Lipparini, Lorenzo
(2023)
Differential graded Lie algebras in deformation theory.
[Laurea], Università di Bologna, Corso di Studio in
Matematica [L-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (477kB)
|
Abstract
This thesis aims to provide a gentle introduction to deformation theory, and in particular to the approach based on differential graded Lie algebras.
We introduce the fundamental algebraic structures at play, including differential graded Lie algebras. We establish several important facts about these objects, with particular attention to their homological and homotopical properties.
We set up the general theory of abstract deformation functors, and see how it applies in case of deformations of a chain complex. Then, we define the deformation functor associated to a differential graded Lie algebra, and demonstrate with a motivating example how it can be used to describe a concrete deformation problem. In particular, we enlight the general principle asserting that in characteristic 0 every deformation problem can be described as the deformation functor associated to a DG-Lie algebra.
We state the homotopy invariance theorem for the deformation functor associated to a DG-Lie algebra, we discuss its implications, and finally give an outline of its proof.
Abstract
This thesis aims to provide a gentle introduction to deformation theory, and in particular to the approach based on differential graded Lie algebras.
We introduce the fundamental algebraic structures at play, including differential graded Lie algebras. We establish several important facts about these objects, with particular attention to their homological and homotopical properties.
We set up the general theory of abstract deformation functors, and see how it applies in case of deformations of a chain complex. Then, we define the deformation functor associated to a differential graded Lie algebra, and demonstrate with a motivating example how it can be used to describe a concrete deformation problem. In particular, we enlight the general principle asserting that in characteristic 0 every deformation problem can be described as the deformation functor associated to a DG-Lie algebra.
We state the homotopy invariance theorem for the deformation functor associated to a DG-Lie algebra, we discuss its implications, and finally give an outline of its proof.
Tipologia del documento
Tesi di laurea
(Laurea)
Autore della tesi
Lipparini, Lorenzo
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
deformation theory differential graded Lie algebras homotopy invariance
Data di discussione della Tesi
21 Luglio 2023
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Lipparini, Lorenzo
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
deformation theory differential graded Lie algebras homotopy invariance
Data di discussione della Tesi
21 Luglio 2023
URI
Statistica sui download
Gestione del documento: