
Alma Mater Studiorum · Università di Bologna
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Introduction

In mathematics, it is useful to represent algebraic structures as linear
maps between vector spaces. This branch of algebra is called representation
theory and here is where this thesis is located. The concepts of induced
and produced representations of rings were introduced by D. G. Higman in
[2] and then further explored by R. J. Blattner in [1] in the context of Lie
algebras (which are closely related to rings through their universal enveloping
algebras).

There is a Realization Theorem proved by Guillemin and Sternberg (and
later extended by Rim) which embeds any transitive Lie algebra into the Lie
algebra of continuous derivations of the dual of a certain symmetric algebra
(which is isomorphic to an algebra of power series if the field has charac-
teristic 0). Blattner’s paper gives a stronger statement for the Realization
Theorem and it showcases analogous results to the ones already exposed by
G. W. Mackey on group representations. His work isn’t aimed at students
and is rather concise compared to the complexity of the subject, which re-
sults in many details being skimmed over or given for granted. Because
of this, directly approaching Blattner’s study might prove itself challenging
even for readers with reasonable knowledge of the concepts of Lie algebras
and their representations. This thesis tries to cover (most of) [1] as clearly
and thoroughly as possible, so that the reader’s effort may be reduced to the
minimum. The original work also includes results regarding Lie groups and
further expands on the topological structure of produced representations. We
will not cover these parts.

The first chapter is dedicated to introducing the notions of tensor prod-
ucts between modules over rings and universal enveloping algebras of Lie
algebras. This is not a very in-depth introduction and will only cover what
is needed for understanding the later chapters. In §2, we show important
properties and structures of induced and produced Lie modules. The next
two chapters are focused on produced representations: we showcase the
Guillemin-Sternberg-Rim theorem in §3 and give some results on systems
of imprimitivity in §4. The module produced from the field (regarded as a

i



ii Introduction

trivial Lie module) is of particular importance here. Lastly, in §5 we look at
induced representations and prove a theorem concerning irreducibility crite-
ria for certain Lie modules.

Despite the thesis not being targeted at experts only, readers are still
required to be familiar with the basic concepts of linear algebra and topology,
as well as the notions of rings, algebras, Lie algebras and modules over these
algebraic structures. We refer to [4] and [5] for these concepts.
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Chapter 1

The universal enveloping
algebra

The universal enveloping algebra of a Lie algebra is a central tool in this
work. Here we will only recall the most important results that will be needed
later on; many theorems and proofs will therefore be skipped and may be
found in [4] and [5].

1.1 Tensor products

Let R be a ring. Let V be a right R-module and letW be a left R-module.

Definition 1.1 (Tensor product of R-modules). A tensor product of V and
W is a pair (U,φ) where U is an R-module, φ is an R-bilinear map φ :
V ×W → U and the following universal property holds: for any other pair
(M,σ) where M is an R-module and σ : V ×W → M is an R-bilinear map
then there exists a unique R-linear map θ : U →M such that σ = θ ◦ φ.

V ×W U

M

σ

φ

θ

The tensor product of two R-modules V andW exists and is unique up to
isomorphism (see [5]). Here is how to construct it: define the free R-module

R(V×W ) = {
∑

(v,w)∈I
r(v,w)(v, w) | r(v,w) ∈ R, v ∈ V,w ∈ W, I ⊆ V ×W, |I| <∞}
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2 1. The universal enveloping algebra

as the direct sum of R over the set V × W and let Z be its submodule
generated by the bilinear conditions, i.e. all elements of the form

(v, w1 + w2)− (v, w1)− (v, w2)

(v1 + v2, w)− (v1, w)− (v2, w)

(vr, w)− r(v, w)

(v, rw)− r(v, w)

for all r ∈ R, v, vi ∈ V and w,wi ∈ W , i = 1, 2. Set

V ⊗RW = RV×W/Z

and let π : R(V×W ) → V ⊗RW be the canonical projection. Write π(v, w) =
v ⊗ w so that we have the relations

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w

r(v ⊗ w) = (vr)⊗ w = v ⊗ (rw)

for all r ∈ R, v, vi ∈ V and w,wi ∈ W , i = 1, 2. Define ⊗R to be the
restriction of π to V ×W ⊆ R(V×W ), which is bilinear by the above formulas.
Then the pair (V ⊗RW,⊗R) is the tensor product of V andW . The elements
mapped into V ⊗RW by ⊗R are called simple tensors.

1.1.1 Properties of tensor products

Tensor products are associative, i.e. if Vi, i = 1, 2, 3 are R-modules then
there is a canonical isomorphism

σ : (V1 ⊗R V2)⊗R V3 → V1 ⊗R (V2 ⊗R V3)

(v1 ⊗ v2)⊗ v3 7→ v1 ⊗ (v2 ⊗ v3)

where V1, V1⊗R V2 are right R-modules, V2⊗R V3, V3 are left R-modules and
V2 is both a left and right R-module. Other properties are commutativity

V1 ⊗R V2 ∼= V2 ⊗R V1

and distributivity with respect to the direct sum

(V1 ⊕ V2)⊗R V3 ∼= (V1 ⊗R V3)⊕ (V2 ⊗R V3).

If R is a unitary ring and V is a left unitary R-module, i.e. 1v = v for each
v ∈ V , we also have the isomorphism

V ⊗R R ∼= V.

See [5] for proofs and details.
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1.1.2 The tensor algebra

If R = K is a field, the R-modules V and W are K-vector spaces. Let
{vi}i∈I and {wj}i∈J be bases for V and W respectively: then the tensor
product of V and W is a K-vector space with the basis {vi ⊗wj}i∈I,j∈J . We
will denote it by V ⊗K W or just V ⊗W equivalently.

For each i ≥ 0 we define T i(V ) = V ⊗ . . . ⊗ V to be the tensor product
of i copies of V . If i = 0, set T 0(V ) = K. The vector space

T (V ) =
∞⊕

i=0

T i(V )

is called the tensor algebra of V . This is a unitary associative algebra with
the product

(x1 ⊗ . . .⊗ xp)(y1 ⊗ . . .⊗ yq) = x1 ⊗ . . .⊗ xp ⊗ y1 ⊗ . . .⊗ yq

defined on all xi, yj ∈ V , i ∈ {1, . . . , p}, j ∈ {1, . . . , q} and extended linearly
on T (g). Now define J to be the (two sided) ideal in T (V ) generated by all
elements of the form x⊗ y − y ⊗ x for all x, y ∈ V . The quotient algebra

S(V ) = T (V )/J

is called the symmetric algebra of V . It is a unitary associative and commu-
tative algebra by the definition of J . Moreover, if {xi}i∈I is a basis for V
then we have S(V ) ∼= K[xi]i∈I (see [4]).

1.1.3 Tensor product of modules over algebras

Let A be an associative K-algebra. Modules over A are K-vector spaces
with a module structure over the ring A. If V is a right A-module and W
is a left A-module, then we have two different tensor products: the K-vector
space V ⊗W and the A-module V ⊗AW . Moreover, we may also define the
K-vector space A⊗ A and give it the obvious product

(a⊗ b)(c⊗ d) = (ac)⊗ (bd)

for all a, b, c, d ∈ A so that A⊗A also becomes an associative algebra. Then
we may regard V ⊗W as an (A⊗ A)-module with the action

(a⊗ b)(v ⊗ w) = (va)⊗ (bw)

where a, b ∈ A, v ∈ V and w ∈ W . This might be referred to as the external
tensor product of V and W . It will be denoted by V ⊠W and its simple
tensors will also be written as v ⊠ w.
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For what concerns Lie algebras, things are obviously different as there
is no ring structure. If g is a K-Lie algebra, we recall that V is a (left) g-
module if it is a K-vector space and there is a bilinear action g × V → V
which satisfies

[x, y]v = x(yv)− y(xv)

for each x, y ∈ g and v ∈ V . If V and W are g-modules then V ⊗ W is
well-defined as a vector space. We may give it a structure of g-module by
defining

x(v ⊗ w) = (xv)⊗ w + v ⊗ (xw)

for each x ∈ g, v ∈ V , w ∈ W and extending this action linearly on V ⊗W .
We quickly show that this formula defines a module structure on V ⊗W . We
have

[x, y]
(
v ⊗ w

)
=
(
[x, y]v

)
⊗ w + v ⊗

(
[x, y]w

)

=
(
x(yv)

)
⊗ w −

(
y(xv)

)
⊗ w + v ⊗

(
x(yw)

)
− v ⊗

(
y(xw)

)

=
(
x(yv)

)
⊗ w + (yv)⊗ (xw)−

(
y(xv)

)
⊗ w − (xv)⊗ (yw)

+ (xv)⊗ (yw) + v ⊗
(
x(yw)

)
− (yv)⊗ (xw)− v ⊗

(
y(xw)

)

= x
(
(yv)⊗ w

)
− y
(
(xv)⊗ w

)
+ x
(
v ⊗ (yw)

)
− y
(
v ⊗ (xw)

)

= x
(
y(v ⊗ w)

)
− y
(
x(v ⊗ w)

)

for each x, y ∈ g, v ∈ V and w ∈ W . The g-module V ⊗W may be called
the internal tensor product of V and W .

1.2 Enveloping algebras

Recall that for any associative algebra A over a field K there exists a
corresponding Lie algebra ALie which is the same vector space as A equipped
with the bracket

[a, b] = ab− ba

for each a, b ∈ A. If φ : A → B is an associative algebra homomorphism,
then φ : ALie → BLie is a Lie algebra homomorphism.

Let g be a Lie algebra over a field K.

Definition 1.2 (Universal enveloping algebra). A universal enveloping alge-
bra of g is a pair (U, i) where U is an associative unitary algebra, i : g → ULie is
a Lie algebra homomorphism and the following universal property holds: for
any other pair (V, j) where V is an associative unitary algebra and j : g → VLie

is a Lie algebra homomorphism then there exists a unique associative unitary
algebra homomorphism θ : U→ V such that j = θ ◦ i.
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g U

V

i

j
θ

We may construct an enveloping algebra of g as follows: let T (g) be the
tensor algebra of g. Define J as the (two sided) ideal in T (g) generated by
all elements of the form x⊗ y − y ⊗ x− [x, y] for all x, y ∈ g and set

U(g) = T (g)/J.

Let π : T (g) → U(g) be the canonical projection map. Write π(x1⊗. . .⊗xp) =
x1 . . . xp for all xi ∈ g, i ∈ {1, . . . , p} so that the associative product in U(g)
between any two elements a and b is the juxtaposition ab. Define ig to be
the restriction of π to T 1(g) = g. Then the pair

(
U(g), ig

)
is an universal

enveloping algebra of g and ig : g → U(g) is injective (see [4]).
The universal property that comes from the definition ensures that U(g) is

unique up to isomorphism. Indeed, let (V, j) be another universal enveloping
algebra of g. We obtain unique homomorphisms θ1 : U(g) → V and θ2 : V→
U(g) such that j = θ1 ◦ ig and ig = θ2 ◦ j.

V

U(g) g U(g)

V

θ2θ1

ig

j

ig

j

θ1θ2

Then ig = (θ2 ◦ θ1) ◦ ig and obviously also ig = idU(g) ◦ ig, thus θ2 ◦ θ1 = idU(g)
by the uniqueness of θ1 and θ2. Similarly, θ1 ◦ θ2 = idV and therefore θ1 and
θ2 are algebra isomorphisms. We may then refer to the pair

(
U(g), ig

)
as the

universal enveloping algebra of g.

Remark 1. If g is abelian, then the ideal J is generated by elements of the
form x ⊗ y − y ⊗ x with x, y ∈ g. Therefore U(g) is the symmetric algebra
S(g).

1.2.1 Representation equivalence

Thanks to the existence of the universal enveloping algebra, we may study
g- and U(g)-modules equivalently. Indeed, if ρ : g → gl(V ) is the represen-
tation map for the g-module V , then by universal property there exists a
unique unitary associative algebra homomorphism ρ̄ : U(g) → End(V ) such
that ρ = ρ̄ ◦ ig.
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g U(g)

End(V )

ig

ρ ρ̄

Therefore ρ̄ defines a U(g)-module structure on V . Conversely, if V is a
U(g)-module and ρ̄ is its representation map then the map ρ = ρ̄ ◦ ig is a Lie
algebra homomorphism which defines a g-module structure on V .

Let V1, V2 be g-modules and let ρ1, ρ2 be their representation maps.

Definition 1.3 (Representation equivalence). We write ρ1 ∼= ρ2 (ρ1 is equiv-
alent to ρ2) if there exists a linear isomorphism φ : V1 → V2 such that
φ ◦ ρ1(x) = ρ2(x) ◦ φ for each x ∈ g.

V1 V1

V2 V2

ρ1(x)

φ φ

ρ2(x)

Wemay define equivalence of U(g)-representations in the same way. There-
fore, if ρ1, ρ2 are Lie representation maps and ρ̄1, ρ̄2 are their associative cor-
respondents then we have ρ1 ∼= ρ2 if and only if ρ̄1 ∼= ρ̄2. Equivalently, if V1
and V2 are the g-modules associated to ρ1 and ρ2 then V1 ∼= V2 as g-modules
if and only if V1 ∼= V2 as U(g)-modules.

Remark 2. A Lie representation ρ : g → End(V ) is irreducible if and only if
its correspondent associative representation ρ̄ : U(g) → gl(V ) is irreducible.

Indeed, assume ρ irreducible and ρ̄ reducible. Then there exists {0} ≠
W ⫋ V such that ρ̄(x)W ⊆ W for each x ∈ U(g). But g is canonically
immersed into U(g) through ig, therefore W is a proper g-submodule of V
which is absurd. Conversely, assume ρ̄ irreducible and ρ reducible. Again,
there exists {0} ≠ W ⫋ V such that ρ(x)W ⊆ W for each x ∈ g. By the
construction of the enveloping algebra, each element of U(g) is a finite sum
of elements of the form x1 . . . xp where xi ∈ g for i ∈ {1, . . . , p}. For such
monomials we may write ρ(xi) = ρ̄(xi) for each i due to the immersion of g
into U(g). Then by virtue of ρ̄ being an associative algebra isomorphism we
have

ρ̄(x1 . . . xp)W = ρ(x1) . . . ρ(xp)W ⊆ W

and this is true for all monomials, which implies the absurd consequence that
W is a U(g)-submodule of V .
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1.2.2 Filtered structure of U(g)

Let A be an algebra over the field K and let A = {Ap}p∈Z be a collection of
vector subspaces of A such that

⋃
p∈ZAp = A and Ap ⊆ Ap+1 (or Ap ⊇ Ap+1)

for each p ∈ Z.

Definition 1.4 (Filtered algebra, upward and downward filtration). The
pair (A,A) is called a filtered algebra if ApAq ⊆ Ap+q for each p, q ∈ Z.

If (A,A) is a filtered algebra, A is called an upward filtration if Ap ⊆ Ap+1

for each p ∈ Z and it is called a downward filtration if Ap ⊇ Ap+1 for each
p ∈ Z.

The enveloping algebra U(g) has a natural upward filtration given by
Up(g) = span{y1 . . . yq | yi ∈ g ∀i ∈ {1, . . . , q} , q ≤ p} for all p ∈ Z. Note
that U0(g) = Span{1} ∼= K and Up(g) = {0} for p < 0. Set U = {Up(g)}p∈Z.
It is easy to see that

(
U(g),U

)
is indeed a filtered algebra as the condition

Up(g)Uq(g) ⊆ Up+q(g) is obvious due to the product of monomials being their
juxtaposition.

Remark 3. For each a ∈ Up(g) and b ∈ Up(g), we have that

ab = ba
(
modulo Up+q−1(g)

)
.

Indeed, assume a = a1 . . . ap and b = b1 . . . bq where ai, bj ∈ g for i ∈
{1, . . . , p}, j ∈ {1, . . . , q}. Then

ab = a1 . . . apb1 . . . bq = a1 . . . ap−1(apb1)b2 . . . bq

= a1 . . . ap−1(b1ap)b2 . . . bq + a1 . . . ap−1[ap, b1]b2 . . . bq

where clearly a1 . . . ap−1[ap, b1]b2 . . . bq ∈ Up+q−1(g), hence

ab = a1 . . . ap−1b1apb2 . . . bq
(
modulo Up+q−1(g)

)
.

This process can be repeated any number of times in order to rearrange the
terms ai and bj until we reach the desired conclusion.

1.2.3 PBW Theorem

The following theorem (usually abbreviated with PBW Theorem) comes
in multiple forms. We give the one that is most useful in our work.

Theorem 1.2.1 (Poincaré-Birkhoff-Witt). Let I be a totally ordered set and
let {xi}i∈I be an ordered basis for g. Then

{xi1 . . . xip | i1 ≤ . . . ≤ ip, ij ∈ I ∀j ∈ {1, . . . , p}, p ∈ Z≥0}
is a basis for U(g).



8 1. The universal enveloping algebra

Proof. See [4].

Note that the unit 1 is an element of the basis given in the above theorem,
as it corresponds to the empty product obtained when p = 0.

Let I be a totally ordered index set such that |I| = dim g. Choose {xi}i∈I
as a basis for g. For every m ∈ (Z≥0)

I multi-index, we can define its height
as

|m| =
∑

i∈I
mi.

Set |m| = ∞ if the sum diverges. Define M = {m ∈ (Z≥0)
I | |m| < ∞}, i.e.

the set of multi-indexes such that mi = 0 for all but a finite number of i ∈ I.
If m ∈M , we will write

xm =
∏

i∈I
xi
mi .

Since the above is a finite product and I is totally ordered, xm is a well-
defined element of U(g). By the PBW Theorem, {xm}m∈M is a basis for
U(g).

1.2.4 The main antiautomorphism

Definition 1.5 (Antihomomorphism and antiautomorphism). Let A and
B be algebras over the field K. A linear map φ : A → B is called an
antihomomorphism of the algebra A into the algebra B if φ(xy) = φ(y)φ(x)
for each x, y ∈ A. If A = B and φ is bijective, we will say that φ is an
antiautomorphism of the algebra A.

The above definition can be applied to any Lie algebra g, in which case
the condition for φ will be that φ([x, y]) = [φ(y), φ(x)]. Now consider the
mapping x 7→ −x of g into itself. It is clearly bijective and it is also a Lie
algebra antiautomorphism because

[x, y] 7→ −[x, y] = [y, x] = [−y,−x]

for all x, y ∈ g. Note that the fundamental property of the enveloping algebra
can be formulated analogously for antihomomorphisms so that this mapping
extends into an associative algebra antiautomorphism of U(g). We will call
this the main antiautomorphism of U(g) and it will be denoted by ′.

g g

U(g) U(g)

x 7→−x

ig ig

′
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Note that ′ has period two, i.e. ′ ◦ ′ = idU(g). This is because x 7→ −x also
has period two.

1.3 The coproduct ∆

If g is a Lie algebra, let ∆ : g → g⊕ g be the diagonal map ∆(x) = x⊕ x
for each x ∈ g.

Proposition 1.3.1. The diagonal map ∆ is a Lie homomorphism.

Proof. The bracket in g is extended naturally to g⊕ g by defining

[x1 ⊕ y1, x2 ⊕ y2] = [x1, x2]⊕ [y1, y2]

for each xi, yi ∈ g, i = 1, 2. We have

∆([x, y]) = [x, y]⊕ [x, y]

[∆(x),∆(y)] = [x⊕ x, y ⊕ y] = [x, y]⊕ [x, y]

for each x, y ∈ g.

Thanks to the universal property of the enveloping algebra, we may ex-
tend ∆ to a homomorphism U(g) → U(g⊕ g) as shown below.

g g⊕ g

U(g) U(g⊕ g)

∆

ig ig⊕g◦∆ ig⊕g

We will still use ∆ to refer to the extended map.

Proposition 1.3.2. The enveloping algebra U(g⊕ g) is canonically isomor-
phic to U(g)⊗ U(g).

Proof. Let φ : g⊕g → U(g)⊗U(g) be the linear map φ(x⊕y) = x⊗1+1⊗y
for all x, y ∈ g. We have seen in §1.1.3 that the tensor product U(g)⊗ U(g)
is an associative algebra and thus it inherits the Lie algebra structure of
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(
U(g)⊗ U(g)

)
Lie
. We show that φ is a Lie algebra homomorphism:

φ([x1 ⊕ y1, x2 ⊕ y2]) = φ([x1, x2]⊕ [y1, y2]) = [x1, x2]⊗ 1 + 1⊗ [y1, y2]

[φ(x1 ⊕ y1), φ(x2 ⊕ y2)] = [x1 ⊗ 1 + 1⊗ y1, x2 ⊗ 1 + 1⊗ y2]

= [x1 ⊗ 1, x2 ⊗ 1] + [x1 ⊗ 1, 1⊗ y2] + [1⊗ y1, x2 ⊗ 1]

+ [1⊗ y1, 1⊗ y2]

= x1x2 ⊗ 1− x2x1 ⊗ 1 + x1 ⊗ y2 − x1 ⊗ y2

+ x2 ⊗ y1 − x2 ⊗ y1 + 1⊗ y1y2 − 1⊗ y2y1

= (x1x2 − x2x1)⊗ 1 + 1⊗ (y1y2 − y2y1)

= [x1, x2]⊗ 1 + 1⊗ [y1, y2].

Therefore, by the universal property of the enveloping algebra φ extends to
an associative algebra homomorphism θ which sends U(g⊕g) into U(g)⊗U(g).

g⊕ g U(g⊕ g)

U(g)⊗ U(g)

ig⊕g

φ θ

If x ⊗ 1 + 1 ⊗ y = 0 then x = y = 0, hence θ is injective. Any element in
U(g)⊗U(g) is a sum of elements of the form x1 . . . xp⊗y1 . . . yq with xi, yj ∈ g
for i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. By observing that θ(x⊕ 0) = x⊗ 1 we
have

θ
(
(x1 ⊕ 0) . . . (xp ⊕ 0)(0⊕ y1) . . . (0⊕ yq)

)
= (x1 ⊗ 1) . . . (xp ⊗ 1)(1⊗ y1) . . . (1⊗ yq)

= x1 . . . xp ⊗ y1 . . . yq

because θ is an algebra homomorphism. Therefore θ is surjective and thus it
is an algebra isomorphism. It is canonical by the independence a basis choice
for g.

Through the above isomorphism, we will refer to the map

∆ : U(g) → U(g)⊗ U(g)

as the coproduct of U(g). Note that ∆(1) = 1 ⊗ 1 as the extension must be
a unitary associative algebra homomorphism.

Let y1, . . . , yp ∈ g and define ym = ym1
1 . . . y

mp
p ∈ U(g), m being the multi-

index (m1, . . . ,mp) ∈ (Z≥0)
p. For each other k = (k1, . . . , kp) multi-index,

define (
m

k

)
=

(
m1

k1

)
. . .

(
mp

kp

)
.
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Multi-indices are partially ordered in (Z≥0)
p in the obvious way: k ≤ m if

k1 ≤ m1, . . . , kp ≤ mp.

Lemma 1.3.3.

∆(ym) =
∑

0≤k≤m

(
m

k

)
yk ⊗ ym−k.

Proof. First, assume mi = 1 for each i ∈ {1, . . . , p}. Then all binomial terms
are 1. Remember that

∆(y1 . . . yp) = ∆(y1) . . .∆(yp) = (y1 ⊗ 1 + 1⊗ y1) . . . (yp ⊗ 1 + 1⊗ yp).

We show this case by induction on p. If p = 1, the lemma is clearly true.
Now assume our result to be true for a product of p elements of g.

∆(y1 . . . yp+1) = (y1 ⊗ 1 + 1⊗ y1)
∑

0≤ki≤1
i∈{2,...,p+1}

y2
k2 . . . yp+1

kp+1 ⊗ y2
1−k2 . . . yp+1

1−kp+1

=
∑

0≤ki≤1
i∈{2,...,p+1}

y1y2
k2 . . . yp+1

kp+1 ⊗ y2
1−k2 . . . yp+1

1−kp+1

+
∑

0≤ki≤1
i∈{2,...,p+1}

y2
k2 . . . yp+1

kp+1 ⊗ y1y2
1−k2 . . . yp+1

1−kp+1

=
∑

0≤ki≤1
i∈{1,...,p+1}

y1
k1y2

k2 . . . yp+1
kp+1 ⊗ y1

1−k1y2
1−k2 . . . yp+1

1−kp+1 .

This proves the lemma for a product of p+1 elements of g. To get the general
case, set zm1+...+mi−1+1 = . . . = zm1+...+mi

= yi for each i ∈ {1, . . . , p} and
apply the previous result to z1 . . . z|m|:

∆(z1 . . . z|m|) =
∑

0≤ki≤1
i∈{1,...,|m|}

z1
k1 . . . z|m|

k|m| ⊗ z1
1−k1 . . . z|m|

1−k|m|

=
∑

0≤ki≤1
i∈{1,...,|m|}

y1
k1 . . . y1

km1 . . . yp
k(m1+...+mp−1+1) . . . yp

k|m|

⊗ y1
1−k1 . . . y1

1−km1 . . . yp
1−k(m1+...+mp−1+1) . . . yp

1−k|m|

=
∑

0≤ki≤1
i∈{1,...,|m|}

y1
k1+...+km1 . . . yp

k(m1+...+mp−1+1)+...+k|m|

⊗ y1
1−(k1+...+km1 ) . . . yp

1−
(
k(m1+...+mp−1+1)+...+k|m|

)
.
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Now let hi = k(m1+...+mi−1+1)+ . . .+ k(m1+...+mi) for each i ∈ {1, . . . , p}. Note
that hi ∈ {0, . . . ,mi}. Counting the terms in the sum that contain yi

hi , we
observe that they are

(
mi

hi

)
in number. Collecting them in the above formula

proves the lemma:

∆(y1
m1 . . . yp

mp) =
∑

0≤ki≤1
i∈{1,...,|m|}

y1
h1 . . . yp

hp ⊗ y1
1−h1 . . . yp

1−hp

=
∑

0≤hi≤mi
i∈{1,...,p}

(
m1

h1

)
. . .

(
mp

hp

)
y1
h1 . . . yp

hp ⊗ y1
1−h1 . . . yp

1−hp .

Remark 4. By setting h = m− k, we may reformulate this identity as

∆(ym) =
∑

0≤h,k≤m
h+k=m

m!

h! k!
yh ⊗ yk

where m! = m1! . . .mp! and similarly for h! and k!, consistently with the
previous definition of the binomial product for multi-indexes.

Proposition 1.3.4. The coproduct ∆ is coassociative.

Proof. Coassociativity for ∆ means that

(
idU(g) ⊗∆

)
◦∆ = σ̄ ◦

(
∆⊗ idU(g)

)
◦∆

where σ̄ denotes the canonical isomorphism

σ̄ :
(
U(g)⊗ U(g)

)
⊗ U(g) → U(g)⊗

(
U(g)⊗ U(g)

)
.

U(g)

U(g)⊗ U(g)

(
U(g)⊗ U(g)

)
⊗ U(g) U(g)⊗

(
U(g)⊗ U(g)

)

U(g)⊗ U(g)

∆

∆⊗id
U(g)

σ̄

id
U(g)

⊗∆

∆
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We can use the barycentric formula written in Remark 4 to show this fact.
Choose {xi}i∈I basis for g and define M , xm for m ∈ M as in §1.2.3 so that
{xm}m∈M is a basis for U(g). Then

(
σ̄ ◦ (∆⊗ idU(g)) ◦∆

)
(xm) =

(
σ̄ ◦ (∆⊗ idU(g))

)



∑

0≤h,k≤m
h+k=m

m!

h! k!
xh ⊗ xk




= σ̄




∑

0≤h,k≤m
h+k=m

m!

h! k!
∆(xh)⊗ xk




= σ̄




∑

0≤h,k≤m
h+k=m

m!

h! k!



∑

0≤i,j≤h
i+j=h

h!

i! j!
xi ⊗ xj


⊗ xk




= σ̄




∑

0≤i,j,k≤m
i+h+k=m

m!

i! j! k!
(xi ⊗ xj)⊗ xk




=
∑

0≤i,j,k≤m
i+j+k=m

m!

i! j! k!
xi ⊗ (xj ⊗ xk)

and

(
(idU(g) ⊗∆) ◦∆

)
(xm) = (idU(g) ⊗∆)




∑

0≤h,k≤m
h+k=m

m!

h! k!
xh ⊗ xk


 =

=
∑

0≤h,k≤m
h+k=m

m!

h! k!
xh ⊗∆(xk)

=
∑

0≤h,k≤m
h+k=m

m!

h! k!
xh ⊗



∑

0≤i,j≤k
i+j=k

k!

i! j!
xi ⊗ xj




=
∑

0≤i,j,h≤m
i+j+h=m

m!

i! j! h!
xi ⊗ (xj ⊗ xh).
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One may find in literature that
(
U(g),∆

)
is called a coalgebra if ∆ is coas-

sociative and that
(
U(g), ·,∆

)
is called a bialgebra if

(
U(g), ·

)
is an algebra,(

U(g),∆
)
is a coalgebra and ∆ is an algebra homomorphism.



Chapter 2

Induction and production

We introduce the concepts of induced and produced representations. From
now on, the notation for modules will be left-sided unless otherwise specified.
Everything said in §1.1 still holds regardless.

Let K be a field and let A be an associative, unitary K-algebra. Let B
be a unitary subalgebra of A and let V be a unitary B-module.

Definition 2.1 (Induced pair). A pair (U,φ) where U is a unitary A-module
and φ : V → U is a B-homomorphism is said to be induced from V if the
following universal property holds: for every other pair (W,σ) as above then
there exists a unique A-homomorphism θ : U → W such that σ = θ ◦ φ.

V U

W

σ

φ

θ

Definition 2.2 (Produced pair). A pair (U,φ) where U is a unitary A-
module and φ : U → V is a B-homomorphism is said to be produced from V
if the following universal property holds: for every other pair (W,σ) as above
then there exists a unique A-homomorphism θ : W → U such that σ = φ◦ θ.

W U

V

θ

σ
φ

Induced (respectively produced) pairs exist and are unique up to isomor-
phism (see [2]), thus we may refer to them as the pair induced (respectively
produced) from V . To construct the induced pair (U,φ), regard A as a right

15
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B-module: we have U = A⊗B V and φ(v) = 1⊗ v for all v ∈ V as our pair.
U is an A-module with the action

a(b⊗ v) = (ab)⊗ v

for every a, b ∈ A and v ∈ V , extended linearly on all u ∈ U . For another pair
(W,σ), θ is defined by θ(b⊗v) = b σ(v) for every b ∈ A, v ∈ V . For produced
pairs, we regard A as a left B-module instead and thus U = HomB(A, V ),
φ(u) = u(1) for all u ∈ U is our pair. The action on U is given by

(au)(b) = u(ba)

for all b ∈ A and, for a pair (W,σ), we have
(
θ(w)

)
(b) = σ(bw) for all w ∈ W

and b ∈ A. See [2] for proofs and details on the construction of these modules.
We can extend these definitions to a K-Lie algebra g with a subalgebra h,

obtaining equivalent notions for Lie-modules induced and produced from an
h-module V . Moreover, let U(g) and U(h) be the universal enveloping alge-
bras of g and h respectively, and regard U(h) as a unitary subalgebra of U(g):
since V is an h-module, it is also a U(h)-module by the universal property
of the enveloping algebra, hence we know that the representations induced
and produced from V are U(g)⊗U(h) V and HomU(h)(U(g), V ) respectively, as
seen above. We will denote them by Ig

h(V ) and Pg
h(V ).

Induced and produced Lie representations are intertwined through dual-
ity. For any g-moduleW , letW ∗ be its contragradient g-module. Recall that
W ∗ = HomK(W,K) is given the action

(xψ)(w) = −ψ(xw)

for all x ∈ g, ψ ∈ W ∗ and w ∈ W . We may reformulate the above as
(xψ)(w) = ψ(x′w), where ′ is the main antiautomorphism introduced in
§1.2.4 and it coincides with the map x 7→ −x on g. Then by extending this
action on U(g) we obtain that

(aψ)(w) = ψ(a′w)

for all a ∈ U(g), ψ ∈ W ∗ and w ∈ W .

Proposition 2.0.1. Let V be an h-module. Then Pg
h(V

∗) ∼=
(
Ig
h(V )

)∗
.

Proof. Realize Ig
h(V ) as U(g)⊗U(h) V and Pg

h(V
∗) as HomU(h)(U(g), V

∗). Let

ψ ∈
(
Ig
h(V )

)∗
=
(
U(g)⊗U(h)V

)∗
. For each a ∈ U(g) define a map ψ̂(a) : V →

K by (
ψ̂(a)

)
(v) = ψ(a′ ⊗ v)
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for all v ∈ V . By the linearity of ψ and the bilinear properties of the tensor
product, ψ̂(a) ∈ V ∗ and ψ̂ ∈ HomK(U(g), V

∗). Now let z ∈ U(h). The
restriction of ′ to U(h) is the main antiautomorphism of U(h), therefore

(
ψ̂(za)

)
(v) = ψ

(
(za)′ ⊗ v

)
= ψ(a′z′ ⊗ v) = ψ(a′ ⊗ z′v) =

(
ψ̂(a)

)
(z′v)

=
(
z ψ̂(a)

)
(v)

because ψ̂(a) ∈ V ∗. Hence ψ̂ ∈ Pg
h(V

∗). The map

̂ :
(
Ig
h(V )

)∗ → Pg
h(V

∗)

ψ 7→ ψ̂

is clearly linear by definition of sum and scalar multiplication in the Hom
spaces. If b ∈ U(g) and ψ ∈

(
Ig
h(V )

)∗
, we have

(
(b̂ψ)(a)

)
(v) = (bψ)(a′ ⊗ v) = ψ

(
b′(a′ ⊗ v)

)
= ψ

(
(ab)′ ⊗ v

)

=
(
ψ̂(ab)

)
(v) =

(
(b ψ̂)(a)

)
(v)

for each a ∈ U(g) and v ∈ V . This implies that ̂ is a U(g)-homomorphism.

If ψ̂ = 0, then ψ vanishes on a set of generators for Ig
h(V ) and therefore

ψ = 0. So ̂ is injective. Now let ζ ∈ Pg
h(V

∗). Define ξ : U(g) × V → K by

ξ(a, v) =
(
ζ(a′)

)
(v) for all a ∈ U(g) and v ∈ V . The map ξ is bilinear by the

linearity of ζ and ζ(a′). Moreover, for all z ∈ U(h) it is

ξ(az, v) =
(
ζ(z′a′)

)
(v) =

(
z′ζ(a′)

)
(v) =

(
ζ(a′)

)
(zv)

= ξ(a, zv)

because ′ has period two. This implies that ξ is U(h)-bilinear. By the
universal property of the tensor product, there exists a unique linear map
ψ : U(g) ⊗U(h) V → K such that ψ(a ⊗ v) = ξ(a, v) =

(
ζ(a′)

)
(v) for all

a ∈ U(g) and v ∈ V .

U(g)× V U(g)⊗U(h) V

K
ξ

⊗

ψ

Since ψ(a⊗v) =
(
ψ̂(a′)

)
(v) then ψ̂ = ζ, therefore ̂ is surjective. This proves

that ̂ is an U(g)-isomorphism.
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2.1 Filtered structure of Ig
h(V ) and Pg

h(V )

In §1.2.2, we have seen that the enveloping algebra U(g) has a natural
upward filtration U = {Up(g)}p∈Z. This filtration gives rise to an upward
filtration for Ig

h(V ) and a downward one for Pg
h(V ): we have

Ig
h(V )p = Span{a⊗ v | a ∈ Up(g), v ∈ V }

Pg
h(V )p = {u ∈ Pg

h(V ) | u|Up−1(g) = 0}.

Now consider the quotient space g/h and regard it as an abelian Lie
algebra, so that U(g/h) is the symmetric algebra S(g/h). The singleton {0}
is obviously a subalgebra of g/h and its action on V is trivial, thus U({0})
acts on V like the scalar multiplication (the action is unitary). Replacing
A with S(g/h) and B with U({0}) = K in our definitions, we obtain that
S(g/h) ⊗K V and HomK(S(g/h), V ) are, respectively, the modules induced
and produced by the {0}-module V , so we have

Ig/h
{0}(V ) = S(g/h)⊗K V

Pg/h
{0}(V ) = HomK(S(g/h), V ).

We may give them the filtrations seen above.
Let I be a totally ordered index set such that |I| = dim (g/h). Choose

{x̄i}i∈I basis for g/h and, for every i ∈ I, choose a class representative
xi ∈ x̄i ⊆ g. Define M , xm for m ∈ M as in §1.2.3 and define x̄m ∈ S(g/h)
analogously to xm. By the PBW Theorem, {x̄m}m∈M is a basis for S(g/h)
and thus we can define τ : S(g/h) → U(g) as the linear map x̄m 7→ xm. Let’s
consider the following maps

ι : S(g/h)⊗K V → U(g)⊗U(h) V

a⊗ v 7→ τ(a)⊗ v

π : HomU(h)(U(g), V ) → HomK(S(g/h), V )

(πu)(a) = u
(
τ(a)

)

where a ∈ S(g/h), v ∈ V and u ∈ HomU(h)(U(g), V ). Note that

ι : Ig/h
{0}(V ) → Ig

h(V )

π : Pg
h(V ) → Pg/h

{0}(V )

hence these are maps between filtered spaces as seen earlier.
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Proposition 2.1.1. The maps ι and π are filtration preserving linear iso-
morphisms.

Proof. The map ι is defined by linear extension on S(g/h) ⊗K V and π is
clearly linear from the notion of sum and scalar multiplication in the pro-
duced module HomU(h)(U(g), V ).

The injectivity of ι comes from the obvious injectivity of τ . For the
surjectivity, consider g ∼= g/h ⊕ h. Complete {xi}i∈I to a basis of g and
call this completion {xi, yj}i∈I,j∈J , where {yj}j∈J is a basis for h and J is
a totally ordered index set. We order I ∪ J by saying that i < j for all
i ∈ I, j ∈ J . Thanks to the PBW Theorem, we know that a basis for U(g)
is given by {xmyn}m∈M,n∈N where N = {n ∈ (Z≥0)

J | |n| < ∞}, |n| and
yn being defined analogously to |m| and xm. {yn}n∈N is a basis for U(h),
thus {xm}m∈M is a basis for U(g) as a U(h)-module. This proves that ι is
surjective, as xmyn⊗v = xm⊗ynv = ι(x̄m⊗ynv). Thus, ι is an isomorphism.

To prove the same for π, assume πu = 0: then (πu)(a) = u(τ(a)) = 0
for all a ∈ S(g/h), i.e. τ(S(g/h)) ⊆ keru. Since {xm}m∈M is a basis for
the left U(h)-module U(g), for all z ∈ U(g) we may write z =

∑
m∈M ymx

m,
ym ∈ U(h) and only a finite amount of them being non-zero. Since u is a
U(h)-homomorphism, we have

u(z) =
∑

m∈M
ymu(x

m) =
∑

m∈M
ymu(τ(x̄

m)) = 0

which means u = 0 and π is injective.
Let φ ∈ HomK(S(g/h), V ) be a linear map such that x̄m 7→ vm. Let
u ∈ HomU(h)(U(g), V ) be the map xm 7→ vm, extended to U(g) as an U(h)-
homomorphism. Then (πu)(x̄m) = u(τ(x̄m)) = u(xm) = vm, which means
πu = φ. Therefore, π is an isomorphism.

We will now prove that ι preserves the filtration. It is clear that ι
(
Ig/h
{0}(V )p

)
⊆

Ig
h(V )p. Let u ∈ Ig

h(V )p. From the PBW Theorem, it follows that

u =
∑

m∈M, n∈N
|m|+|n|≤p

xmyn ⊗ vm,n =
∑

m∈M, n∈N
|m|+|n|≤p

xm ⊗ ynvm,n

=
∑

m∈M
|m|≤p

xm ⊗
∑

n∈N
|n|≤p−|m|

ynvm,n

=
∑

m∈M
|m|≤p

τ(x̄m)⊗
∑

n∈N
|n|≤p−|m|

ynvm,n ∈ ι(Ig/h
{0}(V )p)

where vm,n ∈ V and all zero except for a finite amount. Hence Ig
h(V )p ⊆

ι
(
Ig/h
{0}(V )p

)
.
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As for π, let u ∈ Pg
h(V )p and a ∈ Sp−1(g/h). Clearly τ(a) ∈ Up−1(g), so

we have (πu)(a) = u(τ(a)) = 0 which means π
(
Pg

h(V )p
)
⊆ Pg/h

{0}(V )p.

Let φ ∈ Pg/h
{0}(V )p be a linear map φ(x̄m) = vm ∈ V . We know that vm = 0 if

|m| ≤ p− 1. By setting u(xm) = vm for each m ∈ M and extending u as an
U(h)-homomorphism of U(g) into V , we showed that πu = φ. For |m| ≤ p−1,
u(xm) = 0; since {xm | |m| ≤ p−1}m∈M is a U(h)-basis for Up−1(g), it follows

that u ∈ Pg
h(V )p. This implies Pg/h

{0}(V )p ⊆ π
(
Pg

h(V )p
)
.

2.1.1 Filtration topology in Pg
h(V )

The filtration {Pg
h(V )p}p∈Z induces a topology on the vector space Pg

h(V )
by providing a basis of open neighbourhoods of 0; neighbourhoods of any
u ∈ Pg

h(V ) are defined through translation. Similarly, the enveloping algebra
also has the filtration topology where the neighbourhoods of 0 are Up(g), but
since Up(g) = {0} for all p < 0 this coincides with the discrete topology. If V
is given the structure of a topological vector space, then we may also consider
the finite-open topology on Pg

h(V ) defined through the basis {U(F,A) ̸= ∅ |
F ⊆ U(g), |F | < ∞, A ⊆ V open} where U(F,A) = {u ∈ Pg

h(V ) | u(F ) ⊆
A}. Regard V as a discrete topological space.

Proposition 2.1.2. The finite-open topology is weaker than the filtration
topology on Pg

h(V ). If dim (g/h) < ∞ then the filtration and finite-open
topologies coincide.

Proof. To prove that the finite-open topology is weaker than the filtration
topology, we show that for any F finite subset of U(g) and any A ⊆ V
such that U(F,A) ̸= ∅ there exists an open neighbourhood in the filtration
topology contained into U(F,A). Let p = min {m ≥ −1 | F ⊂ Um(g)} and
let u ∈ U(F,A). Then u+Pg

h(V )p+1 ⊆ U(F,A). Now assume dim (g/h) <∞
and let p ∈ Z. Let F be a basis for Up−1(g) as an U(h)-module (choose
F = {0} if p ≤ 0) and let A = {0}. Since dim (g/h) < ∞, the basis F is
finite. Then we have U(F,A) ⊆ Pg

h(V )p and therefore the filtration topology
is weaker than the finite-open topology.

Proposition 2.1.3. The g-module Pg
h(V ) is filtration complete.

Proof. Convergence for a sequence {un}n≥0 in the filtration topology of Pg
h(V )

is obtained by saying that {un}n≥0 converges to 0 if for every p ∈ Z there
exists Np ≥ 0 such that un ∈ Pg

h(V )p for all n ≥ Np. Convergence to any ele-
ment u ∈ Pg

h(V ) is defined through the sequence {u−un}n≥0 and the notion

of a Cauchy sequence is also given analogously. We may write un
n→∞−−−→ u as
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is standard to denote convergence. Now we show that Pg
h(V ) is complete with

respect to this convergence. Let {un}n≥0 be a Cauchy sequence in Pg
h(V ).

Then for every p ≥ 0 there exists Np ≥ 0 such that un − um ∈ Pg
h(V )p+1

for each n,m ≥ Np. This implies un(a) = um(a) for all a ∈ Up(g) and
n,m ≥ Np; in other words, for each a ∈ Up(g) the sequence {un(a)}n≥Np is
stationary in V . Therefore we can define u(a) = uNp(a) for all a ∈ Up(g).
Note that if p1 ≤ p2 we may choose Np2 to satisfy Np1 ≤ Np2 , so that if
a ∈ Up1(g) ⊆ Up2(g) we have uNp1

(a) = uNp2
(a). We may then repeat the

process for all p to obtain a well-defined function u : U(g) → V . Since
u is defined in terms of un it also holds all of its properties, hence u is a
U(h)-homomorphism which means u ∈ Pg

h(V ). Now consider the sequence
{u − un}n≥0: for any p ≥ 0, there exists Np ≥ 0 such that un(a) = u(a)
for all a ∈ Up(g) and n ≥ Np, which implies un − u ∈ Pg

h(V )p+1 for all
n ≥ Np. Therefore {un}n∈Z>0 converges to u ∈ Pg

h(V ) and Pg
h(V ) is filtration

complete.

2.2 Multiplicative structure of produced rep-

resentations

By 1.3.2, we can treat U(g) ⊗ U(g) and U(g ⊕ g) representations inter-
changeably. Let V1 and V2 be h-modules and thus U(h)-modules. Now con-
sider the tensor product of these vector spaces: as seen in §1.1.3, it has
multiple module structures. Indeed, we may consider the external tensor
product V1 ⊠ V2, which is a U(h)⊗ U(h)-module with the action

(a⊗ b)(v ⊠ w) = (av)⊠ (bw)

for all a, b ∈ U(h), v ∈ V1 and w ∈ V2. However, there is also the internal
tensor product V1 ⊗ V2, which is an h-module with the action

h(v ⊗ w) = (hv)⊗ w + v ⊗ (hw)

for all h ∈ h, v ∈ V1 and w ∈ V2. It is possible to establish a relation between
these representations as follows.

Proposition 2.2.1. h(v⊗w) = ∆(h)
(
v⊠w

)
for each h ∈ h, v ∈ V1, w ∈ V2.

Proof. By Lemma 1.3.3 we immediately see that

∆(h) = h⊗ 1 + 1⊗ h ∈ U(h)⊗ U(h)
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for all h ∈ h. Hence

∆(h)
(
v ⊠ w

)
= (h⊗ 1 + 1⊗ h)

(
v ⊠ w

)
= (hv)⊠ w + v ⊠ (hw)

= (hv)⊗ w + v ⊗ (hw) = h(v ⊗ w)

remembering that V1 ⊠ V2 and V1 ⊗ V2 are the same vector space.

2.2.1 The external multiplication ⊠
Let ui ∈ Pg

h(Vi) for i = 1, 2. Pg
h(V1) and P g

h (V2) are produced by V1
and V2 respectively, hence they are U(g)-modules and Pg

h(V1) ⊠ Pg
h(V2) is a

U(g)⊗U(g)-module. u1⊠u2 is an element of P g
h (V1)⊠P g

h (V2). Now consider

Pg⊕g
h⊕h(V1 ⊠ V2) = HomU(h⊕h)(U(g⊕ g), V1 ⊠ V2).

This is the (g⊕g)-module produced by V1⊠V2, hence it is also a U(g)⊗U(g)-
module. Define

u1 ⊠ u2 : U(g)⊗ U(g) → V1 ⊠ V2

as the linear map (u1 ⊠ u2)(a⊗ b) = u1(a)⊠ u2(b) for each a, b ∈ U(g). This
is clearly a U(h)⊗ U(h)-homomorphism, hence u1 ⊠ u2 ∈ Pg⊕g

h⊕h(V1 ⊠ V2). By
the fundamental property of the tensor product, the bilinear map (u1, u2) 7→
u1 ⊠ u2 gives rise to a linear map

: Pg
h(V1)⊠ Pg

h(V2) → Pg⊕g
h⊕h(V1 ⊠ V2)

which sends u1 ⊠ u2 7→ u1 ⊠ u2, as shown in the diagram below.

Pg
h(V1)× Pg

h(V2) Pg
h(V1)⊠ Pg

h(V2)

Pg⊕g
h⊕h(V1 ⊠ V2)

Proposition 2.2.2. The map is a U(g)⊗ U(g)-homomorphism.

Proof. For each a, b, α, β ∈ U(g) and ui ∈ Pg
h(Vi) with i = 1, 2 we have

(
(a⊗ b)(u1 ⊠ u2)

)
(α⊗ β) = (au1 ⊠ bu2)(α⊗ β) =

(
(au1)(α)

)
⊠
(
(bu2)(β)

)

= u1(αa)⊠ u2(βb) = (u1 ⊠ u2)(αa⊗ βb)

= (u1 ⊠ u2)
(
(α⊗ β)(a⊗ b)

)

=
(
(a⊗ b)(u1 ⊠ u2)

)
(α⊗ β).
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It may be useful to think of as the map which sends a formal object in
Pg

h(V1)⊠Pg
h(V2) to its realization in Pg⊕g

h⊕h(V1⊠V2) while preserving the action
of U(g) ⊗ U(g). Abusing the notation, from now on we shall omit writing

and we will directly write u1 ⊠ u2 to denote the realized homomorphism,
unless otherwise specified.

2.2.2 The internal multiplication ⊗
Define u1 ⊗ u2 : U(g) → V1 ⊠ V2 by

(u1 ⊗ u2)(a) = (u1 ⊠ u2)(∆(a)) (2.1)

for each a ∈ U(g) and ui ∈ Pg
h(Vi), i = 1, 2.

Lemma 2.2.3. u1 ⊗ u2 ∈ Pg
h(V1 ⊗ V2).

Proof. Note that

Pg
h(V1 ⊗ V2) = HomU(h)(U(g), V1 ⊗ V2).

Let a ∈ U(g), z ∈ U(h). Then

(u1 ⊗ u2)(za) = (u1 ⊠ u2)
(
∆(za)

)
= (u1 ⊠ u2)

(
∆(z)∆(a)

)
=

= ∆(z)
(
(u1 ⊠ u2)(∆(a))

)
= ∆(z)

(
(u1 ⊗ u2)(a)

)
=

= z
(
(u1 ⊗ u2)(a)

)
.

The last identity comes from 2.2.1, considering (u1 ⊗ u2)(a) as an element of
V1 ⊗ V2.

Let P(g, h) be the class consisting of all U(h)-modules Pg
h(V ), V running

over every h-module. Equation (2.1) defines a multiplication ⊗ on
⋃

P(g, h).

Proposition 2.2.4. The multiplication ⊗ is associative.

Proof. Let σ be the canonical isomorphism (V1 ⊗ V2)⊗ V3 → V1 ⊗ (V2 ⊗ V3).
By saying that ⊗ is associative, we mean that the identity

σ ◦
(
(u1 ⊗ u2)⊗ u3

)
= u1 ⊗ (u2 ⊗ u3)

must hold for each ui ∈ Pg
h(Vi), i = 1, 2, 3.

U(g) (V1 ⊗ V2)⊗ V3

V1 ⊗ (V2 ⊗ V3)

(u1⊗u2)⊗u3

u1⊗(u2⊗u3) σ
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By 1.3.4, the coproduct ∆ is coassociative. If σ̄ is the canonical isomorphism(
U(g)⊗ U(g)

)
⊗ U(g) → U(g)⊗

(
U(g)⊗ U(g)

)
, then it is evident that

(
u1 ⊠ (u2 ⊠ u3)

)
◦ σ̄ = σ ◦

(
(u1 ⊠ u2)⊠ u3

)

for each ui ∈ Pg
h(Vi), i = 1, 2, 3.

(
U(g)⊗ U(g)

)
⊗ U(g) (V1 ⊗ V2)⊗ V3

U(g)⊗
(
U(g)⊗ U(g)

)
V1 ⊗ (V2 ⊗ V3)

σ̄

(u1⊠u2)⊠u3

σ

u1⊠(u2⊠u3)

Let a ∈ U(g). We obtain
(
u1 ⊗ (u2 ⊗ u3)

)
(a) =

(
u1 ⊠ (u2 ⊗ u3)

)(
∆(a)

)

=
(
u1 ⊠ (u2 ⊠ u3)

)(
((idU(g) ⊗∆) ◦∆)(a)

)

=
(
u1 ⊠ (u2 ⊠ u3)

)(
(σ̄ ◦ (∆⊗ idU(g)) ◦∆)(a)

)

=
(
σ ◦ ((u1 ⊠ u2)⊠ u3)

)(
((∆⊗ idU(g)) ◦∆)(a)

)

=
(
σ ◦ ((u1 ⊗ u2 ⊠ u3)

)(
∆(a)

)

=
(
σ ◦ ((u1 ⊗ u2)⊗ u3)

)
(a).

Proposition 2.2.5. Let x ∈ g. x acts as a derivation on P(g, h), i.e.
x(u1 ⊗ u2) = (xu1)⊗ u2 + u1 ⊗ (xu2) for each ui ∈ Pg

h(Vi), i = 1, 2.

Proof. Let a ∈ U(g) and ui ∈ Pg
h(Vi), i = 1, 2. Then

(
x(u1 ⊗ u2)

)
(a) = (u1 ⊗ u2)(ax) = (u1 ⊠ u2)

(
∆(ax)

)

= (u1 ⊠ u2)
(
∆(a)∆(x)

)
=
(
∆(x)(u1 ⊠ u2)

)(
∆(a)

)

=
(
(x⊗ 1 + 1⊗ x)(u1 ⊠ u2)

)(
∆(a)

)

=
(
(xu1)⊠ u2 + u1 ⊠ (xu2)

)(
∆(a)

)

=
(
(xu1)⊗ u2 + u1 ⊗ (xu2)

)
(a).

Remark 5. A useful consideration involves the dual coproduct

∆∗ : HomU(h⊕h)(U(g⊕ g), V1 ⊠ V2) → HomU(h)(U(g), V1 ⊗ V2)

u 7→ u ◦∆

which maps Pg⊕g
h⊕h(V1⊠V2) into Pg

h(V1⊗V2). Indeed, thanks to Lemma 2.2.3,
it now follows that u1 ⊗ u2 = ∆∗(u1 ⊠ u2) for each ui ∈ Pg

h(Vi), i = 1, 2.
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It is interesting to note that, while ∆∗ is only a linear map at first glance,
one may define an action of U(g) on each u ∈ Pg⊕g

h⊕h(V1 ⊠ V2) by au = ∆(a)u,
where a ∈ U(g). Due to ∆ being an algebra homomorphism, this definition
turns Pg⊕g

h⊕h(V1⊠V2) into a U(g)-module, here denoted by ∆Pg⊕g
h⊕h(V1⊠V2). In

general, this process may be done for any (g⊕ g)-module U in order to turn
it into the g-module ∆U . It follows that, for the h-modules V1 and V2, we
will have V1 ⊗ V2 = ∆(V1 ⊠ V2). The dual map

∆∗ : ∆Pg⊕g
h⊕h(V1 ⊠ V2) → Pg

h(V1 ⊗ V2)

becomes then a U(g)-homomorphism, since for each a, α ∈ U(g) we have

(
∆∗(au)

)
(α) = (au)

(
∆(α)

)
=
(
∆(a)u

)
(∆(α)) = u

(
∆(α)∆(a)

)
= u

(
∆(αa)

)

=
(
∆∗(u)

)
(αa) =

(
a(∆∗(u))

)
(α).

Moreover, this action also turns the realization map

: Pg
h(V1)⊗ Pg

h(V2) → ∆Pg⊕g
h⊕h(V1 ⊠ V2)

into a U(g)-homomorphism. Thanks to the fundamental property of the
tensor product, the multiplication ⊗ gives rise to a linear map

ν : Pg
h(V1)⊗ Pg

h(V2) → Pg
h(V1 ⊗ V2)

u1 ⊠ u2 7→ u1 ⊗ u2

where u1⊠u2 is here regarded as a formal object. This argument assumes that
the operation ⊗ is bilinear, which directly comes from the obvious bilinearity
of the multiplication ⊠.

Pg
h(V1)× Pg

h(V2) Pg
h(V1)⊗ Pg

h(V2)

Pg
h(V1 ⊗ V2)

⊗ ν

We obtain a result analogous to 2.2.2.

Proposition 2.2.6. The map ν is a U(g)-homomorphism.

Proof. As seen in Remark 5, we have ⊗ = ∆∗ ◦⊠. The diagram below shows
that ν = ∆∗ ◦ for every simple tensor, which implies the identity holds true
for all elements of Pg

h(V1)⊗ Pg
h(V2) by linearity.



26 2. Induction and production

Pg
h(V1)× Pg

h(V2) Pg
h(V1)⊗ Pg

h(V2)

∆Pg⊕g
h⊕h(V1 ⊠ V2) Pg

h(V1 ⊗ V2)

⊠ ⊗ ν

∆∗

Both ∆∗ and are U(g)-homomorphisms, therefore ν also is.

2.2.3 Filtered structure of ⊠ and ⊗
The multiplications ⊠ and ⊗ can be put in relation with the filtrations

introduced in §2.1. We note that, for each p ∈ Z, Lemma 1.3.3 directly
implies the following.

Corollary 2.2.7.

∆
(
Up(g)

)
⊆

p∑

k=0

Uk(g)⊗ Up−k(g).

Proposition 2.2.8. Let u1 ∈ Pg
h(V1)p and u2 ∈ Pg

h(V2)q. Then u1 ⊠ u2 ∈
Pg⊕g

h⊕h(V1 ⊠ V2)p+q, u1 ⊗ u2 ∈ Pg
h(V1 ⊗ V2)p+q and xu1 ∈ Pg

h(V1)p−1 for each
x ∈ g.

Proof. By the isomorphism U(g)⊗ U(g) ∼= U(g⊕ g), we have

Up(g⊕ g) =

p∑

k=0

Uk(g)⊗ Up−k(g).

Remember that Pg⊕g
h⊕h(V1 ⊠ V2)p+q = {u ∈ Pg⊕g

h⊕h(V1 ⊠ V2) | u|Up+q−1(g⊕g) = 0}.
Then from 2.2.7 it is

(u1 ⊠ u2)
(
Up+q−1(g⊕ g)

)
= (u1 ⊠ u2)

(
p+q−1∑

k=0

Uk(g)⊗ Up+q−1−k(g)

)

=

p+q−1∑

k=0

u1
(
Uk(g)

)
⊗ u2

(
Up+q−1−k(g)

)
= 0

because u1
(
Uk(g)

)
= 0 for k < p and u2

(
Up+q−1−k(g)

)
= 0 for k ≥ p. This
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shows that u1 ⊠ u2 ∈ Pg⊕g
h⊕h(V1 ⊠ V2)p+q. By 2.2.7 we get

(u1 ⊗ u2)
(
Up+q−1(g)

)
= (u1 ⊠ u2)

(
∆(Up+q−1(g))

)

⊆ (u1 ⊠ u2)

(
p+q−1∑

k=0

Uk(g)⊗ Up+q−1−k(g)

)

=

p+q−1∑

k=0

u1
(
Uk(g)

)
⊗ u2

(
Up+q−1−k(g)

)
= 0

from the same argument as before, which means u1 ⊗ u2 ∈ Pg
h(V1 ⊗ V2)p+q.

Finally, let a ∈ Up−2(g); then ax ∈ Up−1(g), hence (xu1)(a) = u1(ax) = 0.
This proves that xu1 ∈ Pg

h(V1)p−1.

Remark 6. If U and V are filtered g-modules then U ⊗ V is the g-module
filtered by

(U ⊗ V )n =
∑

p+q=n
p,q∈Z

Up ⊗ Vq.

Clearly the same holds when regarding U ⊗V as the external tensor product
U ⊠ V . By 2.2.8, the maps

: Pg
h(V1)⊠ Pg

h(V2) → Pg⊕g
h⊕h(V1 ⊠ V2)

ν : Pg
h(V1)⊗ Pg

h(V2) → Pg
h(V1 ⊗ V2)

become filtered homomorphisms between g ⊕ g and g-modules respectively.
Moreover, xPg

h(V1)p ⊆ Pg
h(V1)p−1 for each x ∈ g.



28 2. Induction and production



Chapter 3

The Guillemin-Sternberg-Rim
realization theorem

In the previous chapter, we have defined a multiplication u1⊗u2 between
elements of produced h-modules. Now regard K as a trivial h-module and
set F = Pg

h(K). Give F the filtration F = {Fm}m∈Z introduced in §2.1. Let
V be any h-module and assume that u1 ∈ F , u2 ∈ Pg

h(V ). By identifying
K⊗ V with V through the natural isomorphism k ⊗ v 7→ kv, it follows that
u1 ⊗ u2 ∈ Pg

h(V ). In this case we will denote the multiplication by u1u2. If
V = K, this operation is internal in F .

Proposition 3.0.1. The pair (F,F) is a filtered unitary associative algebra.

Proof. By 2.2.4, F = Pg
h(K) is an associative algebra with the multiplication

mentioned above. Choose {xi}i∈I basis for g so that {xm}m∈M is a basis for
U(g), M and xm defined as in §1.2.3. Define e as the linear map U(g) → K
such that

e(xm) =

{
1 if m = 0

0 if m ̸= 0.

The trivial action of h on K ensures this is a well-defined element of F . Let
u ∈ F . From Lemma 1.3.3 we have

(eu)(xm) = (e⊠ u)(∆(xm)) =
∑

0≤k≤m

(
m

k

)
(e⊠ u)(xk ⊗ xm−k)

=
∑

0≤k≤m

(
m

k

)
e(xk)u(xm−k) = e(1)u(xm) = u(xm)

29
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and

(ue)(xm) = (u⊠ e)(∆(xm)) =
∑

0≤k≤m

(
m

k

)
(u⊠ e)(xk ⊗ xm−k)

=
∑

0≤k≤m

(
m

k

)
u(xk)e(xm−k) = u(xm)e(1) = u(xm)

which means that e is the identity of F . Finally, let u1 ∈ Fp, u2 ∈ Fq and
a ∈ Up+q−1(g). Then

(u1u2)(a) = (u1 ⊠ u2)(∆a) = 0

because ∆a ∈
p+q−1∑
k=0

Uk(g)⊗ Up+q−k−1(g) by 2.2.7 but k ≥ p implies

p+ q − k − 1 ≤ p+ q − p− 1 ≤ q − 1.

Therefore u1u2 ∈ Fp+q, i.e. FpFq ⊆ Fp+q.

Proposition 3.0.2. For each h-module V , the produced module Pg
h(V ) is a

unitary F -module.

Proof. Let u1 ∈ F and u2 ∈ Pg
h(V ). As stated earlier, u1u2 ∈ Pg

h(V ). The
associativity that comes from 2.2.4 guarantees that this multiplication defines
a module structure on Pg

h(V ). By repeating the previous proof and supposing
that u ∈ Pg

h(V ), we obtain eu = u, hence the action is unitary.

3.1 Separated filtrations

Definition 3.1 (Separated filtration). Let A be an algebra and let {Ap}p∈Z
be a (downward) filtration on A. {Ap}p∈Z is said to be separated if

⋂
p∈ZAp =

{0}.
Proposition 3.1.1. The filtration F is separated.

Proof. Let u ∈ ⋂
p∈Z Fp = {0}. Then u = 0 on Up(g) for all p ∈ Z and

therefore u = 0 on
⋃
p∈Z Up(g) = U(g).

We introduce a filtration on the Lie algebra g as follows:

gp =





g if p < 0

h if p = 0

{x ∈ gp−1 | [y, x] ∈ gp−1 ∀y ∈ g} if p > 0.

(3.1)

Let G = {gp}p∈Z.
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Proposition 3.1.2. The pair (g,G) is a filtered Lie algebra.

Proof. Clearly gp ⊆ gp−1 by definition. We will prove that [gp, gq] ⊆ gp+q for
each p, q ∈ Z. Set n = p + q: the result is trivial for n < 0, so let’s assume
n ≥ 0. If p ≤ −1 then q ≥ 1, hence we have [gp, gq] = [g, gq] ⊆ gq−1 ⊆ gp+q
by definition of gq. We can thus suppose p, q ≥ 0 and proceed by induction
on n. If n = 0 then it must be p = q = 0, therefore [h, h] ⊆ h is trivially
true. Now suppose inductively that [gp, gq] ⊆ gn for a certain n > 0 and all
p, q ∈ {0, . . . , n} such that p + q = n; this is equivalent to assuming that
[gp, gn−p] ⊆ gn for each p ∈ {0, . . . , n}. Let p ∈ {0, . . . , n + 1}, x ∈ gn+1−p
and y ∈ gp: we will show that [y, x] ∈ gn+1, i.e. that [z, [y, x]] ∈ gn for each
z ∈ g. Since x ∈ gn+1−p ⊆ gn−p, by induction hypothesis it is [y, x] ∈ gn.
Moreover, from the Jacobi identity we have

[z, [y, x]] = [[x, y], z] = [x, [y, z]]− [y, [x, z]].

By definition of gp and gn+1−p respectively, we see that [y, z] ∈ gp−1 and
[x, z] ∈ gn−p, therefore both [x, [y, z]] and [y, [x, z]] are in gn thanks to the
induction hypothesis. Hence [z, [y, x]] ∈ gn and [gp, gn+1−p] ⊆ gn+1.

Proposition 3.1.3. The filtration G is separated if and only if h contains
no nontrivial g-ideals.

Proof. Let i ⊆ h be a non-trivial g-ideal. We shall show the inclusion i ⊆ gp
for each p ∈ Z by induction on p. This is trivial for p ≤ 0, so let p > 0 and
assume i ⊆ gp; then [g, i] ⊆ i ⊆ gp, which means i ⊆ gp+1. This concludes
the proof by induction, which gives us i ⊆ ⋂p∈Z gp, i.e. F is not separated.
Conversely, let {0} ̸= i =

⋂
p∈Z gp. Then i ⊆ gp for each p ∈ Z (in particular

we have i ⊆ h), hence [g, i] ⊆ gp−1; this is also true for every p ∈ Z, implying
[g, i] ⊆ ⋂p∈Z gp = i.

For the rest of this chapter, G will be assumed to be separated. Let Dp

be the subspace of der(F ) containing all derivations d such that dFm ⊆ Fm+p

for each m ∈ Z. Let D =
⋃
p∈ZDp and D = {Dp}p∈Z.

Proposition 3.1.4. The pair (D,D) is a filtered Lie algebra.

Proof. Let d ∈ Dp. Then dFm ⊆ Fm+p ⊆ Fm+p−1 for each m ∈ Z, i.e.
d ∈ Dp−1 which implies Dp ⊆ Dp−1 for each p ∈ Z. We will show that
[Dp, Dq] ⊆ Dp+q for every p, q ∈ Z. Let d1 ∈ Dp, d2 ∈ Dq and u ∈ Fm: we
have [d1, d2]u = d1(d2u) − d2(d1u). Both terms on the right are in Fm+p+q,
hence [d1, d2] ∈ Dp+q.

Proposition 3.1.5. The filtration D is separated.
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Proof. Let d ∈ ∩p∈ZDp. Then we have dF = dF0 ⊆ Fp for all p ∈ Z, i.e.
dF ⊆ ∩p∈ZFp = {0} by 3.1.1. It follows that d = 0.

If L is a Lie subalgebra of D, we will filter L in the obvious way, i.e.
Lp = L ∩Dp for each p ∈ Z. This filtration on L is also separated.

Remark 7. Note that F = Ke + F1 and D0F ⊆ F1. Moreover, u = u(1) e
(modulo F1) for all u ∈ F .
The identity F = Ke+F1 clearly comes by the fact that e is nonzero only on
the constant terms while F1 contains U(h)-homomorphisms that are zero on
K ⊆ U(g). To show that D0F ⊆ F1, let d ∈ D0. Then dF = d(Ke) + dF1 ⊆
Kde+ F1. Since e is the identity element of F , we have

d(e) = d(e2) = d(e) e+ e d(e) = 2d(e)

which implies d(e) = 0. Hence dF ⊆ F1. Finally, since F = Ke + F1 it is
u = ke (modulo F1) for some k ∈ K, but

u(1) = (ke)(1) = e(k) = k e(1) = k.

3.2 Embedding theorem

Let γ be the representation map for the g-module F , i.e.

γ : g → gl(F )

x 7→ γ(x)

where γ(x)u = xu for each u ∈ F . We remind that γ can be extended to
an associative algebra homomorphism of U(g) into HomK(F, F ) through the
fundamental property of the enveloping algebra and thus (xu)(a) = u(ax)
for all a ∈ U(g).

We show that the representation γ is faithful (i.e.: injective) and essen-
tially unique up to isomorphism in the hypothesis of a separated filtration
for the Lie algebra g.

Theorem 3.2.1. The map γ is a filtered Lie algebra isomorphism of g with
a subalgebra of D. For every Lie algebra homomorphism γ1 : g → D such
that γ1(x) − γ(x) ∈ D0 for each x ∈ g, there exists a unique filtered algebra
automorphism θ : F → F such that θ ◦ γ1(x) = γ(x) ◦ θ for all x ∈ g.

F F

F F

θ

γ1(x)

θ

γ(x)
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Proof. By 2.2.5 we have γ(x) ∈ der(F ). Moreover, it is γ(x) ∈ D−1: if
u ∈ Fm, then xu ∈ Fm−1 directly from 2.2.8. In particular, this shows that
γ : g → D. We shall split the rest of the proof in some steps.

Step 1. We prove that γ(h) ∈ D0 if and only if h ∈ h.
Let h ∈ h, u ∈ Fm and a ∈ Um−1(g). Then (γ(h)u)(a) = (hu)(a) = u(ah).

As seen in Remark 3, we have ah = ha + b where b ∈ Um−1(g). Since u is a
U(h)-homomorphism we obtain that u(ha) = hu(a) = 0, also u(b) = 0 hence
γ(h)u ∈ Fm and γ(h) ∈ D0. Now suppose h /∈ h and consider its equivalence
class h̄ ∈ g/h ⊆ S(g/h). Obviously h̄ ̸= 0, thus we may regard it as an
element of a basis for g/h. Consider the maps τ and π defined in §2.1: we
can say that τ(h̄) = h. Choose w ∈ HomK(S(g/h),K) such that w(h̄) ̸= 0
and set u = π−1(w). Remember that π is bijective by 2.1.1. Then

(γ(h)u)(1) = (hu)(1) = u(h) = u(τ(h̄)) = (πu)(h̄) = w(h̄) ̸= 0

which means γ(h)u /∈ F1. From Remark 7, it follows immediately that
γ(h) /∈ D0.

Step 2. The map γ is a Lie algebra isomorphism.
We show the injectivity of γ. Let t = ker γ and let x ∈ t. Then γ(x)Fm =

{0} ⊆ Fm, hence γ(x) ∈ D0 and thus x ∈ h as seen above, which means
that t ⊆ h. Since the filtration is separated and t is a g-ideal, it must be
t = {0}, i.e. γ is injective. This is enough to show that γ is isomorphic to a
subalgebra of D, as γ : g → γ(g) ⊆ D and [γ(g), γ(g)] = γ([g, g]).

Step 3. The map γ is filtered.
We shall prove that γ(gp) = γ(g) ∩ Dp for each p ∈ Z. Remember that

(γ(g))p = γ(g)∩Dp by definition. If p < 0 then gp = g, also we have already
shown that γ(g) ⊆ D−1 which implies

γ(gp) = γ(g) = γ(g) ∩D−1 = γ(g) ∩Dp.

If p ≥ 0, we proceed by induction on p. If p = 0 then g0 = h and we have
seen that γ(h) ∈ D0 if and only if h ∈ h, which proves that γ(h) = γ(g)∩D0.
Suppose that γ(gp) = γ(g) ∩ Dp for some p > 0: we show that γ(gp+1) =
γ(g) ∩Dp+1.

Let x ∈ gp+1; then we have x, [y, x] ∈ gp for each y ∈ g and also
γ(x), γ([y, x]) ∈ Dp by induction hypothesis. To prove that γ(x) ∈ Dp+1,
we need to show γ(x)Fm−1 ⊆ Fm+p for all m ∈ Z: we proceed with a sec-
ondary induction on m. If m ≤ −p, then Fm−1 ⊇ F−p−1 ⊇ F0 = F and
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Fm+p ⊇ F−p+p = F0 = F , so the inclusion becomes just γ(x)F ⊆ F , which
is trivially true. Now assume γ(x)Fm−1 ⊆ Fm+p for some m > −p and let
u ∈ Fm, a ∈ Um+p−1(g) and y ∈ g. Then
(
γ(x)u

)
(ay) = (xu)(ay) = u(ayx) = u(a[y, x]) + u(axy)

= ([y, x]u)(a) + (xyu)(a) =
(
γ([y, x])u

)
(a) + (γ(xy)u

)
(a)

=
(
γ([y, x])u

)
(a) +

(
γ(x)γ(y)u

)
(a).

Since γ([y, x]) ∈ Dp, we have γ([y, x])u ∈ Fm+p and
(
γ([y, x])u

)
(a) = 0;

analogously, γ(y) ∈ D−1 implies γ(y)u ∈ Fm−1 and γ(x)γ(y)u ∈ Fm+p by
induction hypothesis (on m), thus it is also

(
γ(x)γ(y)u

)
(a) = 0. Therefore

γ(x)u = 0 on Um+p(g) and γ(x)u ∈ Fm+p+1; this proves the secondary in-
duction so that γ(x)Fm−1 ⊆ Fm+p for all m ∈ Z, i.e. γ(x) ∈ Dp+1. We have
shown that γ(gp+1) ⊆ Dp+1.

Conversely, suppose γ(x) ∈ Dp+1 for some x ∈ g and let u ∈ Fm, y ∈
g. Naturally γ([y, x]) = [γ(y), γ(x)], but γ(x) ∈ Dp+1 and γ(y) ∈ D−1

imply that γ([y, x]) ∈ Dp thanks to 3.1.4. By induction hypothesis both
x, [y, x] ∈ gp, thus x ∈ gp+1 and γ(g) ∩ Dp+1 ⊆ γ(gp+1). This proves that
γ : g → γ(g) ∩D is a filtered Lie algebra isomorphism.

Step 4. Existence of θ.
Let γ1 : g → D be a Lie algebra homomorphism such that γ1(x)− γ(x) ∈

D0 for each x ∈ g. Observe that γ1 is a representation map and as such
it defines another action on F as a (left) g-module by (x, u) 7→ γ1(x)u for
each x ∈ g and u ∈ F . From the results obtained earlier for γ, we have
that γ1(g) ⊆ D−1 and γ1(h) ⊆ D0. Regard F as a g-module with the action
given by γ1 and define σ : F → K by σ(u) = u(1) for each u ∈ F . We
obtain σ ◦ γ(h) = σ ◦ γ1(h) = 0 for h ∈ h: indeed, Remark 7 tells us that
γ(h)u, γ1(h)u ∈ F1 for all u ∈ F , however clearly σF1 = {0}. This implies
that σ : F → K is a h-homomorphism, as for every u ∈ F and h ∈ h it is

σ(γ1(h)u) =
(
σ ◦ γ1(h)

)
(u) = 0 = hσ(u)

due to the trivial h-module structure of K. Since F = Pg
h(K), we know

that the map σ : Pg
h(K) → K defined as above is also the h-homomorphism

produced from K, as seen at the start of §2. Therefore, there exists a unique
g-homomorphism θ : F → Pg

h(K) such that σ = σ ◦ θ, as shown in the
diagram below.

F K

Pg
h(K)

θ

σ

σ
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Then for each x ∈ g, u ∈ F we have θ(γ1(x)u) = x(θu) = γ(x)(θu), i.e.
θ ◦ γ1(x) = γ(x) ◦ θ.

Step 5. The map θ is filtered.
The Lie algebra homomorphism γ1 can be extended to an associative

algebra homomorphism of U(g) into HomK(F, F ), just like γ. From §2 we
also know that θ is defined by (θu)(a) = σ(γ1(a)u) = (γ1(a)u)(1) for each
u ∈ F and a ∈ U(g). Since γ1(g) ⊆ D−1 then γ1(g)Fm ⊆ Fm−1 for all m ∈ Z;
for any product y1 . . . yp of p elements of g, we have

γ(y1 . . . yp)Fm = γ(y1) . . . γ(yp)Fm ⊆ γ1(y1) . . . γ1(yp−1)Fm−1

⊆ . . . ⊆ Fm−p

hence γ1
(
Up(g)

)
Fm ⊆ Fm−p for all m and p. Let u ∈ Fm and a ∈ Um−1(g).

Then γ1(a)u ∈ Fm−(m−1) = F1 and therefore (θu)(a) = (γ1(a)u)(1) = 0.
It follows that θu ∈ Fm which implies θFm ⊆ Fm, i.e. θ ∈ HomK(F, F ) is
filtration preserving.

Step 6. The map θ is bijective.
Let u ∈ Fm and y ∈ g. Since γ1(y)−γ(y) ∈ D0 we have

(
γ1(y)−γ(y)

)
u ∈

Fm, i.e. γ1(y)u = γ(y)u (modulo Fm). Now let y1, . . . , yp ∈ g. We show that
γ1(y1 . . . yp)u = γ(y1 . . . yp)u (modulo Fm−p+1) by induction on p. We have
already proven the case p = 1, so assume our result to be true for a product
of p > 1 elements of g. Then

γ1(y1 . . . yp+1)u = γ1(y1)γ1(y2 . . . yp+1)u

= γ1(y1)γ(y2 . . . yp+1)u (modulo γ1(y1)Fm−p+1)

= γ1(y1)γ(y2 . . . yp+1)u (modulo Fm−p)

= γ(y1)γ(y2 . . . yp+1)u (modulo Fm−p) (3.2)

= γ(y1 . . . yp+1)u (modulo Fm−p)

where identity (3.2) holds because γ(y2 . . . yp+1)u ∈ Fm−p and hence
(
γ1(y)−

γ(y)
)(
γ(y2 . . . yp+1)u

)
∈ Fm−p. Therefore it is also γ1(a)u = γ(a)u (modulo

Fm−p+1) for each a ∈ Up(g). Moreover, the identity θ ◦ γ1(y) = γ(y) ◦ θ for
y ∈ g shown in step 4 gives us

θ
(
γ1(y1 . . . yp)u

)
= θ
(
γ1(y1) . . . γ1(yp)u

)
=
(
θ ◦ γ1(y1)

)
(γ1(y2) . . . γ1(yp)u

)

=
(
γ(y1) ◦ θ

)
(γ1(y2) . . . γ1(yp)u

)
= γ(y1) θ

(
γ1(y2) . . . γ(yp)u

)

= . . . = γ(y1) . . . γ(yp)(θu)

= γ(y1 . . . yp)(θu)
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for any product y1 . . . yp of p elements of g. This clearly implies θ ◦ γ1(a) =
γ(a) ◦ θ for each a ∈ U(g). Now let a ∈ Um(g) so that γ1(a)u = γ(a)u + v
with v ∈ F1. Then by definition of θ we have

(θu)(a) = σ(γ1(a)u) =
(
γ1(a)u

)
(1) =

(
γ(a)u+ v

)
(1)

=
(
γ(a)u

)
(1) = u(a)

which means θu = u on Um(g). Therefore, for all u ∈ Fm it is θu− u ∈ Fm+1

or, in other words, θu = u (modulo Fm+1).
It follows that θ is injective: indeed, assume that θu = 0 for some u ∈ F .

If u ∈ Fm for a certain m ∈ Z, then u = u − θu ∈ Fm+1, therefore u ∈⋂
m∈Z Fm = {0} because the filtration is separated, hence u = 0 and θ is

injective.
To prove that θ is surjective, let u ∈ F . Set u0 = u and define un+1 =

un − θun ∈ Fn+1 inductively for all n ≥ 0. From the notion of convergence
seen in 2.1.3, we have un

n→∞−−−→ 0. Let vn =
∑n

i=0 ui for each n ≥ 0. For any
p ≥ 0 choose Np = p and let n,m ≥ Np while also assuming n ≥ m without
losing of generality. Then

vn − vm =
n∑

i=0

ui −
m∑

i=0

ui =
n∑

i=m+1

ui ∈ Fm+1 ⊆ Fp+1

which implies that {vn}n≥0 is a Cauchy sequence in F : by 2.1.3 there exists

v ∈ F such that vn
n→∞−−−→ v. Using the same argument and remembering that

θ is filtration preserving, the sequence {θvn}n≥0 is also a Cauchy sequence,

therefore it must be θvn
n→∞−−−→ θv. By definition of un we see that

u = u0 = u1 + θu0 = u2 + θu1 + θu0

= . . . = un+1 +
n∑

i=0

θui

= un+1 + θvn

for any n ≥ 0. Therefore u − θvn = un+1 + θvn − θvn = un+1
n→∞−−−→ 0, i.e.

θvn
n→∞−−−→ u. Hence u = θv.

Step 7. The map θ is an automorphism.
We finally show that θ(u1u2) = θ(u1)θ(u2) for each u1, u2 ∈ F . Note that

F is a D-module with the obvious action du = d(u) for all d ∈ D and u ∈ F ,
therefore F ⊠F and F ⊗F are U(D)⊗U(D) and U(D)-modules respectively
as reminded in §2.2. By the fundamental property of the tensor product, the
multiplication in F gives rise to a linear map ν : F ⊗ F → F .
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F × F F ⊗ F

F
·

ν

Observe that the identification F = Pg
h(K⊗K) implies ν is indeed the map

seen in 2.2.6, which is a U(g)-homomorphism. Since D ⊆ der(F ), for each
d ∈ D and u1, u2 ∈ F we have

d
(
ν(u1 ⊗ u2)

)
= d(u1u2) = (du1)u2 + u1 (du2)

= ν
(
(du1)⊗ u2

)
+ ν
(
u1 ⊗ (du2)

)

= ν
(
(du1)⊗ u2 + u1 ⊗ (du2)

)

= ν
(
d(u1 ⊗ u2)

)

therefore ν is also a U(D)-homomorphism. To avoid confusion with the
previous notations, we remark that u1 ⊗ u2 is here regarded as a formal
element of F ⊗ F , as the multiplication in F has been denoted with u1u2
instead. The same holds true for u1 ⊠ u2 ∈ F ⊠ F through the rest of the
proof. Put in terms of ν mapping F ⊠ F → F , the map ν intertwines the
action of ∆l on F ⊠F with the action of l on F for each l ∈ U(D) as follows:

l(u1u2) = l
(
ν(u1 ⊗ u2)

)
= ν

(
l(u1 ⊗ u2)

)

= ν
(
∆(l)(u1 ⊠ u2)

)
.

(3.3)

We will extend the Lie algebra homomorphisms γ, γ1 : g → D into associative
algebra homomorphisms U(g) → U(D) through the fundamental property of
the enveloping algebra.

g D

U(g) U(D)

γ

ig iD◦γ iD

g D

U(g) U(D)

γ1

ig iD◦γ1 iD

Then γ ⊠ γ and γ1 ⊠ γ1 are homomorphisms U(g) ⊗ U(g) → U(D) ⊗ U(D).
For each x ∈ g, we have

∆
(
γ(x)

)
= γ(x)⊗ 1U(D) + 1U(D) ⊗ γ(x)

(γ ⊠ γ)(∆x) = (γ ⊠ γ)(x⊗ 1U(g) + 1U(g) ⊗ x) = γ(x)⊗ γ(1U(g)) + γ(1U(g))⊗ γ(x)

= γ(x)⊗ 1U(D) + 1U(D) ⊗ γ(x)

because γ must map 1U(g) 7→ 1U(D). The same holds for γ1 and we know
that ∆ also extends to an associative algebra homomorphism, therefore the
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identities

∆ ◦ γ = (γ ⊠ γ) ◦∆
∆ ◦ γ1 = (γ1 ⊠ γ1) ◦∆

(3.4)

hold on U(g). Be mindful that we are (ab)using the symbol ∆ to denote both
maps U(g) → U(g)⊗ U(g) and U(D) → U(D)⊗ U(D) as their action on any
enveloping algebra is the same.

U(g) U(g)⊗ U(g)

U(D) U(D)⊗ U(D)

γ

∆

γ⊠γ

∆

U(g) U(g)⊗ U(g)

U(D) U(D)⊗ U(D)

γ1

∆

γ1⊠γ1

∆

For each a ∈ U(g) identities (3.3) and (3.4) imply

γ(a) ◦ ν = ν ◦∆(γ(a)) = ν ◦
(
(γ ⊠ γ)(∆a)

)

and the same is also true swapping γ with γ1. Since θ intertwines γ1 with
γ through the identity θ ◦ γ1(a) = γ(a) ◦ θ for each a ∈ U(g), then the map
θ ⊠ θ : F ⊠ F → F ⊠ F intertwines γ1 ⊠ γ1 with γ ⊠ γ through the identity

(θ ⊠ θ) ◦
(
γ1(a)⊗ γ1(b)

)
=
(
γ(a)⊗ γ(b)

)
◦ (θ ⊠ θ)

for each a, b ∈ U(g). Let σ : F → K be defined as previously. By identifying
K⊗K with K through field multiplication, the map σ ⊠ σ acts as follows:

σ ⊠ σ : F ⊠ F → K
u1 ⊠ u2 7→ u1(1)u2(1)

for each u1, u2 ∈ F . Note that σ ⊠ σ = σ ◦ ν because

σ
(
ν(u1 ⊗ u2)

)
= σ(u1u2) = (u1u2)(1) = (u1 ⊠ u2)(∆(1)) = (u1 ⊠ u2)(1⊗ 1)

= u1(1)u2(1)

for each u1, u2 ∈ F . Remembering that σ = σ ◦ θ and therefore σ ⊠ σ =
(σ ⊠ σ) ◦ (θ ⊠ θ), we have

σ ◦ γ(a) ◦ θ ◦ ν = σ ◦ θ ◦ γ1(a) ◦ ν = σ ◦ γ1(a) ◦ ν
= σ ◦ ν ◦

(
(γ1 ⊠ γ1)(∆a)

)
= (σ ⊠ σ) ◦

(
(γ1 ⊠ γ1)(∆a)

)

= (σ ⊠ σ) ◦ (θ ⊠ θ) ◦
(
(γ1 ⊠ γ1)(∆a)

)

= (σ ⊠ σ) ◦
(
(γ ⊠ γ)(∆a)

)
◦ (θ ⊠ θ)

= σ ◦ ν ◦
(
(γ ⊠ γ)(∆a)

)
◦ (θ ⊠ θ)

= σ ◦ γ(a) ◦ ν ◦ (θ ⊠ θ)

for every a ∈ U(g), as shown in the diagram below.
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F ⊠ F F ⊠ F

F ⊠ F F ⊠ F

K

F F

F F

(γ1⊠γ1)(∆a)

θ⊠θ

ν

(γ⊠γ)(∆a)

νν

θ⊠θ

σ⊠σ

ν

σ⊠σ

σ

θ

σ

γ1(a)

θ

γ(a)

Note that if u ∈ F and a ∈ U(g) then

(
σ ◦ γ(a)

)
(u) =

(
σ(au)

)
= (au)(1) = u(a)

therefore if the identity
(
σ ◦γ(a)

)
(u1) =

(
σ ◦γ(a)

)
(u2) holds for all a ∈ U(g),

then it must be u1 = u2 ∈ F . This implies θ ◦ ν = ν ◦ (θ ⊠ θ), i.e. for each
u1, u2 ∈ F we have θ(u1u2) = θ(u1)θ(u2).

Corollary 3.2.2. Let γ1 be as in 3.2.1. Then γ1 : g → γ1(g) is a filtered Lie
algebra isomorphism.

Proof. It is sufficient to prove that γ1 is injective and filtered. Let γ1(x) = 0.
From the theorem, θ−1 ◦ γ(x) ◦ θ = 0 which implies γ(x) = 0. Since γ is an
isomorphism, x = 0.
Let x ∈ gp. Then γ(x) ∈ Dp, also

γ1(x)Fm = (θ−1 ◦ γ(x) ◦ θ)Fm ⊆ (θ−1 ◦ γ(x))Fm ⊆ θ−1Fm+p ⊆ Fm+p

for each m ∈ Z due to 3.2.1. Hence γ1(x) ∈ Dp.

3.3 The dual symmetric algebra S(g/h)∗

Theorem 3.2.1 gives a canonical embedding of g into the filtered Lie al-
gebra D of derivations of the produced g-module F . We will use this result
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to realize g into the algebra of derivations of S(g/h)∗. In the hypothesis that
charK = 0, the dual symmetric algebra S(g/h)∗ is isomorphic to the algebra
of formal power series on dim g/h variables.

Proposition 3.3.1. Let ui ∈ Pg
h(Vi), i = 1, 2. Then

π(u1 ⊗ u2) = πu1 ⊗ πu2.

Proof. Choose an ordered index set I, a basis {x̄i}i∈I for g/h, a set of class
representatives {xi}i∈I , define the multi-indices set M and the monomials
xm, x̄m for m ∈M as in §2.1. Remember that the map τ : S(g/h) → U(g) is
defined by τ(x̄m) = xm for each m ∈M . By Lemma 1.3.3, we have

∆
(
τ(x̄m)

)
= ∆(xm) =

∑

0≤k≤m

(
m

k

)
xk ⊗ xm−k

(τ ⊗ τ)(∆x̄m) = (τ ⊗ τ)

( ∑

0≤k≤m

(
m

k

)
x̄k ⊗ x̄m−k

)
=
∑

0≤k≤m

(
m

k

)
xk ⊗ xm−k

for each m ∈M , i.e. ∆ ◦ τ = (τ ⊗ τ) ◦∆.

S(g/h) U(g)

S(g/h)⊗ S(g/h) U(g)⊗ U(g)

∆

τ

∆

τ⊗τ

Remember that for any h-module V , the map π : Pg
h(V ) → Pg/h

{0}(V ) is defined

by (πu)(a) = u(τa) for each u ∈ Pg
h(V ) and a ∈ S(g/h). Then

(πu1 ⊠ πu2)(a⊗ b) = (πu1)(a)⊗ (πu2)(b) = u1(τa)⊗ u2(τb)

= (u1 ⊠ u2)(τa⊗ τb)

= (u1 ⊠ u2)
(
(τ ⊗ τ)(a⊗ b)

)

for each a, b ∈ S(g/h), which means πu1 ⊠ πu2 = (u1 ⊠ u2) ◦ (τ ⊗ τ).

S(g/h)⊗ S(g/h) U(g)⊗ U(g)

V1 ⊗ V2

πu1⊠πu2

τ⊗τ

u1⊠u2
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Therefore

(π(u1 ⊗ u2))(a) = (u1 ⊗ u2)(τa) = (u1 ⊠ u2)(∆(τa))

= (u1 ⊠ u2)((τ ⊗ τ)(∆a))

= (πu1 ⊠ πu2)(∆a)

= (πu1 ⊗ πu2)(a)

for each a ∈ S(g/h).

Corollary 3.3.2. The filtered associative algebras F and S(g/h)∗ are isomor-
phic. If charK = 0, then F is isomorphic to the filtered algebra K[[x̄i]]i∈I ,
where {x̄i}i∈I is a basis for g/h.

Proof. By considering V1 = V2 = K in 3.3.1 we have that π maps F →
S(g/h)∗ and it satisfies π(u1u2) = (πu1)(πu2) for each u1, u2 ∈ F , i.e. the
filtered linear isomorphism π is also an algebra isomorphism.

Choose an ordered index set I, a basis {x̄i}i∈I for g/h, define the multi-
indices set M and the monomials x̄m for m ∈ M as in §2.1. For each
u ∈ S(g/h)∗, set um = u(x̄m) for all m ∈M . Let Φ be the map

Φ : S(g/h)∗ → K[[x̄i]]i∈I

u 7→
∑

m∈M

um
m!

x̄m.

We show that Φ is an associative algebra isomorphism. The map Φ is clearly
linear by the definition of the linear operations on S(g/h)∗ and K[[x̄i]]i∈I .
Since charK = 0, if Φ(u) = 0 then it must be um = 0 for all m ∈ M , which
implies u = 0. Now let a ∈ K[[x̄i]]i∈I : since a is a formal series in the variables
{x̄i}i∈I with coefficients in K, then it is a =

∑
m∈M amx̄

m where am ∈ K for
all m ∈M . If u ∈ S(g/h)∗ is the linear map u(x̄m) = m! am for each m ∈M ,
then Φ(u) = a. Therefore Φ is bijective. Now let u, v ∈ S(g/h)∗. By Lemma
1.3.3, we have

(uv)m = (uv)(x̄m) = (u⊠ v)(∆x̄m) = (u⊠ v)

( ∑

0≤k≤m

(
m

k

)
x̄k ⊗ x̄m−k

)

=
∑

0≤k≤m

(
m

k

)
u(x̄k) v(x̄m−k) =

∑

0≤k≤m

(
m

k

)
uk vm−k.
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Then

Φ(uv) =
∑

m∈M

(uv)m
m!

x̄m =
∑

m∈M

( ∑

0≤k≤m

1

m!

(
m

k

)
uk vm−k

)
x̄m

=
∑

m∈M

( ∑

0≤k≤m

uk vm−k
k! (m− k)!

)
x̄m

Φ(u)Φ(v) =

(∑

m∈M

um
m!

x̄m

)(∑

m∈M

vm
m!
x̄m

)
=
∑

m∈M

( ∑

0≤k≤m

uk vm−k
k! (m− k)!

)
x̄m

which means that Φ is an algebra isomorphism.

Lastly, we show that Φ is filtered. If a =
∑

m∈M amx̄
m define deg a =

min {|m| | am ̸= 0,m ∈M} and consider the downward filtration {Km}m∈Z
on K[[x̄i]]i∈I where Km = {a ∈ K[[x̄i]]i∈I | deg a ≥ m}. Since deg (ab) =
deg a + deg b then K[[x̄i]]i∈I is a filtered associative algebra. If u ∈ S(g/h)∗p
then u(a) = 0 for each a ∈ Sp−1(g/h), therefore um = 0 for each m ∈M such
that |m| ≤ p− 1. Hence deg Φ(u) ≥ p and Φ(u) ∈ Kp, i.e Φ

(
S(g/h)∗p

)
⊆ Kp.

Conversely, if Φ(u) ∈ Kp then um = 0 for each m ≤ p− 1 which immediately
implies that u(a) = 0 for each a ∈ Sp−1(g/h). Therefore u ∈ S(g/h)∗p and

Kp ⊆ Φ
(
S(g/h)∗p

)
.

Thanks to 3.3.2, we may transfer the action of γ to E = S(g/h)∗ through
π. Rename the Lie subalgebra D ⊆ der(F ) to D(F ) and define D(E) analo-
gously for derivations of E such that Em → Em+p for some p and all m. By
the same arguments seen in 3.1.4, D(E) is a filtered Lie algebra.

Remark 8. Since π is a filtered map, we have that d ∈ Dp(F ) if and only if
π ◦ d ◦ π−1 ∈ Dp(E) for any p ∈ Z as is shown below.

Fm Em

Fm+p Em+p

d

π

π◦d◦π−1

π

For each x ∈ g, define γ̄(x) = π ◦ γ(x) ◦ π−1.

Proposition 3.3.3. The map γ̄ : g → D(E) ∩ γ̄(g) is a filtered algebra
isomorphism.
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Proof. For each x, y ∈ g and u ∈ E it is

[γ̄(x), γ̄(y)]u = [π ◦ γ(x) ◦ π−1, π ◦ γ(y) ◦ π−1]u

= πγ(x)π−1πγ(y)π−1u− πγ(y)π−1πγ(x)π−1u

= πγ(x)γ(y)π−1u− πγ(y)γ(x)π−1u

= π
(
γ(x)γ(y)− γ(y)γ(x)

)
π−1u

= π
(
[γ(x), γ(y)]

)
π−1u

= π
(
γ([x, y])

)
π−1u

= γ̄([x, y])u

(3.5)

so γ̄ is a Lie algebra homomorphism. We have γ̄(x) = 0 if and only if
γ(x) = 0, which by 3.2.1 only happens if x = 0 so γ̄ is injective. Finally,
Remark 8 shows that γ(x) ∈ Dp(F ) if and only if γ̄(x) ∈ Dp(E) for any
p ∈ Z and x ∈ g. Therefore γ̄ is filtered because γ is.

3.3.1 Realization theorem

For each y ∈ g, let ȳ be its equivalence class in g/h. Remember that

E = Pg/h
{0}(K) is a g/h-module with the action (ȳu)(a) = u(aȳ) for each

y ∈ g, u ∈ E and a ∈ S(g/h). Let δ be the corresponding representation, i.e.
δ(ȳ)u = ȳu for all y ∈ g, u ∈ E. We can substitute γ with δ in Theorem 3.2.1
to find that δ is a filtered Lie algebra isomorphism of g/h into a subalgebra of
D(E). Note that g/h is abelian, hence δ(x̄)δ(ȳ) = δ(ȳ)δ(x̄) for each x, y ∈ g.

Proposition 3.3.4. Let y ∈ g. Then γ̄(y)− δ(ȳ) ∈ D0(E).

Proof. Choose an ordered index set I, a basis {x̄i}i∈I for g/h, a set of class
representatives {xi}i∈I , define the multi-indices set M and the monomials
xm, x̄m for m ∈ M as in §2.1. Let i ∈ I and define r ∈ M by rj = δij where
δij is the Kronecker delta. Let u ∈ Ek and w = π−1(u). If m ∈ M is such
that |m| ≤ k − 1, then

(
γ̄(xi)u

)
(x̄m) =

(
(π ◦ γ(xi) ◦ π−1)u

)
(x̄m) =

(
(π ◦ γ(xi))w

)
(x̄m)

=
(
γ(xi)w

)
(τ x̄m) =

(
γ(xi)w

)
(xm) = (xiw)(x

m)

= w(xmxi)(
δ(x̄i)u

)
(x̄m) = (x̄iu)(x̄

m) = u(x̄mx̄i) = u(x̄m+r) = u(τxm+r)

= w(xm+r)

because g/h is abelian. By the PBW Theorem, we have

xmxi = xm+r
(
modulo U|m|(g)

)
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and therefore
(
γ̄(xi)u

)
(x̄m) =

(
δ(x̄i)u

)
(x̄m), as w = 0 on U|m|(g). This

implies that γ̄(xi)u = δ(x̄i)u on Sk−1(g/h), i.e.
(
γ̄(xi)−δ(x̄i)

)
u ∈ Ek and thus

γ̄(xi)−δ(x̄i) ∈ D0(E). Since this is true for any i ∈ I, it must be γ̄(x)−δ(x̄) ∈
D0(E) for all x ∈ g/h. But γ̄ is a filtered Lie algebra isomorphism, so we have
γ̄(h)− δ(h̄) = γ̄(h) ∈ D0(E) for all h ∈ h and therefore γ̄(y)− δ(ȳ) ∈ D0(E)
for all y ∈ g.

Corollary 3.3.5 (Guillemin-Sternberg-Rim). There exists a Lie algebra ho-
momorphism β̄ : g → D(E) such that β̄(y)− δ(ȳ) ∈ D0(E) for all y ∈ g. If
ᾱ, β̄ : g → D(E) satisfy the previous conditions then there exists a unique
filtered algebra automorphism θ : E → E such that θ ◦ ᾱ(y) = β̄(y) ◦ θ for
all y ∈ g, also ᾱ and β̄ are filtered Lie algebra isomorphisms of g with a
subalgebra of D(E).

Proof. By 3.3.4, choosing β̄ = γ̄ : g → D(E) satisfies the requirement of a
Lie algebra homomorphism such that β̄(y) = δ(ȳ)

(
modulo D0(E)

)
for all

y ∈ g. Moreover, if ᾱ, β̄ are as such, then

ᾱ(y) = β̄(y) = δ(ȳ) = γ̄(y)
(
modulo D0(E)

)

for all y ∈ g. Define α(y) = π−1 ◦ ᾱ(y) ◦ π and β(y) = π−1 ◦ β̄(y) ◦ π for
each y ∈ g. By computations equivalent to those seen in (3.5), the maps
α, β : g → D(F ) are Lie algebra homomorphisms.

F E

F E

π

α(y) ᾱ(y)

π

F E

F E

π

β(y) β̄(y)

π

Thanks to Remark 8, it follows that α(y) = β(y) = γ(y)
(
modulo D0(F )

)

for all y ∈ g. By Theorem 3.2.1, there exist unique θ1, θ2 filtered algebra
automorphisms of F such that θ1 ◦α(y) = γ(y) ◦ θ1 and θ2 ◦ β(y) = γ(y) ◦ θ2
for each y ∈ g. Therefore γ(y) = θ1 ◦ α(y) ◦ θ−1

1 and γ(y) = θ2 ◦ β(y) ◦ θ−1
2 ,

which imply the following identities:

θ1 ◦ α(y) ◦ θ−1
1 = θ2 ◦ β(y) ◦ θ−1

2

θ1 ◦ π−1 ◦ ᾱ(y) ◦ π ◦ θ−1
1 = θ2 ◦ π−1 ◦ β̄(y) ◦ π ◦ θ−1

2

π ◦ θ−1
2 ◦ θ1 ◦ π−1 ◦ ᾱ(y) = β̄(y) ◦ π ◦ θ−1

2 ◦ θ1 ◦ π−1.

Define θ̄1 = π ◦ θ1 ◦ π−1 and θ̄2 = π ◦ θ2 ◦ π−1. Then

θ̄−1
2 ◦ θ̄1 ◦ ᾱ(y) = β̄(y) ◦ θ̄−1

2 ◦ θ̄1
for all y ∈ g. Since π is also multiplicative by 3.3.1, the maps θ̄1, θ̄2 : E → E
are filtered algebra automorphisms. Define θ = θ̄−1

2 ◦ θ̄1. We obtain that
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θ : E → E is the unique filtered algebra automorphism such that θ ◦ ᾱ(y) =
¯β(y) ◦ θ for each y ∈ g.

F F

E E

F F

E E

F F

E F

π

α(y)

θ1

π

θ1

ᾱ(y)

θ̄1 π

γ(y)

θ2

π

θ2

γ̄(y)

θ̄1

π

β(y)

π

β̄(y)

θ̄2 θ̄2

Moreover, by 3.2.2 it follows that α and β are filtered Lie algebra isomor-
phisms of g with a subalgebra of D(F ), therefore we may substitute γ̄ with
ᾱ and β̄ in 3.3.3 to obtain that ᾱ and β̄ are filtered Lie algebra isomorphisms
of g with a subalgebra of D(E).
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Chapter 4

Systems of imprimitivity

Let g be a Lie algebra over a field K and let h be a subalgebra of g. Let
F = Pg

h(K) and let W be a g-module.

Definition 4.1 (System of imprimitivity). A system of imprimitivity based
on g/h for W is an F -module structure on W such that

x(fw) = (xf)w + f(xw)

for each x ∈ g, f ∈ F and w ∈ W .

Proposition 4.0.1. Let V be an h-module and let W = Pg
h(V ). Let F act

on W as shown in 3.0.2. This F -module structure on W is a system of
imprimitivity based on g/h for W .

Proof. The proposition is immediate by 2.2.5.

Therefore systems of imprimitivity based on g/h exist for any Lie algebra
g with a subalgebra h.

4.1 Filtered structure of imprimitivity

Let W be a g-module with a system of imprimitivity based on g/h. Set
Wp = FpW for each p ∈ Z and let W = {Wp}p∈Z. Since Fp = F for all p ≤ 0
and obviously FW = W , then W is a filtration on W such that Wp = W for
all p ≤ 0. Moreover, we have FpWq ⊆ Wp+q directly by 3.0.1. Theorem 3.2.1
implies gFp ⊆ Fp−1 and hFp ⊆ Fp (γ is a filtered map and g = g−1) therefore
gWp ⊆ Wp−1 and hWp ⊆ Wp.

Lemma 4.1.1. Let w ∈ Wp for some p ≥ 1. If gw ∈ Wp then w ∈ Wp+1.

47
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Proof. Since w ∈ Wp we may write

w =
k∑

j=1

fjwj (modulo Wp+1)

where fj ∈ Fp for all j ∈ {1, . . . , k} and {wj}j∈{1,...,k} is linearly independent
in W (modulo W1), i.e. {w̄j}j∈{1,...,k} is linearly independent in W0/W1 with
wj ∈ w̄j for each j. To obtain such a form for w, simply replace elements w̄j
as linear combinations of the others until it is no longer possible or the result
is null (in which case it is w ∈ Wp+1 and the proof concluded), then collect
the coefficients fj. As seen earlier, gWp ⊆ Wp−1 and thus

yw =
k∑

j=1

(yfj)wj (modulo Wp)

for any y ∈ g. However, by hypothesis we know that yw ∈ Wp, hence

k∑

j=1

(yfj)wj = 0 (modulo Wp).

By iterating, we have

0 = y1 . . . yqw =
k∑

j=1

(y1 . . . yqfj)wj (modulo Wp−q+1)

for any product of q elements of g. Therefore

0 = aw =
k∑

j=1

(afj)wj (modulo W1)

for any a ∈ Up(g). Note that afj = fj(a) e (modulo F1) for all j ∈ {1, . . . , k}
by Remark 7, as (afj)(1) = fj(a). Then (afj)wj = fj(a)wj (modulo W1),
hence

0 =
k∑

j=1

(afj)wj =
k∑

j=1

fj(a)wj (modulo W1)

which imply fj(a) = 0 for all j ∈ {1, . . . , k} by the linear independence
(modulo W1) of {wj}. Since this holds for all a ∈ Up(g), then fj ∈ Fp+1 for
all j ∈ {1, . . . , k} and so w ∈ Wp+1.
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Assume the filtrationW onW is separated. Define V = W0/W1. Ignoring
the trivial case W = {0}, then V ̸= {0}. Indeed, if W0 = W1 then gW1 ⊆
W0 = W1 and therefore W0 = W1 ⊆ W2 by Lemma 4.1.1, which would imply
W = Wp for all p ∈ Z by iteration. But this is absurd if W is separated.

Proposition 4.1.2. The quotient space V is an h-module and the projection
σ : W → V is an h-homomorphism.

Proof. For each h ∈ h and w ∈ W , define hσ(w) = σ(hw). If w1, w2 ∈ W
are such that w1 − w2 ∈ W1, then h(w1 − w2) ∈ W1 and therefore σ(hw1) =
σ(hw2). Moreover, if h, k ∈ h and w ∈ W then

[h, k]σ(w) = σ([h, k]w) = σ(hkw − khw) = σ(hkw)− σ(khw)

= hσ(kw)− kσ(hw) = (hk − kh)σ(w)

which means that the Lie module action of h on V is well-defined. Then the
projection σ is an h-homomorphism by its own definition.

4.2 An imprimitivity embedding theorem

For the rest of this section, we will set U = Pg
h(V ). By denoting with φ

the h-homomorphism produced by V (which maps U into V and is defined
by φ(u) = u(1) for each u ∈ U), there exists a unique g-homomorphism
θ such that σ = θ ◦ φ, as seen in §2. We also know that θ is defined by
(θw)(a) = σ(aw) for all w ∈ W and a ∈ U(g).

Lemma 4.2.1. For each w ∈ W , w ∈ Wp if and only if θw ∈ Up.

Proof. Let w ∈ Wp. For each a ∈ Up−1(g) we have aw ∈ W1 so that
(θw)(a) = σ(aw) = 0, therefore θw ∈ Up. This implies that θ is a fil-
tered g-homomorphism. Now let θw ∈ Up. We show by induction on p that
w ∈ Wp for all p ∈ Z. This is trivial for p ≤ 0 and also true for p = 1, as
θw ∈ U1 implies (θw)(1) = σ(w) = 0, i.e. w ∈ W1. Suppose our result to be
true for some p > 1 and let θw ∈ Up+1. Then θw ∈ Up and w ∈ Wp by induc-
tion hypothesis. Since θ is a g-homomorphism, we have θ(xw) = x(θw) ∈ Up
for all x ∈ g. By induction hypothesis again, xw ∈ Wp for any x ∈ g, thus
w ∈ Wp+1 by Lemma 4.1.1.

Corollary 4.2.2. The map θ is injective.

Proof. If θw = 0, then clearly (θw)(a) = 0 for all a ∈ U(g), i.e. θw ∈ Up
for all p ∈ Z. By Lemma 4.2.1, w ∈ Wp for all p ∈ Z, which means w = 0
because the filtration W is separated.
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Lemma 4.2.3. The map θ is an F -homomorphism.

Proof. Similarly to Step 7 of the proof for Theorem 3.2.1, consider the U(g)⊗
U(g)-modules F⊠W and F⊠U , also define ν : F⊠W → W by ν(f⊠w) = fw
for each f ∈ F,w ∈ W . Since the F -module structure on W is a system of
imprimitivity based on g/h, we have x(fw) = (xf)w + f(xw) for any x ∈ g,
f ∈ F and w ∈ W . This relation might be written in terms of ν and the
coproduct ∆ as follows:

xν(f ⊠ w) = x(fw) = (xf)w + f(xw) = ν
(
(xf)⊠ w

)
+ ν
(
f ⊠ (xw)

)

= ν
(
(xf)⊠ w + f ⊠ (xw)

)
= ν

(
(x⊗ 1 + 1⊗ x)(f ⊠ w)

)

= ν
(
∆(x)(f ⊠ w)

)

for each x ∈ g, f ∈ F and w ∈ W . Then xν(g) = ν
(
(∆x)g

)
for all x ∈ g and

g ∈ F ⊠W . Moreover, we have

xyν(g) = xν
(
∆(y)g

)
= ν

(
∆(x)∆(y)g

)

= ν
(
∆(xy)g

)

for all x, y ∈ g and g ∈ F ⊠W , therefore aν(g) = ν(∆(a)g) for any a ∈ U(g)
and g ∈ F ⊠W . By Remark 7, for any f ∈ F it is f = f(1)e (modulo F1),
which means that fw = f(1)w (modulo W1) and thus σ(fw) = σ(f(1)w) for
any w ∈ W . Then

(
f ⊠ (θw)

)
(a⊗ b) = f(a)

(
(θw)(b)

)
= f(a)σ(bw) = σ

(
f(a)(bw)

)

= σ
(
(af)(1) (bw)

)
= σ

(
(af)(bw)

)
= σ

(
ν(af ⊠ bw)

)

= σ
(
ν((a⊗ b)(f ⊠ w))

)

for all a, b ∈ U(g), f ∈ F and w ∈ W . Hence (f ⊠ θw)(c) = σ
(
ν
(
c(f ⊠ w)

))

for any c ∈ U(g)⊗ U(g) and therefore

(
f(θw)

)
(a) = (f ⊠ θw)(∆(a)) = σ

(
ν
(
∆(a)(f ⊠ w)

))

= σ
(
aν(f ⊠ w)

)
= σ

(
a(fw)

)

=
(
θ(fw)

)
(a)

for all a ∈ U(g), f ∈ F and w ∈ W .

Lemma 4.2.4. Let X ⊆ U be such that FX ⊆ X and φ(X) = V . Suppose
one of the following hypotheses:
(1) X is closed in the finite-open topology of U ;
(2) dimV <∞.
Then X = U .



4.2 An imprimitivity embedding theorem 51

Proof. Choose an ordered index set I, a basis {x̄i}i∈I for g/h, a set of class
representatives {xi}i∈I , define the multi-indices setM and the monomials xm

for m ∈M as in §2.1. Remember that {xm}m∈M is a basis for U(g) as a U(h)-
module, as seen in 2.1.1. For any m ∈M , define fm ∈ F by fm(x

l) = δlm for
all l ∈M , where δlm is the Kronecker delta. If u ∈ U , we have

(fmu)(x
l) = (fm ⊠ u)(∆(xl)) = (fm ⊠ u)

(∑

0≤k≤l

(
l

k

)
xk ⊗ xl−k

)

=
∑

0≤k≤l

(
l

k

)
fm(x

k)u(xl−k) =
∑

0≤k≤l

(
l

k

)
δkmu(x

l−k)

for all l,m ∈M . The above formula imply that (fmu)(x
l) = 0 unless m ≤ l,

in which case it is (fmu)(x
l) =

(
l
m

)
u(xl−m). In particular, (fmu)(x

m) = u(1).

Now let {um}m∈M ⊆ U . Be mindful that M is partially ordered and
I has any cardinality, therefore {um}m∈M is not a sequence. Consider the
unordered sum

∑
m∈M fmum: for every x

l with l ∈M , we have

∑

m∈M
(fmum)(x

l) =
∑

m≤l
(fmum)(x

l)

where the sum on the right is finite. We can thus define the element u∗ ∈ U
by u∗(xl) =

∑
m≤l(fmum)(x

l) for all l ∈M . We will show that the unordered
sum

∑
m∈M fmum converges to u∗. For an unordered sum to converge in a

topological vector space, it must happen that for any neighbourhood of 0
there exists a finite index subset L ⊆M such that for any other finite index
subset H where L ⊆ H ⊆M we have that

u∗ −
∑

m∈H
fmum

belongs in the neighbourhood. Any neighbourhood of 0 in the finite-open
topology is of the form U(K,A) = {u ∈ U | u(K) ⊆ A} where K ⊆ U(g) is
finite and {0} ⊆ A ⊆ V , so we may assume that K = {y1, . . . , yp}. For each
j ∈ {1, . . . , p} we can write yj =

∑
m∈Mj

a
(j)
m xm where a

(j)
m ∈ U(h) and the

Mj are finite subsets of M . Let M∗ =
⋃p
j=1Mj and let L = {m ∈ M | ∃ l ∈

M∗ : m ≤ l}. Clearly M∗ and therefore L are both finite. For any H finite
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such that L ⊆ H ⊆M and for any l ∈ L we have

u∗(xl)−
∑

m∈H
(fmum)(x

l) =
∑

m≤l
(fmum)(x

l)−
∑

m∈H
(fmum)(x

l)

=
∑

m≤l
(fmum)(x

l)−
∑

m∈H
m≤l

(fmum)(x
l)

=
∑

m∈M∖H
m≤l

(fmum)(x
l) = 0

because the last sum is empty. Therefore

u∗(yj)−
∑

m∈H
(fmum)(yj) = 0

for all j ∈ {1, . . . , p}, which implies that

u∗ −
∑

m∈H
fmum ∈ U(K,A)

for all H finite where L ⊆ H ⊆ M . Hence the unordered sum
∑

m∈M fmum
converges in the finite-open topology to some u∗ ∈ U for any {um}m∈M ⊆ U .

Choose a linear map α : V → X where φ ◦ α = idV . Such a map always
exists, since φ(X) = V by hypothesis implies that for any v ∈ V there exists
a linear map in X that sends 1 7→ v and thus we may choose α(v) ∈ X to be
said map. Clearly we will have (φ ◦ α)(v) = φ(α(v)) =

(
α(v)

)
(1) = v. Let

u ∈ U . Proceeding inductively on p ≥ 0, we will define a family {wm}m∈M ⊆
αV and a sequence {up}p≥0 in U such that

up = u−
∑

|m|≤p
fmwm ∈ Up+1

for all p ≥ 0. As shown earlier, the unordered sum in the expression converges
and therefore this is always a well-defined element of U . If p = 0, set w0 =
α(u(1)) so that w0(1) = φ(w0) = φ

(
α(u(1))

)
= u(1). Then

u0(1) = u(1)− (f0w0)(1) = u(1)− w0(1) = 0

hence u0 ∈ U1. Now suppose that {wm}m∈M ⊆ αV have been defined for
|m| ≤ p in such a way that up ∈ Up+1. For |m| = p+ 1, set wm = α(up(x

m))
so that wm(1) = up(x

m). Then for any k ∈M such that |k| ≤ p+1 it must be
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(fmwm)(x
k) = δmk wm(1) = δmk up(x

m) because m ≤ k if and only if m = k.
Therefore

up+1(x
k) = u(xk)−

∑

|m|≤p+1

(fmwm)(x
k)

= up(x
k) +

∑

|m|≤p
(fmwm)(x

k)−
∑

|m|≤p+1

(fmwm)(x
k)

= up(x
k)−

∑

|m|=p+1

(fmwm)(x
k) = up(x

k)−
∑

|m|=p+1

δmkup(x
m)

= up(x
k)− up(x

k) = 0

for any k ≤ p + 1, which implies up+1 ∈ Up+2. It follows that up
p→∞−−−→ 0

in the filtration topology and therefore also in the finite-open topology by
2.1.2. Hence if vp =

∑
|m|≤p fmwm then the sequence {vp}p≥0 converges to

u in the filtration and finite-open topologies. Moreover, the unordered sum∑
m∈M fmwm also converges to u as

∑

m∈M
(fmwm)(x

k) = vp(x
k) = u(xk)− up(x

k) = u(xk)

for any k ∈M with |k| = p.

Suppose hypothesis (1) is true. Then X is closed in the finite-open
topology of U , which implies that the limit of any convergent sequence
in X belongs to X. Since wm ∈ αV ⊆ X and FX ⊆ X, we have that
{fmwm}m∈M ⊆ X and therefore {vp}p≥0 is a sequence in X. It follows that

u ∈ X because vp
p→∞−−−→ u.

Now suppose hypothesis (2). Then dimV < ∞, which implies that
dimαV ≤ dimV <∞. Choose a basis {w(1), . . . , w(q)} for αV and write

wm =

q∑

j=1

λjmw(j)

for all m ∈ M , where λjm ∈ K for any j and m. Define f(1), . . . , f(q) ∈ F by
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f(j)(x
m) = λjm for each j ∈ {1, . . . , q} and m ∈M . It follows that

q∑

j=1

(f(j)w(j))(x
m) =

q∑

j=1

∑

k≤m

(
m

k

)
f(j)(x

k)w(j)(x
m−k)

=
∑

k≤m

(
m

k

) q∑

j=1

λjkw(j)(x
m−k)

=
∑

k≤m

(
m

k

)
wk(x

m−k) =
∑

k≤m
(fkwk)(x

m)

=
∑

k∈M
(fkwk)(x

m) = u(xm)

for each m ∈ M . Therefore u =
∑q

j=1 f(j)w(j), but w(j) ∈ αV ⊆ X and
FX ⊆ X, hence u ∈ X.

Thanks to this lemma, we reach the following main result on imprimitiv-
ity.

Theorem 4.2.5. The map θ : W → U is an injective g- and F -homomorphism.
Moreover, suppose one of the following hypotheses:
(1) dim (g/h) <∞ and W is filtration complete;
(2) dimV <∞.
Then θ is bijective.

Proof. By 4.2.2 and 4.2.3, θ is an injective g- and F -homomorphism. Let
X = θW . We have FX = F (θW ) = θ(FW ) = θW = X, also φX =
φ(θW ) = σW = V .

Suppose hypothesis (1) is true. Then dim (g/h) < ∞ and W is filtra-
tion complete. This means that each Cauchy sequence {wn}n≥0 in W must
converge to some w ∈ W in the filtration topology. Since θ is filtration
preserving by Lemma 4.2.1, this implies that θwn

n→∞−−−→ θw in the filtration
topology of U . In other words, X = θW is closed in the filtration topology
of U and therefore also in the finite-open topology by 2.1.2. Hypothesis (1)
of Lemma 4.2.4 is satisfied and thus θW = X = U , i.e. θ is surjective.

Now suppose hypothesis (2). Then X = U by case (2) of Lemma 4.2.4
and θ is surjective.



Chapter 5

An irreducibility theorem for
induced representations

In this chapter we will reach a result concerning irreducibility criteria
for certain induced representations. Theorem 5.2.4 given at the end may
be dualized thanks to 2.0.1 to obtain an analogous proposition for produced
representations, however the result obtained is primarily of topological nature
and therefore it will not be included in this work. The dual version may be
found in [1].

5.1 Absolute irreducibility

Let g be a Lie algebra.

Definition 5.1 (Absolute irreducibility). A g-module V is called absolutely
irreducible if it is irreducible under arbitrary extensions of the field K, i.e. if
the (L⊗K g)-module L⊗K V is irreducible for any field extension K ⊆ L.

Note that for any field extension K ⊆ L, the K-vector space L ⊗K g is
an L-Lie algebra with the following operations of scalar multiplication and
bracket:

l(k ⊗ x) = (lk)⊗ x

[k ⊗ x, l ⊗ y] = (kl)⊗ [x, y]

for any k, l ∈ L and x, y ∈ g. The extended module L ⊗K V is defined by
regarding L as a right K-module and it is a (L⊗K g)-module with the action

(k ⊗ x)(l ⊗ v) = (kl)⊗ (xv)

for all k, l ∈ L, x ∈ g and v ∈ V .

55
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Remark 9. For the enveloping algebra, we have U(L⊗Kg) ∼= L⊗KU(g) where
the multiplication on L⊗KU(g) is the obvious one defined by (k⊗x)(l⊗y) =
(kl)⊗ (xy) for all k, l ∈ L and x, y ∈ g. The canonical isomorphism is given
by (l1 ⊗ x1) . . . (lp ⊗ xp) 7→ (l1 . . . lp) ⊗ (x1 . . . xp) for all lj ∈ L and xj ∈ g,
j ∈ {1, . . . , p}.
Example 5.1. Let K = R and g = gln(R) where n ∈ Z≤0. Let L = C and
V = Rn. Then since C = R⊕ iR we have

C⊗R gln(R) =
(
R⊕ iR

)
⊗R gln(R) ∼=

(
R⊗R gln(R)

)
⊕
(
iR⊗R gln(R)

)

∼= gln(R)⊕ igln(R) = gln(C)
C⊗R Rn =

(
R⊕ iR

)
⊗R Rn ∼=

(
R⊗R Rn

)
⊕
(
iR⊗R Rn

)

∼= Rn ⊗R iRn = Cn

congruently with the intuitive idea of field extension for a Lie algebra and
module.

Example 5.2. We give an example of a g-module which is irreducible but
not absolutely irreducible. Let K = R and g = spanR{

(
0 1
−1 0

)
}. This is

clearly an abelian subalgebra of gl2(R). Let V = R2 be a g-module with the
inherited natural action. To show that R2 is irreducible, we must prove that
there is no W ⊆ R2 such that {0} ̸= W ̸= R2 and gW ⊆ W . Nontrivial
submodules of R2 must be 1-dimensional because dimRR2 = 2, therefore
there must be a nonzero v ∈ R2 such that for each x ∈ g there exists λx ∈ R
which satisfies xv = λxv. This implies that v is an eigenvector of

(
0 1
−1 0

)
.

But

det

(
−λ 1
−1 −λ

)
= λ2 + 1

which is a polynomial with no roots for λ ∈ R, hence
(

0 1
−1 0

)
has no eigen-

values and therefore no eigenvectors. So R2 is an irreducible g-module. Now
let L = C. As seen earlier in Example 5.1 we have C⊗R g ∼= spanC{

(
0 1
−1 0

)
}

and C⊗R R2 ∼= C2. The polynomial λ2 + 1 has roots λ = ±i in C, therefore
there exists a nonzero v ∈ C2 such that

(
0 1
−1 0

)
v = iv (choose v =

(
1
i

)
for

example). Hence W = spanC{v} is a subspace of C2 such that dimCW = 1
and (C⊗R g)W ⊆ W , so C2 is not an irreducible (C⊗R g)-module.

5.1.1 Schur’s Lemma and Chevalley-Jacobson density
theorem

We give a couple of results on irreducible representations that will be
needed later in this chapter.
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Lemma 5.1.1 (Schur). Let A be an algebra over an algebraically closed field
K and let V be an irreducible A-module. If φ ∈ EndA(V ) then φ = λ IdV for
some λ ∈ K.

Proof. Since K is algebraically closed, there exists a nonzero v ∈ V eigen-
vector for φ of eigenvalue λ. Denote with Vλ = {v ∈ V | φ(v) = λv} the
eigenspace for λ. We show that Vλ is an A-submodule of V . For each a ∈ A
and v ∈ Vλ we have

φ(av) = aφ(v) = aλv = λav

which implies av ∈ Vλ. Since V is irreducible, it must be V = Vλ and
therefore φ = λ IdV .

Theorem 5.1.2 (Chevalley-Jacobson). Let R be a ring and let V be an
irreducible R-module. Set D = EndR(V ) and let v1, . . . , vk ∈ V be D-linearly
independent. Then for any w1, . . . , wk ∈ V there exists z ∈ R such that
zvj = wj for all j ∈ {1, . . . , k}.
Proof. See [3].

Remark 10. If K is algebraically closed and V is a module over the K-algebra
A, by Schur’s Lemma we may replace the hypothesis of x1, . . . , xk being
EndA(V )-linearly independent in 5.1.2 with x1, . . . , xk being linearly inde-
pendent.

Corollary 5.1.3. Let g be a Lie algebra and let V be an absolutely irre-
ducible g-module. Let v1, . . . , vk ∈ V be linearly independent. Then for any
w1, . . . , wk ∈ V there exists z ∈ U(g) such that zvj = wj for all j ∈ {1, . . . , k}.
Proof. The g-module V is absolutely irreducible, therefore by considering the
algebraic closure K̄ of K we have that K̄⊗K V is an irreducible

(
K̄⊗K U(g)

)
-

module. Clearly v1, . . . , vk linearly independent in V implies 1⊗v1, . . . , 1⊗vk
linearly independent in K̄⊗KV . By Theorem 5.1.2 and Remark 10 there exists
z̄ ∈ K̄ ⊗K U(g) such that z̄(1 ⊗ vj) = 1 ⊗ wj for all j ∈ {1, . . . , k}. Choose
{ki}i∈I basis for K̄ as a K-vector space and let i0 ∈ I be the index such that
ki0 = 1. Then z̄ =

∑
i∈I ki ⊗ ai where only a finite number of ai ∈ U(g) are

nonzero. This implies that
(∑

i∈I
ki ⊗ ai

)
(1⊗ vj) =

∑

i∈I
ki ⊗ aivj = 1⊗ wj

for all j ∈ {1, . . . , k} and therefore it must be ai = 0 for i ̸= i0. Hence if
z = ai0 then z̄ = 1⊗ z so that 1⊗ zvj = 1⊗ wj for all j ∈ {1, . . . , k}, which
implies our desired result due to the isomorphism 1⊗ V ∼= V .
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5.2 Extended representations

In this section, g will be a Lie algebra with an ideal t and V will be a
t-module. Define h = {y ∈ g | ∃ s ∈ HomK(V, V ) : [y, k]v = skv − ksv ∀v ∈
V, k ∈ t}.

Proposition 5.2.1. The set h is a Lie subalgebra of g such that t ⊆ h.

Proof. Since V is a t-module, for any z ∈ t we have [z, k]v = zkv − kzv for
all k ∈ t and v ∈ V . If ρ : t → HomK(V, V ) is the representation map of
V , then zv = ρ(z)v for any v ∈ V , hence the previous formula implies that
t ⊆ h. Now let x, y ∈ h and let λ ∈ K. Then there exist s, t ∈ HomK(V, V )
such that

[x, k]v = skv − ksv

[y, k]v = tkv − ktv

for all v ∈ V and k ∈ t. Since t is an ideal, [x, k], [y, k] ∈ t. Therefore

[x+ y, k]v = [x, k]v + [y, k]v = skv − ksv + tkv − ktv

= (s+ t)kv − k(s+ t)v

[λx, k]v = λ[x, k]v = λskv − λksv

= (λs)kv − k(λs)v

[[x, y], k]v = [x, [y, k]]v − [y, [x, k]]v = s[y, k]v − [y, k]sv − (t[x, k]v − [x, k]tv)

= (stkv − sktv)− (tksv − ktsv)− (tskv − tksv) + (sktv − kstv)

= stkv + ktsv − tskv − kstv = (st− ts)kv − k(st− ts)v

= [s, t]kv − k[s, t]v

for all v ∈ V and k ∈ t. Hence h is a Lie subalgebra of g.

For each x ∈ g and k ∈ t, define δ(x) ∈ HomK(t, t) by δ(x)k = [k, x].

Proposition 5.2.2. The map δ : g → der(t) is a Lie algebra antihomomor-
phism.

Proof. The map δ is linear by the bracket’s bilinearity. We show that δ maps
g into der(t). For each x ∈ g and h, k ∈ t we have

δ(x)[h, k] = [[h, k], x] = [h, [k, x]]− [k, [h, x]] = [h, δ(x)k]− [k, δ(x)h]

= [h, δ(x)k] + [δ(x)h, k]
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by the Jacobi identity, which proves that δ(x) is a derivation of t. For each
x, y ∈ g and k ∈ t we have

δ([x, y])k = [k, [x, y]]

[δ(x), δ(y)]k = δ(x)δ(y)k − δ(y)δ(x)k = δ(x)[k, y]− δ(y)[k, x]

= [[k, y], x]− [[k, x], y] = [x, [y, k]]− [y, [x, k]]

= [[x, y], k]

by the Jacobi identity again. Since [δ(y), δ(x)] = −[δ(x), δ(y)] = −[[x, y], k] =
[k, [x, y]], we obtain that δ([x, y])k = [δ(x), δ(y)]k for any x, y ∈ g and k ∈ t.
Therefore δ is a Lie algebra antihomomorphism.

For each x ∈ g we may extend δ(x) to U(t) by means of derivation: for
any k1, k2 ∈ t define

δ(x)
(
k1k2

)
=
(
δ(x)k1

)
k2 + k1

(
δ(x)k2

)

and do the same iteratively for any product k1 . . . kp of p elements of t, so
that δ(x) ∈ der

(
U(t)

)
. The degenerate case is δ(x)1 = 0 as constants must

be null under derivation. We can then extend δ to be an associative unitary
algebra antihomomorphism U(g) → HomK

(
U(t),U(t)

)
by defining

δ(y1 . . . yp) = δ(yp) . . . δ(y1)

for all products y1 . . . yp of p elements of g (and obviously δ(1) = IdU(t)).

Remark 11. Note that zx = xz + δ(x)z for all z ∈ U(t) and x ∈ g.
Indeed, for any z1, . . . , zq ∈ t and x ∈ g then

z1 . . . zqx = z1 . . . zq−1xzq + z1 . . . zq−1[zq, x]

= z1 . . . zq−1xzq + z1 . . . zq−1

(
δ(x)zq

)

= . . . = xz1 . . . zq +

q∑

i=1

z1 . . . zi−1

(
δ(x)zi

)
zi+1 . . . zq

= xz1 . . . zq + δ(x)(z1 . . . zq)

which implies the desired result.

Let z ∈ U(t) and y1, . . . , yp ∈ g. For any multi-index m = (m1, . . . ,mp) ∈
(Z≥0)

p define ym = ym1 . . . ymp ∈ U(g) like in Lemma 1.3.3.

Lemma 5.2.3.

zym =
∑

0≤k≤m

(
m

k

)
yk
(
δ(ym−k)z

)
.
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Proof. We show the identity holds for the case m1 = . . . = mp = 1. The
general result will follow by identifying the elements yi and collecting terms
exactly as in Lemma 1.3.3. Proceed by induction on p. If p = 0 the identity
holds trivially as z = δ(1)z, however this is a degenerate case. If p = 1 we
have

zy1 = y1z + δ(y1)z = y1δ(1)z + δ(y1)z

=
1∑

k=0

yk
(
δ(y1−k)z

)

by Remark 11. Now suppose the result holds for some p > 1. Then

zy1 . . . yp+1 = y1zy2 . . . yp+1 +
(
δ(y1)z

)
y2 . . . yp+1

= y1
∑

0≤ki≤1
i∈{2,...,p+1}

yk22 . . . y
kp+1

p+1

(
δ(y1−k22 . . . y

1−kp+1

p+1 )z
)

+
∑

0≤ki≤1
i∈{2,...,p+1}

yk22 . . . y
kp+1

p+1

(
δ(y1−k22 . . . y

1−kp+1

p+1 )δ(y1)z
)

=
∑

0≤ki≤1
i∈{2,...,p+1}

y1y
k2
2 . . . y

kp+1

p+1

(
δ(y1−1

1 y1−k22 . . . y
1−kp+1

p+1 )z
)

+
∑

0≤ki≤1
i∈{2,...,p+1}

y01y
k2
2 . . . y

kp+1

p+1

(
δ(y1y

1−k2
2 . . . y

1−kp+1

p+1 )z
)

=
∑

0≤ki≤1
i∈{1,...,p+1}

yk11 y
k2
2 . . . y

kp+1

p+1

(
δ(y1−k11 y1−k22 . . . y

1−kp+1

p+1 )z
)

because δ(y1)z ∈ U(t) and δ is an antihomomorphism.

5.2.1 Irreducibility theorem

Theorem 5.2.4. (1) If h ̸= t then Ig
t (V ) is reducible.

(2) Suppose charK = 0 and V is absolutely irreducible. Let W be an irre-
ducible (respectively absolutely irreducible) h-module such thatW =

⊕
α∈A Vα

as a t-module, where Vα ∼= V for all α. Then Ig
h(W ) is irreducible (respec-

tively absolutely irreducible).

Proof. (1) Assume h ̸= t and set U = Ig
t (V ) = U(g)⊗U(t)V . Choose y ∈ h∖ t

so that its equivalence class ȳ ∈ g/t is nonzero. Choose an ordered index set
I, a basis {x̄i}i∈I for g/t and {xi}i∈I ⊆ g such that xi ∈ x̄i for each i ∈ I.
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We may reorder I so that it has an highest element i0 and since ȳ ̸= 0 we
may also assume y = xi0 . Define the multi-indices set M , the monomials
xm for m ∈ M and filter U as in §2.1. Let s ∈ HomK(V, V ) be such that
[y, k]v = skv − ksv for all k ∈ t and v ∈ V , as in the definition of h. Define
r ∈ M by ri = δii0 for each i ∈ I, where δii0 is the Kronecker delta. Let
T = span{xm+r⊗v−xm⊗sv | m ∈M, v ∈ V }. We show that T is a non-{0}
subspace of U such that T ∩ U0 = {0}. The map ι : S(g/t) ⊗ V → U is a
filtration preserving linear isomorphism by 2.1.1 and {x̄m}m∈M is a basis for
S(g/t), therefore if {vj}j∈J is a basis for V then {xm+r⊗vj−xm⊗svj}m∈M,j∈J
is a basis for T . Clearly x̄m+r ⊗ vj ̸= x̄m ⊗ svj for any m and j, hence
xm+r ⊗ vj − xm ⊗ svj ̸= 0 so that T ̸= {0}. Remember that

U0 = U0(g)⊗U(t) V = {1⊗ v | v ∈ V }.

We may write 1 ⊗ V = {1 ⊗ v | v ∈ V } for convenience, so that 1 ⊗ V
coincides with the internal tensor product between K (regarded as a trivial
t-module) and V . If w ∈ T ∩ U0 then

w =
k∑

j=1

λj(x
m(j)+r ⊗ vij − xm(j) ⊗ svij)

w = 1⊗ v

where λj ∈ K, m(j) ∈ M , vij ∈ V and v ∈ V . Both writings are unique by
the argument above and since m(j) + r ̸= 0 for any m(j) ∈ M then it must
be w = 0. Therefore T ∩ U0 = {0}, which also implies that T is a proper
subspace of U .

We finish by showing that U(g)T ⊆ T . If k ∈ t, we have

k(xi0 ⊗ v − 1⊗ sv) = kxi0 ⊗ v − k ⊗ sv = xi0k ⊗ v + [k, xi0 ]⊗ v − k ⊗ sv

= xi0 ⊗ kv − 1⊗ (ksv + [xi0 , k]v)

= xi0 ⊗ kv − 1⊗ skv

because y = xi0 and [y, k]v = skv−ksv. Thus S = {xi0 ⊗v−1⊗ sv | v ∈ V }
is t-invariant and hence it is U(t)-invariant. But {xi}i∈I is a basis for U(g) as
an U(t)-module, therefore U(g) =

∑
m∈M xmU(t). It follows that

U(g)S =
∑

m∈M
xmU(t)S =

∑

m∈M
xmS = T

because xmxi0 = xm+r for all m ∈M . We then have

U(g)T = U(g)
∑

m∈M
xmS =

∑

m∈M
xmU(g)S =

∑

m∈M
xmT = T
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and therefore T is a nontrivial U(g)-submodule of U . So U is reducible.
(2) Assume that charK = 0, V is an absolutely irreducible t-module, W

is an irreducible h-module and W =
⊕

α∈A Vα as a t-module with Vα ∼= V .
Set U = Ig

h(W ) = U(g) ⊗U(h) W . Choose an ordered index set I, a basis
{x̄i}i∈I for g/h, a set of class representatives {xi}i∈I , define the multi-indices
set M , the monomials xm for m ∈ M and filter U as in §2.1. Let T be a
non-{0} U(g)-invariant subspace of U : we show that T = U , which implies
that U is irreducible.

Case I. Suppose T ∩ U0 ̸= {0}. Remember that U0 = 1 ⊗W . We have
h(1 ⊗ w) = h ⊗ w = 1 ⊗ hw for all h ∈ h and w ∈ W , therefore U0 is U(h)-
invariant. Since T is U(g)-invariant it is also U(h)-invariant, hence T ∩ U0 is
a non-{0} U(h)-submodule of 1 ⊗W ∼= W . By the irreducibility of W , it is
T ∩ U0 = 1⊗W . Therefore

T = U(g)T ⊇ U(g)(1⊗W ) =
∑

m∈M
xmU(h)(1⊗W ) =

∑

m∈M
xm ⊗W

= U

thanks to the isomorphism ι : S(g/h)⊗K W → U seen in 2.1.1.

Case II. Now suppose T ∩ U0 = {0}. We will show that this case leads to
an absurd. Let p ≥ 1 be the smallest integer such that T ∩ Up ̸= {0}, which
must exists as {0} ≠ T ⊆ U . Let u be a nonzero element of T ∩Up. By 2.1.1,
the map ι is a filtration preserving isomorphism and therefore we can write

u =
∑

|m|≤p
xm ⊗ wm

with wm ∈ W . By hypothesis, W =
⊕

α∈A Vα = {∑k
j=1 vj | vj ∈ Vαj

, αj ∈
A, k ∈ Z≥0}. Therefore only a finite number of the wm in the expression of u
are nonzero and the wm have components only in a finite number of the Vα.
Let’s denote these with Vα1 , . . . , Vαq . For each n ∈ {1, . . . , q} let ζn : W → V
be a t-homomorphism which vanishes on

⊕
α ̸=αn

Vα and is an isomorphism
on Vα, i.e. ζ

n is the composition between an isomorphism Vαn → V and the
projection of W into its αn-th coordinate.

W Vαn

V

παn

ζn
∼=
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If z ∈ U(t) then zwm = 0 if and only if zζnwm = 0 for all n ∈ {1, . . . , q}.
Let v be a nonzero element of V . Without loss of generality, we may

assume that ζnwm = λ
(n)
m v for all n ∈ {1, . . . , q} and |m| = p, where λ

(n)
m ∈ K.

In fact, let Z be a maximal linearly independent subset of {ζnwm | |m| =
p, n ∈ {1, . . . , q}}. By 5.1.3 there exists z0 ∈ U(t) such that z0ζ

nwm = λ
(n)
m v

for all ζnwm ∈ Z, these coefficients λ
(n)
m being chosen freely in K. Writing

every ζnwm as a linear combination of elements in Z gives the above result
for some λ

(n)
m ∈ K and all n ∈ {1, . . . , q}, |m| = p. We can assume that the

λ
(n)
m are not all zero, thus the z0wm are not all zero either and so it is z0u ̸= 0.

From Lemma 5.2.3 we have

z0x
m ⊗ wm =

∑

0≤k≤m

(
m

k

)
xk
(
δ(xm−k)z0

)
⊗ wm =

∑

0≤k≤m

(
m

k

)
xk ⊗

(
δ(xm−k)z0

)
wm

= xm ⊗ z0wm +
∑

0≤k<m

(
m

k

)
xk ⊗

(
δ(xm−k)z0

)
wm

where the sum on the right always belongs to Up−1. It follows that

z0u =
∑

|m|=p
xm ⊗ z0wm

(
modulo Up−1

)
.

Since T is U(g)-invariant we obtain that z0u is a nonzero element of ∈ T ∩Up,
therefore we may choose z0u instead of our original u to find an element that
satisfies the above assumptions.

For all z ∈ U(t) and |m| = p we have ζn(zwm) = zζnwm = λ
(n)
m zv.

Therefore wm = 0, |m| = p if and only if λ
(n)
m = 0 for each n ∈ {1, . . . , q}.

Moreover, if wm ̸= 0, then zwm = 0 if and only if zv = 0. Now choose m such
that |m| = p and wm ̸= 0. For each i ∈ I, define the multi-index r(i) = δij
for all j ∈ I, where δij is the Kronecker delta. Let i0 ∈ I be an index such
that mi0 > 0 and set l = m− r(i0). Observing that |l| = p− 1 we may write

u =
∑

|k|=p
xk ⊗ wk +

∑

|k|<p
xk ⊗ wk

=
∑

|k|=p
xk ⊗ wk + xl ⊗ wl +

∑

|k|<p
k ̸=l

xk ⊗ wk

=
∑

i∈I
xl+r(i) ⊗ wl+r(i) +

∑

|k|=p
k≱l

xk ⊗ wk + xl ⊗ wl +
∑

|k|<p
k ̸=l

xk ⊗ wk.
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Our objective is to find the coefficient of xl in ι−1(zu). We apply Lemma
5.2.3 to zu written as below:

zu =
∑

i∈I
zxl+r(i) ⊗ wl+r(i) +

∑

|k|=p
k≱l

zxk ⊗ wk + zxl ⊗ wl +
∑

|k|<p
k ̸=l

zxk ⊗ wk.

Clearly the sums over k ≱ l and k ̸= l will not contain the term xl, therefore
they can be discarded. For each i ∈ I, we have

zxl+r(i) =

(
l + r(i)

l

)
xl
(
δ(xl+r(i)−l)z

)
+

∑

0≤k≤l+r(i)
k ̸=l

(
l + r(i)

k

)
xk
(
δ(xl+r(i)−k)z

)

= (li + 1)xl
(
δ(xi)z

)
+

∑

0≤k≤l+r(i)
k ̸=l

(
l + r(i)

k

)
xk
(
δ(xl+r(i)−k)z

)

so we may discard the sum over k ̸= l written above. Similarly, since it is

zxl = xlz +
∑

0≤k<l

(
l

k

)
xk
(
δ(xl−k)z

)

we will also discard the sum over k < l. Hence we have

zu =
∑

i∈I
(li + 1)xl

(
δ(xi)z

)
⊗ wl+r(i) + xlz ⊗ wl +

∑

|k|≤p
k ̸=l

xk ⊗ w̄k

= xl ⊗
(
zwl +

∑

i∈I
(li + 1)

(
δ(xi)z

)
wl+r(i)

)
+
∑

|k|≤p
k ̸=l

xk ⊗ w̄k

for some w̄k ∈ W and therefore the coefficient of xl in zu is

zwl +
∑

i∈I
(li + 1)

(
δ(xi)z

)
wl+r(i). (5.1)

Choose n0 ∈ {1, . . . , q} such that λ
(n0)
m ̸= 0. As explained earlier, this is

always possible because we assumed wm ̸= 0. We apply ζn0 to (5.1) to
obtain

zζn0wl +
∑

i∈I
(li + 1)

(
δ(xi)z

)
ζn0wl+r(i) = zζn0wl +

∑

i∈I
(li + 1)

(
δ(xi)z

)
λ
(n0)
l+r(i)v

= zv0 +
(
δ(y)z

)
v
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where v0 = ζn0wl and

y =
∑

i∈I
(li + 1)λ

(n0)
l+r(i)xi ∈ g.

Since charK = 0 and λ
(n0)
m ̸= 0, the coefficient of xi0 in y is not zero. There-

fore the equivalence class of y in g/h is not zero, i.e. y /∈ h.
At last we prove that y ∈ h, which contradicts the above argument and

thus implies that Case II is void. By 5.1.3, we know that every element of
V is of the form zv for some z ∈ U(t). Suppose zv = 0: as seen earlier, this
means zwk = 0 for all |k| = p. Since we have already proven

zu =
∑

|k|=p
xk ⊗ zwk (modulo Up−1)

then zu ∈ T ∩ Up−1, but due to the minimal choice of p it must be zu = 0.
Hence (5.1) vanishes and therefore zv0 +

(
δ(y)z

)
v = 0. So we may define an

operator s ∈ HomK(V, V ) by

szv = zv0 +
(
δ(y)z

)
v

for each z ∈ U(t). This expression is linear in z and so s is well-defined as a
linear operator. Let k ∈ t. Because δ(y) ∈ der

(
U(t)

)
, then

sk(zv)− ks(zv) = kzv0 +
(
δ(y)(kz)

)
v −

(
kzv0 + k

(
δ(y)z

)
v
)

=
((
δ(y)k

)
z + k

(
δ(y)z

))
v − k

(
δ(y)z

)
v

=
(
δ(y)k

)
zv = [k, y]zv

for any z ∈ U(t). It follows that y ∈ h, which leads to an absurd.
To show absolute irreducibility for Ig

h(W ) in (2) we just need to repeat
the above proof for any field extension K ⊆ L. We obtain that the U(L⊗Kg)-
module IL⊗g

L⊗h(L⊗K W ) is irreducible, but

IL⊗g
L⊗h(L⊗K W ) = U(L⊗K g)⊗U(L⊗Kh) (L⊗K W )

∼=
(
L⊗K U(g)

)
⊗L⊗KU(h)

(
L⊗K W

)

∼= L⊗K
(
U(g)⊗U(h) W

)
= L⊗K Ig

h(W )

by Remark 9 and the isomorphism (l1 ⊗ a) ⊗ (l2 ⊗ w) 7→ (l1l2) ⊗ (a ⊗ w)
for each l1, l2 ∈ L, a ∈ U(g) and w ∈ W . That the above map defines an
isomorphism comes from the fact that the tensor product is associative and
L⊗L L ∼= L.
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Example 5.3. We give an example for case (1) of the theorem. Let K = C,
g = glC(n) and t = slC(n). Let V be an slC(n)-module. We know that
glC(n) = slC(n)⊕CIdn and CIdn commutates with any k ∈ t. Therefore, for
any y = λIdn with λ ∈ C the condition [y, k]v = skv−ksv is trivially satisfied
for all k ∈ slC(n) and v ∈ V by setting s = 0. As CIdn is 1-dimensional,
this must imply h = glC(n) so that h ̸= slC(n). Then the assumptions for (1)

are satisfied and therefore the induced representation Igl(n)
sl(n) (V ) is reducible.

Indeed, we have

g/t =
glC(n)

slC(n)
∼= CIdn

and therefore by the isomorphism ι : Igl(n)
sl(n) (V ) → S(CIdn)⊗C V we obtain

Igl(n)
sl(n) (V ) ∼= S(CIdn)⊗ V ∼=

∞⊕

i=0

(
Si(CIdn)⊗ V

)

because S(CIdn) =
⊕∞

i=0 Si(CIdn) (remember that S(CIdn) ∼= C[Idn]).
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