-use the same base configuration file

as a template and override the engine configuration as needed.

The following is an example of a single Benchmark:
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�
1 @Benchmark

2 @BenchmarkMode(Mode.Throughput)

3 @Fork(value = 3)

4 @Threads (4)

5 @Suppress("unused")

6 fun multiThreadedSimulationFourThreadsFixedBatch () {

7 Alchemist.main(

8 arrayOf(

9 "run",

10 "simulation.yml",

11 "--verbosity",

12 "warn",

13 "--override",

14 """

15 launcher:

16 parameters:

17 parallelism: 4

18 engine -configuration:

19 type: FixedBatchEngineConfiguration

20 parameters:

21 outputReplayStrategy: aggregate

22 batchSize: 4

23 """.trimIndent (),

24 ),

25 )

26 }
� �

4.4 Batch Engine

The batch engine version used in the final codebase was implemented using Kotlin

co-routines. Most of the existing engine code can be re-used if we allow to override

single-step execution. For this reason, the step engine logic was extracted in a

protected method ”doStep”. Protected methods are visible for extending classes,

but not outside of the class boundaries. Another change to the Engine class is a

refactor to leverage dependency injection for the Scheduler class. Previously it was

instantiated on the object’s creation, now it is provided as a dependency in the

constructor. This change was needed to differentiate between sequential and batch

engines. The step logic implementation advances the simulation by steps equal to

the size of the processed batch. For each element in the batch, a new asynchronous
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co-routine is created. Their results are then awaited and unwrapped. Finally, once

all of the co-routines are synchronized, output monitors are notified using either

the ”Aggregate” or ”Replay” strategy.

�
1 override fun doStep () {

2 val batchedScheduler = scheduler as BatchedScheduler <T>

3 val nextEvents = batchedScheduler.nextBatch

4 val batchSize = nextEvents.size

5 if (nextEvents.isEmpty ()) {

6 newStatus(Status.TERMINATED)

7 LOGGER.info("No more reactions.")

8 return

9 }

10 val sortededNextEvents =

11 nextEvents.stream ().sorted(Comparator.comparing(Actionable <T>:: tau)).

collect(Collectors.toList ())

12 val minSlidingWindowTime = sortededNextEvents [0]. tau

13 val maxSlidingWindowTime = sortededNextEvents[sortededNextEvents.size -

1]. tau

14 runBlocking {

15 val taskMapper =

16 Function { event: Actionable <T> ->

17 async {

18 doEvent(

19 event ,

20 minSlidingWindowTime ,

21 )

22 }

23 }

24 val tasks = nextEvents.stream ().map(taskMapper).collect(Collectors.

toList ())

25 try {

26 val futureResults = tasks.awaitAll ()

27 val newStep = step + batchSize.toLong ()

28 setCurrentStep(newStep)

29 val resultsOrderedByTime = futureResults

30 .sortedWith(Comparator.comparing { result: TaskResult ->

result.eventTime })

31 setCurrentTime(if (maxSlidingWindowTime > time)

maxSlidingWindowTime else time)

32 doStepDoneAllMonitors(resultsOrderedByTime)

33 } catch (e: InterruptedException) {

34 LOGGER.error(e.message , e)

35 Thread.currentThread ().interrupt ()

36 }

37 }

38 }
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� �
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Chapter 5

Validation

5.1 Benchmarking Results

As per the analysis, the following test cases were performed:

� singleThreadedSimulation - sequential run

� multiThreadedSimulationFourThreadsFixedBatch - parallel run 4 threads,

fixed size batch

� multiThreadedSimulationEightThreadsFixedBatch - parallel run 8 threads,

fixed size batch

� multiThreadedSimulationFourThreadsEpsilonBatch - parallel run 4 threads,

epsilon batch

� multiThreadedSimulationEightThreadsEpsilonBatch - parallel run 8 threads,

epsilon batch

In the following Environments:

� JDK 11 - classic executors

� JDK 11 - Kotlin co-routines

� JDK 19 - classic executors
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� JDK 19 - virtual threads executors

� JDK 19 - Kotlin co-routines

On the machine with the following specifications:

� OS - Microsoft Windows 10 Pro

� Processor Model - Intel(R) Core(TM) i7-8565U @ 1.80GHz

� Processor Cores - 4 Cores

� Processor Logical Processors - 8 Logical Processors

The tests produce a score that measures the throughput of the operation for

the selected execution. The score is measured in ops/s. The scores also provide

an error variance value to better gauge the actual median performance.

JDK 11 - Sequential

This case tests the currently used JDK version in Alchemist with the original se-

quential implementation of the algorithm.

The test has produced the following results:

Benchmark Score Error Variance

singleThreadedSimulation 0.302 ops/s ±0.008

Table 5.1: JDK 11 - Sequential Results
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JDK 11 - Java Classic Executors

This case tests the currently used JDK version in Alchemist with a traditional

task-based concurrency model in Java (Executors).

The test has produced the following results:

Benchmark Score Error Variance

multiThreadedSimulationEightThreadsEpsilonBatch 0.488 ops/s ± 0.063
multiThreadedSimulationEightThreadsFixedBatch 0.519 ops/s ± 0.075
multiThreadedSimulationFourThreadsEpsilonBatch 0.416 ops/s ± 0.014
multiThreadedSimulationFourThreadsFixedBatch 0.409 ops/s ± 0.006

Table 5.2: JDK 11 - Java Classic Executors Results

JDK 11 - Kotlin Co-Routines

This case tests the currently used JDK version in Alchemist with a co-routines

concurrency model in Kotlin.

The test has produced the following results:

Benchmark Score Error Variance

multiThreadedSimulationEightThreadsEpsilonBatch 0.743 ops/s ± 0.048
multiThreadedSimulationEightThreadsFixedBatch 0.717 ops/s ± 0.075
multiThreadedSimulationFourThreadsEpsilonBatch 0.462 ops/s ± 0.118
multiThreadedSimulationFourThreadsFixedBatch 0.403 ops/s ± 0.021

Table 5.3: JDK 11 - Kotlin Co-Routines Results
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JDK 19 - Sequential

This case tests the Alchemist updated to JDK 19 version with the original sequen-

tial implementation of the algorithm.

The test has produced the following results:

Benchmark Score Error Variance

singleThreadedSimulation 0.301 ops/s ± 0.034

Table 5.4: JDK 19 - Sequential Results

JDK 19 - Java Classic Executors Results

This case tests the Alchemist updated to JDK 19 version with a traditional task-

based concurrency model in Java (Executors).

The test has produced the following results:

Benchmark Score Error Variance

multiThreadedSimulationEightThreadsEpsilonBatch 0.447 ops/s ± 0.135
multiThreadedSimulationEightThreadsFixedBatch 0.428 ops/s ± 0.115
multiThreadedSimulationFourThreadsEpsilonBatch 0.356 ops/s ± 0.098
multiThreadedSimulationFourThreadsFixedBatch 0.338 ops/s ± 0.094

Table 5.5: JDK 19 - Java Classic Executors Results
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JDK 19 - Java Virtual Threads Executors Results

This case tests the Alchemist updated to JDK 19 version with the new virtual

thread concurrency model in Java.

The test has produced the following results:

Benchmark Score Error Variance

multiThreadedSimulationEightThreadsEpsilonBatch 0.614 ops/s ± 0.022
multiThreadedSimulationEightThreadsFixedBatch 0.628 ops/s ± 0.022
multiThreadedSimulationFourThreadsEpsilonBatch 0.456 ops/s ± 0.013
multiThreadedSimulationFourThreadsFixedBatch 0.427 ops/s ± 0.012

Table 5.6: JDK 19 - Java Virtual Threads Executors Results

JDK 19 - Kotlin Co-Routines Results

This case tests the Alchemist updated to JDK 19 version with co-routines concur-

rency model in Kotlin.

The test has produced the following results:

Benchmark Score Error Variance

multiThreadedSimulationEightThreadsEpsilonBatch 0.580 ops/s ± 0.176
multiThreadedSimulationEightThreadsFixedBatch 0.635 ops/s ± 0.184
multiThreadedSimulationFourThreadsEpsilonBatch 0.486 ops/s ± 0.148
multiThreadedSimulationFourThreadsFixedBatch 0.449 ops/s ± 0.116

Table 5.7: JDK 19 - Kotlin Co-Routines Results
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5.2 Results Analysis

The visual and comparative analysis is performed by plotting the scores for se-

quential and parallel engine for each benchmark:
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With the following three-sigma variance:

Engine three-sigma lower bound three-sigma lower bound

Sequential 0.23749232680838345 0.36130767319161655
Parallel Fixed 0.28754842631917255 0.5528515736808275
Parallel Epsilon 0.2727830678715353 0.8870169321284647

Table 5.8: Three-Sigma Variance of Benchmark Scores

By comparing the results with the expectation we can deduce the following

insights:

� Intuitively, utilizing more threads leads to better throughput scores across

all the experiments.

� JDK 19 experiments seem to perform worse than their JDK 11 analogs,

however, it may be attributed to the error variance.

� Fixed batch size performs better than epsilon batch. This is expected due

to better resource utilization of the fixed batch solution.
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� Kotlin co-routines are at a clear advantage over traditional concurrency

models in JDK 11, however, JDK 19 virtual threads perform at the same

level. This is expected as both solutions utilize virtual threads instead of OS

threads, which suites this concurrency problem better.

In conclusion, the results were in line with the expectations. Scaling the re-

sources improves the results and a fixed batch that can saturate the available

resources better tends to perform better than an epsilon dynamically sized batch

due to synchronization points after each batch processing. Most interestingly, JDK

19 virtual threads perform at the same level as Kotlin’s co-routines. This is an

important result because this concurrency solution was not previously available in

the Java programming language and it is a big benefit for the problems that better

fit it.
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Chapter 6

Conclusion

This dissertation project was both practical and experimental in its nature. The

project has refactored and improved major parts of the Alchemist simulator to

allow for a more streamlined and scalable configuration and opened the codebase

for the possibility to use different DES implementations. This project has once

again confirmed the difficulty of designing and implementing PDES systems, even

when sacrificing some of the DES properties. Another important point touched

upon in this project is the need to properly asses implementation results by uti-

lizing a robust benchmarking harness instead of naive methods to account for the

dynamic properties of the JVM platform. Lastly, the comparison of the same

PDES implementation in the different JDK versions and concurrency options has

produced interesting, but ultimately expected results. In particular, this project

showed that the latest advancements in the historical and consolidated language

such as Java allow it to keep up with the more modern and experimental languages

such as Kotlin, especially in the cases that benefit lightweight thread concurrency.

Despite the challenges, the project goals were achieved fully and the gained re-

sults were insightful and the contributions made to the Alchemist project have

laid a foundation for the future works and path forward for continued growth and

evolution of the project.
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6.1 Future Works

The goal of the project was to experiment with a PDES implementation that op-

timistically allows for causality errors and study the different concurrency options

on the JVM platform. However, this is not the only option for a possible PDES

implementation. If the events could be constrained to implement an ”undo” mech-

anism, the simulation could be made deterministic despite the concurrency and

the events could be processed with maximum throughput as against in batched

by rollbacking the simulation state when a causality error is encountered and cor-

rected. One such example is the Time Warp Simulation [Wil19]. With the new

extensibility, more engine implementations and tunable parameters can be made

available. More parts of the Alchemist simulator can be made parallel beside the

core DES/PDES algorithm. And lastly, the benchmarks were run on a single hard-

ware configuration, which is quite limiting. A thorough benchmarking analysis run

across different machines with different consumer and enterprise-grade specs could

give a much better sense of the possible throughput variance.
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