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Sommario

Una teoria coerente della gravità quantistica deve tenere conto del-
l’invarianza sotto trasformazioni di coordinate della teoria classica della
Relatività Generale. Questa invarianza è principalmente considerata nel-
la teoria linearizzata intorno a un dato background e, di conseguenza,
le trasformazioni che vengono prese in considerazione sono deformazioni
regolari dell’identità (diffeomorfismi). Tuttavia, le soluzioni delle equa-
zioni di Einstein sono invarianti sotto trasformazioni più generali che
dipendono dalle soluzioni stesse e non possono quindi essere ricondotte
all’identità. Degli esempi sono le trasformazioni utilizzate per elimina-
re la singolarità di coordinate sull’orizzonte dello spazio-tempo di Sch-
warzschild e la trasformazione tra le coordinate di Schwarzschild e quelle
armoniche. Considereremo in questo lavoro quest’ultima trasformazione
nel contesto di una teoria quantistica. Descriveremo la geometria classi-
ca per mezzo di uno stato coerente quantistico e costruiremo degli stati
coerenti "areali" e "armonici". Inoltre, definiremo l’operatore che rea-
lizza questa trasformazione classica di coordinate a livello quantistico e
studieremo alcune delle sue caratteristiche.



Abstract

A consistent quantum theory of gravity must account for the in-
variance under coordinate transformations of the classical theory of
General Relativity. This invariance is mostly considered in the lin-
earized theory around a given background and, as a result, the trans-
formations that are taken into account are smooth deformations of the
identity (diffeomorphisms). However, solutions of the Einstein equa-
tions are invariant under more general transformations which depend
on the solutions themselves and cannot be connected to the identity.
Examples are the transformations used to eliminate the coordinate
singularity on the horizon of the Schwarzschild space-time and the
transformation between Schwarzschild and harmonic coordinates. We
consider here this latter transformation in the context of a quantum
theory. We will describe the classical geometry by means of a quantum
coherent state and construct "areal" and "harmonic" coherent states.
Furthermore, we will define the operator which realizes this classical
coordinate transformation at the quantum level, and study some of its
features.
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Notation and conventions

In this work, Greek indices take values µ, ν, . . . = 0, 1, 2, 3 and Latin indices
i, j, . . . = 1, 2, 3.
When repeated indices appear in a formula, a summation on those indices is
implied, e.g.

gαβu
β =

3∑
β=0

gαβu
β .

We will use the "mostly plus" convention for the metric. The Minkowski metric
in Cartesian coordinates is then:

ηµν = diag(−1,+1,+1,+1) . (0.0.1)

The indices are "raised" and "lowered" using the metric tensor gµν or its inverse
gµν (i.e. such that gµνgνρ = δµρ ):

uµ = gµνu
ν

uµ = gµνuν .

In Minkowski (flat) spacetime we define differential operators as:

• the 4-derivative

∂µ ≡
(
1

c

∂

∂t
,
∂

∂xi

)
,

• the d’Alembertian

□ ≡ ∂µ∂
µ . (0.0.2)

For a vector V µ we use the convention

V µ
, ν = ∂νV

µ . (0.0.3)
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In a generic space-time equipped with a metric tensor g we define differential
operators as the covariant derivative for a vector V µ as

∇µV
ν = ∂µV

ν + Γν
λµV

λ ≡ V ν
;µ ,

and for a one-form Vµ

∇µVν = ∂µVν − Γλ
µνVλ ≡ Vν;µ ,

where Γλ
µν are the Christoffel symbols

Γλ
µν =

1

2
gλσ(gµσ,ν + gνσ,µ − gµν,σ) .

In this space-time the d’Alembertian takes the form □ ≡ gµν∇µ∇ν .
Where otherwise indicated, we will work with units c = 1, while leaving ℏ and
GN explicit. In this way, recalling the definitions of the Planck lenght and mass:

ℓp =

√
ℏGN

c3

mp =

√
ℏc
GN

,

we find

GN =
ℓp
mp

ℏ = mpℓp .

In addition, various notations summarized here will be used:
r: areal radial coordinate,
r̄: harmonic radial coordinate,
RH: horizon size,
RS: source size,
rH: horizon location in areal radial coordinate,
r′H: horizon location in harmonic radial coordinate,
A: subscript relative to areal coordinate,
H: subscript relative to harmonic coordinate.



Preface

The model that most effectively describes gravity up to now is Einstein’s the-
ory of General Relativity (GR). Its fundamental equations can be formulated
in geometrical terms, which makes it rather elegant, but more importantly, it
is the theory we have today with the highest level of predictivity. After the
experimental confirmation of the correction on the precession of the perihelion
of Mercury’s orbit and light deflection during last century, also in more recent
times some predictions of GR have been experimentally confirmed: gravita-
tional waves [1] and black holes [2] has been observed.
However, the prediction of the existence of black holes is also the reason why
GR cannot be a fundamental theory and this has been a reason for many physi-
cists to begin to question its completeness. Indeed, GR theory predicts that
due to the gravitational collapse which leads to the formation of the black hole,
the matter compacts towards the center, becoming point-like [3]. This point,
which would then be at infinite density and would constitute a divergence for
the gravitational field, is called curvature singularity. This means that it is not
eliminable with a coordinate transformation. The fact that the singularity is
unavoidable represents an inconsistency of classical theory and considering the
scales of the region of space-time in the immediate vicinity of the singularity,
we can assume that an "underlying" quantum theory can fix this inconsistency.
This reason, along with the continuing search for a unified theory of fundamen-
tal interactions, has led to several attempts of formulating a consistent quantum
gravity theory.

The aim of this work is to set up a possible method to study how invariance
for generic coordinate changes of solutions of the Einstein’s equations (classical)
can be described in quantum gravity. To do so we will consider a particular
model of quantum gravity and study a particular class of coordinate transfor-
mations. Let us see what those are.

Einstein’s theory of gravitation is based on the principle of General Rela-
tivity, which states that the laws of physics must be the same in any frame of
reference. In other words, the laws of physics must not change form by changes
in coordinates. In the study of solutions of Einstein’s equations, as in under-
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standing the degrees of freedom propagating in gravitational waves, this means
dealing with an invariance of the solutions under certain transformations, which
can be considered a gauge invariance. Fixing the gauge, in this case, is equiv-
alent to choosing a certain frame of reference. The transformations studied in
these cases are small deviations from a background metric, therefore reducible
to identity by sending a parameter to zero. There is a class of transforma-
tions, however, that remains excluded from these considerations: that of finite
transformations containing parameters of the metric, in which a variation of
the parameter is not possible because it would correspond to a variation of the
solution itself. The transformation we want to consider belongs to the latter
type. The solution on which we define the transformation is the Schwarzschild
metric in vacuum, the solution of Einstein’s equations outside a spherical and
static source, and the transformation is the one between "Schwarzschild" coor-
dinates and harmonic coordinates, defined in Ref. [4]. The investigation of this
transformation in particular could be interesting because the harmonic coordi-
nates correspond to the harmonic gauge fixing, in which the linearized Einstein
theory is formulated, since it greatly simplifies the field equations.

Our approach to quantum gravity is that of a Quantum Field Theory (QFT)
on flat (i.e. Minkowski) space-time, that is to say, a description of the gravita-
tional interaction in terms of gravitons. More specifically, our work is part of a
series of researches inspired by the corpuscular model formulated by Dvali and
Gomez, who propose to describe a black hole as a system of N gravitons on
the verge of a quantum phase transition to a Bose-Einstein condensate. In this
context, N is presented as a measure of "classicality" for the system. Moreover,
a precise estimation of N is made as a function of only the mass M of the black
hole, deriving the so-called scaling law N ≃ M2/m2

p. We will see this in more
detail in Appendix A, where we report some of the concepts at the base of
Dvali and Gomez model. In later works [5, 6], it was found a way to estimate
the number of gravitons N by considering the classical gravitational field as a
coherent state of gravitons. In [7], the coherent state of a toy scalar graviton
was defined in more detail and it was shown that the scalar field expectation
value on the coherent state is the classical Newtonian gravitational potential.
In this quantum description, the space-time is flat while the coordinate trans-
formations we want to consider act on a metric describing a curved space-time.
We then consider GR theory as the classical limit of this quantum description,
this means that outside a macroscopic source one must be able to describe the
motion of test particles in terms of geodesics in a curved metric. Since space-
time is flat, this metric will be effective. The only quantity that can provide
information about the effective metric is the gravitational potential, which in
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turn is described by the coherent state. In [8] we can see how to obtain an
effective metric for the potential from the Bootstrapped Theory of Newtonian
gravity, which we will not discuss here, but whose development inspired this
work approach. The main Refs. about this are [9–12].

The thesis structure is organized as follows. In Chapter 1 we will introduce
the GR Lagrangian formalism and study the invariance of the theory under
diffeomorphisms. This invariance will lead to the existence of constraints by
switching to the Hamiltonian formalism. After introducing the ADM decompo-
sition of the metric, we will then find the canonical equations of the constraints
and derive the algebra of the Bergmann-Komar (BK) group, the gauge group for
GR. In chapter 2 we will give some examples of coordinate transformations not
generated by the algebra defined in the previous chapter, but still belonging to
the BK group, for the Schwarzschild solution. In chapter 3, finally, we will try
to give a quantum formulation of one of the coordinate transformations defined
in the previous chapter, that from areal radial coordinate to harmonic radial
coordinate. To do so, we will introduce the description of the classical potential
with the coherent state and study coherent states for both coordinates, includ-
ing also the black hole configuration. We will finally try to define an operator
that transforms one coherent state into the other inside the quantum model.
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Chapter 1

Coordinate transformations

The theory of General Relativity is invariant for generic coordinate transfor-
mations. In this chapter we will discuss the invariance of the theory under
diffeomorphisms that can be smoothly connected to the identity. After ana-
lyzing the invariance of gravitational action in the Lagrangian formalism, we
will see how by switching to the Hamiltonian formulation of gravity, constraints
emerge due to the presence of redundant variables. To analyse the dynamics
in Hamiltonian formalism, we will see how we can isolate the temporal and
spatial part of the metric according to the Arnowitt-Deser-Misner procedure,
called ADM decomposition. We will finally find the canonical constraint equa-
tions and the algebra of constraints. These corresponds to the algebra of the
Bergmann-Komar group, the gauge group of General Relativity.

1.1 Diffeomorphisms in Lagrangian formalism

Our starting point will be the derivation of Einstein field equations from an
action principle, which we will now briefly review.
The action is composed by the so called Einstein-Hilbert action with a matter
source, represented by the lagrangian density LM of the matter:

S = SEH + SM = −
∫
Ω

d4x
√−g

(
R

16πGN
+ LM

)
, (1.1.1)

where Ω is a generic portion of the space-time and R = gµνRµν is the Ricci
tensor trace.
The equations of motion are derived varying the action with respect to the
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metric tensor. Using (see [4])

δR = Rµν δg
µν (1.1.2)

δ
√−g = −1

2

√−g gµν δgµν , (1.1.3)

and defining

Tµν =
2√−g

δSM

δgµν
= 2

δLM

δgµν
− gµνLM , (1.1.4)

with the requirement it is covariantly conserved

∇µT
µν = 0 , (1.1.5)

we finally obtain, neglecting boundary terms:

δS =
1

2

∫
d4x
√−g

(−Rµν +
1
2
Rgµν

8π GN
+ Tµν

)
δgµν . (1.1.6)

Imposing that the action is not affected by variations of the metric, we then
get the Einstein field equations:

Rµν −
1

2
Rgµν = 8π GN Tµν . (1.1.7)

We will now illustrate the invariance of the action S under diffeomorphisms,
starting by showing the difference between active and passive diffeomorphism
and analysing the action of a passive diffeomorphism (namely a change of co-
ordinate connected to the identity) on tensor fields of different type.
Given two n-dimensional C∞ manifolds M and N , a diffeomorphism is a C∞

bijective map ofM onto N whose inverse is also C∞.

1.1.1 Active and passive diffeomorphism

Given a manifoldM and a generic scalar function f :M→ R, we will illustrate
passive and active diffeomorphisms acting on f and their different interpreta-
tions.
Points and operations among them are described on manifolds by means of
charts, defined from the manifold to Rn. Given a point P , we can describe it
with two charts ϕ and ϕ′ such that ϕ(P ) = x(P ) = x and ϕ′(P ) = x′(P ) = x′.
Their composition with f evaluated in P is respectively f(P ) = (f◦ϕ−1) ≡ Φ(x)

and f(P ) = (f ◦ ϕ′−1) ≡ Φ′(x′), then Φ(x) = Φ′(x′). In this case the diffeo-
mophism we are considering acts on open subsets of Rn as a coordinate trans-
formation ϕ′ = ϕ′(ϕ) and is not the function f that changes (because points
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remain the same) but its composition with the charts. If the coordinates change
and the points remain the same, we are interpreting the diffeomorphism in a
passive way.
Instead, let ψ be an automorphism that maps P into P ′ = ψ(P ) for every P

of a given open subset ofM. If points are moved within the same open subset
covered by the chart ϕ, we will have ϕ(P ) = x(P ) ≡ x and ϕ(P ′) = x(P ′) ≡ x′.
We can then define a new function f ′, called Lie dragged of f , as the function
pushed forward by the automorphism ψ such that

f ∗(P ′) = f ∗(ψ(P )) = f(P ) . (1.1.8)

We can describe the composition of f ∗ and f with charts and the automorphism
as

f ∗(P ′) = (f ∗ ◦ ψ ◦ ϕ−1)(x) ≡ Ψ′(x) ,

f(P ) = (f ◦ ψ−1 ◦ ϕ−1)(x′) ≡ Ψ(x′)

which, together with Eq. (1.1.8), implies Ψ′(x) = Ψ(x′). In this case, the dif-
feomorphism we are considering is an active diffeomorphism which transforms
points and functions directly on the manifold, while the coordinates remains
the same. The Lie dragged of tensor fields defined on the manifold will be
invariant with respect to the Lie derivative along the direction tangent to the
automorphism (for more details, see e.g. [13]).

1.1.2 Tensor fields variations

In this section we will see how "small" change of coordinates of tensor fields
change their components, that is, how they modify the composition of tensors
with coordinate charts. We have chosen to focus on a small change of coordi-
nates because we will see that it can be interpreted as "dragging backwards"
tensorial quantities we are considering. We will then find the Lie algebra of the
group of diffeomorphisms on the manifold, which will coincide with the group
of coordinate transformations that can be smoothly reconnected to the identity.
We will start by considering two charts with overlapping domains in the metric
manifoldM:

x : Dx → Rn , x = xµ(P ) (1.1.9)

and

x′ : Dx′ → Rn , x′ = x′µ(P ) (1.1.10)
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where Dx and Dx′ are contained in M and Dx ∩ Dx′ ̸= ∅. For small changes
between these two charts we will thus consider only points P belonging to
Dx ∩ Dx′ ̸= ∅, for which we assume:

x′µ(P ) = xµ(P ) + ϵ ξµ(P ) , (1.1.11)

where we introduced ϵ to keep track of formal expansion around the identity,
which is recovered for ϵ = 0, and where ξµ are the components of the vector
field ξ⃗ when composed with the chart x: ξ⃗ = ξµ ∂

∂xµ .
Under Eq. (1.1.11), the coordinate basis {∂µ} transforms as:

∂

∂xµ
=

(
∂x′ν

∂xµ

)
P

∂

∂x′µ
=

[
δνµ + ϵ

(
∂ξν

∂xµ

)
P

]
∂

∂x′µ
. (1.1.12)

We will now see how these charts are composed with tensor fields. The simplest
case of a tensor field is the scalar function

f : D → R (1.1.13)

whose composition with charts is

Φ = f ◦ x−1 : Rn → R (1.1.14)

and

Φ′ = f ◦ x′−1 : Rn → R . (1.1.15)

Since f = f(P ) is not depending on the coordinates, we must have

Φ′(x′µ(P )) = Φ(xµ(P )) (1.1.16)

We can now substitute Eq. (1.1.11) in the previous equation and expand left
handed side in ϵ to the first order, obtaining

Φ′(x′µ(P )) = Φ′(xµ(P ) + ϵ ξµ) ≃ Φ′(xµ(P )) + ϵ ξµ
(
∂Φ′

∂xµ

)
P

(1.1.17)

Since we must have Φ′ = Φ for vanishing ϵ, we can assume the functional change
of the composit chart

Φ′(xµ(P )) = Φ(xµ(P )) + ϵ δΦ(xµ(P )) , (1.1.18)
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which we can substitute in the left handed side (1.1.17) of Eq. (1.1.16), from
which we finally get the variation:

δΦ(xµ) = −ξµ ∂Φ
∂xµ

= −£ξ⃗ Φ = £−ξ⃗ Φ , (1.1.19)

where £ξ⃗ denotes the Lie derivative along the vector ξ⃗. From this result, we
can deduce that the passive diffeomorphism between coordinate charts x and
x′ induced by ξ⃗ can be seen as backward dragging of the scalar field f along
the same direction on the manifold.

Similarly, we can obtain the variation of a vector field v⃗ = v⃗(P ). From the
composition with charts of its components and basis vectors we get:

v′ν(x′µ(P ))
∂

∂x′ν
= vν(xµ(P ))

∂

∂xν
. (1.1.20)

Substituting in this latter equation Eq. (1.1.12) for the variation of basis vector
in the right handed side and Eq. (1.1.11) in the left handed side, and expand-
ing in ϵ to the first order like we did for the scalar function in eqs. (1.1.17)
and (1.1.18), we finally obtain the variation:

δvν = vµ
∂ξν

∂xµ
− ξµ ∂v

ν

∂xµ
=
(
£−ξ⃗ v⃗

)ν
. (1.1.21)

Thus, under a small change of coordinates, the vector fields behave like the
scalar functions.

We can finally consider a particular tensor field, the metric tensor g. From
its composition with x and x′ charts we get

gµν(x) dx̃
µ ⊗ dx̃ν = g′µν(x

′) dx̃′µ ⊗ dx̃′ν , (1.1.22)

where {dx̃µ} and {dx̃′µ} are the basis of 1-forms respectively dual to {∂/∂xµ}
and {∂/∂x′µ}, and for which:

dx̃′µ =
∂x′µ

∂xν
dx̃ν =

(
δµν + ϵ

∂ξµ

∂xν

)
dx̃ν . (1.1.23)

In turn, the components of the metric tensor can be expanded to the first order
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in ϵ:

g′µν(x
′) = g′µν(x) + ϵ ξλ

∂g′µν(x)

∂xλ

= gµν(x) + ϵ δgµν(x) + ϵ ξλ
∂g′µν(x)

∂xλ
.

(1.1.24)

After substituting the expansions in eqs. (1.1.23) and (1.1.24) in the right
handed side of Eq. (1.1.22), we finally get the variation:

δgµν = −ξλgµν,λ − gµβξβ,ν − gναξα,µ
= −ξµ,ν − ξν,µ + ξαg

αλ (gµλ,ν + gνλ,ν − gµν,λ)
= − (ξµ;ν + ξν;µ) =

(
£−ξ⃗ g

)
µν

,
(1.1.25)

which confirms that the (passive) diffeomorphism between the charts x and x′

induce tensor field variations which are generated by Lie derivatives along the
tangent vectors of the diffeomorphism, whose Lie algebra is:[

£−ξ⃗,£−χ⃗

]
= £−[ξ⃗,χ⃗] . (1.1.26)

1.1.3 Diffeomorphism invariance

The gravitational and matter actions (1.1.1) are invariant for variations of
the dynamical variables of the type of Eq. (1.1.25) (but also of eqs. (1.1.19)
and (1.1.21) if other dynamical fields are involved), that is under small changes
of coordinates which are smoothly connected to the identity.
We start analyzing the invariance of Einstein Hilbert action and matter action
when subjected to variations of δg.
Defining

S̄EH ≡ −16π GN SEH =

∫
d4x
√−g R , (1.1.27)

its variation with respect to the metric is

δS̄EH =

∫
d4x
√−g

(
Rµν −

1

2
Rgµν

)
δgµν ≡

∫
d4x
√−g Gµνδg

µν

= −
∫

d4x
√−g Gµνδgµν .

(1.1.28)
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If δgµν satifies Eq. (1.1.25), we get

δδξgS̄EH =

∫
d4x
√−g Gµν(∇νξµ +∇µξν)

=

∫
d4x
√−g (ξµ∇νG

µν + ξν∇µG
µν) = 0 ,

(1.1.29)

where we integrated by parts and neglected boundary terms. We underline
that the invariance under diffeomorphism of the gravitational action is a local
property valid for every point and every coordinate transformations of the type
of Eq. (1.1.11). Moreover, we stress that it is a direct consequence of the
Bianchi identities of the Einstein tensor

∇νG
µν = ∇µG

µν = 0 . (1.1.30)

Under the same variation δgµν , the behaviour of the matter action is:

δδξgSM = −1

2

∫
d4x
√−g T µνδgµν

=
1

2

∫
d4
√−g T µν(∇νξµ +∇µξν)

= −1

2

∫
d4
√−g (ξµ∇νT

µν + ξν∇µT
µν) = 0 ,

(1.1.31)

where again we integrated by parts and neglected boundary terms. Here, the
matter action invariance is due to the conservation of the energy-momentum
tensor

∇νT
µν = ∇µT

µν = 0 (1.1.32)

that T satisfies by definition (and in general is enforced by Einstein equations).
If other dynamical fields are involved, we need to check the invariance of matter
action when these fields are subjected to the diffeomorphisms. Here we briefly
analyse the case of a scalar field, for which we have:

δδϕSϕ =

∫
d4x
√−g

(
δLϕ

δϕ
δϕ+

δLϕ

δ∂µϕ
δ∂µϕ

)
=

∫
d4x
√−g

(
δLϕ

δϕ
−∇µ

δLϕ

δ∂µϕ

)
δϕ .

(1.1.33)

The scalar field undergoes a variation equal to Eq. (1.1.19), so we obtain

δδξϕSϕ = −
∫

d4x
√−g

(
δLϕ

δϕ
−∇µ

δLϕ

δ∂µϕ

)
ξν∂νϕ , (1.1.34)
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which vanishes when the equations of motion are satisfied, having to be valid
for every ξ⃗.

1.1.4 Coordinate conditions

In theories of linear perturbations, being able to distinguish between the dy-
namic perturbations of the fields and those due to coordinate changes, as seen
above, becomes an important issue. A way to resolve this ambiguity is to choose
a specific coordinate system, with a procedure that has analogies to gauge fix-
ing in electrodynamics, for instance.

The Einstein equations consist of 10 algebraically independent equations, as
many as the independent components of the Einstein tensor Gµν . Nevertheless,
these are not enough to determine the 10 independent components of the metric
(symmetric tensor of rank 4), since the components of Gµν are related to each
other by Bianchi identities:

∇µG
µν = 0 . (1.1.35)

Thus there are 10− 4 = 6 independent equations, leaving 4 degrees of freedom
undetermined. These 4 degrees of freedom correspond precisely to the invari-
ance of the solutions for changes of coordinates xµ 7→ x′µ, involving 4 arbitrary
functions x′µ.
This situation reminds us of Maxwell’s equations

∂µF
µν = −Jν , (1.1.36)

where Fµν = ∂µAν − ∂νAµ. These are 4 equations for 4 unknowns, but the
independent equations are reduced to 3 because of the electromagnetic tensor
property similar to Bianchi identities:

∂µ∂νF
µν ≡ 0 . (1.1.37)

This degree of freedom corresponds to the gauge invariance of the vector po-
tential, in fact given a solution Aµ, A′µ = Aµ + ∂µΛ is also a solution, with Λ

arbitrary.
This ambiguity can be resolved by fixing a particular gauge, i.e., a particular
condition for Λ, which when added to the three field equations makes the solu-
tion fully determined.
Similarly, we can add to the six independent Einstein equations four conditions
for the coordinates, by which the solution is determined unambiguously.
However, this analogy has limitations. The gauge conditions for the vector
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potential have no effect on the choice of observers, whereas choosing a specific
coordinate system corresponds to selecting specific observers.
Also, imposing gauge conditions for gµν to be fully determined is generally not
at all straightforward. We will now see, however, for the specific case of a weak
field, how this procedure greatly simplifies the field equations.

Linearised Einstein equations

If the gravitational field is weak, we can write the metric as a small perturbation
around the Minkowski metric

gµν = ηµν + ϵ hµν , (1.1.38)

and expand all terms of the Einstein tensor up to the first order in ϵ. For
example, the Ricci scalar reduces to

R = ϵ (□h− ∂µ∂νhµν) +O(ϵ2) . (1.1.39)

Einstein equations take then the linearized form

ϵ (−□hµν + ηµν□h+ ∂µ∂
λhλν + ∂ν∂

λhλµ − ηµν∂λ∂ρh
− ∂µ∂νh) = 16π GN ϵ Tµν ,

(1.1.40)

where h = ηµνhµν and we also expanded the energy momentum tensor as

TM
µν = T (0)

µν + ϵ Tµν , (1.1.41)

with T (0)
µν = 0 in Minkowski space.

We can now use the invariance for coordinate changes to arrive at a reduced
and more easily solvable form of Eq. (1.1.40).
Diffeomorphisms induce a variation of the metric as in Eq. (1.1.25), so we can
transform hµν as

hµν → h̄µν = hµν − (ξµ;ν + ξν;µ) , (1.1.42)

and set a condition on h̄µν . The most convenient choice is the harmonic gauge
condition 1 (in a linearized version)

2∂µh̄µν − ∂ν h̄ = 0 (1.1.43)

1Also known as de Donder gauge, we will illustrate the general versionof this condition in
the next chapter.
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which sets the vector ξµ to be such that

2□ξν = 2∂µhµν − ∂νh . (1.1.44)

In the harmonic gauge, the field equation (1.1.40) reduces to

−□h̄µν = 16π GN

(
Tµν −

1

2
ηµνT

)
, (1.1.45)

where we used □h̄ = 16π GN T (with T = ηµνTµν) and whose general solution
can be found by means of propagator.
If, instead, we would solve the equation in vacuum, Eq. (1.1.40) would be
reduced to

□h̄µν = 0 , (1.1.46)

which still has degrees of freedom corresponding to the transformation

h̄µν → h̃µν = h̄µν − ∂µθν − ∂νθµ , (1.1.47)

with θµ such that □θµ = 0. Note that h̃µν is a solution and still satisfies the
harmonic condition. We conclude that h̄µν and h̃µν represent the same physical
situation for arbitrary values of the four parameters θµ, so we have only 6-
4=2 degrees of freedom physically relevant, that correspond to two different
polarizations.

It is also worth addressing the even more specific case of the Newtonian
approximation where, in addition to the weak field limit, we also assume all
matter in the system is moving "slowly", that is, at non-relativistic speed.
The energy-momentum tensor is determined by only the contribution of energy
density

T µν ≃ T00 = ρ (1.1.48)

and then only relevant component of the metric is h00, that will depend solely
by spacial coordinates (so that ∂th00 = 0). The harmonic gauge condition
(1.1.43) for a static perturbation is always satisfied and then field equations
Eq. (1.1.45) simply reduce to:

∇h00 = −8 π GN T00 = −8 π GN ρ . (1.1.49)

If we identify

h00 = −2VN , (1.1.50)

we find the Poisson equation for the Newtonian potential VN generated by the
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mass density ρ:

∆VN = 4π GN ρ (1.1.51)

(in the following, we will show how to solve this equation for a point-like den-
sity).

1.2 Gravity in Hamiltonian formalism

We will now illustrate how the diffeomorphism invariance of the Einstein-
Hilbert action leads to a set of canonical constraint equations. The constraints
form an algebra, which is the algebra of the so-called Bergmann-Komar group,
group of gauge symmetries of General Relativity. To get these equations, we
will start by seeing how to decompose the metric along foliations in Cauchy
hypersurfaces of an hyperbolic 4-dimensional manifold.

1.2.1 ADM decomposition

Let (M, g) be a globally hyperbolic space-time metric manifold, which there-
fore admits foliations in spatial Cauchy hypersurfaces Σ such that there exists
a scalar t = t(xµ), constant on these hypersurfaces, so that Σ = Σ(t).
We can define the chosen foliation by means of the vector t⃗ tangent to trajec-
tories parametrised by the scalar t. Given the coordinates xµ, the components
of t⃗ with respect to them are tµ = dxµ

dt
. It can be noted that the vector t⃗ does

not need to be orthogonal to every vector X⃗ tangent to the hypersurface Σ.
We introduce now a future directed time-like vector field

n⃗ =
d

dτ
, (1.2.1)

which is normal to the hypersurfaces Σ and has unit norm, that is

Xµnµ = 0 (1.2.2)

nµnµ = −1 . (1.2.3)

Now we can decompose the time-like vector t⃗ as

t⃗ = Nn⃗+ N⃗ , (1.2.4)

where

1. the coefficient N > 0 is called lapse function,

2. the vector N⃗ encodes three shift functions,
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3. nµN
µ = 0.

There are three shift functions because N⃗ must belong to the tangent space of
Σ, which is 3-dimensional, given that it is orthogonal to n⃗.
The meaning of the lapse function can be understood by recalling that, in
general, the vector associated to the gradient of t⃗ is orthogonal to the tangent
space of Σ, and so

Nµ ∂µt = 0 , (1.2.5)

and that there is a dual relation between t⃗ and its gradient:

tµ∇µt = 1 . (1.2.6)

Substituting Eq. (1.2.4) in the latter, we obtain

1 = N nµ∂µt = N
dt

dτ
,

and therefore

N =
dτ

dt
(1.2.7)

represent the rate of change of the "orthogonal" (or "synchronous") time τ be-
tween two points located on the successive hypersuperfaces Σ(t) and Σ(t+ dt)

and the rate of change of the parametric time between the same two hypersur-
faces.
We can write the metric tensor as

gµν = hµν − nµnν , (1.2.8)

where hµν is the effectively 3-dimensional metric on the hypersurfaces.
We can immediately verify that the metric tensor takes the form

gab =

 −1 0⃗

0⃗ hij

 (1.2.9)

with respect to the tetrad

e⃗a =
{
n⃗ =

d

dτ
, ∂i

}
(1.2.10)

(where now indices a, b = {τ, i}), with respect to which the vector t⃗ has com-
ponents

ta ≡ g(⃗t, e⃗a) = tαeaα = (N,N i) . (1.2.11)
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The infinitesimal vector dt⃗ has components on the tetrad dta = (Ndt, N idt)

and by construction connects two points having the same spacial coordinates
xi on two different hypersurfaces, respectively at constant t and t + dt . The
infinitesimal distance bewtween two point of coordinates P (t, xi) and Q(t +

dt, xi + dxi) is then given by the lenght of a vector dV⃗ (see Fig. 1.1), which in
turn has components with respect to the tetrad

dV a = (Ndt, N idt+ dxi) . (1.2.12)

dtμNdt

Nidt

Σ(t)

Σ(t + dt)
Q(t + dt, xi + dxi)

P(t, xi)

P′�(t + dt, xi)
dxi

dVμ

Figure 1.1: Infinitesimal distance between two points P and Q on different
hypersurfaces

We can now find the metric tensor components on the coordinate basis
adapted to the foliation writing:

ds2 = gµνdV
µdV ν = gabdV

adV b

= gττdV
τ2 + gijdV

idV j

= −(Ndt)2 + hij(N
idt+ dxi)(N jdt+ dxj)

= −(N2 − hijN iN j)dt2 + 2hijN
idtdxj + hijdx

idxj ,

(1.2.13)

so that

gµν =

 −(N2 −N iNi) Nj

Ni hij

 , (1.2.14)
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and

gµν =


− 1

N2

N j

N2

N i

N2
hij − N iN j

N2

 , (1.2.15)

where we defined Ni = hijN
j and such that gµνgνλ = δλµ and hijhjk = δki .

From t⃗ = δ0 and its decomposition on n⃗ and N⃗ (1.2.4) we finally find

nµ =

(
1

N
,−N

i

N

)
(1.2.16)

nµ = (−N, 0) , (1.2.17)

which are the components of n⃗ with respect to coordinate basis ∂µ.
We can now stop thinking at the 4-dimensional metric manifold and consider
only the evolution of the 3-dimensional metric hij = hij(t) on the Cauchy
surfaces Σ.
We will also need to introduce a quantity which describes the velocity of this
evolution of the spacial metric, a tensor which is in turn orthogonal to n⃗.
Therefore, this tensor will be the projection on the "gradient velocity" ∇µnν

on the surface Σ, that is

Kµν = hαµ∇αnν

=
1

2

(
hαµ∇αnν + hαν∇αnµ

)
=

1

2
(£n⃗h)µν ,

(1.2.18)

where in the second line, since n⃗ is everywhere orthogonal to Σ, the symmetry
ofKµν is ensured by the Frobenius theorem. It can be noted that if this gradient
velocity tensor is zero, then n⃗ is parallelly transported along the geodesic on
Σ and therefore the tensor Kµν represents also the extrinsic curvature of the
hypersurface Σ embedded in the 4-dimensional manifold.
Given that h00 = h0i = 0, only the components Kij of the velocity tensor are
different from zero. We can write them explicitly using the ADM decomposition
(1.2.14):

Kij =
1

2N

(
ḣij −DiNj −DjNi

)
=

1

2N

(
ḣij − (£N⃗h)ij

)
, (1.2.19)

where Di denotes the covariant derivative for the 3 metric hij and which shows
how the Lie derivative on n⃗ splits in agreement to decomposition (1.2.4).
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1.2.2 Canonical constraint equations

We will now proceed by writing the Einstein-Hilbert action (1.1.1) in canonical
form and from its variations we will get the constraint and dynamical equations.
Firstly, we project the trace of the Ricci tensor on the hypersurface Σ, obtaining
up to a total derivative term [14],

R = KijK
ij −K2 +R(3) , (1.2.20)

where the suffix (3) denotes quantities derived by the metric on Σ.
The lagrangian density then is

LG =

√
hN

16πGN

(
KijK

ij −K2 +R(3)
)

=
N

16πGN

(
GijklKijKkl +

√
hR(3)

) (1.2.21)

where we used
√−g =

√
hN (1.2.22)

and we introduced the DeWitt (super-)metric

Gijkl =

√
h

2

(
hikhjl + hilhjk2hijhkl

)
, (1.2.23)

so that the Einstein-Hilbert action becomes

16πGNSEH =

∫ t2

t1

dt

∫
Σ(t)

d3x
√
hN

(
KijK

ij −K2 +R(3)
)

, (1.2.24)

which is also called "ADM action" and it can be seen as a kinetic energy term,
since the extrinsic curvature contains the time derivative of hij, minus a (self-)
potential term proportional to the intrinsic curvature −R(3).
Since the lagrangian density does not contain time derivative of lapse and shift
functions N and N i, their momenta vanishes and these are primary constraints
in Dirac’s classification. Functions N and N i thus simply play the role of
Lagrange multipliers.
The conjugated momenta of hij are

P ij ≡ ∂LG

∂ḣij
=

1

16πGN
GijklKkl

=

√
h

16πGN
,

(1.2.25)
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which can be inverted to obtain

ḣij =
32πGN√

h

(
Pij −

1

2
Phij

)
+DiNj +DjNi , (1.2.26)

where P ≡ hijP
ij.

The full hamiltonian then is

HG =

∫
d3xHG =

∫
d3x

(
P ijḣij − LG

)
=

∫
d3x

(
NHG

0 +N iHG
i

) (1.2.27)

where

HG
0 ≡16πGNGijklP

ijP kl −
√
hR(3)

16πGN
(1.2.28)

HG
i ≡− 2DiP

ij . (1.2.29)

The latter two expression are called respectively super-Hamiltonian and super-
momenta.
The Einstein Hilbert action can now be written in canonical form as

16πGNSEH =

∫ t2

t1

dt

∫
Σ(t)

d3x
(
P ijḣij −NHG

0 −N iHG
i

)
. (1.2.30)

The variations of the action with respect to lapse and shift functions will lead
us to canonical constraint equations. Before doing this we must consider the
corresponding projections of the energy-momentum tensor, if present, which
turn out to be:

HM
0 =

√
hρ (1.2.31)

and

HM
i =

√
hJi , (1.2.32)

where Ji = hµi Tµνn
ν . Adding these terms to the total super-Hamiltonian and

momentum density yields:

H = HG +HM = N(Hg
0 +HM

0 ) +N i(HG
i +HM

i ) ≡ NH0 +N iHi . (1.2.33)
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Primary constraints

P0 ≡
∂L
∂Ṅ

= 0 (1.2.34)

Pi ≡
∂L
∂Ṅ i

= 0 (1.2.35)

must be conserved by time evolution generated by the total canonical Hamil-
tonian and this leads to constraint equations:

− Ṗ0 = −{P0,H} = H0 ≈ 0 , (1.2.36)

called (super-)Hamiltonian constraint, and

− Ṗi = −{Pi,H} = Hi ≈ 0 , (1.2.37)

called (super-)momentum (diffeomorphism) constraint.
The Poisson brackets between constraints are themselves combinations of the
constraints, which thus are first class constraints and they form an algebra:

{H0(x),H0(y)} = ∂iδ(x, y)
[
hij(x)Hj(x) + hij(y)Hj(y)

]
(1.2.38)

{Hi(x),H0(y)} = ∂iδ(x, y)Hi(x) (1.2.39)

{Hi(x),Hj(y)} = ∂jδ(x, y)Hi(x) + δi(x, y)Hj , (1.2.40)

where the derivatives are acting on the first argument of the δ’s.
The meaning of this algebra can be understood if we integrate constraints as
distributions on (test) lapse and shift functions, therefore we define:

H[N ] =

∫
Σ

d3xN(x)H0(x) (1.2.41)

H[N i] =

∫
Σ

d3xN i(x)Hi(x) , (1.2.42)

so that we can rewrite eqs. (1.2.38)–(1.2.40) as:

{H[N ],H[M ]} = H[Ki] (1.2.43)

{H[N i],H[N ]} = H[M ] (1.2.44)

{H[N i],H[M j]} = H[Kk] , (1.2.45)
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where

Ki = hij(NM,j −MN,j)

M = N iN,i = £N⃗N

K⃗ =
[
N⃗ , M⃗

]
= £N⃗M⃗ .

The above algebra is the one of diffeomorphisms along the vector t⃗, which split
into diffeomorphisms along the direction n⃗ (generated byH0) and those along N⃗
(generated by Hi). This algebra represents a subalgebra of the diffeomorphism
algebra (1.1.26), because only N and N i such as the vector t⃗ is time-like are
allowed as components of direction in which the diffeomorphism is performed.
This naturally brings the metric in the algebra, which is thus not a Lie algebra
since structure functions depends on the 3-metric hij, that is, a canonical vari-
able and not a structure constant. The finite transformations generated by such
an algebra form the so-called Bergmann-Komar group [15] and the algebra in
eqs. (1.2.43)–(1.2.45) is the closed Bergmann-Komar sub-algebra of the whole
diffeomorphisms algebra.
It can be noted from (1.2.45) that the only generators which forms a closed
Lie subalgebra are the super-momenta Hi , which generates spacial diffeomor-
phisms, while diffeomorphisms along n⃗ generated by the super-Hamiltonian H0

do not commute neither with spacial diffeomorphisms generated by Hi (Eq.
(1.2.44)), nor with others diffeomorphisms along the synchronous time (Eq.
(1.2.43)).



Chapter 2

Schwarzschild space-time

We have seen that the gauge group for General Relativity is the Bergmann-
Komar group of finite transformations generated by the algebra eqs. (1.2.43)–
(1.2.45). Again, it should be emphasized that the parameters of the metric,
namely of the solution of Einstein equations, enter explicitly in the algebra,
and so the coordinate transformations are metric-dependent. This means that
the Bergmann-Komar group differs from the group of diffeomorphism because
it also contains transformations that cannot be smoothly connected to the iden-
tity.
In this chapter, we will show this by considering a specific solution of the Ein-
stein equations, namely the Schwarzschild solution. We will explicitly illustrate
some examples of coordinate transformations that map this solution into itself,
and for this reason belonging to the Bergmann-Komar group, but not connected
to the identity: taking the parameter on which these transformations depend
(i.e. the ADM mass M) to zero is not possible, because M parameterizes and
uniquely determines the solution. For M = 0, the Schwarzschild metric in fact
reduces to the Minkowski metric. One of the transformations we will illustrate
is the one that maps the Schwarzschild metric written in "areal" coordinate
into the metric in "harmonic" coordinate. This will be the transformation that
we aim to describe from the quantum point of view, in the next chapter.

2.1 Spherical vacuum

In 1916, few months after Einstein formulation of General Relativity, Karl
Schwarzschild found an exact solution of Einstein’s field equations. His so-
lution represents the spherically symmetric empty space outside a spherically
symmetric source of mass M , and it is used to describe the local geometry of
bodies in the solar system, stars and the gravitational collapse to good approx-
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imation .
In this section, we will cover the steps to get to the Schwarzschild line element
and the critical issues arising from the coordinates used to describe it.

2.1.1 General static isotropic metric

Let us consider what is the most general metric tensor that can represent a
static isotropic gravitational field. Starting from a generic line element:

ds2 = gµνdx
µdxν

expressed in a set of "quasi-Minkoskian" coordinates x0 ≡ t and xi with i =

1, 2, 3, we assume that there are four Killing vectors ∂
∂t

, d
dθi

, where θi’s are the
rotation angles around the three spatial axes. Thus the components gµν will
depend only on r ≡

√
x⃗ · x⃗, and we can take as spacial coordinates the set

{r, θ, φ}.
A surface in a spherically symmetric space-time at constant t and r will be a
2-sphere with line element

dl2 = f(r)(dθ2 + sin2 θdφ2) ≡ f(r)dΩ2

and in analogy to Minkowski’s spherical coordinates it is possible to decide to
define r′ as r′ =

√
f(r) , since the 2-sphere would have area 4πf(r). For this

reason, by dropping the ′ symbol, the coordinate r is called areal radius.
We are allowed by the spherical symmetry to decide to make the coordinate
basis vector e⃗r orthogonal to vectors e⃗θ and e⃗ϕ lying on the 2-sphere, so that
diagonal terms grθ = 0 = grφ.
Moreover, since the whole space-time has spherical symmetry, a line at constant
r, θ and φ will also be orthogonal to the 2-sphere, which makes g0θ and g0φ to
be zero as well. Then, the line element can be written as

ds2 = g00dt
2 + 2g0rdtdr + grrdr

2 + r2dΩ2 .

Finally, in addition to the existence of the Killing vector ∂
∂t

, the static nature
of space-time also implies invariance by time inversion (in the absence of this
second condition, the space-time would be stationary but not static). This
latter condition causes g0r to be null: time inversion maps gr0 in its opposite,
leaving other components unchanged.
A general static isotropic line element then is

ds2 = −B(r)dt2 + A(r)dr2 + r2(dθ2 + sin2 θdφ2) , (2.1.1)
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with functions A(r) and B(r) to be determined by solving Einstein’s equations.

2.1.2 The Schwarzschild solution

Now, we are going to solve the field equations (1.1.7) in the esmpty space. From
the vacuum hypothesis Tµν = 0 we obtain that the trace of the Einstein tensor
Gµν = Rµν − 1

2
Rgµν is zero:

Gµ
µ = R− 1

2
Rgµµ = −2R = 0 ,

from which we get that Einstein equations reduce to:

Rµν = 0 . (2.1.2)

The spherical symmetry and static nature of the metric means that the only
components of the Riemann tensor computed using (2.1.1) are the diagonal
ones. After some algebra [4] we find

A(r) =
1

B(r)
(2.1.3)

and

B(r) = 1 +
k

r
(2.1.4)

where k is a constant of integration. To fix this constant we impose that at
great distances from the source the motion of a test particle is like the motion
in a Newtonian potential external to the source VN = −GNM/r. We then recall
that in the Newtonian approximation is possible to establish a relation between
the Newtonian potential VN and the perturbation of the Minkowski metric in
the weak field limit h00 via Eq. (1.1.50), therefore we get

g00 = −B(r) = −1− 2VN , (2.1.5)

so that k = −2GNM .
We are now ready to write Schwarzschild’s metric in its final form:

ds2 = −
(
1− 2GNM

r

)
dt2+

(
1− 2GNM

r

)−1

dr2+r2(dθ2+sin2 θdφ2) , (2.1.6)

which, for r →∞, tends to the Minkowski metric (asymptotic flatness) and is
singular for θ = 0, π and r = 0, r = 2GNM .



28

The metric is defined outside the source, so for r > RS, where RS is the radius
of the spherical massive body and it is usually greater than 2GNM , for which
the metric is singular. It is however interesting to see what happens if we
consider the metric as an empty space solution for all values of r. The surfaces
represented by the two radial singularities must be cutted out, so the manifold
is divided by r = 2GNM in two disconnected components 0 < r < ∞ and
r > 2GNM and, since we must choose a connected one, it is naturally to
choose r > 2GNM .
In Fig. 2.1 is shown the congruence of null radial geodesics, i.e. the trajectories

Figure 2.1: Schwarzschild solution. Adapted from [16]

of a photon for fixed θ and φ. These curves are described by ds2 = 0 with θ

and φ constant, from which we obtain

dt = ±
(
1− 2GM

r

)−1

dr , (2.1.7)

by whose integration we get

t = ±(r + 2GNM ln |r + 2GNM |+ c) , (2.1.8)

where c is an integration constant and the signs + and − denote the outgoing
and incoming radial geodesics, respectively, which are exchanged by the time-
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reversal transformation.
In addition to these two congruences, the two-dimensional future light cone is
also shown, to emphasize the fact that a trajectory in these coordinates appears
never to cross the surface r = 2GNM , and thus the disconnected character of
this manifold.
Since switching to Cartesian coordinates the singularities in θ disappear, we can
wonder if the radial singularities are real (physical) singularities or resulting
from a bad choice of coordinates, and therefore eliminable by switching to
another chart. We can then consider the scalar invariant of Kretschmann.

RµνρσR
µνρσ =

48(GNM)2

r6
, (2.1.9)

which diverges for r → 0. Therefore only r = 0 is a real singularity, while we
can eliminate r = 2GNM by changing coordinate system.

2.2 Coordinate extensions

The outer space-time endowed with the Schwarzschild metric (M, g) corre-
spond to the connected part for r > 2GNM . This manifold is extendible, that
is, there are larger manifoldsM′ endowed with a suitable metric g′, into which
M is embedded.
We will now look at some of the most mentioned Schwarzschild space-time
charts, through which the manifoldM can be extended.

2.2.1 Eddington-Finkelstein extension

In this solution, we will make the two disconnected parts of the Schwarzschild
manifold as one connected, but we will lose the symmetry by time inversion,
which will result in two different charts: one for the description of the incoming
geodesics and one for the outgoing ones.
We want to extendM where r → 2GNM , which we saw is not a real singularity.
Firstly, we define the so-called 1 tortoise coordinate

r∗ ≡
∫

dr

1− 2GN M
r

= r + 2GNM ln(r − 2GNM) (2.2.1)

with which we build the advanced null coordinate

v ≡ t+ r∗ . (2.2.2)

1Introduced for the first time by Wheeler in 1955 [17].
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Figure 2.2: Schwarzschild solution in advanced Eddington-Finkeltastein coor-
dinates. Adapted from [16].

Using the coordinates (v, r, θ, φ), the metric takes the advanced Eddington-
Finkelstein form g′:

ds2 = −
(
1− 2GNM

r

)
dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2) , (2.2.3)

which turns out to be regular in r = 2GNM and thus for all values 0 <

r <∞ in the manifoldM′. This operation is called analytic extension because
we have extended the Schwarzschild metric so that it is no longer singular in
r = 2GNM .
Now in the manifoldM′ the surface r = 2GNM is a null surface, as can be seen
in fig. 2.2, where is represented the congruence of outcoming and null incoming
geodesic, given by constant v. However, this solution is not symmetric with
respect to the inversion of t, which can be understood by looking at the diagonal
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Figure 2.3: Schwarzschild solution in retarded Eddington-Finkeltastein coordi-
nates. Adapted from [16].

terms dvdr in Eq. (2.2.3) and at Fig. 2.2, in which the surface r = 2GNM acts
as a one way membrane for future directed curves: they can only cross from
the outside to the inside.
We can therefore define the retarded null coordinate

w = t− r∗ , (2.2.4)

so that the metric now takes the form

ds2 = −
(
1− 2GNM

r

)
dw2 − 2dwdr + r2(dθ2 + sin2 θdφ2) , (2.2.5)

which is now analytic on the manifoldM′′ defined by the coordinates (w, r, θ, ϕ)
for 0 < r <∞. In this manifold the surface r = 2GNM is again a null surface
which acts as a one way membrane, but now it lets cross from the outside to
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the inside only past-directed curves, as it can be seen in Fig. 2.3.
Considering the surface r = 2GNM , we have seen how it acts as a "one-way
membrane" for trajectories with advanced or retarded time parameter. For this
reason, this surface is often referred to as an "event horizon", in the former case
it is a future horizon and in the latter a past horizon, and is denoted as

RH ≡ 2GNM . (2.2.6)

2.2.2 Kruskal maximal extension

In the previous section we saw how to extend the Schwarzschild solution for
2m < r <∞ into the Eddington-Finkelstein solutions for 0 < r <∞, which can
be either advanced (containing a future event horizon) or retarded (containing
a past event horizon). We can now make both these extensions simultaneously
and find a still larger manifold M∗ with a metric g∗ into which M′ and M′′

can be embedded. An example of this manifold has been given by Kruskal in
(1960) and it is a maximal metric manifold. A manifold endowed with a metric
geometry is called maximal if every geodesic emanating from an arbitrary point
is extensible to infinite values of the affine parameter from both directions or
it ends in an intrinsic singularity.
Kruskal found that the maximal solution can be obtained by simultaneously
straightening the incoming and outgoing radial null geodesics. Using as coordi-
nates both v and w (advanced and retarded time coordinates of the Eddington-
Finkelstein solution), the metric takes the form:

ds2 = −
(
1− 2GNM

r

)
dvdw + r2(dθ2 + sin2 θdφ2) (2.2.7)

where r is a function of v and w determined implicitly by the equation:

1

2
(v − w) = r + 2m ln(r − 2GNM) (2.2.8)

If we write the line element (2.2.7) at constant θ, φ as a function of

t =
1

2
(v + w) (2.2.9)

x =
1

2
(v − w) , (2.2.10)

it becomes:

ds2 = −
(
1− 2GNM

r

)
(dt2 − dx2) . (2.2.11)
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The latter describes a conformally flat 2-space, equipped, however, with a sin-
gular metric in r = 2GNM .
The coordinate transformation that leaves the 2-space conformally flat must be
of the type: v → v′ = v′(v) , w → w′ = w′(w), leading to

ds2 = −
(
1− 2GNM

r

)
dv

dv′
dw

dw′dv
′dw′ . (2.2.12)

Introducing, again,

t′ =
1

2
(v′ + w′) (2.2.13)

x′ =
1

2
(v′ − w′) (2.2.14)

we can write the line element in the general form

ds2 = −F 2(t′, x′)(dt′2 − dx′2) . (2.2.15)

Kruskal choice was:

v′ = exp
( v

4m

)
(2.2.16)

w′ = − exp
(
− w

4m

)
, (2.2.17)

such that the line element is:

ds2 = −16m2

r
exp
(
− r

2m

)
(dt′2 − dx′2) + r2(dθ2 + sin2 θdφ2) . (2.2.18)

Now r is determined implicitly by the equation:

v′w′ = t′2 − x′2 = −(r − 2GNM) exp

(
r

2GNM

)
(2.2.19)

and we can determine an implicit equation for t from the ratio:

v′

w′ = − exp

(
t

2m

)
=
t′ + x′

t′ − x′ . (2.2.20)

A two-dimensional space-time diagram of the Kruskal solution is presented in
Fig. (2.4).
The coordinate axes are given by t′ = 0 and x′ = 0.

Constant r trajectories are also drawn in the figure, which by (2.2.19) are
represented by hyperbolas, except r = 2GNM which represents the two null
directions (asymptotes of the hyperbolas), whereas by (2.2.20) the t =constant
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Figure 2.4: Kruskal extension. Adapted from [16].

trajectories are straight lines through the origin. The figure also shows the
time-like trajectory of a particle starting from (r = 4GNM, t = 0) and falling
towards the event horizon r = RH, ending in the singularity r = 0.
Since the (2.2.19) is quadratic in t′ and r′, for every fixed r there will be two
different hypersurfaces: in fact, space-time is now bounded by two hyperbolas,
both representing the intrinsic singularity r = 0, namely the past and the future
singularities.
Space-time is divided by the asymptotes r = 2GNM into four regions I, II, I’
and II’. The region I is isometric to Schwarzschild manifold (M, g), and so it
is region I’. If we take both regions I and II, together they are isometric to the
advanced Eddington-Finkelstein extension (M′, g′), similarly, regions I and II’
are isometric to the retarded Eddington-Finkelstein extension (M′′, g′′).
Region I’ can be seen as another asymptotically flat universe which cannot be
connected with region I by any time-like or null curve and, combined with re-
gion II and II’, is isometric to (M′, g′) and (M′′, g′′) respectively.

We have seen two examples of charts for Schwarzschild space-time, a solu-
tion of Einstein equation, and then transformations which leave field equation
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solutions invariant and for this belonging to the Bergmann-Komar group.
We can however observe that the coordinate transformations we employed, like
eqs. (2.2.2) and (2.2.4) and eqs. (2.2.16) and (2.2.17), depend explicitly on the
parameter M of the metric, and hence of the solution. It is not possible to con-
nect them to the identity by sending the parameter to zero, because variations
of the parameter correspond to different solutions and therefore to different
spacetimes.

2.3 Harmonic coordinates

We can now consider another coordinate system on the Schwarzschild space-
time, that is harmonic coordinates.
In general, harmonic coordinates are determined by a particular condition,
called harmonic gauge. These coordinates are particularly useful in the context
of linearized gravity theory. Indeed, the imposition of the harmonic gauge
greatly simplifies the linearized field equations, as we saw in Eq. (1.1.45).
Therefore, in this section we well see, first, how the harmonic gauge condition
is related to a coordinate condition, then we will see how to employ them to
map the Schwarzschild space-time.

2.3.1 Harmonic gauge condition

In the previous chapter we saw that a particularly convenient gauge fixing
choice is represented by the harmonic gauge conditions :

Γλ ≡ gµνΓλ
µν = 0 . (2.3.1)

We will now analyse more in detail the relation between these conditions and
the coordinates.
First of all, we verify that it is always possible to choose a coordinate system
in which these conditions are valid. The affine connection, under a generic
coordinate change, transforms as [4]:

Γ′λ
µν =

∂x′λ

∂xρ
∂xσ

∂x′µ
∂xδ

∂x′ν
Γρ
σδ −

∂xρ

∂x′ν
∂xσ

∂x′µ
∂2x′λ

∂xρ∂xσ
,

thus

Γ′λ = g′µνΓ′λ
µν =

∂x′λ

∂xρ
Γρ − gρσ ∂2x′λ

∂xρ∂xσ
. (2.3.2)
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If Γλ do not vanish, it is always possible to find a coordinate system such that

gρσ
∂2x′λ

∂xρ∂xσ
=
∂x′λ

∂xρ
Γρ , (2.3.3)

so that Γ′λ = 0 in x′µ coordinate system.
If we want to explicitate Eq. (2.3.1) and to put it in term of the metric tensor
components instead of affine connection coefficients, we can use the relations:

gλσ∂νgσµ = −gλσ∂νgσµ
1

2
gµν∂σgµν =

1√−g
∂

∂xσ
√−g

and substitute them in affine connection coefficient contracted with the metric,
obtaining

Γλ =
1

2
gµνgλσ(∂νgσµ + ∂µgσν − ∂σgµν) = −

1√−g
∂

∂xρ
(√−ggρλ) ,

so that now the harmonic condition reads

∂

∂xρ
(√−ggρλ) = 0 . (2.3.4)

Finally, we recall that a function ϕ is said to be "harmonic" if it satisfies

□ϕ ≡ ∇µ∇µϕ = 0 . (2.3.5)

Given a generic function ϕ, if we write explicitly the two terms of the covariant
derivative, we get

□ϕ = ∇µ(g
µν∂νϕ) = gµν∂µ∂νϕ− Γλ∂λϕ . (2.3.6)

If the condition Eq. (2.3.1) is valid, then □ϕ = gµν∂µ∂νϕ, but if in place of a
generic function ϕ we had the coordinates xµ, remembering that ∂µxν = δνµ, we
get that the coordinates themselves are harmonic functions, i.e.

□xµ = 0 . (2.3.7)

Therefore, Eq. (2.3.1) is called harmonic gauge condition because it imposes
the coordinates to be harmonic functions via Eq. (2.3.7).
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2.3.2 Harmonic Schwarzschild coordinates

We now want to find harmonic coordinates for the Schwarzschild space-time.
We have seen that given some coordinates xµ for which Γλ ̸= 0, it is always
possible to find a coordinate system x̄µ for which Γ̄λ = 0.
Thus imposing the equation (2.3.3), where now x′ is x̄, we see that this is

0 = gµρ∂µ∂ρx̄
λ − gµρΓλ

µρ∂ν x̄
ν ≡ □x̄λ . (2.3.8)

We then need to find x̄λ such that □x̄λ = 0, where the derivatives are to be done
with respect to the coordinate system xµ. Since we know that Schwarzschild
space-time is static and spherically symmetric, we assume that the coordinate
system x̄µ is given by the quasi-Minkowskian set (t̄, x̄i) such that:

t̄ = t

x̄1 = r̄(r) sin θ cosφ

x̄2 = r̄(r) sin θ sinφ

x̄3 = r̄(r) cos θ ,

(2.3.9)

where r̄ = r̄(r) is a smooth and invertible function.
For a generic static and isotropic metric written in the form (2.1.1), a straight-
forward calculation gives [4]

0 = □ x̄i ≡ gµν
[

∂2x̄i
∂xµ∂xν

− Γλ
µν

∂x̄i
∂xλ

]
=
( x̄i
Ar̄

)[( B′

2B
+

2

r
− A′

2A

)
r̄′ + r̄′′ − 2A

r2
r̄

] (2.3.10)

where the prime symbol ′ is intended as a derivation with respect to r. Coor-
dinates x̄i are therefore harmonic if r̄ satisfies the differential equation

d

dr

(
r2
√
A

B

dr̄

dr

)
− 2
√
ABr̄ = 0 . (2.3.11)

The line element in harmonic coordinates (t, x̄i) is then

ds2 = −B̄(r̄)dt2 +
r2

r̄2
dx̄i dx̄

i +

[
Ā(r̄)

r̄2 r̄′2
− r2

r̄4

]
(x̄i dx̄

i)2 (2.3.12)

where B̄(r̄) = B(r), Ā(r̄) = A(r) and dx̄i dx̄
i = dr̄2 + r̄2(dθ2 + sin2 θdφ2) and

(x̄i dx̄
i)2 = r̄2dr̄2 are rotational invariant forms.

After solving Einstein equations and substituting values for A and B, the dif-
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ferential equation for r̄ becomes:

d

dr

[
r2
(
1− 2GNM

r

)
dr̄

dr

]
− 2r̄ = 0 . (2.3.13)

It can be found that a convenient choice for integration constants is [4]:

r̄ = r −GNM , (2.3.14)

so that the metric Eq. (2.3.12) takes the form:

ds2 = −
(
1−GNM/r̄

1 +GNM/r̄

)
dt2 +

(
1 +

GNM

r̄

)
dx̄i dx̄

i+

+

(
1 +GNM/r̄

1−GNM/r̄

)
G2

NM
2

r̄4
(x̄i dx̄

i)2 .
(2.3.15)

From now on, we will refer to r̄ as the harmonic radial coordinate. We must
emphasize, however, that this coordinate is not harmonic; we call it so because
it is the radial coordinate of the polar coordinates with which we transformed
the quasi-Minkowskian harmonic coordinates x̄i, but it does not satisfy har-
monic condition.
We can see how the transformation (2.3.14) has "shifted" the coordinate singu-
larity for r = RH of the Schwarzschild metric (2.1.6) into that for r̄ = GNM =

RH/2 of the metric with harmonic coordinates.

It is convenient, for what we will do in the next chapter, to make a descrip-
tion of the metric in terms of the classical potential. In GR there is no invariant
notion for the potential, however, we saw how the {00} component of the metric
and the Newtonian potential were related in the Newtonian approximation via
Eq. (1.1.50). In the weak field and non relativistic limit then, a test particle
moves on geodesics well described by a Newtonian-type potential, whose link
to the metric tensor is

g00 = −(1 + 2V ) = −B , (2.3.16)

where we have assumed that the source we are considering is spherically sym-
metric and then we can use the static and isotropic metric (2.1.1).
The potential corresponding to the Schwarzschild metric of Eq. (2.1.6) de-
scribed by areal coordinate is then:

VA(r) =
1

2
(B − 1) = −GNM

r
, (2.3.17)

which we will call areal potential.
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The potential corresponding to the Schwarzschild metric of Eq. (2.3.15) de-
scribed by harmonic coordinates is instead:

VH(r̄) =
1

2
(B̄ − 1) = −GNM

r̄

(
1 +

GNM

r̄

)−1

, (2.3.18)

which we will call harmonic potential 2.

2In this case we use the adjective "harmonic" to refer to harmonic coordinates. This is
not to be confused with the usual quadratic potential in x, also called harmonic.
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Chapter 3

Quantum Schwarzschild geometry

In this chapter we will see how to describe a coordinate transformation of the
type discussed in the previous chapter with a simple model of gravitons as a
field theory on flat space-time.
We will examine the transformation between the Schwarzschild coordinates de-
scribing the metric (2.1.6) and the harmonic coordinates describing the metric
(2.3.15), realized in the General Relativity theory by the transformation be-
tween the areal radial coordinate r and the harmonic one r̄ via Eq. (2.3.14).
How to describe this coordinate transformation on Schwarzschild space-time in
a quantum frame?
First, we need to find a relation between quantum theory and classical theory
(i.e., the geometric description of space-time). One of the possible ways is to
use the classical potential V : the metric tensor can be described in terms of
the potential via Eq. (2.3.16) in the Newtonian limit, on the other hand. this
potential can also be used to describe the mean field force acting on the con-
stituents of a system as baryons and gravitons. In this way one can find the
geometric description (described in terms of the metric tensor) of gravity as
emerging at macroscopic scales from an underlying quantum theory.
The potential will then be given by the expectation value of the gravitonic field
on a certain state. For the description of the gravitonic field for simplicity we
will choose a massless free scalar field Φ.
The quantum state that best describes a classical configuration is the coherent
state, this can be seen in Refs. [5, 6, 18] for the case of a photon field whose
expectation value on the coherent state reproduces the Coulomb potential, in
[19] for generic solitons and in [9] for the Newton potential, which we will next
review.
The coherent state will then be the state describing the classical potential and,
hence, the effective metric related to it.

41
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Returning to the coordinate transformation (2.3.14), we will then have two dif-
ferent coherent states, one describing the areal potential VA(r) given by Eq.
(2.3.17), and one that will describe harmonic potential VH(r) given by Eq.
(2.3.18).
We must underline that in this frame both potential are dependent on the same
coordinate r (see Fig. 3.1). The coordinate r is the polar radial coordinate of the
Minkoswki metric describing the flat space-time in which the dynamical fields
we are considering are defined, not to be confused therefore with the areal and
harmonic radial coordinates describing the curved Schwarzschild space-time.

VA

VH

2 4 6 8 10

r

GNM

-1.0

-0.8

-0.6

-0.4

-0.2

V

Figure 3.1: Areal (solid line) and harmonic (dashed line) potentials.

We will now see how to define the quantum coherent state starting from a
generic potential for a spherical and static source and how to realize a transfor-
mation between two of these coherent states. We will then define separately the
two coherent states for the two potentials of eqs. (2.3.17) and (2.3.18) and for
each of them we will also consider a possible black hole configuration. Finally
we will define the operator that performs the transformation (2.3.14).

3.1 Quantum state for spherical sources

A generic static potential V = V (r) is dimensionless, so we first rescale it as to
obtain a canonically normalised real scalar field Φ:

Φ =

√
mp

ℓp
V . (3.1.1)
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We proceed by quantising Φ as a massless field satisfying the free wave equation[
− ∂2

∂t2
+

1

r2
∂

∂r

(
r2
∂

∂r

)]
Φ(t, r) ≡

[
−∂2t +∆

]
Φ = 0 . (3.1.2)

whose solutions can be written as

uk(t, r) = eiktj0(k, r) , (3.1.3)

where k > 0 and j0(kr) = sin(kr)
kr

are spherical Bessel functions, which are
eigenfunctions of the Laplace operator and satisfy the orthogonality relation

4π

∫ ∞

0

r2 dr j0(kr) j0(pr) =
2 π2

k2
δ(k − p) . (3.1.4)

The quantum field operator and its conjugate momentum are then given by:

Φ̂(t, r) =

∫ ∞

0

k2 dk

2 π2

√
ℏ
2 k

[
âk uk(t, r) + â†k u

∗
k(t, r)

]
(3.1.5)

Π̂(t, r) = i

∫ ∞

0

k2 dk

2π2

√
ℏ k
2

[
âk uk(t, r)− â†k u∗k(t, r)

]
, (3.1.6)

where the creation and annihilation operators satisfy

[
âk, â

†
p

]
=

2π2

k2
δ(k − p) (3.1.7)

and the factor
√

ℏ
2 k
≡ f(k) has been computed imposing the equal time com-

mutation relation: [
Φ̂(t, r), Π̂(t, s)

]
=

i ℏ
4π r2

δ(r − s) . (3.1.8)

Quantum states in the Fock space are built from the vacuum |0⟩ defined by
âk |0⟩ = 0 for all k > 0.
The coherent state |g⟩ is then defined as the state obeying:

âk |g⟩ = gke
iγk(t) |g⟩ . (3.1.9)

As we want to describe a generic static spherically symmetric potential V (r),
we are interested in those |g⟩ such that:

⟨g| Φ̂(t, r) |g⟩ =
√
mp

ℓp
V (r) . (3.1.10)
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Using the expansion of Φ̂ (3.1.5), we obtain:

⟨g| Φ̂(t, r) |g⟩ = ⟨g|
∫ ∞

0

k2 dk

2π2

√
ℏ
2k
j0(kr)

(
âk e

ikt + â†k e
−ikt
)
|g⟩

= ⟨g|g⟩
∫ ∞

0

k2 dk

2 π2

√
ℏ
2k
j0(kr) gk

[
eikt+iγk(t) + e−ikt−iγk(t)

]
=

∫ ∞

0

k2 dk

2π2

√
2ℏ
k
j0(kr) gk cos [kt+ γk(t)] .

If we expand V (r) in Laplacian eigenfunctions, that is

V (r) =

∫ ∞

0

k2 dk

2π2
Ṽ (k) j0(kr) , (3.1.11)

and we impose (3.1.10), we obtain γk(t) = −kt and

gk =

√
k

2

Ṽ (k)

ℓp
. (3.1.12)

It is useful to write the coherent state in terms of the vacuum |0⟩ to study its
normalisation:

|g⟩ = e−
NG
2 exp

{∫ ∞

0

k2 dk

2π2
gkâ

†
k

}
|0⟩ , (3.1.13)

where NG is a normalisation factor that we obtain explicitly by imposing the
normalisation condition.
In fact, using the commutation relations (3.1.7) and the Baker - Hausdorff -
Campbell formula we get:

⟨g|g⟩ = e−NG ⟨0| exp
{∫ ∞

0

p2 dp

2 π2
gp âp

}
exp

{∫ ∞

0

k2 dk

2 π2
gk â

†
k

}
|0⟩

= e−NG exp

{
1

2

∫ ∞

0

k2 dk

2π2
g2k

}
⟨0| exp

{∫ ∞

0

k2 dk

2π2
gk

(
âk + â†k

)}
|0⟩

= e−NG exp

{∫ ∞

0

k2 dk

2 π2
g2k

}
,

where
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⟨0| exp
{∫ ∞

0

k2 dk

2 π2
gk

(
âk + â†k

)}
|0⟩ = ⟨0|

[
1 +

∫ ∞

0

k2 dk

2 π2
gk

(
âk + â†k

)
+

+
1

2!

∫ ∞

0

k2 dk

2π2
gk

(
âk + â†k

)∫ ∞

0

p2dp

2π2
gp
(
âp + â†p

)
+ . . .

]
|0⟩

= exp

{
1

2

∫ ∞

0

k2 dk

2π2
g2k

}
.

If we now impose the normalisation condition, we finally get

NG =

∫ ∞

0

k2 dk

2 π2
g2k = ⟨g|

∫ ∞

0

k2 dk

2π2
â†k âk |g⟩ , (3.1.14)

which is the total occupation number of modes in the state |g⟩, as we explicitly
show in the latter equality, being â†kâk = n̂k.
The mean wavenumber ⟨k⟩ is then given by

⟨k⟩ = ⟨g|
∫ ∞

0

k2 dk

2 π2
k âk â

†
k |g⟩ =

∫ ∞

0

k2 dk

2π2
k g2k . (3.1.15)

3.1.1 Transformations between coherent states

We can write the coherent state in terms of the manifestly unitary displacement
operator which, for a static and spherically symmetric source, can be written
as:

D̂(g) = exp

{∫ ∞

0

k2 dk

2π2
gk

(
â†k − âk

)}
, (3.1.16)

so that the coherent state is

|g⟩ = D̂(g) |0⟩ = exp

{∫ ∞

0

k2 dk

2π2
gk

(
â†k − âk

)}
|0⟩ , (3.1.17)

in fact, after expanding the exponential, it becomes equal to Eq (3.1.13).
It can be noticed that the operator D̂(g) is unitary and has the properties

D̂(g)† = D̂(g)−1 = D̂(−g) = exp

{
−
∫ ∞

0

k2 dk

2π2
gk(â

†
k − âk)

}
(3.1.18)

and

D̂(g1)D̂(g2) = D̂(g1 + g2) = exp

{∫ ∞

0

k2 dk

2π2
(g1k + g2k)(â

†
k − âk)

}
. (3.1.19)

Now, given two coherent states |g(a)⟩ and |g′(a)⟩, where
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a ∈ A = {M, {M,Q}, . . . } denotes the parameter or the set of parameters by
which the source is uniquely characterized (M characterizes the Schwarzschild
case, M and Q the Reissner - Nordström case, and so on), we can write:

|g′(a)⟩ = |g′(a)⟩ ⟨g(a)|g(a)⟩ ,

being the coherent state normalized.
We can then define the operator P̂a which transforms the coherent state |g(a)⟩
in the coherent state |g′(a)⟩ as

P̂a ≡ |g′(a)⟩ ⟨g(a)| = D̂(g′(a)) |0⟩ ⟨0| D̂(g(a))† , (3.1.20)

such that

|g′(a)⟩ = P̂a |g(a)⟩ . (3.1.21)

Similarly, the inverse transformation will be

|g(a)⟩ = |g(a)⟩ ⟨g′(a)|g′(a)⟩ ≡ Q̂a |g′(a)⟩ ,

and it is straightforward to verify that

Q̂a ≡ |g(a)⟩ ⟨g′(a)| = (|g′(a) ⟨g(a)|⟩)† = P̂ †
a , (3.1.22)

so that the inverse transformation is given by:

|g(a)⟩ = P̂ †
a |g′(a)⟩ . (3.1.23)

Finally, we calculate the square of this operator to gain a general understanding
of its properties:

P̂ 2
a = |g′(a)⟩ ⟨g(a)|g′(a)⟩ ⟨g(a)|

= exp

{
−1

2

∫ ∞

0

k2 dk

2π2
(g′k(a)− gk(a))2

}
|g′(a)⟩ ⟨g(a)|

= exp

{
−1

2

∫ ∞

0

k2 dk

2π2
(g′k(a)− gk(a))2

}
P̂a ,

(3.1.24)

being

⟨g|g′⟩ = ⟨0| D̂(g)†D̂(g′) |0⟩ = ⟨0| D̂(g′ − g) |0⟩ = e−
1
2

∫∞
0

k2 dk
2π2 (g′k−gk)

2

. (3.1.25)
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3.2 Quantum state in areal coordinates

We are now ready to define the coherent state corresponding to the areal po-
tential in (2.3.17) by computing all the previous expressions explicitly from the
coefficients gk of Eq. (3.1.12), which depend on the transform Ṽ of the potential
V .
Areal potential in Eq. (2.3.17) is the Newtonian potential generated by a point-
like source, whose density is given by

ρ =Mδ(3)(x⃗) =
M

4π r2
δ(r) . (3.2.1)

The transform Ṽ of V can be then derived by solving the Poisson equation
(1.1.51) in momentum space. In fact, by substituting there the expansions
(3.1.11) and

ρ(r) =

∫ ∞

0

k2 dk

2 π2
ρ̃(k) j0(kr) , (3.2.2)

we get

ṼA(k) = −
4π GN

k2
ρ̃(k) = −4π GNM

k2
, (3.2.3)

where we used ρ̃(k) =M in the latter equality (see [9] for details).
The coefficients gk are then:

g(A)k =

√
k

2

ṼA(k)

ℓp
= − 4 πM√

2 k3mp
, (3.2.4)

which fix the coherent state that reproduces the areal potential.
The occupation number and the mean wavenumber for such a state are then

N(A)G =

∫ ∞

0

k2 dk

2 π2
g2k =

4M2

m2
p

∫ ∞

0

dk

k
(3.2.5)

and 〈
k(A)

〉
=

∫ ∞

0

k2 dk

2 π2
k g2k =

4M2

m2
p

∫ ∞

0

dk , (3.2.6)

where it could be noticed that both NG and ⟨k⟩ diverges in the ultraviolet
(UV), and NG diverges in the infrared (IR) too. The UV divergence is due
to the fact that the source is point-like and usually is not present when one
considers regular matter densities (see [12] for a homogeneous density source).
This divergence can be also regularised by introducing a cut-off kUV ∼ 1/RS

where RS can be interpreted as the finite radius of a would-be regular matter
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source.
The IR divergence of N(A)G is instead due to assuming the source is eternal
and its gravitational static field extends to infinite distances. Similarly to the
UV divergence, we introduce an IR cut-off kIR = 1/R∞ to consider the finite
life-time of a realistic source ([9, 12]).
With these cut-offs we rewrite

N(A)G =
4M2

m2
p

∫ kIR

kUV

dk

k
=

4M2

m2
p

ln

(
R∞

RS

)
(3.2.7)

and 〈
k(A)

〉
=

4M2

m2
p

∫ kIR

kUV

dk =
4M2

m2
p

(
1

RS
− 1

R∞

)
. (3.2.8)

where we recognise the scaling relation of the corpuscolar model forNG (A.2.12).
The coherent state corresponding to the areal potential, in terms of the vacuum
|0⟩, then is ∣∣g(A)

〉
= e−

NG(A)
2 exp

{∫ kUV

kIR

k2 dk

2 π2
g(A)kâ

†
k

}
|0⟩ . (3.2.9)

If the source of the field is a black hole, the coherent state
∣∣gBH(A)

〉
rep-

resenting it cannot reproduce the classical potential everywhere, like it does in
Eq. (3.1.10), but at most in the region outside the horizon rH.
However, we need a way to define the horizon, since we have abandoned the
geometric description in favour of a field theory description on flat space-time.
Following what has been done in the context of the Bootstrapped Newtonian
Gravity Theory (see on this, for example [8, 10]), we define the horizon for
the potential as the radius where the escape velocity equals the speed of light,
namely rH such that

V (rH) = −
1

2
. (3.2.10)

For the areal potential VA, the horizon occurs for

rH = RH ≡ 2GNM . (3.2.11)

This means that the expectation value of the field on the coherent state must
give:

〈
gBH(A)

∣∣ Φ̂(t, r) ∣∣gBH(A)

〉
≃
√
mp

ℓp
VA(r) for r ≳ RH . (3.2.12)

As a consequence of this last equation, modes of wavelength shorter than
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the gravitational radius aren’t needed to be integrated in the black hole coher-
ent state

∣∣gBH(A)

〉
, including modes of infinitely short wavelength necessary to

resolve the singularity at r = 0.
We can therefore build the coherent state of the black hole according to (3.1.13)
with modes such that their wavelength is larger than some fraction of the grav-
itational radius RH, that is

k−1 ≳
RH

n
. (3.2.13)

This fraction of RH can be identified with the source size RS, which we have
introduced as the UV cut-off. If we exclude also wavelengths larger than the
IR scale R∞, in the coherent state

∣∣gBH(A)

〉
are populated only the modes

kIR ≲ k ≲ kUV , (3.2.14)

with kUV ∼ 1/RS = n/RH and kIR = 1/R∞.
If we integrate only these modes in the expansion (3.1.11), we get an effective
quantum potential VQA:

VQA ≃
∫ kUV

kIR

k2 dk

2 π2
ṼA(k) j0(k r)

= − 2

π

GNM

r

∫ kUV

kIR

dk
sin(k r)

k

≃ − 2

π

GNM

r

∫ r/RS

0

dz
sin z

z
,

where in the last line we defined z = k r and let R∞ →∞. Going on with the
calculation we find

VQA ≃ −
2

π

GNM

r
Si

(
r

RS

)
= VA

{
1−

[
1− 2

π
Si

(
r

RS

)]}
,

(3.2.15)

where Si is the sine integral function Si(x) =
∫ x

0
dz sin z

z
.

It is possible to represent and compare the effective quantum potential VQA and
the areal one VA by choosing the size of RS = RH/n varying n.
Looking at their graphic representation in Fig. 3.2 we can make a few com-

ments. Firstly, the quantum potential is regular and finite everywhere, also in
the origin r = 0. Secondly, the potential VQA is oscillating around VA, such
an effect of the oscillations on test bodies could be potentially observed at
r > RH. Finally, the amplitude of these oscillations decreases with increas-
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Figure 3.2: Quantum potential VQ compared to areal potential VA for two
different values of RS = RH/n = 2GNM/n.

ing n = RH/RS, so one can always choose finite n so that the oscillations are
too small to be measured by a distant observer. This effect is pointed out for
r > RH in Fig. 3.3.
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Figure 3.3: Oscillations of the quantum potential VQA around VA for n = 2

(solid line) and n = 20 (dashed line) in the outer region (r > RH).

3.3 Quantum state in harmonic coordinates

We now define the coherent state for the harmonic potential VH .
We can obtain the transform ṼH(k) of the harmonic potential (2.3.18) by pro-
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jecting it on the eigenfunctions of the Laplace operator j0(kr), that is:

ṼH(k) = −
4π GNM

k2

{
1−GNM k

[(
π

2
− Si(GNM k)

)
cos(GNM k)+

+ Ci(GNM k) sin(GNM k)

]}
≡ −4 π GNM

k2
[(1−GNM kf(GNM k)] ,

(3.3.1)

as derived in appendix B, with f(x) defined in Eq. (B.0.4).
The coefficients gk are then:

g(H)k =

√
k

2

ṼH(k)

ℓp
= − 4πM√

2 k3mp
[1−GNM k f(GNM k)] . (3.3.2)

We can proceed by computing the occupation numberNG and the mean wavenum-
ber ⟨k⟩ like we did in the areal case. So:

NG(H) =

∫ ∞

0

k2 dk

2 π2
g2(H)k =

4M2

m2
p

∫ ∞

0

dk

k
[1−GNM k f(GNM k)]2

= NG(A) −
4M2

m2
p

∫ ∞

0

dk

k

[
2GNM k f(GNM k)+

− (GNM k)2f(GNM k)2
]

(3.3.3)

and〈
k(H)

〉
=

∫ ∞

0

k2 dk

2π2
k g2(H)k =

4M2

m2
p

∫ ∞

0

dk [1−GNM k f(GNM k)]2

=
〈
k(A)

〉
− 4M2

m2
p

∫ ∞

0

dk
[
2GNM k f(GNM k)+

− (GNM k)2f(GNM k)2
]
.

(3.3.4)

Despite the areal case, it is not possible to calculate these quantities in an
analytical way but, in order to better understand their behaviour, we should
proceed by computing them numerically. To better handle the calculation, we
rewrite the two integrals by changing the integration variable to y = GNM k,
that is:

NG(H) =
4M2

m2
p

∫ ∞

0

dy

y
[1− y f(y)]2 (3.3.5)



52

and 〈
k(H)

〉
=

4M

mpℓp

∫ ∞

0

dy [1− y f(y)]2 . (3.3.6)

From the numerical analysis results that the integral in the occupation number
NG(H) is divergent only if we leave the lower bound of integration equal to
zero, which, for M ̸= 0, corresponds to k = 0, so it presents an infrared
divergence, while it does not diverge in the ultraviolet. The integral in the
mean wavenumber is convergent. The reason for the disappearance of the UV
divergence in NG(H) is due to the fact that the full Schwarzschild potential
(2.3.18) is not singular for r = 0 (it would be for negative r = −GNM).
We regularise the IR divergence introducing a cut-off kIR = 1/R∞, that is
yIR = GNM/R∞:

NG(H) =
4M2

m2
p

∫ ∞

yIR

dy

y
[1− y f(y)]2 (3.3.7)

and 〈
k(H)

〉
=

4M

mpℓp

∫ ∞

yIR

dy [1− y f(y)]2 . (3.3.8)

The coherent state corresponding to the harmonic potential, in terms of the
vacuum |0⟩, then is

∣∣g(H)

〉
= e−

NG(H)
2 exp

{∫ ∞

kIR

k2 dk

2π2
g(H)kâ

†
k

}
|0⟩ . (3.3.9)

Similarly to what we did in the areal case, let us see what happens if the
source of the field is a black hole.
The horizon for the harmonic potential defined as in Eq. (3.2.11) is then r′H
such that

VH(r
′
H) = −

1

2
(3.3.10)

which occurs for r′H = RH
2
≡ GNM .

In this case, the coherent state representing it can reproduce the classical po-
tential only in the region outside the horizon r′H = GNM , that is

〈
gBH(H)

∣∣ Φ̂(t, r) ∣∣gBH(H)

〉
≃
√
mp

ℓp
VH(r) for r ≳

RH

2
. (3.3.11)

Since in a black hole configuration we always have that the size of the source RS

is less than the horizon r′H, we can build a coherent state
∣∣gBH(H)

〉
where only

modes k such that k−1 ≳ r′H
n

= RS are populated. This leads to an effective
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Figure 3.4: Quantum potential VQH compared to full Schwarzschild potential
VH for two different values of RS = r′H/n = GNM/n.

potential VQH

VQH ≃
∫ kUV

0

k2 dk

2 π2
ṼH(k) j0(k r)

≃ − 2

π

GNM

r

1

1−
(
GN M

r

)2
{
Si

(
r

RS

)
+
GNM

r

[
− π

2
+

cos

(
r

RS

)
f

(
GNM

RS

)]
+

(
GNM

r

)2

sin

(
r

RS

)
g

(
GNM

RS

)}
,

(3.3.12)

where in the second line we have substituted kUV ∼ 1/RS and where f(x) is
the function in Eq. (B.0.4) and

g(x) =

∫ ∞

0

dt
cos t

t+ x
=
[π
2
− Si(x)

]
sin(x) + Ci(x) cos(x) . (3.3.13)
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Figure 3.5: Oscillations of the quantum potential VQH around VH for n = 2

(solid line) and n = 20 (dashed line) in the outer region (r > rH).
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We can represent this effective potential varying n, similarly to what we
did for the areal one (3.2.15). In Fig. 3.4 effective quantum potential VQH and
harmonic potential VH are compared for n = 2 and n = 20. The quantum
potential VQH is oscillating around VH and the amplitude of these oscillations
descreas with increasing n.
This effect can be appreciated in Fig. 3.5 for r > rH.

3.4 Transformations

In this section, we will write down the operator which transforms the coherent
state

∣∣g(A)

〉
, describing the areal potential VA, in the coherent state

∣∣g(H)

〉
,

describing the harmonic potential VH .
The coherent states

∣∣g(A)

〉
and

∣∣g(H)

〉
, as seen above, are not defined for every

k but regularized with cut-off’s. For every k their eigenvalues are then g̃(A)k =

g(A)k θ(kUV − k) θ(k − kIR) and g̃(H)k = g(H)k θ(k − kIR), so that we can write:

∣∣g(A)

〉
= D̂(g̃(A)) |0⟩ = exp

{∫ ∞

0

k2 dk

2 π2
g̃(A)k

(
â†k − âk

)}
|0⟩

= exp

{∫ kUV

kIR

k2 dk

2 π2
g(A)k

(
â†k − âk

)}
|0⟩

(3.4.1)

and ∣∣g(H)

〉
= D̂(g̃(H)) |0⟩ = exp

{∫ ∞

0

k2 dk

2π2
g̃(H)k

(
â†k − âk

)}
|0⟩

= exp

{∫ ∞

kIR

k2 dk

2π2
g(H)k

(
â†k − âk

)}
|0⟩ ,

(3.4.2)

with g(A)k and g(H)k equal to eqs. (3.2.4) and (3.3.2) and where, for simplicity,
we used the same cut-off kIR for both states.
The transformation between these states, according to (3.1.21), is then∣∣g(H)(M)

〉
= P̂M

∣∣g(A)(M)
〉

(3.4.3)

with

P̂ (M) =
∣∣g(H)(M)

〉 〈
g(A)(M)

∣∣ = D̂(g̃(H)(M)) |0⟩ ⟨0|D(g̃(A)(M))† , (3.4.4)
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where we made the dependence of the states and the operator on M explicit.
The squared operator P̂M is, using Eq. (3.1.24):

P̂ 2
M = exp

{
−1

2

∫ ∞

0

k2 dk

2 π2

(
g̃(H)k(M)− g̃(A)k(M)

)2}
P̂M

= exp

{
− 1

2

[ ∫ kUV

kIR

k2 dk

2π2

(
g(A)k(M)− g(H)k(M)

)2
+

+

∫ ∞

kUV

k2 dk

2 π2
g2(H)k(M)

]}
P̂M

≃ exp

{
−2M

2

m2
p

[∫ yUV

0

dy yf(y)2 +

∫ ∞

yUV

dy

y

(
1− y f(y)

)2]}
P̂M

≡ exp

{
−2M

2

m2
p

[
I1(yUV) + I2(yUV)

]}
P̂M ,

(3.4.5)

where we changed integration variable in y = GNMk and put kIR equal to
zero, which has little to no effect on the result, as hinted by explicit numerical
evaluation.
The integral in square brackets I = I1 + 12 is not computable analytically.
Numerically it is possible to represent it as a function of the cut-off yUV for
the areal coherent state with accuracy only up to yUV = GNM/kUV ≃ 13.
We represent this trend in Fig. 3.6, along with the single trend of the two
integrals I1 and I2, where we can observe that I is always positive (and hence
the exponent of the exponential factor in front of P̂M always negative).
In particular we see that for 0 < yUV ≲ 0.6 the integral I is decreasing, while

I

I1

I2
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0.5
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I

Figure 3.6: Integrals I(yUV) (solid line), I1(yUV) (dashed line) and I2(yUV)

(dotted line).
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it is slowly increasing for yUV ≳ 0.6.
Now we apply the operator P̂M to coherent states describing different sources

M ′ ̸= M . We start with the particular case of state |0⟩, which is the coherent
state for M ′ = 0, and we obtain

P̂M

∣∣g(A)(M
′ = 0)

〉
=
∣∣g(H)(M)

〉 〈
g(A)(M)

∣∣0〉 = ∣∣g(H)(M)
〉
⟨0| D̂(g̃(A)(M))† |0⟩

= exp

{
−1

2

∫ ∞

0

k2 dk

2π2

(
−g̃(A)k(M)

)2} ∣∣g(H)(M)
〉

= e−
1
2
NG(A)(M)

∣∣g(H)(M)
〉

= e
−2M2

m2p
ln
(

kUV
kIR

) ∣∣g(H)(M)
〉

,
(3.4.6)

which is approximately zero when M ≫ mp, while it is non negligible only
when M ∼ mp.
For M ′ ̸= 0 we get

P̂M

∣∣g(A)(M
′)
〉
=
∣∣g(H)(M)

〉 〈
g(A)(M)

∣∣g(A)(M
′)
〉

=
∣∣g(H)(M)

〉
⟨0| D̂(g̃(A)(M))†D̂(g̃(A)(M

′)) |0⟩

= exp

{
−1

2

∫ ∞

0

k2 dk

2π2

(
g̃(A)k(M

′)− g̃(A)k(M)
)2} ∣∣g(H)(M)

〉
= e

−2
(M−M′)2

m2p
ln
(

kUV
kIR

) ∣∣g(H)(M)
〉

,
(3.4.7)

where the multiplicative coefficient is non negligible only when |M −M ′| is of
the same order of magnitude as:

σ =
mp

2

√
ln
(

kUV
kIR

) .

Note that if M and M ′ are ≫ mp, then any difference M −M ′ between the
two (given that it has a magnitude which is not negligible with respect to the
masses themselves) will be itself ≫ mp. Thus, we can say that in general the
exponential term will have a ∼ 0 value whenever the two masses are ≫ mp.

We can then observe how this operator is closely related to the source pa-
rameter M within which it is defined. In fact, when we try to apply it to
coherent states describing different sources M ′, they are projected along the
coherent states defined by the source M . The operator that realizes the coordi-
nate transformation (2.3.14) of the classical (geometric) theory in the quantum
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model is strictly defined by parameters that characterize the source M , as this
coordinate transformation (and in general the coordinate transformations seen
in Chapter 2) are defined by the parameters that uniquely describe the metric
(in this case M) and hence the solution of Einstein’s equations.
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Conclusions

With the aim to construct a quantum theory of gravity having the theory of
General Relativity as an emergent classical description, the invariance for co-
ordinate transformations of the theory must be taken into account and treated
as a gauge symmetry, in order to consider only the physical degrees of freedom
of the dynamics. In this work we have tried to set up a possible quantum treat-
ment of the transformation between Schwarzschild coordinates and harmonic
coordinates, which belongs to those transformations that, being dependent on
the metric itself, cannot be misinterpreted as dynamical perturbations, but still
are a symmetry for the solutions of the field equations and therefore must be
included in the theory.
To summarize what we have done, starting from the invariance of the gravita-
tional action under diffeomorphisms, in the first Chapter we have derived the
algebra of the gauge group of General Relativity, the Bergmann-Komar group.
This is not a Lie group and therefore its finite transformations also include
transformations not reducible to the identity by sending the parameters to zero.
We then saw in Chapter 2 some examples of these transformations for a par-
ticular solution of Einstein’s equations, the well-known Schwarzschild metric.
We decided to focus on the harmonic gauge condition for coordinates, used in
linearized gravity theories to simplify the field equations, which in Schwarschild
space-time results in a transformation between the areal coordinate r into the
"harmonic" coordinate r̄. Finally, in the third Chapter, we moved into the
frame of the description of the classical potential (defined in the Newtonian
way and linked to the metric via the Newtonian limit) as the expectation value
of the (scalar) gravitonic field on the quantum coherent state (model devel-
oped, for example, in Refs. [5, 8, 9, 12, 18] ). In addition to the treatment
of the coherent state describing the Newtonian potential (here named areal to
make the link with coordinates easily recognizable), we also treated the coher-
ent state describing the harmonic potential. We then set up a possible method
to define an operator that transforms two different coherent states, and with
this we defined the operator P̂M that realizes the transformation of the areal
coherent state for a source of mass M into the harmonic one. We finally tried
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to transform with P̂M states describing different sources (i.e., with M ′ different
from M) and saw these are still projected onto coherent states of the M source,
thus confirming the strict dependence of the coordinate transformation on the
parameters of the metric.

We also studied the black hole configuration for both potentials. In our
description, this configuration corresponds to the definition of the coherent
state only in the region outside the horizon, which is determined as the surface
where the escape velocity for the considered potential equals the speed of light.
Therefore, we do not need modes of any wavelength to define this state, but
only those of wavelengths no smaller than of some fraction of the gravitational
radius RH, which we have identified as the inverse of the ultraviolet cut-off
RS. As shown in Ref. [20] for the areal potential, the effective geometry corre-
sponding to this black hole state is described by a quantum (effective) potential
VQ. This geometry still contains the horizon, as can be observed in 3.2, but
is regular at r = 0. In [20] an evaluation of the tidal force for r = 0 is also
made which, contrary to the classical case, turns out to be finite since it is
proportional to (GNM)2/R4

S. This means that, in this quantum Schwarzschild
description of a black hole, the matter forming it never reaches the singularity
but forms a macroscopic configuration, showing to be a description compatible
with the idea that gravity classicalizes at high energies.
Moreover, the effective quantum potential oscillates around the classical poten-
tial, and this could be interesting from a phenomenological point of view, as
these oscillations can be observed by an hypothetical observer in r > RH. In
this work we have verified the same behavior for the quantum harmonic po-
tential, finding how it oscillates around the classical harmonic potential. The
oscillation amplitudes decrease as the RS dimension decreases, and thus as the
ultraviolet cut-off increases, behaving therefore in the same way as the areal
quantum potential.



Appendix A

Corpuscolar model

We will here resume the ideas at the base of the corpuscular model formulated
by Dvali and Gomez, referring mainly to [21–25].

A theory of quantum gravity as a QFT of a massless spin 2 particle (i.e.,
the graviton), obtained by quantizing the General Relativity action in the weak
field limit, leads to several problems, the largest and best known being the fact
that such theory is not renormalizable One of the ways this can be seen is
by considering Newton’s constant GN as a coupling constant. Indeed, we see
that in Planck units c = ℏ = 1 this has dimension [M ]−2, and theories with
coupling constant with negative powers of mass violate the renormalization
principle. The problem is that the scattering amplitudes calculated by pertur-
bative methods are composed of infinities of ever-increasing order and therefore
cannot be eliminated. Because of this, gravity cannot be a predictive theory at
high energies and must therefore be "completed" in other ways.
This "UV-completion" is what effective field theories (EFT) are all about, their
purpose being to find the most suitable degrees of freedom able to describe the
system using the usual perturbative theory. In the standard (Wilsonian) ap-
proach, the UV completion of a theory is achieved by introducing new degrees
of freedom so that in the weak coupling regime the old theory is found, while
at higher scales new physics is manifested such that predictions can again be
made by calculating scattering amplitudes (an example is how Fermi’s theory,
which cannot be renormalized, was "cured" by introducing three bosonic fields
W± and Z0 as mediators of the weak interaction). However, the approach con-
sidered by Dvali and Gomez is non-Wilsonian and is based on the ideas of
self-completeness [21] of gravity and classicalization [22].
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A.1 Self-completeness of Einstein gravity by clas-
sicalization

Dvali and Gomez argue that gravity is self-completing in deep-UV. The idea
behind this claim is that any new degrees of freedom introduced to complete
the theory at high energy has no physical sense because it would correspond
to distances that cannot be probed. The scale of strong coupling for gravity
is identified in the Planck mass mp ∼ 1019 GeV, and the corresponding length
is therefore the Planck length ℓp ∼ 1/mp ∼ 10−33 cm. The Planck length for
Einstein gravity corresponds to the absolute minimum length possible for any
distance to be probed.
Suppose in fact that we want to make measurements at l ≪ ℓp. The mini-
mum amount of energy that can be located in a volume l3 must obey Heisen-
berg’s uncertainty principle, whereby E ≳ 1/∆t ∼ 1/l (in Planck units).
The gravitational radius associated with this region of space would then be
RH ≃ 2GNE ∼ ℓ2p/l, therefore we would have RH ∼ ℓ2p/l ≫ l. This means that
any attempt to resolve scales smaller than Planck’s would cause us to "bounce
back" at much greater distances ℓ2p/l≫ l, and the reason is the existence of the
black hole of gravitational radius RH that is created at such scales. There is
therefore a correspondence between physics at sub-Planckian scales (deep-UV)
and that at macroscopic scales (deep-IR):

l←→ ℓ2p
l

. (A.1.1)

Degrees of freedom that propagate beyond the Planckian scale therefore make
no physical sense. They are instead mapped into classical states (correspond-
ing precisely to the ℓ2p/l scale), which are dynamically described by degrees of
freedom of soft (i.e., at low energies) massless gravitons.
The theory therefore self-completes through this process of classicalization, pro-
ducing these high multiplicity classical states of the same particles that were
already in the theory, and the quanta that make up these states are soft and
weakly interacting with each other.

A.2 Corpuscolar black hole

Following the classicalization scheme, Dvali and Gomez formulated the descrip-
tion of a black hole as a Bose-Einstein condensate of gravitons. We try here to
qualitatively summarize the main points.

Gravitons self-interact; the dimensionless self-coupling constant of gravitons
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at low energies is [23]:

αG =
ℏGN

λ2G
=

ℓ2p
λ2G

, (A.2.1)

where λG is the wavelength of the gravitons. If λG ≫ ℓp the gravitons will
interact very weakly. Now suppose we have a spherical mass M for which
R ≫ RH. In such a configuration the total graviton energy is the Newtonian
one:

E ≃ MRH

R
. (A.2.2)

If we assume that the gravitons are weakly interacting, this energy is also equal
to the sum of their individual energies ℏ/λ, therefore,

E =
∑
λ

Nλ
ℏ
λ
≃ NGℏ

R
, (A.2.3)

where we have assumed that the peak of this distribution is in λ = R. By
equating the two gravitational energies we obtain:

NG =
M RH

ℏ
. (A.2.4)

Note that for λG = R the coupling constant αG (A.2.1) becomes very small.
We can now interpret the number of gravitons NG as a measure of the classi-
cality of the system. If

NG ≫ 1 (A.2.5)

we say that the system is classical.
However, if the mass M has a radius of size comparable to the gravitational
radius R ≃ RH (and is therefore in a black hole configuration), we find a
condition that links the coupling constant and the number of gravitons. In fact
we have:

αG =
ℏGN

R2
H
≃ ℏ
MRH

≃ 1

NG
, (A.2.6)

where in the last equality we used Eq. (A.2.4).
We can understand the meaning of this condition by giving an estimate of the
collective binding potential felt by each graviton for the (weak) interaction with
the other N − 1 ones:

UG ≃ −αGN
ℏ
λG

, (A.2.7)

with r ≃ λG. Furthermore, assuming that the momentum of each graviton is
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p⃗G, its kinetic energy will be K ≃ |p⃗G| ≃ ℏ/λG. By substituting αG ≃ 1/NG

into Eq. (A.2.7), we obtain

K + U ≃ 0 . (A.2.8)

In a black hole configuration therefore the system of gravitons is self-sustaining,
because for each graviton the binding energy and the kinetic energy are com-
pensated. Moreover, even if single gravitons interact weakly with each other,
the system is globally in a strong coupling regime: indeed Eq. (A.2.6), called
marginally bound condition, can be written as

g ≡ NG αG ≃ 1 , (A.2.9)

where g is the collective (dimensionless) coupling. Gravitons can thus be seen
as elements of a Bose-Einstein condensate at the quantum critical point [25]:
although the constituents of the final state interact weakly, the effects due
to the collective interaction between gravitons become extraordinarily relevant
and lead to the global classical state.

From the marginally bound condition (A.2.6) we can derive all the typical
quantities of a black hole in terms of the number of gravitons N . These are
expressed in the so called scaling laws of corpuscular black holes:

α ≃ 1

NG
(A.2.10)

λG ≃
√
Nℓp (A.2.11)

M ≃ ≃
√
Nmp . (A.2.12)

Through the analogy with the Bose-Einstein condensate, this model is able to
explain semiclassical black hole features as Hawking radiation and Bekenstein
entropy (e.g., this is done in Refs. [23, 24]).



Appendix B

Harmonic potential transform

Let’s see how to obtain the trasform of harmonic potential (2.3.18). First of all
we project it on Bessel functions j0(kr):

ṼH(k) = 4 π

∫ ∞

0

r2 dr j0(kr)VH(r) =

= −4πGNM

k

∫ ∞

0

dr sin(kr)

(
1 +

GNM

r

)−1

=

= −4πGNM

k

∫ ∞

0

dr

[
sin(kr)−GNM

sin(kr)

r +GNM

]
= −4πGNM

k2

[∫ ∞

0

dz sin z −GNMk

∫ ∞

0

dz
sin z

k +GNMk

]
,

(B.0.1)

where we change integration variable in z = kr. The first integral gets∫ ∞

0

dz sin z = 1− lim
z→∞

cos z , (B.0.2)

where, since ṼH(k) is to be understood as a distribution, we will ignore the
second term for the Riemann-Lebesgue lemma.
For the second integral we get instead:∫ ∞

0

dz
sin z

k +GNMk
= f(GNM k) (B.0.3)

where the function f(x) is the so-called auxiliary function defined in [26]:

f(x) =

∫ ∞

0

dt
sin t

t+ x
=
[π
2
− Si(x)

]
cosx+ Ci(x) sin x . (B.0.4)

with Si(x) =
∫ x

0
dz sin z

z
and Ci(x) = −

∫∞
x

dz cos z
z

respectively the sine and the
cosine integral functions.
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The harmonic potential transform finally is:

ṼH(k) = −
4π GNM

k2

{
1−GNM k

[(
π

2
− Si(GNM k)

)
cos(GNM k)+

+ Ci(GNM k) sin(GNM k)

]}
≡ −4π GNM

k2
[(1−GNM kf(GNM k)] .

(B.0.5)
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