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Abstract

Stellar occultations are the most accurate Earth-based astronomy technique to obtain the lateral

position of celestial bodies, in the case of natural satellites, their accuracy also depends on the central

body to which the satellite orbits. The main goal of this thesis work is to analyze if and how very

long baseline interferometry (VLBI) measurements of a body like Jupiter can be used in support to

stellar occultations of its natural satellites by reducing the planetary uncertainty at the time of the

occultation. In particular, we analyzed the events of the stellar occultations of Callisto (15.01.2024)

and Io (02.04.2021). The stellar occultation of Callisto has been predicted and simulated using the

stellar occultation reduction analysis (SORA) toolkit while the stellar occultation of Io has been

already studied by Morgado et al. We then simulated the VLBI data of Jupiter according to the

current JUNO trajectories. The required observation were then used as input of an estimation to

which then we performed a covariance analysis on the estimated parameters to retrieve the formal

errors (1− σ uncertainties) at each epoch of the propagation. The results show that the addition of

the VLBI slightly improves the uncertainty of Callisto even when Jupiter knowledge is worse while

for Io we observed that the VLBI data is especially crucial in the scenario of an a priori uncertainty

in Jupiter state of about 10km. Here we can have improvements of the estimated initial states of

Io of about 70m, 230m and 900m to the radial, along-track and cross-track directions respectively.

Moreover, we have also obtained the propagated errors of the two moons in terms of right ascension

and declination which both show uncertainties in the mas level at the occultation time. Finally,

we simulated Io and Europa together and we observed that at the time of the stellar occultation

of Europa the along-track component of Io is constrained, therefore confirming the strong coupling

between the two inner moons.
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1
Introduction

The highly anticipated JUICE mission (JUpiter ICy moons Explorer) is a spacecraft that will inves-

tigate the three Galilean moons Europa, Ganymede and Callisto. According to the current launch

scheduled in mid 2023, JUICE will arrive in the Jovian system in 2031. Once it arrives, it will

perform many flybys of the moons with the exception of Io: 2 at Europa, 7 at Ganymede at 21 at

Callisto, from 2032 to 2034. After, JUICE will initiate its orbital phase around Ganymede [1]. In

2035, the spacecraft will initiate its final circular orbit at 500km for a nominal period of 4 months.

The spacecraft will carry 11 experiments, the most important of which are the Planetary Radio In-

terferometry and Doppler experiment (PRIDE) and the Gravity and Geophysics of Jupiter and the

Galilean Moons experiment (3GM). This experiments will be extremely helpful for a more accurate

determination of the moon’s state [2][3] [4] and improved ephemeris will be used to better understand

the long term orbital evolution of the moons which is driven by tidal dissipation in both Jupiter and

the satellites. Since Io is not directly observed, optical astrometry data will be crucial in stabilizing

the solution for Io. Also, Earth-based astrometry data will be of great importance outside of the

JUICE mission in order to provide data set for the positions of the moons. In this work we will

investigate the use of stellar occultations as Earth-based technique to obtain astrometric position

of natural satellites and therefore generate stable data sets of ephemeris in preparation for future

missions. Moreover, improved ephemeris are very important to investigate the origin and evolution

of the Jovian system [3] and from the dynamics of the moons it is possible to retrieve information on

the dissipation in them. Moreover, studying the dissipation would be very useful to prove and ex-

plain the presence of an undersurface ocean on the moons of Europa and Ganymede. These oceans

are objects of many studies, especially the ocean of Europa is believed that it could be the only

body in the solar system outside Earth to host possible life forms. Furthermore, accurate ephemeris

can reduce the uncertainties in future flybys therefore reducing the required ∆V . As we will see,

stellar occultation are very accurate measurements with an accuracy as low as 1 mas [5]. However,

this type of measurements are very sensitive to the position of the central body the satellites are

orbiting, therefore errors in the ephemeris need to be reduced at the time of the occultation. In this

work it will be analyzed if and how very long baseline interferometry (VLBI) observations can be
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used around the period of a stellar occultation to improve the planetary ephemeris at the time of

the occultation. To do so we will perform numerical simulations to create a dynamical model and

generate the required observations. We will limit ourselves to a covariance analysis and we will focus

on the formal uncertainties. As we will investigate, stellar occultations events for the Galilean moons

are rare therefore the possibility to have a VLBI observation close to the stellar occultation time

will not always be guaranteed. In this work we will analyze two stellar occultations, in particular

the past occultation of Io, already performed by Morgado et al. [5] and we will predict a future

stellar occultation of Callisto using the SORA toolkit. VLBI data will be made available by the

current JUNO spacecraft, which will be orbiting Jupiter at the time of both occultations. We will

also consider the case where no VLBI observations are made to investigate how this will influence

the satellite uncertainties. In this work, we will not model the spacecraft as it will be outside the

scope of this work, but we will only consider the post processed final observation of the planet.

This work is divided as follows: in Chapter 2 we will analyze the process to obtain final astrometric

positions from stellar occultation data and we will see the results for the Galilean moons in the past

observational campaign. In Chapter 3, VLBI techniques will be explained in details in addition to

the current contribution of the JUNO spacecraft to the improvements of Jupiter ephemeris. Next, in

Chapter 4 we will quickly go through the estimation framework as it will be crucial in understanding

the covariance analysis of the estimated parameters. In Chapter 5 we will discuss the dynamical

model used in the simulations, as well as the propagation and integration of the governing equations.

In Chapter 6 we will discuss the results of the moon ephemeris obtained from the covariance analysis

and different scenarios will be evaluated. Moreover, we also predicted and simulated a stellar occul-

tation of Callisto with the aid of the Python toolkit SORA, designed to analyze stellar occultations.

Finally, in Chapter 6 we will discuss the results and compare the formal uncertainties obtained for

Callisto and Io. Moreover, we will also briefly investigate the combination of the two inner satellites

of Io and Europa, to see if a stellar occultation of Europa can constrain the uncertainties of Io.

1.1 The Galilean moons

We will now have a brief overview of the Galilean moons which orbit Jupiter, the largest planet in

the solar system. The Galilean moons are the four largest moon of Jupiter and they are: Io, Europa,

Ganymede and Callisto. They were first observed by Galileo Galilei in 1609 and they were identified

as satellites of Jupiter in 1610. The moons have very interesting features. For example, Io which

is the closest moon to Jupiter at a distance of 420,000km from the surface, is the most volcanically

active body in the solar system, due to its tidal interaction with Jupiter [6]. Europa, which is the

second moon of Jupiter, has become interesting since an analysis from Hubble space telescope and

the Galileo mission detected water vapor plumes emitted from its surface [7], this is a very important

evidence of the liquid ocean beneath the crust of Europa. This discovery along with the strong tidal

dissipation within the moon makes it a very promising environment for the development of life in

12



the solar system [8]. Further, Ganymede is the largest moon in the solar system, even larger than

the planet Mercury. Moreover, along with Earth and Mercury is one of the three solid bodies in

the solar system that generate a magnetic dipole field [9]. Lastly, at a radial distance of 1,860,000

km, Callisto is the farthest moon with respect to Jupiter. Its topographic feature is that it has the

most cratered surface in all the solar system [10] and thanks to the Galileo spacecraft, an induced

magnetic field has been detected. It is also believed that underneath the outer icy shell of Callisto

a large liquid reservoir is present [11].

Figure 1.1: Galilean moons, from left to right: Io, Europa, Ganymede and Callisto; credits to
NASA/JPL

A very particular feature of the first three moons (Io, Europa and Ganymede) is that they follow

a specific orbital pattern, which is called Laplace resonance [12]:

nIo − 3nEuropa + 2nGanymede = 0 (1.1)

Where n is the mean motion of the moon, usually defined as n =
√

µ
a3 . The first three moons are

therefore in a 4:2:1 orbit period ratio, this clearly implies a strong correlation in their dynamics. The

exact origin of this resonance is still not very clear and it is also not clear whether is stable or not [8].

One of the main consequences of the resonance is tidal dissipation on the moons, in particular on Io.

Nowadays, many solutions of the motion of the moons do not agree in the amount of dissipation and

the dynamical evolution of the satellites: for example Layney et al. [13] found that the acceleration

due to tides have induced a shift in the position of the moons of about 55km for Io, -125km for

Europa and -365km for Ganymede over the past 116 years. These result shows that Io’s orbit is

reducing while the orbit of Europa and Ganymede are expanding [13]. Moreover, this result shows

that the Galilean moons could escape from the Laplace resonance, with great consequences on the

tidal dissipation in Io and Europa. On the contrary, a more recent study conducted by Lari [14]

showed that on a very long time scale the tidal dissipation results in an orbit increase for all the

satellites. After 4 million years, Io will stop to move inwards and will start to migrate outwards.
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This interesting result could indicate that the Laplace resonance is a quite new phenomenon and

has yet to reach an equilibrium condition [14]. From this brief overview of the Galilean moons we

can clearly see the crucial role of accurate data on their state, as it will benefit both future missions

and the current research.
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2
Stellar Occultations

A stellar occultation occurs when a solar system object passes in front of a star, as seen from Earth

[15]. This passage will cause a drop in the observed flux of the star. With this technique it is

possible to determine the shape and size of the occulting body [16],and also detect topographic

features [17]. Moreover, stellar occultations provide very accurate astrometric measurements that

are right ascension α and declination δ of the occulting body, with uncertainties that can be as low as

5-10 km or even smaller for some objects [18]. For the Galilean moons this uncertainty can be as low

as 3 km at Jupiter’s distance [5]. This uncertainty is order of magnitude lower than classical charged-

coupled device (CCD) astrometry because in the case of Jupiter’s moon, the brightness of Jupiter

would quickly saturate the CCD, thus providing position uncertainties between 300-450 km [19].

For the case of the Galilean moons, stellar occultations provide the best ground-based astrometry,

comparable with space probes which usually have uncertainties smaller than 5 km [20]. In addition,

the obtained positions and sizes are independent of reflectance models which may be the cause of

sistematic errors [21]. Accurate orbits of the Galilean moons can be used in support of future missions

in this system [3] for example the ESA - JUICE and the NASA - Europa Clipper missions, both

targeting the Jupiter system and are scheduled to be launched in this decade. Stellar occultation

for the Jovian moons are rare since only stars with a magnitude G = 11.5 or lower will provide a

magnitude drop higher than ∆mag = 0.005 [15]. This drop is otherwise hard to detect with current

techniques. During 2019 and 2021, Jupiter had the galactic center at its back, therefore stellar

occultations by Io, Ganymede and Europa were completed successfully by organized campaigns.

The probability of a Jovian moon to occult a bright enough star will occur again in 2030 [5], when

the Jovian system will pass in front of a dense star region. Here, we analyze the methodology

used by Morgado et al., available in [15]. This technique takes advantage of the Python library for

stellar occultation reduction analysis SORA, dedicated to analyze stellar occultations. The stellar

occultations that have been considered in this work are the stellar occultation of Callsito predicted

on January 15th 2024 and the stellar occultations of Io (02.04.2021) and Europa (22.06.2020).
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2.1 Data Analysis

Firstly, stacking images technique and classical photometric pipelines are used to extract the light

curves of the occultation. Opaque edges models, including diffraction effects, finite bandwidth,

exposure time and stellar diameter were fitted to the star immersion and emersion behind the

satellite at the various stations define the occultation chords [5]. Using the known 3D shape of

the satellite, is possible to find its limb and fit this limb to the occultation chords. From this fit

is possible to obtain the center of figure and the finally determine the astrometric position of the

occulting body.

Images analysis

The images obtained from observational campaigns are first converted into .fits file and then corrected

for bias and flat-field using standard procedures of the Image Reduction and Analysis Facility IRAF

[22]. Galilean moons usually have a small magnitude drop [5], because saturation happen before

achieving an adequate signal to noise ratio. Since saturation always occurs before achieving an

adequate S/N to adequately show the magnitude drop, stacking consecutive images technique in

order to increase the signal to noise ratio at the cost of time resolution. Before the stacking technique,

the target centroid (x, y) is measured with a 2D circular symmetric Gaussian fit over pixels within one

full-width at half maximum from the center [5]. For this step, Platform for Reduction of Astronomical

Images Automatically (PRAIA) is used. This alignment consists of vertical and horizontal shifts

for each image (∆x,∆y) relative to a chosen reference image which in this case is the first image of

each data-set. After the alignment, the number of stacked images is chosen in order to maximize

the signal to noise ratio and the time resolution. Differential aperture photometry is then applied

via the PRAIA package [23]. During the stellar occultation the star and the satellite are blended

in the same aperture therefore this combined flux normalized to unity using a polynomial fit before

and after the event.

Times and projection in the sky plane

With the retrieved light curve, it is possible to obtain the immersione ti and emersion times te using

a standard χ2 procedure using SORA between the observational light curve and the model. The

fitted occultation model considers a sharp-edge occultation model convolved with Fresnel diffraction,

stellar diameter, CCD bandwidth and finite integration time.

With the aid of the Jovian ephemeris (jup365 and de440) the Gaia EDR3 star position propagated

to the date of the predicted stellar occultation, each ingress and egress times are associated with a

stellar position relative to the occulting satellite in the sky-plane (f, g). f, g are measured positively

toward local celestial east and celestial north, respectively. Each pair of positions is a chord.
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2.1.1 Limb fitting

Each chord extremity is a point where is possible to fit the parameters that define an ellipse: the

ellipse center (fc, gc), apparent semi-major axis (a
′
and the apparent oblateness (ϵ

′
= (a

′ − b
′
)/a

′

(where b
′
is the apparent semi-minor axis) and the position angle of the pole Pp of b

′
. In this study,

we consider the satellites’ 3D size and shape to be known.

Using the rotational elements of the Galilean satellites so pole coordinates, direction of prime

meridian and its time variation) is possible to calculate the geocentric sub-observer latitude ϕ and

longitude λ at the occultation epoch. After obtaining the 3D shape it is possible to obtain the its

limb and use it to fit the center of the figure. The fit is done via a Monte Carlo approach with

uniform distribution of initial guesses to test a large number of simulated central positions. It is

possible to compute the chi-squared statistics:

χ2 =

N∑
i=1

(ri − r
′

i)
2

σ2
ri

(2.1)

Where σri is the radial component of the uncertainty in each chord extremity. Using this approach

it is possible to determine the fitted value as the one that minimizes χ2 and the marginal 1−σ error

considering the region where χ2 < χ2
min + 1 [24]. The center positions of the ellipse (fc, gc) can be

converted to astrometric offsets between the occulting object’s center of figure and the star’s position

∆αcosδ, δδ). Thanks to the sub-mas accuracy of the Gaia EDR3 catalogs it is possible to obtain high

accuracy astrometric positions of the occulting body. The positioning uncertainties are coming from

the uncertainties of the fitted center (σfc, σgc) and in the propagated star uncertainties. Usually

the resulting uncertainties are at the mas level (few kilometers at Jupiter’s distance).

The images are analyzed using the technique explained above, for example we show the light curve

obtained from Ganymede. In gray we see the light flux of every image, in black the light curve of

the stack of 20 consecutive images and in red the fitted occultation model.

Figure 2.1: Normalized light curve for Ganymede. Bottom image is a close up 30 seconds before/after
the occultation [5]
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We can now proceed to obtain the observation data and occultation maps for the Io and Europa

occultations.

2.2 Previous occultations of the Galilean moons

Morgado et al., conducted succesfull observational campaigns to observe occultation events of the

Galilean moons between 2019 and 2021. In the following table from [5] we highlight the fitted times

for the occultations of Io (501), Europa (502) and Ganymede (503).

Body Date and time UTC immersion time UTC emersion time UTC chord length (s)

501 2021-04-02 10:19:54.843 (0.420) 10:20:45.762 (1.278) 50.919 (1.698)
502 2019-06-04 02:28:05.033 (0.044) 02:29:14.311 (0.040) 069.278 (0.084)
503 2020-12-21 00:48:04.694 (0.480) 00:49:42.632 (0.590) 103.051 (1.212)

Table 2.1: Fitted times obtained for each light curve, [5]

The 3D shape of the moon was then projected to the occultation instant using the limb-fitting

methodology already analyzed in the previous section. The chords for each occultation are then

combined to fit the limb of the figure. The next image contains the chords and the fitted 3D limb.

Regarding the 3D model used for all three moons are based on triaxial ellipsoids that represent the

global shape of the satellites. This means that no topographic features were taken into account [5].

More specifically, the complex 3D shape of Io was taken from [25].

(a) Occultation by Io
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(b) Occultation by Europa

(c) Occultation by Ganymede

Figure 2.2: Occultations by 501,502 and 503 taken from [5]
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Finally, the new astrometric positions referenced to the geocenter obtained from the observational

campaigns are organized in the following table, uncertainties in mas are given inside the brackets.

Body Date and time UTC Right ascension Declination

501 2021-04-02 10:24 21h43m04s.37583 (1.1) -14◦23’58”.1536 (0.7)
502 2019-06-04 02:26 17h16m59s.89400 (1.1) -22◦28’06”.5375 (1.1)
503 2020-12-21 00:49 20h09m33s.56022 (0.9) -20◦35’38”.0137 (1.7)

Table 2.2: Final astrometric positions [5]

Is interesting to compare the obtained positions at mas level with other geocentric ephemeris, in

particular the De430 and jup365.

Body RA (mas) Dec (mas) ∆RA1 ∆Dec1 ∆RA2 ∆Dec2

501 1.1 0.7 05.5 02.9 01.3 01.5
502 1.1 1.1 04.1 03.1 08.0 16.8
503 0.9 1.7 04.2 00.1 03.4 01.6

Table 2.3: Offsets in mas between the obtained positions and DE430 (∆RA1,∆Dec1) and jup365
(∆RA2,∆Dec2) [5]
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3
VLBI

The VLBI spacecraft tracking technique has been successfully tested on numerous deep-space mis-

sions. Moreover, it imposes minimal requirements on the spacecrafts as it utilizes the same instru-

ments used for communication, providing sufficient power and phase stability [26]. With the radio

signals transmitted by the spacecraft’s antenna, it is possible to determine its lateral position (the

position in the two mutually orthogonal directions perpendicular to the line of sight vector) in the

International Celestial Reference Frame (ICRF). These angular position measurements are obtained

by means of Very Long Baseline Interferometry (VLBI), using many radio telescopes that observe

at the same time the radio signal emitted by the spacecraft. Present state of the art measurements

provide lateral position (right ascension and declination) observables with an uncertainty of 1 nrad

or better in ICRF. VLBI measurements can be combined with the spacecraft orbit determination to

provide accurate barycentric positions. These technique follows from [27], where barycentric posi-

tions in ICRF of Saturn have been succesfully improved through phase-referenced very-long-baseline

interferometry observations of Cassini combined with orbit determination from Doppler and range

tracking. In this work, we assume to already have the post processed lateral measurements of the

celestial bodies, but is good practice to have an overview of the overall processing from the signal

to the final measurements. Let us dive into a deeper description on how VLBI spacecraft tracking

works.

3.1 VLBI system

Let us consider a situation where the wavefront from a deep space radio source arrive as plane wave

at two well separated antennas located on Earth. The signals are amplified and recorded. The

recorded signals are then cross correlated to determine the difference in the time of arrival of the

signal at the two stations as depicted in the following image.

This difference in time of arrival of the signal is referred to as the VLBI delay and is composed

of a geometric delay and delays due to station clock offsets and differences in signal delays through

the Earth’s ionosphere and troposphere. The delay related to the geometry of the observation can
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Figure 3.1: Geometry of observation, [28]

be expressed as follow:

τg =
1

c
B · ŝ (3.1)

Where B is denoted as the baseline vector between two stations and ŝ is the unit vector in the

source direction. With the a priori knowledge of the baseline length and orientation, it is possible to

obtain from the geometric delay the angular component of the source position. The measurement

of the angle formed by the radio signal and the baseline can be obtained.

ρ = cτg = Bsin(θ) (3.2)

Where θ in this case describes the angle misalignment between the baseline and the direction of

the incoming signal. The accuracy to which the angle θ can be measured depends not only on the

precision of the actual VLBI measurement but also on the measurement calibration (clock offsets,

instrumental delays, baseline orientation errors).

3.1.1 Delta VLBI

A possible solution to effectively reduce calibration errors in VLBI measurements is to introduce a

second measurement of a nearby source whose position is well known [28]. Using a second measure-

ments can almost cancel entirely station clock offsets and instrumental delay. The nearby source

acts as a calibrator and is called phase-reference calibrator. In phase referenced VLBI, alternated

observations of the radio signal and the nearby calibrator are performed. Usually the radio source

that acts as calibrator is a quasar. Over the last decades, a quasi inertial reference frame with an

associated catalog of almost 200 source positions has been developed [29],[30]. Source positions are
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determined in the international celestial reference frame (ICRF) with an uncertainties of better than

5 nrad [31].

The extent to which errors are eliminated in the differential observable depends greatly on how close

the sources are, the time offset between observations and the similarity in spectral characteristics.

For the case of two sources, where one is the spacecraft and the other one is a quasar, the spectral

structure will be different. In fact, quasars have broadband signals while spacecraft signals are band

limited and contain tones that are utilized for VLBI tracking. To solve this issue, open-loop record-

ings are made for each source using frequency channels centered at the spacecraft tone frequencies.

The recorded data from all stations is then sent to a common JPL station. At this point, the quasar

signal phase is extracted by cross correlation of the frequency channels between stations while the

phase of each spacecraft tone is extracted by local model correlation.

The total delay is ambiguous to λn where n is an integer number of the radio frequency cycles and

λ is the wavelength. Through bandwidth synthesis [32] is possible to determine the unambiguous

delay. The unambiguous delay obtained from the spacecraft measurements is called differential one-

way range (DOR) and the tones in the spacecraft spectrum are called DOR tones. Finally, the

differential delay between spacecraft and quasar is referred to ∆DOR and gives a very accurate

measure of the spacecraft angular position in the radio source reference frame

The most accurate measurement is obtained when both the target and the phase referencing

calibrator are within the same primary beam of a VLBI antenna. The best switching time between

the calibrator and the target ranges from tens of seconds to several minutes. Moreover, the ideal scan

duration for each source depends on: the efficiency of the radio telescope, their system temperature

and the slewing speed.

3.2 Sources of error

The main sources of error in a typical ∆V LBI observations are signal to noise ratios, uncalibrated

troposphere and ionosphere delays, baseline errors and instrumental delays [28]. The magnitude of

the errors depends highly on system parameters, for example, the signal to noise ratio for the extra-

galactic source depends on the quasar flux density, recording bandwidth and antenna parameters.

Model for estimating the delays have been developed, here we highlight the delay model presented

by Duev et al.,.

3.3 Delay Model

The VLBI delay model is expressed in the barycentric celestial reference system (BCRS), this requires

several time-scale and station coordinates transformations. The first transformation to be applied

to the station coordinates is a transformation from terrestrial reference system (ITRF) to geocentric

celestial reference system (GCRS). This transformation is performed accordingly to the latest IERS
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2010 conventions. Station positions and velocities in ITRF at epoch t0 are reduced to the epoch of

observation, taking into account the plate tectonic motion.

rITRF = r0 + ṙ0(t− t0) (3.3)

Finally, station position, velocity and acceleration in GCRS are computed.

rGCRS = T (t) ∗ rITRF , (rGCRS → ṙGCRS , r̈GCRS → Ṫ (t), T̈ (t)) (3.4)

Where T (t) = Q(t)R(t)W (t) whereQ(t), R(t),W (t) are matrices representing the motion of the

celestial pole in GCRS rotation of the Earth around the axis associated with the pole and polar

motion accordingly. Station positions are also corrected for geophysical effects.

Further, the geocentric to barycentric transformation is applied. The Lorentz tranformation is

applied to the station GCRS position, velocity and acceleration (rbc, ṙbc, r̈bc) to transform it in

solar system barycentric reference frame BCRS.

rbc =

(
1− LC − γUE

c2

)
· rgc −

1

2c2
(V E · rgc) · V E +RE

ṙbc =

(
1− (1 + γ)UE

c2
− V 2

E

2c2
− V E · ṙgc

c2

)
· ṙgc

+ V E ·
(
1− 1

2c2
(V E · ṙgc)

)
r̈bc =

(
1 + LC − (2 + γ)UE

c2
− V 2

E

c2
− 2V E · ṙgc

c2

)
· r̈gc

− 1

2c2
(V E · r̈gc) · (V E + 2ṙgc) +AE

(3.5)

Where LC = 1.48082686741× 10−8 and UE =
∑

j ̸=i
GMj

rEj
is the potential of all solar system bodies

except for the Earth, γ is the PPN parameter (equal to 1 in general relativity), RE ,VEAE are

position, velocity and acceleration of the Earth in BCRS and c is the speed of light.

The time-scale used for measurement timing is the coordinated universal time (UTC) which is

different from the physically realised atomic time scale (TAI). The difference is by 34 leap-seconds.

The latter, is different from the terrestrial time (TT) by 32.184 s. The terrestrial time is a scaled

version of the geocentric coordinate time (TCG) and it eliminates the effect on the terrestrial clock

by the gravitational potential from the Earth [33].

TCG = TT + LG(JDTT − TT0) (3.6)

Where TT0 is the terrestrial time at 1977 January 1.

The time scale used in the ephemerides of a planetary spacecraft is the barycentric dynamical

time (TDB) which is a scaled version of the barycentric coordinate time (TCB). The TDB stays
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close to the terrestrial time ob average by applying the following transformation [33].

TDB = TCB − LB(JDTCB − T0)86400 + TDB0 (3.7)

Where T0 = 2443144.5003725, LB = 1.550519768× 10−8 and TDB0 = 6.44× 10−5s.

We can summarize the time-scale transformations as follows

UTC → TAI → TT → TCG → TCB → TDB

3.3.1 VLBI delay model

The calculation of the VLBI signal delay follows from the consensus model recommended by IERS

[26]. The model is based on plane-wave approximation by assuming the extragalactic source at

infinite distance. The total geocentric vacuum delay is given by the following equation.

t2 − t1 =

(
1 +

K · (V E + ṙ2,gc)

c

)−1

·
(
∆Tgrav −

K · b
c

·
[
1− (1 + γ)UE

c2
− V 2

E

2c2
− V E · ṙ2,gc

c2

]
−V E · b

c2
·
(
1 +

K · V E

2c

))
.

(3.8)

Where K is the unit vector from the barycentre to the source in the absence of bending and b is the

GCRS baseline vector at the time of signal arrival at the first station. δTgrav is the general relativis-

tic delay. The total gravitational delay is given as the sum over all gravitating bodies including Earth.

The delay model for spacecraft VLBI observations accounts for the near-field effects caused by

the source being at finite distance [26]. The diffracted radio wave is considered to be in the near-field

when the distance R to the source from the aperture is R ≤ D2

λ [34]. Where D is the characteristics

size of the aperture and λ is the wavelength. In the TDB reference frame, the signal delay is defined

as the time difference between two light travle times LT1, LT2 from the spacecraft from the first and

the second station along the baseline. The geometry in the barycentric celestial reference frame can

be visualised in the following image.

Given the reception time T1 in TBD at the first station, the transmission time T0 is calculated

iteratively solving the light-time equation for 0-1.

T1 − T0 =
R01

c
+RLT01 (3.9)

Where RLT01 is a relativistic term which takes into account effects for both general and special

relativity [35]. Given the solution T0, the light-time equation for 0-2 is solved for T2 using the same

methodology. The difference T2−T1 is the VLBI delay in the barycentric TDB frame, which is then
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Figure 3.2: VLBI geometry, [26]

transformed into the geocentric TT frame.

Other sources that have impact on the signal delay are random fluctuations in the radio wave

phase which are caused by interplanetary scintillations in the solar wind [26]. Moreover, the Earth’s

ionosphere and troposphere also induce additional delay to the radio signal propagation. To mitigate

the effects of the latter, vertical total electron content (vTEC) provided by international GNSS

service are used.The vTEC must be mapped onto the direction of the target source to obtain the

slant total electron content (TEC).

TEC =
vTEC

cosz′ (3.10)

Where z1 is the zenith distance of the target as seen from the model’s ionospheric layer. The

ionospheric delay for each station can be computed.

τiono =
5.308018TEC

4π2f2
(3.11)

Where f is the observational frequency.

3.3.2 Estimation of spacecraft state vector

The main task of VLBI tracking of spacecraft is to estimate its state vector as a function of time.

The measurement equation for each epoch t is given by:

−→
∆ϕ
∣∣∣
t
=
(
Jij ·

−→
∆α
)∣∣∣

t
(3.12)

Where
−→
∆ϕ is a vector of differential phases on all baselines and

−→
∆α is the vector of corrections to

the a priori geocentric angular position of the spacecraft. Jij is the Jacobian of partial derivatives of

the geocentric delay for station i at time t with respect to the geocentric spherical angular coordinates

of the source (ϕ, θ).
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−→
∆ϕ =



ϕ12

...

ϕ1N

...

ϕN−1,N


,
−→
∆α =

(
∆φ

∆θ

)
(3.13)

Finally, the astrometric solution to 3.12 in the least-squares sense for each epoch is given by

−→
∆α
∣∣∣
t
=
((

JT · J
)−1 · JT ·

−→
∆ϕ
)∣∣∣

t
(3.14)

3.4 Improvements of Jupiter ephemeris using VLBA astrom-

etry of spacecraft

The Very Long Baseline Array (VLBA) consists of 10 radio telescopes which are part of the National

Radio Astronomy Observatory (NRAO) [36]. This system is the longest system in the world that

uses very long baseline interferometry with a baseline of 8611 km. VLBA has been used since August

2016 to make phase-referenced astrometric measurements of JUNO spacecraft (NASA) which is in

orbit around Jupiter [37]. These astrometric measurements are then combined with solutions for

JUNO’s orbit to provide accurate positions for the Jupiter system barycenter in the international

celestial reference frame (ICRF). The major sources of errors are ionosphere and troposphere cali-

bration, spacecraft orbit determination and phase reference position uncertainties. The VLBA are

scheduled when JUNO passes at the pericenter of its orbit that is at 4200km from Jupiter, when

the spacecraft Doppler signature is largest, this provides the strongest orbit constraints. The rms

(1 − σ) uncertainties in the Jupiter barycentric positions are estimated to be 0.2-0.3 mas in right

ascension and 0.3-0.4 mas in declination. The results of these observations will improve Jupiter’s

orbit in the Jet Propulsion Laboratory (JPL) planetary ephemeris.
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4
State Estimation

In the real world, it is impossible to have perfect measurements and perfect dynamical models,

therefore estimation is required. Errors arise from many sources and they are usually mitigated

by observations through orbit determination. The main sources of error are the instrument and

measurement error.

Instrument error arise from sensor maintenance, operator error and so forth. These factors can

easily corrupt the data. The measurement error, can be defined as the variation in the observations

from their true value. It can be divided in three main categories: noise, biases and non-random

time-varying errors also known as drift [38].

We can define the bias as a constant offset from the true value. The noise is a statistical mea-

sure, the standard deviation, of the random variation about the measured mean value. Finally, the

drift represent a slow and especially unpredictable variation of the observed mean value over a time

span. Usually biases cannot be removed with least-squares techniques but measurement biases can

be estimated during the estimation.

Before diving into the estimation techniques, it is necessary to introduce some statistical concepts

that will be used heavily in the following chapter.

We first introduce the concept of probability of an event ξ < x < ξ + dξ for a random variable x

is p(ξ)dξ. The probability distribution is subject to the condition that the integral over all possible

values is equal to one [38]. ∫ ∞

−∞
p(ξ)dξ = 1 (4.1)

We define the mean as x̄, and is the expected value of an event occurring over all possibilities.

Moreover, we define the sample mean which contains only a subset of the possible outcomes. The

averages for a finite sample for large N, approximates the corresponding integral expectations.

x̄ ≡ E(x) =

∫ ∞

−∞
p(ξ)dξ ∼=

1

N

N∑
i=1

ξi (4.2)
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The Law of large numbers permits to approximate x̄ using the sample mean. This approximation is

the fundamental basis for Monte-Carlo methods. As the size of the sample grows, the distribution

becomes Gaussian.

We can also define the root mean square (RMS) which is the square root of the mean expected

squared value.

RMS =
√

E(x2) ∼=

√√√√ 1

N

N∑
i=1

ξ2i (4.3)

The sample variance, σ2 represents the variability of the expected value of each variable about

the sample mean:

σ2 ≡ E[(x− E[x])2] = E[(x− x̄)2] =

∫ ∞

−∞
(ξ − x̄)2p(ξ)dξ ∼=

1

N − 1

N∑
i=1

(ξi − x̄)2 (4.4)

From the sample variance we can define the sample standard deviation, σ, which is the positive

square root of the variance. The standard deviation measures the dispersion of the data. Is impor-

tant to note that the RMS and the standard deviation are usually not the same, they are the same

only when the mean is zero.

The likelihood of an occurring event is described by p(ξ), probability density function. For a

Gaussian random variable, we can define its PDF as:

p(ξ) =
1√
2πσ

e
−(ξ−x̄)

2σ2 (4.5)

The following image shows a Gaussian probability density function.

Figure 4.1: Gaussian distribution, [38]
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4.1 Linear Weighted Least squares

The linear weighted least squares method introduces weights in order to account for differences in

the accuracy of the measurements. Suppose that an estimate of the true state vector of an object is

known. We define the estimate as x̂ and the true state vector as x = [r0,v0] at a certain epoch t0.

We define r0,v0 as the position and velocity components at t0. Our goal is to refine the estimate

exploiting observations which are made by a number of p lateral position measurements at several

time instants ti, i = 1, 2, ..., p. With numerical integration it is possible to propagate the first guess

up to tp, predict the lateral measurements and measurement times and compute the difference with

the actual true observations. We call this difference as residual. We define the vector of actual

observations z and the vector of computed observations ẑ which is a function of x̂. The goal is to

find ẑ that minimizes a cost function J , which is defined as the weighted average of the norm of the

residuals.

J(x̂) = [z− ẑ(x̂)]TW[z− ẑ(x̂)] (4.6)

Where W is a p× p square matrix denoted as the weight matrix, and is taken as the inverse of the

measurement noise covariance matrix [39]. The weight matrix is used not only to weight individual

observations, but also to weight classes of observation which are assumed to have similar character-

istics. The inverse is used so that a small value (in other words, a more accurate observation) will

weight the sensor more than a larger value [38]. The weight matrix is defined as follow:

W = wT
i wi =



w2
1 0 . . . 0

0 w2
2

...
...

0

0 . . . 0 w2
N


(4.7)

Where

wi =

[
1
σA

0

0 1
σB

]
=

[
wA 0

0 wB

]
i = 1 . . . p (4.8)

wA and wB are the inverses of the standard deviations associated with the set of observations A

and B. This is done in such a way to minimize the trace of the error covariance matrix P.

If the cost function J is at a minimum, then we can say

∂J

∂x̂
= [

∂J

∂r̂1

∂J

∂r̂2

∂J

∂r̂3

∂J

∂v̂1

∂J

∂v̂2

∂J

∂v̂3
] = 0 (4.9)

Which, from equation 4.6 yields the result

∂J

∂x̂
= −2(z− ẑ)TW

∂ẑ

∂x̂
= 0 (4.10)
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In which in our case, the partial derivatives of ẑ with respect to x̂ are the partial derivatives

of the right ascension and declination with respect to the components of the moon position and

velocity at t0. These partials are grouped in a p × n matrix denoted as design matrix H(t). The

design matrix has the following shape:

H(t) =
∂ẑ(t)

∂x̂
(4.11)

Where ẑ is the vector containing of computed observations and x̂ is the vector of all estimated

parameters [x0;p]. The derivatives are numerically approximated through finite difference. Since

the dependence of J on the estimated parameters is non linear, the solution to the minimization

problem can be given using iterative corrections methods, e.g., Newton-Raphson methods. If we

take the transpose of 4.10, then the estimate x̂ must satisfy:

HTW(z− ẑ) := G(x̂) = 0 (4.12)

The differential correction between the iterations n+ 1 and n is computed as follow:

x̂(n+1) − x̂(n) = −G′
[
x̂(n)

]−1

G
[
x̂(n)

]
=
(
HTWH

)−1

HTW
[
z− ẑ

(
x̂(n)

)]
(4.13)

Where the gradient G is computed by assuming the design matrix to be independent on x.

Using the estimate at n+1 is possible to compute a new trajectory and new residuals. The process

is repeated until the residuals cease to become smaller with further iterations. The error of the

converged estimate, defined as δx = x − x̂ can be evaluated by computing the error covariance

matrix P = E[δxδx̂T ], where E is the average. The resulting error δx is related to the converged

residual vector δz = z− ẑ by 4.13 . We assume it has covariance equal to the inverse of the weight

matrix:

E[δzδẑT ] = W−1 (4.14)

By multiplying eq 4.13 by its transpose and averaging, we finally get the covariance matrix.

P = (HTWH)−1 (4.15)

The covariance matrix contains the estimates for the closeness of the fit with the chosen dynamics

and it contains both variances and covariances. If we assume an unitary weight matrix, the covariance

matrix has the following general shape:

P =


σ2
α µαβσασβ · · ·

µβασασβ σ2
β · · ·

...
...

. . .

 (4.16)
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Where σα is the standard deviation of the estimated parameter, σ2
α is the variance and µβα is

the correlation coefficient of α and β. They are defined as µ2
xy = (1/σxσy)E[(x − x̄)(y − ȳ)].

These coefficient represent the degree of correlation between elements, with zero being uncorrelated.

Positive signs represent a direct correlation while negative signs imply an inverse relationship.

With this shape, the main diagonal of the covariance matrix represents the variances of the

estimate of the state parameters. Therefore, the main diagonal is correlated to the formal uncertainty

σ of the corresponding element of the state vector through the relation√
Pii = σi (4.17)

In our case, the covariance matrix will have the initial states of the bodies. Moreover, an

additional a priori covariance is used in the inversion. The a priori covariance contains the current

knowledge of the parameters. The final shape of the covariance matrix is:

P = (P−1
0 +HTWH)−1 (4.18)

4.1.1 Variational Equations formulation

The variational equations describe how the dynamics of the system are influenced by the parameters

to be estimated. We denote the state vector x that is propagated numerically from the initial time

t0 following [40]:

ẋ(t) = f(x,p, t);x(t0) = x0 (4.19)

Where p, is, as previously mentioned, a vector of parameters that influence the system’s dynamics

and f is the used dynamical model and x0 is the associated initial condition. As mentioned in the

above chapter, we defined H as the matrix of the observations at different times with respect to

the state vector at t0. From this statement, we can observe that the design matrix describes how

changes in the initial state affect the computed observations. These are usually called sensitivity

partial derivatives. We can break down the design matrix the following way [38]:

H =
∂ẑ

∂x̂0
=

∂ẑ

∂x̂

∂x̂

∂x̂0
= HΦ(t, t0) (4.20)

The equation 4.20 makes the distinction between the observation partial derivatives H and the

derivative of the state over time. Φ is called state transition matrix and it relates the state errors

at t with the state errors at time t0. The two matrices in Φ are calculated by means of numerical

integration or by finite difference. We can describe the influence of a change in initial conditions x0

and/or p on the resulting state history x(t) by making a linear approximation1:

∆x(t) ≃ ∂x(t)

∂x0
∆x0 +

∂x(t)

∂p
∆p (4.21)

1Tudat mathematical model definition
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Where we can identify the first partial as the state transition matrix Φ. Moreover, we can define

the second partial as the sensitivity matrix:

S(t) =
∂x(t)

∂p
(4.22)

The differential equations used to solve for Φ,S are termed the variational equations [41] and

are obtained by numerical integration [42]:

dΦ (t, t0)

dt
=

∂ẋ

∂x

∂x

∂x0

=

(
∂f

∂x

)
Φ (t, t0)

dS(t)

dt
=

∂ẋ

∂x

∂x

∂p
+

∂ẋ

∂p

=

(
∂f

∂x

)
S(t) +

∂f

∂p

(4.23)

With the following initial conditions:

Φ(t0, t0)) = 1n×n;S(t0) = 0n×np

where (n, np) are the sizes of the state vector x and parameter vector p. In this work, the variational

equations involve the situation where the vector x represents the translational state of one or more

moon. For a single moon’s translational dynamics, we obtain:

x =

(
r

v

)
; f =

(
v

a

)
(4.24)

From here, we obtain the partial derivatives in the variational equations as:

∂f

∂x
=

(
03×3 13×3

∂a
∂r

∂a
∂v

)
∂f

∂p
=

(
03×np

∂a
∂p

)
(4.25)

Where the argument t has been omitted for clarity.

4.2 Propagation of the covariance matrix

We have seen that the covariance matrix is used to evaluate an estimated solution. Here, we want

to know how good is the estimate in the future. This is done by propagating the covariance matrix

along with the state propagation. The covariance matrix will give a first indication of the accuracy

of the solution at each epoch. Over time, the error will eventually grow. We recall the design matrix

as the matrix of partial derivatives of the observations up to time T with respect to the estimated
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parameters.

H(T ) =
∂h(T )

∂q
,q = [x0;p] (4.26)

We define q as the vector containing all estimated parameters [40],[43] and xx0,p as the initial

state vector and a vector of parameters that influence the system dynamics. We then define the

covariance matrix of q obtained using the data up to the time T as:

Pqq(T ) = (P−1
qq,0 +HT (T )W(T )H(T ))−1 (4.27)

where Pqq,0 is the a priori covariance matrix of the parameters q and W(T ) is the weight matrix.

The covariance matrix obtained can be used to compute the covariance of the state x at any later

time t [41]. This propagated covariance can be defined as:

Pxx(t, T ) = [Φ(t, t0);S(t)]Pqq(T )[Φ(t, t0);S(t)]
T (4.28)

Where the state transition matrix Φ and sensitivity matrix S are computed using equation 4.23.

The formal uncertainties are obtain again as the square root of the main diagonal of P.

4.2.1 Covariance Matrix transformation

The covariance matrix is usually expressed in the inertial reference frame. The transformation relies

on the similarity transformation [38]

Py = mPxm
T ,m y

x
=

∂y

∂x
(4.29)

Where m is the Jacobian of the transformation. In this study, we will express the propagated

uncertainties in the RSW orientation where R is radial, S is along track and W is cross track

direction respectively. To change the orientation from inertial coordinates to RSW orientation we

use the following transformation.

[J ] =

[
[R̂|Ŝ|Ŵ ]T [0]

[0] [R̂|Ŝ|Ŵ ]T

]
;PRSW = [J ]Pxyz[J ]

T (4.30)

We can visualize the orientation of the RSW reference frame in the next illustration.

Propagation of uncertainties in terms of lateral position

Since the two classes of observations performed in this work give lateral positions measurements,

that are right ascension α and declination δ it is convenient to express the formal uncertainties in

(α, δ) instead of RSW or in cartesian coordinates.
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Figure 4.2: RSW reference frame

Right ascension, declination and geocentric distance r is a way to express the position of a body

in the geocentric equatorial reference frame (J2000). The right ascension α ∈ [0◦, 360◦] is the angle

measured eastward in the equatorial plane, between the x axis and a plane which is normal to the

equator (meridian plane) and containing the body. The declination δ ∈ [−90◦, 90◦] is the angle

between the equatorial plane and the geocentric radius vector defining the position of the body

and it is measured in the meridian plane containing the body. The following image illustrates the

coordinates in the geocentric equatorial reference system.

Figure 4.3: Geocentric equatorial reference system, [44]

To transform the cartesian coordinates from the inertial reference frame to right ascension and

declination we use the notation from [45]. First, we derive the partial derivatives of α, δ with respect

to the vector r(t) = [x, y, z] containing the position of the target moon with respect to the observer,
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which in this case is Earth and r = norm(r).

∂α

∂r
=

1

x2 + y2

[
−y x 0

]T
(4.31)

∂δ

∂r
=

1

r2 +
√
x2 + y2

[
−xz −yz x2 + y2

]T
(4.32)

We can then create the transformation matrix J which is 2×3, containing the partials derivatives

calculated above:

J =

[
∂α
∂r
∂δ
∂r

]
(4.33)

We then apply the transformation matrix to the covariance matrix to be propagated where Px and

Py are the covariance matrices expressed in (x, y, z) and (α, δ) respectively:

Py = JPxJ
T (4.34)

Where Py is a 2 × 2 matrix containing the variances and covariances expressed in terms of right

ascension and declination at each time step t. The formal errors at each epoch can be extracted by

taking the square root of the elements on the main diagonal.
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5
Dynamical Model

This chapter describes the dynamical model used in the simulations. All the methods previously

described are implemented using the TU Delft Astrodynamics Toolbox (Tudat) software1. The

software is freely available. Since in this work we are focusded on analyzing the effect of Jupiter’s

uncertainties on the Moons formal errors, we decouple the orbit determination of the spacecraft from

the ephemeris generation. In this chapter, we outline the state nomenclature and relative geometry,

the data type and quality used in the simulations and the model used to simulate the observations.

5.1 States Formulation and Geometry

All the propagated states are expressed in an inertial reference frame with inertial orientation J2000.

The J2000 orientation is defined in Tudat as a right-handed inertial frame which has the x axis

towards vernal equinox, and the z axis aligned with Earth’s rotation axis as it was at the J2000

epoch (1st of January 2000). We now indicate the translational state of body B, expressed in a

frame with origin at the barycenter of body A, is denoted as x
(A)
B . For simplicity, we denote the

inertial frame origin SSB (Solar System Barycenter) by I. Following this notation, we obtain:

x
(I)
B = x

(A)
B + x

(I)
A (5.1)

This clearly implies that any derivative of the inertial state of the body B is obtained as:

∂x
(I)
B

∂x
=

∂x
(A)
B

∂∗
+

∂x
(I)
A

∂∗
(5.2)

For the specific case of this analysis, the state vector is defined as:

x(t) =

(
xI
J(t)

xJ
i (t)

)
; i = 1 . . . 2 (5.3)

Where the letter J refers to Jupiter and the indices 1,2 refer to Io and Callisto respectively.

1Documentation: https://tudat-space.readthedocs.io
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Following this nomenclature the final position of the i− th moon in the inertial reference frame

will be given by:

x
(I)
i = x

(J)
i + x

(I)
J ; i = 1 . . . 2 (5.4)

It is important to note that in Tudat, since the global frame origin is the SSB, when calculating the

dynamics of the moon w.r.t. Jupiter, the relative position of the moon w.r.t. Jupiter is calculated by

subtracting the barycentric positions of the i-th moon and Jupiter to compute the relative position.

Further, it is possible to visualize the general geometry that is being simulated by looking at the

following image:

Moon, i

Jupiter

zJ

xJ

yJ

ri

rJi

x

y

z

Figure 5.1: General geometry of the observation where the origin corresponds to Earth. The vector
ri corresponds to the position of the i− th moon with respect to Earth while the vector rJi expresses
the position of the moon with respect to the barycenter of Jupiter.

5.2 Data type

The data used in this work is VLBI spacecraft tracking measurements and stellar occultation mea-

surements. Both observable types provide lateral position measurements expressed in terms of right

ascension and declination (α, δ). The VLBI tracking provides the lateral position of the spacecraft
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at a specific time in the international celestial reference frame (ICRF). Once the solution for the

orbit of the spacecraft with respect to Jupiter is known through doppler tracking, it is possible to

obtain the position of Jupiter with respect to the solar system. In this work we will not perform the

orbit determination of the spacecraft and we will only consider the post-processed lateral positions

of Jupiter. To summarize, the data types used in the simulations are:

• Lateral positions (VLBI) observed from Earth, of the Jupiter barycenter with respect to ICRF

(αJ , δJ)
ICRF

• Optical astrometry (stellar occultation) of the mooon i from Earth-based observatories (αi, δi)

referenced to the Earth barycenter

5.2.1 Data quality and weights

In this section we define the quality of the data that are used as input to the covariance analysis,

as well as the associated observation weights. The VLBI data uncertainty is expected to be at the

level of 0.5 nrad for both right ascension α and declination δ. It is important to point out that

current systems use an X-band signal, while for JUICE mission both a Ka- and Ka-band signal will

be available. The use of such high frequency signals, which have a wavelength that is almost 4 times

shorter than X-band, could result in observables that are almost 3-4 times more precise [46] [47].

Regarding Earth based optical astrometry such as stellar occultations measurements, the uncertainty

used in this work is 1 mas based on the latest positions obtained in [5], that is equivalent to 4.84

nrad. To account for sistematic errors, the VLBI measurements include an arc-wise bias of 0.5 nrad

in both right ascension and declination. It is important to note that usually the VLBI uncertainty

is applied to the spacecraft and not to the planet. To account for this, we assume that the orbit

determination accuracy of the spacecraft with respect to Jupiter is much smaller compared to the

accuracy of the actual VLBI observation referenced to the spacecraft. We do this by considering

only one observable exactly at the time of the perijove of the spacecraft, which is about at a radial

distance of 4,300 km from its surface. This allows to translate the uncertainty from the spacecraft

to Jupiter’s center of mass. About the stellar occultation, the final astrometric position has 4 main

sources: the star, the ephemeris, the fitted shape and the reduction process. Therefore there are

four main sources of bias. The Gaia EDR3 has a bias in proper motion that is already handled

by SORA. Moreover, the fitted shape can be biased. Usually an ellipsoidal shape is used to fit the

chords at the center of figure. However, for small bodies the elliptical shape may be wrong, thus

creating a bias in the final position. Bias can also be generated in the reduction process, for example

due to solar light deflection in the relative position of the star and the body. Many other sources

of bias can be identified: if the occulted star is a single star or a binary star, in the fitting process

the center of figure may differ from the center of mass and timing delays in the observations. As a

conservative estimate, we applied a bias with an a priori constraint set to 4 mas (1.94 nrad) in both

right ascension and declination.
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5.3 Moon uncertainty simulation

In this section we highlight the methodology that we took to simulate the and propagate the uncer-

tainty of the ephemerides of the Galilean moons starting from stellar occultation and VLBI data.

We will discuss the parameters that we will consider in the simulations and the use of covariance

analysis which has been discussed in great details in section 4.2. Moreover, we will also discuss some

mitigation strategies that have been used to reduce the high condition number in the estimation

problem. It is important to point out at this stage that realistically propagating the ephemeris

uncertainties over a long time period is beyond the scope of this analysis as it would require adding

additional data sets of current and upcoming missions like Juno, JUICE, Europa Clipper etc.. [3].

5.3.1 Estimated parameters

In thiw work we estimate the initial state of the moon in a Jupiter-centered reference frame and the

initial state of Jupiter in a barycentric reference frame with inertial orientation. In order to mitigate

systematic errors in the measurements [3], we estimate also an arcwise bias in both right ascension

and declination for each of the two data types.

5.3.2 Covariance analysis

We use the simulated observations of stellar occultation and VLBI as input to a covariance analysis,

as described in the section 4.2 as done by. We know that usually the formal errors obtained with

this type of technique are too obtimistic [3]. However it is sufficient for this work as we are mainly

interested in the contribution of VLBI data to the stellar occultation. The error between the true

and formal errors is usually hard to quantify as it originates from non-white measurement noise, as

well as inaccuracies in the planetary system’s dynamics. Typically planetary ephemeris have a true-

to-formal ratio of 2-3 [48]. The use of covariance analysis in the preliminary steps of a mission design

has been conducted for a large variety of previous, current and upcoming missions [49][50][51][52]

with a focus on many different types of data. Usually such studies have been on the direct science

return of spacecraft tracking (gravity fields and others physical parameters)[3] whereas this work

will primarily focus on the analysis of the dynamics of the natural satellites of Jupiter. Covariance

analysis provide more realistic results when analyzing the estimation of natural bodies, compared

to orbiter dynamics as the dynamical model used are able to capture the full observable behaviour

[2]. On the other hand, for orbiter dynamics simulation and estimation, the dynamical model errors

are not captured by a covariance analysis. This causes the true-to-formal error ratios of estimated

parameters from spacecraft tracking to be in the order of 10 [53][52]. We computed the covariance

for different scenarios where only stellar occultation and the combination of stellar occultaiton plus

VLBI are performed. The different scenarios will be analyzed further for each moon.
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5.3.3 A priori knowledge

As already described in 4, a prior knowledge of the states is taken into consideration in the estimation

by means of the a priori covariance matrix P0. Appropriate values for the a priori knowledge for

the estimated parameters are further discussed. The general shape of the a priori covariance matrix

is the following:

P0 =

[
P0,i 0

0 P0,J

]
(5.5)

Where P0,i is the a priori covariance matrix of the i-th moon and P0,J is the a priori covariance

matrix of Jupiter. These a priori covariances are actually ”stabilized” covariances obtained from

the following a priori values: for the moon, a linear psotion uncertainty of 15km in each RSW

direction and for the velocity we chose a priori values of 0.15,1.15,0.75m/s in each RSW direction

respectively. For Jupiter we used an a priori position uncertainty of 1km (or 10 km) in RSW

and a velocity uncertainty of 0.1m/s in each RSW direction. More information on the way the

stabilized covariances are obtained can be found in the appendices. Since the observation bias are

also parameters to be estimated, the shape of the a priori covariance matrix is the following:

P0 =

P0,i∗ 0 0

0 P0,J∗ 0

0 0 P0,bias

 (5.6)

Where P0,i∗,P0,J∗ are 6×6 stabilized a priori covariances (contain correlation terms) and P0,bias

is a 4× 4 matrix containing the a priori biases for each data type:
α0,occ 0 0 0

0 δ0,occ 0 0

0 0 α0,V LBI 0

0 0 0 δ0,V LBI

 (5.7)

Where the pair (α0,occ, δ0,occ) are the biases for the stellar occultation and (α0,V LBI , δ0,V LBI) for

the VLBI data respectively. The a priori constrain on the stellar occultation bias is 4 mas (or

1.93925472 × 10−8 radians) in both right ascension and declination, while for the a priori bias for

the VLBI data we used 0.5 nrad in both right ascension and declination.

Weight matrix

The weigh matrix W is defined as the inverse of the measurement noise covariance matrix. This is

done in order to minimize the trace of the error covariance matrix. In this work, we define the noise
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equal to the accuracy of the measurement. Clearly, the shape of the weight matrix is the following:

W =

[
σ−2
occ 0

0 σ−2
V LBI

]
(5.8)

Where σocc, σV LBI are 4.84× 10−9 rad for stellar occultation (both right ascension and declination)

and 0.5× 10−9 rad for VLBI respectively (both right ascension and declination).

5.3.4 Moon Dynamics

The dynamical parameters of the Galilean moons studied in this work come directly from SPICE

kernels.

Acceleration model

When propagating the dynamics of the single moons we took into account the following accelerations:

1. the mutual spherical harmonic acceleration between Jupiter and the moon. With the gravity

field of Jupiter expanded to degree 2 and order 0, and that of the moon expanded to degree

and order 2;

2. for Jupiter, we considered the point mass accelerations due to Saturn and the Sun;

Where the gravity field of the bodies is expressed in terms of expansion of spherical harmonics

functions [8]. The general shape is defined as follows:

U(r, ϕ, λ) =
µ

r

{
1 +

∞∑
l=2

l∑
m=0

Plm sin(ϕ)
(rref

r

)l
[Clm cosmλ + Slm sinmλ]} (5.9)

Where rref is the equatorial radius of the body studied, r, ϕ, λ are the radial position, latitude and

longitude respectively, Plm(sinϕ) is the associated Legendre polynomial of degree l and order m; Clm

and Slm are the coefficients of the gravity harmonics which have to be determined experimentally.

The mutual spherical harmonic gravity acceleration computes the acceleration exerted by a body B

on a body A where the influence of the gravity field of body A have been taken into account. This

model includes the couplings between the mass of each body and the gravity field coefficients of the

other body [2] [54]. This acceleration model in Tudat combines the spherical harmonic accelerations

of the two bodies on each other. The direct acceleration with respect to an inertial origin is computed

from:

a = −µB

r2
r̂+R(I/B)∇(B)UB̂(r)−

µB

µA
R(I/A)∇(A)UÂ(−r) (5.10)

Where UB̂ , UÂ are the spherical harmonic fields of bodies B,A; RI/B the rotation matrix, ∇(∗)

is the gradient operator in a frame fixed with the body.
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Rotation model

We used as rotation model the synchronous rotation model. In this case the rotation of a moon

is defined from its relative orbit with respect to the central body, in this case Jupiter. Moreover,

the body-fixed z axis is always perpendicular to the orbital plane along the direction of x × v and

the body-fixed y axis completes the right handed reference frame. The synchronous rotation model

is very useful when approximating the rotation of tidally locked natural satellites like the Galilean

moons. We show the effect of the synchronous rotation model by plotting as an example the latitude

and longitude angle of Jupiter with respect to Io, propagated for two years.

Figure 5.2: LEFT: Latitude RIGHT: Longitude; the scale is in the order of 10−16

As we can see, both latitude and longitude are at about 0. The small oscillations with a magnitude

in the order of 10−16 are negligible and due to integration errors.

5.3.5 Propagation and Integration

As already mentioned in previous chapters we used a translational propagator to propagate the state

vector of the bodies. Here the state vector is defined by the combination of the integrated bodies

and their central body, the combination of which define the relative translational states for which

a differential equation is to be solved. The specific formulation used in this work is the Cowell

propagator, which is the most used one. Let us briefly discuss Cowell’s formulation and Cowell’s

method before discussing the numerical integration method used.

according to Cowell’s formulation, is it possible to account for perturbations is to add the perturbing

accelerations to the two-body equation in such a way to produce a more accurate equation of motion

[38]:

r̈ = − µ

r3
r+ aperturbed (5.11)

Where aperturbed is the total acceleration caused by other forces exerted on the body. Following,

Cowell’s method is a finite difference technique to accomplish the integration. In the most simple
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case, Cowell’s propagator is defined as follow:

xBA =

(
rBA

vBA

)
(5.12)

Where xBA is the state of a body A with respect to a central body B. This will lead to a simple

formulation for the state derivative

ẋBA =

(
vBA

(r̈A)B

)
(5.13)

The equations of motion are then solved using numerical integrators, which are divided in single

step and multi step methods. We will quickly point out the main differences between the single-step

and multi-step methods.

• The single step methods combine the state at one time with rates at several other times, base

on the single state value at time t0. The rates are obtained directly from the equations of

motion and allow to determine the state of the body at time t0 + h. For single step method,

it is usually used a fourth-order Runge-Kutta method. Runge-Kutta methods are widely used

as they do not require back values to start the integrator.

• multi step methods in the contrary do an initial estimate (prediction) using previous estimates

of the function’s rate of change and a second series of of calculations (corrector) use the

estimated answer to further refine the result. For this reason, multi step methods are often

called predictor-corrector methods. Multi step methods are not self starting as they require

some back values to start the algorithm. This methods are usually more accurate and efficient

but this also increases the complexity.

In most numerical integration methods some step size techniques are always used. The most common

is the fixed step-size which is very useful in case of circular orbits because in this way the step size

is kept constant throughout the propagation while variable step-size methods are used in eccentric

orbits. We will now explain in details the family of methods (Runge-Kutta) which is the one used

in this work.

Runge-Kutta methods

RK (Runge-Kutta) methods, are widely used and they are based on the first-order Taylor expansion:

y(t0 + h) ≃ y0 + hẏ0

= y0 + hf(t0, y0)

= y0 + hΦ

(5.14)
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Where Φ is the increment function. For example, the classical fourth-order Runge-Kutta (RK4) is

defined as:
k1 = f (x (t0) , y (t0))

k2 = f (x (t0 + h/2) , y (t0) + k1/2)

k3 = f (x (t0 + h/2) , y (t0) + k2/2)

k4 = f (x (t0 + h) , y (t0) + k3)

Φ =
k1
6

+
k2
3

+
k3
3

+
k4
6

(5.15)

RK4 is able to approximate the exact solution up to order h4. In this work we used a Runge-Kutta-

Fehlberg 7(8) integrator, which is available in Tudat. RKF78 is a variable step-size method were the

step-size can be adjusted based on the required accuracy. We used the RKF78 method as it requires

less computational steps than methods of the same order already presented. It works by comparing

the solutions of an approximation of the 7th and 8th order to evaluate the accuracy. In this case,

both approximations use the same coefficients so it reduces the computational power. Regardin the

integration and propagation parameters, we summarize them in the following table:

Integrator used RKF78
Step size 1800s
Type fixed

Simulation time 2 years

Table 5.1: Propagation and integration parameters

5.3.6 Observation schedule

We simulated the observations based on the current available data. The stellar occultation prediction

of Callisto has been made with the aid of SORA, while the stellar occultation of Io has been already

analyzed in the past observational campaign [5]. Regarding the cadence of the VLBI data of Jupiter,

we took as reference the current trajectory of JUNO spacecraft, which according to NASA will

continue its mission until the end of 2025, thanks to a recent extension. This new extended mission

will involve 42 additional orbits, including flybys of Ganymede, Europa and Io [55]. Currently, JUNO

is on a very eccentric orbit with an orbital period of 53.4 days and a perijove of of about 4,200 km.

On June 2021 its orbital period will decrease to 43 days. On September 2022 it will decrease further

to 38 days until February 2024 where it will reach 33 days. The following image has been obtained

using SPICE toolkit and shows the trajectory of JUNO between 2017 and 2021
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Figure 5.3: trajectory of JUNO spacecraft between 2017 and 2021, obtained with SPICE (DE441
and jup365 spice kernels)

5.4 Covariance propagation

The covariance matrix obtained from the estimation up to time T is calculated as follow:

P(T ) = (P−1
0 +HT (T )W(T )H(T ))−1 (5.16)

Where W(T ) is the weight matrix and H(T ) is the design matrix. The covariance matrix is then

propagated to later times by using the state transition matrix:

P(t) = Φ(t, t0)P(T )Φ(t, t0)
T (5.17)
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Where the general shape of the state transition matrix is the following:

Φ(t, t0) =

[
∂xi(t)
∂xi(t0)

∂xJ (t)
∂xi(t0)

∂xi(t)
∂xJ (t0)

∂xJ (t)
∂xJ (t0)

]
(5.18)

with xi and xJ being the state of the i-th moon and the state of Jupiter respectively.

The covariance matrix propagation is handled in Tudat with a dedicated function. The function

requires as input the covariance at initial time that will be propagated, the state transition interface

that handles the propagation through time, which is the interface to the variational equations of

the system dynamics and the times at which the propagated covariance shall be retrieved. The

procedure has also been performed manually to double check the results obtained with the Tudat

function.

The propagated covariance matrix at each time step is then retrieved in inertial coordinates

therefore it is then transformed to the RSW frame by applying the transformation already expressed

in 4.2.1. Then, the formal errors are extracted by computing the square root of the main diagonal

elements.

To retrieve the propagated uncertainties in terms of right ascension and declination (α, δ) with

respect to the geocenter, it is necessary to compute the state of the observed body with respect to

the Earth center of mass. In Tudat it is possible to compute the relative position as a dependent

variable during the propagation. Once the state of the moon with respect to Earth is obtained,

it is possible to apply the transformation of the covariance matrix and express it in terms of right

ascension and declination:

Pα,δ = JPx,y,zJ
T (5.19)

Where J is the transformation matrix from inertial coordinates of right ascension and declination.

The formal errors are then obtained by taking the square root of the covariance matrix at each time

step. √
Pii = σi (5.20)

5.4.1 Workflow visualization

The toolkit used in this work is TudatPy. Here we highlight the workflow in the estimation of the

initial states of the bodies in order to better understand the outputs and the required inputs.
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Figure 5.4: Workflow from left to right for the estimation of the initial states; with TudatPy

Where the required inputs are: the bias for the observations, the link between the transmitter

and the receiver, the type of observable which in this case is angular position of the observed bodies

and the a priori knowledge of the errors in the states. Moreover, it is also required as input for the

estimator the variational equation interface which contains the system dynamics. As output of the

estimator, along with other parameters, we will retrieve the covariance matrix of the initial states

of the bodies.

For completeness, we also provide the workflow for the prediction and analysis of the stellar

occultation using the stellar occultation reduction analysis toolkit (SORA).
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Figure 5.5: Workflow for the stellar occultation prediction and analysis; with SORA

Where for the prediction case, the required input are the ephemeris for the body under analysis

(jup365 ), the ephemeris for solar system planets (de441 ) and finally the star catalogue GAIA EDR3

in order to properly find the star for the stellar occultation. The possible stellar occultations are

then filtered with our requirements (date, magnitude drop) and we will then finally obtain the stellar

occultation we are looking for. As next step, the positive occultation is used as input along with

the light-curve model that has been simulated for the specific occultation. The chord is then fitted

to the ellipse and we will be able to retrieve the final astrometric position of the celestial body with

respect to the geocenter in terms of right ascension and declination (α, δ).
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6
Results

The following section presents the results obtained from the covariance analysis of the estimated

states of the moons. The simulated observations are the stellar occultation, predicted using SORA

and the VLBI observations on Jupiter with a cadence of 53.4 days. The formal errors of the single

moons are then propagated along the three RSW directions and by right ascension and declination.

We start by highlighting the propagated uncertainties of Callisto and Io. Then we will compare

the two cases to discuss similarities and differences. Moreover, we will briefly setup a simulation

where the two inner moons are propagated (Io and Europa) to see if an observation on Europa can

constrain the state of Io due to the Laplace resonance.

6.1 Callisto analysis

Firstly in this analysis, let us study the prediction of the stellar occultation of Callisto for which the

full output of SORA can be found in the appendix B, then we will proceed to highlight the different

scenarios considered and the obtained uncertainties.

6.1.1 Callisto Occultation

With the aid of the Jovian system ephemeris (jup365 ) it is possible to predict future occultation

events by propagating star’s position using the Gaia EDR3 catalogue. In combination with SORA

it was possible to predict a future stellar occultation by Callisto on January 15, 2024. The star

and its parameters was identified by Gaia EDR3. The SPKID of Callisto is 504. Observational

data are summarized in the following table, were uncertainties in the star position are expressed in

milli-arcseconds (mas).

Date and time UTC Gaia EDR3 α (mas) δ (mas) G mag

2024-01-15 06:12:15 73763215746127744 2h15m25.67s (0.019) 12d24m11.15s (0.017) 8.837

Table 6.1: Observation data for body 504
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With a propagated magnitude of Callisto at the event of G = 6.215 the estimated magnitude

drop will be ∆mag = 0.083210.

It is possible to visualize the occultation by generating an occultation map, which requires

occultation parameters. Note that no position offsets of Callisto have been considered (6.1).

Figure 6.1: Occultation map by 504

In this occultation map the blue lines identify the shadow limits and the black dots are the center

of the shadow separated by 1 minute. Also, C/A is the closest approach distance in arcseconds (1

arcsecond = 1/3600◦), P/A is the position angle at closest approach in degrees, vel is the velocity

of the event in km/s and mag is the normalized magnitude to a velocity of 20 km/s.

Based on the occultation map, we simulated an hypothetical observer located in San Diego,

California. Here we summarize the fitted times obtained from the simulated light curve.
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Station Immersion time (UTC) Emersion time (UTC) Chord length

San Diego, USA 2024-01-15 06:17:43.14 2024-01-15 06:24:38.5 3980.021 km

Table 6.2: Fitted times

We then fitted the limb of Callisto to the stellar occultation chord as seen from San Diego. The

red segments represents the 1σ error in each immersion and emersion time.

Figure 6.2: Fitted limb on 504

In order to create the stellar occultation light curve model, some physical parameters are required.

First, the time axis of the light curve must be projected in the sky plane using the velocity. Then,

Fresnel diffraction is applied. The diffraction depends on the object distance (in AU) and the

observational wavelength central value λ0 and its bandwidht δλ. Lastly, the occulted star parameter

at the object distance (in km).

For this specific case, the shadow velocity during the occultation is 9.810 km/s and the object
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distance is 4.70 AU. The default observational settings have been used: a central wavelength of

λ0 = 0.7 microns and a bandwidth of ∆λ = 0.3 microns. With all the parameters, the mean Fresnel

scale can be obtained [56]:

FS =
1

2
·

(√
(λ+ 0.5 ·∆λ) · dist

2
+

√
(λ− 0.5 ·∆λ) · dist

2

)
(6.1)

Which for this simulation is equal to 0.49 km. Finally, the projected stellar diameter at the body

distance is 0.40 km. With these parameters, it is now possible to plot the fitted light curve.

Figure 6.3: Fitted model

Where the x-axis contains the time in seconds after the reference time of 2024-01-15 00:00 UTC

and on the y-axis the relative normalized flux. Since the occultation is predicted in 2024, the

normalized light curve has been simulated with a Root Mean Square (RMS) noise of σ = 0.02. We

can plot the simulated normalized light curve.

Figure 6.4: Normalized light curve, 504
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Further it is possible to plot the fitted model against the normalized light curve.

Figure 6.5: Light curve with fitted model

Where the immersion and emersion times are highlighted by vertical solid and dashed lines

respectively. The complete post fitted model (geometric, affected by Fresnel diffraction [56] and by

the star apparent diameter)can be also be plotted considering only the immersion time.

Figure 6.6: Post fitted model
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Lastly, we obtained a final astrometric position for the Callisto occulation referenced to the

geocenter at the exact time of the occultation event. We stress that this position comes from a

simulated lightcurve so the result will be different from the real final position as SORA was developed

to analyze past occultation and not future ones. Moreover the obtained uncertainties highly depend

on the real observation scenario therefore will be highly optimistic.

Body Date and time UTC Right ascension Declination

Callisto 2024-01-15 06:12:15.680 2h15m25s.6959782 (0.203) 12◦24’10”.98905 (0.175)

Table 6.3: Final preficted astrometric position for Callisto

Now that we have show in details the procedure to obtain lightcurve and the relative chord, let

us have a look at the specific geometry at the occultation time. We want to investigate the position

of Callisto with respect to Jupiter as seen from Earth. Firstly, let us plot the position of Callisto

wrt Jupiter at the time of the stellar occultation

Figure 6.7: Geometry of the occultation of Callisto. The red arrow identifies the direction of the
velocity vector of Callisto while the black arrow points towards the Earth

The geometry of the occultation is helpful to understand if the moon is seen from Earth in

the direction of its radial direction or velocity vector expressed in the Jupiter barycentric frame.
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Assuming that Earth, Jupiter and Callisto are on the same plane, the x, y components of the

velocity vector are computed in the following way:

v
(J)
cal =

xcal√
x2
cal + y2cal

,
y
(J)
cal√

x2
cal + y2cal

(6.2)

Where (xcal, ycal) are the x, y coordinates of Callisto with respect to Jupiter barycentric position.

It is possible to calculate the angle between the Earth-Callisto unit vector v̂
(E)
cal and the unit vector

pointing in the direction of the velocity vector of Callisto with respect to Jupiter v̂
(J)
cal :

θCal = cos−1(
v̂
(E)
cal

v̂
(J)
cal

) = 157.07◦ (6.3)

From this result and the previous plot we can observe that at the occultation time, the line of sight

is almost aligned to the direction of the velocity vector of Callisto. Moreover, Callisto is moving

away as seen from Earth. Since the stellar occultation provide the lateral position of the moon, this

geometry will constrain mainly the radial component of the position while the along-track component

won’t be much affected by the observation.

6.1.2 Ephemeris results

Let us now analyze the resulted formal errors of Callisto obtained from the covariance analysis. We

studied three different scenarios: one case where there is no uncertainty in the state of Jupiter (case

A), one case where Jupiter has an a priori uncertainty of 1km in RSW directions (case B) and one

case where the a priori uncertainty of Jupiter is set to 10km in RSW directions (case C). Moreover,

we also took into consideration the case where no data is present for both Callisto and Jupiter. Let

us summarize in the following table the different scenarios taken into consideration.

Scenario Callisto a priori Jupiter a priori
A 15km, 0.15-1.15-0.75m/s (RSW)
B 15km, 0.15-1.15-0.75m/s (RSW) 1km, 0.1 m/s (RSW)
C 15km, 0.15-1.15-0.75m/s (RSW) 10km, 0.1 m/s (RSW)

Table 6.4: Callisto analysis of the different scenarios considered in the study

In the next image, the propagated uncertainties have been plotted to highlight the results in the

case where no observation data both for Callisto and Jupiter is available.

Further, we analyzed the propagated formal errors of Callisto with the different a priori errors

of Jupiter while simulating the observations on both bodies, that are stellar occultation and VLBI

observables. In the following, the propagated formal errors in RSW position components of Callisto

and the absolute correlations of the estimated parameters, which in this case are the initial states

and the biases are shown.
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(a) case A, perfect knowledge of Jupiter state

(b) case B, a priori position uncertainty of Jupiter set to 1km in each
RSW direction

(c) case C, a priori uncertainty of Jupiter set to 10km in each RSW
direction

Figure 6.8: Propagated formal errors in case where no data is available
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(a) case A, perfect knowledge of Jupiter state. Only stellar occultation

(b) case B, a priori uncertainty of Jupiter set to 1km in each RSW direction. Stellar occultation and VLBI

(c) case C, a priori uncertainty of Jupiter set to 10km in each RSW direction. Only stellar occultation

Figure 6.9: Propagated uncertainties in different scenarios from 6.4. The magenta line indicate the
Callisto stellar occultation. For the absolute correlations, elements 0-5 are the state of Callisto, 5-11
Jupiter state, and the other elements on the diagonal are the biases for the stellar occultation and
VLBI expressed in terms of right ascension and declination
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We can clearly see from 6.9 that due to the particular geometry of the observation, there is no

added information to the along-track component of Callisto when performing the stellar occultation.

Moreover what we can also observe is that Callisto is not sensitive to Jupiter uncertainties in the

case A and B, as only the cross-track components is slightly improved compared to the no data

case. We summarize the estimated initial states of Callisto obtained with different settings in the

following table:

Scenario ∆R [m] ∆S [m] ∆W [m]

Case A -314.9 -112.7 -231.9
Case B only occultation -267.9 -85.8 -199.3

Case B occultation + VLBI -302.4 -98.2 -225.2
Case C only occultation -275.0 -84.6 -216.0

Case C occultation + VLBI -290.5 -98.3 -223.3

Table 6.5: Relative difference in estimated initial states of Callisto expressed in RSW with respect
to the case where no data is available. A negative sign indicates an improvement in the uncertainty

When the a priori uncertainty of Jupiter is set to 10km and no VLBI data is available, we can

observe that the propagated uncertainties of Callisto are almost unperturbed by the worse error in

Jupiter. In fact we get similar values to Case B without the VLBI data. In the situation where

also the VLBI and stellar occultation data are present, the propagated uncertainties of Callisto are

consistent with the ones of Case B with full data. The average difference with the addition of the

VLBI data for case C is quite small with an improvement of about 26m in radial direction, 8.25

m in along-track direction and 18.75m in cross-track direction respectively. This proves that the

addition of the VLBI does not provide much additional benefit to the uncertainty of Callisto. It

is now interesting to propagate the uncertainties in terms of right ascension and declination. Since

the stellar occultation gives this pair of coordinates, plotting the uncertainties in RSW components

could hide the behavior of the formal errors. If we now calculate the propagated state of Callisto

with respect to Earth barycenter and using the transformation expressed in 4.2.1, we can obtain the

propagated uncertainties in terms of right ascension and declination of Callisto when having both

the stellar occultation and the VLBI data available for case B.
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Figure 6.10: uncertainties of Callisto in (α, δ). The magenta line indicates the stellar occultation

As we can see from the plot, we obtain an uncertainty of 1.5 mas (7.2722052× 10−9 radians) in

right ascension and 2.5 mas (1.2120342× 10−8 radians) in declination.

6.2 Io Analysis

We now proceed to show the results obtained from the covariance analysis of Io. Here we won’t

simulate the stellar occultation as it has already been studied by Morgado et al. [5] in the past

observational campaign. We recall the final astrometric position obtained from the past stellar

occultation of Io, the uncertainty is expressed in brackets by units of mas:

Body Date and time UTC Right ascension Declination

Io 2021-04-02 10:24 21h43m04s.37583 (1.1) -14◦23’58”.1536 (0.7)

Table 6.6: Final astrometric position of Io [5]

The stellar occultation happened on 02.04.2021, like we did for the Callisto analysis, let us first

display the geometry of the occultation:
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Figure 6.11: Geometry of the stellar occultation of Io

Following the same procedure applied to the Callisto case, we can calculate the angle between

the velocity vector of Io with respect to Jupiter and the unit vector pointing towards the Earth

center of mass, the angle is found to be:

θIo = cos−1(
v̂
(E)
io

v̂
(J)
io

) = 155.33◦ (6.4)

As we can see, the line of sight of the Earth-Io vector is almost aligned with the velocity vector

of Io, this will already provide some useful information as the stellar occultation won’t be able to

constrain much the along-track component of the position.

6.2.1 Ephemeris results

We studied three different scenarios, which are the same for the Callisto analysis. We summarize

them in the following table:

We obtained the a priori covariances following the methodology already explained in previous

chapters. In the following, we show the propagated uncertainties of Io’s position with respect to

Jupiter in the case where no data is available.
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Scenario Io a priori Jupiter a priori
A 15km, 0.15-1.15-0.75m/s (RSW)
B 15km, 0.15-1.15-0.75m/s (RSW) 1km, 0.1 m/s (RSW)
C 15km, 0.15-1.15-0.75m/s (RSW) 10km, 0.1 m/s (RSW)

Table 6.7: Io analysis of the different scenarios considered in the study

Figure 6.12: Propagated uncertainties of Io’s position in the RSW frame

As we can see, with the ”stabilized” a priori covariance matrix the along-track and cross-track

components are constrain at the 15km level while the radial component is clearly lower, at a 7km

level. Instability in the along-track component may be caused by perturbation effects which have

not been included in the dynamical model as capturing the full dynamics of the Jovian system is

out of the scope of this work. We now highlight the results obtained with the three cases:
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(a) case A, perfect knowledge of Jupiter state. Only stellar occultation

(b) case B, a priori uncertainty of Jupiter set to 1km in each RSW direction. Stellar occultation and VLBI

(c) case C, a priori uncertainty of Jupiter set to 10km in each RSW direction. Only stellar occultation

Figure 6.13: Propagated uncertainties in different scenarios from 6.4. The magenta line indicate the
Io stellar occultation. For the absolute correlations, elements 0-5 are the state of Io, 5-11 Jupiter
state, and the other elements on the diagonal are the biases for the stellar occultation and VLBI
expressed in terms of right ascension and declination
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We can observe that in the case of both stellar occultation and VLBI data is available, the

position uncertainties of Io is comparable to the results obtained when the a priori knowledge of

Jupiter is perfectly known. Moreover, as for the Callisto analysis, we can see that even with the

worsening of the a priori error in Jupiter the propagated uncertainties of Io are slightly degraded

especially in the cross-track component which is much worse compared to the other values.

We compared more accurately the formal errors of the estimated initial states of Io’s position in

RSW. We summarized the differences in each component with respect to the case where no data is

available:

Scenario ∆R [m] ∆S [m] ∆W [m]

Case A -131.1 -684.0 -2708.9
Case B only occultation -96.7 -655.5 -2677.3

Case B occultation + VLBI -128.5 -682.5 -2704.9
Case C only occultation -49.6 -458.2 -1857.6

Case C occultation + VLBI -127.7 -682.1 -2704.3

Table 6.8: Relative difference in estimated initial states of Io expressed in RSW with respect to the
case where no data is available. A negative sign indicates an improvement in the uncertainty

From the table we can clearly observe that in general, the addition of the VLBI data helps to

improve the uncertainty of the cross-track component of Io, while all the other components are

improved by less extent. We can plot the absolute difference between case C with only the stellar

occultation and case C with all the data:
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Figure 6.14: Absolute difference between case C (only occultation) and case C (occultation and
VLBI)

In the scenario C (Jupiter error 10km) the positive contribution of the VLBI with respect to the

case only with the stellar occultation is on average 144m in radial direction, 304.5m in along-track

direction and 390.5m in cross-track direction respectively. If we calculate the average difference

between case B (Jupiter error 1km) with only the stellar occultation and case B with VLBI and

stellar occultation, we see that the contribution of the VLBI data is an improvement of 18m in radial

direction, 6m in along-track direction and 16m in cross-track direction respectively.

From case B (1km Jupiter uncertainty, both VLBI and stellar occultation data available) we can

derive the propagated uncertainties expressed in terms of right ascension and declination.
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Figure 6.15: Propagated uncertainties of Io expressed in terms of right ascension and declination
(α, δ). The magenta line indicates the stellar occultation

It is possible to observe that at the time of the occultation the uncertainty in right ascension is

constrained to around 1 mas (4.84× 10−9 radians) and the declination uncertainty to about 1 mas.

The 1−σ uncertainties are consistent with the results obtained by the past observational campaign

[5]. Also in this situation we can observe from the plot that the formal errors in α, δ are comparable

to the ones obtained with Callisto, with these ones being slightly lower.

6.3 Discussion

We will now discuss the results obtained in the above chapter, from the stellar occultation of Callisto

to the propagated uncertainties of Callisto and Io, highlighting their similarities and differences.

Moreover, we will spend some time to quickly present a possible situation where we demonstrate the

coupling in the dynamics between Io and Europa by simulating the two moons together with their

respective stellar occultations.

With the aid of SORA, we were able to predict not only the stellar occultation of Callisto but

also its shadow on the Earth, this would be extremely helpful in organizing future observational
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campaigns for such occultation event and retrieve important data. Moreover, we were also able to

simulate the light-curve from a real observational location. Finally we generated a final astrometric

position of Callisto with respect to the geocenter (Earth center of mass). The final positions have an

uncertainty of 0.203 mas and 0.175 mas in right ascension and declination respectively. In this case,

it is important to remember that the obtained uncertainties are very optimistic, as the simulation

does not contain real light fluxes and bias were not considered. In the frame of stellar occultations,

bias can be in the order of 3-5mas depending on many factors which are impossible to predict and

anyways outside the scope of this work. Still, the simulated stellar occultation provides useful insights

on the full procedure to obtain a final position and could be used as a reference when organizing

and preparing real observations. On a note, since we have also estimated the bias, we found that

the estimated bias for the stellar occultation are improved compared to the a priori values, therefore

they are not constraint to their a priori values.

The propagated uncertainties of Callisto show that having zero uncertainty in Jupiter or having

1km or 10km a priori uncertainty in Jupiter does not influence much the formal errors. This is

verified when simulating only the stellar occultation and with the combination of stellar occultation

and VLBI. Such result is verified from the fact that the radial distance between Jupiter and Callisto

is very large therefore its influence decreases. In this case the addition of the VLBI observables is

not effective in adding information to the uncertainties in Callisto. When having both data type

available the formal errors of the initial states are close to the results obtained in Case A (perfect

knowledge of Jupiter) with an improvement compared to the no data case of about 302m, 98m and

225m in the radial, along-track and cross-track component respectively. When we simulate only the

stellar occultation and we have a large uncertainty in Jupiter see that the propagated formal errors

in Callisto are similar to the results obtained in all the previous case with the radial component being

the most affected with a degradation of about 40m. In this situation the addition of the VLBI data is

important to compensate for this high uncertainty in Jupiter and bring the formal errors in Callisto

to about the same level as the scenario of case A and B. In general the main result that we can

take from this analysis is that the use of VLBI data does not improve much the results of Callisto.

Moreover, we can clearly see that the observation data does not help to constrain the along-track

component of Callisto. This is verified from the geometry of the event: the Earth-Callisto vector

is almost aligned with the velocity vector of Callisto wrt Jupiter, this confirms the fact that due to

this geometry, the stellar occultation measurement is not able to provide additional information to

the along-track component. Only with a very accurate occultation measurement (0.1 mas) we are

able to constrain the along-track component with a minimum value of the uncertainty of about 3

km at the occultation time while all other components are at a km level.

Moving onto the Io analysis, we can observe a similar pattern compare to the Callisto analysis.

In fact, from the results we can see that the influence of Jupiter on the formal errors of Io is quite
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small when the a priori constraint of Jupiter is set to 1km. Here, all the components have similar

values compared to the ideal case where Jupiter has no uncertainty. On the contrary, we can see

that when setting Jupiter with an a priori value of 10km, the effects on Io are much larger than the

effects we saw on Callisto. In this situation, the addition of the VLBI data is very important in

constraining all components with an improvement of about 80m, 230m and almost 900m in radial,

along-track and cross-track direction respectively. This larger contributions should be expected as

Io is much closer to Jupiter and therefore it will be more sensitive to its uncertainty compared to

Callisto. On this final note, we investigated the effects of a single VLBI measurement performed

on Jupiter at the same time of the stellar occultation. Here we consider a measurement with an

accuracy of 0.5 nrad and an a priori uncertainty in Jupiter of 10km.

Figure 6.16: LEFT: propagated uncertainties of Io RIGHT: propagated uncertainties of Jupiter; the
magenta line indicates the stellar occultation while the black line the VLBI observation

We can clearly see that compared to the case without any VLBI data we have an improvement

in formal errors of Io in all three direction. Of course such configuration will be almost impossible

to achieve in reality as JUNO orbits are fixed. The idea behind this scenario is to see ideally the

improvements that a single VLBI observation can bring to the formal errors of Io. Since we examined

the same scenarios on both moons (Callisto, Io) it is helpful to compare them side by side in the

different cases. The following page provides a side-by-side comparison of Callisto and Io in Case A,

Case B, Case C. Clearly we can see that in Callisto there is no difference between Case A and B

(with and without Jupiter). When setting the a priori uncertainty of Jupiter to 10km, Callisto’s

errors are also almost unperturbed while on Io we see a degradation of the uncertainties which is

larger compared to Callisto. Of course this is due to the fact that Io is much closer to Jupiter

compared to Callisto.
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(a) case A, only stellar occultation

(b) case B, stellar occultation and VLBI (Jupiter error 1km)

(c) case C, only stellar occultation (Jupiter error 10km)

Figure 6.17: Propagated uncertainties in different scenarios of Io (LEFT) and Callisto (RIGHT).
The magenta line indicates the stellar occultation

72



Finally, we can compare the results of Callisto and Io in the situation where both the stellar occul-

tation data and the VLBI data is available (Case B):

Figure 6.18: LEFT: propagated uncertainties of Io in right ascension and declination RIGHT: prop-
agated uncertainties of Callisto in right ascension and declination; the magenta line indicates the
stellar occultation

We can observe that at the occultation time, we obtain similar uncertainties for the right ascen-

sion and declination. As for Io we obtain a minimum of 1 mas in right ascension and about 1 mas in

declination, while for Callisto we obtain 1.5 mas in right ascension and 2.5 mas in declination. For

analysis purposes, we also tried to perform a very accurate stellar occultation observable which we

treated as unbiased and with an accuracy of about 0.1 mas (0.4848137× 10−9 radians). This stellar

occultation has been performed alongside the VLBI data of Jupiter. In this case we observed that

we were able to also constrain better the along-track component on both moons. In the following

image we can see the comparison side-by-side:

Figure 6.19: LEFT: propagated uncertainties of Io RIGHT: propagated uncertainties of Callisto; the
magenta line indicates the stellar occultation

Here we can see that for Io, the uncertainties reach a minimum at the occultation time of about
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4km for the along-track component, 2.5km for the radial component and 2km for the cross-track

component respectively. For Callisto, we reach a minimum of 3km in the along-track component,

2.5km for the radial component and 2km for the cross-track component. It is important to point out

that this kind of scenario is impossible to realize in the real world as such accuracy is not achievable,

moreover the stellar occultation measurement will always be subject to biases as many different

factors are involved.

6.3.1 Considerations of the coupling between Io and Europa

In this last section we were interested to see if by simulating both Io and Europa together, an

observation of Europa could constrain not only Europa’s state but also the state of Io. Of course, such

analysis is done in a very preliminary way so the results should not be interpreted in a quantitative

way but more in a qualitative way since the dynamical model does not include other perturbation

effects from Ganymede and Callisto. Still, for our work the assumptions and simplifications in our

dynamical model can be considered valid as a preliminary study.

It is important to remember that there exists a strong coupling in the dynamics of the two innermost

moons (Io and Europa) due to the Laplace resonance. As we have mentioned in the beginning, the

ratio of the mean motions of the two moons should follow the equation:

nIo =

√
µJ

a3Io
; nEuropa =

√
µJ

a3Europa

; (6.5)

Where µJ = 1.26686534× 1017m3s−2 is the gravitational parameter of Jupiter and aIo, aEuropa are

the semi-major axis of Io and Europa respectively. According to our dynamical model, the ratio of

the mean motions is found to be:
nIo

nEuropa
= 2.00576 (6.6)

As we can see the ratio of the two mean motions is not exactly 2, this is in line with the theory as

in order to have resonance, it is sufficient that the ratio of the mean motions is close to 2. This is

due to the fact that the equation:

nIo − 2nEuropa = 0 (6.7)

Is not the real resonance, in fact the true resonance also contains the term related to the precession

of the pericenter (ϖ) of Io or Europa:

nIo − 2nEuropa + ϖ̇ = 0 (6.8)

Which also in this case it will never exactly zero but it will be 0 on average. Now that we explained

our assumptions, let us look at one specific scenario of interest. In this case, we investigated if the

stellar occultation of Europa performed on 04.06.2019 can constrain the uncertainties of Io. In this

scenario we will still have the stellar occultation of Io and the VLBI data from Jupiter. First, let us
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plot the propagated uncertainties of Io and Europa in the situation where no data is available.

Figure 6.20: LEFT: propagated uncertainties of Io RIGHT: propagated uncertainties of Europa

Now, we proceed to add the stellar occultation data of Europa and Io and the VLBI data of

Jupiter using the same values for their accuracy and bias. The procedure is the same already

explained in details in the dynamical model. Here the final propagated uncertainties:

Figure 6.21: LEFT: propagated uncertainties of Io RIGHT: propagated uncertainties of Europa;
the magenta line indicates the stellar occultation of Io while the black line the stellar occultation of
Europa

Clearly we can see the effects of the stellar occultation of Europa (where the accuracy on Europa’s

position improves) on the propagated uncertainties of Io, especially on the along-track component

which decreases to about 6km at the occultation time while the radial component is at a 2.5km level

and the cross-track at a 10km level respectively. This last results can confirm the bond between the

two inner moons due to the Laplace resonance.
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7
Conclusions

The objective of this work was to analyze how the addition of VLBI data could help stellar occultation

measurements of the natural satellites of Jupiter, in particular on the moons of Io and Callisto.

Firstly, we considered the stellar occultation of Io analyzed by Morgado in 2021 [5] as it was part of a

past observational campaign. The second stellar occultation used in this wark has been predicted and

modeled using the stellar occultation reduction analysis toolkit SORA. The VLBI data considered

comes from JUNO current trajectories as it is the only spacecraft orbiting Jupiter at the time of

both stellar occultations. We considered only one accurate measurement per JUNO perijove in order

to validate the simplification that we made by not modeling also the spacecraft. From the results

we can clearly see how the particular geometry of the occultation scenario can influence the results.

In fact, if the Earth-moon vector is aligned or closely aligned to the velocity vector of the moon

with respect to its central body we will loose information on the along-track component as stellar

occultation provides information on right ascension and declination. Whereas if the Earth-moon

vector is aligned with the radial component of the moon with respect to the central body, we would

lose information on the radial component but, it was not the case for both moons. However, by

inspection, we see that only a very accurate measurement of 0.1 mas can constrain the along-track

component even with such geometry. However, such accuracy is impossible to achieve as the Earth-

based astrometry are always biased and their accuracy depend much on many factors that have to be

analyzed case by case. Moreover, we observed that the VLBI data is not very useful in the situation

where Jupiter is known with a 1 km accuracy on both Io and Callisto with Callisto’s uncertainties

being almost unperturbed. On both satellites we found that the greatest influence of the VLBI data

comes when the knowledge of Jupiter is known with a far worse accuracy of about 10 km. This effect

is smaller on Callisto due to being further away from Jupiter but on Io this influence is much more

important since is the closest satellite from Jupiter. For Io, the addition of the VLBI observables

is crucial to constrain all three components of Io’s position, in particular the cross-track component

which shows an improvement of almost 900m. Moreover, we have also presented the situation where

both Io and Europa are propagated together to highlight the coupling between the two moons even

when the resonance is not perfect. Here we showed how an accurate measurement of Europa helps
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to constrain the along-track component of Io. This results clearly suggest that when simulating for

longer period of time, it is very important to take into account any future tracking data that is

able to provide accurate information on the dynamics of the two inner moons. It is important to

stress that stellar occultations as Earth-based astrometry will be extremely helpful to provide data

sets for the position of the Galilean moons in support for future missions like Europa Clipper or

JUICE. We finally make some final consideration for a future work on this topic: the dynamics of

the moons and mainly Jupiter is influenced by many other parameters that we have not considered

like for example the full Jovian system and the external perturbations coming from nearby asteroids

which can influence the dynamics of Jupiter. Due to this simplification, the estimated formal errors

of the initial state of Jupiter will be very optimistic [3]. Moreover, in our simulations we considered

only one moon at a time and only lastly we considered a situation where two moons are simulated

together. Of course this simplified dynamics will also produce formal errors of the initial states of

the moons to be too optimistic.

Nevertheless, the results obtained in this work provide a useful insight on the contribution of VLBI

observables to stellar occultations and how their combination can produce stable data of the Galilean

moons. Further investigation should also include more observation data coming from both space

probes and future stellar occultations of the Jovian system.
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A
Procedure to calculate the

stabilized a priori covariance

When propagating the covariances of the bodies, we make us of ”stabilized” a priori covariance.

In this way, we make sure to also take into consideration the correlation terms and by keeping the

propagated uncertainties close to their a priori values. In general, the shape of the a priori covariance

matrix is:

P0 =

[
P0,i 0

0 P0,J

]
(A.1)

Where P0,i is the a priori covariance matrix of the i-th moon and P0,J is the a priori covariance

matrix of Jupiter. Moreover, P0,i and P0,J are diagonal matrices which contain only the formal

errors. In the following, we explain the technique used to obtain the full a priori covariances for a

single body.

Firstly, we assume uncorrelated errors expressed in the RSW frame. This is done because state

errors in this reference frame are much less subject to correlations with respect to an inertial case.

Then, the covariance matrix P0 is transformed from the RSW to the inertial reference frame using

the following transformation:

P0,xyz = [J ]P0,RSW [J ]T (A.2)

Where J is the rotation matrix from the RSW frame to the inertial frame. To generate correlations

we will use this covariance matrix as input of a POD simulation. Here, we will generate cartesian

position observables to constrain the body to its a priori values. It is important to note that this type

of observable is not realized in reality but is only used for analysis purposes. The data it provides

is the inertial (with respect to a global frame origin) cartesian position of the observed body, that is

(x, y, z) position. The output covariance matrix is of course calculated using the usual formulation:

P(T ) = (P−1
0 +HT (T )W(T )H(T ))−1 (A.3)
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The covariance which is the output of the estimation will then be used as a priori covariance with

proper correlation coefficients. It is important to keep the same dynamical model and the same time

period. The covariance can be then propagated to any later time following the classical approach:

P(t) = Φ(t, t0)P(t0)Φ(t, t0)
T (A.4)

When calculating the stabilized a priori covariance matrix, it is important to note that he a priori

uncertainties of Jupiter shall not have effects on the propagated uncertainties of the moon and vice

versa, we can prove this calculating the covariance matrix P(t). First, we recall the shape of the

state transition matrix:

Φ(t, t0) =

[
∂xi(t)
∂xi(t0)

∂xJ (t)
∂xi(t0)

∂xi(t)
∂xJ (t0)

∂xJ (t)
∂xJ (t0)

]
(A.5)

Here the terms outside the main diagonal are zero:

Φ(t, t0) =

[
∂xi(t)
∂xi(t0)

0

0 ∂xJ (t)
∂xJ (t0)

]
(A.6)

Since is a diagonal matrix, the transpose is equal Φ(t, t0) = ΦT (t, t0). We then calculate the term

P0Φ
T :

Φ(t, t0) =

[
P0,i

∂xi(t)
∂xi(t0)

0

0 P0,J
∂xJ (t)
∂xJ (t0)

]
(A.7)

From here we can simply calculate the covariance matrix at a generic time step t:

P(t) =

[
P0,i

∂xi(t)
∂xi(t0)

∂xi(t)
∂xi(t0)

0

0 P0,J
∂xJ (t)
∂xJ (t0)

∂xJ (t)
∂xJ (t0)

]
(A.8)

Clearly we can see that no correlation terms between the moon and Jupiter are present. This will

be the final shape of the stabilized a priori covariance matrix.

We can see the effects of having the full covariance versus only the formal errors, here we show the

benefit of this technique on Io. We plot the results of the propagated stabilized a priori covariance

matrix:
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Figure A.1: LEFT: uncertainties propagation without stabilization RIGHT: uncertainties propaga-
tion with stabilization

As we can see, the stabilized covariance is much less subject to large fluctuations in the position

components. The largest difference can be seen on the along-track and radial component.
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B
Output of SORA for the stellar

occultation of Callisto

In the following we provide the output of the stellar occultation simulation of Callisto, with all the

parameters used. We first define the occultation geometry, star parameters, moon parameters, the

result of the simulated observation and the final astrometric position.

Stellar occultation of star Gaia-EDR3 73763215746127744 by Callisto

Geocentric Closest Approach: 0.141 arcsec

Instant of CA: 2024-01-15 06:12:15.680

Position Angle: 158.53 deg

Geocentric shadow velocity: 9.81 km / s

Sun-Geocenter-Target angle: 101.55 deg

Moon-Geocenter-Target angle: 49.74 deg

1 positive observations

STAR PARAMETERS

Gaia-EDR3 star Source ID: 73763215746127744

ICRS star coordinate at J2016.0:

RA=2h15m25.67269s +/- 0.0194 mas, DEC=12d24m11.1506s +/- 0.0167 mas

pmRA=36.496 +/- 0.025 mas/yr, pmDEC=-3.666 +/- 0.021 mas/yr

Gaia-EDR3 Proper motion corrected as suggested by Cantat-Gaudin & Brandt (2021)

Plx=3.9153 +/- 0.0206 mas, Rad. Vel.=20.87 +/- 1.31 km/s

Magnitudes: G: 8.837, B: 9.391, V: 8.962, R: 8.670, J: 7.987, H: 7.780, K: 7.721

Apparent diameter from Kervella et. al (2004):

V: 0.1165 mas, B: 0.1151 mas

Apparent diameter from van Belle (1999):
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sg: B: 0.1372 mas, V: 0.1423 mas

ms: B: 0.1277 mas, V: 0.1084 mas

vs: B: 0.2061 mas, V: 0.1850 mas

Geocentric star coordinate at occultation Epoch (2024-01-15 06:12:15.680):

RA=2h15m25.69247s +/- 0.2033 mas, DEC=12d24m11.1198s +/- 0.1748 mas

CALLISTO

Object Orbital Class: Natural Satellite

Physical parameters:

Diameter:

4820.6 +/- 3 km

Reference: Morrison et al. (2000). Icarus 153:157-161,

Mass:

1.0757e+23 +/- 1.9478e+17 kg

Reference: JUP230,

Albedo:

0.17 +/- 0.02

Reference: Morrison et al. (1977). book Planetary Satellites 363-378,

———– Ephemeris ———–

EphemHorizons: Ephemeris are downloaded from Horizons website (SPKID=504)

Ephem Error: RA*cosDEC: 0.000 arcsec; DEC: 0.000 arcsec

Offset applied: RA*cosDEC: 0.0000 arcsec; DEC: 0.0000 arcsec

POSITIVE OBSERVATIONS

Site: San Diego, USA

Geodetic coordinates: Lon: -117d09m41s, Lat: 32d43m29s, height: 0.042 km

Target altitude: 33.4 deg

Target azimuth: 263.4 deg

Light curve name: San Diego, USA

Initial time: 2024-01-15 05:47:00.000 UTC

End time: 2024-01-15 06:53:59.700 UTC

Duration: 66.995 minutes

Time offset: 0.000 seconds

Exposure time: 0.3000 seconds

Cycle time: 0.3000 seconds

Num. data points: 13400

Bandpass: 0.700 +/- 0.300 microns
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Object Distance: 4.70 AU

Used shadow velocity: 9.810 km/s

Fresnel scale: 0.050 seconds or 0.49 km

Stellar size effect: 0.041 seconds or 0.40 km

Object LightCurve model was not fitted.

Immersion time: 2024-01-15 06:17:43.100 UTC +/- 0.010 seconds

Emersion time: 2024-01-15 06:24:38.500 UTC +/- 0.010 seconds

RESULTS

Ephemeris offset (km): X = 0.0 km +/- 0.0 km; Y = 0.0 km +/- 0.0 km

Ephemeris offset (mas): da cos dec = 0.000 +/- 0.000; d dec = 0.000 +/- 0.000

Astrometric object position at time 2024-01-15 06:12:15.680 for reference ’geocenter’

RA = 2 15 25.6959782 +/- 0.203 mas; DEC = 12 24 10.989058 +/- 0.175 mas
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