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Abstract

Gamma-ray astronomy investigates the physics of the universe and the characteris-

tics of celestial objects through gamma rays. Gamma-rays are the most energetic

part of the electromagnetic spectrum, emitted in some of the brightest events in

the universe, such as pulsars, quasars, and supernova remnants. Gamma rays can

be observed with satellites or ground-based telescopes. The latter allow to detect

gamma rays in the very high energy range with the indirect Cherenkov technique.

When highly energetic photons enter Earth’s atmosphere, they generate air showers,

cascades of particles whose fast motion produces elusive flashes of blue Cherenkov

light in the sky.

This thesis discusses the research conducted at the Astrophysics and Space Science

Observatory of Bologna in collaboration with the international project, guided by

INAF, for ground-based gamma-ray astrophysics, ASTRI Mini-Array. The focus is

on the Online Observation Quality System (OOQS), which conducts a quick look

analysis during the telescope observation. The Cherenkov Camera Data Quality

Checker is the OOQS component that performs real-time quality checks on the

data acquired at high frequency, up to 1000Hz, and with a total bandwidth of

148MB/s, from the nine Cherenkov Cameras. The thesis presents the implemen-

tation of the OOQS-Pipeline, a software prototype that receives scientific packets

from a Cherenkov Camera, performs quality analysis, and stores the results. The

pipeline consists of three main applications: Kafka-Consumer, DQ-Analysis, and

DQ-Aggregator. The pipeline was tested on a server having similar performance as

the ones of the Array Observing Site, and results indicate that it is possible to ac-

quire the maximum data flow produced by the cameras. Overall, the thesis presents

an important contribution to the ASTRI Mini-Array project, about the develop-

ment of the first version of the OOQS-Pipeline, which will maximize observation

time with quality data passing the verification thresholds.
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Chapter 1

Introduction

The general context of this thesis project regards gamma-ray astronomy, which

investigates the physics of the universe and the characteristics of celestial objects.

In this introductory chapter, we will explore the field of gamma-ray astronomy

and its general concepts. We will delve into the history of gamma-ray space ob-

servatories, comparing their capabilities and observing energy range. Through this

comparison, we will show the trend of growing performance in gamma-ray observa-

tories over time and why ground-based observations are an important counterpart.

Afterward, we will discuss the importance of the Cherenkov effect in ground-based

gamma-ray astronomy. This effect is crucial in the indirect observation of gamma

rays. With a comprehensive understanding of the general concepts besides Imag-

ing Air Cherenkov Telescopes (IACTs), we aim to provide a solid foundation for

the research conducted in this thesis on the ASTRI Mini-Array [1] Cherenkov

telescope.

This thesis project aims to deal with the data management and elaboration of

data produced from cameras for astronomical purposes in a ground-based gamma-

ray observatory. To achieve this objective a prototype of software consisting of a data

elaboration pipeline has been developed. This software is capable of performing in

real-time the following activities: data collection, data quality analysis, and storage

of the results on a database.

The obtained outcome will be exploited to signal various telescope software systems,

as well as the operator, about abnormal activities and trigger their reaction to

promptly correct anomalies.

In the following chapters, we deepen the various aspects regarding this project.

In Chapter 1, we describe the ASTRI Mini-Array project and its scientific objec-

tives.

In Chapter 2 we present the ASTRI Mini-Array on-site software system which man-
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CHAPTER 1. INTRODUCTION

ages the operation of the telescope during the observations.

In Chapter 3 we discuss the implementation of the pipeline, presenting all the prin-

cipal tools, libraries and services used, and finally our software solution.

In Chapter 4 we show the result of the tests performed on the pipeline, providing

performance metrics.

1.1 Gamma-ray Astronomy

Modern astronomy is defined multi-messenger [2] due to the coordinated interpreta-

tions of different signals:

• Cosmic Rays (CRs), they are constituted from electrically charged particles,

mostly protons but also atomic nuclei. CRs are produced in galactic and extra-

galactic sources and are deflected by electromagnetic fields of other sources,

losing any information about their origin.

• Photons : They are the basis of astronomy and are detected at different wave-

lengths, from radio to gamma rays, each providing information about the

different physical processes that produce them. They are important because

being neutral they are not deflected by magnetic fields while preserving the

direction of the source.

• Neutrino: by weakly interacting with matter they can reach us from the depths

of the Cosmos bringing fundamental information about the most remote as-

trophysical sources and the most powerful mechanisms of particle acceleration.

Similarly to photons, they are neutral, and their arrival direction indicates the

location of the production sites.

• Gravitational Waves : directly observed only since 2015, are the new frontier

of astrophysics. They allow us to study the characteristics of incredible phe-

nomena such as the fusion of neutron stars or black holes that occur in the

depths of the Universe.

Gamma-ray astronomy is the field involved in the astronomical observation and

study of gamma-rays. Gamma rays are highly energetic photons with energies

greater than 100 keV1, which represents the most extreme portion of the electro-

magnetic spectrum. The electromagnetic spectrum ranges from radio waves, which

1eV: electron volt. It is a unit of energy commonly used in atomic and nuclear physics. It

is equal to the kinetic energy gained by an electron when the electrical potential at the electron

increases by one volt. It is equal to 1 eV = 1.602 · 10−19 J.

6



CHAPTER 1. INTRODUCTION

have the lowest energies, through visible optical light, which has higher energies, to

gamma rays, which have the highest energies.

Gamma radiation can be distinguished from x-rays by its higher energy and shorter

wavelength; in gamma-ray astronomy, we study energies ranging from a few hun-

dred keV to several PeV. Gamma-ray photons travel in straight lines, which enables

an accurate determination of their origin. In astronomy, gamma rays are emitted

by various sources such as supernova remnants, pulsars, active galactic nuclei, and

Gamma-Ray Bursts (GRBs). The highest energy photon that has been detected

is in the range of 1.4PeV [3]. GRBs, on the other hand, are powerful and intense

bursts of gamma rays that are released for a short period, typically lasting from a few

milliseconds to a few minutes. GRBs are some of the brightest and most energetic

events in the universe [4]. GRB-221009A is a recent rare event with very high energy

photons up to 18TeV and isotropic-equivalent energy estimated at ≈ 5.9 ·1054 ergs.2

To make a comparison, the Sun delivered power is about 3.8 · 1033 ergs/s. If the

sun emitted the same energy as GRB-221009A, it would take about 4.9 · 1020 years.
The collection of the event was complicated by the saturation effects of multiple

gamma-ray instruments due to the relatively low distance of the source [5]. The

Swift team[6] revealed the exceptional rarity of such an event, for its intrinsic lumi-

nosity and very nearby to GRB standards. Only 1/104 of the total acquired GRBs

have total energy so high and refactoring based on the distance and same luminos-

ity, it is estimated that only one event every 1000 years can happen so nearby and

bright.

Gamma-rays are produced by several kinds of processes, One of the main ones

associated with high-energy gamma-rays is particle acceleration. It consists of the

interaction between particles like charged nuclei, electrons, or positrons and sev-

eral targets like interstellar gas densities, and magnetic or radiation fields. In this

situation, particles can be accelerated to relativistic speeds. When these particles

collide with other particles, they can produce gamma-ray emissions. A relativistic

outflow is a common situation of particle accelerations constrained in wind or jets.

These outflows are generally observed in gamma-ray source classes, such as AGNs

and GRBs. The accretion of a disk of material around black holes can lead to the

formation of a collimated jet of plasma orthogonal to the disk. The study of such

collimated flows is important to determine the laws that govern these enigmatic

objects.

The observations of gamma rays could also give us the chance to indirectly ob-

2erg, the unit of energy or work in the centimeter-gram-second system of physical units used in

physics. It is defined as g · cm2/s2. 1 erg = 10−7 J. 1 erg ≈ 624GeV.
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CHAPTER 1. INTRODUCTION

serve signatures of Dark Matter (DM ). The search for DM particles is a relevant

topic in high-energy gamma-ray astronomy, coupled with experiments conducted in

accelerators on Earth [4].

Space Based gamma-ray astronomy

(a) Fermi Gamma-ray Large Area Space

Telescope – 2001

(b) Swift Gamma Ray Burst Explorer -

2004

(c) INTErnational Gamma-Ray Astro-

physics Laboratory (INTEGRAL) - 2002

(d) Astrorilevatore Gamma a Immagini

LEggero (AGILE) - 2007

Figure 1.1: Modern space based gamma-ray observatories

The atmosphere is a powerful screen for gamma rays and a minimization of the

screen thickness is required for direct observation. The first observations about

gamma rays were performed in the 50s. The energy range of 0.2MeV to 400MeV

has been explored in the high atmosphere employing balloons able to reach an alti-

tude of 25 km above the sea level, and successively by rockets equipped with Geiger

counters [7]. Space-based missions carried out several breakthroughs in the high

energy Universe. Satellites like Explorer XI [8] and OSO-3 [9] launched in the 60s

discovered the interaction between the Earth’s Atmosphere and CRs and the in-

teraction between galactic and extra-galactic sources. Vela satellites [10] detected
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CHAPTER 1. INTRODUCTION

for the first time a GRB, despite Vela’s mission being for military operations. The

Compton Gamma-ray Observatory (CGRO)[11], launched in the 1980s, took data

from 1991 until 2000 and was equipped with four instruments able to map the entire

sky. These instruments covered six decades of the electromagnetic spectrum, rang-

ing from 30 keV to 30GeV, including the Burst And Transient Source Experiment

(BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imag-

ing Compton Telescope (COMPTEL), and the Energetic Gamma-Ray Experiment

Telescope (EGRET). The instruments on Compton provide 10 times the sensitiv-

ity of previous observatories, along with greatly improved angular resolutions and

great timing capabilities. There are several space-based gamma-ray observatories

active nowadays. Swift[12] and INTEGRAL are monitoring the sky for lower ener-

gies, from 10 keV to a few MeV. INTEGRAL[13] has been launched in 2002 and is

dedicated to the fine spectroscopy and imaging of celestial gamma-ray sources. The

Swift Gamma-Ray Explorer has been launched in 2004, and it is designed to make

prompt multi-wavelength observations of GRBs and their afterglow.

A new era for space-based observations starts in 2007 with AGILE (Astrorilevatore

Gamma a Immagini LEggero) and Fermi Gamma-ray Large Area Space Telescope

in 2008[14]. AGILE[15] is a scientific mission of the Italian Space Agency (ASI).

It is equipped with several subsystems that form the Gamma-Ray Imaging Detec-

tor(GRID) that is used for the observations in the 30MeV − 50GeV energy range.

The major successes of the AGILE mission are the discovery of new pulsars, the con-

firmation of the micro-quasar Cygnus X-3 (in conjunction with Fermi), and other

gamma-ray emissions from the Milky way and Terrestrial Gamma-ray Flashes [16].

Fermi[17] is for the study of electromagnetic radiation emitted by celestial bodies in

the energy range between 8 keV − 300GeV (gamma-rays), the observatory includes

two scientific instruments: Large Area Telescope (LAT) and the Gamma-Ray Burst

Monitor (GRB), which can scan about the 70% of the sky at any instant. Fermi

made several important discoveries like the observations of new gamma-ray pulsars

and Terrestrial Gamma-ray Flash (TGF). In 2017, Fermi detected a short GRB

from two colliding neutron stars, while scientists at the National Science Founda-

tion’s Laser Interferometer Gravitational-wave Observatory (LIGO) detected gravi-

tational waves coming from the same source [18]. This GW event was observed with

instruments during the following days[19]. In the same year, the detection of the

Neutrino detected from IceCube[20] (IceCube-170922A) which triggered an exten-

sive campaign of observations from multiple instruments, such as Fermi, revealed

an electromagnetic emission from blazar TXS 0506+056, at the same time neutrino

arrived. These events started the so-called ”multi-messenger era” [21]
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CHAPTER 1. INTRODUCTION

The TeV gamma-rays are rare observable events but are widely produced in

intensive particle acceleration interacting with the gas and radiation fields and are

a typical contribution to the high bolometric luminosity of young Supernova Rem-

nants, Pulsar Wind Nebulae, compact Binary Systems, and many other galactic

and extra-galactic sources. The instruments installed on AGILE and Fermi provide

effective detection of gamma-rays above 1GeV. However, beyond 10GeV, detected

gamma-ray fluxes are generally very faint, and this instrumentation is not able

to provide significant information in the range above 100GeV (Very High En-

ergy VHE). At the same time, the exploration of the VHE range is encouraged

by the presence of several photons with energies between a few tens of GeV up to

0.1TeV during the observations of bright GRBs [22]. Unfortunately, to observe ef-

ficiently this domain, the instrument’s surface area increases dramatically, making

space-based observatories for VHE unfeasible due to the moderate weight and space

available on launch vehicles and high costs. An alternative method for observing

these energies is based on the Cherenkov Radiation [23].

Figure 1.2: CTA Telescopes collecting the electromagnetic cascade that caused a high

energy gamma ray entering the atmosphere. Picture from CTA’s website (3)

Cherenkov Effect in Gamma Ray Astronomy

Cherenkov radiation is electromagnetic radiation that is produced by charged par-

ticles moving faster than the speed of light across a material. It manifests as a cone
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CHAPTER 1. INTRODUCTION

of UV/optical blue light that is produced when a charged particle travels through a

target material faster than the speed of light in that target [24].

The emission angle produced by the Cherenkov effect is represented in Fig: 1.3. A

particle travels in a medium with speed vp

c

n
< vp < c (1.1)

where c is the speed of light in a vacuum and n is the refractive index of the

medium.

We define the ratio between the speed of the particle and the speed of light as

β =
vp
c

(1.2)

The Cherenkov light will have a resulting speed equal to

vCh =
c

n
(1.3)

The left corner of the triangle represents the location of the particle when it meets

the medium; the right corner represents its position at some instant of time t.

The emission angle θ is given by the ratio between the position of the Cherenkov

wave at time t, given by xCh = c
n
t and the position of the particle at time t, meaning

xp = βct, that results in:

cos θ =
xCh

xp

=
1

nβ
(1.4)

Figure 1.3: The geometry of the Cherenkov radiation shown for the ideal case of no

dispersion

When a particle, which could be a proton, a nucleus, an electron, a photon, or

more rarely a positron, a phenomenon called Extensive air shower takes place.
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CHAPTER 1. INTRODUCTION

In this high-energy collision, primary particles release energy and split into sub-

particles. The air shower is the result of a nuclear cascade process composed of

successive interactions of sub-particles and air nuclei until all the energy contained

in the primary particles is dissipated. The particles produced in each interaction

can be unstable and decay, while other particles interact again with air nuclei and

propagate downwards although with lower energy. Some of the produced particles

in this cascade are neutral pions, which decay almost instantly, generating two

gamma rays. These gamma rays initiate the electromagnetic cascades that produces

photons, electrons, and positrons constituting the electromagnetic component of

the Extensive Air Shower (EAS) [25]. The particle multiplication proceeds until

the energy of the produced particles become so low that the multiplication stops.

Depending on the primary energy and nature of the initial incident particle, the

shower could stop at a high altitude, or it can reach the ground.

Figure 1.4: The ASTRI-Horn Cherenkov Camera, composed of 21 PDMs, and some ac-

quisitions of gamma-ray air-showers. We can see the background given by cosmic-rays air

showers. Picture taken from [26]

In the context of gamma rays observations, when gamma rays with energy greater

than 1TeV enter the atmosphere, they generate great electromagnetic cascades: the

highly relativistic particles cause a flash (∼ 2 ns) of UV-blue Cherenkov light, which

propagates in a cone with an opening angle of ∼ 1 deg. The resulting circle of

projected light on the ground, at ∼ 2000m above sea level, typically has a radius of

about 120 m.[27]. However, also nucleons and heavy nuclei coming from CRs can

produce air showers, and this constitutes an irreducible background in the detection

of gamma rays. CRs are highly isotropic and uniform in time, despite their statistical
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CHAPTER 1. INTRODUCTION

fluctuation, we can identify gamma rays from point sources as spatial distributions

of temporal distributions[25]. We can see an example of the phenomenon in Fig.

1.4.

1.2 Cherenkov Telescopes

In ground-based gamma-ray astronomy, observations of air showers it is performed

by the Imaging Air Cherenkov Telescopes (IACTs) which perform night obser-

vations of the sky. For the detection is sufficient a large optical reflector equipped

with a fast optical camera. The dimension of the telescopes can be large. For ex-

ample, consider a telescope composed of a 10m diameter refractor, a multichannel

camera composed of pixels of about 1/4 degree, and a field of view of 3 degrees. It

can collect a primary gamma-ray of energy greater than 100GeV across ground-level

distances as large as 100m, providing an effective detection area of 104m2.

The registered Cherenkov light image will have a proportional number of photons

to the energy absorbed in the atmosphere. The orientation of the image, correlated

with the arrival direction of the gamma-ray photon and its shape, contains enough

information to determine the origin of the primary particle [23]. The use of two

or more telescopes situated approximately 100m apart for stereoscopic observa-

tions of air showers offers a significant improvement in background rejection (factor

of 100) and excellent angular resolution (better than 0.1°) and energy resolution

(better than 15%).

The benefits of stereoscopic observations of air showers, including effective rejection

of hadronic showers and improved angular and energy resolution, demonstrate the

need for IACTs to be an array of telescopes. This arrangement allows for more accu-

rate and efficient detection of gamma rays, making IACT arrays a crucial tool in the

study of high-energy astrophysics [23]. The Whipple 10m reflector[28] was built in

1968 and was the first large purpose-built IACT. Thereafter came the HEGRA[29]

array the Cherenkov Array at Themis (CAT)[30] telescope. These were the pioneers

of the first generation of atmospheric IACTs. The current generation of IACTs, in-

cluding the High Energy Stereoscopic System (H.E.S.S.) [31], the Major Atmospheric

Gamma Imaging Cherenkov (MAGIC) telescopes [32], and the Very Energetic Ra-

diation Imaging Telescope Array System (VERITAS) [33], have followed in their

footsteps.
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CHAPTER 1. INTRODUCTION

Figure 1.5: An initial render of Cherenkov Telescope Array southern hemisphere obser-

vatory (Chile, Atacama Desert. It is composed of four LSTs in the middle, surrounded

by MST and various prototypes of SST, from right to left: SST-1M, ASTRI, GCT [34].

Picture from CTA’s website (3)

Cherenkov Telescope Array

The Cherenkov Telescope Array (CTA)[35] is a next-generation observatory for

ground-based gamma-ray astronomy3. For the first time in the VHE field, this

observatory will be driven by proposals and will have open access to data. This

observatory aims to build and operate more than 60 IACTs of various classes. The

structure of CTA consists of an array of telescopes spread over several square kilome-

ters, allowing for a wide field of view and improved sensitivity. The array is divided

into two sites, one in the northern hemisphere and one in the southern hemisphere,

providing full sky coverage.

CTA will make use of three types of telescopes, Large-Sized Telescopes (LST)

with a diameter of up to 23 meters, Medium-Sized Telescopes (MST) with a diameter

of 12 meters, and Small-Sized Telescope (SST) with a diameter of 4 meters. CTA will

explore a wide high-energy range based on the telescope’s different sensitivities [36].

SST design is based on the ASTRI prototype ”ASTRI-Horn” and other telescopes

[27].

The CTA is supported by the CTA Consortium, including 1200 members from more

than 200 institutes in 31 countries, and it is actually under construction. CTA’s

north observatory (CTAO-North) is located on the existing site of the Instituto de

3CTA website: https://www.cta-observatory.org/
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CHAPTER 1. INTRODUCTION

Astrofisica de Canarias on the island of La Palma. CTA’s south observatory (CTAO-

South) is less than 10 km southeast of the European Southern Observatory’s (ESO’s)

existing Paranal Observatory in the Atacama Desert in Chile. In Fig 1.5 we can see

a graphical representation of the base.

The scientific goals of CTA are diverse, including the study of active galactic nuclei,

gamma-ray bursts, and dark matter. CTA will also search for evidence of new

physics beyond the standard model and provide crucial data for our understanding of

the high-energy universe. With its advanced technology and wide field of view, CTA

has the potential to make groundbreaking discoveries in the field of astrophysics.

CTA aims to capture the elusive cascades of gamma-ray photons produced when

high-energy gamma rays hit the Earth’s atmosphere [37].

Due to the absolute rarity of the air showers, CTA uses two distinct observatories

to maximize the probability of collecting these events. There is an asymmetric

distribution of telescopes between the two observatories. In the CTAO-North, the

array size is more limited than in the CTAO-South, and it will focus more on the

energy range between 20GeV and 5TeV. On the other hand, the CTAO-South

has a unique observation point of view of the central region of the Milky way and

it will cover the energy range from 150GeV to 300TeV. In essence, the planned

increase in the number of telescopes for CTA will lead to significant advancements

in the observatory’s capabilities. This is due to the enhanced sampling of individual

showers and the ability to capture the complete light pool for a greater number

of showers. These improvements will result in superior performance compared to

current IACTs [27].

1.3 ASTRI Mini-Array

ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Mini-

Array4[1] is a project from INAF (Istituto Nazionale di AstroFisica). It consists of

an array of nine innovative IACTs that have evolved from the dual-mirror ASTRI

Horn telescope[38]; in Fig. 1.6 is shown the telescope array at the observing site.

The scientific objective of ASTRI Mini-Array (MA) is to exploit the imaging at-

mospheric Cherenkov technique to measure the energy, direction, and arrival time of

gamma-ray photons crossing Earth’s atmosphere from astrophysical sources. There

are several Imaging Atmospheric Cherenkov Telescopes able to perform high-energy

observations, like HESS, MAGIC or VERITAS, but ASTRI MA aims to achieve a

great level of sensitivity in the almost unexplored energy range of 1-300TeV. We

4ASTRI-MA website: http://astri.me.oa-brera.inaf.it/en/
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Figure 1.6: A graphical representation of the ASTRI Mini-Array Telescope system at the

Teide Astronomical Observatory, on Mount Teide in Tenerife (Canary Islands, Spain).

Picture from [1]

can see the graphical representation of an air shower in Fig. 1.7.

This technique requires an array of optical telescopes with a diameter of 4 meters

and must be located at an altitude greater than 2000m; the telescopes will be in-

stalled at the Teide Astronomical Observatory, on Mount Teide (∼ 2400ma.s.l.) in

Tenerife (Canary Islands, Spain). Fig. 1.8 is shown a top view of the observing site.

To ensure efficient and safe operations, the ASTRI MA must be remotely operated,

with no human presence on-site during observations. A data center will be located

on-site to provide a quick analysis and quality checks of the data, while the main

ASTRI Data Center in Rome will provide data archiving, processing, simulation,

and science user support. The high-speed networking connection at Teide will allow

for seamless delivery of data to the main data center, reducing the need for storage

devices on-site. [39]

The telescopes will have reflecting mirrors focusing the Cherenkov UV-optical light

produced by atmospheric particle cascades (air-showers), initiated by the primary

gamma-ray photons entering the atmosphere, onto cameras with a very fast response.

Most of the collected data will come from a large number of charged primary CRs

that initiated air-showers, which constitute a noise to be tackled. ASTRI-MA is

also designed for performing Stellar Intensity Interferometry. Each telescope will be
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CHAPTER 1. INTRODUCTION

Figure 1.7: A representation of an air-shower during the night. It is an elusive phenomenon

that lasts only a few nanoseconds. Picture from CTA’s website (3)

equipped with an Intensity Interferometry module. By exploiting the ASTRI layout,

it is possible to obtain details of the surface of bright stars and their surroundings.

The background recorded during Cherenkov light observations will be also analyzed

to provide direct measurements of the CRs.

We are interested in describing some scientific aspects of the VHE Cherenkov

observations with ASTRI-MA. These can be summarized with :

• Arrival of the air shower: an IACT is enlightened by Cherenkov light. Light is

reflected and focused onto a multi-pixel ultra-fast electronic camera. Several

signals at the detector plane then arise and the image is acquired if these are

above a certain threshold provided by the acquisition algorithm type.

• The camera acquires the shape of the image produced by the shower. The pro-

jected air shower on the detector plane shows an elliptical shape, representing

the longitudinal and lateral shower development, with its major axis pointing

toward the nominal source projected onto the camera.

• Simultaneous observations: several IACTs record the shower at the same time:

this means that a stereoscopic observation is possible. IACTs must operate as

a single system, generating a trigger event only when more than two telescopes

are above a certain threshold. then, only the telescope interested in the event

will acquire data.

• Camera images are then stored for subsequent scientific analysis.
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Figure 1.8: The final layout for the ASTRI mini-array Observing site. The figure shows

the final positions for the 9 telescopes, the position of the two meteorological towers, the

LIDAR, the transformer station and the local control room, and the data center. Picture

from [1]

• Cherenkov light is emitted also by charged cosmic rays. By exploiting certain

processing algorithms, we can determine whether the event collected by a tele-

scope was induced by a CR or by a gamma ray. Thanks to the stereoscopic

observation, we can improve our reconstruction capabilities, and obtain the

impact point of the cascade, in addition to the height at which it reached the

maximum, and also the incoming direction of the primary particle that pro-

duced the shower. This information highly improves the energy reconstruction

and the background event rejection (charged CRs) of the 99%.

The stereoscopic technique is why the IACTs array has success and represents the

future in ground-based gamma rays observations [27].

A Telescope is composed of the mechanical elements indicated in Fig. 1.10.

Other interesting and innovative features of the ASTRI Mini-Array telescopes are:

• the Dual Mirror Schwarzschild-Couder configuration. The primary mirror M1

is composed of 18 aspheric panels with different curvatures, and M2 is an as-

pheric monolithic panel. Mirror panels are mounted on active supports that

allow a fine calibration of the orientation of each segment[38].

This optical system is not affected by spherical or comatic aberrations of tradi-

tional designs. Moreover, the second mirror de-magnifies the image, improving

the field of view.
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Figure 1.9: Schematic of the measuring principle of stereoscopic observations. The si-

multaneous observation of different viewing angles of the Cherenkov light emitted by the

air shower produces different images that are used to improve the reconstruction of the

incoming direction of the atmospheric shower and, eventually, the sensitivity of the whole

system [40]. Picture from [27]

• the new silicon photon-multipliers, SiPM. SiPMs are excellent sensors and

compared to photon-multiplier tubes they show an improved single photon

resolution, a higher detection efficiency, low bias voltage, and no damage when

exposed to ambient light;

• the ASTRICAM Silicon photo-multiplier Cherenkov Camera. It is composed

of 37 Photon Detection Modules, PDMs, a mechanical unit containing SiPMs,

and an electronic control unit. Each PDM is a flat array of 8 by 8 logical

pixels. The camera covers a 9.6 deg full field of view [41].

According to preliminary Monte Carlo simulations, the sensitivity of a point

source for nine telescopes is higher than that of HESS above 10TeV, up to 100TeV.

The SST array planned for CTA south will make better in sensitivity terms, but

the energetic range 1-300TeV is covered as well. See the graph in Fig. 1.11, which

represents the minimum detectable energy flux with an observation of 50 h of the

ASTRI Mini-Array versus H.E.S.S and CTA-South observatory (the lower is better).

The ASTRI mini-array will be able to study in great detail relatively bright (a flux

of few×10−12 erg cm−2s−1 at 10TeV) sources with an angular resolution of a few
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Figure 1.10: A 3D model of the ASTRI telescope, with component nomenclature, picture

from [1]

arcmins5 and an energy resolution of about 10–15 % [27].

The observations of the telescope are decided by a night observing schedule.

A Cherenkov observation is composed by a series of successive short observations

called Observing Blocks, which consist in pointing the source of interest or a region of

points around it. The duration of such Observing Block will have typical duration of

30min, and it must be carefully designed to avoid predictable image noises sources,

for example, the presence of the moon or planets in the field of view. Moreover, the

observing schedule can be changed during the an active observation, if an external

scientific alert6 is received from other observatories[42]. The ASTRI-MA telescope,

5arcsec: unit of measure used to quantify angles in the sky. An arcsecond is defined as 1/3600 th

of a degree and a 1/60th of an arcmin. The use of arcseconds in astronomy is essential for measuring

the apparent sizes and positions of celestial objects in the sky.
6A science alert is an urgent communication from one observatory to other observatories that

a relevant astrophysical event is occurring in the sky
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due to the presence of a high-performance camera, can produce a consistent amount

of data. To continue the observations correctly, the telescope must perform an

online quick look analisys on the acquired data to determine data quality status

information at the telescope level and check-pointing precision and accuracy using

some useful acquired data [43].

In the following chapter, we will focus more on the ASTRI-MA software architecture

and quick-look analysis aspects.

Figure 1.11: Preliminary results for the differential sensitivity of the ASTRI mini-array to

point sources (5σ, 50 h, 5 bin/dex). Picture from ASTRI MA’s website (4).
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Online Observation Quality

System

ASTRI MA Software Systems (MASS ) is developed in a variety of software

components. MASS consists of two geographically distinct parts: the on-site one,

running at the ASTRI Observing Site at Teide, and the off-site part running at the

ASTRI Data Center in Rome. The on-site software is called Supervisory Control

And Data Acquisition, SCADA), and it controls all the operations carried out at

the observing site, like data acquisition, control and monitoring the telescopes, and

handling alarms.

Our pipeline application constitutes an implementation view of a component of

the Online Observation Quality System (OOQS). OOQS is a SCADA subsys-

tem that aims to execute quality checks in real-time on the data acquired by the

Cherenkov cameras and intensity interferometry instruments.

In this chapter, we provide a general view of all the SCADA sub-systems which

interface with OOQS, and all the OOQS internal components involved in processing

the Cherenkov camera data. This is essential for describing the pipeline’s systems

interconnections and behavior in the context of Cherenkov data processing.

The architectural approach used by ASTRI Team is the 4+1 view architectural

model, which is the visualization of the system from different viewpoints with the

support of the UML1 diagrams (see Fig. 2.1):

• the use case view describes the system’s interaction with entities developing

use cases. A use case is a list of actions or event steps that describes how an

actor and a system interact to accomplish a task. The actor could be a person

or another piece of hardware or software;

1https://www.uml.org/
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• the functional or logical view, is a system decomposition in functional blocks,

describing the global information flow based on the analysis of use cases and

data models;

• The dynamic aspect of the system is addressed by the process view.

• the implementation or development view is a detailed design of the imple-

mented system;

• the physical or deployment view deals with the system engineer’s point of view.

The physical view is more concerned with the system’s physical layer and

connection, while the deployment view deals with the allocation of computing

resources on physical nodes.

Figure 2.1: Illustration of the 4+1 Architectural View Model with requirements, data

model, and glossary to complement the information. Picture from [39]

The use case, logical/functional, and process views are used to define the scope and

the main functions of the software system.

To simplify the understanding of the ASTRI MASS, a definition of the top-level

requirements is provided in “ASTRI Mini-Array Top Level Use Cases” [43], with

a common glossary and high-level definition of the ASTRI data model. The use

cases, coupled with the functional view, provide a complete description of the func-

tional requirements of the software. The functional decomposition described in the

“ASTRI Mini-Array Top Level Software Architecture” [39] has been used to develop

the whole product breakdown structure of the software system, used to manage in-

terfaces and to define the specification tree, i.e. the definition of the hierarchical
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relationship of all technical aspects of the software system and is the basic structure

to perform requirements traceability.

Then, concerning each subsystem, an initial definition of the requirements that the

subsystem must satisfy has been discussed and it is provided in the Use Case Doc-

uments, and a specific functional view is provided.

The subsystems of interest for our context are a subset of the ASTRI Mini-Array

Software main systems:

• SCADA System: this software controls all the operations carried out at the

MA-Observatory.

• Archive System: it serves as the central storage for all essential and perma-

nent information related to the ASTRI Mini-Array. This includes Observing

Projects, observation plans, raw and processed scientific data, device moni-

toring data, past, present, and future MA system configurations, and records

of all operations and schedules. The main archive of interest is the Quality

Archive, which stores the Cherenkov and intensity interferometry observation

quality checks during the observation.

2.1 SCADA Context

SCADA is responsible for controlling and monitoring the observing site system,

site service system, and safety and security system installed at the Array Observing

Site. All operations at the Array Observing Site are under the control of the SCADA

system. SCADA has a Central Control System, which interfaces and communicates

with all hardware and software installed at the site. It is responsible for the execution

of the telescope observations.

SCADA is usually supervised by the operator but performs the operations in an

automated way. It provides scientific data, logging, monitoring, alarms, and online

observation quality information to help assess data quality during the acquisition.

This system supports the day and night Observation Execution and maintenance

phases. The main functions we are interested in are:

• Online Observation Quality System: Receive and analyzes the Cherenkov

camera packets, and focus on ongoing problems and the status of the obser-

vations. This is the principal subsystem we are interested in describing and

developing in this thesis project.

• Array Data Acquisition System: acquires Cherenkov Camera data and
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Stellar Intensity Interferometry Instruments. It provides the input data to the

OOQS;

• Central Control System: is responsible for coordinating and managing the

various subsystems involved in telescope operations. It receives, verifies, and

executes the observation plans to control the telescopes and other subsystems.

The Central Control System is also supported by the control systems and col-

lectors. The control systems are responsible for controlling, monitoring, and

managing the status of various subsystems such as telescopes, atmosphere

characterization assemblies, calibration systems, and alarms. The collector

subsystems are responsible for monitoring and determining the alarms and

status of environmental devices, the Information and Communication Tech-

nology (ICT), and the power system.

• Logging System, Monitoring System and Alarm System monitor the

overall performance of the systems through the acquisition of environmental,

monitoring, and logging points and alarms from instruments and generates

status reports or notifications to the Operator;

• the Operator Human Machine Interface (HMI), which serves as the user

interface for the Operator. The HMI includes an Operator Logbook, which

allows the operator to save logs of the observations made during the night.

2.2 Cherenkov Camera Context

The ASTRI Cherenkov camera [26] is composed of electronics designed to detect

Cherenkov signals, generate triggers, perform digital conversion of the signals, and

transmit the data to the camera server. A Cherenkov camera is composed of 2 main

parts:

• Cherenkov camera focal plane: it is composed of 37 Photon Detection Modules,

PDMs. Each of them consists of an 8 × 8 pixel matrix of SiPM sensors, a

Front End Electronics board, and a Field Programmable Gate Array board

(FPGA).

• Back End Electronics (BEE): it is a powerful FPGA, and is the main elabo-

ration unit of the camera interfacing the 37 PDMs. It is responsible for the

creation of several data packets based on the acquired images in real time.

A PDM is a complete fast signal processing chain to acquire, condition, perform a

digital conversion, and dispatch to the BEE each SiPM’s pixel signal. Each SiPM
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pulse is adapted in terms of amplitude, and generates a trigger signal that must be

managed by the PDM.

The PDM’s processing chain is then composed of three separate sub-chains to pro-

duce the high gain, low gain, and trigger outputs. Each SiPM pulse is then amplified

utilizing two different conditioning chains, producing high gain and low gain output

signals. These channels differ in the pre-amplification level of the signals and are

set to obtain two different dynamic ranges of photo-electrons. High gains and low

gains outputs are stored in 64 × 2 analog memories. Moreover, a dedicated acqui-

sition chain can produce a trigger output signal based on a low gain or a high gain

amplified SiPM pulse and compare it with the appropriate threshold. There are 64

digital trigger outputs for each PDM to realize the trigger signal.

When a given number of contiguous pixels within a PDM will have a signal above

a given photo-electron threshold, we have a so-called ASTRI camera trigger. The

camera trigger algorithm presented is a topological type. When the camera triggers,

analog outputs are read and then converted one by one in digital values from an

Analog to Digital Converter (ADC), producing the high gains and low gains ADC

values.

ADAS [44] is the system responsible for the data acquisition from the camera,

through a component called ”Camera Data Acquisition”. BEE can produce data

in .raw format called R0, which includes different types of packets. the R0 format

consists of a binary stream of a fixed size, that cannot be interpreted without specific

software. The ADAS is in charge of the R0 pre-processing, producing packets in a

format called DL0, in which data are translated into alphanumeric quantities ready

to be processed.

The packets are of fixed size and can be classified as notification, scientific, and

periodic. The packet structure contains specific fields to recognize the packet type

to manage it properly. Each packet type is identified by the ”Packet Type” and

”Packet SubType” [45].

For our purposes, we need to know that the packet is composed of the Packet Header

and the Packet Data Field.

The Packet Header contains the following pieces of information:

• telescopeID : an integer from 1 to 9 identifying which of the telescopes generated

the packet.

• Packet Type and Packet SubType.

• Source Sequence Counter (SSC): this field contains an incremental value that

counts the number of packets generated by the BEE camera for each type and
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subtype.

• TimeTag : the time tag refers to the acquisition time of the first sampling for

periodic packets, and the time of the trigger camera for scientific packets.

The Packet Data Field is specific for each packet type and subtype and can be of

the following types:

• Scientific Packet S(2,2); this kind of scientific packet contains the camera

events. R0 packet has a size of about 13KB, while the DL0 has a dimension

of 16384 Bytes due to the field conversion into 64-bit computer data models.

These packets contain the pulse heights in the function of the ADC channel

sampling that occurred at the skylight pulses. The maximum event rate for

each camera is fS22,max = 1000Hz, and the DL0 data rate is about 16 MB/s

for each telescope, and about 148 MB/s considering the nine telescopes. In

the Packet Data Field of these scientific packets, we can find:

– Data Field Header Extension: contains additional information about the

data acquisition, such as:

∗ Pixel trigger discriminator threshold and Pixel trigger lower level

discriminator threshold (in photo electron units);

∗ Trigger type: it is the PDM trigger algorithm, where 0 means topo-

logical, and 1 means majority;

∗ Trigger configuration: defines the neighborhood number if the trigger

type is 0, otherwise, it defines the number of the majority if the

trigger type is 1;

– Source Data Field : it contains an array of 37 fields, each one for a specific

PDM of the camera. A PDM data field is composed as follows:

∗ pdmVal : it is equal to 1 if the PDM is enabled and running, otherwise

it is equal to 0;

∗ PDM trigger enable: it is 1 if it is enabled, otherwise it is equal to 0;

∗ triggered PDM : it is 1 if it is true, otherwise it is equal to 0;

∗ pdmID number: is a number between 1 and 37 indicating the specific

PDM;

∗ high gain pixel : it is an array of 64 elements containing the ADC

data related to the signal of the high gain pixel acquisition chain;

∗ low gain pixel : it is an array of 64 elements containing the ADC data

related to the signal of the low gain pixel acquisition chain;
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In the Listing 3.1, we can see the S(2,2) structure defined in our C++ code.

• Two Variance data packets: it is a kind of periodic packet containing in-

formation about the camera status and the observation context. They have a

size of 9.5KB, while the event rate is between 1 to 10 Hz; thus they generate

packets at a low rate. Packets are produced by randomly sampling the pix-

els’ values without a trigger. Values are packed separately for the high-gain

(VAR(10,2)) and low-gain (VAR(10,3)) chains and they share the same

data structure.

2.3 OOQS use cases and requirements

The purpose of the OOQS is to perform data quality analysis during the telescope

observations and provide quick look results to the Operator and other SCADA-

subsystems. OOQS must then perform real-time analysis, and in case of abnor-

mal conditions, it provides feedback to other subsystems to take corrective actions.

Moreover, it notifies the Operator if the data acquired by the telescopes is not

consistent with the quality requirements [39]. Fig. 2.2 shows the UML diagram

representing the system context of the OOQS, and we provide an explanation of the

OOQS interfaces with the other subsystems:

• Central Control System: controls start and stop of the OOQS operation; more-

over, OOQS sends to the Central Control System the telemetry data to notify

failures detected by the quality checks.

• ADAS : sends to the OOQS the raw data (DL0) acquired during Cherenkov or

intensity interferometry;

• Alarm System: OOQS sends to the Alarm System the telemetry data to notify

anomalies detected by the quality checks. When the alarm system receives a

notification from OOQS, it evaluates the possibility of sending an alarm to the

HMI, in such a way that the operator can take an action towards, for example

stopping the telescope array.

• Monitoring System: OOQS sends to the Monitoring System the information

about the status of the OOQS software components.

OOQS can perform quality checks on the data acquired during Cherenkov Obser-

vations and the Stellar Intensity Interferometry Instrument (SI3) observations. We

are interested in describing the operative mode of OOQS during Cherenkov obser-

vations. According to the OOQS use cases described in “ASTRI Mini-Array Online

28



CHAPTER 2. ONLINE OBSERVATION QUALITY SYSTEM

Figure 2.2: The system context diagram of the OOQS. Picture taken from [46]

Observation Quality System Use Cases” [47], we can identify a list of components

that compose the OOQS:

• OOQS Master : the component that manages the OOQS components’ life-

cycle;

• OOQS Manager : it is the central component of the system, responsible for

managing the execution of quality checks during both Cherenkov and Inten-

sity Interferometry Observations. This component is connected to the central

control system, alarm system, and monitoring system;

• Cherenkov Camera Data Quality Checker (CCDQC): performs the analysis

for Cherenkov observations and it is the main component we are interested in

developing;

• SI3 Data Quality Checker (SI3DQC ): performs the analysis for intensity in-

terferometry observations;

• Quality Archive: the results of the OOQS are stored in the Quality Archive,

available in the on-site data center. The Quality Archive data are also sum-

marized in reports available to the Operator through the HMI, for further

investigation.
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OOQS’s components must satisfy their functional and performance requirements.

During the OOQS verification and validation process, the quality assurance team

will check that all the requirements will be satisfied.

OOQS Master and OOQS Manager are Alma Common Software (ACS ) compo-

nents [48]. ACS is a framework useful to develop distributed software: it collects

common patterns and implements them in ACS components. It is compatible with

several programming languages such as C++, Python, and Java.

OOQS Master controls the life cycle of the OOQS, and it is interfaced with the

Central Control System. The Central Control System can send OOQS requests to

start or stop all the OOQS components. Additionally, it monitors the OOQS compo-

nent status and manages the exception that can occur during component execution.

There exists a total of nine OOQS Masters, one for each telescope.

OOQS Manager supervises the software that executes the quality checks, and we can

find nine instances also for this component. An OOQS Master controls an OOQS

Manager, and each of them can instantiate a CCDQC, or a SI3DQC component,

based on the observation type.

Quality checks are then performed individually on each telescope-acquired data.

OOQS Manager it has an interface with the alarm system and with the central con-

trol system, which are used when an abnormal condition is detected. Additionally,

it has also an interface with the monitoring system, so that it can communicate the

status of the software components.

CCDQC is the main component that we developed for this thesis project. We

can see a diagram of its functionalities in Fig. 2.3. The CCDQC has two software

components: the Science Data Quality Checker and the Variance Evaluator. These

two components analyze the data packets generated by the Cherenkov camera: the

scientific S(2,2), and the two variance data packets, VAR(10,2) and VAR(10,3). The

ADAS sends these data through different Kafka topics. Kafka is a publish/subscribe

event streaming platform, to store and process events in a highly scalable and fault-

tolerant manner; we describe it in Section 3.3.1. How data is stored in Kafka follows

a data serialization model called Avro. Avro is an open-source data serialization

system that guarantees excellent performance for this application; we describe it in

Section 3.3.2. ADAS takes the DL0 and Avro serializes it, finally, a Kafka producer,

one for each kind of data [49], inserts it as a payload in a Kafka message on a Kafka

topic, completing the delivery.

The OOQS implements the same number of consumers to receive and deserialize

the data packets, to perform the analysis.

The major data throughput that OOQS must handle is given by S(2,2) packet, which
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Figure 2.3: Illustration of the Cherenkov Camera Data Quality Checker component and

its interfaces. Central Control System instantiates the component when a Cherenkov

observation is requested. Picture from [46].

is characterized by the highest data rate acquisition among all the Cherenkov camera

packets. CCDQC performance, following the requirements described in Section 2.2,

must satisfy the acquisition of 1000 S(2,2) packets in a second (about 16 MiB/s).

The VAR packet has a size of about 9.5 kB, but the event rate is between 1 and 10

Hz; thus, they do not constitute a challenging data rate.

The main data quality checks performed on the S(2,2) packets are:

1. calculate the histograms of the trigger number for each camera and each cam-

era’s PDM;

2. calculates the histogram of the times between two consecutive triggers for each

camera;

3. check that the histogram values are inside a predefined range;
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4. check that the pixel ADC values of each Cherenkov camera are inside a pre-

defined range;

5. sample the data to obtain one camera image per second.

6. execute checks 1, 2, and 4 with the calibrated data obtained with predefined

calibration coefficients;

If abnormal conditions are found during the data quality checks, the Cherenkov

Camera Data Quality Checker sends a notification to the target subsystems de-

scribed above and prepares a report that is saved into the Quality Archive. The

failures are sent to the Central Control System.

The main data quality checks performed on the VAR(10,2) and VAR(10,3) are:

1. aggregate all the VAR data from the start of the observation for each camera;

2. calculate the ratio between the high-gain and low-gain of each camera PDM;

3. check if the pointing deviation and the point spread function (PSF) size are

inside the nominal range;

4. sample the data to obtain one camera image per second.

The main purpose of the VAR analysis is to check if a pointing correction is

necessary during observations. For this purpose, a specific technique has been de-

veloped for ASTRI [50], and the possible corrections can be applied in real-time or

during the following observing run [46]. In the next chapter, we will further pro-

vide explanations of the implementation of the OOQS pipeline, and the developed

framework to receive data from Kafka, perform analysis, and store results.

32



Chapter 3

OOQS-Pipeline development

3.1 Programming Languages

3.1.1 C++

The C++ programming language[51] was created by Bjarne Stroustrup and his

team at Bell Laboratories (AT&T, USA) to aid in the efficient and object-oriented

implementation of simulation projects.

The earliest versions of C++, which date to 1980, were originally referred to as “C

with classes”. As its name suggests, this programming language was derived from

C, in which the increment operator is represented by ++.

C++ is a hybrid programming language that combines object-oriented language

with functionalities belonging to the C language, such as:

• Universally usable modular programs : modular and reusable code can save

time and reduce errors when developing complex applications.

• Efficiency ; C++ programs are compiled into machine code, which can be ex-

ecuted directly by computers’ processors, resulting in shorter execution times

with respect to interpreted languages.

• Portable programs for various platforms.

C++ includes various concepts of object-oriented programming which are:

• Data abstraction: C++ supports the creation and manipulation of objects

that contain both data and the functions that operate on that data.

• Data encapsulation: aims at controlling access to objects, C++ provides also

low-level control over system resources, such as memory allocation and hard-

ware access.
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• Inheritance: create classes able to inherit characteristics of parent classes

• Polymorphism: implementation of instructions that can have varying effects

during program execution[52]

Unlikely other programming languages like Python and Java, C++ lacks built-in

memory management tools. This requires the programmer to manually manage

memory allocation and deallocation which can be challenging as well as prone to

possible errors.

3.1.2 Python

Python is a high-level, general-purpose programming language that was created in

the late 1980s by Guido van Rossum. Since then, it has become one of the most

widely-used programming languages in the world, thanks to its simplicity, versatility,

and ease of use [53].

Python is an interpreted language, which means that it doesn’t need to be com-

piled before it can be run. This can make it more convenient for developers who

want to write and test their code quickly. Python’s interpreter can be used interac-

tively, which is a useful feature for testing short snippets of code or exploring the

language’s features.

Another key characteristic of Python is its strong emphasis on code reuse and mod-

ularity. Python provides a wide range of built-in modules, which can be used to

perform a variety of tasks, such as file I/O, networking, and regular expressions.

Python also supports the creation of user-defined modules, which can be shared

and reused in other programs. This makes it easier to write complex programs and

maintain large codebases.

Python, like C++, is an object-oriented programming language, which means

that it provides support for object-oriented programming concepts, such as encap-

sulation, inheritance, and polymorphism. Python is also a dynamically-typed lan-

guage, which means that variable types are determined at runtime, rather than at

compile-time. This can make it easier to write and modify code since variables can

be used without being explicitly defined.

Python has a wide range of uses, such as:

• Web Development

• Data Science and Machine Learning

• Automation
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• Scientific Computing

• Game Development

3.1.3 C++ vs Python

C++ and Python are two popular programming languages with distinct features and

advantages. C++ is a compiled language that is known for its performance, while

Python is an interpreted language that is popular for its simplicity and ease of use.

In terms of syntax, C++ is a statically typed language that requires explicit variable

declarations, while Python is dynamically typed and allows for more flexible variable

declarations. C++ is typically used for system programming, game development,

and other high-performance applications, while Python is often used for data science,

machine learning, and web development.

Overall, C++ is a powerful language that provides low-level control over computer

resources, while Python is a user-friendly language that allows developers to quickly

and easily prototype ideas and test concepts.

3.2 Frameworks

3.2.1 DQ-Pipe

The DQ-Analysis and DQ-Aggregator pipeline applications are based on the DQ-

Pipe, a Python framework developed by INAF. DQ-Pipe is a general framework to

build automatic pipeline analyses, providing a variety of different objects to define

the job that each single process constituting the pipeline must accomplish, the input

and output entities. DQ-Pipe implements an object to define a trigger mechanism

to perform a new job, one of the possibilities is based on the detection of new files in

the specified file system paths. DQ-Pipe can work with Slurm, a workload manager

able to optimize the load on the OOQS server cluster. An XML configuration file

specifies the operations that an instance of the DQ-Pipe must perform. We extended

the functionalities of the DQ-Pipe so that it can be a suitable coordinator for our

applications.

In Fig. 3.1 is shown an XML file template that describes a typical configuration

for an OOQS pipeline, it contains the following elements:

• the output directory of the logging files,

• the parameters of a MongoDB connection (or MySQL),
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Figure 3.1: the conf.xml configuration file for the OOQS pipeline. It creates a dqpipeline

process for a DQ-Analysis application and one for the DQ-Aggregator application. The

interfaced database is MongoDB.

• a dqpipeline process including:

– the input data directory where the application read the HDF5 files,

– the output data directory,

– the external process directory and filename,

– id field for the log filename,

– mode field which specifies if processes are managed via Slurm or not,

– the application, or algorithm, selected to process the data.

By creating multiple dqpipeline processes, it becomes possible to establish a data

processing workflow, comprising a sequence of processes executing various successive

operations on data. To enable this mechanism, it is essential to interconnect two

dqpipeline processes in such a way that the input directory of the second dqpipeline

corresponds with the output directory of the first dqpipeline.

In Fig. 3.2 are described the components involved in the creation of a dqpipeline

process. The entry point of the pipeline is DQPipelineController, it instances a

DQPipeBuilder object using the method start. DQPipeBuilder reads an XML con-

figuration file and builds one or more pipelines defined as described in the file.

An instance of a DQPipeline requires an input ”dataSource”, that defines the in-

coming data to be processed and an ”outputHandler” defines where to store the
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Figure 3.2: The class diagrams describing the relationships of the entities involved in the

instantiation of a DQ-Pipeline Component

results of the elaborated data. Thanks to DQ-Pipe flexibility, the DQPipeline class

can be extended to perform the desired user-defined tasks. The Fig. 3.3 shows the

class structure of DataSource for handling files/datatypes. DataSource is an object

connected to the dataSource member of a DQ-Pipeline instance.

FileSystemDS implements a watchdog library 1 that notifies when a new file is cre-

ated on a specific directory. The watchdog events are specialized by FileSystemDS

class, providing some useful synchronization tools to start the dqpipeline’s job when

some specific files, such as the Ok files, are detected. The Ok file is an empty file

that ends with a ”.ok” extension, and carries the same name of another file that a

dqpipeline instance must elaborate. Further explanations on these file are present

in our application development, in Sec. 3.5.1 and 3.5.2. FileHandler is an abstract

class, describing the interface to manage different kind of user defined files. For in-

stance, the read() method will describe the in an eventual instanced FileHandlerExt.

The Fig. 3.4 shows the class structure of the OutputHandler. OutputHandler is an

interface connected to the outputHandler member of a DQ-Pipeline instance. The

output handler can be extended in a variety of ways, for instance to write data in a

specified format via a FileHandler implementation, can connect to a database where

to write a data via an OutputToDB implementation, or simply provides a file system

1Watchdog API: https://python-watchdog.readthedocs.io/en/stable/
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Figure 3.3: The class diagrams describing the characterization of the DataSource class

path where to write files with an OutputToFileSystem. The specific file format or

path is specified by the user in the configuration file. In Fig. 3.5 are shown classes

used for utility purposes:

• PipeloggerConfig is a logger implemented as Singleton;

• RepeatThread creates a concurrent thread task that executes periodically;
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Figure 3.4: The class diagrams describing the characterization of the OutputHandler class

Figure 3.5: The DQ-Pipe utility classes

• GarbageCollector deletes data files that are already processed and not re-

quired;

• XmlReader for configuration file parsing.

3.2.2 Slurm

Slurm2 is a job scheduler and resource manager used in high-performance computing

environments. It is designed to efficiently allocate and manage resources, including

computing nodes, memory, and other hardware resources, to enable the execution

of large-scale scientific computations and data analysis tasks [54].

Slurm supports a wide range of job types, including parallel jobs that span multiple

nodes, interactive jobs for user interaction with the computing environment, and

array jobs that execute a large number of similar tasks. It also includes advanced

features such as checkpointing, accounting and reporting, and workload manage-

ment.

Slurm uses a hierarchical architecture that enables administrators to manage re-

sources at multiple levels, including the cluster level, node level, and job level. This

2https://www.schedmd.com/index.php
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allows for fine-grained control over resource allocation and scheduling, ensuring that

jobs are executed in a timely and efficient manner [55].

At the Array Observing Site, there are multiple servers composing the on-site

Computing Cluster. The OOQS instances, with all their software components, will

be deployed as Docker containers in the Computing Cluster, along with other sub-

systems such as Monitoring System, Alarm System, Archive, etc.[46].

Distributing the workload among all these heterogeneous jobs is an important aspect

of the implementation of our pipeline software solution that can be tacked with

Slurm.

If DQ-Pipe is configured to work with Slurm, all the processes, can be scheduled as

Slurm jobs in the Computing Cluster. To achieve this, the DQPipelineController

will create sbatch file that will submit the DQPipeBuilder on Slurm. The sbatch

script must specify all the dependencies, such as all the file system paths to execute

the pipeline itself and the external processes that it must handle.

3.3 Tools/libraries

3.3.1 Apache Kafka

Before discussing the implementation of the Kafka Consumer, let us present briefly

how Kafka works, the main problems that it can address, and the potential of Kafka

in our project.

Apache Kafka is a publish/subscribe messaging system having a single centralized

system that allows for publishing generic types of data. It is often described as a

“distributed streaming platform”. A file system or database commit log is designed

to provide a record of all transactions so that they can be replayed to consistently

build the state of a system. Data within Kafka is stored durably and ordered so

that it can be read deterministically.

The unit of data within Kafka is called “message”: it is an array of bytes that

does not have a specific format or meaning inside Kafka. A message can have a

key, which is a byte array of metadata, to manage the message’s writing to different

partitions.

Messages in Kafka are categorized into “topics”, which are analogous to folders inside

the file system. Topics can be split into several partitions, where each partition

corresponds to a single log in the commit log structure of Kafka. Messages are

written in Kafka in an append-only fashion and are read in order from the beginning

to the end, but the reading in temporal order can be guaranteed only in the case
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of a single partition topic. On the other hand, partitions allow Kafka to be simply

scalable and provide redundancy in the system.

“Kafka clients” are users of the system and can be of two basic types:

• Producers create new messages, which in general will be produced on a spe-

cific topic. A producer can specify in which partition a message must be

written or it can balance messages in all the partitions of a topic.

• Consumers read the messages created by producers. A consumer can sub-

scribe to one or more topics and will read the messages in their production

order. A consumer keeps track of the messages that have already been con-

sumed via an ”offset” of the messages, which is an incremental integer meta-

data value. Kafka adds to each message a unique offset in a given partition, in

such a way that the consumer can start or stop its operations without losing

track of the last consumed message. Consumers working on a certain topic

must belong to the same “consumer group” to make sure that each partition

is only consumed by one member at a time. We can manage large topics,

by scaling horizontally the consumers. Moreover, if a consumer fails, the re-

maining members of the group will re-balance the partitions to take over the

missing member.

Stream processing with Kafka

Kafka is suitable for several use cases, such as activity tracking, messaging, metrics,

logging, commit log, and Stream processing.

A data stream is an abstraction representing an infinite and ever-growing data set.

The data set is unbounded because, over time, new records keep arriving. Moreover,

event streams are an ordered set of immutable data records, and it is desirable to

be able to replay the whole, or at least a part, of the event stream. This is required

to correct errors, try new methods of analysis, or perform audits [56].

Our Kafka application

Our application is a stream processing application with soft real-time requirements.

It must be able to read non-stop, for a theoretically infinite time, the unread mes-

sages on the topic or wait for new messages, identifying transaction errors on the

messages, and committing the offset to the server broker.

There are three Kafka topics, relating respectively to the Camera scientific packets

S(2,2) and the Variance packets VAR(10,2) and VAR(10,3). Each CCDQC will have

three Kafka Consumers, each of them assigned to a Kafka topic, which contains the
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messages including a scientific or a variance packet produced by a specific telescope.

In other words, there will be nine different topics for each kind of data, for a total

of 27 topics.

Up to now, we developed the consumer for a single telescope, that can receive from

a single partition topic relative to the scientific data of that telescope [56].

C++ Kafka API

The C++ API for implementing a Kafka consumer is called cppkafka, which is a

C++ wrapper from Mattias Fontanini3, built on top of librdkafka, the official C

library for the Apache Kafka protocol.

We are interested in an example of a basic consumer program, available in the API

documentation which makes use of the following tools:

• A Configuration object allows easily configuring your consumers/producers.

A configurator typically stores information on how to connect to the Kafka

server, like IP address and the TCP-IP port, which commit mode, and how

many messages download together from the topic. We are also interested in

defining some callbacks to have extra feedback about the connection status

with a topic.

• A TopicConfiguration object: we must insert the topic on which the message

will be consumed and the offset configuration.

• The Consumer object, which provides us the methods to consume messages,

subscribe to the topics, commit consumed messages, and so on.

Further information on the configuration of Kafka can be found on the librdkafka’s

documentation4.

3.3.2 Apache Avro

Kafka producer configuration includes mandatory serializers for several datatypes,

such as strings, integers, and byte arrays, but we would require to serialize more

complex datatypes records.

Apache Avro5 is a language-neutral data serialization format created by Doug Cut-

ting to provide a way to share data files with a large audience. Avro serializer is

a recommended alternative to manage the Cherenkov Camera packets due to their

3CppKafka Docs: https://github.com/mfontanini/cppkafka
4librdkafka Docs: https://docs.confluent.io/platform/current/clients/librdkafka/html/index.html
5https://www.baeldung.com/java-apache-avro
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rich data structure, using a schema to perform serialization and deserialization. The

Avro schema is usually specified in JSON, and the serialization is usually to binary

files, although a JSON serialization can be handled [56].

Avro supports two types of data:

• Primitive type: Avro supports all the primitive types. We use a primitive

type name to define a type of a given field. For example, a value that holds a

String should be declared as “type”: “string” in Schema.

• Complex type: Avro supports six kinds of complex types: records, enums,

arrays, maps, unions and fixed.

There are mainly four attributes for a given Avro schema:

• Type: describes the type of Schema that can be can be either primitive or

complex type.

• Namespace: describes the namespace to which the given schema belongs.

• Name: the name of the Schema.

• Fields : tells the fields associated with a given schema. Fields can be either

primitive or complex type.

In Avro terms, a writer performs the data serialization, namely it encodes data,

while a reader performs data deserialization, so it decodes data.

Our Avro application

In our application, the producer encodes data in a binary format. Binary encoding

does not include field names, self-contained information about the types of individual

bytes, or field or record separators leading to smaller serialized data. On the other

hand, a reader always wholly relies on the schema used to encode.

To Deserialize these data in a C++ application, we can rely on the AVRO C++

API6.

Between the several functionalities that AVRO C++ provides, we focus on the

followings:

• Code generator : avrogencpp is a one-time use C script that, starting from a

.json file representing the desired AVRO schema, creates a C++ struct, so a

language-dependent representation of the schema and the functions to encode

and decode those structs. In the Listing 3.1 we can see the struct defining the

S(2,2) scientific package.

6https://avro.apache.org/docs/1.11.1/api/cpp/html/
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• Custom binary decoder : decodes the binary Avro data and is used at runtime.

Listing 3.1: The S(2,2) DL0 packet (Avro generated). int32 t is a typedef of a

standard C++ signed integer

1 namespace S22 {

2 enum triggerTypeEnum {

3 TOPOLOGICO ,

4 MAJORITY ,

5 };

6

7 if (true)

8 struct PDMBlock {

9 bool pdmVal;

10 bool triggerEnabled;

11 bool triggered;

12 int32_t pdmID;

13 std::vector <int32_t > highgains;

14 std::vector <int32_t > lowgains;

15 PDMBlock () :

16 // struct init

17 };

18

19 struct S22 {

20 int32_t telescopeID;

21 int32_t type;

22 int32_t subType;

23 int32_t ssc;

24 int32_t year;

25 int32_t month;

26 int32_t day;

27 int32_t hours;

28 int32_t minutes;

29 int32_t seconds;

30 bool validTime;

31 int32_t timeTagNanosec;

32 int32_t pixelTriggerDiscriminatorThreshold_pe;

33 int32_t pixelTriggerLowelDiscriminatorThreshold_pe;

34 triggerTypeEnum triggerType;

35 int32_t triggerConfig;

36 std::vector <PDMBlock > PDMs;

37 S22() :

38 // struct init

39 };

40 [...]

41 }
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3.3.3 HDF5 Library

HDF5 is a high-performance data management and storage suite7. HDF5 supports

n-dimensional datasets and each element in the dataset may itself be a complex ob-

ject. It is useful in general for high-performance I/O operations and runs on several

computational platforms, providing API for different programming languages.

HDF5 comes with:

• a file format for storing HDF5 data,

• a data model able to logically organize and access the HDF5 data from an

application

• the software, such as libraries, language interfaces, and tools, for working with

this format.

The HDF5 data model contains the building blocks to perform data organization

and specification in HDF5 files. An HDF5 file, which is an object itself, is a sort

of container that holds a variety of heterogeneous data objects or datasets. The

datasets can be constituted from a great variety of elements such as images, tables,

graphs, or even documents, such as PDF or Excel files.

The two primary structures that we find in an HDF5 file are groups and datasets :

groups are entities similar to folders, while datasets include data and metadata,

aiming at describing the data itself. HDF5 are then organized in a file system

fashion, having a root group that can contain other groups or datasets.

A variety of objects are available to describe datasets, like datatypes, dataspaces,

and properties. Datatypes describe the individual data elements in a dataset. Of

particular interest for our application are:

• Native Datatypes : the native datatype of the plaftorm.

• Derived Datatypes : these are data types that are created or derived from the

pre-defined datatypes. An example of a commonly used derived datatype is

a string of more than one character. Nested compound datatypes are also

derived types, of which we can see an example in Fig: 3.6.

Dataspaces consists of the layout of the data elements in the dataset. They define

the dimensionality of the dataset through the rank number and the size for each

7The HDF5 website: https://www.hdfgroup.org/
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Figure 3.6: Example of a compound dataset. The compound datatype is a structured

data, composed of native datatypes such as a 16-bit integer, a char, a 32-bit integer, and

a 2× 3× 2 array of 32-bit float. Image from HDF5-website (7)

dimension which can be either fixed or unlimited. Dataspace has a dual role in

HDF5: it represents the spatial information (logical layout) of a dataset stored in a

file, and it describes an application’s data buffers and data elements participating

in I/O. For instance, we can define a dataset as a matrix of size 2 × 3 by setting

a dataspace Rank = 2 and Dimension = (2, 3). Each element of the matrix will

store data coherent with the dataset’s datatype.

The property we are interested in for our purpose are contiguous and chunked

dataset: contiguous means that data are stored physically adjacent to each other,

while chunked means that data are divided into subsets. The advantage of chunked

datasets is the increased access time speed for I/O operations on parts of the dataset.

HDF5 C++/Python APIs

To share data between the applications we developed for the OOQS-Pipeline, we

used the HDF5 library, creating writing and reading functions for two different files.

To manage the HDF5 files in the C++ applications, we used the HDF5 C++ wrap-

per, that simplifies the operations with respect to the HDF5 C library8. Instead,

to manage the HDF5 files in the Python applications, we used PyTables9, which is

built on top of the HDF5 library. It supports NumPy10 operations and provide an

object-oriented interface with several critical parts using C extensions. Datasets in

8HDF5 APIs:https://docs.hdfgroup.org/hdf5/develop/index.html
9PyTables’ API: https://www.pytables.org/

10NumPy (short for ”Numerical Python”) is a Python library that is widely used for scientific

computing and data analysis. It provides a powerful N-dimensional array object, along with many

other useful functions for working with arrays, matrices, and numerical data.
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PyTables are treated as NumPy arrays, while groups can be accessed as dictionaries.

Some functionalities we are interested in while using HDF5 in C++ are the follow-

ings:

• file constructor : we must set an appropriate name for the target data file and

create or open it via the appropriate file constructor;

• group constructor : we must define several groups which will hold our datasets;

• dataspace constructor : it will define the dimension and shape of the datasets

in the file and the memory;

• datatype constructor : it will define which kind of data will be inserted in the

dataset. Datatypes can be simple, such as integers 32-bit or double (float

64-bit) or they can be H5 datatypes such as arrays of native datatypes, or

compounds;

• compound datatypes constructor : in C++, we must define each member of our

compound datatype. Starting from a C struct, we must define each component

of the struct as a member of the datatype specifying a name, a size of the data,

and a datatype for each component;

• dataset constructor : it defines the dataset, based on the specified dataset and

datatype. It is a method for a file or group node to create the dataset in the

appropriate file position;

• methods for writing or reading datasets : to perform an I/O operation, we

must specify the buffer containing data be to written or to be read, the native

datatype of the dataset, the dataspace instance for both memory and file

dataset. The buffer size must be greater or equal to the dataset dimension.

Moreover, we can define an ”hyperslab” for the dataspace, so that we can

write/read just a part of the dataset;

• methods for releasing the allocated resources for the opened file, and also for

the datasets and dataspaces opened.

3.3.4 GSL Library

The GNU Scientific Library (GSL) is a numerical library for C and C++11. The

library provides a wide range of mathematical routines such as random number gen-

erators, special functions, and least-squares fitting. There are over 1000 functions

11https://www.gnu.org/software/gsl/doc/html/usage.html
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in total with an extensive test suite.

We are interested, in developing some quality checks exploiting the library’s effi-

ciency. Up to now, we have only been required to implement a histogram handler.

In the OOQS quality checks context, histograms are useful to understand the ADC

values distribution of the camera pixels; ADC values are described in the Sec. 2.2.

OOQS will raise an anomaly if ADC values are outside of a known range, or a de-

fined distribution.

In the scientific analysis context, Camera usually acquires night sky images and, as

discussed in the introductory chapter, cosmic rays initiated air-showers disturb the

acquisition of gamma ray initiated air-showers. Checking the histogram bins lev-

els during observation, we could perform a background extraction, which is useful

for further preliminary elaborations such as image binarization, aiming at detecting

bright sources in the sky. A histogram is defined by the following struct:

• size t n: the number of histogram bins (columns);

• double * range: it is a pointer to an array of n+1 elements containing the

ranges of the histogram bins;

• double * bin: the number of elements per bin is stored in an array of n elements

pointed by bin. The bins are floating-point numbers, so you can increment

them by non-integer values if necessary.

Histograms provide a convenient way of summarizing the distribution of a set of

data. The i-th bin is defined between two range elements, so that

bin[i] =
{
z ∈ R : range[i] ≤ x < range[i+ 1]

}
∀ i = 1, 2, . . . , n

Let X be a random variable that maps a sample space Ω in real values.

X : Ω ⇒ R

Bins are a collection of the realization of a random variable x = X(w) for some

w ∈ Ω, such that:

bincount[i] = #x ∈ bin[i] ∀ i = 1, 2, . . . , n

To use histograms in a GSL application, we must define the number of bins

and the bin range array. We are interested in several functions to operate with

histograms:

• histogram allocation: a function that takes the number of bins n, and his-

togram struct h and allocates the right memory to h with a malloc() operation.
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Array range in the histogram h will be allocated with (n+ 1)× sizeof(double)

bits and number of elements per bin with n× sizeof(double) bits;

• set uniform range: a function that, given a histogram h, and the min and max

extremes of the linear range, builds the range array linearly spaced;

• histogram increment: it assigns to the correct bin of the histogram h, every

new value x ;

• histogram add: given two similar histograms h1 and h2, it performs a bin-wise

addition saving the resulting number of counts in h1 ;

• functions able to free histogram h memory space.

3.4 Storage Systems

A database is a collection of information organized in a way that can be easily

accessible, managed and updated. In order to implement the insertion into a storage

system of the data quality results provided by the OOQS-Pipeline, an integration of

a database is essential. In addition, it can be interesting to compare the performance

of relational and non-relational database when testing them with OOQS data.

3.4.1 MySQL

MySQL is a popular open-source Relational DataBase Management System (RDBMS)

that is widely used in web applications and software development. It provides a

robust and reliable platform for storing, organizing, and retrieving data using a

Structured Query Language (SQL). MySQL fully satisfies ACID12 requirements for

transaction-safe RDBMS: atomicity is handled by storing modified rows in a memory

buffer and writing to disk after the transaction commits. consistency is ensured by

logging mechanisms and locking mechanisms, while server-side semaphore variables

and locking mechanisms manage isolation mechanisms. Durability is maintained

by a binary transaction log file and recovery from hardware failures is relatively

straightforward by using backups in combination with the log. MySQL is also high

scalable, and ease of use, making it a preferred choice for small to large-scale ap-

plications. It offers various features such as transactional processing, data security,

and replication capabilities, making it suitable for enterprise-level applications as

12ACID refers to the four key properties of a transaction: atomicity, consistency, isolation, and

durability.
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well. MySQL also offers a vast range of tools and integrations, making it easy to

manage and maintain databases.

In our application, due to the variety of different analysis and data, a flexible

object like a JSON can be used to store all the quality results. One advantage of

using JSON in a MySQL database is that it allows for more flexible schema design.

Python applications can store JSON encoded dictionaries into a MySQL table, that

can be fetched as a string or as a JSON data.

However, there are also some disadvantages to using JSON in a MySQL database.

One potential issue is that queries that rely heavily on JSON functions can be slower

than traditional SQL queries. Additionally, it can be harder to enforce data integrity

and perform complex queries on data stored in JSON format.

3.4.2 MongoDB

MongoDB is a popular NoSQL database management system that uses a document-

oriented data model to store and manage data. Unlike traditional relational databases,

MongoDB is designed to be flexible and scalable, making it a great choice for modern

applications that require dynamic and rapidly-changing data structures. MongoDB’s

document model allows for nested structures and dynamic schema, meaning data

can be stored without a defined structure and can evolve over time without compro-

mising performance. MongoDB’s distributed architecture allows it to handle large

volumes of data and support high levels of concurrency. Additionally, MongoDB

provides a variety of features such as replication, sharding, and indexing, making it

a powerful tool for building and scaling modern applications.

In the context of our application, MongoDB is able to manage Python dictio-

naries natively with its flexible document data model, so that a comparison with

MySQL is interesting from the performance point of view. MongoDB uses a flexible

document data model based on the BSON format (Binary JSON), which is very

similar to JSON but supports additional data types like binary data and date ob-

jects.

Using BSON in a MongoDB database can provide several advantages over using

plain JSON. For example, BSON is more compact than JSON, which can lead to

smaller database sizes and faster read and write performance.
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3.5 OOQS-Pipeline Architecture

Figure 3.7: The OOQS system diagram, and the Mini-Array Software subsystems inter-

connections of interest in the OOQS-Pipeline development.

The component diagram in Fig 3.7 shows the ASTRI Mini-Array components

that are meaningful for the application developed in this thesis. In this project,

we focus on the acquisition Chain of the Cherenkov Camera packets from a

single Cherenkov Camera. Cherenkov Camera has its BEE devices that produce

several kinds of data packets [45]. ADAS is in charge of acquiring these packets

through the Cherenkov Camera Data Acquisition module [46]. Subsequently, the

Communication Step Between ADAS and OOQS takes place.

The Cherenkov Camera Data Quality Checker is the main topic of this thesis.

CCDQC, as discussed in the OOQS chapter, aims at performing quality checks on

the acquired Cherenkov camera images in near real-time with the observations.

To implement it, a data quality pipeline has been developed and tested. A data

quality pipeline is software able to perform a sequence of elaboration processes: it

takes some input data, elaborates it, and returns output data, which is the input

for the next process step.

The OOQS pipeline is defined by some components according to the CCDQC

structure. The data flow across components is built employing HDF5 files containing

groups of data, or data results. In the OOQS quality checks, we are not only

interested in analyzing a single camera event, but it is also important to visualize

a certain interval of time or events or the history of the current observation. The

pipeline is composed by three different deamons13 applications:

13A daemon is a computer program that runs continuously in the background, performing various

tasks as required. Daemons are often used to provide services or functionality to other programs

or users, such as handling network requests, managing print jobs, or monitoring system resources.
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Figure 3.8: The Scientific Data Quality Checker Pipeline

• Kafka Consumer: it collects data from a given Kafka topic, and it writes an

HDF5 file containing the data acquired;

• Data Quality Analysis: it performs quality checks on a certain group of

data; It submits an external batch process14 every time new data are available.

This process can be a Slurm job if the pipeline is executing on a Slurm Cluster,

or a bash process on the host machine that is currently executing the DQ-

Analysis application;

• Data Quality Aggregator: it performs data aggregation on the results of

the quality checks to reach the target level of data aggregation requested, then

it stores the aggregated results in a database of the Quality Archive.

To synchronize the execution of the Analysis and the Aggregation, the DQ-Pipe

framework has been exploited. The DQ-Pipe instantiates several pipelines in par-

allel, with the possibility of distributing the workload in the Slurm Cluster. This

framework can be configured using XML files with several types of analyses. This

framework holds in general for both the CCDQC sub-components: the Scientific

Data Quality Checker (SDQC) and the Variance Evaluator; in Fig. 3.8 is

shown the implementation of the OOQS pipeline for the SDQC component.

Given the high speed and the high amount of scientific data S(2,2), the development

of the SDQC component is more relevant from the point of view of compliance with

real-time constraints. However, due to the amount and variety of quality checks

14A batch process is a program that executes a series of tasks or jobs in a specific sequence,

without user intervention. These tasks may involve processing large amounts of data, generating

reports, or performing calculations. Batch processes are typically scheduled to run at a specific

time or when certain conditions are met, such as the availability of resources.
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that the two components must perform, only some use cases of the SDQC have

been developed and tested. We note also that in order to acquire and process data

from the whole telescope array, then a set of nine OOQS-Pipeline working with each

Camera acquisition chain is then required.

3.5.1 Kafka Consumer

We start now by describing the first building block of the OOQS pipeline.

Kafka consumer is a C++ application that manages the acquisition of the Cherenkov

Packets S(2,2), VAR(10,2), and VAR(10,3) sent by ADAS through Kafka. For each

type of packet, an Avro schema has been created, describing the fields of the original

packet required by the OOQS. The Avro schema is created through files in JSON

format. For each data, a Kafka topic is created.

We can describe Kafka Consumer providing a functional view. ADAS, in the Kafka

context, represents the producer side and it has the following features:

• A packet is processed by the appropriate processor component, based on the

data type.

• The fields of interest are extracted and serialized by converting them into Avro

format using the Avro encoder.

• The serialized packet is inserted in a Kafka Message and loaded on the asso-

ciated Kafka Topic, containing other data of the same type.

The Kafka Server manages the persistence of a certain amount of data on the disk,

and it executes the requests of the active producers and consumers groups.[49].

The CCDQC, in the Kafka context, represents the consumer side and it has the

following communication features:

• A certain CCDQC instance is associated with a specific data type and a specific

Kafka consumer is linked to a specific Kafka topic.

• The consumer is persistently looking for new messages on the topic. If a new

one is available, the consumer will acquire it from that topic.

• The acquired message contains the encoded packet, the field will be decoded

and the original DL0 packet will be available.

Now we will focus on the development of the consumer for the SDQC.

In addition to these communication constraints, Kafka consumers must imple-

ment further logic to manage DL0 data, involving functions to write data, measure

time, and get a unique time. The functional logic of the consumer is the following:
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1. Split data in batch basing on a defined rule. Up to now, we have decided

to split data based on packet acquisition time. All the messages on the Kafka

topic are ordered by arrival time, and the messages contain packets that have

been loaded in acquisition order. We have defined a time window of TBatch =

1 s so that when we receive the first packet pi from the Kafka topic acquired

at time tpi, all the packets pj with tpj ≤ tp0 + TBatch are collected in the

same batch, otherwise, a new batch is created, updating the initial time with

tpi = tpj. An array of packets is then formed for each batch.

2. The epoch time reconstruction. In the data struct, the Time Tag represents

the time at which the packet was acquired. Timetag is in nanoseconds, seconds,

minutes, days, months, and years format; we must define each tp from epoch

to simplify the logic and keep it general. C++ implements some standard

methods to get the total epoch time, however, we developed a custom function

to reduce computational effort.

3. A method to tackle the interruption of data flow. Telescope does not

produce packets at a fixed rate, so we cannot know a priori the number of

packets that we are receiving. Moreover, there is the possibility of failure of

the Kafka server or the internet connection to be taken into consideration.

Using the time rule as described in 1, a batch can be closed if and only if

we receive the packet belonging to the next data batch, as a consequence a

timeout is required to close the batch in absence of new data. A timer class

was defined with methods such as reset, and get time to enhance the logic’s

robustness and allow the pipeline to elaborate all the data collected.

4. Write the batch in a file. Data packets are complex and we must use an

efficient method to open them in other programs, that could also be written

in different programming languages. We decided to rely on the HDF5 library

which has API for different programming languages and can perform data

operations.

5. Write a DQ-Pipe synchronization file after that the batch file has been

closed. The DQ-Pipe process synchronization mechanism checks the creation

of an Ok file, defined in Sec. 3.2.1, in order to avoid to start the next applica-

tion job prematurely. In fact, the mechanism provided by the DQ-Pipe cannot

know if our batch file, when appears in the file system, is still opened and mod-

ified by the Kafka Consumer. Checking directly for the creation of the batch

file, would mean start to start, with an high probability, the DQ-Analysis pro-
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cess on a corrupted file. Kafka Consumer then produces an additional file,

named as the current batch filename but with a .ok extension, that dq-pipe

will use to trace the newly created batch.

The consumer, for each data that it is acquiring, will convert the instant of the

trigger of the camera in epoch time and will check if it belongs to the current batch.

If it does, data is then appended in an array of packets, our batch. Otherwise, the

batch is written in an HDF5 file, and the data is saved in the first position of the

batch, then acquisition proceeds. We can visualize the logic in Fig. 3.9.

Figure 3.9: The time rule for collecting packets. When the Kafka consumer acquires a

new message, it extracts the data packet, checks the packet’s Time Tag, and closes the

batch if it was acquired after T=TBatch seconds from the first packet of the current batch.

The batch is then stored in an HDF5 file and a new packet collection starts.

If packet flow from Kafka is interrupted, the batch is closed after a given amount of time.

Since Batch data is complex, an adaptation is necessary to write it in the HDF5

file. We divide packet fields into two distinct structures, then write them into

two distinct compound datasets. Compound datasets are only compatible with C

data types, in particular with POD structs15. Since the Avro generator defines all

the packets with non-POD structures (they contain std::vector data that are not C

types) then a data adaptation is required by splitting the packet’s header information

and the PDM block which contains scientific data. The final HDF5 layout we want to

obtain can be defined as follows. We define the filename as ”S22BatchX.Run.dl0.h5”,

where X is a string representing the batch sequence number, varying from 0 to m,

15POD stands for Plain Old Data - that is, a class (whether defined with the keyword struct or

the keyword class) without constructors, destructors, and virtual members functions.
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initialized with many ”0” as the number of digits of m. Within the file, we de-

fine a group ”/dl0/” in which we store two datasets ”S22PacketHeaderTimeTag”

and ”S22ScientificData”, as in Fig. 3.10. According to the S(2,2) packet maxi-

mum event rate of fS22,Max = 1000Hz, we define then the following properties for

S22PacketHeaderTimeTag dataset:

• Datatype: compound datatype derived from a struct S22 generalinfo.

Referring to the S(2,2) DL0 description in 3.1, S22 generalinfo is a struct con-

taining the variables from lines 20 to 35. For the sake of memory efficiency,

the variable types in this struct are of the smallest byte size possible according

to the S(2,2) R0 types. Appropriate datacasting is then required when initial-

izing the buffer to be written in the dataset. The data type is then defined by

inserting all the members of the struct in an HDF5 Compound datatype called

”mtype1”, with the insertMember method as explained in the HDF5 section.

• Dataspace: it is an array of N packs elements, where N packs, according to the

time-window definition of 1 second, varies from 1 to 1000. For each element i

in the array, we find the packet general information related to the i-th packet

belonging to the batch.

Thereafter we define the following properties for the S22ScientificData dataset:

• Datatype: compound datatype derived from a struct S22PDMBlock.

Referring to the S(2,2) DL0 description in 3.1, S22 PDMBlock is a struct

containing the variables from lines 9 to 14. Instead of std::vectors in positions

13 and 14 there are two fixed-size arrays of ”Num pixels” elements, which

are the number of pixels for each PDM equal to 64. As for S22 GenInfo, the

variable types in this struct are of the smallest byte size possible. The data

type is then defined by inserting all the members of the struct in an HDF5

Compound datatype called ”mtype2”.

• Dataspace: it is a matrix of dimension N packs×PDM size, where PDM size

is a fixed number and is equal to 37. According to the time-window definition

of 1 second, the dataspace dimension varies from 1 × 37 to 1000 × 37. For

each element i, j in the matrix, we find the j-th PDM block of the i-th packet

belonging to the batch.

To handle the main program functionalities, Kafka Consumer provides also meth-

ods and code to be launched with a set of command line arguments mandatory to

set the proper code functionalities. We must provide the code with the following

information:
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Figure 3.10: S22BatchX.Run.dl0.h5 file tree

• the output file system path where HDF5 batch files must be saved;

• the mandatory information to operate with Kafka: IP, port to configure the

Kafka Consumer class, the Kafka topic name, and the groupID to assign the

consumer to the target topic and consumer group;

• a flag for writing .ok files.

Besides the main program functionalities, Kafka-Consumer must also measure

the code performances, providing the number of packets acquired, the packet ac-

quisition frequency in terms of packets per second, the average packet processing

time, and the average writing time of HDF5 files. The program must also manage

some errors at run time by raising an exception and interrupting the program. Some

examples of errors that can be managed are wrong command line arguments and

errors in the creation of the HDF5 files, given by the system paths without user

permission, and bad target data to write the declaration. The program must also

handle process signals such as SIGINT to kill the program correctly.

Now we move further on providing a simplified implementation view of the most

important aspects with some high-level pseudo code for the Kafka-Consumer to

manage scientific data S(2,2). The program makes use of the following classes:
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• S22HDF5Handler: the class S22HDF5Handler provides a method named

S22HDF5Write, which writes the data provided in the S22batch array into an

HDF5 file. The S(2,2) packets are provided as an array of pointers to S22

structs. The method takes the following arguments:

– AcquiredPacket: a pointer to an array of S22 structs containing the data

to be written in the HDF5 file;

– file name: a character string that specifies the name of the output file;

– N Packs: an integer that specifies the number of packets to be written in

the HDF5 file.

The S22 GenInfo and S22 PDMBlock structures contain the data to be written

in the HDF5 file. From AcquiredPacket, we allocate arrays of struct type

S22 GenInfo of N Packs elements and arrays of struct type S22 PDMBlock of

N Packs×N PDMs elements, where the number of PDMs is 37. The method

creates an HDF5 file, groups, and datasets to store the batch. Afterward, it

creates the dataspace and the memory datatype objects to describe the layout

of the data to be written into the datasets. Finally, it writes the S(2,2) packet

data to the datasets in the HDF5 file.

• OKFileHandler: provides file handling functionality. The class has one pri-

vate member variable, active, which is set to false by default but can be set

to true using a constructor argument. If active is true, the file creation is

enabled, so methods have some effect on the program.

The class has one public member function called write files which takes a const

char* argument file name. write files creates a new file with the extension

”.ok” and returns true if the file creation was performed successfully.

• myperformanceTimer: it is a timer class for managing performance times

in a program. It uses the steady clock from the C++ standard library’s chrono

header to measure time. The class has several methods for implementing the

temporized logic for closing the batches when the first file does not belong to

the next batch. Such logic involves the use of the following methods:

– reset, which resets the timer with a given timeout value;

– sampletimer, which takes a sample of the elapsed time without stopping

the timer. When the timer is elapsed, it returns 0.

We define the following functions:
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• time epoch: a function that calculates the epoch time given a packet that

contains year, month, day, hours, minutes, seconds, and timeTagNanosec;

• HDF5 Write: a function that writes data to HDF5 files;

• NewBatchInit: a function that updates the starting and ending time of a new

batch.

The code also defines the following constants and variables:

• timewindow: a constant variable to set the packets time window. We set it to

1 second so that packets are collected in batches of 1 second;

• NPACKS: the number of collectible packets before writing to the file, which is

used to initialize the array which collected packets. It is set according to the

time window: if timewindow=1, then NPACKS = timewindow× fS22,Max =

1000.

• EMPTYTOPICTIMEOUTMS: the timeout in milliseconds to wait for data on

the Kafka topic. It is used with the reset() method of myperformanceTimer;

• POLLTIMEOUT: the timeout in milliseconds for polling data from the Kafka

topic;

• running: it is a boolean variable that indicates whether the program is running

it can be turned to false by SIGINT;

• BatchEnd: it is a variable used to keep track of the absolute ending time of

the current batch;

• s22hdf5: it is an instance of the S22HDF5Handler class used to write data to

the HDF5 files;

• OkF: it is an instance of the OKFileHandler class used to write data to the

HDF5 files;

• batchtimeout: it is an instance of the myperformanceTimer class used to im-

plement the temporized logic for closing the batches when the first file does

not belong to the next batch.

We can see the Kafka consumer main behavior in the Listing 3.2.

Listing 3.2: Kafka-Consumer pseudocode

1 #definition of some imported functions/classes (not ours)
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2 from cppkafka import configuration , Consumer , Message

3 from avro.S22 import binary decoder

4 #define TIMEWINDOW 1 #The requested batch time window in seconds

5 #define MAXFS22 1000 #the S(2,2) packets max frequency

6 #define NPACKS (TIMEWINDOW * MAXFS22) # lenght of the array S22

collection

7 define EMPTYTOPICTIMEOUTMS 1000 #ms , timeout to close batches

8 define POLLTIMEOUT 1000 #polling timeout

9

10 #define the array to create the batch

11 packetcollection[NPACKS ]={0}

12

13 #convert utc local time to epoch in nanoseconds

14 time_epoch (* packet)

15

16 #build hdf5 filename , write packetcollection to hdf5 , write ok file

, return boolean

17 HDF5_Write (*s22hdf5 , *okfileHandler , *packetcollection , NPacks ,

out_folder_path):

18

19 #put last message in packetcollection [0] and update time window

20 NewBatchInit (* packetcollection , last , *End):

21

22 Main (out_folder , okf_active , ip , port , topic , groupID):

23 #consumer init: creation of a configuration class

24 Configuration config =(ip , port , groupID , autocommit=false)

25 #cppkafka lib implements consumer

26 Consumer consumer(config)

27 Consumer.subscribe(topic)

28

29 ii=0 #index

30 jj=false #false=0, true=1 (circular index)

31

32 BatchEnd =0 #absolute time window end

33

34 Message msg [2] # save up to two kafka messages

35 #CLASSES instantiation

36 S22HDF5Handler s22hdf5 #to write batches in hdf5 files

37 OKFileHandler OkF(okf_active) #to write ok files

38 myperformancetimer batchtimeout #to close batches without waiting

a new file

39

40 first=true

41 while true :

42
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43 #check for a POLLTIMEOUT ms if there is a new message on kafka

44 msg[jj] = consumer.poll(POLLTIMEOUT)

45

46 if msg[jj] :

47 #New message:

48 # avro decoding and collect data in packet (binary decoder is

specialized in decoding S22 packets)

49 packetcollection[ii]= binarydecoder(msg[jj])

50 if first :

51 first=false #first packet received

52 #timewindow definition: first packet time + timewindow [ns]

53 BatchEnd = time_epoch(packetcollection [0]) + TIMEWINDOW

54 #check for each collected packet , the time tag

55 CurrentPacketTime = time_epoch (& packetcollection[ii])

56 if CurrentPacketTime >= BatchEnd :

57 #packet out of timewindow , write the batch:

58 running = HDF5_Write (&s22hdf5 , &OkF , &packetcollection [0],

ii, out_folder_path)

59 #update first packet in the buffer and time window

60 NewBatchInit (& packetcollection [0], ii , &BatchEnd)

61 #communicate to kafka the last position consumed

62 #only when we write a batch

63 consumer.commit(msg[jj])

64 #initialize to 1

65 ii=1

66 else:

67 #update the packetcollection index

68 ii++

69 #trigger this counter so that we remember also the previous

last message received (for consumer commit purposes)

70 jj = not jj

71 #reset the timer every the time a new packet is received

72 batchtimeout.reset(EMPTYTOPICTIMEOUTMS)

73 else:

74 #No new Messages:

75 # we need to close the file if packets flow stops

76 if (batchtimeout.sampletimer () == 0):

77 running = HDF5_Write (&s22hdf5 , &OkF , &packetcollection [0],

ii, out_folder_path)

78 #communicate to kafka the last position consumed

79 #only when we write a batch

80 consumer.commit(msg[not jj])

81 # New Acquisition can start:

82 first = true

83 ii = 0
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84 consumer.close ()

85 return 0

3.5.2 DQ-Analysis

DQ-Analysis is the pipeline application aiming at performing the quality checks on

the data managed by the OOQS.

The OOQS Use Case Document specifies the analyses that the CCDQC sub-components

must perform on the S(2,2), VAR(10,2), and VAR(10,3) Camera Data. We are inter-

ested in developing a C++ application that can potentially produce all the analyses.

Currently, we implemented only a subset of the quality checks expected for S(2,2)

packets. The use cases that can be addressed are the following:

• Use Case 3.1.2 : histograms with the number of triggers for each camera PDM

using a sliding window with 10000 events. In total, they are required 37

PDM/camera × 9 telescopes = 333 Counters;

• Use Case 3.1.6 : sample camera image at 1 Hz using not calibrated data (ADC

values);

• Use Case 3.1.8 : calculates the histogram for the ADC values event-by-event

for the camera and all the PDMs. Create one histogram for the entire telescope

observation and another with a sliding window of a configurable number of

seconds.

In general, for the various use cases, it has been necessary to manage two different

aspects. The first issue regards the fact that quality checks may require the defini-

tion of a sliding window operating on the number of events (generated packets) or

on the observation time. The second issue concerns the generation of a result based

on the entire observation.

The DQ-Analysis performs the quality checks on the smallest possible sliding win-

dow, then, through an aggregator application, the final use case results will be

available.

To implement the minimum possible size of a sliding window, called a sub-

sliding window, it may be necessary to open and process multiple batch files during

the same computation if the number of events in a single file is not sufficient. The

implementation of the time-based sliding window consists of opening a batch file,

performing the use case on the available packets, and finally computing the right

time window size by an aggregator.
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Implementing the event-based sliding window requires more complicated logic: a

daemon must continuously open all the new batch files, collect their variable number

of packets in an array always available at run time, and compute the result based

on the newest packets. A preliminary analysis suggested that a Python application

is not performing enough for the analysis with a native Python class, by calling its

methods in a specialized DQ-Pipe instance. For this reason, we decided to develop a

C++ executable application that DQ-Pipe can submit as an external batch process.

The implementation of the DQ-Analysis can be summarized in the following

functional steps:

1. Open HDF5 Batch files: a function that given the filename, opens the file,

then saves the two datasets in two appropriate container objects that manage

a variable size of packets. All the datatypes involved in the reading operations

are defined as for the writing operation already described in the Sec. 3.5.1.

2. Define the sub-sliding windows on a fixed number of events, and on a fixed

time. The minimum time-size sub-window Min sub time is set equal to the

batch’s time window.

Min Sub T ime = TBatch

The sub-event windows Min Sub Events, is defined as

Min Sub Events = Max Batch Size = TBatch × fS22,max

otherwise, the quality checks will give inconsistent results due to the lack

of information. The final sliding windows aggregation is performed by the

DQ-Aggregator, described in Sec. 3.5.3. Further explanations about the sub-

sliding window generation is shown in Fig. 3.11.

3. Compute the analysis: a function computing the Use Case exploiting the

available packets has been implemented for each use case.

4. Multi-file opening logic: every time a new file is available, our application

computes the quality check on a defined sub-sliding window, writes the result,

and terminates. If a single batch file content is not sufficient for the quality

checks, the process will open the penultimate received file to complete the time

window on previous data. This mechanism can continue opening older files, up

to a maximum number Max OpenFiles, that results to be compatible with

the number of packets involved in the sub-sliding window computation.

5. Write the DQ-Analysis results in an HDF5 file: only the analyses carried

out will be inserted on file.
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Figure 3.11: A representation of the sub-event and sub-time sliding windows. The mini-

mum event sub-window sizeMin Sub Events, cannot be lower than the maximum number

of packets that a batch file can contain, except for the initial instants of the observation.

Moreover, Min Sub Events cannot be equal to a target Use Case sliding window size

Sliding Size, since the application can occur in excessive performance degradation. A

preferable trade-off is choosing the lowest divisor of the original time window size, higher

than Max Batch Size. If more use cases define different sliding windows Sliding Size i,

it is necessary to select the minimum sub-event window size according to the minimum

common divider, such that:

Min Sub Events = gcd(Sliding Size 1, Sliding Size 2, . . . , Sliding Size n),

and verifying: Min Sub Events ≥ Max Batch Size.

6. Write a DQ-Pipe synchronization file after that the results file has been

closed.

To handle the main program functionalities, DQ-Analysis provides also functions

to fetch a set of command line arguments such as:

• the input file system path of the first HDF5 batch file to open,

64



CHAPTER 3. OOQS-PIPELINE DEVELOPMENT

• the output file system path where saving the HDF5 batch files,

• a flag to write .ok files.

Besides the main program functionalities, DQ-ADQ-Analysis must also measure

the code performances, and provide the number of opened files and their opening

time, the packet processing time, and the writing time of the HDF5 result file. The

program must also manage some errors at run time, such as wrong command line

arguments and errors in opening or creating the HDF5 files, by raising an exception

and interrupting the program.

We provide now an implementation of the DQ-Analysis C++ application in our

pipeline. Kafka-Consumer settings impose: TBatch = 1 s , and Max Batch Size =

1000Packets. Then, the sub-sliding windows, according to the use cases, can be

defined as:

Min Sub T ime = 1 s , Min Sub Events = 1000Packets

Moreover, we assume that the telescope’s camera will acquire packets at a min-

imum rate of Min Rate = 100 packets per second due to several triggers gen-

erated from cosmic-rays initiated air showers; we then define Max OpenFiles =

Min Sub Events/Min Rate = 10. A class called S22AnHandler has been devel-

oped of which we can see a diagram in Fig. 3.12

Figure 3.12: The S22AnHandler UML diagram

The class functionalities are the following:

• open a HDF5 batch file generated from the Kafka Consumer with the method

ReadBatchHDF5 ;

• performs analysis requested from OOQS. For each analysis implemented, a

method corresponding to a specific use case has been developed;
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• store the results of the analysis in a new HDF5 file with the CreateDQResHDF5

method.

We describe now the Use Cases already mentioned above and the operation requested

for writing their result, assuming that the right number of HDF5 files to perform

the sub-sliding windows has already been opened.

Use Case 3.1.2 implementation

Figure 3.13: The count of the triggered PDMs of single camera, on an event window of

10.000 events, simulated data

We must check which PDMs are involved in the camera trigger generation. PDM

blocks are stored in a 2D vector called S22PDMs, where S22PDMs[i][j] identify the

j-th PDM of the i-th packet opened from a file. If a PDM has triggered a relevant

event has been detected in the sky portion acquired by its SiPM sensors and the

triggered flag is set to true. This use case is shown with random values in Fig 3.13.

To allow the increment of the counter, then the PDM should necessarily be turned

on, meaning pdmVal set to true, and be enabled in the algorithm performing the

trigger generation, meaning triggerEnabled equal to true. uc 312 count is an array

of 37 elements storing the PDM triggers of NPacks, where NPacks is equal to the

Min Sub Events. Listing 3.3 shows the pseudo-code.

Listing 3.3: UC-312 pseudo code

1 UC_312(NPacks):

2 # Initialize uc_312_count array to zero

3 for i from 0 to PDMsize:
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4 uc_312_count[i] = 0

5

6 # Iterate over each packet

7 for Pack_i from 0 to NPacks:

8 # Iterate over each PDM in the packet

9 for PDM_i from 0 to PDMsize:

10 # Check if the PDM is triggered and triggerEnabled is

true

11 if S22PDMs_vector2d[Pack_i ][ PDM_i]. pdmVal is false AND

12 S22PDMs_vector2d[Pack_i ][ PDM_i]. triggerEnabled is

true AND

13 S22PDMs_vector2d[Pack_i ][ PDM_i]. triggered is true:

14 # Increment the count for the corresponding PDM

15 uc_312_count[PDM_i] = uc_312_count[PDM_i] + 1

To store the results of the quality check in the HDF5 file, we define a dataset as an

array of 37 integer 32 bits elements in an ”/Analysis/UC 312/” group.

Use Case 3.1.6 implementation

(a) A Camera image from ASTRI-

Horn, we can notice the 21 PDMs

composing the Cherenkov camera.

Image from [26]

(b) An ASTRI Mini-Array Cam-

era Image from ADC values, with

37 PDMs. Simulated data

Figure 3.14: A graphical representation of ADC values plotted following the PDMs focal

plane pattern

A scientific Camera image, sampled at low frequency, can be easily plotted into

an HMI; an example is shown in Fig. 3.14.

Every time that we open a new file , we select the first packet of the batch, copy

the ADC high gains, low gains, and SSC values contained in S22PDMs, and copy

them in a new structure having datatype cameraimage 1HZ. To store the result
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of the quality check in the HDF5 file, we define a compound dataset with a single

element in an ”/Analysis/UC 316/” group, where the compound datatype is defined

as cameraimage 1HZ datatypes.

Use Case 3.1.8 implementation

This use case aims in finding the distribution of the camera ADC values, for the

purposes described in 3.3.4.

We define 37×2 GSL histograms to collect the high gains and low gains from the

ADC values. The histograms are divided into a number of bins nbins in a linear

range between two adcmin and adcmax values; these parameters are completely

configurable for the sake of a flexible software solution. For instance, we set up the

histograms parameters as nbins = 100, and assumed the camera ADC to produce

values in the range adcmin = 0, adcmax = 65536, that is the maximum range for

the ADC values in the R0 format (unsigned integer 16 bit). When real camera data

will be available, a proper ADC range will be defined.

For each PDM, we assign each ADC value to the corresponding PDM histogram.

We additionally define 2 GSL histograms with a linear range to aggregate the PDM

histograms and obtain the total camera histograms. Listing 3.4 shows the pseudo-

code.

Listing 3.4: UC-318 pseudo code

1 def UC_318(nsec , nbins , adcmin , adcmax):

2 # Initialize histograms for ADC values of each PDM and total

camera

3 for i in range(PDMsize):

4 uc_318_PDMlowgains[i] = gsl_histogram_alloc(nbins)

5 uc_318_PDMhighgains[i] = gsl_histogram_alloc(nbins)

6 gsl_histogram_set_ranges_uniform(uc_318_PDMlowgains[i],

adcmin , adcmax)

7 gsl_histogram_set_ranges_uniform(uc_318_PDMhighgains[i],

adcmin , adcmax)

8

9 uc_318_cumulativelowgains = gsl_histogram_alloc(nbins)

10 uc_318_cumulativehighgains = gsl_histogram_alloc(nbins)

11 gsl_histogram_set_ranges_uniform(uc_318_cumulativelowgains ,

adcmin , adcmax)

12 gsl_histogram_set_ranges_uniform(uc_318_cumulativehighgains ,

adcmin , adcmax)

13

14 # Retrieve the number of packets corresponding to nsec of

acquisitions
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15 NPacks = get_packetIndex_time(nsec)

16

17 # Iterate over each packet

18 for Pack_i in range(NPacks):

19 # Iterate over each PDM in the packet

20 for PDM_i in range(PDMsize):

21 # Iterate over each gain of the PDM

22 for gain_i in range(gains_size):

23 # Assign the gain_i -th adc gain of the PDM_i -th PDM

to the corresponding histogram bins

24 gsl_histogram_increment(uc_318_PDMlowgains[PDM_i],

float(S22PDMs_vector2d[Pack_i ][PDM_i ]. lowgains[

gain_i ]))

25 gsl_histogram_increment(uc_318_PDMhighgains[PDM_i],

float(S22PDMs_vector2d[Pack_i ][PDM_i ]. highgains

[gain_i ]))

26

27 # Cumulate histograms to build the total camera histograms for

both ADC lowgains and highgains:

28 for PDM_i in range(PDMsize):

29 gsl_histogram_add(uc_318_cumulativelowgains ,

uc_318_PDMlowgains[PDM_i ])

30 gsl_histogram_add(uc_318_cumulativehighgains ,

uc_318_PDMhighgains[PDM_i])

The obtained histograms can be plotted as shown in Fig. 3.15 To store the results

in the HDF5 file, we define 5 different datasets, in an ”/Analysis/UC 318/” group:

• two datasets with a bi-dimensional dataspace of N PDMs× nbins (37× 100)

elements, of double datatypes, for storing the PDM histograms for low gains

and high gains,

• two datasets with a monodimensional dataspace of nbins (100) elements, of

double datatypes, for storing the total camera histograms for low gains and

high gains,

• a dataset with a monodimensional dataspace of nbins + 1 (101) element, of

double datatypes, for storing the histogram ranges.

Main Code

The main code must provide a code for extracting the batch file number from the

input file system path to generate an output file name consistent with it. Addi-

tionally, the batch number must be used to perform the iteration on the older files,
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producing an older input file name.

Based on the defined sub-window sizes, we iterate on the batch input files the

S22HDF5Read() method to reach the desired number of packets. If there are no

more available files, for instance during the first observations, then the time window

is adapted to perform the analysis on a lower number of packets. We can see the

DQ-Analysis main code in the Listing 3.5.

Listing 3.5: DQ-Analysis pseudocode

1 from CCDQCAnHandler import S22AnHandler

2

3 MAX_OPENFILE = 10

4 MIN_SUB_EVENTS = 1000

5 MIN_SUB_TIME = 1

6 #UC -318 constants

7 NBINS = 100

8 ADCMIN = 0

9 ADCMAX = 65536

10

11 def get_batchnumber(file_path: string , file_ext: string ,

outfileheader: string) -> string:

12 """Extracts batch number from file name"""

Figure 3.15: The high gains and low gains ADC histograms for the PDMID = 0, data ag-

gregation on 1000 test packets. Histograms parameters: nbins = 100 , range = [0, 65536).

Graph generated with a Jupyter notebook script to visualize the DQ-Analysis results. Sim-

ulated data
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13 def get_filepath(file_path: string) -> string:

14 """Returns directory path from file path"""

15 def updateIn_file(In_file : string , number : int)

16 """Returns an updated InputFile name"""

17 main (In_file: string , Out_dir: string , OkFiles: bool):

18

19 # extract the batch number from the input filename

20 file_ext = "Run.sim.dl0.h5"

21 outfileheader = "S22Batch"

22 outfileext = ".Run.sim.DQ.h5"

23 In_path = get_filepath(In_file)

24 # get the batch number

25 batchnumber = get_batchnumber(In_file , file_ext , outfileheader)

26 nn = int(batchnumber)

27 #build output file system path

28 Out_pathfile = Out_dir+outfileheader+batchnumber+outfileext

29

30 S22handl = S22AnHandler () # instantiate the analysis class

31

32 #set run -time sub -sliding windows

33 nevents_rt = MIN_SUB_EVENTS

34 nsec_rt = MIN_SUB_TIME

35 ii=0

36 #during file opening , check to reach the number of packet/ time

required for the sub -sliding window requirements , and stop if

too much files opened

37 while (( S22handl.get_batch_eventlen () < MIN_SUB_EVENTS

38 or S22handl.get_batch_timelen () < MIN_SUB_TIME)

39 and ii < MAX_OPENFILE):

40 # open a file and count the number of opened files with ii

41 ii = S22handl.S22HDF5Read(In_file)

42 if nn > 0:

43 updateIn_file(In_file , --nn)

44 else:

45 break # stop if no older files available

46 # handling nn = 0 or ii = MAX_OPENFILE reducing time -windows

47 if S22handl.get_batch_eventlen () < MIN_SUB_EVENTS:

48 nevents_rt = S22handl.get_batch_eventlen ()

49 else:

50 nevents_rt = MIN_SUB_EVENTS

51 if S22handl.get_batch_timelen () < MIN_SUB_TIME:

52 nsec_rt = S22handl.get_batch_timelen ()

53 else:

54 nsec_rt = MIN_SUB_TIME

55 # perform the analysis
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56 S22handl.UC_318(nsec_rt , NBINS , ADCMIN , ADCMAX)

57 S22handl.UC_312(nevents_rt)

58 S22handl.UC_316 ()

59 S22handl.CreateDQResultHDF5(Out_pathfile) #Write result

This code is then compiled in an executable called ”DQ-Analysis.lnx”

DQ-Pipe for the DQ-Analysis

We focus now on the DQ-Pipe objects that can execute an external application,

such as the DQ-Analysis.lnx just described. A specialization of the DQ-Pipeline is

then necessary, so an ASTRI-DQAnalysis class inherits DQ-Pipeline and defines

the start() method. To implement the trigger action for starting a new process,

the FileSystemDS extends the abstract DataSource class and provides a watchdog

in the Kafka-Consumer Output folder, returning the file system path of the new

HDF5 file as soon as the .ok file showing the same as the HDF5 file is available.

FileSystemDS class is connected to the input of ASTRI-DQAnalysis. To provide an

output of the DQ-Analysis process the OutputHandler class is extended with the

OutputToFileSystemASTRI class, which defines its abstract methods. Additionally,

a GarbageCollector class keeps cleaning the input folder by checking for files older

than a specified date and time. The method single start() is performed in a concur-

rent thread, with the RepeatThread class that invokes Run() periodically.

We can see the diagram with all the classes’ interconnection in Fig. 3.16.

We now describe the behavior of the DQ-Pipe during the nominal operation as

shown in the Listing 3.6. The start() method of ASTRIDQ-Analysis calls start-

Watch(), a method of dataSource: a watchdog is started in the input folder direc-

tory specified in the configuration file. A watchdog control can detect several events

happening in this folder. We extended the watchdog functionalities in the FileSys-

temDS class, to detect the creation of new files ending with the ”.ok” extension.

Whenever the watchdog detects one of these specific files, it adds in a queue the file

path, cropping the .ok extension, referring then to the homonymous file we wanted

to detect. The queue is then returned to the start method with a Python generator

waitForFile() which yields all the new events in the queue. If it is empty, it yields

a NULL type.

The output directory is provided by OutputHandler, through the getPath() which

returns a string of the desired file system path. Every returned file is then exploited

to launch the external analysis process, which will analyze at least that detected

file.

It can be submitted as a new Slurm Job on a computing cluster, or as a standard
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Figure 3.16: The DQ-Pipe specialization to run DQ-Analysis application

bash process. A function Extprocess() to format the command is then executed, in-

cluding the program name, input file, and output directory. Alternatively, to define

a new Slurm Job, we call JobSlurm() that writes a batch file specifying a name for

the Slurm job, where the process must write output logs and errors, which partition

use to execute the process and the command for executing the process as before.

JobSlurm returns a sbatch command to run the sbatch file

The external process is launched with the Popen() method, a function of subpro-

cess that creates a new child parallel process but does not wait for child termination.

Listing 3.6: ASTRIDQ-Analysis start method to submit external processes

1 def start(self):

2 #start a watchdog in the target directory

3 self.dataSource.startWatch ()

4 #waitForFile returns an iterator on a queue of events

detected on .ok files in the dataSource target dir

5 file_gen = self.dataSource.waitForFile ()

6

7 for filePath in file_gen:

8 #filePath is the filesystem path of a new detected file

9 if filePath is not None:
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10

11 self.logger.debug(f"New file extracted from the

queue: {filePath }. Queue lenght: {self.

dataSource.files.qsize ()}")

12 # Check if build a sbatch file for slurm

13 if self.opMode == "noslurm":

14 command = self.Extprocess(self.process ,

filePath , self.outputHandler.getPath ())

15 elif self.opMode == "slurm":

16 command = self.JobSlurm(self.process , filePath ,

self.outputHandler.getPath ())

17 # Submit process

18 DQ_process = subprocess.Popen(command , shell=True)

3.5.3 DQ-Aggregator

The DQ-Aggregator is the last application constituting our pipeline and is respon-

sible for the following aspects:

• Collect the DQ-Analysis quality checks results and operate on them to recon-

struct the desired Sliding Window size;

• Format Data in a Specific dictionary object;

• Store the dictionary in a database to archive persistently. The database oper-

ation concludes the workflow on the batch.

The databases that we tested are MySQL, described in Sec. 3.4.1, and MongoDB,

described in Sec. 3.4.2. To do so a Python application has been developed and its

operation has been directly integrated into the DQ-Pipe, through a set of classes,

shown in Fig. 3.17, that extend the framework’s functionalities:

• ASTRI-DQAggregator: this class is an extension of the DQ-Pipeline, and

the working principle is similar to the one already illustrated in Sec. 3.5.2 for

the ASTRI-DQAnalysis class. ASTRI-DQAggregator implements the start()

method, shown in the Listing 3.7, that instantiates some entities such as vari-

ables to declare the sliding-window size, counters, and numpy objects com-

patible with the Analysis Result datasets. Afterward, a watchdog observer in

the DQ-Analysis output folder is started and it is used to perform aggregation

operations every time a new file is detected. When a new result file is avail-

able, through the readDataFromFile numpy method of dataSource we get the
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content of the file stored in a dictionary containing numpy objects of the Qual-

ity Checks to be aggregated. With the collected data, the aggregation step is

then performed and a database dictionary is formatted into a new dictionary

that is passed to the OutputHandler, which is extended to load the data on a

database specified in the XML file.

• HDF5HandlerASTRI: it is an extension of the abstract FileHandler and

implements a method read numpy() called with FileSystemDS, the dataSource

of the ASTRI-DQAggregator.

• OutputToMongoDBASTRI: it provides a connection to a MongoDB data-

base and defines a query to insert a new element in a collection. The stored

data is composed of our aggregation result data along with the loading UTC

instant.

• OutputToMySqlASTRI: it provides a connection to a MySQL database and

defines a query to insert a new row in a table. The stored data is composed of

our aggregation result converted into a JSON string, along with the loading

UTC instant.

Figure 3.17: The DQ-Pipe specialization to perform the DQ-Aggregator application
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To perform aggregation, the dictionary derived from a file is then stored in a list

of fixed length Analysis, determined as a function of the maximum event windows

and time windows to be performed. A circular array is then used to address the list

keeping the indexes bounded. Being Max OpenFile the dimension of the array, to

increment the index i we perform:

i = (i+ 1)%Max OpenFile

where ”%” is the module operation.

The aggregation level is specific to the use case. given the desired UCX sliding size

and knowing that each file contains a fixed UCX sub window size then we define:

UCX Nfiles =
UCX sliding size

UCX sub window size

where X is the number of implemented Use Cases. Then, we define several of numpy

objects UCX,Y Aggr initialized to zero, of size equal to a dataset Y that needs ag-

gregation, belonging to the Use Case X.

To perform the aggregation, we increment UCX,Y Aggr with the last dataset ar-

rived, stored in Analysis[i].

UCX,Y Aggr += Analysis[i][’X’][’Y’],

where the symbol += represent an increment operation x += a ⇐⇒ x = x + a.

And to implement the sliding window, for each new file that arrives, we decrement

UCX,Y Aggr by removing the oldest dataset not contributing anymore to the aggre-

gation. We need to calculate the index basing on the UCX Nfiles, and consistently

with the circular address:

UCX,Y Aggr −= Analysis[i oldUCX][’X’][’Y’],

Where: i oldUCX = (i+Max OpenFile− UCX Nfiles)

where the symbol −= represent a decrement operation x −= a ⇐⇒ x = x − a.

In the initial moments of the run, there are no older files available in the list so

decrementing the aggregation must not be performed until UCX Nfiles are opened.

Listing 3.7: ASTRIDQ-Aggregator start method to perform the UC 318 sliding

window

1 def start(self):

2 ##Variable Declarations

3 self.garbage_start ()

4 #watchdog start in DQ-Analysis output folder

5 self.dataSource.startWatch ()
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6 file_gen = self.dataSource.waitForFile ()

7 for filePath in file_gen:

8 if filePath is not None:

9 Analysis.insert(i_last ,self.dataSource.

readDataFromFile_numpy(filePath))

10

11 print(f"318 analisys count: {i_last }:{ max_open_file

-1}\n")

12 UC_318_aggregatedPDM_SW=UC_318_aggregatedPDM_SW [:]+

Analysis[i_last ][’UC_318 ’][’PDM_Bins ’][:]

13 UC_318_aggregatedCamera_SW=

UC_318_aggregatedCamera_SW [:]+ Analysis[i_last ][’

UC_318 ’][’Camera_Bins ’][:]

14

15 uc318i=self.update_circ_counter(i_last ,

max_open_file , Nfile_318)

16 print(f"UC318 sliding window {i_last }:{ uc318i }\n")

17 try:

18 UC_318_aggregatedPDM_SW=UC_318_aggregatedPDM_SW

[:]- Analysis[uc318i ][’UC_318 ’][’PDM_Bins ’

][:]

19 UC_318_aggregatedCamera_SW=

UC_318_aggregatedCamera_SW [:]- Analysis[

uc318i ][’UC_318 ’][’Camera_Bins ’][:]

20

21 except:

22

23 #the requested element of the list is not

available since the number of Analysis file

opened is less than Nfile_318

24 pass

25

26 #Save UC aggregated:

27 Aggregation_Result=dict()

28 #UC312 aggregation to Aggregation_Result

29 #UC316 to Aggregation_Result

30 #UC318 is shown:

31 Aggregation_Result[’UC_318 ’][’Bin_intervals ’] =

Analysis[i_last ][’UC_318 ’][’Bin_intervals ’]

32 for i in range(UC_318_aggregatedPDM_SW.shape [0]):

33 Aggregation_Result[’UC_318 ’][’PDM_Bins ’]. append

(dict( lowgains = UC_318_aggregatedPDM_SW[i

,:,0]. tolist (), highgains =

UC_318_aggregatedPDM_SW[i,:,1]. tolist ()))

34 Aggregation_Result[’UC_318 ’][’Camera_Bins ’]=dict(
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lowgains = UC_318_aggregatedCamera_SW [: ,0].

tolist (), highgains = UC_318_aggregatedCamera_SW

[:,1]. tolist ())

35

36 #Update Circular Array

37 i_last=self.update_circ_counter(i_last ,

max_open_file)

38 ##load Aggregation_Result in the database

39 self.outputHandler.save(Aggregation_Result)

To perform an insert query operation versus a Database, we divide the elements

of the numpy dataset into simpler objects and define a dict containing all the updated

analysis results. Single quality checks can be accessed by an associated key. The

use of a dictionary is preferred when dealing with databases in Python, since dicts

can be natively encoded into JSON, providing a string containing a description of

the dictionary. We currently tested databases such as MySQL 5.7 and MongoDB 6.

MySQL can load a JSON string in a single column of a table as shown in the Listing

3.8, by fetching it as a string or a JSON object, depending on the data specified for

the target column during the table creation. Along with the JSON data type, a set

of SQL functions is available to enable operations on JSON values, such as creation,

manipulation, and searching. These functionalities cannot be executed when JSON

is loaded as a string in a single column, and to achieve a result similar to the

one before, we should load each different quality check result in different columns,

increasing the table dimension and the queries complexity. However, dealing with

large JSON data can lead to performance issues, since MySQL does not support

JSON indexing16 directly.

Inserting JSON data into a MySQL table can potentially be slower than inserting

traditional row-based data. In fact, JSON data is often larger and more complex

than traditional data types. This can increase the amount of time it takes to write

the data to disk.

MongoDB treats dictionary objects natively, transforming them into BSON objects,

a subset on JSON data. BSON documents can be indexed for efficient querying

using a wide range of indexing options. Morover MongoDB being a NoSQL database

provide operations generally faster than relational databases like MySQL. Then, a

comparison between the two databases capabilities can be considered of interest for

16JSON indexing is the process of organizing and storing JSON data in a way that allows for

efficient and speedy querying. JSON indexing involves creating a data structure that allows for

rapid retrieval of specific pieces of data within a JSON document. This is typically done by creating

an index on one or more fields within the JSON data.
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our pipeline application.

Listing 3.8: The OutputHandlerToMySql class to init the database connection and

save a record

1 class OutputToMySqlASTRI(OutputHandler):

2

3 def __init__(self , conf , outputLoc , dqchain_id ):

4 super().__init__(outputLoc)

5

6 self.table=outputLoc

7 self.dqchain_id = dqchain_id

8 self.mysqlHandler = MySqlHandler(conf)

9 self.logger = PipeLoggerConfig ().getLogger(__name__)

10

11 def save(self , data):

12

13 encodedData = json.dumps(data)

14 batchtime= datetime.datetime.now()

15 encodedBatchtime=batchtime.strftime("%Y-%m-%d %H:%M:%S")

16 #inserting a new row in the table

17 query = f"insert into {self.table} (json_data ,batch_time)

values (’{ encodedData}’,’{encodedBatchtime }’)"

18 self.mysqlHandler.write(query)
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Deployment and Performance

Evaluation

This chapter of the thesis focuses on the physical aspects of the deployment of

the OOQS-Pipeline, presenting the testing environment that has been chosen to

evaluate every application. Moreover, we focus on the performance analysis of the

pipeline, which is developed to receive and elaborate a data stream in real-time,

during the telescope acquisition. We explain the real-time constraints and discuss

the high-frequency and large bandwidth of the data stream that the application is

required to process. To demonstrate the software’s performance, we present metrics

measured by the application and relevant graphs that highlight the capabilities and

limitations of our solution.

4.1 Test Data and Environment

The ASTRI Mini-Array architecture is designed to have nine Camera Servers, each

hosting a separate ADAS instance installed on bare metal. These Camera Servers

will acquire data from the nine telescopes through a direct point-to-point connec-

tion and send it to nine OOQS instances via Kafka. The OOQS instances, including

all necessary software components, will be deployed as Docker containers within a

Computing Cluster composed of multiple servers, shared with other sub-systems.

The Array Observing Site is under construction, and the real servers that will con-

stitute the array observing site are not available up to now. Moreover, no ASTRI

Mini-Array real camera packets are available. To implement and test our pipeline,

then we have relied on a server available at the INAF computing center located in

Bologna (Italy).

The on-site Computing cluster will be composed of 6 machines with a dual-socket
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configuration, 20 core - 40 threads CPUs with a base clock of at least 2.3GHz,

256GB DDR4 Ram, and available data storage of 6TB SSD. The Server will be

connected with a fast 10Gbit/s LAN which ensures great reliability. To simulate

the environment in the context of our application, it has been used a machine with

a dual-socket configuration, with 14 cores - 28 threads CPUs with a base clock of

2.6GHz, 125GB DDR4 RAM that is sufficiently powerful to simulate a realistic

environment to test our application.

The ADAS-OOQS interface

As discussed in Sec. 2.3, the ADAS-OOQS interface is based on Apache Kafka.

We started the development by installing on the server a test environment that the

ADAS team provided to us: a Linux CentOS7 Virtual Machine (ASTRIVM ) with

6 CPU cores, 8GB RAM, and about 60GB HDD available space. This VM holds

all the software to simulate the telescope subsystems involved in the ADAS-Kafka

data stream; this software includes:

• TheKafka server, created with Apache Kafka 2.8, is accessible via the virtual

machine’s localhost and a defined port;

• The Kafka Producer, able to acquire R0 test packets, convert them in the

Avro serialized DL0 data, and upload them as messages on a specified Kafka

topic. This is a simplified and less powerful version of the final ADAS software;

• A Python application called PacketFactory, that can generate the S(2,2),

VAR(10,2) and VAR(10,3) packets in the R0 format that Kafka Producer can

manage. PacketFactory can generate a stream of a defined number of packets,

containing information such as the telescopeID, packetType, and subType.

The remaining packet fields are filled with random numbers. We cannot sim-

ulate scientific data, however, we modified PacketFactory to simulate also a

consistent TimeTag, so that we can realize a logic based on the camera acqui-

sition time.

Thanks to this environment, we can emulate the behavior of ADAS during a tele-

scope observation. The Kafka-Consumer application has been developed with C++11,

inside the ASTRIVM.

This environment has been used during the Kafka Consumer developments, and to

test if the application can acquire persistently data from long observations.
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Pipeline deployment

The DQ-Pipe framework, and the DQ-Analysis and DQ-Aggregator applications,

have been developed within a Python 3.9 Anaconda environment containing all the

required dependencies.

DQ-Pipe has been installed and tested outside the ASTRIVM, directly on the host

machine, to separate the Kafka environment from the analysis one. To allow the

data workflow from the Kafka-Consumer to the DQ-Analysis application, a shared

folder has been created, and configured in both applications as described in the

DQ-Pipe Section number 3.2.1 .

Databases are running in separate environments: MySQL 5.7 is installed on the

ASTRIVM, while MongoDB 6.0 is installed on a Docker container, running on the

server. Both ASTRIVM and MongoDB Container, are configured with Network

Mode Network Access Translation NAT; to access the databases from the host ma-

chine, or the external network, a port forwarding versus the internal database ports

has been configured.

Slurm 17.11 can manage the DQ-Pipe workload among 50 logic cores of the ma-

chine, in this context Slurm will manage: two DQ-Pipeline single core daemons and

a third aperiodic job is given by the external DQ-Analysis application.

4.2 Performance

An OOQS-Pipeline instance will be responsible for receiving and processing data for

each individual telescope camera, and for performing the work on the entire telescope

array, a set of nine pipelines that work independently on the data generated by each

camera is then needed. We now focus on evaluating the performance of a single

instance of an OOQS-Pipeline. The pipeline is composed of a sequence of jobs

performed on a stream of files containing the received packets. the pipeline is event-

driven, meaning that each job execution is allowed by the presence of a new file.

The overall data processing workflow that the pipeline can perform is as follows:

• Kafka Consumer will continuously receive the packets available on the Kafka

topic, and according to a fixed time window of the telescope observation, it will

divide the data into batch files. For instance, during a real observation, if the

time window is fixed to one second, HDF5 files will be created every second

containing the newest acquired data and the next application will execute

almost every second.

• for every new batch file, the ASTRIDQ-Analysis pipeline will then synchronously
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submit the DQ-Analysis process, so that must perform its job in a time com-

patible with the time window. The result is a new HDF5 file containing partial

results. Synchronously means that only a single DQ-Analysis process can be

started at a time, avoiding parallel execution. Verification of the timings in-

volved in the processing time of the ASTRIDQ-Analysis is then required to

assess if this solution is feasible.

• for every new result file, the ASTRIDQ-Aggregator pipeline, must perform its

job in a time compatible with the time window. the result is then loaded into

the target database.

The respect to timing constraints is then important to ensure that the pipeline

will perform the analysis in real time. The applications must finish their job on

the current batch data within the fixed time window before the next batch arrives.

The time window can be considered as a simple time limit to respect, so that the

application works correctly, respecting the maximum event rate and bandwidth

imposed by the S(2,2) packets. The OS could schedule the pipeline’s processes

in a disadvantageous way to allow respect for the time window, and one or more

applications could exceed it. However, DQ-Pipe inserts the files detected by the

watchdog inside a queue, handling compensation for the eventual delays.

Kafka Consumer

The basic functionalities of the Kafka Consumer described in Sec. 3.5.1 are per-

formed in a single thread, even if the application is multi-threaded. The consumer

implementation requires three additional background threads created from the cpp-

kafka library. These threads manage several aspects involved in the connection to

the Kafka server, such as the acquisition of the messages from the Kafka topic, the

message offset committing, and the generation of the so-called ”heartbeat” signal,

which is dispatched to the server until the consumer is active.

An initial Kafka Consumer implementation with Python suggested to us that

is not possible to acquire the S(2,2) packets with a single-core Python application,

since the maximum collectible event rate was about ∼ 600Hz. We have identified

that the function which caused the bottleneck in the program speed is the Avro

deserialization, and we couldn’t optimize that part of the code. We then decided to

move to a C++ implementation.

We tested the Kafka Consumer C++ application with a simulation of an observa-

tion from a single telescope. This test is necessary to understand if the Consumer can

handle the S(2,2) packet event rate and bandwidth. To simulate a high-frequency
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Figure 4.1: The Kafka Consumer CPU utilization during a long run

acquisition accurately, it’s essential to pre-load all the desired packets into the Kafka

Topic using the processor application provided by the ADAS team. This approach

helps to reduce the number of active processes in the ASTRIVM during the entire

observation simulation. Additionally, the processor can only produce at an event

rate of 300Hz, which creates a bottleneck when acquiring packets at higher event

rates.

The Observing run duration can be calculated as:

N Packets = Topic bytesize/DL0 bytesize

tobservation[s] = N Packets/fpackets

A single DL0 packet is 16456Bytes and the free space in the ASTRIVM is about

60GB.

We conducted a long-run test with a data stream of 3.232.856 packets, produced with

Time Tags to simulate a fixed 1000Hz frequency. The amount of packets consists of

a size of ∼ 53GB of data, and leads to a real Observation time of ∼ 55min, which

is about two times the duration of an Observing Block, as described in Sec 1.3. The

Kafka Consumer will acquire packets no stop from the Kafka server, and it is set

to shut down automatically as soon as packets on the topic are finished. It is of

interest to compare two different runs: one with the consumer writing batch files in

a File System directory mounted on Hard Disk and one writing files in a temporary

file system on RAM.
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As we can see in fig. 4.1, we can derive two main pieces of information from this

plot:

• Consumer terminates the run writing on the disk in 560 seconds (9min and

30 s). Considering the number of packets which constitutes the observation,

the maximum event rate that the consumer can potentially manage on this

machine is 5800Hz.

• Consumer terminates the run writing on the RAM in 480 seconds (8min). Con-

sidering the number of packets which constitutes the observation, the maxi-

mum event rate that the consumer can potentially manage on this test machine

is 6700Hz, when mounting a temporary file system.

Moreover, the Kafka consumer CPU utilization, when acquiring data at a maximum

speed, is lower than 120%. We notice that the multiple threads constituting the

program do not involve a CPU load on more than 2 physical Cores. Considering nine

telescopes, we could be able to reduce the number of active processes by managing

more than one telescope with a single Kafka Consumer instance, reducing then the

number of resources allocated to manage the whole telescope array data stream.

The high performance can be useful also to handle a hypothetical situation where

the Network connection to the Kafka server goes down from the OOQS side during

the observation, while ADAS continues to stream packets, which accumulate on the

Kafka topic. When the availability of the network is restored, the consumer has

good performance to recover all the messages published in a very short time, about

6/7 times faster than the real-time requirements. Kafka Consumer Batch Files are

written every second, containing a maximum number of packets equal to 1000, and

consequently a maximum size of 9.5MB. With nine consumers actively writing data

at the maximum event rate, then it is required a storage device with a minimum

sequential write speed greater than 90MB/s. The on-site Computing Cluster will

mount SSDs that can satisfy this requirement. Overall, a single instance of Kafka

Consumer can successfully respect the maximum S(2,2) packet frequency of 1000Hz

and it can acquire the data bandwidth required by an instance of the OOQS-Pipeline,

of 16MB/s. By instantiating nine Kafka Consumers it is then possible to acquire the

packets generated from the whole telescope array respecting the maximum target

bandwidth of 148MB/s.

OOQS-Pipeline

The Kafka Consumer now is limited in acquiring at the limit event rate of 1000Hz,

to test the workflow at the target maximum frequency.
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(a) The ASTRIDQ-Analysis benchmarks during

an Observation of 30 minutes

(b) The DQ-Aggregator loading to MongoDB

the data analysis result as JSON

Figure 4.2: DQ-Aggregator benchmarks during an Observation of 30 minutes

In Fig.4.2a we can see columns representing the execution time of the DQ-Analysis

application, for every new batch file that is detected. The overall process execution

is composed of two phases:

• the part of the time depicted in green is given by the python code necessary

to build the command to launch the external process. This time is negligible

compared to the blue one.

• The part of the time depicted in blue is the amount of time required to submit

and complete the execution of the external process ”DQ-Analysis.lnx”.

We can note that the average job execution of the DQ-Analysis is about 280 mil-

liseconds when managing the workload using Slurm. The average job execution time

is respectful of the batch time window of 1 second, and allows us to run the external

process synchronously with the DQ-Pipeline work.

In Fig.4.2b we can see columns representing the execution time of the DQ-Aggregator

application, for every new data quality result file that is detected. The overall pro-

cess execution is composed of three phases:

• the part of the time depicted in green is given by the reading time of the

current HDF5 file.

• The part depicted in yellow refers to the aggregation time, that is required

to update the sliding windows iterating efficiently on the desired set of data

results. This time is negligible compared to the other two parts.

• The blue part shows the time required to insert the final aggregated result on

MongoDB.
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Figure 4.3: The time to perform the external DQ-Analysis C++ process on different

amounts of packets per batch, Slurm only

We can note that the average job execution of the DQ-Aggregator is about 32milliseconds

when inserting data in a MongoDB collection. The average process execution time

is respectful of the batch time window and allows us to conclude the workflow on

every batch without delays. Overall, we can note that the pipeline can proceed

continuously elaborating neatly all data batches with the data acquired from Kafka.

At the moment, there are no obvious problems regarding the accumulation of delays

by the applications that do the data processing.

Focusing on the external process timings, an interesting comparison is shown

in the graph 4.3, which reports the time required for the external process ”DQ-

Analysis.lnx” to perform quality checks, in the presence of telescope observations

that produce packets at different event rates. All the processes are executed on

Slurm. Setting the time window of 1 second, in each of the reported runs, the DQ-

Analysis application will always produce results based on the size of the sub-windows

explained in Sec.3.5.2. We can note:

• in the case of the test at an event rate of 1000Hz, the program only opens a

single file at every process call to execute all the use cases; the average process

execution time is about 260ms.

• In the case of the test at an event rate of 248Hz, the program opens the last 5

files backward to execute use cases that require a fixed number of events, such

as 3.1.2; the average process execution in this scenario is about 200ms. For
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Figure 4.4: The time to perform the external DQ-Analysis C++ process, Slurm versus

bash process

the other implemented use cases, only the last created batch is needed.

• In the case of the test at an event rate of 100Hz, the program opens the last

10 files backward to execute the use cases; the average process execution in

this scenario is about 175ms.

Then, we can notice that the time involved to process data every second does not

grow linearly to the event rate that characterizes each run; an explanation is then

required. The use cases which are based on the sub-time window require to use,

independently from the event rate of the run, only the packets contained in the

latest arrived file; this involves a time proportional to the event rate and contributes

to the overall processing time. On the other hand, the strategy of opening multiple

files to reach the target sub-event window size, required for some implemented use

cases, involves an increment of time necessary to open sequentially all the required

files; this maps in the overall processing time, making it grow inversely proportional

to the packet event rate. However, we remember that up to now we consider 100Hz

to be the minimum frequency to handle, and the graph reports the feasibility of a

synchronous execution of the DQ-Analysis, in the event rate [ 100 , 1000 ]Hz. We

conclude the discussion for the DQ-Analysis reporting that the size of the HDF5

file containing the analysis results, considering the currently implemented use cases,

has a size of 79.2KB, independent from the time window selected.

In Fig.4.4, we compare scheduling an external process with Slurm versus launch-
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Figure 4.5: The DQ-Aggregator Database insert comparison

ing it as a standard bash process. The graph indicates that when using the same

process and data, scheduling with Slurm takes an additional 100ms compared to

running the same processes as bash. This extra overhead may be unavoidable when

running the pipeline by distributing jobs on a computing cluster. Therefore, it is

important to take this into account when considering whether the analysis will take

longer than the given time window. In such cases, the processing scheme should

be modified to start the external processes asynchronously and leverage parallel

execution.

Finally, Figure 4.5 displays a comparison of the time required by an insert query

for two databases used in the pipeline. The data being uploaded to a database is a

Python object occupying 450,KB in memory. Here are some key observations:

• When using MongoDB, the dictionary is converted in BSON automatically

and upload takes on average 19ms. Additionally, we report that the size of

the data in the collection is around 130KB.

• However, with MySQL, loading requires first converting the data into a JSON

formatted string, which is a Python object of average size 95KB. If this data

is entered into a JSON field, loading takes 28ms and the average row size is

150KB. If the data is entered into a text field, the required time is reduced to

17 ms and the average row size of the table is now 103KB.

Considering the current size of the aggregated data quality results, loading a JSON

in MySQL as a string is the best solution if no queries are required on the fields of
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the data analysis results. In comparison, an insertion in MongoDB takes up to 10%

longer. In addition, the data size is the lightest, allowing the use of storage space in

the most efficient way.

However, considering the analysis results loaded as JSON to perform queries on its

single fields, MongoDB with the BSON represents the best solution: insertion of a

JSON in MySQL takes up to 47% longer. Moreover, by creating new quality checks

and including their result in the JSON object, as discussed in Sec. 3.5.3, loading

such data on MySQL could lead to an inefficient lengthening of the time required

by an insert query. In addition, the size of the data is lighter than that required in

MySQL, allowing for more efficient use of storage space.
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Conclusions

In this thesis, we discuss the research activities carried out during the internship

at the Astrophysics and Space Science Observatory of Bologna (OAS): a branch of

the Italian National Institute for Astrophysics (INAF), in collaboration with the

researchers of ASTRI Mini-Array[1]. The ASTRI Mini-Array is an international

collaboration for a ground-based project for astrophysics led by INAF with the

partnership of the Instituto de Astrof́ısica de Canarias, Fundación Galileo Galilei,

Universidade de São Paulo (Brazil), North-West University (South Africa) and Uni-

versity of Geneva (Switzerland).

This section provides a summary of the thesis and outlines the conclusions of

our work, discussing also the future developments. This thesis work is divided into

four parts.

The first part, discussed in Section 1, provides an introduction to the scientific

context of the thesis project. We present the ASTRI Mini-Array project, an array of

nine Imaging Atmospheric Cherenkov Telescopes (IACTs). These gamma-ray obser-

vatories are capable of detecting the Cherenkov blue light produced in air showers,

the manifestation of high-energy photons entering the atmosphere.

In Section 2, we described the Supervisory Control And Data Acquisition (SCADA)

system, which controls all the operations carried out on-site. SCADA is composed of

various components, each performing specific operations during telescope observa-

tions. One such component is the Online Observation Quality System (OOQS),

which is responsible for the conduction of real-time data quality checks on the

Cherenkov Camera’s output. The OOQS’s primary function is to diagnose anoma-

lies that may arise during observations, providing feedback to other SCADA sub-

systems and informing on-site operators of the telescope’s condition. The goal is

to ensure that the collected data meet the highest quality standards achievable

by next-generation telescopes like ASTRI Mini-Array so that scientists can per-

form accurate analyses. The Cherenkov Camera is the primary instrument used

for Cherenkov observations in the ASTRI Mini-Array, producing various types of

packets with different information. The Array Data Acquisition System (ADAS) is
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responsible for acquiring and pre-processing all camera packets before dispatching

them to the OOQS.

The OOQS will receive the scientific and variance packet types. Variance data are

two periodic data packets, with a frequency of 10Hz and a size of about 10KB. Sci-

entific packets constitute the most challenging scenario, these are characterized by

a variable frequency, with maximum peaks of 1000Hz. Each scientific packet has a

fixed size of about 16KB, the maximum data flow is therefore about 16MB/s for each

telescope, for a total of 148MB/s from the whole telescope array. The Cherenkov

Camera Data Quality Checker (CCDQC) is the OOQS component performing the

Cherenkov data quality checks in real time. It must implement a software solu-

tion able to receive the data packets from ADAS and perform the requested quality

checks on each camera data, then store the results in the on-site Quality Archive.

In Section 3, we discussed the implementation of the OOQS-Pipeline, a software

prototype that receives scientific packets generated from a Cherenkov Camera, per-

forms quality analysis, and stores the results in a storage system. To elaborate data

from the whole telescope array, a set of nine pipelines that work independently from

each other, on each camera data, is then required. To facilitate a comprehensive

understanding of the pipeline’s operations, we provided a detailed overview of all

the used software, libraries, tools, and storage systems.

As outlined in Section 3.5, an OOQS-Pipeline comprises three main applications.

The first is the Kafka-Consumer, which serves as the interface between the pipeline

and the Kafka Server. This application is responsible for receiving scientific packets

that are loaded onto a Kafka Topic by ADAS. The Kafka-Consumer must receive

and collect packets in batches, and then write them into an ordered stream of files

for further processing.

The second and third applications in the pipeline are based on the DQ-Pipe, which is

a framework developed by INAF. The DQ-Pipe provides a process synchronization

mechanism that is based on the detection of new files within specified file system

paths. It can also work with Slurm, which is the workload manager responsible for

optimizing the load on the ASTRI on-site computing cluster. A configuration file is

used to specify the operations that an instance of the DQ-Pipe must perform. We

have extended the functionalities of the DQ-Pipe to make it a usable executor for

the pipeline applications.

The second application of the pipeline is known as DQ-Analysis. It is responsible for

carrying out a subset of the OOQS Quality Checks on the scientific data present in

the batch files and generating new files containing the analysis results. DQ-Analysis

is an external process executed whenever a new file is detected by the ASTRI-DQ-
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Analysis: a new DQ-Pipe specialized class.

The third application is called DQ-Aggregator. Its primary function is to access

the analysis result files, perform the necessary result aggregation, then upload the

entire aggregated analysis result versus target databases such as MySQL, a rela-

tional database, and MongoDB, a NoSQL database. To do so, several specialization

methods for the DQ-Pipe have been developed, such as the ASTRI-DQ-Aggregator

class, and classes for opening the analysis results file and saving analysis results to

the target database.

In section 4, it is described that the pipeline has been developed and tested on

a server with performance similar to, or lower than, the one at the Array Observing

Site. The Kafka-Consumer component was developed using highly specialized code

to efficiently acquire and write HDF5 files while adhering to the maximum event

rate of 1000Hz for scientific packets. Performance data indicate that it is possible to

acquire the packets produced by a single camera at an event rate of up to 5800Hz

when writing files to HDD.

The performance of the DQ-Analysis and DQ-Aggregator applications is primarily

measured during execution with Slurm. During a simulation of a real 30 minutes

observation, the pipeline is capable of continuously and accurately processing all

data batches acquired from Kafka, and efficiently inserting the aggregated data

into all possible databases. Overall, the OOQS-Pipeline represents a feasible initial

solution for implementing the final OOQS scientific pipeline.

The work described in this thesis contributes to the ASTRI Mini Array project,

with the development of the first version of the OOQS-Pipeline, a software imple-

menting a part of the OOQS: the Scientific Data Quality Checker of the CCDQC.

The software will be installed by the end of June, at the Mini Array Observing

Site, located at the Teide Astronomical Observatory, on Mount Teide in Tenerife

(Canary Islands, Spain). The pipeline can receive and process data coming from a

single Cherenkov Camera of the telescope array in real-time employing three differ-

ent applications to realize the data processing workflow. The analysis results are

then stored in a database.
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Future developments

There are two possible future developments for the OOQS-Pipeline.

The first one involves testing and assessing the performance of the pipeline with

the camera packets acquisition chain and the real Cherenkov Camera, which will be

available in the coming months.

The second one concerns the development of the OOQS. The flexibility of the OOQS-

Pipeline will allow for additional quality checks to be easily added to the DQ-

Analysis application, although this will increase computation time. The DQ-Pipe

and Slurm frameworks are capable of horizontally scaling the pipeline capabilities.

Once all the quality checks are implemented, the OOQS will be able to generate

feedback signals that must be delivered to other SCADA subsystems. In addition,

the OOQS-Pipeline will be modified to implement the CCDQC sub-component for

processing variance packets, known as the Variance Evaluator.
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