Object detection and semantic segmentation for assisted data labeling

Espis, Andrea (2022) Object detection and semantic segmentation for assisted data labeling. [Laurea magistrale], Università di Bologna, Corso di Studio in Artificial intelligence [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)


The automation of data labeling tasks is a solution to the errors and time costs related to human labeling. In this thesis work CenterNet, DeepLabV3, and K-Means applied to the RGB color space, are deployed to build a pipeline for Assisted data labeling: a semi-automatic process to iteratively improve the quality of the annotations. The proposed pipeline pointed out a total of 1547 wrong and missing annotations when applied to a dataset originally containing 8,300 annotations. Moreover, the quality of each annotation has been drastically improved, and at the same time, more than 600 hours of work have been saved. The same models have also been used to address the real-time Tire inspection task, regarding the detection of markers on the surface of tires. According to the experiments, the combination of DeepLabV3 output and post-processing based on the area and shape of the predicted blobs, achieves a maximum of mean Precision 0.992, with mean Recall 0.982, and a maximum of mean Recall 0.998, with mean Precision 0.960.

Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Espis, Andrea
Relatore della tesi
Correlatore della tesi
Corso di studio
Ordinamento Cds
Parole chiave
Machine Learning,Deep Learning,Unsupervised Learning,Computer Vision,Assisted Data Labeling,Tire Inspection
Data di discussione della Tesi
22 Marzo 2022

Altri metadati

Gestione del documento: Visualizza il documento