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Chapter 1

Introduction

The work conducted in this thesis aims to present an hybrid model for a real­

world application search engine. The project presented was part of an intern­

ship work carried out in a start­up which deals with Knowledge Management

and Artificial Intelligence. The aim of the internship work was to improve

the current search engine system to build a new system for a future web ap­

plication use case. An in­depth study on the limitations of keyword search

alone, and on semantic search, revealed the need of a transition from a pure

keyword­based information retrieval system to an hybrid model, making use

of both keyword search and semantic search. In particular the old system re­

lied on a tfidf­based algorithm, while the final model tries to overcome the

limits of keyword search by joining the abilities of OkapiBM25, a probabilis­

tic information retrieval approach, with newer semantic search models based

on SentenceBERT [1]. The models, and the algorithm implemented, exploit

deeply recent techniques in Information Retrieval such as lexical search, sim­

ilarity search, query expansion, document expansion and automatic question

generation. The data used to test the models came from a banking dataset, be­

longing to one of the company clients, previously created for an Information

Retrieval chat­bot. Different experiments led to a final model able to improve

the search performances showing great advantages with respect to keyword

search and pure semantic search.
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Below the structure of the thesis is presented:

• In the second chapter an introductory background is presented varying

betweenmultiple topics strictly related to Information Retrieval systems

and NLP

• In the third chapter the problems arised, and the approaches taken to try

to tackle them, are shown

• In the fourth chapter the technologies involved in the model and in the

algorithm are explained in detail

• The fifth chapter shows the actual implementation of the system

• The last chapter is left for presenting the experiments and showing the

results obtained



Chapter 2

Background

2.1 Ranking

Ranking is one of the most important tasks in the Information Retrieval field.

It is the process of sorting documents according to the relevance with a par­

ticular search query. The goal is to assign a score to each document and suc­

cessfully retrieve the most relevant one that should contain the answer to the

user query. In order to do so many NLP techniques are used nowadays start­

ing from basic keyword matching to complex algorithms and models which

exploit deeply the world of semantics and keyword search. We can date the

birth of the ranking task back in 1958, when Luhn et al. proposed to con­

sider “statistical information derived from word frequency and distribution...

to compute a relative measure of significance” [2] anticipating the technique

of TF­IDF which is now the basis of many ranking systems. Later on Maron

and Kuhns depicted the problem as receiving requests and try “to provide as

an output an ordered list of those documents which most probably satisfy the

information needs of the user” [3]. In their work they suggested to weight

terms in documents according to the probability that a user desiring infor­

mation contained in a particular document would use that term in a query,

introducing what nowadays is likelihood. In 1975 finally, after gradually ac­

cumulating notions and techniques in the past decades, Salton [4] proposed
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the use of vector space model, where documents and queries are represented

by vectors and their similarity is computed in terms of cosine similarity. In the

1980s and 1990s many studies were done in the direction of finding alternative

term weighting schemes starting from the TF­IDF function. One of the most

promising and most used in many Information Retrieval systems nowadays

is the Okapi BM25 [5] which introduces some free parameters in the classic

TF­IDF formula to change how terms occurring extra times in a document add

extra score. BM25 takes also into account the length of the document in the

computation of the score to assign, penalizing indeed the documents that con­

tain the user query keywords if their length is much greater than the average

length in the dataset. The mechanics and the main difference with respect to

TF­IDF will be further explained in the next chapters.

2.1.1 Query expansion

Query expansion is the process of reformulating a user query in order to better

understand the underlying context and improve search performance in infor­

mation retrieval. The goal is to minimize the query­document mismatch se­

lecting and adding terms to the user query. Query expansion approaches con­

tain twomajor classes: global approaches and local approaches. The first class

of approaches refers to using global available thesaurus in order to expand

the query with synonyms and related words. Wordnet [6] is the most famous

English­based lessical database which can provide general similar words. Lo­

cal approaches instead tend to reformulate the user query adding terms related

to the top retrieved documents. This approach was first presented by Attar and

Frankael in 1977 [7]. The effectiveness of the technique is obviously highly

influenced by the proportion of relevant documents in the high ranks. Let a

user query consist of n terms

Q = {t1, t2, ..., tn}
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the reformulated query becomes

Qref = (Q − T ′′) ∪ T ′

whereT ′ = {t′
1, t′

2, ..., t′
n} is the set of additional terms andT ′′ = {t′′

1, t′′
2, ..., t′′

n}

are stopwords to be removed.

2.1.2 Document expansion

Document expansion is another technique used to reduce the vocabulary mis­

match between query and documents that are lexically different but seman­

tically similar. Document expansion works by explicitly generate lexically

richer documents, introducing two main advantages with respect to query ex­

pansion: the first one is that expanding documents can generate much more

relevant terms given the longer text, the second one is that document expan­

sion is a process that can be entirely done at indexing time, avoiding delays

at search time. In “Document Expansion by Query Prediction” [8] Nogueira

et al. propose a document expansion technique based on predicting queries

starting from a document and expanding the document by concatenating the

predicted questions.
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Figure 2.1: Nogueira et al. document expansion [8]

Soyeong Jeong et al. [9] try to address the problem using an unsupervised

process in which they generate document­related sentences using a pre­trained

language model for summarization. The supplementary sentences are then

appended to the input document before indexing them.

Figure 2.2: Soyeong et al. unsupervised document expansion [9]
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2.2 Semantic search

While keyword search tends to find exact match of queries in the documents

without actually understanding the meaning of them, semantic search tries an­

other approach to tackle this task in a more “human” way. The idea behind

semantic search is to embed all entries in a corpus, whether they be sentences,

paragraphs, or documents, into a vector space. At search time, the query is em­

bedded into the same vector space and the closest embeddings from the corpus

are found. These entries should have a high semantic overlap with the query.

Until 2013 Google searches didn’t take into account the actual meaning of the

query but the search was performed to return the more accurate exact match­

ing of the user query. Then Google introduced a Knowledge Graph with the

Hummingbird update [10] making a smooth transition from keyword search

to actually derive semantics in the search process making a huge advancement

in their search technology. Hummingbird sought to solve the problem of find­

ing information when your knowledge on the topic was lacking by focusing

on synonyms and theme­related topics. Moreover, by being able to use natu­

ral language processing, search results would be able to retrieve nice results

for queries both at the head and long­tail level. Understanding the question in

a semantic manner, Hummingbird sought to allow users the ability to confi­

dently search for topics and sub­topics rather than having to engineer queries.

In the latest years many researches were made in the field of semantic search,

and the recent discoveries made in the Deep Learning field boosted even more

the hype for these new technologies. The 2017 publication of Vaswani et al.

“Attention is all you need” [11] started a real revolution in many AI fields,

bringing to the NLP world the innovation of Transformers. The capabilities

of the novel architecture proposed by Vaswani revealed themselves right away

and not many years later a new model architecure was presented, becoming

the base architecture for SOTA results in many NLP tasks: BERT.
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2.2.1 The advent of BERT

BERT [12] is a trained Transformer Encoder stack (12 layers for Base version,

24 in the large one) trained on Wikipedia and Book Corpus, a dataset contain­

ing more than ten thousand books of different genres. Bert uses a Masked

Language Model (MLM) which randomly masks some of the tokens from

the input, and predicts the masked word based on its surroundings (left and

right of the word). As opposed to directional models, which read the text in­

put sequentially (left­to­right or right­to­left), the MLM objective enables the

representation to use both the left and the right context, which allows to pre­

train a deep bidirectional Transformer. Additionally, BERT also uses a Next

Sentence Prediction (NSP) task during the pre­training phase. This makes

BERT a contextual model, capable of handling relationships between multi­

ple sentences by representing each word differently based on the rest of the

sentence in a bidirectional way. BERT works similarly to the Transformer

encoder stack, by taking a sequence of words as input which keep flowing up

the stack from one encoder to the next, while new sequences are coming in.

The final output for each sequence is a vector of 768 numbers in Base or 1024

in Large version.

BERT arrived on the scene in October 2018 and it immediately became

clear how powerful it was and how it would change the world of NLP and IR.

The first application of BERT to text ranking was reported by Nogueira and

Cho [13] in January 2019 on the MS MARCO passage ranking test collec­

tion [14]. Within less than a week, effectiveness shot up by around ~30% in

relative gain. BERT­based architecture are still on top of many leaderboards

for various NLP tasks, from question answering to semantic similarity search,

proving once again the State­Of­The­Art results this language representation

model achieved. An important distinction to make, when dealing with seman­

tic similarity search, is related to the relative size of queries and documents.
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Knowing in advance the shapes of corpus and queries can make a huge differ­

ence on the model selection and on search performances. We can distinguish

semantic search into two sub­fields: symmetric semantic search and asym­

metric semantic search.

• symmetric semantic search: the query and the entries in the corpus

are of about the same length and have the same amount of content. An

example of symmetric search is looking for similar questions. For sym­

metric tasks, one could potentially flip the query and the entries in the

corpus

• asymmetric semantic search: usually there is a short query (like a

question or some keywords) and the task is to find a longer paragraph

answering the query. For asymmetric tasks, flipping the query and the

entries in the corpus usually does not make sense.

The pretraining task, and in particular the dataset used, influence the abil­

ity of a certain model to better perform in one kind of search instead of the

other. BERT models pretrained on the MS MARCO dataset for example are

more suited for asymmetric semantic search given that the dataset consists

in question answering taken from real Bing questions and passages. Models

pretrained on Natural Language Inference tasks instead, tend to better per­

form when queries are more or less of the same length of the documents, thus

belonging in symmetric semantic search.



Chapter 3

Problems and approaches

3.1 Limits of keyword matching

Many information retrieval systems retrieve relevant documents based on ex­

act matching of keywords between a query and documents. This method de­

grades precision rate, ending in the “vocabulary mismatch problem”. One

approach to bridge the gap between query terms and document terms is en­

riching query representations. Query expansion techniques help to add rele­

vant terms that were not presented initially to improve the effectiveness of the

search. A simple way to do that is expanding query with alias terms. Alias are

not only synonyms but also words that are strictly related, in a semantic way,

to the original query keyword. In a keyword matching system, using alias may

help finding results when the user’s knowledge doesn’t reflect the documents’

one. Furthermore, other techniques such as document expansion make a step

towards trying to solve the “vocabulary mismatch” problem between query

and documents. Document expansion, similarly to query expansion, aims at

generating lexically richer documents acting directly on the corpus. The main

problem of keyword matching however is not entirely solved with query and

document expansion means but more powerful semantic search techniques are

needed to improve the accuracy of the system. This is where semantic space
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steps in to create a rich dense representation where terms and sentences are lo­

cated in a specific place, and their position assumes an important value. Unlike

keyword search, semantic search takes into consideration the researcher’s in­

tent to get at the contextual meaning of terms. Semantic search pushes beyond

the boundaries of the organization’s collective base of understanding to get at

information and concepts that haven’t been explicitly written into the query.

Semantic technology deciphers concepts and meaning by associating search

inputs with clarifying terms such as related synonyms that have been built into

the system.

3.2 Limits of semantic search

We have seen how semantic search can solve some of the problems related

to keyword search, but new limits related to this field arise. Semantic search

improves the understanding of the meaning of the query but, in order to do

that, the query needs to be good. The result of a semantic search can only be as

good as the question asked. The more information users communicate in their

search request, the greater the chances of the search engine to deliver good

results. Short head queries, for example, provide very limited information

about what the user is really looking for and may behave even worse than a

simple keyword matching search. This is the reason why in this thesis work, it

was chosen to maintain both the techniques and try to aggregate the different

results taking the benefits of the two approaches. The use­case taken into

consideration can’t take advantage in knowing in advance the users and their

content. This poses an additional difficulty in the setup of the development

environment. Many factors may influence the quality of the search engine

results, such as:

• Volume of data: the number of documents uploaded may differ from

user to user. With the growth of the knowledge base, the performance

may decrease in terms of response time and general accuracy
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• Specific domain: even if the latest semantic search models reached

SOTA results inmanyNLP tasks thesewere obtained on general­purpose

dataset. Domain specific documentation and user queries may lead to

unexpected poorer results

3.3 The challenge of evaluating commercial ap­

plication systems

The performance evaluation of an information retrieval system is a decisive

aspect for the measure of the improvements in search technology. However,

when dealing with commercial application, common evaluation metrics may

not be enough. Quite often, state of the art models, are not so reliable when

applied to commercial use cases. Common benchmarks tend to evaluate per­

formance of models on the broadest and as general as possible domains in

order to keep a standard and uniform baseline. This however does not per­

fectly reflect the real world use cases and advanced models need to be care­

fully refined to obtain good results. A simple example concerns the language

of the documents we are evaluating. Recently, pre­trained language models

have achieved remarkable success in a broad range of natural language pro­

cessing tasks. The BERT model we used, for example, was trained on the

MS MARCO passage re­ranking task. However, in multilingual setting, it is

extremely resource­consuming to pre­train a deep language model over large­

scale corpora for each language. Instead of exhaustively pre­training mono­

lingual language models independently, an alternative solution is to pre­train

a powerful multilingual deep language model over large­scale corpora in hun­

dreds of languages. However, the vocabulary size for each language in such a

model is relatively small, especially for low­resource languages. This limita­

tion inevitably hinders the performance of these multilingual models on tasks
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such as sequence labeling, wherein in­depth token­level or sentence­level un­

derstanding is essential. This problem brought us to the choice of working

with only English contents, at least in an initial setup, to avoid language­

related loss of accuracy.

Another important metric to keep in consideration when evaluating com­

mercial application systems is time. Both training and inference time can play

a very important role in assessing the quality of a search engine. The use of

deep learning models helps finding more relevant content, but on the other

side it adds a substantial overhead in terms of processing time. For a simple

comparison, for BM25, the time complexity is O(m · avgdl), where m is the

number of documents and avgdl is the average document length. BERT, on

the other hand, needs to compute self­attention which has a complexity per

layer of O(d ∗ n2) where d is the embedding dimension. n2 because it com­

putes attention weights for each word with respect to every other word: O(n)

operations for each word and therefore O(n2) for all the words. To reduce as

much as possible the waiting time, we took different choices for training and

inference:

• Training time: to optimize the embeddings time at training time, the

model is deployed with a simple API. The server uses different workers

to handle more requests concurrently, speeding up the process at the

expenses of additional computational power

• Inference time: the main problem at inference time, is the time spent

in computing similarity between query and document embeddings. As

we will see more in detail in the next sections, this problem has been ad­

dressed thanks to an external library to optimize search between vectors

and reduce computational time.



Chapter 4

Technologies

4.1 OkapiBM25

The BM25 is a ranking function used by search engines to estimate the rele­

vance of documents to a given search query and is often referred to as “Okapi

BM25” since the Okapi information retrieval system was the first system im­

plementing this function. The BM25 retrieval formula belongs to the BM

family of retrieval models (BM stands for Best Match). It is a variance of the

more famous TF­IDF algorithm which, given a query and a set of documents,

assigns a score to each document based on the sum of the term frequencies

of the words appearing in the query multiplied by the inverse document fre­

quency, namely:

tfidf(t, d, D) = tf(t, d) × idf(t, D)

In particular, the term frequency of a word is defined as the number of

occurrences of that word in a certain document divided by the length of the

document

tfi,j = ni,j

| dj |

while the Inverse Document Frequency is a number representing the rarity
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or commonness of a certain word across all the documents

idf(t, D) = log
|D|

1 + | {d ∈ D : t ∈ d} |

The OkapiBM25 version brings some innovation to the TF­IDF formula

starting from the Inverse Document Frequency. Themain difference is that the

IDF in the OkapiBM25 takes into account frequency of terms and penalizes

terms that are common:

IDF (qi) = ln(1 + docCount − f(qi) + 0.5
f(qi) + 0.5

)

where docCount is the total number of documents and f(qi) is the number

of documents containing term qi. The Term Frequency part of the formula

becomes:

TF (q, d) = f(qi, d) · (k1 + 1)
f(qi, d) + k1 · (1 − b + b · |d|

avgdl
)

where f(qi, d) is the term frequency of the term qi in document d, avgdl is

the average document length in the collection and k1 and b are free parameters,

for this project the default values have been chosen as k1 = 1.2 and b = 0.75.

The effect of this modified term frequency is clearly visible in figure 3.1 where

the impact of really common words inside a document tend to saturate faster

the value of the term frequency so that terms occurring extra times do not add

too much extra score.
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Figure 4.1: TF­IDF’s term frequency vs. BM25’s term frequency [15]

4.2 SentenceBERT

SentenceBERT is amodification of the BERTnetwork presented byNils Reimers

and Iryna Gurevych in 2019. A large disadvantage of the BERT network struc­

ture is that no independent sentence embeddings are computed, which makes

it difficult to derive sentence embeddings from BERT. To bypass these lim­

itations, researchers passed single sentences through BERT and then derived

a fixed sized vector by either averaging the outputs (similar to average word

embeddings) or by using the output of the special CLS token. SentenceBERT

uses siamese and triplet networks to derive semantically meaningful sentence

embeddings. A siamese neural network is a class of neural network architec­

tures that contain two or more identical subnetworks. Not only they have the

same configurations but they also share the same weights. This guarantees

that two semantically similar sentences are mapped by each network to very

close locations in the feature space. It comes in handy when dealing with one­

shot classification problems and finding similar elements in a large amount of
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data (the complexity for finding the most similar sentence pair in a collection

of 10,000 sentences is reduced from 65 hours with BERT to 5 seconds with

SBERT) [1]. The model adds a pooling operation to the output of BERT to

derive a fixed­size sentence embedding. In the paper 3 different pooling strate­

gies have been experimented: using the output of the CLS­token, computing

the mean of all output vectors (MEAN­strategy), and computing a max­over­

time of the output vectors (MAX­strategy). The default configuration, and

the one used in this work, is the MEAN­strategy. Also for the training of the

model 3 different objective functions have been exploited:

• Classification Objective Function: the sentence embeddings u and v

are concatenated with the element­wise difference |u−v| and multiplied

with the trainable weight Wt ∈ R3n×k

o = softmax(Wt(u, v, |u − v|))

where n is the dimension of the sentence embeddings and k the number

of labels. The loss used is the cross­entropy loss.

Figure 4.2: SBERT architecture with classification objective function [1]
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• RegressionObjective Function: The objective function is themeansquared­

error losswith respect to the cosine similarity between the two sentence

embeddings u and v

Figure 4.3: SBERT architecture with regression objective function [1]

• Triplet Objective Function: Given an anchor sentence a, a positive

sentence p, and a negative sentence n, triplet loss tunes the network such

that the distance between a and p is smaller than the distance between

a and n. It minimizes the following function:

max(||sa − sb)|| − ||sa − sn|| + ϵ, 0)

with sx the sentence embedding for a/n/p, || ∙ || a distance metric and

margin ϵ. Margin ϵ ensures that sp is at least ϵ closer to sa than sn. In

the experiment the Euclidean distance is used as metric and ϵ is set to 1.
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Figure 4.4: SBERT architecture with triplet objective function [16]

4.3 FAISS

FAISS [17] is a library for efficient similarity search and clustering of dense

vectors developed by Facebook AI Research [18]. Given a set of vectors xi

in dimension d, Faiss builds a data structure in RAM from it. After the struc­

ture is constructed, when given a new vector x in dimension d it performs

efficiently the operation:

j = argmini∥x − xi∥

where ∥·∥ is the Euclidean distance (L2). In our case the xi vectors are the

embeddings produced by SentenceBERT of the documents and d is their fixed

size of 768. The new vector x is the query embedded again by the Sentence­

BERT model. Faiss is built around an index type that stores a set of vectors,

and provides a function to search in them with L2 and/or dot product vector

comparison. To actually compute the cosine similarity we first need to nor­

malize our embedding vectors and then proceed with the dot product. Some

index types are simple baselines, such as exact search. Most of the available

indexing structures correspond to various trade­offs with respect to

• search time
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• search quality

• memory used per index vector

• training time

• need for external data for unsupervised training

In our case we decided to opt for the IndexFlatIP which provides exact search

for inner product performing an exhaustive search. FAISS has been used to

optimize the time of response of our system by speeding up the search and

computation of cosine similarity between query embedding and documents

embeddings.

4.4 T5 and docTTTTTquery

Encoder­only models like BERT are designed to produce a single prediction

per input token or a single prediction for an entire input sequence. This makes

them applicable for classification or span prediction tasks but not for genera­

tive tasks like translation or abstractive summarization.

T5, or Text­To­Text Transfer Transformer, is a novel neural networkmodel

that uses a text­to­text approach, presented by a Google research team in the

paper “Exploring the Limits of Transfer Learning with a Unified Text­to­Text

Transformer” in April 2020. AnyNLP task can be reframed into a unified text­

to­text­format where the input and output are always text strings, in contrast

to BERT­style models that can only output either a class label or a span of the

input. To train T5, the team of researcher introduced a new open­source pre­

training dataset, called the Colossal Clean Crawled Corpus (C4) [19] based on

Common Crawl dataset [20]. The Common Crawl corpus contains petabytes

of data collected since 2008. It contains rawweb page data, extractedmetadata

and text extractions, ending up with 750 gigabytes of clean­ish English text.

Themodel architecture is a standard encoder­decoder transformer, as proposed
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by Vaswani et al [11]. Specifically the encoder and decoder consist of 12

blocks that comprehend self­attention, optional encoder­decoder attention and

a feed­forward network. In particular the feed­forward network is constituted

by a dense layer followed by a ReLU activation layer and lastly another dense

layer. Totally, the number of parameters of the model is around 220 millions,

approximately twice as much as a BERT base model (having 2 stacks instead

of 1 as in the BERT base model).

Figure 4.5: T5 baseline model architecture [21]

In the pretraining phase, the model has been trained on text­to­text only

tasks, allowing to use a maximum likelihood objective (teacher forcing [22])

and cross­entropy loss. The pretraining was performed for 219 = 524,288 steps

on C4 before fine­tuning. Packing multiple sequences in batches led to having

batches containing 216 tokens, resulting in pre­training on ~235 tokens. T5 is

then finetuned on a variety of downstream task such as GLUE [23] , SQuAD

[24] for question answering and CNN/DM [25] dataset for summarization.
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Figure 4.6: T5 workflow [21]

4.4.1 docTTTTTquery

DocTTTTTquery or docT5 query is the latest version of the doc2query fam­

ily of document expansion models presented by Rodrigo Nogueira and Jimmy

Lin in 2019 [26]. The basic idea is to train a model that, when given an in­

put document, generates questions that the document might answer (or more

broadly, queries for which the document might be relevant). The model is

an extension to the author’s previous work doc2query [8]. Essentially in the

new version they substitute the vanilla transformer with the T5 base model

resulting in large effectiveness gains. The model has been trained on the MS

MARCO passage re­ranking dataset obtained from the top­10 results retrieved

by the Bing search engine (from 1M queries). The authors found out that using

top_k sampling helped produce more efficient queries, using k=10. Similarly

to our intended use, in their work the expansion model is used to predict ques­

tions or queries and append them back to the documents before indexing them

in a ranking task. In our case the model has been used to predict questions

for the documents but instead of appending them to the documents they have

been used separately to compute an additional score and to guide the search

for users.
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The hybrid model

In order to rank a set of documents given a search query we need to assign

a score to each document reflecting the importance and relation of it with

respect to the user search. In this chapter we’ll see the architecture and the

steps of the algorithm used in this project. As already stated in the previous

section, it is a hybrid model based both on the BM25 ranking algorithm and

on SentenceBERT. The following sections will explain in details how the two

different parts work by assigning a score to each document autonomously and

how the results are then aggregated.

5.1 BM25

The first score assigned to a document is solely based on syntactic features and

doesn’t explore the semantic world. It is based on a statistical information re­

trieval technique which is the BM25 algorithm. To address some of the issues

arising from a mismatch between different word forms used in the queries and

the relevant documents, a preliminary step needed is the data preprocessing.
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5.1.1 Data preprocessing

Researchers have long proposed the use of various stemming algorithms to

reduce terms to a common base form. Before doing that all the text contained

in the documents has been lowercased. Lowercasing is quite a drastic option

since it takes away all the information related to entities, names, acronyms ecc.

but, since the average user will use lowercase words to make its search, it is

better to lowercase everything to avoid mismatches. Then the Porter Stemmer

algorithm [27] is performed to reduce words to their stem and thus have a com­

mon form. When working with TF­IDF like algorithms, common words are

already penalized by their great occurrences but, removing all the stopwords

is a cleaner and more efficient way to improve the quality of the search. The

list of stopwords has been taken from the Natural Language Toolkit library

[28]. The final step in the Preprocessing phase is to take the list of words

lowered, stemmed and without stopwords and create a second list of ngrams

containing both unigrams and bigrams. The use of bigrams is needed to create

more unique and complex keywords that will guide the search towards more

precise results. All the steps of data preprocessing are applied to the user

query as well, so to have a set of keywords comparable to the now processed

documents. While in a previous setup a further step of query enrichment was

performed, to add synonyms and relative words from a common thesaurus, in

the final evaluation of the model it was preferred to only keep original query

terms. This choice was taken after weeks of human evaluation, the main rea­

sons after this come from the specific use cases of the model and the related

dataset. Using synonyms and relative tended to stray results from what the

user was looking for.
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Figure 5.1: Data preprocessing example

5.1.2 BM25 score

Once the data has been preprocessed, the application of BM25 can take place.

For each document the BM25 score is computed according to the following

formula:

BM25(d) =
N∑

i=1
IDF(qi) · f(qi, d) · (k1 + 1)

f(qi, d) + k1 · (1 − b + b · |d|
avgdl

)

where qi are the keywords in the user query, namely the unigrams and

bigrams remaining after the cleaning and preprocessing phase. IDF(qi) is the

Inverse Document Frequency of BM25 already explained in chapter 3.1. The

BM25 score is a value which is not upperly bounded and can be greater than 1.

Since in our scenario this score will have to be weighted with the one obtained

with cosine similarity (thus between 0 and 1) the following step to perform is

a normalization in order to bring the values between 0 and 1.
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5.2 SentenceBERT

Towork on the semantic features of the sentences it has been chosen to go with

SentenceBERT. SentenceBERT is a modification of the more famous BERT

architecture that uses a siamese network to derive semantically meaningful

sentence embeddings. Sentence embeddings can be used for similarity com­

parison tasks such as clustering and information retrieval via semantic search.

In our case the SentenceBERT model was used to compute embeddings both

for the user query and for each document, such that looking for similar sen­

tences becomes looking for close embeddings vectors. The metric used to

assess the proximity of vectors was the Cosine Similarity which has proven to

be really effective when dealing with vector distances. The cosine similarity

measures the angle between two vectors, the closer they are in the semantic

field the smaller the angle is and thus the higher the cosine (at most 1):

cos(θ) = A · B

||A|| · ||B||

Computing the cosine similarity between the vector embedding of the user

query and the vector embeddings of the documents gives as a result a vector

of values between 0 and 1 that, once sorted descendingly, is a ranked list of

relevant documents according to the user query.

5.3 The question generator

To improve the quality of the results of the search engine the use of an auto­

matic question generator has been adopted in order to try to emulate human­

askable questions. The questions’ goal is not only to help guide the search to

the engine, but also to be displayed to the user to help him find the information

he was looking inside the document. The model used to generate question is

a pretrained model, based on Google’s T5, namely the docT5query. These

predicted questions will then be used to compute an additional score that will
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be integrated in the final score of the document. The idea is to generate a

fair amount of questions per document, embed them as usual with the Sen­

tenceBERT model, and compare their embeddings with the user query one at

inference. The comparison is computed via the cosine similarity which will

again assign a score between 0 and 1 to the question. Since more than one

question is generated per document, only the highest question score is consid­

ered regarding the relevance to the user query.

Figure 5.2: Document expansion with generated question

5.3.1 Filtering questions

The output of the question generator is very often too vague, resulting in many

unnecessary questions. Since the questions will be displayed directly to the

user they need to be as worthwhile as possible. To filter out some of the ques­

tions a simple approach has been taken to assign a score to each question and

filter the one that does not comply with a particular threshold. Due to some
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stochasticity in the generation process, running the question generatormultiple

times, without fixing the random seed, actually produces different questions.

In the first step the questions generator is run 5 times to output a wide list of

questions to choose from. Then a score is assigned to each question based on

the relevance with respect to the input text. This score is the cosine similarity

between the embedding vectors of the question and the input text. The embed­

dings are computed using the same SentenceBERT model which is used later

to compute the ranking score. In order to avoid having too similar questions, a

further step is computed to filter them out again. The questions are embedded

with the distilbert­base­nli­stsb­quora­ranking [29] SentenceBERT model,

a version trained on the Quora Duplicate questions dataset [30]. The ques­

tions are finally grouped by similarity (computing cosine similarity with the

new embeddings) and only the best question per group (according to the rele­

vance with the paragraph) is kept.

Figure 5.3: Question generation pipeline
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5.4 The final score

As already stated, the final score assigned to a document is a weighted sum

of the two scores previously described. In particular the BM25 score needs to

be normalized in order to be compared and summed with the cosine similarity

score. So the first thing to do is divide all the BM25 documents scores by the

maximum obtained:

BM25 (d) = BM25 (d)
max
d∈D

BM25 (d)

When dealing with search engines between documents, titles have their

importance. Instead of including the title of a document in its content it has

been treated separately, having its own BM25 score and its own cosine sim­

ilarity score. Afterwards the title score has been integrated with the content

score with a weighted sum:

BM25(d) = BM25_title(d) · α1 + BM25_content(d) · (1 − α1)

The same thing is performed with the SBERT score:

SBERT(d) = SBERT_title(d) · α1 + SBERT_content(d) · (1 − α1)

where SBERT_title(d) is the cosine similarity between the embedding vector

of the title of the document and the user query and SBERT_content(d) is the

cosine similarity between the embedding vector of the content of the document

and the user query.

While BM25 has not been applied to the generated questions, the Sen­

tenceBERT model has been used to compute their cosine similarity with re­

spect to the user query. This value has been taken into consideration while

computing the SBERT score only if greater of a certain threshold:
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SBERT(d) =


SBERT(d) · 0.5 + q_score · 0.5, if q_score ≥ q_threshold

SBERT(d), otherwise

The final score can then be computed by simply a weighted sum of the two

intermediate scores:

Score(d) = BM25(d) · α2 + SBERT(d) · (1 − α2)

5.5 Speeding up search

As previously mentioned, we made use of the FAISS library for storing the

vectors of the embeddings and performing search on optimized indexes. In

particular we created three different indexes: one for the title, one for the

bodies of the contents and one for the questions. The three indexes store the

embeddings vector in an optimized data structure which is furtherly saved on

disk and retrieved at runtime. Since the index we used (IndexFlatIP) belongs

to the class of indexes that only performs dot product, we first need to nor­

malize our embeddings vectors. FAISS provides a function that computes the

L2 norm of the vectors and normalizes them before adding them to the index.

Then at run­time the dot product is computed on the normalized index which

result in the same result of computing cosine similarity:

cos(θ) = A · B

||A|| · ||B||
= A

||A||
· B

||B||
= dot( A

||A||
,

B

||B||
)



Chapter 6

Experiments and validation

6.1 Experiments

In this chapter we will present experiments conducted and the result obtained

in the implementation of the information retrieval system that has been de­

scribed in the previous sections. This section will also examine the validation

results and the delicate process of how they have been obtained.

The final use case for the implementation is a web application providing

a service of research inside personal knowledge base for the users. The func­

tioning is pretty straightforward: the user first uploads its own documents to

the platform, and later can make use of the practical search bar to obtain search

results, taken from the previously uploaded documents.

During the whole experimentation period, many different models have

been tried and tested. The first implementation was a simple TF­IDF­based

search engine. As discussed before, this kind of model could not grasp the

meaning of queries thus ending in poor performances quite often (in particu­

lar when working with italian dataset which have an expressive richness). In

the second approach, the first hybrid model came to life: the score given to a

certain document was a weighted sum between the TF­IDF score and the co­

sine similarity between embeddings. The first BERTmodel taken into consid­

eration was the ’distiluse­base­multilingual­cased­v2’, a model not exactly
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suited for semantic search, and in particular for asymmetric semantic search.

The performance of the hybrid model didn’t improve that much, which led to

further studying and two main modifications for the third model. First the ba­

sic TF­IDF implementation was substituted with the Okapi BM25 algorithm,

secondly, after a more in depth analysis of the various transformers mod­

els, the ’distiluse­base­multilingual­cased­v2’ was replaced by the ’msmarco­

distilbert­base­v2’. The two changings actually improved the system by ben­

efitting from the better techniques and from a more suited model. The expan­

sion of the document with generated questions had two main reasons to be

investigated: the first was to actually see if the use of questions improved the

quality of the search engine, the secondwas a need coming from theUXdesign

of the web application. The first question generator was based on T5­small,

in particular it was the valhalla/t5­base­qg­hl, a pretrained version for ques­

tion generation. Due to the poor results obtained, a custom one was trained

using t5­large as base model and running a finetuning task following Patil

Suraj work [31] (the author of the valhalla model). The finetuning task was

performed on SQuAD v1, using the dataset in a text­to­text approach: given

the passage the model will try to output the questions. Despite the difference

in terms of parameters (from ~60M in T5­small to ~220M in T5­base) the

results did not show any improvement in terms of quality of text. The last

model taken into consideration, and the one that is actually now in use, was a

pretrained model still based on T5: the ‘castorini/docTTTTTquery’. The key

in the model, we believe, was the dataset used to train it: once again the MS

MARCO dataset. Also, as they explain in the paper, the goal was to produce

a question generation model able to extract “queries that will be issued for a

given document” which reflected more accurately our goal. As a confirmation

of what we found out in our tests, Nogueira et al. used the T5 base model and

not larger ones since they did not notice any improvement in retrieval effec­

tiveness. The final experiments were done in the direction of improving the

quality of the questions, and this was achieved with the filtering operations
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applied, as described in the previous section.

6.2 Validation

The main source of validation of the experiments was human evaluation oper­

ated by the Quality Assurance (QA) team. The way these tests were performed

changed depending on the different use­cases, dataset and task. For the infor­

mation retrieval system the QA team had a custom dataset containing queries

collected both from previous real users (clients mainly) and from the team it­

self. The system was evaluated assigning a score to each query result ranging

from 1 to 5 according to some criteria:

• 5: the most related document is in first position, and it contains the

answer to the user query

• 4: the most related document appears in the first four positions, and it

contains the answer to the user query

• 3: a document related to the user query appears in the first four positions,

it does not contain exactly the answer to the user query but in a more

broad sense it still gives enough information about it

• 2: the most related document appears between the fifth and the eight

positions

• 1: the most related document does not appear in the first eight positions

The dataset used for this test was a banking documents dataset, obtained by one

of the clients of the company. The dataset is composed of 326 heterogeneous

documents with an average length of 1681 words. The documents were taken

from a section of the client’s website, in order to build an IR chat­bot. The

queries used to test the retrieval system were collected in two different ways:

• 25 questions have been created by the QA team which built up the doc­

uments dataset in the first place
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• 25 questions were queries asked by the chat­bot clients, namely com­

mon people utilizing their website, accurately filtered and chosen by the

QA team

Themost successful model obtained an average score of 4,02 out of 5, improv­

ing the result of the current system in use of 3,38. In particular these were the

results:

Old model First model Second model Final model
Answers scored 5 15 16 23 29
Answers scored 4 14 13 9 10
Answers scored 3 6 7 7 2
Answers scored 2 5 5 4 1
Answers scored 1 10 9 7 8

Table 6.1: Results on 50 questions from a client banking dataset

About the quality of the generated questions, the tests were defined to divide

questions in 4 different categories:

• Non sense questions: these were questions either not correct from a

grammatical point of view, or totally unrelated to the document

• True for every content: these questions were too general and ended

up being true for every content, thus not adding any information to the

document

• Good questions: these were actually good questions that could in some

way help the search of the user

• Brilliant questions: thesewere extremely good questions, even if asked

by humans, that rarely appeared

Lastly, the final model was tested against some famous benchmarks for infor­

mation retrieval tasks. The model was evaluated through BeIR [32], a het­

erogeneous benchmark containing different datasets to use as benchmarks. In

particular the datasets used are the following:
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• SciFact: a collection of 1.4K expert­written scientific claims paired

with evidence­containing abstracts, and annotated with labels and ra­

tionales [33]

• SCIDOCS: an evaluation benchmark consisting of seven document­

level tasks ranging from citation prediction, to document classification

and recommendation [34]

• NFCorpus: a full­text English retrieval data set for Medical Informa­

tion Retrieval. It contains a total of 3,244 natural language queries (writ­

ten in non­technical English, harvested from the NutritionFacts.org site)

with 169,756 automatically extracted relevance judgments for 9,964

medical documents (written in a complex terminology­heavy language),

mostly from PubMed [35]

• FiQA­2018: a Question Answering dataset for the financial domain. It

contains roughly 6,000 questions and 57,000 answers [36]

The test were done considering a document retrieval “accurate” if the result

appeared among the top 10 results of a query. Due to the high resource re­

quirements, some of the datasets have not been exploited entirely but only a

portion of them has been used.

Dataset Website Queries size Corpus size
SciFact github.com/allenai/scifact 300 5K

SCIDOCS allenai.org/data/scidocs 1,000 25K
NFCorpus cl.uni­heidelberg.de/ 323 3.6K

statnlpgroup/nfcorpus/
FiQA­2018 sites.google.com/view/fiqa/ 648 57K

Table 6.2: BeIR benchmark datasets

The tests were performed to highlight the improvement of the hybrid model

with respect to the two stand­alone approaches:
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Dataset BM25 accuracy Sbert accuracy Hybrid model accuracy
SciFact 0.69 0.613 0.72

SCIDOCS 0.438 0.431 0.502
NFCorpus 0.65 0.613 0.66
FiQA­2018 0.339 0.484 0.487

Table 6.3: Results comparison between stand­alone approaches and hybrid
model on BeIR benchmark datasets

6.3 Results

In this last section we will present some of the results both of the search engine

and the questions generator process.

The following image shows an example of query and the corresponding results

of the search engine with an uploaded knowledge base about cryptocurrencies.

Figure 6.1: A search result example

In the question generation process we first start from a paragraph and gen­

erate 50 questions related to it:
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Figure 6.2: Starting paragraph

Figure 6.3: All the questions

Then, after removing the duplicates, similar questions are aggregated in

groups after comparing all of them one by one.
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Figure 6.4: Example of a group of similar questions

For each group only the question with the highest score is kept, i.e. the one

with the highest relevance with respect to the starting paragraph. Lastly, the

questions are filtered again, keeping only the ones that have a score above a

predefined threshold, leaving us with just a bunch of meaningful and useful

queries.

Figure 6.5: Most meaningful questions
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Conclusion

The main goal of this thesis work was to present an hybrid model, exploit­

ing keyword search and semantic search for a web application use case. The

need of a transition from a pure keyword­based algorithm to an hybrid one,

arised from an in depth study conducted on the limitations of the previous ap­

proaches. The hybrid model made use of the latest techniques developed in

the NLP and IR fields. For the keyword search the model took advantage of

the Okapi BM25 algorithm in order to assign meaningful weights to words

and terms in documents. For the semantic search, the model used the abil­

ity of SentenceBERT to derive semantically meaningful sentence embeddings

and use them to encode documents and queries for further vector comparisons.

This project showed the limits, both in keyword and semantic search, and the

techniques used to try to address them such as query expansion and document

expansion. To enrich and expand the documents it was made use of a ques­

tions generator, a supplemental model based on T5. The questions generator

has been used not only to enrich documents and thus improving search perfor­

mances but also as part of the search experience from the user point of view.

Furthermore, an external library was used to address the problem of speed

when dealing with large amount of vectors, and computing distances among

them. The model proved to be effective, overcoming the results obtained by

the two single stand alone approaches on the BeIR benchmark. Bearing in
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mind the challenges of evaluating an information retrieval system for a com­

mercial application, the model has been tested also by human evaluators on

a specific domain dataset with a custom set of queries. Through this custom

dataset obtained from a client of the company, it was made possible to test

the model for the search efficiency. The tests showed not only an improve­

ment both with respect to keyword search and semantic search stand alone

approaches, but also with respect to the previous algorithm in use. The thesis

work ended demonstrating the improvements brought by the joint approach of

keyword and semantic search both in terms of accuracy and user satisfaction.
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