Design of compliant mechanisms and their application to morphing wing technology

Van Der Wijst, Bob Jeroen (2022) Design of compliant mechanisms and their application to morphing wing technology. [Laurea magistrale], Università di Bologna, Corso di Studio in Aerospace engineering / ingegneria aerospaziale [LM-DM270] - Forli', Documento ad accesso riservato.
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Full-text non accessibile fino al 26 Maggio 2026.
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (1MB) | Contatta l'autore


This thesis describes a study conducted for the development of a new approach for the design of compliant mechanisms. Currently compliant mechanisms are based on a 2.5D design method. The applications for which compliant mechanisms can be used this way, is limited. The proposed research suggests to use a 3D approach for the design of CM’s, to better exploit its useful properties. To test the viability of this method, a practical application was chosen. The selected application is related to morphing wings. During this project a working prototype of a variable sweep and variable AoA system was designed and made for an SUAV. A compliant hinge allows the system to achieve two DOF. This hinge has been designed using the proposed 3D design approach. To validate the capabilities of the design, two methods were used. One of these methods was by simulation. By using analysis software, a basic idea could be provided of the stress and deformation of the designed mechanism. The second validation was done by means of AM. Using FDM and material jetting technologies, several prototypes were manufactured. The result of the first model showed that the DOF could be achieved. Models manufactured using material jetting technology, proved that the designed model could provide the desired motion and exploit the positive characteristics of CM. The system could be manufactured successfully in one part. Being able to produce the system in one part makes the need for an extensive assembly process redundant. This improves its structural quality. The materials chosen for the prototypes were PLA, VeroGray and Rigur. The material properties were suboptimal for its final purpose, but successful results were obtained. The prototypes proved tough and were able to provide the desired motion. This proves that the proposed design method can be a useful tool for the design of improved CM’s. Furthermore, the variable sweep & AoA system could be used to boost the flight performance of SUAV’s.

Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Van Der Wijst, Bob Jeroen
Relatore della tesi
Correlatore della tesi
Corso di studio
Ordinamento Cds
Parole chiave
Compliant mechanisms, morphing wings, variable sweep, variable angle of attack, Additive Manufacturing, Rapid Prototyping, compliant structures, adaptive wings, 3D design, morphing wing technologies, AM Technologies
Data di discussione della Tesi
26 Maggio 2022

Altri metadati

Gestione del documento: Visualizza il documento