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Abstract

This thesis develops Artificial Intelligence methods to contribute to the ad-

vancement of computational musicology, an interdisciplinary field that uses

computers to study music and to automate tasks such as music classification,

music similarity, music generation, music transcription, music recommenda-

tion, etc. In systematic musicology a musical composition is defined as being

the combination of harmony, melody and rhythm. According to de La Borde,

harmony is the component showing most complexity and alone “merits the

name of composition´´. Harmony is arguably the foundation of a musical

composition, therefore this thesis focuses on analysing the harmonic aspect

from a computational perspective. There are three main ways of represent-

ing music through a machine: sheet music data (e.g. digitisation of scores

as images), symbolic data (e.g. musical notation in digital form such as Mu-

sicXML), audio data (e.g. representation of acoustic waves such as MP3).

We concentrate on symbolic music representation and address the problem of

encoding and formally representing harmonic chord progressions in musical

compositions, in the context of western music. Informally, chords are sets

of pitches played simultaneously, and chord progressions constitute the har-

mony of a musical composition. Our approach combines machine learning

techniques with knowledge-based techniques. We design and implement the

Modal Harmony ontology (MHO), using OWL (the standard web ontology

language). It formalises one of the most important theories used to interpret

western music: the Modal Harmony Theory. We propose and experiment

with different types of embedding methods to encode chords mainly inspired
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by Natural Language Processing and adapted to exploit the peculiarities of the

musical domain. We use both statistical (extensional) knowledge by relying

on a huge dataset of chord annotations (ChoCo) and intensional knowledge by

relying on MHO. To compare and evaluate the different solutions, including

embeddings resulting from the combination of the two approaches, we apply

them to two different musicologically relevant tasks: chord classification and

music structure segmentation. Chord classification is verified by comparing

the result of the Odd One Out algorithm to the result of the deductive classifi-

cation based on MHO. The results show good performance (accuracy: 0.86).

As for music structure segmentation, we feed a recurrent neural network with

our proposed embeddings to classify music segments and compare the results

with a gold standard dataset. Results show that the best performance (F1:

0.6) is achieved with embeddings that combine intensional and extensional

knowledge. This result outpeforms the best existing method (F1 = 0.42) for

music structure segmentation based on symbolic music representation. It is

worth noticing that embeddings based only on MHO allow to achieve a per-

formance very close to the best one (F1 = 0.58). In this case, we remark that

creating the embeddings only requires the ontology as an input as opposed to

statistical approaches that rely on large amount of data. All data and software

produced are publicly released under open source license 1.

1https://github.com/n28div/chord-embeddings, https://github.com/
n28div/modalharmonyontology
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Chapter 1

Introduction

Music is among the most widely acknowledged form of artistic expression in

modern society. Whether consciously or unconsciously, it is a fundamental

part of everyone’s life. It comes with little surprise that music has permeated

into the Artificial Intelligence field well, branching into its own prolific re-

search area. The history of combining music with Artificial Intelligence is,

indeed, as long as the Artificial Intelligence field itself.

[TheAnalytical Engine]might act upon other things besides num-

ber, were objects foundwhosemutual fundamental relations could

be expressed by those of the abstract science of operations, and

which should be also susceptible of adaptations to the action of

the operating notation and mechanism of the engine...Supposing,

for instance, that the fundamental relations of pitched sounds in

the science of harmony and of musical composition were suscep-

tible of such expression and adaptations, the engine might com-

pose elaborate and scientific pieces of music of any degree of

complexity or extent.

Ada Lovelace [100]
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1.1 AI as a tool for Music enthusiasts

Computer science in general has been applied to music in countless ways,

from artistic processes that generate musical composition [20] to information

retrieval systems that allow digital catalogs to be enhanced by content-based

approaches [87]. One of the most important and straightforward applications

of AI to the music field is to provide a set of low-level tools to complement

the activity of a music expert [118]. Successful approaches have been pro-

posed in this direction [70, 73, 107] following a reductionalist approach: com-

plex problems have been divided into smaller sub-problems addressed with

increasingly complex solutions [117].

Technologies that obtained impressive state-of-the-art results in complex

fields, such as Natural Language Processing, have been applied to the musical

domain, with promising results [23, 41, 62, 154]. Their lack of explainability,

however, is a particularly concerning issue in the musical domain.

The analysis of music, and in general the theoretical examination of mu-

sical compositions, has a rich legacy of theories and approaches that have

been criticised, disproved, abandoned, and rediscovered [55]. The minds of

musicians from the present and the past have been forged, consciously or un-

consciously, by such theories. Analysing past compositions is a fundamental

element in the growth of an artist. It is by means of the analysis process that

an artist becomes intimate with a particular work and is able to distill such

intimacy on its own personal art [1].

An explicit relation between the concepts learned by an Artificial Intelli-

gence system and existing musical theories needs to be drawn, to maintain a

common thread with such a legacy and enable artists to empower AI as part

of their own creative instinct.

The focus of this thesis is to study the impact of systems based on Semantic

Web technologies (see Section 2.3) on the automatic analysis of musical com-

positions when those systems are combined with the most recent Artificial
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Intelligence techniques. Indeed, while the usages and customs of the musical

language [32] have evolved in time, the musical vocabulary through which

a composition is realized remained stable, at least in the context of Western

culture [9]. As such, a plethora of valuable theories can be reorganized, re-

shaped, and transformed to obtain a new set of tools that can enable music

specialists, artists, and in general all music enthusiasts to effortlessly “stand

on the shoulder of the giants”.

1.2 Open challenges

Addressing open problems in the music field with the use of techonology and

AI inevitably involves the analysis of musical compositions. This is pursued

through the use of two main approaches based, respectively, on symbolical

representations and audio representations [146] of music.

With the advent of modern technologies and the ability to process a large

amount of data in an efficient way, the Music Information Retrieval field

(described in Chapter 2) has seen a new offspring. Audio-based approaches

transitioned from an appealing research area to a concrete and valuable set

of tools, that allow processing music in an automated yet accurate way [89,

114]. The same happened with symbolic representations, for instance as a way

to enhance the audio-based systems [23, 24, 75, 122, 123] by exploiting the

content-aware nature of a symbolic representation [146].

A knowledge-based approach acting as a bridge between musicologically

grounded theories and state-of-the-art Artificial Intelligence techniques would

be beneficial to manymusic-related tasks, such as style characterization [146],

hierarchical music structure analysis [114] and music information retrieval

tasks in general [43]. Nonetheless, it represents a big challenge for both the

musicological field, since it requires a unification effort between different mu-

sic theories, and the Artificial Intelligence field where a significant effort in

the formalisation of concepts that are usually loosely structured is required.
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A popular example is represented by the Gene Ontology (GO) [3]. With

the intent of formalising and unifying biological concepts, GO represents one

of the most valuable tools in the biological research field. It allows researchers

to efficiently browse and search an immense amount of interconnected re-

sources that were previously scattered between different systems, preserve

biological knowledge in a unified system, and most importantly, enables re-

searchers to automatically transfer known properties of experimentally tractable

organisms to other organisms that have similar genes but are less tractable in

an experimental setting [3].

The value of the Gene Ontology goes beyond its academic success. It

represents a virtuous example of how combined effort and free knowledge lead

to advances that are not only relevant for the field itself, but for humankind in

general [86].

The development of a musical correspondence to the Gene Ontology is an

ambitious project that requires the combined effort of Artificial Intelligence

experts and Music Theory experts.

1.3 A knowledge-based approach to chord repre-

sentation

This work represents a step toward the creation of novel tools that exploit

musicological-grounded knowledge throughmodernArtificial Intelligencemeth-

ods, by addressing the problem of automatic analysis of harmonic sequences.

Three aspects of musical compositions are traditionally analysed by musi-

cologists: melody, rhythm, and harmony [119]. Even though these aspects are

deeply related one to another, it has been argued that harmony alone merits the

name of musical composition [52]. The focus on harmonic sequences is hence

to be taken in virtue of its characterisation role in a musical composition. The
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results obtained throughout this work can be seen as an explorative set of ex-

periments that can eventually be adapted and generalized to the analysis of all

the elements that contribute to a musical composition.

Since musical analysis became a pursuit in its own right [...] var-

ious analytical methods have been devised [...]. These methods

differ in the nature of the musical material under study, and in the

form of their output, but they are similar in their goal and oper-

ating mode: they consist in chopping the musical material into

pieces, comparing these pieces and classifying them, in order to

eventually reformulate the original material with the terms of an

established corpus of concepts. Through such a reconstruction,

a successful analysis may eventually provide a sense of posses-

sion, an intimate feeling of appropriation of the analyzed material

which is comparable to the feeling the composer has for his own

creation.

François Pachet [118]

The analysis of a harmonic sequence requires a profound knowledge of

music theory and of the context in which the analysis is being performed.

Analysing a Rock composition [38] is radically different than analysing a

Classical composition [95]. Those differences, however, are not laid on how

an analysis is performed: all the fundamental music laws that are applied to

Rock compositions can be applied to Classical compositions or Jazz compo-

sitions [9]. It is the objective of the analysis, the ultimate classification of the

progression, that differs. For instance, the analysis of a Jazz composition has a

precise and practical outcome for a musician: that of guiding the choice of the

melodies that are to be played in some specific part of the composition [118].

On the other hand, analysing a Classical composition is directed at contextual-

ising the composer’s choices within past composers, to identify its influences

and understand the evolution of music throughout historical epochs [110].
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Regardless of the analysis objective, the building block of a harmonic se-

quence, the chord, is common to all modern western music. An effective rep-

resentation of chords allows its classification with respect to its most primi-

tive and fundamental aspects, common to all modern music. It is by means

of specialising such representation that different types of automatic harmonic

analysis can be achieved. We argue that the combination of different type of

analysis, which is objectively difficult since it involves a profound knowledge

of many different musical theories, might uncover interesting interpretations

of composition that were previously ignored. As an example, the popular jazz

composition Solar by Miles Davis has been interpreted as a blues composi-

tion in [118]. While an oracle able to judge such interpretation as correct (or

incorrect) does not exist and never will [55], a discussion between musicol-

ogists can take place on the basis of a solid incipit: the tune Solar by Miles

Davis can be objectively seen as a Blues composition by means of a sound

argumentation.

Finding an effective chord representation is a long-researched problem.

Different representations have been proposed, such as textual representation

based on the syntactical aspects of a chord [64], geometrical representation

[40] and digital score representation [113, 60]. These are all tailored to their

respective target application and provide little to no degree of adaptation to

the many challenges of automatic music analysis tasks.

This work focuses on proposing a new chord representation method that

can accurately encode fundamental chord properties and be contextualised in

an efficient way to tackle any task that involves the use of chords. In the

spirit of reusing and exploiting the legacy of musical theory, we investigate

how a knowledge-based approach can be combined with modern Artificial

Intelligence techniques to obtain accurate, flexible, and efficient chord repre-

sentations.
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1.3.1 Proposed approach

An ontology that models the theory of Modal Harmony [9] building upon

previous methods [48, 126] is formalised at first using technologies from the

Semantic Web [10]. The resulting system allows one to effortlessly classify

chords on the basis of well-known music theory concepts.

This provides us with a semantically valid analytical tool to investigate

whether state-of-the-art techniques, inspired by the Natural Language Pro-

cessing (NLP) field, can be adapted to the music field. The generalization

ability of a learned representation is measured as a function of the concepts

encoded in the knowledge graph. Optimal representationsmust reflect themu-

sicological knowledge that is formalized in the knowledge graph. Moreover,

it represents a valid starting point for the development of methods that pro-

vide efficient and exact solutions to Music Information Retrieval tasks, such

as functional harmony analysis [72] and roman notation inference [103].

Learned word embedding representations have revolutionized the field of

NLP [30] and been proven to be effective in modeling harmonic sequences

as well [2, 93]. Nonetheless, they have been shown to encode the seman-

tic meaning of a word only to a limited extent [131]. We address this issue

by means of two different lines of attacks. In the former we investigate if

such a lack of semantic understanding can be complemented by a more care-

ful encoding method based on musical theory. We present two novel chord

embedding methods in this direction, intervals2vec and pitchclass2vec, that

outperform other embedding methods. In the latter, we investigate the possi-

bility of obtaining accurate and efficient chord representations directly from

an inherently semantically consistent source: the proposed knowledge graph.

Such a method outperforms both intervals2vec and pitchclass2vec. We com-

bine both lines of attack as well to retain the best of the two worlds and obtain

state-of-the-art results.

Finally, to assess its pragmatic applicability, we apply our novel chord
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representation method to the task of musical structure segmentation. Musical

structure segmentation is the task that involves the identification of hierarchi-

cal structures in musical compositions, such as the identification of the verse

or the chorus of a tune, and is traditionally performed using audio-based rep-

resentations. Approaches relying only on symbolic annotations received lit-

tle attention and have been shown to underperform when compared to audio-

based approaches.

With the use of a straightforward model, we achieve new state-of-the-art

results, comparable to the one obtained by means of an audio-based represen-

tation. The chord representation method entirely founded on the knowledge

graph achieves near-state-of-the-results when compared to the other proposed

methods. This is particularly interesting given that, differently from the other

methods, it does not have any dependency on the amount of data available but

rather depends on the quality of the knowledge graph.

A correctly formalised knowledge graph is hence not only fundamental

in accessing theoretical musical knowledge in a unified and accessible form,

but it can also be used to obtain accurate and efficient chord representation

methods that achieve state-of-the-art results on relevant pragmatic tasks.

We identify the following research questions, that are addressed through-

out the rest of this work:

RQ1 Is it possible to formalize and encode music theories in an accurate

form?

RQ2 How can we assess the quality of chord representation methods?

RQ3 Is it possible to identify a set of requirements for accurate chord repre-

sentations?

RQ4 Is it possible to use chord representations to obtain results comparable

to audio-based representations?
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1.4 Contribution

The contribution of this work can be summarised as follows:

• formalisation and development of a novel Knowledge Graph and a rel-

ative ontology, the Modal Harmony Ontology, that models the theory

of Modal Harmony;

• development of a novel chord embedding method that achieves state-

of-the-art results in modeling the theory of Tonal and Modal Harmony;

• development of a structure segmentation algorithm, based on chord em-

bedding methods, that outperforms related work and obtains new state-

of-the-art results.

All the developed resources are publicly under open source license. The

code to reproduce the experiments of Chapter 5 is available at https://

github.com/n28div/chord-embeddings; the ontology presented in Chap-

ter 4 is available at https://github.com/n28div/modalharmonyontology;

the implemented extension of the Music Theory Ontology, described in Sec-

tion 4.2, is available at https://github.com/n28div/MusicTheoryOntology.

1.5 Structure

The thesis is organized as follows:

• Chapter 2 introduces the required concept and terminology on music

theory (Section 2.1 and Section 2.2), knowledge graph and ontologies

(Section 2.3), and embedding methods (Section 2.4);

• Chapter 3 provides an overview of related works;

• Chapter 4 describes the development of the ontology on modal theory

(Section 4.2) and the corresponding Knowledge Graph (Section 4.3);

https://github.com/n28div/chord-embeddings
https://github.com/n28div/chord-embeddings
https://github.com/n28div/modalharmonyontology
https://github.com/n28div/MusicTheoryOntology
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• Chapter 5 presents the embedding methods that have been developed

and the experiments that have been performed;

• Chapter 6 describes how the presented embedding methods are used

to achieve state-of-the-art result on the musical structure segmentation

task;

• Chapter 7 provides an overview of the most important results of previ-

ous chapters;

• Chapter 8 summarizes the thesis work and highlights some futureworks.



Chapter 2

Background

This chapter introduces the background knowledge required to make this the-

sis self-contained. Basic concepts of music theory are introduced in Section

2.1. Section 2.2 discusses the main tasks and challenges in Music Information

Retrieval. Section 2.3 introduces Knowledge Graphs and more generally the

Semantic Web. Section 2.4 gives an overview of the relevant techniques for

word embedding.

2.1 On music theory and chords

Figure 2.1: A famous theme 1 represented on a music score. The harmony
of the theme is highlighted in red while the melody is highlighted in blue.
The rhythm of the melody and of the harmony is described by the 4

4 at the
beginning and by the shape of each note.

1 https://www.youtube.com/watch?v=krDxhnaKD7Q

Music theory is a vast and complex field that encompasses a wide range

of topics, from the study of musical notation and harmony to the analysis of

https://www.youtube.com/watch?v=krDxhnaKD7Q
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musical structures and forms. The study of music theory requires a deep un-

derstanding of musical elements such as melody, rhythm, harmony, and form,

as well as an appreciation for the historical and cultural context in whichmusic

is created. Musicology is the academic field that studies and researches mu-

sical theory and is divided into two main branches: historical and systematic

musicology [110]. Historical musicology investigates the evolution of music

throughout time and how music can be organized according to epochs [110].

Systematic musicology aims at defining the foundational laws of music [119]

according to three main aspects: rhythm, harmony, and melody. See Figure

2.1 for a visual example of rhythm, harmony, and melody. This thesis focuses

on analyzing the harmonic aspect from a computational perspective.

Before diving into notes, chords, and intervals, however, an important

point needs to be addressed. Throughout history, many different musical the-

ories have been proposed, but a single, comprehensive and general Theory of

Music is yet to be made: music is not a physical object and as such a single

source of truth can not be identified. Even the most acclaimed theories are

subject to harsh criticism, there will always some component of subjectivity

that can not be separated in a definite way from musical enjoyment [49, 81,

124].

When analysing music, the cultural setting is a fundamental aspect that

cannot be neglected. In this thesis, we always refer to traditional westernmusi-

cal theory. This is not a limitation nor a restriction, but a conscious application

of concepts that are not universally true and should always be contextualised

in the cultural setting in which they will be applied.

The aim of this work is to provide a novel method for the representation

of chords expressed in symbolic notation, i.e. the form in which they are rep-

resented in the musicological field. A chord is the main building block in a

harmonic progression, which can be seen as a sequence of related chords [9].

The accurate representation of musical chords is arguably the most important
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step that needs to be addressed when studying and analysing musical compo-

sitions from a harmonic point of view.

Composition consists in two things only. The first is the order-

ing and disposing of several sounds [...] in such a manner that

their succession pleases the ear. This is what the Ancients called

melody. The second is the rendering audible of two or more si-

multaneous sounds in such a manner that their combination is

pleasant. This is what we call harmony and it alone merits the

name of composition.

Jean-Benjamin de La Borde [52]

In the following sections, we provide a simple formalisation of the musi-

cal concepts that we use in the rest of the thesis. We start by explaining what

chords are and their form. We then provide the required information to under-

stand why and how chord sequences are analysed. Finally, we briefly show

the current ways of representing chords in symbolic notations.

2.1.1 Chords are sets of related notes

Before introducing what a chord is, we need to address the concept of note

and how it relates to the auditory tones that are perceived by listeners.

The basic materials of music are sound and time. [...] Sounds are

used to structure time in music [...]. It is the sensation perceived

by the organs of hearing when vibrations (sound waves) reach the

ear. [...] The frequency of a vibration refers to the number of in-

creased and decreased pressure cycles that occur per unit of time,

usually one second. [...] Sound has four identifiable characteris-

tics or properties: pitch, intensity, duration, and timbre. [...] Pitch

is the highness or lowness of a sound. Variations in frequency are

what we hear as variations in pitch: the greater the number of
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sound waves produced per second of an elastic body, the higher

the sound we hear; the fewer sound waves per second, the lower

the sound.

Bruce Benward and Marilyn Saker [9]

Figure 2.2: Diagram of a piano keyboard. Each key is labeled with its respec-
tive note name(s). An octave between two𝐶 is highlighted in green. A perfect
fifth is highlighted in blue. A major third is highlighted in yellow while a mi-
nor third is highlighted in purple. A C major triad is highlighted in red.

In the context of western music theory, the whole spectrum of human au-

dible pitches is divided into octaves. Octaves are identified as multiples of

a particular reference frequency. For instance the pitch 𝐴4 - a 𝐴 note in the

4𝑡ℎ octave of a piano keyboard - has frequency 440𝐻𝑧. In order to obtain
an 𝐴 in a different octave it is sufficient to multiply the 𝐴4’s frequency by
an integer 𝑛 ∈ ℕ (i.e. 𝐴5 = 𝐴4 ⋅ 2 = 880𝐻𝑧). The whole spectrum of an

octave is divided into a set of 12 elements named pitches. Each multiple of

a single pitch is classified as a note. This system takes the name of 12 Notes

Equal Temperament system [9] (ET). See Figure 2.2 for a visual reference on

an octave (highlighted in green).

In this thesis, we refer to notes using their English naming convention,

which is the range of alphabet letters from𝐴 to𝐺 (see Table 2.1 for a reference

of the English and Italian naming conventions compared), to which one or

more optional modifiers, namely ♭ (flat) or ♯ (sharp) can be applied. Each

combination of a letter and modifiers corresponds to a specific pitch. When a

pitch is associated with more than one note name, those notes are classified as

enharmonic notes.
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A A♯
B♭

B C C♯
D♭

D D♯
E♭

E F F♯
G♭

G G♯
A♭

La La♯
Si♭

Si Do Do♯
Re♭

Re Re♯
Mi♭

Mi Fa Fa♯
Sol♭

Sol Sol♯
La♭

Table 2.1: English (top) and Italian (bottom) note naming convention. The
most common enharmonic notes are listed.

The relationship between two notes is defined as an interval [9]. The

smallest interval is the one between two strictly adjacent notes. Intervals are

classified after their distance in number of notes or following a specific nam-

ing convention. For instance, the relationship between a𝐶 and a𝐺, which are

divided by 7 semitones (i.e. 7 consecutive pitches), is called a Perfect Fifth.

See Figure 2.2 for visual reference on a perfect fifth (highlighted in blue). The

etymology of the term is strictly related to the ET system. The term Fifth de-

rives from the fact that, if one takes as reference the major scale of the starting

note, the fifth note of the scale is 7 pitches distant from the starting note. This

can be observed from Figure 2.2: the note 𝐶 has a distance of 5 white keys

from the note 𝐺. All the white notes are in the same key, C major. The term

Perfect comes from purely historical reasons: when the ET system has been

defined, the frequencies have been arranged in such a way that a Fifth inter-

val has an exact ratio of 3 ∶ 2 = 1.5 with the frequency of the starting note.

For instance if we take as starting note an 𝐴, whose frequency is 440𝐻𝑧, its
Perfect Fifth has frequency 3

2 ⋅ 440𝐻𝑧 = 660𝐻𝑧. The other frequencies are
arranged in order to obtain the best approximation to their correct ratio [6].

The combination of three or more notes is called a chord [9] and is the

basic unit of a harmonic progression. The order in which notes appear in a

chord is an important aspect for its classification. The first note of a chord is

called the root note and names the chord. The relationship between the root

note and the remaining notes determines its quality. For instance, a chord is

major if the interval between its root note and the second note of the chord is
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a major third (i.e. the notes in the interval are 4 pitches distant, see the inter-
val highlighted in yellow on Figure 2.2 for a visual reference) and the interval

between its root note and its third note is a perfect fifth. An alternative defini-

tion can be provided by taking the relationship between adjacent notes instead

of the relationship between the root note and the other components. For in-

stance, a major chord can also be defined as a set of notes whose relationship

between the first two notes is a major third and the relationship between the

last two notes is a minor third (i.e. notes are 3 pitches distant, see the interval
highlighted in purple on Figure 2.2) [9].

Chord qualities are not to be taken as a necessary condition for a set of

notes to be considered a chord. Compositions might contain chords that do

not fall into any chord quality classification, but a subset of their note does. In

that case, we say that the chord is classified as the quality of such subset with

the addition of a specific degree, such as in the case of an E minor seventh

with a flat five, notated as Em7(♭5) in Figure 2.1.
Along with its quality, a chord can be classified by the number of notes

it is composed as well. For instance, a chord composed of 3 notes is called a
triad [9]. In Figure 2.2 a visual reference of a C major chord is highlighted in

red.

2.1.2 Chord notation

From written notation on music scores [9], to digital music scores [60, 113],

chords can be represented in many different ways with different levels of gran-

ularity. In this thesis we always represent chords using their full name, e.g. C

major, or by using Harte notation [64] e.g. C:maj.

Harte notation was proposed as a simple and intuitive textual notation for

musically trained individuals [64]: a chord is always in the form <root>:<shorthand>(<degrees>)/<alternative

bass> where:

• <root> refers to the root note of the chord;
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• <shorthand> is used to represent the quality of a chord or in general a

specific set of intervals defined by experts;

• <degress> are optional notes than can be added (or subtracted) from a

chord;

• <alternative bass> is a note that is played below the root for stylistic

reasons, which should not be considered as the chord’s root.

Figure 2.3: Example of C:maj (in green) and E:min7(b5) (in blue)

For example, a C major major chord is represented as a C:maj while a E

minor seventh with a flat five can be represented as E:min7(b5). See Figure

2.3 for a visual reference.

2.1.3 Chords are set of related notes because scales are

In Section 2.1.1 we define a chord as a set of notes classified by the intervals

that relates such notes. When an artist writes a musical composition, its atten-

tion is usually focused on a specific subset of the whole set of notes. Those

subsets take the name of musical scales and are of great interest in the musi-

cological field.

In this section a brief description of the concept of scales and tonality is

provided. In Chapter 4.2 a more comprehensive description is provided.
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A scale is a collection of pitches in ascending or descending order. Scales

have developed and changed over the span of various historical periods [9].

The most important ones in western music are theMajor andMinor, which are

at the basis of the Tonal theory. The Tonal theory dates back to the Baroque

era (1600) [9] and is by far the most important theory that has been used to

analyse western music. Other theories have been proposed in order to analyse

music that make use of different scales, such as Schenkerian theory [133],

Atonal theory [49] or Modal theory [9].

Scales and chordsmight seem unrelated at first, however, they are different

angles from which the same concept can be seen: groups of coherent notes.

When a trained musician thinks of a chord he or she does not specifically think

of the notes that it is composed of, but rather the scale that contains the notes

of that chord [84]. We explore this aspect in Chapter 4, where we model the

theory of Modal Harmony by building a knowledge graph that can be used to

automatically analyse chords (Section 4.3) and evaluate their encoding with

our novel representation method (Chapter 5).

2.2 Music Information Retrieval

Music in general has always been related to technology, see for instance the

usage of digital sound storage devices or the use of synthesizer in the mu-

sic making process. The evolution of technology has been closely followed

by music through a continuous redefinition of concepts and terminology [44].

Musicology has evolved and blended with computer science in what has been

called Computational Musicology, which is the analysis of music through the

use of technology and computers. Even though it has been a problematic tran-

sition [66, 83], computational musicology is today a prolific interdisciplinary

research area [107].

An active sub-field of computational musicology isMusic Information Re-

trieval (MIR). MIR is a multi-disciplinary field focused on the research and
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development of tools to support better usage, understanding, and searching of

music catalogs and music knowledge in general [43]. First introduced in the

mid-60s, MIR grew consistently with the advent of large available datasets

of musical resources. A great number of conferences has established since

then, such as the annual International Society of Music Information Retrieval
1 (ISMIR). With the explosion of the usage of Deep Neural Networks, MIR

has seen an ever-growing interest, combining state-of-the-art techniques with

musical grounded knowledge. This can be partially linked to the advent of

music streaming platforms and social media: the necessity of accurate rec-

ommending systems, recognising plagiarism for copyrighting purposes, and

providing artists with tools that allow them to produce higher quality com-

positions quicker are among the main driving forces that fuels MIR research

[33].

The MIR field can be divided into two main branches based on the repre-

sentation level on which music is modeled [87]: symbolic-based approaches

and audio-based approaches. Symbolic-based approaches, also defined as

content-aware techniques, representmusical entities bymeans ofmusic-theory-

inspiredmethods, such asHarte notation defined in Section 2.1.1 [146]. Audio-

based approaches model musical entities through the use of their signal rep-

resentation [146] - also called audio representation. A multi-modal approach

that combines both aspects has been shown to be effective in obtaining accu-

rate MIR systems [91, 98, 99].

In this work, we focus on symbolic approaches.

Music is perceived as a language on its own and is used to convey emo-

tions and ideas through a precise vocabulary [32]. While it might be tempting

to draw a direct correspondence with Natural Language Processing, work-

ing with symbolic representations of musical entities involves a number of
1http://ismir.net

http://ismir.net
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features, such as harmonic, melodic, and rhythmic information, that are com-

pletely absent in natural language. Nonetheless, both fields share many sci-

entific and technical challenges. Applying techniques that have been proven

successful in NLP is a promising approach in MIR [2, 89, 93]. We argue that

such techniques, however, need to be contextualized in the musical domain, in

order to avoid a shallow application that would result in an over-simplification

of the domain and would disregard centuries of ideas and intuitions in musi-

cological research.

2.3 Knowledge graphs

The Semantic Web is a concept developed by Tim Berners-Lee [10] as an

evolution of the World Wide Web. The idea is to enable machines to access

the semantic meaning of a web page in a structured way.

This is performed by means of a standardised set of technologies and

knowledge representation techniques, such as the use of the Resource De-

scription Framework (RDF) [37] and OWL Ontologies [97]. RDF is used to

describe the content expressed by a web page while OWL is used to express

the semantics of the relationships between concepts and entities declared by

the former. Through the identification of each entity using a unique identifier

(URI) it is possible to connect information from different sources in a reliable

way with respect to the semantics of the data.

One of the key technologies associated with the SemanticWeb are Knowl-

edge Graphs. They are based on RDF, OWL and other semantic web standards

to represent and organize information in a structured and interconnected way.

RDF is a standard defined by theW3C. It provides a data model to address

the representation of complex knowledge bases [37] expressed as triples of the

form (𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡). RDF is usually serialized in XML, which

allows easy interoperability and integration with existing web technologies.

The concept of Knowledge Graph originated first in the 80s, as a way to
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define a system that integrates knowledge from different sources. It became

a very popular technology in 2012, when Google announced a semantic en-

hancement of its search engine [45] based on Knowledge Graphs. Different

definitions have been proposed for knowledge graphs, some defining a min-

imum set of requirements [120] while others defining a specific type of data

structure [46].

In this thesis we refer to the definition of KG provided by Färber et al [46]:

We define a Knowledge Graph as an RDF graph. An RDF graph

consists of a set of RDF triples where each RDF triple (𝑠, 𝑝, 𝑜) is
an ordered set of the following RDF terms: a subject 𝑠 ∈ 𝑈 ∪ 𝐵,

a predicate 𝑝 ∈ 𝑈 , and an object 𝑈 ∪ 𝐵 ∪ 𝐿. An RDF term is

either an URI 𝑢 ∈ 𝑈 , a blank node 𝑏 ∈ 𝐵, or a literal 𝑙 ∈ 𝐿. 𝑈 ,

𝐵, and 𝐿 are pairwise disjoint.

Färber et al [46]

One key aspect of Knowledge Graphs is the integration of rule-based sys-

tems and reasoning techniques directly into the data model, as a way to au-

tomatically infer classes and relations based on the semantics of the graph’s

nodes. This is achieved through the use of ontologies.

An ontology is as a formal, explicit specification of a shared con-

ceptualization that is characterized by high semantic expressive-

ness required for increased complexity. [...] The difference be-

tween a knowledge graph and an ontology could be interpreted ei-

ther as a matter of quantity (e.g., a large ontology), or of extended

requirements (e.g., a built-in reasoner that allows new knowledge

to be derived).

Ehrlinger et Wöß [45]

Ontologies are usually expressed using theOWL standard [97] and, through

the expression of a taxonomy and a set of axioms, allow the validation and in-

ference of new data on the basis of the entities that are part of the KG.
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Ontologies and in general Knowledge Graphs have been applied to sev-

eral domains, as a mean to unify the available knowledge in a unique, inter-

connected resource. The most successful application is arguably the Gene

Ontology Resource [3], which has been in continuous development for over

20 years and represents the most important resource for biological research.

2.4 Word embeddings

Representing words as vectors in a geometrical space is a prominent research

field in Artificial Intelligence. The core idea is that of finding a representation

of words that can be easily handled and transformed with the use of computers

[149]. In 2000 Bengio et al. introduced the concept of dense word embeddings

[8]. Such representations are composed of real-valued vectors that are usually

learned through a corpus of data. The training principle is based on the Dis-

tributional Hypothesis: words that are used in a similar context, neighboring

words in a corpus, tend to have a similar semantic meaning [132].

With the advent of Deep Learning [82] and the ability to exploit huge cor-

pus of data in an efficient yet accurate form, the computation of word embed-

dings has seen a new offspring and several different methods have emerged

[149]. One of the most influential approaches has been proposed as part of

the word2vec method: the CBOW (Continous Bag-of-word) and Skipgram

models.

Both models are intended as ways of exploiting the Distributional Hypoth-

esis [132] from two similar points of view: predicting the context of a word.

In particular, the CBOW method learns a representation by predicting a word

given its context while the skipgram model, given an arbitrary word, learns

to discriminate against words that never appear in its context. In Figure 2.4 a

comparison between the two methods is represented.

Learning a word embedding can hence be seen as a classification task,

in which the objective is to discriminate between a word and its neighboring
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Figure 2.4: CBOW (blue) and skipgram (yellow) methods compared. The
word to be embedded is fox (green) and the context words are The, quick,
brown, jumps, over, the, lazy, dog.

context. In order accurately perform such a task, negative examples need to

be taken into account, i.e. words that are not in the neighboring context of

a word. The simplest and most effective solution is to use as negative sam-

ples all those words that, indeed, are not in the neighboring context of a word.

When a corpus composed of a large number of words is taken into account,

such as in most of the tasks in the natural language processing field, this pro-

cedure quickly becomes computationally intractable. In order to mitigate such

complexity, negative examples are sampled from the pool of words that are

not part of the neighboring context of a word, in a process named negative

sampling. The number of negative examples to sample is a parameter of the

model and, alongside the context window size, has been shown to be the most

influential parameter that needs to be considered when training embeddings

[21].

This kind of word embedding has been shown to encode interesting com-

positionality properties as well: for instance, summing together the words

Czech and currency results in an embedding that is close to the embeddings

of koruna, the Czech republic currency.



Chapter 3

Related work

Chapter 3 overviews the related works and is divided into two main sections:

Section 3.1 describes existing ontologies to model symbolic music knowl-

edge, while in Section 3.2 we describe the methods used to represent chords

as multidimensional vectors.

3.1 Music ontologies

Many different approaches have been presented to model musical elements

using ontologies in the last decade. The MIDI Linked Data Cloud [102] mod-

els the interconnection of symbolic resources represented by MIDI resources

files, the CHARMOntology [63]modelsmusical structure based on the CHARM

specification: a representation system that allows modeling abstract concepts

that are implicitly represented by musical compositions. MusicOWL [71] is

an ontology designed specifically to model music sheets, much like the Mu-

sic Notation Ontology [25]. The Chords Ontology [48] and the Music The-

ory Ontology [126] have been proposed to model the fundamental rudiments

that compose music and are analyzed in detail in Section 3.1.1 and Section

3.1.2, respectively. The Functional Harmony Ontology [72] has been recently

proposed as a way to automatically perform functional analysis on harmonic

progressions and is analyzed in Section 3.1.3.
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Figure 3.1: Chord ontology using Graffoo diagrams

3.1.1 OMRAS2 Chord Ontology

The OMRAS2 project, namely Ontology-driven Music Retrieval & Annota-

tion Sharing service, is a collection of tools, ontological framework and soft-

ware to share music data on the Semantic Web [48]. Among the results of

such project, the Chord Ontology has been produced 1. The ontology model

is based on the formalization of chords defined by Harte [64].

In Figure 3.1 a visual representation of the Chord ontology is provided.

A chord is identified by its root note (as explained in Section 2.1.1), its com-

ponent intervals (or missing intervals) and an alternate bass, if present. The

conversion between a chord in Harte format to an entity of type chord:Chord

is trivial. In Figure 3.2 aC:maj chord is represented using the Chord ontology.

The ontology implemented in Chapter 4.3 reuses the Chord ontology to

represent chord individuals. This allows an easy yet expressive way of for-

malizing chords, since all the chords that are part of the knowledge graph are
1http://purl.org/ontology/chord/

http://purl.org/ontology/chord/


3.1 Music ontologies 26

Figure 3.2: C:maj chord represented using the Chord ontology

expressed in Harte notation.

3.1.2 Music Theory Ontology

The Music Theory Ontology (MTO) [126] is an ontology developed to rep-

resent the main rudiments that are used to express symbolic music and allow

the analysis of musical composition.

It reuses the Chord ontology described in Section 3.1.1 and extends its

scope to take into account other musical concepts. For instance, one of the

main differences lies in the way chords are represented. MTO represents chord

qualities as classes, whereas the Chord Ontology represents chord qualities as

individuals. This particular choice is fundamental in the ontology developed

in Chapter 4, since it allows us to abstract the formalisation from the actual

chord qualities and implement axioms thatmake use of general chord qualities.

The same is performed with intervals, where the interval quality is represented
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as a class.

In MTO chord qualities are modeled as a subclass of the class Interval,

called HarmonicInterval. Different levels of granularity are taken into ac-

count which involves both the number of notes that composes the chord and

its quality, as described in Section 2.1.1. This is a key aspect at the core of

the ontology developed in Chapter 4. We extend it to cover a bigger set of

chord qualities that are then used to automatically classify chords through the

inference mechanism.

MTO addresses the concept of progressions as well. Chord progressions

aremodeled as subclasses of the HarmonicProgression class, which is a sub-

class of the Progression class. The latter specializes the class of Progression

to scales aswell (defined in Section 2.1), modeled by the MelodicProgression

class. Such class is specialized in an extensive taxonomy of scale types, among

which the MajorScale and NaturalMinorScale are defined. The usage of

such classes allows the definition of the Tonal Harmony theory (Section 2.1)

in terms of classes and properties defined by MTO.

Few general object properties are defined, mainly tomodel the relationship

between chords and scales and their components in terms of notes (hasNote,

hasRootNote, hasTonic, hasDiatonicDegree). The property hasDiatonicDegree

is extended in Section 4.2 to allow the assertion of the relationship between a

scale and the chords that can be interpreted as part of such scale.

3.1.3 Functional Harmony Ontology

Functional Harmony Ontology (FHO) [72] is an ontology developed to per-

form functional analysis of chord sequences in the context of the theory of

Modal Harmony.

The functional analysis of a musical composition is the task of classifying

its harmonic progression (or respectively its melodic progression) using the

rules defined by a musical theory. In particular, by assigning a role to each
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component of the progression, any subsection of the whole sequence can be

classified on the basis of the rules proposed by the reference theory. This can

be seen as a way to ”explain” why a chord is part of a sequence and how

it can be interpreted in the context of the whole progression or composition.

Such a task is particularly useful to musicians in the composition of a musical

piece or when improvising a melody over a chord progression, since it gives a

conceptualization of which melody is better suited for a harmonic progression

or vice-verse which harmony is better suited for a melody [84].

This is performed through extensive use of Description Logic (DL) ax-

ioms.

The ontology reuses MTO (see Section 3.1.2), and extends it by formal-

izing the musical concepts of tonalities, chords and chord’s function. Chords,

differently to MTO and Chord ontology, are represented as classes instead of

instances. This allows the usage of DL axioms to model chord sequences. The

ontology can be used to analyze chord sequences and it achieves results com-

parable with similar tools [72] such as HarmTrace, which allows the derivation

of a tree-shaped functional analysis of a composition [35] through the use of

a rule-based system. Even though FHO is not able to infer the hierarchical

structure that can be obtained by HarmTrace, the authors shows that the clas-

sification obtained is as informative as the one provided by HarmTrace.

There is a significant content overlap between FHO and the Modal Har-

mony Ontology of Chapter 4. In fact, FHO has been of major inspiration in

the implementation of our ontology. The formalization proposed in Chapter

4, however, is fundamentally different to FHO in the conceptualization and

the modeling choices of the Modal Harmony theory.

In FHO the formalization of the Modal Harmony theory is bounded to the

chord sequence analysis task. Each chord is represented as a class and a set of

axiom are specified to classify its function.

Extending such an ontology to classify additional chords is difficult, as the

chords modeling process has not been documented. Even though the ontology
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proposed in Chapter 4 addresses the samemusical theory as FHO, the problem

is modeled from a more general point of view, in which an higher degree of

flexibility is maintained when defining the classification rules for each chord.

Instead of modeling the whole Functional Modal Harmony theory only the

Modal Theory is address. The concept modeled by FHO can be implemented

reusing the ontology proposed in Section 2.1. We argue that such an approach

would results in an higher interoperability, easier ontology update and, most

importantly, to a more general approach that can be extended to other theories

as well.

Indeed, as explained in Section 2.1, there is not a single source of truth

for a musical theory. The functional definition of a chord often depends on

the context of application, the source of the musical composition or even the

personal preferences of the analyst.

3.2 Chord embeddings

In this section, we provide an overview of the methods that have been used to

compute chord embeddings and the results that have been obtained.

In chord2vec [93] the authors implement a chord embeddingmethod based

on the skipgram model adapted to the musical domain. Chords are encoded

using their constituent notes and are then embedded using the skipgrammodel

presented in [104]. Three different embedding flavors are tested:

• bilinear, which assumes each note in the chord to be independent;

• autoregressive, which loosen the independence assumption;

• sequence2sequence, which implements an encoder-decoder model and

implements a language model.

The described chord2vec flavors are listed in increasing complexity and ex-

pressivity order. This order reflects their performances as well. In particular,
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the sequence2sequence model outperforms all of the other models in the av-

erage negative log-likelihood per chord, which means that the model is able

to accurately act as a language model. Our proposed embedding method is

similar to chord2vec and can be seen as a generalization of the autoregres-

sivemodel. We re-implemented a variation of the bilinearmodel based on the

original word2vec skipgram model, as suggested on an additional report 2 by

the authors of chord2vec, since it allows us to perform a direct comparison

with other types of embeddings.

In [80] the authors encode chords using their textual label and compute

embeddings using word2vec. The resulting embeddings are analyzed visually

through dimensionality-reduction techniques and evaluated in two different

tasks: artist attribute prediction and language modeling. From visual inspec-

tion, the chords are observed to be embedded in a position that directly resem-

bles the circle of fifth, which is a well known construct to measure the dis-

tance between chords [9]. The trained embeddings are also able to accurately

approximate a language model, implemented using a Recurrent Neural Net-

work, when compared to other encoding techniques based on bag-of-pitches

i.e. chords are represented as a one-hot-encoding of the note components, and

a bag-of-word method in which each chord is represented using TF-IDF from

the corpus statistics. Good results are obtained in the artist attribute predic-

tion as well. A Convolutional Neural Network is used to predict the attributes

of each artist, such as gender and country. The model that uses embeddings

outperforms all the other models in the classification of every attribute. A

similar approach is performed in [2] in which chord sequences trained using

word2vec are evaluated in a language modeling task and a clustering task in

the context of historical chord sequence modeling. The results from the lan-

guage modeling task confirms the fact that such embeddings are adequate to

model chord progression. Furthermore the authors shows that historical dif-

ferences are encoded as well: composers that are notoriously hard to analyse,
2https://github.com/Sephora-M/chord2vec/tree/master/report

https://github.com/Sephora-M/chord2vec/tree/master/report
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such as Debussy, have a much lower accuracy when compared to better under-

stood composers. In the clustering task the authors are able to show how such

embeddings are able to correctly classify functionally equal chords, which are

different chords that can be interpreted with the same functional role [2]. We

compare our novel embedding method to embeddings obtained with the same

methodology of the related works.



Chapter 4

Symbolic Music and Knowledge

Graph

Chapter 4 describes the creation of an ontology that models the theory of

Modal Harmony and a corresponding Knowledge Graph. Section 4.1 provides

a description of the Modal Theory that we model. In Section 4.2 we provide a

description of the modeling phase of the ontology and finally, in Section 4.3

we describe the Knowledge Graph that is built upon such ontology.

4.1 Modal harmonic theory

In this Section, we briefly introduce the concepts that we model in the pro-

posed ontology. They are based on The jazz theory book by Mark Levine

[84] and on Music in Theory and Practice Volume 1 by Bruce Benward [9].

As already explained in Section 2.1, chords are sets of coherent notes and,

as such, they are subsets of scales. One could even think of a chord as being

a scale on its own and, more generally, part of another scale. This type of

relationship is at the basis of the theory of Modal Harmony, which we refer

to as TMH from here on. TMH is based on scales composed of seven notes.

Each scale, together with its root, is classified by its tonality. The tonality of

a scale is yet again a note. For instance, one might have a scale 𝑆 which has
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root note𝐶 and tonality𝐸. Seven scales are defined by TMH: Ionian, Dorian,

Phrygian, Lydian, Mixolydian, Aeolian, and Locrian. The Ionian scale is the

equivalent of amajor scale while the Aeolian is the equivalent of aminor scale,

hence the theory of Tonal Harmony, based only on Major and Minor scales, is

a proper subset of the theory of Modal Harmony. Each of these scales is built

starting from a specific grade (i.e. position in the scale) of the major scale.

For instance, the Ionian scale is a major scale built from the first grade (the

first note) of the major scale, while the Phrygian scale is built from the third

grade (the third note) of a major scale.

Take for example the scale of C major, we have that its root is 𝐶 and its

tonality is 𝐶 as well. If we want an Ionian scale in the tonality of 𝐶 then we

should build a major scale starting from the first note of the C major scale,

which is the major scale itself. If we want to build the Phrygian scale in the

tonality of 𝐶 then we need to build a major scale starting from the third note

of the C major scale, which is 𝐸. The resulting scale has tonality 𝐶 and is

composed of the notes, in order, [𝐸, 𝐹 , 𝐺, 𝐴, 𝐵, 𝐶]. The root note of the scale
is hence𝐸, since it is the first note of the scale, and is named E Phrygian, since

it has been composed using the definition of Phrygian scale. The tonality of

the scale is still 𝐶, the note that we used as the foundation of the scale in the

first place. Indeed, if we take a look at this scale, we can see how it has the

same set of notes of the C major scale, in a different ordering.

When we make use of scales composed of seven notes, each position in

the scale is associated with a name, to avoid naming degrees in a numeric

form. These positions are, in order: tonic, supertonic, mediant, subdominant,

dominant, submediant and leading-tone. Upon each of these roles, using the

remaining set of notes that compose the scale, a number of chords can be

constructed, which has as root note the corresponding note of that role. For

instance, in a C major scale, the first note (𝐶) is the tonic note and the major

chords that are built upon that note are called tonic chords. Given the scope

of this thesis, we do not provide a detailed description of which chord quality
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corresponds to a specific role. It is sufficient to know that each role has one

or more corresponding chord qualities.

If we take again the example of the E Phrygian scale analyzed before, we

have seen that it contains the same set of notes of the C major scale, hence

the set of chords that are part of that scale are exactly the same. Indeed, the

first chord of E Phrygian, the tonic chord, has root note 𝐸. Using the set of

available notes, such chords turn out to be a minor chord, which is the third

chord, the mediant chord, of the scale that originated E Phrygian, C major.

This kind of relationship between chords and scales is a key aspect of

TMH: each chord can be classified with a role based on the context it is inter-

preted in. This allows the classification of a chord based on its function (i.e.

its role) within a scale and is the basis of Functional Harmonic Analysis [127].

4.2 An ontology of Modal (and Tonal) harmonic

theory

Section 4.2 describes the formalization of the theory of Modal Harmony de-

scribed in Section 4.1 in an ontology, to which we refer to as Modal Harmony

Ontology.

We use Graffoo diagrams 1 to describe the implementation and modeling

choices. Graffoo diagrams represent classes as yellow rectangles. Whenever

the rectangle border is dotted it represents a class restriction, usually expressed

usingManchester syntax [67]. Pink circles are used to represent individuals of

the ontology. Classes and individuals are connected by arrows whose label is

the name of the predicate that describes such a relation. We represent inferred

properties as dotted red arrows.

The competency questions answered by this ontology are the following:

• Which are the notes in a mode?
1https://essepuntato.it/graffoo/

https://essepuntato.it/graffoo/


4.2 An ontology of Modal (and Tonal) harmonic theory 35

• What is the role of a note in a mode?

• In which role can a note be classified?

• Which chords are in a mode?

• Which are the roles of a chord?

• Which are the chords that absolve a role?

We formalize some examples of how these questions are answered using

SPARQL [65] queries in Section 4.3.

Chord classification by using reasoning

In order to model chords, the implemented ontology imports two other on-

tologies: the Chord Ontology [48] and the Music Theory Ontology [126].

Both ontologies are combined and extended in order to obtain an ontology

that, using reasoning, can classify automatically the quality of a chord from

its constituent notes.

We extended the Music Theory Ontology (mto) to include 24 missing in-
tervals, most of which are compound intervals. Compound intervals are inter-

vals that can be expressed as a combination of smaller intervals. For instance,

a major ninth interval can be decomposed into a perfect octave interval to

which an additional major second interval is added. We extend the ontology

with additional chord qualities as well. 56 additional chord qualities are added
and commented on the ontology. Each of these classes is used to automatically

classify a chord instance represented using the chord ontology.
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@prefix mto: <http://purl.org/ontology/mto/> .

@prefix mto-kb: <http://purl.org/ontology/mto/kb/> .

@prefix chord: <http://purl.org/ontology/chord/> .

<C:maj> rdf:type chord:Chord ;

chord:root mto-kb:C ;

chord:interval mto:MajorThirdInterval ;

chord:interval mto:PerfectFifthInterval .

Listing 4.1: C:maj represented in turtle syntax

In Listing 4.1 a C:maj chord is presented in Turtle syntax [7]. It is defined

as a chord composed of a major third interval, a perfect fifth interval, and a 𝐶
root.

Note that all major chords are defined as chords whose components are a

major third interval and a perfect fifth interval. We automatically infer such

classificationwith the axiom presented in Listing 4.2 inMachester syntax [67].

Class: MajorTriad

EquivalentTo: (chord:interval value mto:MajorThirdInterval)

and (chord:interval value mto:PerfectFifthInterval)

Listing 4.2: Axiom to infer the classification of a major triad

Such an axiom can be expressed for any chord quality, see Figure 4.1 for

a visual representation of the axiom represented as a general pattern for the

classification of chords using OWL reasoning.

The described axioms can be inferred by a reasoner that implements the

OWL-EL profile, which is able to perform inference in polynomial time [109].

While the proposed extension does not answer any additional competency
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Figure 4.1: Graffoo representation of the extended MTO ontology in the clas-
sification of a C:maj7 chord, which is a Major Triad and a Major Seventh
Tetrad. The inferred predicated are depicted as red dotted arrows.

question with respect to the original MTO proposal, being able to automat-

ically infer the classes of a chord represents a proper, valuable addition.

Moreover, when chords are expressed in Harte notation [64], the proposed

extension allows the usage of general chord qualities when defining ontologies

that models harmonic progressions.

For instance, in [51] Allen Forte identifies the famous Tristan chord [95]

in a number of popular American ballads. Given a set of tunes annotated by

an expert in Harte notation it is easy to accomplish such task by defining an

axiom for the Tristan chord, as exemplified in Listing 4.3.
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Class: TristanChord

EquivalentTo: (chord:interval value mto:

AugmentedFourthInterval) and (chord:interval value mto:

AugmentedSixthInterval) and (chord:interval value mto:

AugmentedNinthInterval)

Listing 4.3: Axiom to infer the classification of a Tristan chord, which is

composed of an augmented fourth interval an augmented sixth interval and

an augmented ninth interval.

4.2.1 Modal Harmony ontology

Section 4.2.1 describes the modeling choices in the implementation of an on-

tology that formalises the concepts of Modal harmony explained in Section

4.1. The ontology imports the extended version of the Music Theory Ontol-

ogy and use it as a structural backbone, in order to define relations between

chords as a function of their quality.

Figure 4.2 shows the main pattern used to represent modal scales in the

ontology. Each modal scale, such as Ionian, Dorian and so on, is represented

as subclasses of mto:Scale.

In the example, the Ionian scale is represented and the restriction imposed

on chords that have the role of Ionian tonic chords are shown. Such quality

restrictions are a key aspect of this ontology. They can be updated by domain

experts and eventually refined given the domain of application of the ontol-

ogy. Restrictions can be highly dependent on the music genre: the concept

of tonic chord is slightly different between Rock music [38] and Jazz [84]:

the former has a broader definition while the latter is usually characterized by

richer chords and therefore has a more restrictive definition.

In order to automatically infer that a chord is part of a scale the root note
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Figure 4.2: Main structure of the Modal Harmony ontology.

of a chord needs to be taken into account as well as the tonality of the scale.

In the example of Figure 4.2, the major triads that should be classified as tonic

chords of the Ionian scale are only those whose root note matches the root note

of the scale and the chord is classified as a major triad. One possible approach

is to define domain and range on such properties. Even though this results in

correctly inferring the scale type and the chord quality, it fails to automati-

cally instantiate the property between all compatible instances. For example,

if a chord, e.g. C:maj, is part of the tonic chords of a Ionian scale - through

the :hasIonianTonicChord property - then it is inferred to be a major triad

chord. The inverse cannot be inferred automatically: given a C:maj chord the

creation of the :hasIonianTonicChord need to be manually asserted in the

ontology.
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Figure 4.3: Example of required inferences to classify a C:maj chord as the
Ionian tonic chord of a C Ionian scale. Inferred properties are represented
as red dotted arrows. Properties that needs to be inferred by the proposed
ontology are represented as blue dotted arrows.

In Figure 4.3 a visual example is depicted. The property rdf:type be-

tween the individual C:maj and the class mto:MajorTriad is automatically in-

ferred by the reasoner using the axioms defined by the MTO extension pre-

sented in Section 4.2. The property :hasIonianTonicChord, represented us-

ing a dotted blue, cannot be inferred automatically through the use of domain

and range axioms.

To implement such mechanism we rely on the use of the rolificationmod-

eling technique [76]. Such technique allows the definition of axioms that acts

as rules of the form if-then using OWL2 [76].

We rolify an arbitrary class 𝐶 by creating an ad-hoc property for that par-

ticular class, called 𝑅𝐶 . The restriction 𝐶 ≡ 𝑅𝐶.𝑆𝑒𝑙𝑓 is imposed on such

class: if an individual of that class exists, then an instance of the property

𝑅𝐶 is inferred where that same individual is both subject and object of 𝑅𝐶 .

Formally, for every entity 𝑒 of type 𝐶 we have that 𝑅𝐶(𝑒, 𝑒) ∀ 𝑒 ∈ 𝐶.

A rule of the form if-then can be described by using property chain ax-

ioms, which are OWL axioms that define the composition of two properties.
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For instance given the properties 𝑅1, 𝑅2 and 𝑅3 and a property chain axiom

𝑅1 ∘ 𝑅2 → 𝑅3 defined on such rules, we have that ∀𝐴, 𝐵, 𝐶 𝑅1(𝐴, 𝐵) ∧
𝑅2(𝐵, 𝐶) → 𝑅3(𝐴, 𝐶) with 𝐴, 𝐵, 𝐶 individuals of the ontlogy.

Take as an example a toy ontology that models mouses and elephants. We

can model the fact that mouses are always smaller than elephant using an if-

then rule, here formalized in First Order Logic:

𝑀𝑜𝑢𝑠𝑒(𝑥) ⊓ 𝐸𝑙𝑒𝑝ℎ𝑎𝑛𝑡(𝑦) → 𝑠𝑚𝑎𝑙𝑙𝑒𝑟(𝑥, 𝑦)

where𝑥 and 𝑦 are variables,𝑀𝑜𝑢𝑠𝑒(𝑥) and𝐸𝑙𝑒𝑝ℎ𝑎𝑛𝑡(𝑥) are unary predicates
that represents, respectively, that a variable is a mouse or an elephant and

𝑠𝑚𝑎𝑙𝑙𝑒𝑟(𝑥, 𝑦) is a binary predicate with the semantics of 𝑥 < 𝑦.
Using the rolification technique we can define the same rule as

𝑅𝑀 ∘ 𝑈 ∘ 𝑅𝐸 ⊑ 𝑅𝑠

where𝑅𝑀 and𝑅𝐸 are respectively the rolification of the𝑀𝑜𝑢𝑠𝑒 and𝐸𝑙𝑒𝑝ℎ𝑎𝑛𝑡
predicates, 𝑈 is the universal property (owl:topObjectProperty in OWL2) and

𝑅𝑠 is the predicate 𝑠𝑚𝑎𝑙𝑙𝑒𝑟.
In Listing 4.4 an Example of the rolification technique applied to Ionian

major chords is provided in Turtle syntax.
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ObjectProperty: :R_IonianModeScale

Class: :IonianModeScale

EquivalentTo:

:R_IonianModeScale some Self

ObjectProperty: :R_MajorTriad

Class: mto:MajorTriad

EquivalentTo:

:R_MajorTriad some Self

ObjectProperty: :hasIonianTonicChord

SubPropertyChain:

:R_IonianModeScale o :hasTonicNote o inverse(chord:root)

o :R_MajorTriad

Domain:

mto:IonianModeScale

Range:

mto:MajorTriad

Listing 4.4: Example of rolification to infer Ionian tonic chords in turtle

syntax.

A general algorithm can be derived to automatically implement the de-

scribed rolification technique. The resulting ontology allows domain and range

axioms to be used as preconditions on the element of the rule for the applica-

tion of a property chain axiom by the reasoner. This allows the implementation

of the model in Figure 4.3.

More formally, given a property 𝑃 in which a general property chain

𝑐ℎ𝑎𝑖𝑛(𝑃) is defined and given a sub-property 𝑝 ⊑ 𝑃 on which domain and

range axiom are defined respectively as 𝑑𝑜𝑚𝑎𝑖𝑛(𝑝) and 𝑟𝑎𝑛𝑔𝑒(𝑝), we can
specialize the property chain 𝑐ℎ𝑎𝑖𝑛(𝑃) to be automatically realised by a rea-
soner using Algorithm 1.
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Algorithm 1 Automatic rolification algorithm. The ▶ symbol is used to rep-
resent the new Manchester syntax axioms that needs to be asserted in the on-
tology.
Require: 𝑃 an object properties, optionally with a property chain 𝑐ℎ𝑎𝑖𝑛(𝑝) axiom inferred
Ensure: ∀𝑃 ′ ∈ 𝑃 , 𝑃 ′ have domain and range restrictions defined
for all 𝑃 ′ ⊑ 𝑃 do

▶ ObjectProperty: R𝑑𝑜𝑚𝑎𝑖𝑛(𝑃 ′)
▶ Class: R𝑑𝑜𝑚𝑎𝑖𝑛(𝑃 ′) EquivalentTo: R𝑑𝑜𝑚𝑎𝑖𝑛(𝑃 ′) some Self
▶ ObjectProperty: R𝑟𝑎𝑛𝑔𝑒(𝑃 ′)
▶ Class: R𝑟𝑎𝑛𝑔𝑒(𝑃 ′) EquivalentTo: R𝑟𝑎𝑛𝑔𝑒(𝑃 ′) some Self
▶ 𝑃 ′ SubPropertyChain: 𝑑𝑜𝑚𝑎𝑖𝑛(𝑃 ′) o 𝑐ℎ𝑎𝑖𝑛(𝑃) o 𝑟𝑎𝑛𝑔𝑒(𝑃 ′)

end for

For example in Figure 4.2 the property :hasTonicChord needs the prop-

erty chain :hasTonicNote∘inverse(chord:root), which states that a tonic

chord is a chord whose root is the same as the scale’s root, to be inferred in or-

der to allow the correct rolification of its sub-properties, such as :hasIonianTonicChord.

Furthermore, :hasIonianTonicChord needs to define proper domain and

range axioms, in this case respectively :IonianModeScale and mto:MajorTriad.

The algorithm has linear complexity 𝑂(|𝑃 |), since we loop through every
property only once. An exponentially complex reasoning profile is required,

since we might need to infer the inverse of object properties, represented by

the OWL-DL reasoning profile [109]. Some reasoners, however, allow the

inference of inverse properties even when using more efficient profiles, such

as OWL-EL.

The final ontology is automatically generated by using the music21 library

[34] to retrieve the association between a modal scales and its notes. Algo-

rithm 1 is used to rolify the classes that represent a mode. A total of 6344
axioms are implemented in the ontology.

4.3 Modal Harmony Knowledge Graph

Given the ontology presented in Section 4.2, we populate a Knowledge Graph

(KG) by converting a corpus of chords in a notation compatible with the ex-

tended version of the Music Theory Ontology and further classify the chords
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using the ontology developed in Section 4.2.

The entities of the KG are extracted from ChoCo [36]. We load all the

chord entities along with the relevant ontologies in Stardog 2 to obtain the

classification results of each chord. Stardog is used because of its efficient

implementation of the EL reasoning profile [135], which allows a complete

usage of the reasoning requirements defined in Section 4.2.

A total of 7651 chords individuals are contained by the KG, which allows
to answer the competency questions formulated in Section 4.2 by using the

following SPARQL queries:

PREFIX mto: <http://purl.org/ontology/mto/>

PREFIX : <http://theory -of-modal -harmony -ontology/>

SELECT ?note

WHERE {

:CSharp_IonianModeScale mto:hasNote ?note .

}

Listing 4.5: SPARQL query for the competency questionWhich are the notes

in mode? using the Ionian mode in 𝐶♯.

2https://www.stardog.com/

https://www.stardog.com/


4.3 Modal Harmony Knowledge Graph 45

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX mto: <http://purl.org/ontology/mto/>

PREFIX : <http://theory -of-modal -harmony -ontology/>

SELECT ?note ?role

WHERE {

:CSharp_IonianModeScale ?rolePred ?note .

?rolePred rdfs:subPropertyOf mto:hasNote ;

rdfs:label ?role .

}

Listing 4.6: SPARQL query for the competency questionWhich is the role of

a note in a mode? using the Ionian mode in 𝐶♯.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX mto: <http://purl.org/ontology/mto/>

PREFIX mto-kb: <http://purl.org/ontology/mto/kb/>

PREFIX : <http://theory -of-modal -harmony -ontology/>

SELECT DISTINCT ?scale ?role

WHERE {

?scale ?rolePred mto-kb:C .

?rolePred rdfs:subPropertyOf mto:hasNote ;

rdfs:label ?role .

FILTER (?rolePred != mto:hasNote) .

}

Listing 4.7: SPARQL query for the competency question In which role can a

note be classified in? using the Ionian mode in 𝐶♯.
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PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX : <http://theory -of-modal -harmony -ontology/>

SELECT ?chord

WHERE {

:CSharp_IonianModeScale :hasChord [ rdfs:label ?chord ] .

}

Listing 4.8: SPARQL query for the competency questionWhich chords are in

a mode? using the Ionian mode in 𝐶♯.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX chord: <http://purl.org/ontology/chord/>

SELECT DISTINCT ?role

WHERE {

[] ?pred [ a chord:Chord ; rdfs:label "C:maj" ] .

?pred rdfs:subPropertyOf fho:hasChord ;

rdfs:label ?role .

}

Listing 4.9: SPARQL query for the competency question Which role are

absolved by a chord? using a C:maj chord.
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PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX : <http://theory -of-modal -harmony -ontology/>

SELECT DISTINCT ?chord

WHERE {

[] :hasLocrianTonicChord [ rdfs:label ?chord ] .

}

Listing 4.10: SPARQL query for the competency question Which are the

chords that absolve a role? using the Locrian tonic role.

The presented SPARQL queries provide an empirical evidence that it is

possible to accurately formalize and encode music theories, as addressed in

RQ1 of Chapter 1 - namely Is it possible to formalize and encode music theo-

ries in an accurate form?.

4.3.1 Roman Notation inference using SPARQL query

A number of tasks, relevant to MIR, can be addressed using the presented

knowledge graph. One of those is the inference of RomanNotation [144] from

a sequence of chords. Roman chord notation is a chord notation tighly related

to the functional analysis of the harmonic progression of a composition. In

its most basic form, given a reference scale such as the C major scale, each

chord is represented by the degree of its root note in the reference scale. The

degree is encoded using the roman numeral representation (e.g. degree 7 is

represented ad VII).

In Listing 4.11 the SPARQL query to perform such task is reported for

the chord progression C:maj - G:maj - A:min - F:maj, a very common chord

progression in pop music 3 usually annotated as I - V - vi - IV.

The query retrieves scale to which each chord belongs to and convert its
3See https://en.wikipedia.org/wiki/I–V–vi–IV_progression for an extensive

list of songs using the same progression.

https://en.wikipedia.org/wiki/I–V–vi–IV_progression
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role in Roman Notation, which is one of the annotations provided in the on-

tology. It may happen that a scale contains only a subset of the notes in the

progression. In that case the query might result in a partial annotation of the

sequence. In Table 4.1 the result of query 4.11 is described. Partial annota-

tions have been manually removed. The traditional I - V - vi - IV annotation

is correctly retrieved by the query, alongside many other annotations. Each of

this can be seen as a different way to musically interpret the chord sequence

and are a useful tool for trained musicians, both in the composition and the

improvisation phase [84].
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PREFIX mto: <http://purl.org/ontology/mto/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX : <http://theory -of-modal -harmony -ontology/>

SELECT DISTINCT ?scaleLabel (GROUP_CONCAT(DISTINCT ?

chordRoman; SEPARATOR=" ") AS ?p)

WHERE {

{ ?chord rdfs:label "C:maj" } UNION

{ ?chord rdfs:label "G:maj" } UNION

{ ?chord rdfs:label "A:min" } UNION

{ ?chord rdfs:label "F:maj" }

?scale ?scaleChordPred ?chord ;

rdfs:label ?scaleLabel .

?scaleChordPred rdfs:subPropertyOf :hasChord .

FILTER(?scaleChordPred != :hasChord) .

BIND(IRI(CONCAT(STR(mto:), REPLACE(REPLACE(STRAFTER(STR(?

scaleChordPred), STR(:)), "has", ""), "Chord", "")))

AS ?chordRole) .

?chordRole skos:altLabel ?chordRoman .

}

GROUP BY ?scaleLabel

Listing 4.11: SPARQL query for the competency question Which are the

possible Roman Notation interpretation of a chord progression?

The task of notating chords in Roman Notation can be achieved with the

music21 library as well [34]. When using music21, however, a prior knowl-

edge of the reference scale within which the progression should be interpreted

needs to be explicitly provided. Using a query similar to the one in Listing 4.11
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Scale Roman annotation

F Lydian Mode V ii iii I
D Dorian Mode °vii IV V iii
A Aeolian Mode iii °vii I vi
F♯ Minor Scale iii °vii I vi
G Dorian Mode IV ii °vii
G Mixolydian Mode IV I ii °vii
E Phrygian Mode vi iii IV ii
B Locrian Mode ii vi °vii V
C Ionian Mode I V vi IV
C Major Scale I V vi IV

Table 4.1: Roman text annotation of the chord progression C:maj - G:maj -
A:min - F:maj

does not require any additional information besides the chord progression it-

self. More complete methods have been proposed in literature to perform the

same task [19, 103]. The recognition of complex roman notations, such as

parallel chords [9], are taken into account by such methods while the query in

Listing 4.11 can only handle simple notations and should be seen as a proof of

concept of applying the KG to the roman annotation task. We claim, however,

that by extending the presented query into a proper annotation system it would

be possible to obtain a method that is directly comparable to the related works.

We will investigate this option in future works.



Chapter 5

Chord Embedding

The current section describes in detail all the techniques that we used to com-

pute chord embeddings as well as the experiments that we performed to test

which one is better suited for the task. We tackled the problem of encod-

ing a chord from three different angles, described respectively in Section 5.2,

Section 5.3, and Section 5.4. In particular, in Section 5.2 we encode a chord

using its syntactical level. This is an important aspect since, when music is

transcribed by experts, the choice of chord naming is the result of a meticulous

analysis. The subjectivity of an annotator, its musical proficiency, and instru-

mental preferences represents an important aspect in the annotation process

[74] which needs to be taken into account when approaching musical sym-

bolic notations. In Section 5.3 we encode a chord by taking into consideration

its intensional aspect: the notes that it is composed of. Similar works, such

as chord2vec [93] showed that more advanced representations, based on the

notes that form a chord, are a prerequisite for obtaining accurate results. In

Section 5.4 a chord is encoded using the ontologyKnowledge Graph presented

in Chapter 4. This allows the representation to encode the knowledge mod-

eled by the graph, with the result of an embedding that directly reflects music

theory. In Section 5.5 we combine the embeddings presented in the previous

sections using meta-embedding techniques. This results in a representation
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that is jointly able to model different aspects of a chord while retaining a sim-

ple and flexible methodology. Throughout the whole chapter, we evaluate the

embeddings using the methodology described in Section 5.1.

Implementation details All the models are trained using an NVIDIA RTX

3090 on a set of ≈ 16000 chord progressions (with a total number of over 1𝑀
chord instances), taken from the Chord Corpus (ChoCo) dataset [36]. ChoCo

is a chord dataset consisting of more than 20000 tracks taken from 18 different
professionally curated datasets. All datasets have been parsed in JAMS [69]

format and converted in Harte notation [64].

5.1 Evaluation method

Section 5.1 addresses the problem of evaluating the quality of chord represen-

tation methods, as proposed in the research question 2 of Section 1 - namely

How can we assess the quality of chord representation methods?. The evalua-

tion phase is a delicate and crucial step in the development of embeddings, in

particular in those situations in which a low-resource language is being mod-

eled. That is when few reliable resources are available, such as in the sym-

bolic music domain. Embeddings are traditionally evaluated following two

methodologies: intrinsic evaluation and extrinsic evaluation [4]. The most

common approach is the extrinsic evaluation: in order to assess their gener-

alization capability embeddings are evaluated in a pragmatic way, such as in

classification problems or in general in downstream tasks. We perform such

evaluation in Chapter 6. Throughout this whole chapter, we evaluate models

based on intrinsic evaluation. In particular, we use the Odd One Out metric

proposed in [139].

Simply put, the Odd One Out metric takes as input a set of chords 𝐶 and

a chord ̂𝑐 ∉ 𝐶. A random number of chords 𝑘 is sampled from 𝐶 and the

average of the embeddings 𝜇𝑘 is computed. If the similarity between the chord
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̂𝑐 and 𝜇𝑘 is smaller than the similarity of each element of 𝐶 with 𝜇𝑘 then the

embedding is able to recognize that ̂𝑐 does not belong to the initial set of chords
𝐶. Formally we say that

OddOneOut(𝐶, 𝑐) = 𝟙[𝑐 = ̂𝑐]

with

̂𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝐶∪{𝑐}
𝑥 ⋅ 𝜇

||𝑥||||𝜇||
and

𝜇𝑘 = 1
𝑘 + 1(𝑐 +

𝑘
∑
𝑖=1

𝑐𝑖

, with 𝑐𝑖 ∈ 𝐶. By relying on multiple sets 𝐶, we are able to approximate the

accuracy of the embedding method with respect to a given classification.

The classification is performed using the Knowledge Graph described in

Chapter 4. In particular, we consider 10 sets 𝐶 by randomly sampling scales

and the corresponding chord functions from the KG. We build two different

evaluating sets, one which is used to assess the accuracy of the model with

respect to the Tonal theory and one with respect to the Modal theory. We

evaluate all the models using the Tonal theory test set and the best models are

then tested on the Modal theory set as well. We set 𝑘 = 4 and perform 1000
runs for each set 𝐶, as suggested in [139]. The categories are listed in Table

5.1.

We can define a simple baseline score that assigns a random similarity

score to each couple of chords, which results in an Odd One Out accuracy 𝑎𝑐𝑐
of 𝔼[𝑎𝑐𝑐] = 1

5 = 0.2.

5.2 Syntactically based embeddings

As already mentioned, the way a chord is labeled, that is the name that an ex-

pert decides to give to a chord, is sometimes as important as the chord itself.
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Tonal theory set Modal theory set

V Aeolian in C♯♯/D/E♭♭ VII Locrian in A♯♯/B/C♭
V Aeolian in E♯/F/G♭♭ III Dorian in A♯/B♭/C♭♭
VII Aeolian in D♯♯/E/F♭ III Dorian in D♯♯/E/F♭
III Ionian in A♭/G♯ III Locrian in A♭/G♯

IV Aeolian in B♯/C/D♭♭ III Phrygian in B♯/C/D♭♭
VI Aeolian in A♭/G♯ IV Aeolian in E♯/F/G♭♭

VI Aeolian in B♯/C/D♭♭ IV Phrygian in A♯/B♭/C♭♭
VI Ionian in A♯/B♭/C♭♭ VI Aeolian in A♭/G♯
I Aeolian in A/B♭♭/G♯♯ II Dorian in A♯/B♭/C♭♭
I Aeolian in B♯♯/C♯/D♭ I Phrygian in D♯♯/E/F♭

Table 5.1: Categories used to evaluate embeddings.

The name of a chord conveys the overall idea that the composer, or the an-

notator, has of the entire harmonic progression. One popular example is the

so-called Tristan chord fromWagner’s Tristan Prelud, which has been widely

analyzed over the course of the last century [95] and is still an open discussion

in the musicological field.

More generally, all chords have a set of enharmonic chords: identical

chords in terms of note content that are annotated using a different label. This

is closely related to the concepts of hyponymy and hypernymy in the linguis-

tics field. A word 𝑤1 is the hypernym of a word 𝑤2 (respectively 𝑤2 is a

hyponymy of 𝑤1) if the semantic relation between the two terms can be con-

ceptualized as an is-a relation [54]. In the musical field, the set of notes that

compose a chord can be considered as the hypernym of the different labels

that can be assigned to that chord. It is the context in which the chord appears

that the most appropriate label is determined, i.e. its hyponym in the linguistic

analogy. In the current section, we do not take into consideration the context

in which a chord appears - all chords that are labeled in the same way act as

synonyms.

In [2] the authors show how using a method based on word2vec [104],

embeddings based on the label of a chord are able to correctly encapsulate
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musical knowledge. The encoding is used on two different tasks: chord clus-

tering and log-likelihood estimation. The log-likelihood estimation task is

used to investigate the historical harmonic style of different composers, which

strongly correlates with current musicological knowledge. For instance, the

model finds it difficult to predict chords from artists that make sporadic use

of common harmonic progression. The chord clustering task, on the other

hand, highlights how it’s possible to observe similarities between functionally

equivalent chords (chords that share notes with each other) and a well-defined

difference between functionally different chords. Continuous word represen-

tations are hence adequate to encode chords in the first place, and more impor-

tantly, they are able to autonomously internalize relationships that have been

previously observed by domain experts.

The main issue with such an approach, however, is that a comprehensive

set of chords needs to be analyzed. The problem of out-of-vocabulary terms,

i.e. terms that are not part of the training set of the embedding method, is a sig-

nificant issue in the musical domain. Take for instance the case of modulation,

which is the technique in which a harmonic progression changes its musical

key. Modulation is generally performed through the use of the so-called pivot

chords [9]. If such a chord were to be hidden from a musicologist, it would

be harder to analyze the harmonic progression and the overall tune would be

interpreted in a radically different way: “Modulation is the essential part of

the art. Without it there is little music.” [52].

For this very reason, we use fasttext [13] instead of using word2vec. When

computing the representation of aword, none of itsmorphological components

are taken into account. Let us take for instance two morphologically similar

words, house and housing. Their computation does not share any common

element and the final representation of the words is not influenced by their

similarities. Fasttext was presented as a solution to this issue and has proven

to be more effective in the representation of a word. The novel aspect is in the

way representations are computed. At first, the n-grams that compose a word
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are extracted. For each n-gram a continuous vector representation is com-

puted, using the same methodology as word2vec. The representation of the

original words is finally obtained as the sum of its n-gram components. Using

this technique, the final representation of a word is conditioned by its morpho-

logical structure. When two words share one or more n-grams their vectors is

the sum of at least one common element, which induce a similarity bias in both

vectors. It is easy to see how that approach compensates for out-of-vocabulary

terms: when using word2vec, out-of-vocabulary terms need to be represented

as static vectors, randomly sampled from a normal distribution for example.

Fasttext, instead, is able to compute the representation in a meaningful way,

given that at least one of the n-grams in the out-of-vocabulary term is part of

the training corpus. Figure 5.1 shows a visual comparison between word2vec

(Figure 5.1a) and fasttext (Figure 5.1b).

(a) word2vec (b) fasttext

Figure 5.1: Word2vec (a) and fasttext (b) embeddingmethods. Withword2vec
each embedding is computed independently of its morphological structure.
Fasttext instead compute the representation as the sum of the n-grams that
compose a word. Words that share one or more n-grams have a similar repre-
sentation as they are computed in a similar way. In the example, 2-grams are
represented but in general n-grams up to the length of the term are commonly
used.
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5.2.1 Experiments

In this section, we describe the experiments performed using fasttext. As

proven in [21], hyperparameters are an important aspect that needs to be taken

into consideration when training embeddings. We tested a wide range of hy-

perparameters, summarized in Table 5.3. In Table 5.2 the best configuration

found is reported.

Context
window

Embedding
dimension

Training
epochs

Negative
samples

Accuracy

2 100 5 5 0.477

Table 5.2: Fasttext best model

Parameter Values

Context window 2, 3, 5, ∞
Negative samples 5, 20
Embedding dimension 50, 100, 150, 200
Training epochs 1, 5

Table 5.3: Hyperparameters tested on fasttext model

Context window -0.718364
Embedding dimension 0.307366
Training epochs 0.005743
Negative samples -0.014698

Table 5.4: Pearson correlation between the hyper-parameters of Table 5.3 and
the accuracy measure.

In Table 5.4 the Pearson correlation between the hyper-parameters of Table

5.3 and the accuracy measure is described. The embedding dimension and the

context window are the most important parameters. Surprisingly, the context

window is negatively correlated with the accuracy measure as can also be seen

in Figure 5.2a. The model is able to encapsulate the functional property of a

chord by only relying on close neighbors. Indeed, each chord’s function is

mainly determined by its neighboring chords rather than distant chords [9].
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Using bigger window sizes directly results in longer training time as well, as

can be seen from Figure 5.2b. This aspect discourages the use of a high-value

of such a parameter.

(a) Violin plot on the importance of context size
(x axis) with respect to accuracy (y axis).

(b) Time taken in seconds (y
axis, log scale) to train em-
beddings as function of the
window size (x axis).

Figure 5.2: Impact of window size in training embeddings with fasttext

Using a bigger embedding dimension is mildly correlated with higher ac-

curacy. The impact of such hyperparameter in the final accuracy is less pro-

nounced, as can be seen from Figure 5.3.

Figure 5.3: Violin plot on the importance of embedding dimension (x) with
respect to accuracy (y). Accuracy is expressed as the percentage difference
from the best result.
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5.3 Chords are set of related notes

As shown in Section 5.2, encoding chords using their syntactical form is suffi-

cient to obtain a model that is able to encapsulate important musical features.

In Section 2.1 of Chapter 2, and in Section 5.2, we stated that chords are es-

sentially an ordered list of notes.

This is a fundamental aspect and plays a major role in every musicologi-

cal analysis of the harmonic structure of a piece. In Section 5.2 we compared

the set of notes in a chord and its label to the concept of hypernym-hyponym

relation in the linguistics domain. A similar approach that deals with the set

of notes that compose a chord has been introduced in the mid-60s, with the

name of pitch-class set theory [49]. Initially designed to model atonal music

(music that does not make use of the traditional western music Tonal theory),

it represents one important tool in musicological analysis and has been exten-

sively used to analyze tonal compositions [50], derive geometric representa-

tions of chords [130] and similarity functions between chords [108]. To fully

grasp such an approach a deep understanding of musical theory is required.

By means of over-simplification, one can essentially consider the pitch-class

set theory as a method that models similarity and relations between chords

through the use of set theory. This is done by defining transformations be-

tween sets and providing an extensive classification of the most common sets

that emerge in music. Such sets are composed of the common western notes,

in the case of tonal music. More generally, one can consider an arbitrary num-

ber of notes, without the restriction of the traditional ET system (Section 2.1),

and use numerical notation as elements of the set. For instance, take the chord

C:maj, composed of the notesC, E, G. The pitch-class of such chord is defined

as 𝑝𝑐(C:maj) = {C, E, G} = {0, 4, 7}.
It is easy to see why such a method is better suited at modeling chords

information when compared to using naming information, through the use of

a very simple example: suppose that given two chords, C:6 and A:min7, one
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wants to analyse the similarity between the two chords. From a syntactical

point of view, both chords are completely different. Their root note, C and A,

are completely different as well as their quality, 6th and minor 7th. If we take

into account their pitch-class sets it is easier to draw a connection between the

two: 𝑝𝑐(C:maj) = {C, E, G, A} = 𝑝𝑐(A:min7).

5.3.1 chord2vec

In chord2vec [93] the notion of pitch-class is used to encode chords - each

chord is represented by using the set of notes that it is composed of. Chord2vec

is inspired by word2vec where chords are represented by the notes that they

are composed of rather than their label. For instance, this approach allows the

model to represent bothC:6 and A:min7 as the same exact entity since they are

composed of the same exact set of notes. We re-implemented such a method

to test its accuracy on the evaluation methodology described in Section 5.1. A

detailed description of the results is presented in Section 5.3.6.

Even though chord2vec has been shown to be able to accurately learn

chord representations, we argue that its encoding method could be misleading

when particular chords are represented. The characterization of a chord by us-

ing the set of notes it is composed of, i.e. its pitch-class set, is indeed a deeply

criticized approach in the musicological field [124]. Among other things, one

of the main problems with such an approach is that all the notes that are part

of a chord are treated equally. If one does so, it is common to wrongly clas-

sify fundamentally different chords as similar chords. Take for instance the

previous example, using C:6 and A:min7. Even though both chords share the

same set of notes, the order in which they are played is radically different.

In Figure 5.4 both chords are visually represented using musical notation.

It is clear from such a representation how the order in which the notes appear

changes the chord and consequently its final perceived sound. When using

the approach described by chord2vec, this kind of characterization is not taken
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Figure 5.4: C:6 and A:min7 symbolic representation. Connections between
the same notes are drawn (C in red, E in green, G in blue, A in yellow)

into account. In order to improve upon this issue, we propose a novel encoding

method based on the intervals of a chord.

5.3.2 pitchclass2vec

Rather than representing a chord by its pitch-class set, we use the ordered

pitch-class set of a chord, which takes into account the order in which the

notes are played in the chord. This approach has been explored before in the

musicological domain [22] as a way to contextualize the pitch-class set theory

with other relevant theories in the musical domain. We refer to this method

from here on as pitchclass2vec.

Given a chord 𝑐 composed of a set of notes 𝒞 ⊂ 𝒩, with 𝒩 the set of all

notes and 𝐶 the pitch-class of the chord, we encode 𝑐 as the Cartesian product
ℐ𝑐 = root𝑐 × 𝒞𝑐 between the root note of the chord root𝑐 and the pitch-class

of the chord 𝒞𝑐. The vectorial representation of the chord is obtained by using

the same method as fasttext [13], given u𝑐 the vector representation of the

chord 𝑐, we have that
u𝑐 = ∑

𝑖∈ℐ𝑐

u𝑖

where u𝑖 is the vector representation of the tuple 𝑥𝑖 ∈ ℐ𝑐. This formalization

can be seen as an extension of the chord2vec [93] method, in which the chord’s

inner structure is taken into consideration as well.

In Figure 5.5 a visual reference on how pitchclass2vec handles the above-

mentioned situation is presented, in particular in Figure 5.5a two chords that
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(a) C:maj and C:maj9 chord embed-
dings. The vectorial representation is
computed from common elements and
shares some aspects from both the source
components.

(b) C:dim and Eb:dim chord embed-
dings. Both chords are composed of the
same notes but use mostly different com-
ponents.

Figure 5.5: Visual reference on how the pitchclass2vec embedding method
handles chords with a similar set of notes (represented above the chord name).

share a similar set of intervals are computed from common components while

in Figure 5.5b two chords that are composed of the same set of notes but a

different set of intervals are computed starting from mostly different compo-

nents.

5.3.3 intervals2vec

The encoding presented in Section 5.3.2 is theoretically sound from a mu-

sicological perspective. One might argue, however, that the restriction im-

posed in the modeling phase, namely the representation of a chord as the sum

of the interval vectors between the root note and the other notes, might un-

necessary bias the model. To further test this option we define an extension of

pitchclass2vec, called intervals2vec, in which the vectorial representation of a

chord is obtained through the combination of the intervals between the notes

in the chord. More formally, a chord 𝑐 is encoded as the Cartesian product

ℐ𝑐 = 𝒞𝑐 × 𝒞𝑐, where 𝒞𝑐 is the pitch-class set of 𝑐.
In Figure 5.6 a visual comparison between the three methods is presented.
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Figure 5.6: Visual comparison between the note-based embedding methods.

5.3.4 Duration-based loss scaling

An important aspect that we ignored in the previous modeling phase the dura-

tion of chords, which has been shown to be an important piece of information

that, when taken into account, results in better MIR systems [122, 75, 123].

Chord embeddings can benefit from such information as well. It has been

shown that harmonic cognition - the perception of hierarchical structures in a

chord progression - is conditioned by the duration of a chord [79, 11]. Fur-

thermore, given the fact that the learning process is based on the Distributional

Hypothesis [132], taking into account the duration of a chord can help mitigate

noise in a harmonic progression. For instance, it is common for composers to

use passage chords, chords that are harmonically unrelated to their neighbors,

as a way to add expressiveness to their composition [68, 150, 137]. It is rea-

sonable to assume that such chords have a short duration, or else they would

defy the definition of passage chord in the first place. In this section, wemodel

the embedding training procedure to reduce the importance of such chords and

treat them as edge-cases.
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The dataset used to train the embeddings, ChoCo [36], provides the dura-

tion of each chord alongside the symbolic annotation. The encoding of the du-

ration, however, is not consistent between data samples: music pieces whose

annotation has been performed starting from an audio source express durations

in seconds, while annotations extracted from music scores express durations

in musical terms. Given this limitation, we use the raw duration, regardless

of its source, as a measure of how important a sample should be weighted

when optimizing the loss function of the model. In particular, we re-scale

each duration to be in the range [0, 1] composition-wise. Even though this is
an approximation of the actual duration of a chord, it gives a consistent mea-

sure between different samples. The final loss function for a single sample is

hence

𝑙𝑜𝑠𝑠 = −𝑑((𝑦 log( ̂𝑦) + (1 − 𝑦) log(1 − ̂𝑦)))

where 𝑑 is the duration of the neighboring sample.

When sampling negative examples (see Section 2.4) we sample duration

values from a Gaussian distribution whose mean and standard deviation is

computed from the piece’s durations. This approach can be considered as

adding a random chord in a musical composition whose duration is similar to

the duration of the other chords. Using a Gaussian distribution allows samples

to be coherent with the actual distribution of the durations of each composition.

See Figure 5.7 for a plot of the normalized distributions on the whole dataset.

5.3.5 Interval weighting

The underlying intuition in the proposed models is that, in order to accurately

represent a chord, the relation between its constituent notes should be taken

into account rather than isolated notes. In Figure 5.8 the distribution of inter-

vals in the KG produced in Chapter 4 is shown.

The distribution of intervals follows a Zipf power-law [112]. Even though
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Figure 5.7: Distribution of the durations of each chord in the dataset. Each
duration has been normalized to be in the range [0, 1] composition-wise.

Figure 5.8: Distribution of the intervals in the KG

this does not directly imply that an interval should be more or less important

than others, it is reasonable to assume that some intervals should be treated

differently than others. Embedding techniques based on structural compo-

nents have proven to be effective in other settings, such as modeling natural

languages whose vocabulary is formed of idioms that can be composed to

form new terms [149]. To better exploit the structure of a chord we extend

our embedding method such that, instead of summing the representation of

each interval, we perform a weighted sum. The weights of each interval are

additional parameters that are going to be jointly learned with the embeddings.

We employ two different formalisations: global and contextual weighting.

With global weighting, we assign to each interval a corresponding weight such
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that intervals are considered coherently between different chords. With con-

textual weighting, we suppose that the importance of each interval depends

on the presence (or absence) of other intervals as well. This follows from

a simple intuition: take for instance the chords C:maj, C:maj7 and C:maj9,

whose notes are respectively {𝐶, 𝐸, 𝐺}, {𝐶, 𝐸, 𝐺, 𝐵} and {𝐶, 𝐸, 𝐺, 𝐵, 𝐷}.
The interval (𝐶, 𝐵) is crucial to be able to distinguish between a C:maj and
a C:maj9, however, the same interval is less expressive when compared to a

C:maj7 or a C:maj9, where it is the (𝐶, 𝐷) interval the most informative one.
We obtain such a context-aware interval weighting schema by computing the

weight of each interval through the use of a bidirectional LSTM layer, which

outputs a value in the range [0, 1].

5.3.6 Experiments

This section is divided as follows:

1. in the first part, a set of identical experiments to identify the most in-

fluential hyper-parameters is performed on each encoding method pre-

sented at the beginning of this chapter and summarised in Figure 5.6;

2. in the second part the best set of hyper-parameters are tested using the

models described in Section 5.3.4 and Section 5.3.5.

All the experiments follow the same methodology used in Section 5.2.1.

Hyper-parameter tuning

We perform an extensive set of tests on each embedding method to evaluate

the relevance of each hyper-parameter on the accuracy of the embeddings,

similarly to what we do in Section 5.2.1.

In Table 1 5.5 the search space for each parameter is defined. We make

use of a lower embedding dimension when compared to the experiment of

Section 5.2.1 for a simple reason: the number of possible terms that need
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Parameter Values

Context window 2, 3, 5, ∞
Negative samples 5, 20
Embedding dimension 1, 2, 5, 10
Training epochs 1, 5
Combination method sum, mean

Table 5.5: Hyperparameters tested on the chord2vec, pitchclass2vec and in-
tervals2vec encoding methods

to be embedded when using a method based on chord notes is at most 212

since a chord can be composed of at most 12 different notes. This is a much

smaller vocabulary than the one of Section 5.2, which contains the n-grams

of every chord in the dataset. We suppose that the amount of information that

needs to be learned by the embeddings is smaller, hence the use of a smaller

embedding dimension. Nonetheless, we test bigger embeddings, which result

in more expressive models, in Section 5.3.6 using the best set of parameters

identified in the current Section, to assess whether this hypothesis holds.

Parameter chord2vec pitchclass2vec intervals2vec

Context window 3 ∞ 5
Negative samples 20 5 5
Embedding dimension 10 5 5
Epochs 5 5 1
Combination method sum sum
Accuracy 0.2197 0.5386 0.4355

Table 5.6: Best hyperparameters for chord2vec, pitchclass2vec and inter-
vals2vec

In Table 5.6 the best hyper-parameters for each method are described.

Pitchclass2vec outperforms both intervals2vec and chord2vec embeddings in

the accuracy score. Using a subset of all the available intervals results in much

more accurate embeddings when compared to the usage of all the notes or of

all the intervals. We can confidently say that a method based on intervals,

such as pitchclass2vec or intervals2vec, is far more suited than the chord2vec

method when encoding musical chords. The same might not be true when
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comparing pitchclass2vec and intervals2vec since, indeed, the amount of in-

formation they are encoding is different and hence the restriction imposed on

the embedding dimension could be harmful. We better investigate this aspect

in Section 5.3.6.

chord2vec intervals2vec pitchclass2vec

Context window 0.029333 -0.008908 -0.048394
Negative samples -0.010442 -0.007299 -0.005596
Embedding dimension 0.985730 0.773704 0.732459
Epochs 0.005528 -0.004935 -0.002536

Table 5.7: Pearson correlation between parameters of Table 5.5 and model
accuracy

In Table 5.7 the Pearson correlation between the parameters described in

Table 5.5 and the model accuracy are described. Similarly to what has been

observed in Section 5.2.1, the embedding dimension ranks as the most in-

fluential parameter regardless of the analyzed model. Indeed, the correlation

between accuracy and embedding dimension is ≥ 0.7 for all the models: in-

creasing the embedding dimension does generally improve the accuracy and

expressiveness of the model. Using an embedding dimension of 5, however,
performs slightly better than 10 in both pitchclass2vec and intervals2vec, as

can be seen in Figure 5.9.

Interestingly the context window is irrelevant when modeling chord se-

quences. In Figure 5.10 the distribution of the accuracy is compared between

each context size, for both pitchclass2vec and intervals2vec. All the context

windows within the same encoding method share a similar accuracy: the con-

text window parameter have a low influence on the accuracy of the model.

Besides, we can see from the same Figure how pitchclass2vec is, on aver-

age, more accurate than intervals2vec since the distribution of such a model

is skewed to the right.
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Figure 5.9: Violin plots on the importance of embedding dimension (x axis)
with respect to accuracy (y axis). Accuracy is expressed as the percentage
difference from the best result.

Figure 5.10: Relevance of the context window on the accuracy. Each context
window is plotted separately, accuracy is on the y axis. Pitchclass2vec are the
blue lines, intervals2vec the orange ones.



5.3 Chords are set of related notes 70

intervals2vec pitchclass2vec

Context window 0.092977 0.068643
Embedding dimension 0.520061 0.606784
Epochs -0.003870 -0.001938

Table 5.8: Pearson correlation between larger embedding dimension and ac-
curacy

Bigger embedding dimension

As seen in Table 5.7, the embedding dimension parameter is the one with the

higher correlation with an accurate model. To better investigate this aspect we

train both pitchclass2vec and intervals2vec using a larger embedding dimen-

sion: [12, 50, 150, 200] dimensional vectors.
The Pearson correlation between accuracy and larger embedding dimen-

sion is reported in Table 5.8. Both models are positively correlated with the

embedding dimension. A bigger embedding dimension does result in more ac-

curate representations. On the other hand, a low correlation with the context

window size confirms the fact that when chord embeddings are trained with a

note-based encoding, a bigger context size can be avoided, which results in a

faster training process as well.

Figure 5.11: Accuracy as a function of the embedding dimension, compared
between pitchclass2vec and intervals2vec.

In Figure 5.11 the best model for each embedding dimension is devised.
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The accuracy is averaged over the different combinations of parameters that

are tested and the 95% confidence interval is pictured as shaded color. We can

see that, as long as a large embedding dimension is used, the context window

dimension becomes less influential. Regardless of the choice of the param-

eters, pitchclass2vec always outperforms intervals2vec, with nearly 20% of

difference using the best model.

Model Context
window

Dimension Epochs Negative
samples

Accuracy

intervals2vec ∞ 150.0 5 20.0 0.5374
pitchclass2vec 5.0 150.0 1 20.0 0.7338

Table 5.9: Best models obtained with larger embedding dimension.

In Table 5.9 the best results for each model are described. The most accu-

rate model, pitchclass2vec with an embedding dimension of 150, only requires
one training epoch and a small context window to obtain an accurate repre-

sentation. Conversely, intervals2vec requires an infinite context window that,

alongside less accurate embeddings, results in a less computationally efficient

model during the training phase.

Scaled loss

Given the results of the previous Section, we only analyze if using chord

durations does result in more accurate chord representation using the pitch-

class2vec encoding method.

Training epochs Accuracy

50 0.7324
20 0.7324
15 0.7324
1 0.7324
5 0.7323

Accuracy without loss scaling 0.7333

Table 5.10: Result of using a scaled loss with pitchclass2vec encodingmethod.
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In Table 5.10 the results of scaling the loss function using chord durations

do not seem to have any beneficial effect on getting a more accurate model.

Even though the lack of coherent information in the used dataset does not

allow a correct usage of chord durations, we argue that the consideration of

Section 5.3.4 are still valid and would result in a more accurate embedding

method once chord durations will be available in a coherent form.

Weighting intervals

Model Training epochs Hidden size Accuracy

pitchclass2vec baseline 0.7333
pitchclass2vec fixed 50 0.7538
pitchclass2vec contextual 5 5 0.7424

intervals2vec baseline 0.5374
intervals2vec fixed 1 0.5372
intervals2vec contextual 5 50 0.5393

Table 5.11: Results obtained by weighting intervals.

In Table 5.11 the best results of the embedding using intervals weighting

are reported. We test both the pitchclass2vec and intervals2vec embedding

methods. Even though intervals2vec proved to be a sub-optimal representa-

tion when compared to pitchclass2vec, we argue that this difference might

be leveled by using a specific interval weighting schema. Indeed, the inter-

vals2vec method can be seen as a generalization of the pitchclass2vec method:

we obtain a method equivalent to pitchclass2vec by assigning a weight of 0 to
each interval whose first element is not the root note.

Learning the weighting schema allows the exploration of an interval com-

bination that can potentially outperform pitchclass2vec.

The results in Table 5.11, however, denies that possibility. Regardless

of the weighting schema, intervals2vec is not able to fill the gap with pitch-

class2vec. On the other hand, an additional weighting schema on pitchclass2vec

results in a more accurate model.
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Surprisingly, the fixed approach outperforms the contextual approach. We

will analyze such learned weights in future works, to check for correspon-

dences with musicological knowledge, such as if the learned weights corre-

lates with consonance and dissonance defined in other works [58].

5.4 Music Knowledge-based embeddings

This Section describes an orthogonal method compared to the ones of Section

5.2 and Section 5.3. The common ground between both approaches is based

on the Distributional Hypothesis [132] and is the theoretical basis for what has

been a complete revolution in the field of natural language processing [30].

Such an approach, however, has been shown to only capture a limited se-

mantics of words [131]. Knowledge-based approaches tackle the problem of

defining the representation of a term from a different point of view. The focus

is on the identification of an intensional description that characterizes a term.

Knowledge bases like WordNet [105] or FrameNet [5] have been proposed as

models of natural language based on linguistic knowledge. Given the contin-

uous evolution in the usage of the natural language, it is difficult to settle on

a stable representation. Furthermore, deriving such knowledge bases requires

a deep understanding of the linguistic framework and of the language itself.

We argue that in the music field, this is an easier task to accomplish. Take

for instance the knowledge graph proposed in Section 4.3. The accompany-

ing ontology provides a complete formalization of an important music theory,

that has been critiqued, tested, and refined by expert musicologists over the

span of decades, if not centuries. While music has certainly evolved since the

baroque era, most of its elements are still the same as nowadays. In western

music, the set of notes used to compose music are the same as 500 years ago
throughout all of Europe and in general throughout all those areas that have

been influenced by European culture [9].

A completely knowledge-based approach, however, is still limited by the
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set of technologies available. For instance, building a more complex and con-

strained ontology would probably result in the use of axioms that requires a

complex reasoning process, which is not solvable in an efficient way [109].

This section describes the computation of embeddings based on the knowl-

edge graph described in Section 4.3 with the use of rdf2vec [128]. Rdf2vec is

a method inspired by word2vec, which aims at the translation of a knowledge

graph in a vectorial representation.

This is done by extracting walks between entities in the knowledge graph.

A walk is a sequence of objects and predicates that connects two entities in

a knowledge graph. The elements of this sequence are then converted into

alphanumerical tokens, using their IRI (see Section 2.3) or a user-defined rep-

resentation, and are finally embedded using word2vec.

This method can be seen as the embedding of a verbalized version of the

knowledge graph, in which the sentences are composed of the verbalization of

the nodes in the knowledge graph. Rdf2vec, when compared to similar works

that obtain embeddings of KG using geometrical models [27], has proved to

be able to better encode the concept of similarity and relatedness [129].

5.4.1 Experiments

This Section describes the experiments performed using rdf2vec. We train the

embeddings on the whole knowledge graph implemented in Section 4.3 and

evaluate each experiment using the methodology described in Section 5.1.

Many different walk extraction strategies can be implemented using rdf2vec.

The extraction of walks from a graph is a complex task that can take up to days

in complex settings. This work relies only on random walks since they have

been shown to consistently obtain good representations [129] across different

domains and applications.

In Table 5.12 the hyper-parameters tested are described. Training epochs

refer to the number of epochs used to train the word2vec embeddings. Max
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Parameter Values

Training epochs 1, 10
Max walking depth 4, 10
Max number of walks 2, 5, 10, 50, 100

Table 5.12: Hyperparameters tested on the chord2vec, pitchclass2vec and in-
tervals2vec encoding methods

walking depth is the maximum number of nodes that are spanned by a single

walk while the max number of walks is the number of random walks extracted

from the knowledge graph for each entity that is going to be classified.

Parameter Pearson correlation

Max walking depth 0.058318
Training epochs 0.317552
Max number of walks 0.695166

Table 5.13: Pearson correlation between parameters of Table 5.12 and model
accuracy

In Table 5.13 the Pearson correlation between the hyperparameters of Ta-

ble 5.12 and the accuracy score is described. Surprisingly, the walking depth

does not seem to influence the result as much as the other parameters.

Figure 5.12: Violin plots on the importance of max random walks (x axis)
with respect to accuracy (y axis).

The most important parameter, as can also be seen in Figure 5.12, is the

number of randomwalks extracted. Unsurprisingly, the difference between 50
randomwalks and 100 randomwalks is marginal. This is a direct consequence
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of the structure of the knowledge graph of Chapter 4. Based on the theoretical

considerations of Section 4.1, a chord is part of 84modes in the worst possible
case, since there are at most 12 notes and 7 modes.

Figure 5.13: Distribution of number of roles per chord.

This number is howevermuch lower in practice. In Figure 5.13 the number

of roles for each chord is plotted. The shape of the distributions is a mixture of

two Gaussian distributions: most of the chords have indeed much less than 84
roles. If we take into consideration the distribution of chords in the dataset as

well, it is even more evident that the number of roles for each chord is actually

lower than 10 on average.

Figure 5.14: Distribution of number of roles per chord weighted by the chord
distribution in the dataset.

In Table 5.14 the best set of hyperparameters are described. The evaluation

methodology needs to be taken into account when the results of Table 5.14 are

analyzed. It is clear that the evaluation measure proposed in Section 5.1 might

turn in favor of an embedding method that is tightly based on the same KG
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Epochs Accuracy Max walking depth Max number of walks

10 0.778 10.0 50.0

Table 5.14: Best hyperparameters for the rdf2vec embedding model

used to generate the test set in the first place. In Figure 5.12, however, we can

see that when using an inappropriate hyperparameter setting, the accuracy of

the model drops drastically.

This is a clear sign that the accuracy of this embedding method is not to

be reconducted to a favorable evaluation setting, but rather to an encoding

method that is able to encapsulate an intensional representation of chords that

is not possible under the Distributional Hypothesis.

5.5 Meta-embedding: The Theoretic, the Syntac-

tic and the Semantic

Model Accuracy

Tonal Harmony Modal Harmony

chord2vec 0.2197 0.2517
fasttext 0.4770 0.5839
intervals2vec + RNN weight 0.5393 0.5166
pitchclass2vec + static weight 0.7538 0.6639
rdf2vec 0.7780 0.8145

Table 5.15: Overview of the best trained models.

In Table 5.15 an overview of the best embedding methods is presented

from worst to best accuracy on both the Tonal Harmony evaluation test and

the Modal Harmony evaluation test as well.

All the proposed models outperform the related work proposed in litera-

ture, chord2vec. In particular, the best embeddingmethod is obtained by using

the rdf2vec model, which outperforms significantly all the other embedding

methods in both evaluation tasks.
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Interestingly, the fasttext model performs much better on the Modal Har-

mony task than on the Tonal Harmony task. The opposite happens with pitch-

class2vec, which is less accurate on the Modal Harmony task. As already

described in previous sections, each embedding method is radically different

from the others and there might be some particular pieces of information that

are better represented by one model with respect to the others.

In order to exploit the best aspect of each embedding method, in this

section we combine the most accurate embedding methods, using the meta-

embedding [14] technique.

A meta-embedding is the combination of different pre-trained embedding

methods to obtain more accurate embeddings. In principle, a meta-embedding

is able to exploit the knowledge encoded in embeddings trained using different

techniques or different data sources.

Many different meta-embedding techniques have been proposed, from the

simple concatenation of the vectors to the usage of autoencoding methods.

It is still unclear which of these techniques achieves better results and under

which conditions [14]. This is partially because the intrisic evaluation of em-

beddings is often a difficult task to define and formalize correctly and only

extrinsic evaluation is performed [4]. In such cases, supervised methods such

as autoencoding models generally obtain better performances [14].

We only concatenate and average the embeddings, since they have been

proven to be effective methods despite their simplicity [14]. Note that when

averaging embeddings the dimensionality of the starting vectors might be dif-

ferent. We pad all vectors to the same size, using 0 as padding value, similarly
to what has been done in [28].

In Table 5.16 the results ofmeta-embeddings are described. Meta-embeddings

result in much more accurate representations for nearly all the combinations

when compared to their respective components of Table 5.15. There is not

a substantial difference between concatenating and averaging embeddings.
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Even though concatenation performs slightly better, averaging is still an ap-

proach that is worth taking into consideration since the resulting embeddings

have a lower memory requirement given their lower dimensionality.

Combining fasttext, pitchclass2vec and rdf2vec outperforms all the other

approaches. As predicted at the beginning of the current section, each embed-

ding is able to complement the areas where other approaches are less accurate.

In Table 5.17 the Pearson correlation between the components of a meta-

embedding and the accuracy score is described. Given the result of Table 5.15

and Table 5.16 it is easy to see how the method based on rdf2vec out-performs

all the other methods and has the biggest impact on the accuracy of a meta-

embedding. This is an important finding of this work and is further addressed

in Chapter 7.
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fasttext intervals2vec pitchclass2vec rdf2vec Accuracy
Modal Tonal

Concatenation

• • 0.5367 0.4365
• • 0.7111 0.5016
• • 0.8170 0.7798

• • 0.5974 0.47
• • 0.8224 0.7527

• • 0.8629 0.7929
• • • 0.6113 0.4795
• • • 0.8267 0.7564
• • • 0.8648 0.7931

• • • 0.8431 0.7555
• • • • 0.8473 0.7577

Average

• • 0.5367 0.4365
• • 0.6946 0.5122
• • 0.8170 0.7798

• • 0.5916 0.4746
• • 0.8224 0.7527

• • 0.8604 0.794
• • • 0.6049 0.4832
• • • 0.8267 0.7564
• • • 0.8623 0.7941

• • • 0.8425 0.7568
• • • • 0.8469 0.7591

Table 5.16: Accuracy results on Modal Harmony and Tonal Harmony evalua-
tion settings by combining different types of embeddings. The best results are
represented in bold.

Evaluation fasttext intervals2vec pitchclass2vec rdf2vec

Concatenation

Modal -0.150989 -0.362462 0.049097 0.937772
Tonal -0.163884 -0.289746 -0.104155 0.990836

Averaging

Modal -0.154799 -0.343054 0.028164 0.950195
Tonal -0.163676 -0.298559 -0.093986 0.988918

Table 5.17: Pearson correlation with accuracy between the components of a
meta-embedding.



Chapter 6

One embedding to segment them

all

This section presents an additional set of experiments to evaluate the embed-

ding methods proposed in Chapter 5 on an extrinsic evaluation setting. The

evaluation is performed on the music structure segmentation task, described

in Section 6.1, using the embedding methods that achieved the most accurate

results on the evaluation described in Section 5.1.

6.1 Music structure segmentation

Music structure is one of the tools used by composers to tell a story.

Music-making is, to a large degree, the manipulation of

structural elements through the use of repetition and change.

Gary Burns [17]

The repetition of harmonic progressions (sequences of chords), in partic-

ular in the context of western tonal music, gives to artists the ability to guide

listeners through a journey that creates dramatic narratives, conveying a sense

of conflict that demands a solution [143].

Listeners, regardless of their level of musical knowledge and harmonic
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sensitivity [142] or their cultural origins [138], use intuitive knowledge to or-

ganize their perception of musical structures [29]. Indeed, there is empirical

evidence that neural activity correlates with musical structure in listeners’ per-

ception [77]. Moreover, the structuring and predictability of musical compo-

sitions is also recognised as an important factor in therapies that involves the

treatment and assessment of children and adolescents with autistic spectrum

disorder [153].

Figure 6.1: Structure of Helter Skelter by The Beatles. Chords are presented
in Harte format [64].

Figure 6.1 shows the structure ofHelter Skelter by The Beatleas alongside

its chords. By means of the alternation between verse and refrain the artist es-

tablishes a common repetitive pattern. The addition of an instrumental section

after the second refrain and the repetition of the intro reinforces the repetitive

aspect of the composition. The upcoming outro section denies the expecta-

tion of a new verse, right before the song ending section. Expectation and the

way it is fulfilled or denied is an essential part in musical enjoyment [143]. In

fact, it has been shown empirically that the emotional response to a musical

composition varies as the degree of repetition changes [90]. Understanding

musical structures is hence fundamental in music analysis and composition.

Artists can benefit from the feedback provided by a system able to highlight

possible hierarchical structures in their compositions.

6.1.1 The form of a musical composition

Music structure segmentation is a broad term related to the study of musi-

cal form, which describes how musical pieces are structured. In particular

it can be divided in two main categories: phrase-structure segmentation and

global segmentation [59]. Phrase-structure segmentation consists in detecting
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sections from the melodic information of a piece. While the aim of phrase-

structure is not to obtain a global segmentation, the detection of sections pro-

vides valuable insights in the task of global segmentation.

From here when we refer to global music structure segmentation as music

structure segmentation. Music structure segmentation consists in identifying

and labelling key music segments (e.g. chorus, verse, bridge) of a music piece

[96]. Given a musical composition, its musical segmentation is the identifi-

cation of non-overlapping segments, to which we refer to as sections. Each

section is characterized by a label that classifies its function such as intro or

verse in figure 6.1. A correct segmentation does not necessarily assign the cor-

rect labels to each section of the composition, but rather focuses on the correct

estimation of the boundaries of each section. Once boundaries has been ac-

curately predicted, an additional labeling process can performed to obtain the

final annotation [114].

6.1.2 Related works

Most of the recent methods and research approaches are based on audio anal-

ysis techniques [114]. Automatic segmentation on audio signal is a prolific

research field in which many different solutions have been presented, rang-

ing from self-similarity matrices [152, 151] to neural network based methods

[134, 148, 94]. Harmonic content has been used to improve those methods

both using probabilistic models [121] and transformer basedmodels [24]. Sig-

nificant research has been performed on phrase-level structural segmentation

based on melodic [53, 18, 145] as well as polyphonic content [101].

We address the task of music structure segmentation by only relying on

symbolical notation. Even though this might seem as an inconvenient choice,

the assumption behind this approach is that the identification of harmonic sub-

sequences (harmonic patterns) can be influential in defining the structure of

a song and the sections of which it is composed. By taking a closer look at
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Figure 6.1 it is easy to notice how harmonic information can provide valuable

information in the structure segmentation task: all verses are roughly based

on the same harmonic progression (E, G, A, E) while refrains are based on a

different harmonic progression (A, E, A, E, E). A segmentation strongly based

on those recurrent patterns is likely to be coherent with the way the composer

shaped the progression in the first place.

To the best of our knowledge, the only approach proposed in literature for

global music segmentation on symbolic harmonic content is FORM [39].

FORM performs structural segmentation on harmonic structures encoded

as sequences of strings, where each string represent a chord, by exploiting re-

peated patterns. This is performed through the use of suffix-trees [61]. Suffix-

trees are data structures designed to search efficiently for patterns in a string.

Trees are built in a way such that when the path that connects a root node to a

leaf is a unique sub-sequence of a string. It is easy to see why such data struc-

tures are best suited to extract repeated patterns: whenever an intermediary

node is found on the path that connect the root node to a leaf node, then the

partial path up to the intermediary note is a sub-string common to at least two

sub-sequences. From this observation a number of definition are formalized

in [61], one of which is the concept of left-diverse node. A left-diverse node is

an intermediary and, as said before, it represents a sub-sequence that appears

at least twice in the whole sequence. In particular a node is left-diverse is by

extending the sub-sequences on the left, that is adding characters at the start of

the sub-sequence, then it would lose its status of repeated sub-sequence. For

instance if we take the string XabcYabc, the sub-sequence abc is represented

in the tree by a left-diverse node. If we were to update the string to XabcXabc

then the sub-string abc loses its status of left-diverse node, since by extending

it to the left we have another repeated sub-sequence, Xabc. In FORM a par-

tial segmentation is obtained by labeling all the occurences of a sub-sequence

represented by a left-diverse node with the same label. A final segmentation

is then obtained by labeling the remaining sub-sequences as their preceding



6.1 Music structure segmentation 85

Figure 6.2: Visual depiction of the implemented LSTM model.

neighbouring section.

The key aspect, and main issue, with FORM is in way chord labels are

compared. The string representation does not take into account semantic sim-

ilarity between chords nor the algorithm is able to detect near-similar patterns,

i.e. patterns whose difference can be ignored in the context of music structure

segmentation.

To mitigate this aspect, the original work transforms all chord labels in

two at most 24 classes of chords, 12major chords and 12minor chords. Every
other chord feature is removed. The results are then compared with a random

baseline that generates arbitrarily long structures and to a heuristic that assigns

to each composition the typical pop song structure ABBBBCCBBBBCCDCCE

[39], in which each different label represent a structure in the chord progres-

sion and is stretched to fit the whole sequence. We re-implemented FORM in

order to compare the results of the proposed method with the current state of

the art.

6.1.3 Proposed model

In order to test the effectiveness of the embeddings presented in Chapter 5

in the Structure segmentation task, we developed a baseline model using a

stacked LSTM-based neural network, depicted in figure 6.2. The model rep-

resents an end-to-end solution: the probability that each chord belongs to a
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particular Section is computed, and can hence be seen as the combination of

a structure detection algorithm and a relabeling algorithm [114] jointly com-

bined.

We train our model on the Billboard dataset [16] provided by Mirdata 1

library [12]. The dataset is composed of 889 expert annotated tracks, each

composed of a sequence of chords in Harte format [64], and a sequence of

structure labels. Labels are provided in a similar format to the one presented

by SALAMI [136]. 80 unique section labels are present in the whole dataset.
We preprocess each label and reduce the number of unique labels to 11 by

combining all those labels that fall under the same definition given by [136].

A complete reference of the label conversion step is given in table 6.1.

Source labels Converted label

[verse] verse
[prechorus, pre chorus] prechorus
[chorus] chorus
[fadein, fade in, intro] intro
[outro, coda, fadeout, fade-out, ending] outro
[applause, bass, choir, clarinet,
drums, flute, harmonica, harpsichord,
instrumental, instrumental break, noise,
oboe, organ, piano, rap, saxophone, solo,
spoken, strings, synth, synthesizer,
talking, trumpet, vocal, voice, guitar,
saxophone, trumpet]

instrumental

[main theme, theme, secondary theme] theme
[transition, tran] transition
[modulation, key change] other

Table 6.1: Label conversion reference. Each label is stripped out of numbers
and symbols before the conversion.

The model of Figure 6.2 optimizes a Binary Cross Entropy loss function

in which the target labels are the ones in Table 6.1. We use the same set of

hyperparameters on each experiment: 5 LSTM layers with an hidden dimen-

sion of 256 and a dropout probability of 0.2 to regularize the training phase
1https://github.com/mir-dataset-loaders/mirdata

https://github.com/mir-dataset-loaders/mirdata
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and prevent overfitting on the data.

6.1.4 Experiments

6.1.4 Section describes the results of the experiments performedwith themodel

described in Section 6.1.3.

Note that the dataset used to train the model is a subset of ChoCo [36].

This might lead to label leaking [78]. Label leaking is a specific issue related

tomachine learningmodels [78]. It arises when the data onwhich the classifier

is trained encodes some subtle information from the testing data as well. Those

subtle information are then exploited by the model to obtain accurate result on

the test set as well, without any generalization towards new testing data.

In our setting, by training embeddings on the Billboard dataset as well,

some pieces of information on the section label might be indirectly learned

by the the embeddings. In order to such issue we train the embeddings from

scratch on a subset of ChoCo where the whole Billboard dataset has been

removed.

Model 𝑃 𝑅 𝐹1 𝑆𝑈 𝑆𝑂 𝑆𝐹1

FORMraw 0.673 0.337 0.42 0.673 0.337 0.42
FORMsimple 0.663 0.34 0.423 0.663 0.34 0.423
fasttext 0.616 0.604 0.596 1 1 1
pitchclass2vec 0.617 0.591 0.586 1 1 1
rdf2vec 0.619 0.584 0.581 0.962 0.926 0.944
meta-embedding 0.624 0.608 0.598 1 1 1

Table 6.2: Results from the segmentation algorithm

The results of the experiments are summarised in Table 6.2. We evalu-

ate the segmentation results by computing pairwise precision, recall and F1-

score (𝑃 , 𝑅 and 𝐹1 in Table 6.2) [85] along with under-segmentation, over-

segmentation and normalized cross entropy F1 (𝑆𝑈 , 𝑆𝑂 and 𝑆𝐹1 in table 6.2)

[92]. Every metric is computed using the standard MIR evaluation library

mir_eval [125].
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(a) High over-segmentation example. 𝑅 = 1 since if we take each chord in the
sequence pairwise then each chord that should be in the same section is indeed in the
same section. 𝑆𝑂 = 1 since the accuracy of the prediction can be easily explained
by the over-segmentation phenomena. Conversely, 𝑃 = 0.53 and 𝑆𝑈 = 0.53 clearly
show how the prediction is not able to capture all the needed segments but rather
merges ground truth segments together.

(b) High under-segmentation example. The exact opposite of Figure (a) is displayed.
The prediction is not able to capture segments and rather place each chord on its own
segment.

(c)𝑃 ,𝑅 and 𝑆𝑂, 𝑆𝑈 compared. In this edge case the main difference between the two
measures is highlighted. While 𝑃 and 𝑅 suggests a decent segmentation 𝑆𝑂 and 𝑆𝑈
clearly states a completely wrong segmentation. Pairwise metrics can be misguiding
in absence of 𝑆𝑂 and 𝑆𝑈 .

Figure 6.3: Examples of metric computation on relevant instances.

Under-segmentation and over-segmentation are two metrics specifically

designed for the evaluation of automatic music segmentation methods. When

a method has an high over-segmentation measure, the final prediction accu-

racy is influenced mostly by false fragmentation. Conversely an high under-

segmentation measure means that the prediction’s segments are the result of

ground-truth segments being merged together [92].

Pairwise metrics are computed as the usual precision, recall and F1 scores

on the set of identically labeled pairs in the sequence. Precision and recall can

be interpreted as the accuracy influenced respectively by under-segmentation

and over-segmentation. On the other hand under and over-segmentation scores

are computed by taking into account the normalized conditional entropy of the

segmentation.
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In short, 𝑆𝑂 gives a measure about the information is missing in the pre-

dicted segmentation, given the ground truth segmentation, while 𝑆𝑈 gives a

measure of howmuch noisy information are the result of the predicted segmen-

tation [92]. A graphical explanation of these concepts is provided in Figure

6.3 (all the examples are taken from [92]).

We evaluate our models based on the 𝐹1 and 𝑆𝐹1 scores of Table 6.2 since

both metrics gives a balanced measure of over and under segmentation.

FORMsimple detects repetitive patterns from simplified chord labels, as

shown in [39]. The chord simplification process extracts the root note from

the chord and classifies it either as major or minor. FORMraw uses the same

labels used by the embedding method described in Chapter 5. There is not

a significant difference between the two encoding methods. This can be re-

conducted to the way FORM searches for repeated patterns: while it is true

that many compositions fundamentally share the same exact harmonic pro-

gression in similar sections, it might happen that small subtle differences in

the harmonic choices of the artist results in slightly different harmonic pro-

gressions. See for instance the example of Figure 6.1. The first two verses

have a very similar harmonic progression, but they appear as different pat-

terns if the sequence is analyzed using a string-based method.

All the models based on embeddings in Table 6.2 outperforms FORM. In

particular, we can see that the methods based on the Distributional Hypothe-

sis, fasttext and pitchclass2vec, outperforms the rdf2vec method. This is not

completely unexpected due to the fact that embeddings that make use of the

distributional aspect of the dataset condition their representations based on the

actual usage of the chords. Such bias proves to be essential in the task of struc-

ture segmentation. Nonetheless embeddings that are based on the constituting

elements of a chord, such as the rdf2vec method, obtain very competitive re-

sults when compared to the other methods.

Surprisingly, the fasttext method obtains performances that in some met-

rics perform better than pitchclass2vec. As already stated in Section 5.2, the
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way in which chords are written carries its own semantic meaning. When us-

ing high quality datasets, such as the one provided by ChoCo, the time spent

on obtaining accurate notations pays off in terms of generalization capabilities

of an embedding method. The best method, as when evaluating based on the

methodology of Section 5.1, results to bemeta-embeddingmethod, which out-

performs the other methods in all the measured metrics. This complements the

partial answer, addressed in Section 5.1, to the research question 2 presented

in Chapter 1 - namely How can we assess the quality of chord representation

methods?. The proposed intrinsic evaluation method results are in line with

the extrinsic evaluation presented in the current Chapter.

Comparison between the results in Table 6.2 and state-of-the-art methods

in audio-based structure segmentation is difficult, since the dimension of the

available datasets is considerably different. Audio-based systems are usually

trained and tested on the popular SALAMI dataset [136], which contains twice

the amount of data when compared to the dataset we used, Billboard [16]. In

[114] a review of audio-based music segmentation algorithm is performed.

State-of-the-art results are obtained by approaches based on Convolutional

Neural Networks, with a pairwise F1 scores of 58.09±15.77which is a similar
result to the one obtained on Table 6.2. This provides a positive answer to the

research question 4 presented in Chapter 1 - namely Is it possible to use chord

representations to obtain results comparable to audio-based representations?.



Chapter 7

Discussion

Chapter 7 presents a discussion on the results obtained, the limitation of the

presented methods, and future works.

7.1 A semantic approach is enough

The Modal Harmony Ontology and the Knowledge Graph presented in Chap-

ter 4 represents a first step towards the definition of a set of ontologies, and in

general of SemanticWeb technologies, that allow the formalisation of musical

theories in an efficient, sound and complete form.

A general design pattern can be extracted from the methodology presented

in Section 4.2 to model many other different musical theories. Other research

activities have moved in that direction but are limited by the lack of a struc-

tured framework that can be used as a backbone 1. Design and implementation

efforts need to gravitate around the composability and interconnectivity. Such

foundational aspects are fundamental in order to obtain tools that can be used

by any music expert and specialized to the different tasks that populate the

music theory landscape.

Valuable musicological knowledge is difficult to shape in a form that can
1See the Modal Tonal ontology https://github.com/polifonia-project/

modal-tonal-ontology and the Tonalities pilot https://github.com/
polifonia-project/tonalities_pilot developed as part of the Polifonia project.

https://github.com/polifonia-project/modal-tonal-ontology
https://github.com/polifonia-project/modal-tonal-ontology
https://github.com/polifonia-project/tonalities_pilot
https://github.com/polifonia-project/tonalities_pilot
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be easily modeled and understood by computers and algorithms. A future step

that needs to be taken into account is the creation of a framework, in the form

of a formal top-level ontology, that allows researchers to focus on content of

the theory they are modeling, rather than the knowledge engineering effort

required to efficiently use Semantic Web techniques. Such framework can be

built upon solid foundational ontologies, which have shown to be a successful

way of structuring knowledge [116]. It is the case of DOLCE [56] that allows

to obtain a semantically richer interpretation of WordNet [105] by modeling

human common sense, or SUMO [115], which promotes data interoperability

and information search and retrieval through the formalisation of set of high-

level concepts.

A set of established guidelines to develop such system can be drawn from

the pragmatic success obtained by those approaches, such as the Gene On-

tology in the biological field [3, 31], the Gold Ontology [47] and BabelNet

[111] in the linguistics field or general knowledge bases that encodes human

knowledge, such as WikiData [147] and YAGO [141].

We argue that a knowledge-based approach would be beneficial not only

from a knowledge structuring and preservation point of view: it would rather

enable Artificial Intelligence researchers to seamlessly collaborate with mu-

sicologists. The outcome would be the development of methods that not only

statistically correlates with musicological knowledge, but are rather built upon

the semantics of musicological knowledge in the first place.

7.2 Intensional representations for extensional ap-

plications

One of the most surprisingly pleasant results of this thesis lies in the results

obtained in Chapter 6.1 both from a MIR and a future perspective point of

view.
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In the first place, we showed that the embeddings developed in Chapter

5 are able to obtain new state-of-the-art results in a relevant task to the MIR

field, such as the structural segmentation task, despite the use of a straight-

forward model that has not been specialized to particularly fit the task. There

are many experiments that can improve the presented algorithm, including

the adaptation of semantic segmentation techniques from the Computer Vi-

sion field [106], the adaptation of techniques that perform syntactic or seman-

tic text recognition from the Natural Language Processing [88, 26], or the

combination of audio-based representation with symbolic-based representa-

tion from the Music Information Retrieval field in the first place [114]. All of

these approaches are promising research paths that will be explored in future

works.

We claim that the most interesting results of this thesis lies in the quality

of the experiments of Section 5.5 and collaterally of Section 6.1.4. In Section

5.5 the accuracy obtained by embedding of the Knowledge Graph of Chapter

4 outperforms the other type of embeddings. This is particularly surprising if

we take into account the amount of data that is used to train such a method

when compared to the other approaches. When training chord embeddings

with traditional methods, that is using methods that are based on the Distri-

butional Hypothesis such as word2vec, fasttext or pitchclass2vec proposed in

Section 5.3, a large amount of high-quality data is required. The accuracy of

these models has been proven to be strictly related to the amount of data avail-

able [15]. In the NLP such huge set of textual resources can be obtained by

the exploiting web pages [57]. The same cannot be said for accurate musical

annotations where symbolic music annotations can be compared to a difficult-

to-transcribe [140] low-resource language. The results presented in Section

5.5 and 6.1.4 suggest that an orthogonal approach, based on intensional rep-

resentation of chords, is a promising research direction in the MIR field that

need to further develop and presents an answer to the research question 3 pre-

sented in Chapter 1 - namely Is it possible to identify a set of requirements for
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accurate chord representations?. Such requirements can be identified as the

combination of NLP inspired techniques, such as the one presented in Section

5.3, and embedding computed from knowledge graph based systems modeled

after well-known music theories, such as the method of Section 5.4 based on

the Knowledge Graph presented in Chapter 4.



Chapter 8

Conclusion

The presented thesis proposes a new set of methods for the representation of

symbolic chord annotations (in Chapter 5) that obtains new state-of-the-art

results both in an intrinsic evaluation setting (in Section 5.5) and in an extrin-

sic evaluation task (in Section 6.1.4). The proposed methods pave the way

for new approaches to MIR challenges that involve symbolic chord represen-

tations or the combination between audio-based representation and symbolic

chord representations.

The combination of techniques from the Natural Language Processing

field and the Semantic Web field results in a structure segmentation algo-

rithm that achieves new state-of-the-art results and encourages the usage of

the proposed embedding methods to other tasks that can be approached us-

ing symbolic representations. In future works we will explore this possibility,

in particular by using the proposed chord embeddings as a way to enhance

the accuracy of automatic chord transcription systems [123] and cover song

detection algorithms [42].

The presented Modal Harmony Ontology and its corresponding Knowl-

edge Graph (in Section 4) represents a valuable approach that can be extended

to model other musical theories as well. We will explore this oppurtunity and

extend the presented method to model the melodies of a composition as well.

Finally, other MIR tasks can be solved efficiently by means of Semantic
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Web technologies, as briefly shown in Section 5.4. We will explore this op-

portunity in future works, by expanding on the presented method for Roman

Notation inference and investigate other possible applications.
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