*Analytic models of self-gravitating rotating gaseous tori with central black hole.*[Laurea magistrale], Università di Bologna, Corso di Studio in Astrofisica e cosmologia [LM-DM270]

Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (19MB) |

## Abstract

In this thesis project, I present stationary models of rotating fluids with toroidal distributions that can be used to represent the active galactic nuclei (AGN) central obscurers, i.e. molecular tori (Combes et al., 2019), as well as geometrically thick accretion discs, like ADAF discs (Narayan and Yi, 1995) or Polish doughnuts (Abramowicz, 2005). In particular, I study stationary rotating systems with a more general baroclinic distribution (with a vertical gradient of the angular velocity), which are often more realistic and less studied, due to their complexity, than the barotropic ones (with cylindrical rotation), which are easier to construct. In the thesis, I compute analytically the main intrinsic and projected properties of the power-law tori based on the potential-density pairs of Ciotti and Bertin (2005). I study the density distribution and the resulting gravitational potential for different values of α, in the range 2 < α < 5. For the same models, I compute the surface density of the systems when seen face-on and edge-on. I then apply the stationary Euler equations to obtain rotational velocity and temperature distributions of the self-gravitating models in the absence of an external gravitational potential. In the thesis I also consider the power-law tori with the presence of a central black hole in addition to the gas self-gravity, and solving analytically the stationary Euler equations, I compute how the properties of the system are modified by the black hole and how they vary as a function of the black hole mass. Finally, applying the Solberg-Høiland criterion, I show that these baroclinic stationary models are linearly stable in the absence of the black hole. In the presence of the black hole I derive the analytical condition for stability, which depends on α and on the black hole mass. I also study the stability of the tori in the hypothesis that they are weakly magnetized, finding that they are always unstable to this instability.