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Abstract

In order to assess the suitability of a text for machine translation (MT), the
factors in play are many and often vary across language pairs. Readability
might certainly account for part of the problem, but the metrics for its evalu-
ation are inherently monolingual (e.g., Gunning fog index) or have language
learning as a target. Thus, they solely consider human problems in language
learning when approaching a text, such as text length or overly complex syn-
tax. Although these aspects could map to a higher difficulty for an automatic
translation process, they only consider the problem in the source text as a
comprehension problem, whereas in real-world scenarios most of the atten-
tion is on the target text, focusing on the essential cross-language aspects of
terminology and pragmatics of the target language.

This dissertation represents an attempt at approaching this problem by
transferring the knowledge from established MT evaluation metrics to a new
model able to predict MT quality from the source text alone. To open the
door to experiments in this regard, we explore the fine-tuning of a state-of-
the-art transformer model (XLM-RoBERTa), construing the problem both as
single-task and multi-task. Results for this methodology are promising, with
both model types seemingly able to successfully approximate well-established
MT evaluation and quality estimation metrics, achieving low RMSE values
in the [0.1 − 0.2] range.
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Chapter 1

Introduction

In 2021 ELIS, the major European group dedicated to analyzing and report-
ing on the current developments of the language and translation sector, re-
leased its annual Language Industry Report stating that machine translation
and post-editing represent the strongest future trend for both the industry
and training institutions, especially those adhering to the European Master’s
in Translation (EMT) program.1

It is evident that machine translation has firmly established in the indus-
try and research on this topic is thriving. Although quality improvements
over the last few years have indeed been significant, the translation world has
expressed a need, time and time again, for new methods and technologies to
properly assess its quality, leading to the creation its own subfield: Machine
Translation Evaluation. Most of the work in this regard has been focused
on the resulting translation, both in traditional evaluation, where the ma-
chine translated segment is compared to a human reference translation, to
the more recent quality estimation techniques, where the machine translated
segment is evaluated on its own without any reference. The present work
contributes to this field by seeking a different perspective, where the evalua-
tion is centered around the source text. I define this as Machine Translation
Suitability, formulating the following hypothesis:

Hypothesis: The better the machine translated version of a text,
in terms of a well-established evaluation metric, the more suitable
is the source text to machine translation.

1As reported in the 2021 Language Industry Survey Report . This URL was last con-
sulted on 18/01/2022.
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14 CHAPTER 1. INTRODUCTION

Starting from this hypothesis, we formulate the following research ques-
tions:

Research Question 1: Is it possible to accurately predict the
MT Evaluation or Quality Estimation score from the source text
alone?

Research Question 2: If the first research question is true, is
it better to construe the problem as a single-task or as a multi-task
problem?

Therefore, the objective of this dissertation is to create a supervised model
for the prediction of machine translation quality from the source text alone
(here defined as Machine Translation Suitability). In order to achieve this
objective, we begin by reviewing the literature on machine translation evalua-
tion. On the basis of this review, we compile an ad-hoc corpus pairing source
text segments with the evaluation score of their automatic translations. Fi-
nally, the experiments are conducted using the state-of-the-art transformer
model XLM-RoBERTa in two different settings: single-task and multi-task.
This work offers a description of all the aforementioned steps and is articu-
lated in the following chapters:

Chapter 2 provides a review of the key concepts that represent the core of
this dissertation. It will initially provide an explanation of the field of natural
language processing, explaining the concept of automatic text classification
and introducing transformer models. A brief history of machine translation
is provided before delving in the literature on machine translation evaluation
and quality estimation, which represent the driving topics of the entire work.
The Chapter closes with a review of the related work with respect to the
current thesis.

Chapter 3 establishes the settings for the experiments and the research
questions, as well as providing an overview of both the selected corpora and
their preprocessing in order to construct the corpus on which to train the
machine learning algorithm. It also provides an overview of the architec-
tures for our models, explaining the structure of the transformer of choice
(XLM-RoBERTa) and the fine-tuning techniques employed to obtain the
predictions, either construing the problem as single-task or multi-task.
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Chapter 4 presents the results obtained by the architectures fine-tuned
on the corpus examined in the previous chapter. It discusses the technical
and methodological limitations of the methods employed in this dissertation,
while also offering considerations on possible practical applications and fu-
ture research that could lead to validation and improvement of the proposed
models.

Chapter 5 summarizes the dissertation and draws the final conclusions,
reflecting on the research outcomes and paving the way for the following
work.
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Chapter 2

Background

2.1 Introduction

This Chapter aims to provide an overview of the essential building blocks
that lie at the basis of this dissertation.

Section 2.2 provides a general definition of natural language processing
(NLP), discussing the approaches which are salient for this work and the
state-of-the-art (SOTA) models at the time of writing, focusing in particular
on transformer models (Section 2.2.2).

Section 2.3 delineates a brief history of machine translation (MT), start-
ing from rule-based models and ending with the contemporary data-driven
approaches, with special attention to the current state-of-the-art, namely
neural machine translation (NMT). Machine translation evaluation, both in
its traditional form and more recently as quality estimation (QE), will be dis-
cussed, offering an overview of the most used metrics in research and of the
latest published results in two of the most prominent conferences on machine
translation, namely WMT2020 and WMT2021.

Finally, an overview of related work will be provided in Section 2.4, fo-
cusing on the PreDicT project by the University of Ghent, the APE-QUEST
project founded by the European Union and the SmartLQA project proposed
by Welocalize, one of the major language service providers in the world.

17
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2.2 Natural Language Processing

Computer programming languages possess the characteristic of being formal-
born languages, abiding to specific syntactic rules which completely avoid
ambiguous statements by restricting their expressiveness and being usually
based on context-free grammars, according to the classification first intro-
duced by Chomsky (1959). Hence, they are inherently different from natural
languages, because they instead possess fundamentally opposed character-
istics, such as arbitrariness and discreteness, which are essential for human
communication (Hockett and Hockett, 1960).

Natural language processing, or NLP, positions itself at the intersection
between computers and humans and can be defined as follows:

Natural language processing is an area of research in computer
science and artificial intelligence (AI) concerned with processing
natural languages such as English or Mandarin. This processing
generally involves translating natural language into data (num-
bers) that a computer can use to learn about the world. (Hapke
et al., 2019, p.4)

Natural Language Processing normally follows either one of two main
approaches, namely rule-based NLP and statistical NLP. Rule-based NLP is
defined by models based on hand-crafted rules or grammars which, combined
with the data, allow the machine to obtain an “understanding” of Natural
Language or — to be more precise — to obtain the desired output (Hapke
et al., 2019, p.4).

Statistical NLP instead seeks to build models which are tuned on ei-
ther unstructured or annotated data, without solely relying on rule-based
methods. It draws heavily from the field of machine learning, employing al-
gorithms to learn (hidden) patterns within the data and subsequently using
these patterns to classify or predict an event related to the problem at hand
(Alloghani et al., 2020). These algorithms can be further divided into su-
pervised and unsupervised, depending on whether the training data includes
labels for each data point or not (Alloghani et al., 2020).

Since this work will employ a supervised model, we will only focus on this
paradigm in the following paragraphs.
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2.2.1 Supervised Models

In order to build a supervised machine learning model, three types of data
need to be provided, namely the input to be classified, the features to be
predicted and the correct values for the prediction. Every instance in the
dataset must be represented using the same set of features, which may be
binary (falls within two categories, e.g. POSITIVE— NEGATIVE) categorical
(falls within more than two categories, e.g. POSITIVE—NEGATIVE—NEUTRAL)
or continuous (falls within a definite range, e.g. [0, 1]) (Kotsiantis et al.,
2007).

Supervised algorithms attempt to learn to predict or classify input data
from the features which are assigned to them. This process happens thanks
to the sheer amount of data the algorithm has at its disposal. By being able
to compare multiple data points sharing the same features, the algorithm
attempts to predict these features by recreating an internal representation of
the instances it is trained upon. This representation is then used to predict
which label would be assigned to a new instance, which has not yet been
seen by the model. By counting and measuring the errors, based on whether
the unseen instance has been correctly predicted/classified, it is possible to
determine the accuracy of the model using the same features provided dur-
ing training (Alloghani et al., 2020). Additionally, supervised models can
be further divided into classification algorithms if the model is designed to
predict binary or categorical features and regression algorithms if the model
is designed to predict continuous features (Alloghani et al., 2020).

Over the years, many different types of algorithms have been devel-
oped, starting from simple architectures such as K-Nearest Neighbours (kNN)
(Cover and Hart, 1967), up to more complex mathematical models such as
Support Vector Machines (SVMs) (Joachims, 1999) and the Perceptron (Kot-
siantis et al., 2007).

This last model is the real core of the most advanced NLP methodologies
and can be briefly described as follows: Given a data point and its features, a
set of weights (W) is assigned to each of the features (X). The feature vector
is thus denoted as:

X = [x0, x1, ..., xi, ..., xn]

with xi representing a reference integer.
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Figure 2.1: A graphical representation of the Perceptron (borrowed from
Hapke et al. 2019:157)

Similarly, the weights vector will be denoted as:

W = [w0, w1, ..., wi, ..., wn]

where wi corresponds to the index of feature x associated with that weight.
The Perceptron then computes the sum of all weighted inputs∑

i

xi ∗ wi

and the output goes through an adjustable threshold, called activation func-
tion which determines whether the Perceptron will fire and output a 1, or
not and output a 0 (Kotsiantis et al. 2007; Hapke et al. 2019, pp. 158).

The Perceptron shown in Figure 2.1 is in fact the basic unit composing ar-
tificial neural networks, large interconnected collections of perceptrons which
currently represent the state-of-the-art method for most NLP tasks (Hapke
et al., 2019).

2.2.2 State of the Art: Transformer Models

Although the paper “Attention is all you need” was limited to the field of ma-
chine translation, the world of Natural Language Processing has experienced
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Figure 2.2: The transformer Encoder-Decoder architecture proposed by
Vaswani et al. (2017) and its main characteristics (borrowed from the Hug-
gingface course – https://huggingface.co/course/chapter1/1. Last con-
sulted on 28/01/2022).

major improvements by using the same architecture proposed by Vaswani
et al. (2017). It belongs to the family of artificial neural network architectures
(ANNs), together with convolutional neural networks (CNNs) (LeCun et al.,
1999), recurrent neural networks (RNNs) (Schuster and Paliwal, 1997) and
Long Short-Term Memories (LSTMs) (Hochreiter and Schmidhuber, 1997),
which had already proven to obtain very good results in a multitude of NLP
tasks (Schmidhuber, 2015). But the architecture they developed significantly
outperformed most other techniques across almost all fields of NLP and ma-
chine learning after the release of the first and most successful language model
based on the transformer: BERT (Devlin et al., 2018). Further studies and
its prominence across the field even spurred the creation of a field of its own,
called BERTology (Rogers et al., 2020).

Since the transformer architecture is central to the scope of this work, in
the following we will briefly introduce its structure and its various declina-
tions. Figure 2.2 offers a general outlook of the structure of a transformer,
as well as the main characteristics of its components.

https://huggingface.co/course/chapter1/1
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2.2.2.1 Encoder models

The first type of transformer models are Encoders, also called autoencoding
models. They correspond to the original encoding architecture described by
Vaswani et al. (2017) and are represented by the left-most component in Fig-
ure 2.2. They are normally pretrained by corrupting input sentences, namely
hiding one or more tokens in the input sentence. These are first tokenized
without using a mask so that they are able to account for all the tokens
simultaneously.

The output of an encoder, called a feature vector, is a numerical repre-
sentation of the input sentence. Each token passed through the Encoder is
assigned a numerical representation with a predefined length. These repre-
sentations take into account both the context on the left and on the right of
the token, since one of the main characteristics of Encoders is their bidirec-
tionality, namely that they are able to process text not only left-to-right but
also right-to-left at the same time (Hapke et al., 2019, p.311-312). Every-
thing is then bound together thanks to the self-attention mechanism, which
functionally relates the token to other tokens within the same sequence, se-
lecting those that represent the meaningful context to be considered for the
input (Hapke et al., 2019, p.313-316). These models are proficient at Natural
Language Understanding tasks, such as Masked Language Modeling, where
the objective is to guess a random hidden word within a sentence, or sequence
classification/regression tasks (Hapke et al., 2019, p.317).

Examples of models used for these type of tasks are BERT (Devlin et al.,
2018) and XLM-RoBERTA (Conneau et al., 2019).

2.2.2.2 Decoder models

The second type of transformer models are Decoders, also called autoregres-
sive models. They correspond to the original decoding architecture described
by Vaswani et al. (2017) and are represented by the right-most component in
Figure 2.2. They are normally pretrained as language models, which means
they read an input sentence word-for-word and have to guess the following
token by considering only the previous ones. A so-called mask is applied on
the full sentence to let the attention heads only see what came before in the
text.

Although the decoder, like the encoder, also outputs a numerical repre-
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sentation from the input sentence, also called a feature vector, it uses masked
self-attention, which forces the model to be unidirectional by only feeding the
model the context preceding the current token and not the one following it.
Hence, these models reuse the output of the previous time step, namely the
token previously predicted for the same sentence, and use it as additional
input to “remember” past context (Hapke et al., 2019, p.311-117). These
models are proficient at Natural Language Generation tasks, such as Causal
Language Modeling, where the objective is to guess the next word in a sen-
tence given the previous text, meaning it is optimal as a text autocomplete
tool or for generating summaries and headlines of long articles.

Examples of models used for these type of tasks are are the GPT series,
with the latest release being GPT-3 (Radford et al., 2018, 2019; Brown et al.,
2020).

2.2.2.3 Encoder-Decoder models

Encoder-Decoder models, also called sequence-to-sequence models (seq-to-
seq), correspond to the full architecture in Figure 2.2. As seen in Section
2.2.2.1, the input text is first transformed into a feature vector by the En-
coder, which then passes both this vector and a placeholder token to the
Decoder. This placeholder serves as a prompt for the Decoder to begin the
prediction, which will be based on the feature vector generated by the En-
coder. The Decoder will thus proceed with its predictions autoregressively
over every single word it outputs, generating text which retains the meaning
contained within the feature vector.

Additionally, the length of the output sequence is independent from the
one in the input, thus making these models optimal for tasks such as Text
Summarization, Question Answering and, most notably, Machine Translation
(Hapke et al., 2019, p.311-317).

2.3 Machine Translation

Across all the fields of natural language processing, the field of machine trans-
lation is arguably one of the most successful and popular. Indeed, over the
last decade, the translation industry has experienced a revolution thanks to
the increasing implementation of machine translation in both industrial and
institutional settings, with the 2021 Language Industry Report stating that
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machine translation and post-editing represent the strongest future trend for
all respondents1 Some experts even claimed that it will soon replace human
translators (Wu et al., 2016), but in reality its usage has been shown to
be mostly beneficial to professional translators, increasing their productivity
and becoming one of the sharpest tools in their toolkit (Koehn, 2020).

With the aim of contextualizing the research on MT, this Section will
provide a brief history of machine translation, from the early rule-based ar-
chitectures to the state-of-the-art transformer models. Given the specific
focus of the work, special attention will be given to the methodologies devel-
oped for machine translation evaluation, both in their traditional form and
in the more recent quality estimation variant.

2.3.1 Rule-based MT

The earliest attempts towards the development of machine translation sys-
tems all employed techniques based on monolingual and bilingual dictionaries
and hard-coded rules regarding morpho-syntactic, lexical and generational
features (Quah, 2006). This meant that many such features had to be de-
rived directly from formal grammars and translated manually into algorithms
which could be interpreted by the computers. The amount of human inter-
vention required was enormous and between the 1950s and 1980s progress
was relatively slow (Okpor, 2014).

It is possible to distinguish between two main approaches that char-
acterized Rule-Based Machine Translation (RBMT), as exemplified by the
Vauquois triangle, displayed in Figure 2.3:

1. the Direct approach

2. the Indirect approach (either Interlingua or Transfer)

The Direct Approach characterizes the very first attempts at MT, where
it was initially thought possible to perform a word-for-word substitution be-
tween the source language and the target language, completely disregarding
any linguistic analysis (Quah, 2006). Since they are specifically designed for

1As reported in the 2021 Language Industry Survey Report . This URL was consulted
on 18/01/2022.

https://ec.europa.eu/info/sites/default/files/about_the_european_commission/service_standards_and_principles/documents/elis_2021_european_language_industry_survey.pdf
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Figure 2.3: The Vauquois Triangle (1968). The left side represents the anal-
ysis step, while the right side represents the generation step.

not only one single language pair, but also one single language direction,
these early attempts have immediately shown their inadequacy for the task
at hand, with models that were not only rigid but also unable to handle
idiomatic expressions, ambiguity and language pairs which did not share the
same sentence structure (Quah, 2006; Okpor, 2014).

The Indirect Approach, in both its realizations as interlingua or trans-
fer, aims at including both morpho-syntactic and semantic features via hard-
coded rules. Following Hutchins and Somers (1992), the two methodologies
can be defined as follows:

Interlingua refers to the process of translating the text in two stages. Ini-
tially, the source text is converted into a semantic representation, supposedly
language-independent, and then translated into the target language(s) based
on dictionaries and formal grammars.

Transfer refers to the process of generating two separate representations
for the source text and the target text, with the system first generating a
representation of the source text (analysis) which is then used to produce a
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representation of the target text (transfer) to be ultimately converted into
the target text (generation).

2.3.2 Corpus-based MT

The end of the 1980s saw the beginning of a new era for machine transla-
tion, which began to incorporate ideas from a newly emerging and rapidly
growing field: corpus linguistics. In particular, researchers started to em-
ploy new approaches based on parallel corpora, which soon came to replace
the rule-based architectures dominating the field in the years prior (Koehn,
2009, p.17). Machine translation methods which avoid using linguistic infor-
mation and are entirely based on algorithms for the inference and extraction
of parallel segments from extremely large aligned corpora are called either
corpus-based or data-driven (Quah, 2006; Okpor, 2014). This approach has
proven to be so effective that it is still at the core of contemporary state-
of-the-art architectures and has developed in two major model types (Wang
et al., 2021): Statistical Machine Translation and Neural Machine Transla-
tion

2.3.2.1 Statistical MT

The concept behind Statistical Machine Translation (SMT) was first de-
scribed by Brown et al. (1990), following the development by IBM of the
first system of this type in 1989. In its most basic form, it defines the idea of
automatically learning translation knowledge by applying statistical methods
over large amounts of bilingual textual data instead of relying on hard-coded
rules. The objective of these systems is learning to translate by analysing
the statistical relationships between the source text and its human target
translation. Systems following this method feature three main components,
namely the Translation Model, the Language Model and the Decoder.

A Translation Model is a statistical model trained on parallel bilingual
corpora. It seeks to retrieve the target segment with the highest probability
score among all aligned segments, conditioning the search based on the input
text.

A Language Model is a statistical model trained on a monolingual corpus.
Its objective is also to produce the segment with the highest probability score,
but without considering the source text.
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As (Specia, 2010, p.III) aptly states:

These two components are usually seen as proxies to what is con-
sidered to constitute a good translation, respectively: adequacy
and fluency.

The final component is the Decoder, which searches for the best possible
translation within the space of all possible translations based on the proba-
bility estimates of the Language Model and the Translation Model (Specia,
2010).

Although RBMT approaches remained valid until the late 2000s, Sta-
tistical Machine Translation gradually superseded them with staggering im-
provements thanks to the development of translation units considering spans
smaller than the whole sentence. At first, these approaches were exemplified
by the word-based method, where a parallel bilingual corpus aligned at the
sentence level is employed to create a so-called translation table (t-table)
from word alignments. This table shows, for each given word, all its possi-
ble translations with the corresponding probability estimates, with the as-
sumption of a direct word-for-word correspondence between the translations
(Koehn, 2009).

While this method showed considerable promises, it was only with phrase-
based models (PBMT) that SMT managed to showcase its potential. PBMT
models inherit the same approach as the word-based models, but instead of
working at the word level, they construct the t-table using n-grams — con-
tiguous sequences of n tokens — usually with n = 3. By considering a span
of three words, these models were able to better account for contextual infor-
mation and collocations, thus showing significant improvements in terms of
fluency as well as word insertions. One of their major shortcomings, though,
was their inability to model long-distance dependencies, leading to problems
when attempting to reorder long sentences effectively (Koehn et al., 2003).

In an attempt to overcome these limitations, Syntax-based systems which
included dependency parsing tags on both the source and target text were
developed, showing promising initial results. Nonetheless, these were still
limited by the increased memory requirements, leading to a significantly
slower performance and excessive reliance on scarcely available dependency
parsers (Williams et al., 2016).
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2.3.2.2 Neural MT

As had previously happened with SMT, a new turning point came for ma-
chine translation in 2015, when development in the field of machine learning
led to the creation of a new SOTA: Neural Machine Translation systems
(Bojar et al., 2016). Although the idea of applying neural networks to ma-
chine translation had been advanced before, their implementation had always
posed considerable challenges due to the sheer amount of data required to ob-
tain acceptable results, in conjunction with their considerable computational
cost (Koehn et al., 2020).

NMT models are usually constructed as sequence-to-sequence or seq-to-
seq models, because they take a sequence as input (the source text) and pre-
dict another sequence as output (the Hypothesis) (Bahdanau et al., 2014).
This process happens often under the hood, using training data to com-
pute a vector space and assigning a single vectorial representation to each
token, called a word embedding. Each word thus obtains a mathematical
representation which captures both semantic and morpho-syntactic proper-
ties and onto which similarity scores can be computed, enabling models to
cluster semantically related words together. This process is achieved using
the Encoder-Decoder structure described in Section 2.2.2.3, hence they are
also often referred to as seq-to-seq architectures.

In their first form, the preferred neural network types for this task were
Recurrent Neural Networks (RNN) given their ability to retain contextual
information from the output at earlier steps, which is crucial for sequential
tasks such as machine translation, because it allows the system to account
for previous words in the input segment when passing from the Encoder to
the Decoder (Bahdanau et al., 2014). Since RNNs had to include all previous
information in their output, they were also prone to errors due to noise caused
by long distance dependencies, which were often not maintained. Hence,
they were soon replaced by another form of RNNs, namely Long-Short Term
Memories (LSTM), which are able to better handle the dependency problem
by selecting only useful information to carry over to the following step thanks
to their so-called forget gate (Sutskever et al., 2014).

The major breakthrough, though, came with the implementation of the
attention mechanism to NMT models (Vaswani et al., 2017). An additional
neural network was added to the previous architecture, called a self-attention
layer, which is trained in parallel to the rest of the model. Every time a new
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token is provided to the feedforward neural network, rather than building a
single context vector out of the last encoder hidden state, this separate layer
computes its relationship with all other tokens in the segment and selects
which information is relevant for the current context vector.

Essentially, by supporting the decoder with information regarding the
relationship among tokens during training, this methodology significantly
improved output quality, especially with regards to long-term dependencies,
as well as model training time, since it does not employ any recursive mecha-
nism and vectors flow through the stack simultaneously instead of processing
one token at a time. Thanks to these improvements, this architecture has
established itself as the state-of-the-art architecture for machine translation
to date (Tan et al., 2020).

This new paradigm brought considerable attention to the MT field, with
researchers even claiming that machine translation would soon be on par
with human translators (Wu et al., 2016). Nonetheless, in reality numerous
studies have disputed this view, stating that while these architectures have
significantly improved in quality and accessibility, they still suffer from un-
derlying problems which are yet to be solved (Bentivogli et al., 2016, 2018).
Hence, plenty of work has also been devoted to the evaluation of machine
translation systems, utilizing a plethora of different techniques which will be
addressed in the following section.

2.3.3 Machine Translation Evaluation

Ever since the very first implementation of machine Translation systems,
both researchers and the industry have had to face the challenge of evaluating
a translation offered by these systems. Quality is evaluated either manually
by professional translators or automatically with dedicated metrics which
compare the system output (hypothesis) against one or more translations
provided by humans (reference) (Koehn, 2009).

Manual evaluation is usually considered the golden standard for the proper
evaluation of MT outputs, as it ensures that complex linguistic phenomena
are recognized and specific error typologies, such as MQM, are respected
(Lommel et al., 2014). Its major drawbacks lie in the fact that it is inherently
slow and expensive, while also being quite difficult to reproduce consistently
as it needs to be confirmed by inter-annotator agreement measures to ensure
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the objectivity of the evaluation (Castilho et al., 2018). Automatic evalua-
tion, instead, provides an easily reproducible, fast tool to assess the quality of
a system while simultaneously allowing for cross-system comparison. Major
drawbacks include its inability to accurately indicate error severity, its lim-
ited capacity of accounting for syntactic or semantic equivalence and their
intrinsic bias towards only one or at most a few of the multiple possible
translations of a source sentence (Castilho et al., 2018; Kocmi et al., 2021).

Although the field of Machine Translation Evaluation has produced a
plethora of metrics (Marie et al., 2021), for the scope of this work we will only
be focusing on automatic metrics. Thus, in the following we will introduce
three among the most prominent metrics used by the research community
according to the latest WMT metrics shared tasks (Freitag et al., 2021):
BLEU, variations of LEPOR and BERTScore.

2.3.3.1 BLEU

The standard among all automatic translation quality assessment metrics is
certainly BLEU, with 98.8% of MT papers using it as their primary metric
for comparing results with other systems (Marie et al., 2021). It is a rule-
based metric which computes a similarity score between the hypothesis and
a reference human translation (Papineni et al., 2002). This similarity score is
computed by matching the respective n-grams of the two segments within a
[1,4] range, while also including a penalty factor for overly short translations
(Papineni et al., 2002). Being a similarity metric, its score ranges between 0
and 1, with 0 meaning there is no similarity between the hypothesis and the
reference and 1 meaning that the two segments are exactly identical.

Since it has shown an erratic behaviour when modifying its hyper-parameters,
an updated version called sacreBLEU was introduced to offer a standardized
implementation for the research community with precise indications regard-
ing the pre-processing steps to be carried out to ensure comparability across
systems (Post, 2018).

Nevertheless, at its core, it remains a tool which simply compares two
sentences based on their n-grams, meaning that it has significant limitations
with respect to correctly assessing the suitability of a translation to the tokens
actually present in the segment, thus remaining highly susceptible to the
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high degree of variability of inflection or word order choices. Additionally,
it has been consistently shown that the state-of-the-art metrics now greatly
outperform its correlation with human judgments and several other metrics
and methods have been suggested. Nevertheless, it is still being largely
employed in the community, especially as a baseline metric, due to its ease of
use and easily understandable scoring system. (Reiter, 2018; Mathur et al.,
2020).

2.3.3.2 hLEPOR and cushLEPOR

Another n-gram based metric is LEPOR, which was designed as a combi-
nation of word order penalty and precision, recall, and an enhancement of
sentence-length penalty (Han et al., 2012).

The hLEPOR variant, using the harmonic mean to group factors and cal-
culate the final score, achieved the best performance on the English-to-other
system level evaluation task in ACL-WMT13 (Macháček and Bojar, 2013).
It features a set of tunable parameters, which in the original implementation
were selected empirically and set as default.

Below is a brief description of each parameter, as explained by Han et al.
(2021):

1. alpha: the tunable weight for recall

2. beta: the tunable weight for precision

3. n: word count before and after matched word

4. weight elp: tunable weight of enhanced length penalty

5. weight pos: tunable weight of n-gram position difference penalty

6. weight pr: tunable weight of harmonic mean of precision and recall

In this recent publication, they also released cushLEPOR, a customised
version of hLEPOR built via automatic tuning of the aforementioned weight-
ing parameters using pre-trained language models. Additionally, for the lan-
guage pairs English-German and Chinese-English, it was optimised towards a
human gold standard based on the MQM and pSQM frameworks, as required
by the WMT2021 task (Han et al., 2021).
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Despite the major drawback of having to perform the optimization for
each language pair independently, this methodology has shown a significant
boost in the performance of hLEPOR in terms of correlation with human
judgments, further increasing the gap with BLEU and establishing cushLE-
POR as one of the most advanced state-of-the-art metrics for traditional
n-grams-based translation quality assessment tasks (Han et al., 2021; Freitag
et al., 2021).

2.3.3.3 BERTScore

BERTScore belongs to the family of metrics which employ embedding simi-
larity as their preferred method to score sentence similarity. Analogously to
the previous metrics, it computes a similarity score between the hypothesis
and the reference translation segment at the token level. In this case, though,
the computation is not based on exact matches between n-grams but instead
leverages contextual embeddings (Zhang* et al., 2020).

Each token within the two sentences to be compared is assigned their
respective representation based on BERT, which considers different vector
representations for the same word depending on their surrounding words.
Pairwise cosine similarity is then computed among each token in the two
segments. Finally, the reference and candidate tokens are matched greedily
based on these scores (Devlin et al., 2018).

BERTScore has been shown to highly correlate with human judgment on
sentence-level and system-level evaluation and it is one of the baseline metrics
selected for the WMT2021 Metrics Shared Task (Freitag et al., 2021).

2.3.4 Machine Translation Quality Estimation

Machine Translation Quality Estimation (QE) has the objective of predict-
ing Machine Translation quality automatically without looking at a refer-
ence translation (Specia and Shah, 2018). The reason behind this lies in
the considerable costs behind obtaining large enough quantities of reference
translations. It can be employed to select the best translation when sev-
eral translation engines are available or can inform the end user about the
reliability of automatically translated content. Many recent MTQE mod-
els employ multilingual pre-trained representations from very large language
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models, which have led to impressive results in the past few years (Specia
et al., 2020).

Although many of these models are indeed difficult to make portable
due to their size, research in this field has been steadily increasing and new
architectures and methods are being proposed on a yearly basis, especially
thanks to the specific task developed by WMT for this field of study. It
is also important to note that, contrary to traditional metrics, in this case
the predictions are often not bound to the [0, 1] range, thus hindering their
transparency and ease of use. Additionally, one recent paper has disputed
certain approaches to QE, suggesting that although quality estimation mod-
els might capture fluency in the hypothesis and complexity of the source text,
they might not be able to model adequacy of translations effectively (Sun
et al., 2020). At present, it appears that no single metric is being consis-
tently deployed to production in the industry or institutions, with the top
systems from WMT2020 being outperformed by more recent submissions
(Specia et al., 2021). Nonetheless, experiments towards the development of
a QE pipeline for the E-Translation platform have been subsidized by the
European Union in the form of the APE-QUEST project, which seeks to
employ QE methods to reduce costs and time for the translation pipeline by
automatically rerouting source texts to either a human translator, a machine
translation system or to an automatic post-editing component. This project
will be thoroughly explained in Section 2.4.

In this Section we will be going over two of the best-performing frame-
works for machine translation quality evaluation, namely COMET and Tran-
sQuest.

2.3.4.1 COMET

COMET is a PyTorch-based framework for training multilingual MT eval-
uation models that can function as metrics, built on top of another QE
framework by Unbabel called OpenKiwi. It generates prediction estimates
of human judgments in the form of Direct Assessments (DA) (Graham et al.,
2013), which fall within a [0, 100] range, Human-mediated Translation Edit
Rate (HTER) (Snover et al., 2006) and metrics compliant with the Multidi-
mensional Quality Metric framework (Lommel et al., 2014; Rei et al., 2020).

COMET features both a traditional reference-based architecture as well
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Figure 2.4: COMET model architecture (borrowed from Rei et al. 2020

as a reference-less based one, but for the scope of this work we will be focus-
ing on wmt-large-qe-estimator-1719, which is the reference-less quality
estimation component. Similarly to BERTScore, at their core, all the mod-
els within this framework leverage a pretrained, cross-lingual model, namely
XLM-RoBERTa (base) as their Encoder.
Starting from the input sequence:

X = [x0, x1, ..., xn]

the Encoder outputs an embedding e
(l)
j for every single token xj and layer

l ∈ {0, 1, ..., k}. Afterwards, these vectors are passed through a pooling layer
to create sentence embeddings at the segment level. These serve as input to
a feed-forward regressor, as displayed in Figure 2.4. The training objective
of the model is to minimize the Mean Squared Error (MSE) between the
predicted scores and the Quality Assessments, either DA, HTER or MQM
(Rei et al., 2020).

This architecture has performed remarkably well at WMT2021 (Freitag
et al., 2021) and both the reference-based DA and the reference-less QE
model were evaluated as the best performing metrics in a large-scale study
performed by Microsoft Research (Kocmi et al., 2021).
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Figure 2.5: MonoTransQuest model architecture (borrowed from Ranasinghe
et al. 2020a)

2.3.4.2 TransQuest

TransQuest is an alternative to the OpenKiwi framework for training open-
source quality estimation models. It offers two distinct architectures, one
of which will be employed in this work as it consistently outperformed the
others, namely MonoTransQuest (Ranasinghe et al., 2020a,b).

The MonoTransQuest architecture proposed by Ranasinghe et al. (2020)
for sentence-level classification takes a sequence of tokens as input, separated
by a [CLS] token, and the source and hypothesis sentence tokens, separated
by a [SEP] token (see Figure 2.5). The entire string is subsequently fed to
a transformer encoder to obtain a representation on which a cross-entropy
classification head is adopted as the loss function. Similarly to COMET, the
language model selected as the Encoder was XLM-RoBERTa.
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Several language combinations were released, as well as models supporting
any-to-any and any-to-en language pairs. All models are domain independent
(Ranasinghe et al., 2020a).

This model obtained the top level correlation score for sentence Direct
Assessment in WMT2020 (Specia et al., 2020) and has been used as one
of the baseline systems in WMT2021, as well as a “teacher” for a smaller
model — hence more easily portable and reproducible — using knowledge
distillation techniques, by the BERGAMOT group who participated to the
same task (Freitag et al., 2021).

2.4 Related Work

PreDicT is an ongoing research project by Ghent University to develop a
“translatability prediction system” for the English-Dutch language pair that
not only assigns a global difficulty score to a source text, but also identifies
which passages are more problematic for translation.

They employ the term translatability defined as “the difficulty of a trans-
lation task”, in opposition to readability as the “difficulty of a monolingual
text” and argue that, although the two might overlap in some regards, a
translation task cannot be solely defined based on monolingual features (Van-
roy et al., 2019). They instead hypotesized three difficulty predicting fea-
tures: number of errors in the final target text, word translation entropy
(i.e. the number of different translation options) and syntactic equivalence
between the source and target text. They found that these features corre-
late with translation process data obtained from keystroke logging and eye-
tracking during the translation process. Hence, they propose to treat these
features as proxies for cognitive effort and use them as predictors for trans-
latability. Albeit promising, this work solely addressed human-translation
difficulty and no study tailored to MT systems has yet been published.

The Automated Post-editing and Quality Estimation project (APE-QUEST)
was an experimental project which ran from 2018 to 2020 in conjunction with
the European Union, the University of Sheffield and Crosslang (Depraetere
et al., 2020). It proposed what they called a Quality Gate for the auto-
matic quality estimation of domain-specific machine translated segments.
The objective of this gate was to obtain an acceptable translation quality by
automatically rerouting a translated segment to either a human post-editor
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or to a QE component for automatic correction. They define translation ac-
ceptability based on two different use cases: assimilation, allowing a reader
to understand the gist of a text through its translation, and dissemination,
meaning external use. The threshold for accepting or rejecting a machine
translated segment is set based on their relative QE score. In their work,
they tested both with a QE value < 0.9 and < 0.8, comparing the results
on time and quality gains against a machine translation centered workflow
(Vanallemeersch and Szoc, 2020).

The group has trained both QE and Automatic Post Editing (APE) sys-
tems for three language pairs (en>pt, en>nl and en>pt) on texts mostly
relating to the legal domain, for which they also released a corpus (Ive et al.,
2020). The evaluation showed that the APE component did not seem to pro-
duce satisfactory results because of the already generally high-quality output
from the MT system they employed, making it difficult to produce exhaustive
automatic corrections. The QE component instead showed good potential,
since it consistently improved cost and time measures in both assimilation
and dissemination cases, without strongly compromising translation quality
with respect to a traditional human-only workflow, especially in the dis-
semination use case. They thus concluded by underlining the potential of
the Quality Gate, especially as concerns the quality estimation component
(Vanallemeersch and Szoc, 2020).

One last project related to this dissertation is the one carried out by
Welocalize, one of the major Language Service Providers (LSP) worldwide.
During the MTSummit2021, they presented SmartLQA (Smart Linguistic
Quality Assessment), an ongoing project on the analysis of the impact of the
source text on machine translation (Yanishevsky, 2021). Their work handled
the prediction of ‘at-risk’ content prior to translation, analyzing the linguistic
aspects within the source text which are more likely to cause mistranslations
and omissions in machine translation and post-editing. They employ both
linguistic features and readability tests, such as the Flesch–Kincaid metric,
concluding that a poor source text quality leads to poor target text quality.
They demonstrate this also thanks to significant reductions in both time
and costs for linguistic quality assessment when employing their methods
to production. Although no predictive model using these features has been
released, their work lays the ground for further studies on the impact of
the source on the target text and further motivates the study of machine
translation suitability.
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Chapter 3

Experimental Framework

3.1 Introduction

This Chapter explicates the methodology used in this work, offering an anal-
ysis of the both the data and learning algorithms used to obtain the results
in Chapter 4.

Section 3.2 provides the main hypothesis at the basis of this dissertation
as well as the two research questions that this work seeks to answer.

Section 3.3 delineates the steps taken to collect and build the corpora used
for this dissertation. It also includes a Section dedicated to their statistical
analysis in order to assess their validity for the task at hand.

Finally, Section 3.4 elaborates on the architecture and machine learning
techniques used in this work, concluding with an explanation of the evalua-
tion metric used to obtain the results in Chapter 4.

3.2 Experimental Settings

Although their purpose is to give insights on the model’s performance, it
should be possible to exploit the MT metrics discussed in Section 2.3.3 to
infer the difficulty of the translation task. This follows the intuition that
the performance of a model on a given segment indirectly indicates how
problematic that segment was to translate for the MT system.

39
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Hence, we formulate the following hypothesis:

Hypothesis: The better the machine translated version of a text,
in terms of a well-established evaluation metric, the more suitable
is the source text to machine translation.

In order to test this hypothesis, we propose to produce a corpus of source
text segments, annotated with the corrisponding evaluation score of their
automatic translations in order to train a model to predict such a score
from the source text alone, thereby mimicking the estimation of translation
suitability. With such a model, it would be possible to know how well an
MT engine would perform on that segment and thus how “suitable” it would
be for an MT engine to translate. This would allow for the development of a
tool which can determine whether a source segment should be translated by
an MT engine alone, be flagged for post-editing or be directed to a human
translator, in a similar fashion to the APE-QUEST pipeline (see Section
2.4). As a first step to test this hypothesis, in this work we aim to answer
the following research questions:

Research Question 1: Is it possible to accurately predict the
MT Evaluation or Quality Estimation score from the source text
alone?

Research Question 2: If the first research question is true, is
it better to construe the problem as a single-task or as a multi-task
problem?

The proposed experimental setting to corroborate these research ques-
tions is the following:

1. Compile a parallel corpus covering multiple domains of investigation.

2. Translate the source segments with multiple translation engines to re-
duce bias towards a single system.

3. Select several automatic evaluation metrics and compute the evaluation
for the MT against the reference translations in the parallel corpora.

4. Fine-tune and evaluate a transformer model on the scores obtained in
(3) considering only the source text as input. The experiments will be
conducted both with a separate model for each label and a multi-task
model encompassing all 4 scores. The model selected for this work is
XLM-RoBERTa (Conneau et al., 2019).
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Subcorpus Translation Units avg char en avg char de
Europarl 1 916 741 151.45 ± 90.54 170.47 ± 101.74
Ubuntu 285 721 137.48 ± 69.28 165.38 ± 84.08
News 13 117 33.20 ± 74.58 40.14 ± 88.73

Table 3.1: Statistics of the three original corpora extracted from OPUS (Eu-
roparl, Ubuntu, News).

3.3 Corpus Collection

In order to proceed with the construction of the corpus, the first step was to
select a relevant language pair for the purposes of the study. In the literature,
the en>de language pair is especially prominent for both MT Evaluation and
quality estimation (Specia et al., 2020), thus we decided to build a corpus
solely for this language pair (Freitag et al., 2021; Marie et al., 2021; Specia
et al., 2021).

Due to time limitations, we opted to utilize corpora which have been ex-
tensively used in MT research, namely those belonging to the OPUS project
(Tiedemann, 2012). OPUS is a growing collection of translated texts from
the Web which aims to provide open-source parallel corpora to the research
community. We adapted three main corpora:

Europarl is a parallel corpus which features the proceedings of the Euro-
pean Parliament from 1996 to 20121.

Ubuntu is a parallel corpus of localization files for Ubuntu2.

News-commentary v16 is a parallel corpus of news commentaries pub-
lished during WMT19 for SMT model training3.

An overview of the statistics of these corpora is available in Table 3.1. Al-
though these corpora have been already extensively used in the literature,
their pre-processing is done automatically, without any type of manual cor-
rections. To ensure their quality, two additional filtering steps have been
carried out on the translation units (TUs), following the approach of the
WMT2020 task on parallel corpus filtering (Koehn et al., 2020).

1https://opus.nlpl.eu/Europarl.php. Last consulted on 20/11/2021
2https://opus.nlpl.eu/Ubuntu.php. Last consulted on 20/11/2021
3https://opus.nlpl.eu/News-Commentary.php. Last consulted on 20/11/2021

https://opus.nlpl.eu/Europarl.php
https://opus.nlpl.eu/Ubuntu.php
https://opus.nlpl.eu/News-Commentary.php
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The process was divided into two steps:

1. Step 1: removal of long and very short segments from the corpora. In
particular, pairs with source or target segment length falling outside
a threshold are discarded from the dataset. In our specific case, this
threshold is set to a minimum length of 25 characters and a maximum
length relative to each partition and language, since the Ubuntu corpus
exhibits significant differences in terms of segment length. Hence, the
maximum TU length is determined by summing the average length of
the TUs in a corpus, relative to their language, and one unit of their
standard deviation.

2. Step 2: adaption of the filtering approach implemented in the open-
source version of ModernMT4. Translation units are discarded if either
the source or target segment character length (including whitespaces)
exceeds the length of the other segment by more than 50%. In order
to prevent the filter from discarding short valid sentence pairs, an arbi-
trary value of 15 is added to the initial character count. This allowed to
identify and discard misaligned segment pairs. Following is a definition
of the function, where max len is the longest segment and min len the
shortest segment in the TU:

(max len + 15)

(min len + 15)
> 1.5

3.3.1 Segment translation and scoring

For the translation step, a randomized set of TUs was extracted from the pre-
processed OPUS corpora and merged together to generate a new balanced
corpus. The English segments contained in this corpus were then translated
into German using two out-of-the-box NMT systems: ModernMT5 and Mi-
crosoft Translator6 via their dedicated APIs. Both of them are based on the
state-of-the-art transformer architecture (see Section 2.2.2) and trained on
a large pool of parallel data. Although ModernMT would offer an adaption
mechanism to adapt on out-of-domain data on the fly (Bertoldi et al., 2018),

4https://github.com/modernmt/DataCollection/blob/dev/baseline/filter_

hunalign_bitext.py. Last consulted on 01/02/2022.
5https://www.modernmt.com/. Last consulted on 01/02/2022.
6https://translator.microsoft.com/. Last consulted on 01/02/2022.

https://github.com/modernmt/DataCollection/blob/dev/baseline/filter_hunalign_bitext.py
https://github.com/modernmt/DataCollection/blob/dev/baseline/filter_hunalign_bitext.py
https://www.modernmt.com/
https://translator.microsoft.com/
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we only implement the baseline system as domain adaption is beyond the
scope of this work. Microsoft Translator does not provide any adaption and
is implemented in its baseline form.

The resulting translations were paired with their respective TUs, form-
ing a triplet of [source, reference, hypothesis] for the evaluation step.
After a thorough review of the literature (see Section 2.3.3), a set of four
evaluation metrics were selected, namely:

1. hLEPOR7 — Alpha = 2.95, Beta = 2.68, n = 2, weight elp = 2.95,
weight pos = 11.29, weight pr = 1.878

2. BERTScore9

3. COMET10 – Architecture: wmt20-comet-qe-da

4. TransQuest11 — Architecture: monotransquest-da-en_de-wiki

Since there is no direct implementation of cushLEPOR, we have imple-
mented hLEPOR with the suggested settings for the en>de language pair
provided in the original release (Han et al., 2021). BERTScore follows the
standard implementation provided on the official GitHub repository. In the
case of COMET, although the newest release forces the score to be within a
[0, 1] range, making it more easily comparable with the traditional scores, our
implementation utilizes the early release wmt20-comet-qe-da, which only
provides an unbounded score, because it was the only one available while
building this corpus. The last metric is TransQuest, of which we implement
the en>de version monotransquest-da-en_de-wiki instead of the multilin-
gual model because of its better performance, as reported by the authors
(Ranasinghe et al., 2020a,b). Both versions are made available on GitHub
and hosted over HuggingFace.

The single scores were subsequently stored in a vector following the order
of the list above and combined with the previous triplet.

7https://github.com/poethan/cushLEPOR
8For a thorough explanation of the parameters, see Section 2.3.3.2
9https://github.com/Tiiiger/bert_score

10https://github.com/Unbabel/COMET
11https://huggingface.co/TransQuest/monotransquest-da-en_de-wiki

https://github.com/poethan/cushLEPOR
https://github.com/Tiiiger/bert_score
https://github.com/Unbabel/COMET
https://huggingface.co/TransQuest/monotransquest-da-en_de-wiki
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source reference hypothesis scores
Mr President, my
group is very aware
of the responsibility
it bears in this de-
bate today.

Herr Präsident,
meine Fraktion
ist sich der ihr
zukommenden Ve-
rantwortung in der
heutigen Debatte
sehr wohl bewußt

Herr Präsident!
Meine Fraktion
ist sich der Ver-
antwortung, die
sie heute in dieser
Aussprache trägt,
sehr bewusst.

[0.8924, 0.4872,
0.6796, 0.7212]

The video, posted
four days before
the election, was
watched more than
400,000 times.

Das vier Tage vor
dem Wahltermin
gepostete Video
wurde mehr als
400.000 aufgerufen.

Das Video, das
vier Tage vor der
Wahl veröffentlicht
wurde, wurde mehr
als 400.000 Mal
angesehen.

[0.8702, 0.6117,
0.7224, 0.7427]

Is used to notify
that the table
column header has
changed

Wird zur Be-
nachrichtigung bei
Änderungen an
der Überschrift
der Tabellenspalte
verwendet

Wird verwen-
det, um zu be-
nachrichtigen,
dass sich die
Tabellenspal-
tenüberschrift
geändert hat

[0.5871, 0.4711,
0.4749, 0.7373]

Table 3.2: Instances extracted from the final corpus with their evaluation
scores

Examples extracted from the complete corpus are provided in Table 3.2.
From the corpora in Table 3.2 the actual training and test datasets for our
experiments were generated, pairing the source segments with their respec-
tive scores by combining only the source text and the scores. Thus, we
obtained two separate training and test datasets for each system, containing
14,253 and 1584 instances respectively.

In the following Section an in-depth analysis of the score distributions for
the training set is provided.

3.3.2 Distribution analysis

Before moving on to the actual experiments we here propose an analysis of
the distributions of the labels to be predicted. We first analyze the expected
distribution of the scores for the COMET metric, as reported by the main
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Figure 3.1: Distribution of the scores from the training corpus.

page of the library12. The median system score is 0.4159, meaning that
systems with score < 0.3138 are in the bottom 25% and systems with score >
0.5828 are in the top 25%. Table 3.3 shows the description for the training set
of ModernMT and indeed the system obtains quite a high performance, with
a score of 0.5651. In an ideal scenario, where the parallel corpus had been
manually compiled and thus surely contain never-before seen texts, this score
could be simply accepted as such. In our case, though, the original corpora
used for this work are open-source and specifically designed for NMT training
(Tiedemann, 2012), meaning that it is highly likely that the underlying source
texts have already been seen by the MT systems during training. For the
scope of this research, this would be problematic because an attempt at
learning machine translation suitability using these corpora would not be
necessarily applicable to unseen texts.

Hence, we decided to compare the distributions of the training corpus
to those of a new, smaller corpus, whose texts have not been seen by either
systems. If the scores distribution of this secondary corpus were very similar
to that of the training corpus, it would mean that either the TUs of the
latter were never seen by the MT system or that there is no significant

12https://unbabel.github.io/COMET/html/models.html. Last consulted on
04/02/2022.

https://unbabel.github.io/COMET/html/models.html
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Figure 3.2: Distribution of the scores from the Globalvoices corpus

cushLEPOR BERTScore COMET TransQuest
system score 0.8555 0.6642 0.5651 0.7346
std 0.1548 0.1841 0.4232 0.0155
median 0.8875 0.6720 0.6941 0.7368
min 0.0 0.0 -2.4113 0.6548
max 1.0 1.0 1.3308 0.7759

Table 3.3: ModernMT corpus scores distribution

difference in the scores between unseen and seen TUs that were already
seen by the system. To test this hypothesis, three recently published texts
available on the Globalvoices website in both English and German have been
manually selected, extracted and segmented, thus ensuring the quality of the
data. Globalvoices is an international, non-profit project, whose community
includes writers, translators and activists aiming to translate and report on
news from all over the world from the perspective of both media and single
citizens13. It was selected because of the similarity of its texts to those of the
News corpus (see Section 3.3.1) and because one of the corpora of the OPUS
collection is composed of texts from the Globalvoices website (Tiedemann,
2012).

13https://globalvoices.org/about/

https://globalvoices.org/about/
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cushLEPOR BERTScore COMET TransQuest
system score 0.8604 0.6619 0.5842 0.7394
std 0.1102 0.1733 0.4003 0.0107
median 0.8789 0.6713 0.7135 0.7402
min 0.0 0.0859 -1.2613 0.7031
max 1.0 1.0 1.1462 0.7676

Table 3.4: Globalvoices corpus scores distribution

cushLEPOR BERTScore COMET TransQuest
training 0.8875 0.6720 0.6941 0.7368
Globalvoices 0.8789 0.6713 0.7135 0.7402

Table 3.5: Median values for comparison between the training dataset and
the Globalvoices dataset.

The corpus includes three texts: “Could the breakdown in public trust
explain Hong Kong’s sluggish vaccine roll-out?”14, “Women of colour endure
discrimination in Austria’s gynecological care”15 and “Why I might not go
back to El Salvador”16. All texts have been manually aligned with their
German translation and underwent the same preprocessing, translation and
scoring steps as the original corpus and includes a total of 128 TUs. Figure
3.2 and 3.1 show the distributions of the 4 metrics divided between the two
systems.

A Mann-Whitney U test on all 4 independent variables showed that there
was no significant difference (p-value > 0.05, see Table 3.6) between the
training dataset compared to the Globalvoices dataset for all metrics except
for TransQuest. The median values are provided in Table 3.5.

We thus conclude that there is no significant difference in the scores be-
tween our corpus and a corpus containing texts not seen from the MT systems
employed. The training corpus will be treated as if all the segments contained
have never been seen by the corpus and we will conduct our experiments on
the basis of this assumption.

14https://globalvoices.org/2021/05/28/could-the-breakdown-in-public-trust

-explain-hong-kongs-sluggish-vaccine-roll-out/ (published June 22, 2021)
15https://globalvoices.org/2021/04/08/women-of-colour-endure-discrimination-

in-austrias-gynecological-care/ (published May 5, 2021)
16https://globalvoices.org/2021/01/06/why-i-might-not-go-back-to-el-salvador/

(published October 25, 2021)

https://globalvoices.org/2021/05/28/could-the-breakdown-in-public-trust
-explain-hong-kongs-sluggish-vaccine-roll-out/
https://globalvoices.org/2021/04/08/women-of-colour-endure-discrimination-
in-austrias-gynecological-care/
https://globalvoices.org/2021/01/06/why-i-might-not-go-back-to-el-salvador/
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U p-value
cushLEPOR 749851.0 0.0713
BERTScore 808062.0 0.4736
COMET 764728.0 0.1338
TransQuest 670510.5 0.0004

Table 3.6: Mann-Whitney U Test results

3.4 Architecture

In order to test our research question, we explore two different types of ar-
chitectures to determine which approach is more suitable for the problem: a
single-task and a multi-task model. Being able to leverage the information
coming from multiple labels, a multi-task model should be able to offer sig-
nificantly better predictions when compared to a single-task model, whereas
the single-task model would likely have the advantage of requiring much less
time for training given the reduced amount of data points.

In the first architecture, we fine-tune and evaluate a transformer model
as a single-task model, considering each MT Evaluation and QE metric sep-
arately, following the implementation offered by HuggingFace. The second
architecture is an extension of the first one, in which we explore the imple-
mentation of a multi-task model encompassing all 4 metrics simultaneously,
both as a means of transferring knowledge between the metrics and seek-
ing to make the output metric-agnostic. Both architectures employ XLM-
RoBERTa as their Encoder (Conneau et al., 2019).

3.4.1 Single-task XLM-RoBERTa

XLM-RoBERTa is a multilingual version of RoBERTa, meaning that it shares
with the latter both its pipeline and training objective (Conneau et al., 2019).
RoBERTa is a highly performing unsupervised monolingual language model
based on BERT, with which it shares the same architecture, but uses a byte-
level BPE as a tokenizer (similarly to GPT-2) and a different pretraining
scheme. It employs a dynamic masking strategy, in contrast to BERT static
masking, where the masking pattern was generated every time a sequence
was fed into the model (Conneau et al., 2019).
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XLM-RoBERTa extends the language coverage of RoBERTa by means
of pre-training on 2.5TB of filtered CommonCrawl data containing 100 lan-
guages with a Masked Language Modeling (MLM) objective (See Section
2.2.2.1). Starting from an input sentence, the model randomly masks 15% of
the words and passes the masked sentence through the model, which has to
predict the masked words. This departs from autoregressive models like GPT
which internally mask the future tokens (see Section 2.2.2.2). The model thus
obtains a bidirectional representation of the sentence in 100 languages, which
can be exploited for the feature extraction with the purpose of fine-tuning
the model on different downstream tasks. In our case, having a dataset of
source segments with their respective labels, we can implement a regression
head on top of the encoder, meaning it would be fed the features produced
by XLM-RoBERTa as inputs, in order to fine-tune the model to obtain a
given score starting from the source sentences alone.

For our architecture we implement xlm-roberta-base in the version
made available by HuggingFace (Wolf et al., 2020)17. All the experiments
are carried out with a learning rate of 2e-5 and using the AdamW opti-
mizer. We explore an effective training batch size ∈ [2, 16, 32] and epochs
∈ [1, 5, 10], as suggested for XLM-RoBERTa by a recent study on the per-
formance of multilingual language models by Hu et al. (2020) in their official
Github repository18. Additionally, we chose to avoid using the predefined loss
functions made available by the transformers library, namely Mean Squared
Error (MSELoss) and Mean Absolute Error (L1Loss), in favor of the more
adaptable HuberLoss provided by the PyTorch library.19

This loss combines the advantages of both the Mean Squared Error and
the Mean Absolute Error, because it employs a squared term if the absolute
element-wise error falls below a predefined delta value (δ) and a delta-scaled
Mean Absolute Error otherwise. This characteristic makes the loss less sensi-
tive to outliers than the normal MSELoss, since it treats the errors as squared
only if they fall within the delta interval.

17https://huggingface.co/xlm-roberta-base. Last consulted on 04/02/2022.
18https://github.com/JunjieHu/xtreme-dev/issues/2. Last consulted on

04/02/2022.
19https://pytorch.org/docs/stable/generated/torch.nn.HuberLoss.html. Last

consulted on 04/02/2022

https://huggingface.co/xlm-roberta-base
https://github.com/JunjieHu/xtreme-dev/issues/2
https://pytorch.org/docs/stable/generated/torch.nn.HuberLoss.html
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The HuberLoss for a single prediction is defined as:

Lδ =

{
1
2
(yi − xi)

2 if |(yi − xi)| < δ
δ((yi − xi) − 1

2
δ) otherwise

where xi is the predicted value and yi is the corresponding true value.

3.4.2 Multi-Task Learning with a Shared En-

coder

In addition to attempting to learn each of our 4 metrics independently, we
also experiment with Multi-Task Learning (Caruana, 1997) to link the vari-
ous label representations together instead of training separate models. This
methodology falls within the domain of data augmentation, which aims at im-
proving a model by artificially augmenting the already available data. The
idea at the core of multi-task learning is closely linked to the real world,
where in reality knowledge is not compartmentalized but linked together.
Consequently, attempting to approach a multi-faceted problem as a single
task might not be the best approach available and we would instead ob-
tain a better performance by using multiple labels simultaneously. Hence,
for closely-related tasks, multi-task learning can leverage the additional data
from other tasks to achieve inductive transfer and substantially improve the
performance of the model for the single task (Caruana, 1997). This approach
has been applied to multiple areas of NLP, ranging from the estimation of
the check-worthiness of claims in political debates (Vasileva et al., 2019),
to a demographic classifier based on features extracted from tweets (Vija-
yaraghavan et al., 2017) and fine-tuning of transformer models to improve
performance on the GLUE benchmark (Mahabadi et al., 2021).

In our use-case, while in the single-task scenario an independent model is
trained for each metric separately, in the multi-task scenario we train multiple
models simultaneously, learning the tasks together in a single shared encoder
with four different outputs, one for each label (see Figure 3.3 for an abstract
representation of the structure). This encoder is mapped across the different
tasks, meaning that four separate replicas of the same encoder are created,
all sharing the same internal parameters. Once the backpropagation step is
performed, all the weights of the four encoders are updated in parallel, thus
effectively transferring the information learned from one task to the other.
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Figure 3.3: Multi-Task model visualization

We test this architecture using the same parameters as the single-label
architecture. The major difference is the effective training batch size, which
is only set to 2 due to the computational cost of the model and to hardware
limitations.

3.4.3 Evaluation

For the evaluation of our model we use the Root Mean Square Error (RMSE),
in the implementation made available by sklearn20. It is a more easily
interpretable version of the Mean Squared Error, representing the standard
deviation of the prediction errors. It expresses the average distance of the
predictions from the golden standard, thus it informs the reader on how
similar the output data is compared to the original predictions. Since it
is scale-dependent, it cannot be interpreted as an absolute measure across
distributions, meaning it is only informative with respect to the original
distribution and we cannot compare it across multiple tasks. In our case, this

20https://scikit-learn.org/stable/modules/generated/sklearn.metrics.

mean_squared_error.html. Last consulted on 07/02/2022.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
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means that each evaluation carried out using RMSE will not be comparable
with the other metrics, since the underlying distributions of the gold standard
are different. RMSE is computed as:

RMSE =

√√√√(
1

n
)

n∑
i=1

(yi − xi)2

where xi is the predicted value of the -ith sample, and yi is the corre-
sponding true value. The Root Mean Squared Error is then estimated over
n samples.



Chapter 4

Experiments

4.1 Introduction

This Chapter focuses on the experiments performed on the basis of the ex-
perimental settings established in Chapter 3.

Section 4.2 provides an overview of the results, including all combinations
of the settings explored as well as the details regarding model training.

Section 4.3 offers an analysis of the results, answering the research ques-
tions posed in the previous Chapter (see Section 3.2). It also tries to offer a
perspective on the limitations of this dissertation and its practical applica-
tions, underlining the key aspects to address in future research.

4.2 Results

This Section offers a report on the performance obtained by both the single-
task and multi-task model. The reported score is the Root Mean Squared
Error (RMSE) (see Section 3.4.3), computed over the predictions obtained
by the models on the 1584 segments of the test set (see Section 3.3.1). Since
the distributions of the labels fall within different ranges, depending on the
characteristics of each metric, the RMSE value is not comparable across
tasks. This characteristic makes the metric only informative with respect to
the original distribution. Thus, in our use-case, all model predictions and
gold labels have been reshaped to the [0, 1] range, in order to obtain a value

53



54 CHAPTER 4. EXPERIMENTS

cushLEPOR BERTScore COMET TransQuest

single@1 0.1517 0.1617 0.1475 0.3155

multi@1 0.1553 0.1693 0.1468 0.1205

single@5 0.1548 0.1651 0.1373 0.4327

multi@5 0.1538 0.1609 0.1459 0.1052

single@10 0.1643 0.1690 0.1490 0.3616

multi@10 0.1547 0.1593 0.1462 0.1102

Table 4.1: Results using a training batch size of 2 and evaluated after [1; 5; 10]
epochs. The score is reported as normalized RMSE value. Best result on
epochs is in bold and best result on metric is in red.

which is not only comparable but also easily interpretable across different
tasks. A lower score corresponds to a better performance, since it indicates
that the predictions were closer to the gold standard. Table 4.1 shows the
results for both the single-task and multi-task XLM-R model, using a learning
rate of 2e-5 and batch size of 2. The training was carried out using a NVIDIA
Quadro P4000 8GB GPU. It lasted 6 hours for each single-task model and
32 hours for the multi-task model.

At 1 epoch the single-task and multi-task models obtain very similar
scores when predicting cushLEPOR, BERTScore and COMET. Although
the single-task model has a slightly better performance on the first two met-
rics, it is outperformed by the multi-task model on TransQuest, which is an
unexpected result.

Upon closer inspection of the actual predictions, it is clear that in reality
the single-task model is converging to the mean, effectively only predicting
the mean value (0.7413) for all instances and not generating a real prediction
for the segment.

At 5 epochs the results are fundamentally unchanged, although all scores
for the multi-task model show a slight improvement and surpass the single-
task model for both cushLEPOR and BERTScore, since the latter seems to
begin degrading a little on both metrics. For COMET the situation also
changes, with the single-task model instead showing signs of improvement.
TransQuest instead shows the overall worst degradation, further distancing
itself from the multi-task model, which instead obtains the best RMSE value
across all tests.
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cushLEPOR BERTScore COMET TransQuest

single@1 0.1317 0.1728 0.1086 0.1943

single@5 0.1250 0.1785 0.1082 0.3334

single@10 0.1444 0.1842 0.1056 0.2980

Table 4.2: Results using a training batch size of 16 at different epochs, only
using single-task models. The score is reported as normalized RMSE value
and the best performances are highlighted in bold.

cushLEPOR BERTScore COMET TransQuest

single@1 0.1325 0.1728 0.1076 0.1788

single@5 0.1089 0.1704 0.1083 0.2612

single@10 0.1498 0.1833 0.1105 0.3132

Table 4.3: Results using a training batch size of 32 at different epochs, only
using single-task models. The score is reported as normalized RMSE value
and the best performances are highlighted in bold.

At 10 epochs all models start degrading, but the multi-task version seems
to be more resistant in this regard. It outperforms the single-task model on
all 4 tasks, albeit only by a slight margin, remaining fundamentally stable in
its performance. Although the TransQuest single-task model seems to show
signs of improvement, in reality the model at 10 epochs behaves similarly to
the model at 1 epoch, since it, too, only predicts the mean value regardless
of the segment.

Tables 4.2 and 4.3 show the results for the single-task XLM-R models
using the same learning rate as before but exploring a batch size of 16 and
32, respectively. The training was carried out using the same GPU as before,
but it lasted 4 hours for the models using a batch size of 16 and 2:30 hours
for the models using a batch size of 32. As mentioned in Section 3.4, there
is no multi-task model for this batch size due to the computational cost of
loading multiple encoders at the same time on a single 8GB GPU.

All models trained on a batch size of 16 exhibit a trend whereby they
obtain a better score when compared to the models trained on the smaller
batch size. In particular, for COMET the score always hovers around 0.108
while in previous instances it never went below 0.137. For this group the
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TransQuest model also shows improvement, managing to obtain a score 0.194
already in the first epoch, which is significantly lower than the previous
model in Table 4.1, although it degrades at later epochs. Both BERTScore
and cushLEPOR remain relatively stable across epochs, with the former
obtaining a slightly worse performance and the latter significantly improving
on the model with a smaller batch by almost 0.03 points at 5 epochs. This
time the TransQuest model shows no tendency to regress to the mean for all
epochs.

Models trained on a batch size of 32 exhibit a similar trend to those
trained on a batch size of 16. They obtain a better score when compared to
the models trained on the smaller batch size, but this improvement is only
noticeable for the cushLEPOR and TransQuest model. The cushLEPOR
model in particular obtains almost 0.05 points less than the model with a
batch size of 2, thus obtaining the lowest score observed so far, while the
TransQuest model further improves at only 1 epoch with a score of 0.179
before degrading. Once again, the score for COMET always hovers around
0.108 and the BERTScore model performs in line with the one shown in
Table 4.2.

4.3 Discussion

With respect to the research questions posed in Section 3.2, the results re-
ported in the previous Section are indeed promising. As a recap, the research
questions are the following:

Research Question 1: Is it possible to accurately predict the
MT Evaluation or Quality Estimation score from the source text
alone?

Research Question 2: If the first research question is true, is
it better to construe the problem as a single-task or as a multi-task
problem?

Given that, on average, the reported RMSE value ranges between 0.1 and
0.2, all models do seem to be able to predict a metric of translation fairly
accurately starting from the source text alone, which corroborates the first
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research question. The only exception concerns the TransQuest single-task
model using a batch size of 2, which regresses to the mean at epochs 1 and
10, while at 5 the performance is definitely subpar when compared with both
the multi-task model and the single-task models with higher batch sizes (see
Tables 4.1, 4.2 and 4.3). This could be caused by the particularly small range
for the score distribution of the TransQuest metric, which is bound between
[0.65, 0.78] (see Table 3.3). Additionally, since almost all single-task systems
seem to start degrading at higher epochs, overtraining might also be an issue,
leading the model to fail to correctly predict the metric. Overall, for this use-
case the best epoch configuration seems to be at 5, since this is the interval
when the models either obtain the best score – such as multi@5 on Tran-
sQuest (see Table 4.1) or single@5 on cushLEPOR (see Table 4.3) — or do
not distance themselves significantly from the best score — such as single@5
against single@1 on COMET (see Table 4.3) and against single@10, again
on COMET (see Table 4.2). The single-task models on TransQuest are once
again the exception, since all models start degrading after the first epoch. Re-
garding batch size, as expected, there is an improvement in the performance
of all models when it is increased from 2 to 16, except for the predictions for
BERTScore, which observe a slight degradation. The difference between a
batch size of 16 and 32 is less pronounced, but it does allow the model to
reach the best performance on cushLEPOR with single@5 (see Table 4.3).
Thus, it is possible to conclude that for the single-task model the best per-
forming batch size is 32, also thanks to its reduced training time, though it
is indeed more costly in terms of memory requirements. Considering all of
the above, we conclude that the first research question is corroborated by the
results obtained by both the single-task and multi-task models, meaning that
it is possible to accurately predict evaluation scores from the source text.

Regarding the second research question, the answer is not as straightfor-
ward. There indeed is an improvement in the performance for the multi-task
model, especially on TransQuest, which shows that knowledge transfer oc-
curs when training on multiple metrics. Nevertheless, the results for all other
metrics are overall constant, showing no noticeable sign of improvement past
the 5 epoch margin (see Table 4.1). Based on the findings from the previous
research question and given its stability, it would be possible to assume that
with a bigger batch size the model benefits from seeing multiple segments at
once before the backpropagation step. Researching higher batch sizes would
thus be the natural following step to the current study. One major concern,
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though, is the training time required to achieve these results for a multi-task
model. Many recent studies on sustainability in NLP have pointed out a
major issue with the trends towards the usage of large transformer models.
Since their carbon footprint is increasingly impactful, the research commu-
nity is highlighting the need to prefer lighter models with smaller training
times when solving an NLP task (Strubell et al., 2019; Anthony et al., 2020;
Bannour et al., 2021). As pointed out in the beginning of Section 4.2, the
multi-task model used for this study took around 32 hours to train, much
longer than a single-task model, which took a fifth of the time each, around
6 hours, which was further decreased to 2:30 hours when scaling to higher
batch sizes. Although the training time for the multi-task model can be de-
creased by using a bigger batch size, so far the current results do not justify
the usage of such an expensive multi-task model for this task, since the per-
formance of the single-task model does not distance itself significantly from
the multi-task version. Hence, with respect to the second research question
we conclude that, while a multi-task model shows promising results for this
task, it is better to construe the problem as single-task, because this method
offers the best trade-off in terms of training time and performance.

Summing up, we have observed that the low error margins shown in these
experiments point towards the possibility to estimate the quality of MT based
on the source text alone. This indicates that the initial hypothesis that
motivated this study is corroborated and it is possible to assert that there
indeed is a direct connection between the source text and the performance
of an MT system, as measured by well-established evaluation metrics (see
Section 3.2).

Nevertheless, it is imperative to also underline two key limitations of
this study. First and foremost, the corpus which was used has likely been
already seen by the MT systems. This is a significant weakness of the study,
although a set of preliminary experiments has shown no significant difference
between unseen and seen texts (see Section 3.3.1). In order to overcome
this potential limitation, one would need to either build a dedicated parallel
corpus on which to apply the proposed methodology, or train an MT engine
from scratch, both of which are beyond the scope of this work. The second
limitation is the absence of a pipeline for terminology recognition in the
source text. Given the importance of terminology in the field of translation,
such a component would indeed be invaluable to correctly assess machine
translation suitability and improve model performance, while also ensuring
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the correctness of the predictions (Cabré, 2010; Scansani et al., 2019, 2017).

In conclusion, although the models described in this work are certainly
not production-ready, they provide a good starting point for multiple real-life
applications. Having a tool to predict MT quality from the source text is of
increasing interest for the industry. One such example is a recent proposal
for the development of a pipeline to predict the impact of source text on
machine translation at the MTSummit2021, which showed very promising
results using solely textual features (Yanishevsky, 2021) (see Section 2.4).
The models in our study could be used in a similar fashion to check for lin-
guistic quality risks, leading to significant savings in terms of time and costs
when performing linguistic quality assessment. By integrating them in the
APE-QUEST pipeline it would be possible to skip the initial requirement to
request a machine translated version of the text, only performing it when
needed, thus avoiding unnecessary calls to the MT system. Another applica-
tion could involve identifying the highest quality segments to customise an
MT engine, or conversely to find the most challenging ones for the evalua-
tion step. Given the plethora of possible applications, further research on
these methodologies is warranted, since the methods proposed show good
promise and significant improvements could certainly prove beneficial to the
translation world, both from the perspective of research and of the industry.
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Chapter 5

Conclusions

This dissertation attempted to answer two research questions, i.e., “Is it pos-
sible to accurately predict the MT Evaluation or Quality Estimation score
from the source text alone?” and “If the first research question is true, is it
better to construe the problem as a single-task or as a multi-task problem?”.
Both are based on the hypothesis that ’The better the machine translated
version of a text, in terms of a well-established evaluation metric, the more
suitable is the source text to machine translation’. The questions were moti-
vated by the increasing need to automatically assess the quality of machine
translation in a way that is both dynamic and scalable, without the limita-
tion of providing very expensive reference translations. While there exists a
field entirely dedicated to reference-less metrics, namely Quality Estimation,
this work tried to explore innovative techniques that would focus entirely on
the source text. Such an approach offers an alternative that could, in the
future, also account for the pivotal issue of terminology. To the best of my
knowledge, this work is the first attempt of predicting an evaluation score for
machine translation suitability starting from the source text alone, without
requiring to have a machine-translated version of the segment.

The corpus at the basis of this dissertation was created by collecting and
cleaning out-of-the-box bilingual en>de corpora from the OPUS collection.
The starting corpora were translated using two machine translation engines
(ModernMT and Microsoft Translator) and merged together in order to ob-
tain an evaluation score for each segment, using both traditional evaluation
and quality estimation metrics. After their calculation, each source segment
was paired with its respective scores, thereby creating a corpus of source
segments with four different labels. This corpus was subsequently used to
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fine-tune a transformer model (XLM-RoBERTa) both in a single-task and
a multi-task setting. The scripts used for the experiments are available on
GitHub1. By obtaining an RMSE score as low as 0.10, the current results
are indeed promising and answered positively to the first research question,
indicating that the multi-task model might be very well-suited for this task,
albeit there remain concerns regarding the computational cost and sustain-
ability issues of the multi-task model. Nevertheless, these indicated that it is
indeed possible to obtain accurate machine translation evaluations starting
from the source text alone, paving the way for further research in this regard.

Future research could improve many aspects touched by this disserta-
tion. Since XLM-RoBERTa is a multilingual model, an initial focus could
be posed on extending the experiments to other language pairs, surveying
significant differences among different language combinations and directions.
Additionally, a pipeline for terminology recognition in the source text would
certainly offer valuable information for the final prediction, while a connec-
tion with research on source text translatability for humans could perhaps
provide further insights on the overall problem. From a technical point of
view, two main aspects could undoubtedly be improved in order to surpass
the current limitations: the training corpus and the training methodology.
As stated in Chapter 4, in order to ensure the validity of these conclusions,
one should make sure that the training corpus has not been seen by the
MT systems. Further research could thus improve on this aspect by either
creating an ad-hoc parallel corpus on which to compute the initial scores or
by computing the translation using a different MT engine, where one could
ascertain the texts on which it was trained. For what concerns the training
methodology, the experiments could be extended by using a bigger batch size
for the multi-task model — which following the current results should lead
to both faster training and performance boost — exploring different epoch
configurations or employing different transformer models.

1https://github.com/TinfFoil/MTsweet

https://github.com/TinfFoil/MTsweet
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