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Abstract
The Vehicle Routing Problem (VRP) is one of the most intensively studied combina-

torial optimization problems in the Operations Research (OR) community. Its relevance

is not only related to the various real-world applications it deals with, but to its inherent

complexity being an NP-hard problem.

From its original formulation more than 60 years ago, numerous mathematical mod-

els and algorithms have been proposed to solve VRP. The most recent trend is to lever-

age Machine Learning (ML) in conjunction with these traditional approaches to enhance

their performance.

In particular, this work investigates the use of ML-driven components as destroy or

repair methods inside the Large Neighborhood Search (LNS) metaheuristic, trying to

understand if, where, and when it is effective to apply them in the context of VRP.

For these purposes, we propose NeuRouting, an open-source hybridization frame-

work aimed at facilitating the integration between ML and LNS.

Regarding the destroy phase, we adopt a Graph Neural Network (GNN) assisted

heuristic, which we hybridize with a neural repair methodology taken from the litera-

ture. We investigate this integration both on its own and as part of an Adaptive Large

Neighborhood Search (ALNS), performing an empirical study on instances of various

sizes and against some traditional solvers.
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Chapter 1

Introduction

In order to provide a general idea of what the rest of the dissertation covers, this first in-

troductory chapter outlines the context and the reasons behind our research. Section 1.1

presents the field of combinatorial optimization, focusing on the particular class of rout-

ing problems and giving some hints on why machine learning can be beneficial within

this area, section 1.2 summarizes some relevant research questions not yet answered

by the scientific community regarding these hybrid techniques, section 1.3 provides an

overview of our contributions for answering them, and, finally, section 1.4 explains the

organization of the following chapters.

1.1 Context

Operations Research (OR) is the area of mathematics concerning the development and

application of analytical methods to improve decision-making. Born during the World

War II as an initiative for military planning, nowadays, it forms the backbone of some

of the most important industries, including but not limited to, transportation, telecom-

munications, logistics, scheduling, and supply chains [44].

OR problems are formulated using integer constrained optimization language (i.e.,

with integral or binary variables on which to perform decisions). While not all such

problems are hard to solve (e.g., finding the shortest path between two locations), we

concentrate on the subset of them belonging to the field of Combinatorial Optimiza-

tion (CO). This kind of problems have the common characteristic of being NP-hard

[32], which makes it impossible to solve them optimally at large scales as exhaustively

searching for their solutions is beyond the limits of modern computers. The literature
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about CO covers the rich set of techniques researchers have developed to tackle the is-

sues related to this aspect. Take for instance the famous Travelling Salesman Problem

(TSP), its state-of-the-art solver, Concorde1, leverages over 50 years of research on lin-

ear programming, cutting plane algorithms, and branch-and-bound. These approaches

have been collectively learned by the scientific community to address the inaccessible

distribution of problem instances available.

Machine Learning (ML) focuses on performing tasks in domains for which no clear

mathematical formulation emerges (e.g., images, text, voice, etc.). CO instances present

this same characteristic and, therefore, are good candidates to be solved using this ap-

proach [5]. It is important to notice that the focus is not on substituting one with the

other, rather, the merging between the two worlds aims at incorporating ML compo-

nents in the CO algorithm to automatically perform decisions on a chosen distribution

of instances.

The implicit knowledge extracted by ML algorithms is complementary to the ex-

plicit expertise extracted through CO research. From the CO point of view, ML can

both go beyond the expert injected knowledge and replace heavy computations with a

fast approximation. From the ML point of view, CO can decompose the problem into

smaller, simpler, learning tasks. Despite being relatively new, there are already relevant

examples in which this marriage has proven successful, the most noticeable ones being

chip design [40] and protein folding [31].

Among the many CO problems available in the literature, we focus our attention on

the Vehicle Routing Problem (VRP) [54], which concerns the design of the optimal set

of routes involving a fleet of vehicles starting from a central depot, and required to serve

a set of geographically scattered customers. The real-world applications of this problem

are multiple, the most straightforward one being delivery services, but more generally

including all the area of transportation.

Apart from its practical relevance, the interest in studying VRP from the scientific

community lies in its inherent difficulty, being NP-hard. In order to overcome the lim-

itations associated to this computational class, the majority of the state-of-the-art algo-

rithms rely on handcrafted heuristics for making decisions that otherwise would be too

expensive to compute [36]. Most recent approaches for facing VRP involve using ML

1https://www.math.uwaterloo.ca/tsp/concorde/index.html

https://www.math.uwaterloo.ca/tsp/concorde/index.html
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to perform these decisions, either progressively constructing the final solution [42, 35],

or starting from a feasible solution and iteratively improving it [12, 27].

Since we believe these latter methods are the most promising to be enhanced with

ML in the case of VRP, we study their integration in the metaheuristic known as Large

Neighborhood Search (LNS) [45], which is based on the idea of repeatedly relaxing a

part of the actual solution using a destroy operation, and subsequently fixing it using a

complementary repair operation.

1.2 Research Questions

Considering LNS applied to CO problems, research has focused either on destroy a

solution or on repair a partial one using ML approaches for “learning to improve”.

In the vehicle routing case, while for the repair heuristic we can take inspiration

from the existing literature [27], with regard to the destroy methodology there is no

promising candidate we can rely upon, given that, the work proposing it treat completely

different problems and are strictly dependent on the usage of a Mixed Integer Linear

Programming (MILP) solver [1, 51].

Which neural model can we employ for this task in the VRP case? Can hybridizing

the neural destroy and repair outperform the already existing techniques? Even if not,

when and where is it useful to employ neural-assisted operations among the different

phases of the algorithm?

Despite being complementary to each other, the aforementioned research are not

truly compatible; indeed, since each carries its own implementation of the LNS with

the corresponding destroy and repair steps embedded inside, there exist an inherent

difficulty in decoupling the different phases of the algorithm. The main issue related to

this aspect lies in its poor extensibility: every time a new idea, either for destroying or

for repairing the current solution, is developed, there is necessity to re-adapt the entire

LNS metaheuristic. Is it possible to design it in a more modular way so that these

limitations are overcome?
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1.3 Contributions

Purpose of this research is to answer the questions presented in section 1.2:

• Regarding the destroy phase, we propose a Graph Neural Network (GNN) as-

sisted approach, adapting the architecture in [34] for our LNS use case.

• We hybridize our neural-guided destroy with the neural-based repair architecture

presented in [27], parameterizing the policy followed by the latter on the deci-

sions taken by the former. Our interest does not lie solely in determining if a

“completely neural” line of attack can outperform the already existing techniques

for solving VRP, rather, we want to compare its effectiveness with respect to pair-

ing ML-based heuristics with some traditional counterparts.

• We take into consideration the case of Adaptive Neural Large Neighborhood

Search (ANLNS), in which multiple destroy/repair operation pairs, including neu-

ral enhanced ones, are jointly exploited to improve the quality of the current so-

lution.

• We provide an open-source hybridization framework, NeuRouting2, for comfort-

ably experimenting different destroy/repair combinations in order to determine

the most suitable ones in any scenario.

An empirical study is conducted solving a fixed set of instances under the same con-

ditions, and then testing the generalization performance of our best approaches when

dealing with instances, taken from the literature, more difficult than the ones used for

training. We evaluate the aforementioned neural options with respect to: some stochas-

tic methods as regards the destroy step, and to an exact procedure or a greedy heuristic

for the repair phase.

1.4 Organization

The remainder of the dissertation is organized following the traditional structure of a

scientific paper.

2https://github.com/mazzio97/NeuRouting

https://github.com/mazzio97/NeuRouting
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Chapter 2 provides all the theoretical background needed to understand the research

done, starting from the notions of CO and ML up to the peculiar aspects of VRP.

Chapter 3 covers the existing literature about the integration of ML and CO, and the

various techniques through which it can be achieved; with particular attention, but not

limited to, routing problems.

The inner functioning of the neural methods we have included and a brief description

of our LNS framework are detailed in chapter 4.

The various experiments led to determine the effectiveness of the proposed ap-

proaches are described in chapter 5, along with the adopted training methodology.

Finally, in chapter 6, we make our final considerations on the work done, outlining

some future research directions which may be of interest to undertake.





7

Chapter 2

Background

This chapter aims to give the reader a primer knowledge about all the relevant concepts

which we will make use of throughout the rest of the dissertation. Specifically, section

2.1 presents the field of combinatorial optimization and the most widely used techniques

to deal with it, section 2.2 delves into the family of vehicle routing problems in particu-

lar, section 2.3 describes more in-depth how large neighborhood search can be applied

for solving a routing problem, and section 2.4 provides a summarized description of

some machine/reinforcement learning techniques which are needed to understand the

methodologies adopted.

2.1 Combinatorial Optimization

Optimization problems, from a mathematical point of view, involve a set S = x1,x2, ...,

either finite or infinite, in which each object x ∈ S is linked to a cost computed using an

objective function f (x). To optimize f (x) means to find the object x∗ ∈ S that returns

the best value f ∗(x), which can be either the minimum or the maximum of f depending

on the applications.

In Combinatorial Optimization (CO), the set S is finite. Though this may seem as a

rather easy scenario, the problems to be solved generally fall under the NP-hard class of

computation, thus they involve a huge number of objects, leading exhaustive search to

be practically intractable.
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2.1.1 Exact Methods

An exact method for solving a CO problem is a general purpose algorithm which guar-

antees to find the optimal solution. This kind of approaches, while being effective for

some problems, usually present an exponential computational complexity, making them

unsuitable to be used due to the huge amount a time that would be needed to provide

optimal solutions.

CP-SAT

Without loss of generality, a CO problem can be formulated as a constrained program

(CP). Constraints model natural or imposed restrictions of the problem, variables define

the decisions to be made, while the objective function, generally a cost to be minimized,

represents the measure of the quality of every feasible assignment of values to variables.

CP is an approach for solving discrete optimization problems which consists of two

main components: propagation and search. Propagation is the process of communicat-

ing the domain reduction of a decision variable to all the constraints which involve that

same variable. Search deals with the strategies to adopt when selecting a variable and

when restricting the domain of its possible values.

Complementary to CP, we can use SAT solvers. The satisfiability problem (SAT)

of propositional logic aims at determining if there exists an interpretation that satisfy

a given boolean formula. It is one of the most well known problems in the computer

science community, because it is the first which was proven to be NP-complete [13].

This characteristic enables many hard problems to be encoded as propositional formulas

and efficiently solved using a SAT solver.

CP-SAT is a hybrid of CP and SAT that combines the expressivity of the former with

the efficiency of the latter. It is based on the so-called lazy clause generation [52], which

consists in recording the reasons which have led to a failure in previous propagations,

to prevent the search repeating the same errors in future ones. The most well known

CP-SAT solver is Google OR-Tools1.

1developers.google.com/optimization

developers.google.com/optimization
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Mixed-Integer Linear Programming

If the objective and constraints are linear, the problem is called a linear programming

(LP) problem. If, in addition, some variables are also restricted to only assume integer

values, then the problem is a mixed-integer linear programming (MILP) problem.

The set of points that satisfy the constraints is the feasible region. Every point in

that set (often referred to as a feasible solution) yields an upper bound on the objective

value of the optimal solution.

With respect to complexity and solution methods, LP is a polynomial problem, well

solved, in theory and in practice, through the simplex algorithm [17]. MILP, on the other

hand, is an NP-hard problem. Indeed, it is easy to see that the complexity of MILP is

associated with the integrality requirement on (some of) the variables, which makes

the MILP feasible region non-convex. Dropping the integrality requirement defines a

proper relaxation of MILP (i.e., an optimization problem whose feasible region contains

the MILP feasible region), which happens to be a polynomially solvable LP.

Branch-and-bound (B&B) implements a divide-and-conquer type of algorithm rep-

resentable by a search tree in which, at every node, an LP relaxation of the problem is

efficiently computed. If the relaxation is infeasible, or if the solution of the relaxation is

naturally (mixed-)integer (i.e., MILP feasible), the node does not need to be expanded.

Otherwise, there exists at least one variable, among those supposed to be integer, taking

a fractional value in the LP solution and that variable can be chosen for branching, i.e.,

by restricting its value in such a way that two child nodes are created. The two child

nodes have disjoint feasible regions, none of which contains the solution of the previous

LP relaxation.

Gurobi2 and CPLEX3 are two of the most well known MILP solvers available buy-

ing a proprietary license, while, among the free alternatives, SCIP4 is the preferred

choice.
2https://www.gurobi.com/
3www.ibm.com/analytics/cplex-optimizer
4www.scipopt.org/

https://www.gurobi.com/
www.ibm.com/analytics/cplex-optimizer
www.scipopt.org/


10 Chapter 2. Background

2.1.2 Heuristics

It is not always possible or appropriate to apply exact solution methods due to basically

two concurrent issues: the inner complexity of a CO problem (e.g., an NP-hard prob-

lem), and the time available to provide a solution, which may be limited. To this respect,

it is important to clarify that the use of a heuristic method instead of an exact one must

always be preceded by an attempt to formulate a model of the CO problem in the form

of a MILP: this effort is useful to motivate the choice of the latter approach if the exact

solution in a reasonable running time is not viable using the former.

It is also worth nothing that, while in some cases the availability of a provable op-

timal solution is necessary, in the vast majority of real scenarios a good approximate

solution is enough, in particular for large size instances of a CO problem. In fact:

• For many parameters coming from a real application just estimates are available,

which may be also subject to error, and it may be not worth waiting a long time

for a solution whose value (or even feasibility) cannot be ensured.

• In a real-time system it is required that a “good” feasible solution is provided

within a limited amount of time (e.g., few milliseconds).

These examples attest for the extended use of methods aiming at providing “solid”

solutions and guarantee acceptable computing times, even if they cannot guarantee op-

timality: they are called heuristic methods (from greek eur‘ıskein = to find).

In many CO cases, it is possible to devise some specific heuristic that exploits fea-

tures of the problem itself and the human experience of who solves it in practice. In

fact, very often, an optimization algorithm comes directly from coding the rules applied

to “manually” solve the problem.

Constructive Heuristics

Constructive heuristics provide a solution by building it based only on input data and

using a scheme that does not consider, or strongly limits, backtracking: they start from

an empty solution and, iteratively, at each step, new elements are added to the solu-

tion according to a predefined expansion criterion, until a complete solution is defined.

Among the many possible constructive heuristics, the most common are:
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• Greedy algorithms: adopt a local expansion criterion, that is, the choice is the

one which seems to be the best at that moment; at each iteration, the element to

add to the current solution is the one that provides the best improvement to the

objective function.

• Exact solution embedding: expansion criterion can be interpreted as an opti-

mization (sub)-problem, which is easier than the original one.

• Simplifying exact procedures: while exact algorithms require an implicit enu-

meration (e.g., B&B) that gives rise to an exponential number of alternatives to

be evaluated, we can select only a subset of them based on some criterion (e.g,

stop after a certain depth, stop after a fixed time-limit, beam search).

Notice that all of these techniques are devised such that the overall final running

time is short, which means the computational complexity is polynomial.

Improvement Heuristics

Given an optimization problem P, defined by an objective function f and a feasible

region X . A neighborhood N is an application N : s → N(s) that associates, to each

point s ∈ X a subset N(s)⊆ X .

The basic idea of the heuristic known as neighborhood search is the following: start

from an initial (current) solution x and try to improve it by exploring a suitable neighbor-

hood. If the neighborhood contains a solution x0 better than x, then iterate the process

considering x0 as the new current solution.

The simplest version of neighborhood search is local search: the algorithm stops

when the neighborhood of the current solution contains no improving candidates. How-

ever, this guarantees the current solution is a local optimum not a global optimum, and

even if we let the process continue indefinitely it would not improve the already pro-

vided best result.

Metaheuristics, as the name suggests, are general algorithmic methods which are

devised, independently of the specific CO problem, to guide the local search heuris-

tic avoiding getting stuck in local optimums. There are a wide variety of metaheuris-

tics [6], the most well known in the CO context being: Simulated Annealing, which
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stochastically allows deteriorating solutions to be selected, Tabu Search, which pre-

vents revisiting the same neighbors, and Large Neighborhood Search, which performs

the investigation of promising candidates in a wider region of the solution space.

2.1.3 Large Neighborhood Search

As we already said, given a feasible solution to an instance of a problem, local search

algorithms explore a neighborhood of that solution trying to improve it. This process

can be performed using a brute force approach only if the size of the neighborhood is

small, otherwise, we should employ techniques based on CP/MILP. In this latter case,

we talk about large neighborhoods, and the usual methodology to search through them is

by fixing a certain percentage of the available variables to their current value and solve

the reduced version of the original problem consisting only of the remaining unfixed

ones.

The advantage of having a large neighborhood is the possibility to explore a farther

region of the solution space, and that makes it harder to get stuck in local minima.

Indeed, the percentage of variables to fix is critical for the effectiveness of the algorithm,

since if it is too large we risk spending too much time looking at the neighborhood of

a single solution, while if it is too small we would not get any benefit with respect to

using brute force.

Large Neighborhood Search (LNS) [45] is a metaheuristic firstly proposed by Shaw

in 1998, which demonstrated particularly effective for solving vehicle routing problems

[50]. While most neighborhood search algorithms explicitly define the neighborhood to

explore, in LNS, it is implicitly determined by a destroy followed by a repair phase. The

destroy procedure is mainly defined by a degree of destruction, representing the fraction

of variables affected by the procedure, and typically contains an element of stochasticity

such that different parts of the solution are destroyed at every invocation of the method.

The repair procedure rebuilds the destroyed solution either using an exact or a heuristic

algorithm.

The neighborhood N(x) of a solution x is then defined as the set of solutions that can

be reached by first applying the destroy method and then the repair method, as depicted

in figure 2.1.
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FIGURE 2.1: LNS conceptual representation.

The candidate solution for the next iteration is the best solution across the neigh-

borhood, and its acceptance criteria can be designed in different ways apart from only

allowing improving solutions as in the original formulation of Shaw [50]. For instance,

Ropke & Pisinger [48] propose to use simulated annealing: a new solution is always

accepted if of least cost than the current one or with probability e−(c(xt)−c(x))/T , where

c is the cost function, x the current solution, xt the candidate one, and T the tempera-

ture which is decreased gradually at each iteration to progressively refuse deteriorating

solutions.

Two key concepts when designing a LNS algorithm are diversification and inten-

sification. While the former deals with visiting unexplored regions to be sure that the

search space is not confined to a reduced landscape, the latter explores more thoroughly

promising regions in the hope to find better solutions. Usually, destroy methods aims

at diversification while repair methods are intended for intensification, however, we can

also perform intensification during destruction by removing variables considered critical

according to some metric.

2.2 Vehicle Routing Problem

One of the most notorious applications of combinatorial optimization is vehicle routing

(VRP) [54], in which the goal is to find the best routes for a fleet of vehicles visiting a
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set of locations. It typically concerns the service of a delivery company: from one depot

which has a set of vehicles who can move on a given road network to a set of customers,

determine a set of routes, one for each vehicle, starting and ending at the depot, such that

all customers’ demands and operational constraints (e.g., capacity, time) are satisfied

and the global transportation cost (e.g., fuel saving, delivery time, distance covered) is

minimized.

The network can be described using a graph, where the edges are the roads and

the vertices are the customers to visit plus the depot. In a real-world scenario, the cost

associated to each edge can be easily computed using some shortest path algorithm. The

travel time is the sum of the travel times of the arcs involved in each vehicle computed

route.

2.2.1 Vehicle Routing Family

The term “vehicle routing” does not address a single CO problem in particular, rather,

it covers an entire family of problems, each characterized by the introduction of new

constraints or the relaxation of the ones defined in another formulation.

The most well known variants of VRP in literature are differentiated, among the

others, for: the number of vehicles involved (the simplest case of one vehicle is referred

to as TSP), the presence of capacity limits for the vehicles (CVRP), time-windows as-

sociated to each customer during which they must be visited (VRP-TW), possibility to

collect items along the tour (VRP-PD).

A comprehensive map of the relation between the various vehicle routing problems

is represented in figure 2.2.

2.2.2 Capacitated VRP

We focus our attention on the Capacitated Vehicle Routing Problem (CVRP) [16], which

presents the following properties:

• V = 0,1, ...,n is the set of nodes, each with a different location.

• The node 0 represents the depot, while the nodes from 1 to n the customers with

their respective demands qi.
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Source: Gonzalez-Feliu [22]

FIGURE 2.2: The “genealogical tree” of vehicle routing problems.

• The edge connecting two nodes i and j has a travel cost referred to as ci j.

• All the p vehicles, where p is not given a priori, have the same maximum capacity

Q.

• The objective is to serve all the customers, while never exceeding the capacity of

the vehicles, traveling at the lowest possible cost.

Based on this description, we can give a mathematical formulation of our problem in

the form of a MILP as follows:
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min
p

∑
k=1

n

∑
i=0

n

∑
j=0

ci jxi jk (2.1)

s.t.
n

∑
i=0

xi jk =
n

∑
i=0

x jik ∀ j ∈ {1, ...,n}, k ∈ {1, ..., p} (2.2)

p

∑
k=1

n

∑
i=1

xi jk = 1 ∀ j ∈ {2, ...,n} (2.3)

n

∑
j=1

x1 jk = 1 ∀k ∈ {1, ..., p} (2.4)

n

∑
i=0

n

∑
j=1

q jxi jk ≤ Q ∀k ∈ {1, ..., p} (2.5)

u j −ui ≥ q j −Q(1− xi jk) ∀i, j ∈V \{0} i ̸= j (2.6)

qi ≤ ui ≤ Q ∀i ∈V \{0} (2.7)

xi jk ∈ {0,1},xiik = 0 ∀k ∈ {1, ..., p}, i, j ∈ {0, ...,n} (2.8)

The binary variable xi jk has a value of 1 if vehicle k drives from node i to node

j, 0 otherwise. The expression (2.1) represents the objective function, (2.2) and (2.3)

ensures that every node is entered and left only once, (2.4) and (2.5) verify that all

vehicles start their tours at the depot and do not exceed the maximum capacity during it.

Finally, (2.6) and (2.7) solve the subtours elimination problem, in which a vehicle route

is composed by more than one connected component, using the Miller-Tucker-Zemlin

formulation [18].

The best known solver entirely dedicated to VRP is LKH5, which is based on the

Lin-Kernighan-Helsgaun heuristic [25], originally proposed specifically for TSP, but

then extended to other routing problems [24].

2.3 Large Neighborhood Search for CVRP

We have analyzed the characteristics of LNS in a general context, however, we are

interested in particular to the CVRP, for which a formal definition has been given in

5http://akira.ruc.dk/~keld/research/LKH-3/

http://akira.ruc.dk/~keld/research/LKH-3/
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section 2.2. We can exploit this practical setting to further concretely explain how LNS

works.

Take an instance of 100 customers and a feasible solution to that instance. Suppose

our destroy operation is designed to destroy 10% of the solution, this translates in re-

moving 10 customers by splitting the routes they belong to in two separate incomplete

tours. Note that, despite the small percentage considered, there are
(100

10

)
= 100!

10!×90! ≈

1.73×1013 ways to select the nodes to remove.

For each partial solution generated by the destroy method, the repair procedure takes

a customer who has been removed and connects it to an incomplete tour or to another

“isolated” customer. A hypothetical iteration of LNS in the discussed case is shown in

figure 2.3.

(A) Feasible solution

(B) After destroy method (C) After repair method

FIGURE 2.3: LNS iteration on a CVRP instance containing 100 cus-
tomers. Different colors correspond to different complete routes. If gray
the route is incomplete, which means it does not start and/or end at the

depot. Orange nodes correspond to the removed customers.
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2.3.1 Initial Solution

The first step of LNS consists in obtaining an initial solution for the CVRP instance

taken into consideration. One of the most common approaches consists in constructing

it following a greedy selection heuristic: starting from the depot, visit every time the

nearest customer from the current location as long as the vehicle capacity is sufficient

to satisfy the demands of the served customers, otherwise go back to the depot. Repeat

the same policy until there are no missing customers to go to.

A more refined solution can be obtained using one of the constructive approaches

discussed in section 3.1. However, these are often computationally heavier algorithms

than a simple heuristic, which take away time to the searching procedure and do not

provide any guarantees of obtaining a better result just because the starting solution is

more promising.

(A) Generated instance (B) Greedy solution

FIGURE 2.4: An instance with 100 customers and the corresponding
greedy solution routes.

2.3.2 Destroy Methods

The destroy method has a crucial role inside the LNS framework. If only a small part

of the solution is destroyed, then the benefits of having a large neighborhood are lost.

Conversely, if a large part is removed, dependent on how the partial solution is repaired,

we could fall in time-consuming iterations or poor quality solutions.

Moreover, the destroy procedure must also be designed in such a way that the entire

search space can be reached, therefore, it should make it possible to destroy every part

of the solution and not focus only on destroying a little fraction of it.
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The simplest method of selection of customers is obviously at random. Recalling the

previous example instance of 100 customers and a degree of destruction of 10%, this

algorithm selects stochastically 10 customers without replacement and removes their

incoming and outcoming edge from the current solution.

Alternatively, we can exploit the “relation” between the variables to determine which

customers remove. This is the case of point-based destruction, which, once sampled the

coordinates of a point in the map, takes the 10 customers closest to that position.

Maintaining the same stochastic algorithm of the previous method, the tour-based

destroy determines the nearest route, deletes all the customers belonging to it and repeats

the procedure until at least the desired number of nodes has been picked.

2.3.3 Repair Methods

Repair methods are often based on some approximated or exact algorithms for the given

problem. While the former are usually domain specific greedy-based heuristics, the

latter are typically performed using an optimization suite and can be relaxed to reduce

time resources at the expense of solution quality.

A typical greedy repair algorithm for CVRP can be designed selecting the customers

which are not in any “complete” route (i.e. starting and ending at the depot) nor in the

middle of a “partial” route, and connecting each of them to the nearest node presenting

these same properties without violating the capacity constraints of the vehicle. In order

to introduce some sort of diversification, the sequence in which the nodes are processed

could be produced stochastically.

On the other hand, a MILP reparation is an exact method which relies on an opti-

mization solver (e.g., SCIP) to solve the integer programming formulation of the sub-

problem where all but the incoming and outcoming edges of the removed nodes are

already fixed.

2.4 Machine Learning

Machine Learning (ML) is the area of Artificial Intelligence which involves algorithms

that are not explicitly programmed to solve a task but rather can improve their behavior
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automatically. Indeed, models are fed with a large quantity of data samples and, via

a learning procedure, they try to learn the unknown statistical distribution of the phe-

nomenon that data belongs to. This training procedure is aimed at minimizing a loss

function, which assumes different forms depending on the learning method, i.e., super-

vised – the ground truths are known –, unsupervised – the ground truths are not known –,

and reinforcement learning – there are no ground truths, but rather reward mechanisms.

2.4.1 Reinforcement Learning

Reinforcement Learning (RL) [53] is concerned with how autonomous and adaptive

agents behave and take actions. Differently from supervised learning, in RL the learning

procedure involves some kind of reward mechanism, and it is aimed at maximizing the

future cumulative reward, similarly to how biological learning works.

RL is a trial and error process where an agent performs actions in an environment.

At each step the agent has a state and transitions from it to a new one receiving a reward,

as represented in figure 2.5. The purpose is to learn the optimal policy (i.e., a mapping

between a state and an action) to follow in order to maximize that reward over time (i.e.,

the so-called value).

Source: https://spinningup.openai.com/

FIGURE 2.5: The high-level worflow of a reinforcement learning algo-
rithm.

Based on the actual procedure through which the learning occurs, we can subdi-

vide RL into two different categories: model-based methods, which focus on the envi-

ronment knowing its transition functions (e.g., board games), and model-free methods,

which do not take the environment into consideration and solely utilize the experience

collected by the agent.

https://spinningup.openai.com/
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The main upside of model-based approaches is that they allow the agent to plan by

thinking ahead, seeing what would happen for a range of possible choices, and explicitly

deciding between its options. The main downside is that a ground-truth model of the

environment is usually not available or, even if it is, presents a too large space to be

usefully explored.

That is the reason why model-free algorithms are more popular and have been more

extensively studied. In particular, we can distinguish between value-based and policy-

based methods.

Value-based Methods

Value-based methods, whose major exponent is DQN [41], are based on the concept of

action-value function Qπ(s,a), which is a measure of the expected reward if we start in

state s, take an arbitrary action a, and then act according to the policy π .

Methods in this family learn an approximator Qθ (s,a) for the optimal action-value

function, Q∗(s,a). This optimization is almost always performed off-policy, which

means that each update can use data collected at any point during training. This prop-

erty yields the advantage of being substantially more sample efficient, because data can

be reused more effectively than when adopting policy-based techniques.

The corresponding policy πθ can be obtained always selecting the best action in the

current state according to Qθ :

a(s) = argmax
a

Qθ (s,a)

Policy-based Methods

Methods in this category – REINFORCE [60] to name one – explicitly represent the

policy as a function πθ (a|s), whose output is a probability distribution over all actions.

They optimize the parameters θ directly by gradient ascent on the performance objective

J(πθ ). This optimization is almost always performed on-policy, which means that each

update only uses data collected while acting according to the most recent version of the

policy.
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The primary strength of policy-based with respect to value-based methods is that

they are more stable and reliable, because they directly optimize the function we want

to obtain, not one from which we can derive it.

Actor-Critic Methods

The aim of actor-critic methods is to combine the advantages from both value-based

and policy-based approaches.

The principal idea is to split the model in two parts. The actor takes as input the

state and outputs the best action, essentially controlling the agent behavior by learn-

ing the optimal policy (i.e., policy-based). The critic, on the other hand, evaluates the

action by computing the Q value function (i.e., value based). This way, the critic pro-

vides the measure of how good the action taken by the actor has been, which allows to

appropriately adjust the learnable parameters for the next train step.

It is like if the two models participate in a game where they both get better in their

own role as the time passes. The result is that the overall architecture will learn to play

the game more efficiently than the two methods separately.

2.4.2 Supervised Learning

In supervised learning the ground truths (i.e., labels) are known, therefore they can be

explicitly used in the loss function, which assumes the form: L (y−M (x,θ)), where

y are the ground truths, x the input samples, M the ML model, and θ the vector of its

learnable parameters.

The choice of L is critical and strictly depends on the kind of problem we are

dealing with. In particular, if in presence of a regression problem, where we need to

predict a real-valued quantity, Mean Squared Error is the most widely used loss function

and consists in averaging the squared differences between the predicted and ground-

truths values of the samples in the training set. Conversely, if facing a classification

problem, where, for each sample, we need to select a label among a set of available

ones (e.g., determine what an image is about between different categories), the default

loss choice goes to Cross-Entropy. It calculates a score that summarizes the average
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difference between the actual and predicted probability distributions for all categories

in the problem.

Loss functions are a wide and complex topic in ML, comprising a lot of variations

and adaptations of the aforementioned alternatives. However, the optimization algo-

rithm used to minimize them is almost always stochastic gradient descent (SGD) or one

of its variants (e.g., RMSProp, Adam, etc), which consists in iteratively updating the

parameters θ by a small amount, controlled by the so-called learning rate α , going in

the opposite direction of the gradient of the function to minimize:

θi+1 = θi −α ×∇θL (y−M (x,θ)))

The term “stochastic” comes from the limited number of data samples (i.e., usually

referred to as a batch) used to compute the loss before applying a gradient update.

Theoretically, this number should be equal to the number of items in the dataset at

disposal, however, it becomes computationally too expensive to consider them all at

each iteration.

Supervised learning is the most used approach for data-driven applications, how-

ever, ground truths are not always provided or easy to access. For instance, when trying

to build an ML model that mimics a CO solver, learning in such a way is usually not rec-

ommended, because the performance of the model is tied to the quality of the supervised

labels, and getting high-quality labeled data is often expensive if not even infeasible.

Up to now we have referred to the term “model” considering it as a black-box. An

ML model is an algorithm able to exploit the hidden patterns present in the data it is

trained with. It can assume various forms and should be selected depending on its suit-

ability for the task to be solved. Among the most notorious supervised models we can

mention: Linear Regression, Logistic Regression, Support Vector Machines, Decision

Trees, and Artificial Neural Networks. This last type of models deserve a special men-

tion because of their peculiar property of being universal function approximators [26],

which makes them the most valuable choice in any complex scenario.
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2.4.3 Deep Learning

Deep Learning (DL) [23] is a subfield of ML concerned with algorithms inspired by Ar-

tificial Neural Networks (ANN), computational models consisting of parametric com-

posable functions in high dimensional spaces, which mimic the structure and the oper-

ation of the brain.

The most astonishing aspect of this kind of models is their ability to perform auto-

matic feature extraction from raw data, also called representation learning, which let

them approximate even complex functions whose inputs and outputs are far apart (e.g.,

an image with a text describing it).

The simplest ANN architecture is called Multi-Layer Perceptron (MLP) and consists

in taking the input data in a vectorized form and progressively pass it through each

layer constituting the model until obtaining the desired output. When passing through a

layer, an affine transformation is applied on the vector, followed by a non-linear scalar

function, known as the activation function, applied element-wise. The term “deep”

comes exactly from the large number of layers, and consequently of parameters, which

are usually employed.

Not all types of data present the same structure. For instance, text and time series

are a typical example of sequential data, because the order of the elements matters.

Conversely, images are the perfect example of spatial data, because a represented object

remains so irrespective of its position. Depending on the practical application, an ANN

might be more suitable than another, therefore research has been focused on developing

different architectures depending on the domain of interest. In particular, tasks involving

spatial data are usually faced using Convolutional Neural Networks (CNN), while task

involving sequential data with Recurrent Neural Networks (RNN). There are plenty DL

models in literature, each designed for a peculiar task. However, the most important

aspect is that, regardless of their architecture, the usage and the way they learn is very

similar to plain MLP networks.

Attention Mechanisms

Attention mechanisms are one of the greatest breakthrough in the DL community over

the last decade. They represent a processing technique for neural networks that allows
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the model to focus on specific parts of a complex input, similarly to how the visual

attention mechanism of humans does.

Originally emerged as an improvement of the sequence-to-sequence architectures

[3], typically employed for machine translation tasks, their importance is related the

central role they have in the Transformer architecture by Vaswani et al. [56].

The key idea is to compute a score describing the relationship between each pair

of elements belonging to distinct sequences or even the same one (i.e., self-attention).

This aspect has applicability in a large amount of domains beyond language translation,

ranging from object detection [10] to image generation [47].

Graph Neural Networks

The generalization of an attention mechanism for the graph domain is a Graph Neural

Network (GNN), in which, instead of all attending each other (forming a fully-connected

graph), nodes interact only if they are connected by an edge [28].

While there are multiple variants of the original formulation [62], the most popular

ones being Graph Convolutional Networks (GCN) [33] and Graph Attention Networks

(GAT) [57], the key idea of all GNNs is to progressively transform the embeddings of

the graph attributes (i.e., nodes, edges, global-context) without changing the connectiv-

ity of the input graph, and then using them to perform predictions, as visually repre-

sented in figure 2.6. A good introduction to GNNs is the article of Sanchez-Lengeling

et al. [49].

Source: https://distill.pub/2021/gnn-intro/

FIGURE 2.6: The general end-to-end prediction task steps using a GNN
model.

https://distill.pub/2021/gnn-intro/
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Chapter 3

Neural Combinatorial Optimization

Progress made in the last few years in the field of DL, made it possible to expand the

application of such a technique to a wider set of both industrial and research areas. CO

is one of them; indeed, the plethora of scientific papers published on these themes in the

last few years, shows how the combination of the two approaches, commonly identified

with the term Neural Combinatorial Optimization (NCO), can be beneficial under many

aspects [5, 39, 58, 37].

Throughout this chapter, we analyze the different studies related to NCO led during

the last five years, paying particular attention to those concerning routing problems.

Each section covers a different methodology of applying DL to CO; specifically, in

section 3.1 the model is delegated to directly construct the solution (which may be then

refined), in section 3.2 the model assists an existing solver in the decisions it takes or

configure its parameters depending on the instance to solve, and in section 3.3 a heuristic

approach is enhanced using neural-based operations.

3.1 Learn to Construct

One of the most investigated ideas is to train the DL model to output solutions directly

from the input instance. This kind of approach is commonly known as end-to-end, since

the model acts as a black box and independently perform the learned policy constructing

the result node after node.

One of the first attempts to use DL in a routing problem is the one of Vinyals et al.

[59] taking into consideration TSP, the variant of VRP which provides only one vehicle.
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The model used is a Pointer Network (PN), a variation of an RNN with attention mecha-

nisms which outputs a permutation of the input sequence, and is trained in a supervised

manner using as labels the solutions generated by a supervisor solver. The architecture

follows the encoder-decoder pattern, and the decoding process is autoregressive: in or-

der to predict the next node to take, the model considers as input the actions taken from

the previous time steps.

Based on this pioneer work, Bello et al. [4] propose to use reinforcement learning

instead of supervised learning to train the same model. This choice is motivated by the

difficulty to obtain good labels (i.e., solutions) when the considered instances are large.

The reward function they use in their actor-critic algorithm is the negative tour length

of the produced solution.

Nazari et al. [42] keep the same training procedure but enhance the model to address

also CVRP. Their contribution consists in replacing the original encoder, sensible to the

nodes input order, with a permutation invariant embedding based on the position and on

the demands of the customers. The decoding process is still based on a PN coupled with

attention mechanisms. The architecture is illustrated in figure 3.1.

Source: Nazari et al. [42]

FIGURE 3.1: Nazari et. al. end-to-end model inner architecture.

Using actor-critic reinforcement learning as in [4, 42], but substituting the original

encoder architecture with a Transformer network, Deudon et. at. [19] construct a so-

lution which is then refined using the 2-Opt heuristic [14], claiming better results than
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[4].

As in the architecture used in [19], also Kool et al. [35] opt for a Transformer net-

work trained using reinforcement learning. However, in this latter case, they decide

to: sample solutions according to the learned policy probabilities instead of perform-

ing a heuristic refinement, cover together with TSP other routing problems including

CVRP, and interpret the attention mechanism as a weighted message passing algorithm

providing useful information during the decoding step.

GNNs are among the most adopted models for solving CO problems, an overview

of the existing approaches employing them is presented by Cappart et al. [9]. The

first attempt to use a GNN to solve TSP is the one proposed by Dai et al. [15]. The

model, trained using DQN, takes a graph and a partial solution as input, and outputs a

state-value function Q from which greedily estimate the next node in the tour.

Nowak et al. [43] explore supervised learning of a GNN to solve small TSP in-

stances (i.e., n = 20 nodes) from scratch, but obtaining slightly worse results than [4].

On top of this experimental work, Joshi et al. [30] propose a non-autoregressive

approach: a GCN is trained, using supervision, to output the probabilities each edge

belongs to the optimal TSP tour. Subsequently, a beam search is guided according to

the generated “heatmap” to produce the solution. Following the same pipeline, Kool et

al. [34] modify the GCN model in order to adapt it for CVRP.

3.2 Learn to Configure

Instead of directly tackling the problem, ML can be applied to provide additional pieces

of information to a traditional CO solver. The main advantage of these methods, un-

like pure ML ones, is that they can also prove the optimality and the feasibility of the

produced solutions. However, their results when dealing with NP-hard discrete opti-

mization problems, like vehicle routing ones, are usually of less quality. Moreover, this

hybridization is challenging to build, as standard CP frameworks do not natively include

machine learning mechanisms, leading to multiple sources of inefficiencies.

MIPLearn [2] is a supervised framework compatible with Gurobi and CPLEX com-

mercial MILP solvers. Given some training instances, its purpose is to determine the
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configuration parameters of the optimizer which are most likely to give good results

when dealing with the same data distribution.

Instead of presetting the solver, Gasse et al. [21] focus on learning the branching

decisions using a GNN on the variable-constraint bipartite representation of the MILP.

Generalizing the approaches proposed in the two aforementioned works, Prouvost

et al. [46] introduce Ecole, a library for defining, through reinforcement learning, all

the inner aspects of the free optimizer SCIP, which, in this way, acts as a controllable

algorithm.

Cappart et al. [8] focus on injecting ML decisions inside a CP solver, namely

Gecode, instead of a MILP solver. The main issue of using this approach is extensibil-

ity: the solver must be internally modified to accept neural assistance, and that implies

it must also be open-source.

With the aim of overcoming these limitations, Chalumeau et al. [11] propose Sea-

Pearl, a new CP solver written entirely in Julia1, which natively supports machine learn-

ing routines in order to learn branching decisions using reinforcement learning. While

representing a flexible framework that can facilitate future research in the hybridization

of constraint programming and machine learning, SeaPearl is not yet competitive with

industrial solvers.

3.3 Learn to Improve

The methods discussed in section 3.1 focus on learning heuristics that incrementally

build a complete solution. Despite being comparatively fast, their results are usually

worse with respect to the ones of traditional solvers. In order to narrow this gap, ad-

ditional procedures, such as sampling or beam search, are usually exploited. However,

since they rely on the same policy used for construction, exploration capabilities are

intrinsically limited.

Rather than learning construction heuristics, a parallel trend focuses on directly

learn improvement heuristics, which enhance an initial solution by iteratively perform-

ing neighborhood search based on certain ML operators, towards the direction of im-

proving solution quality.

1https://julialang.org/

https://julialang.org/
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These operators, in the case of Lu et al. [38], are multiple man-made heuristics,

which are selected by a machine learning model depending on the current solving state.

In particular, along with improvement operators (e.g., 2-Opt), also perturbation opera-

tors, useful to escape local minima, are available.

Differently, Chen & Tian [12] and, subsequently, Wu et al. [61] propose to directly

let the ML model perform the improvement step on the current solution. Specifically,

a region-picking policy selects the fragment of solution to be improved, while a rule-

picking policy executes the rewriting operation applicable to that region. Both works

use an actor-critic algorithm for training, but the former relies on a Long Short Term

Memory (LSTM) network, while the latter on a Transformer network.

The same attitude of learning the heuristics to apply instead of employing human-

designed algorithms, is followed by Hottung & Tierney [27]. The innovative aspect of

this work is that this kind of approach is integrated in a Large Neighborhood Search

(LNS) setting as the “repair” mechanism, and applied specifically to CVRP. The actual

model architecture which performs the operation is shown in figure 3.2.

Source: Hottung & Tierney [27]

FIGURE 3.2: Hottung & Tierney neural repair model inner architecture.

For each partial tour xi ∈ Xt generated after a stochastic solution destroy, an em-

bedding hi is computed using the encoder Embc. The same is done for a randomly

selected tour end ft , which is transformed in ht by a different encoder Emb f . The com-

puted embeddings pass through an attention layer Att, whose output is a context vector

c describing the relevance of the inputs with respect to the tour end. Subsequently, the

vector c is concatenated with ht and given to a two-layer feed-forward network which
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produces the vector q. Finally, based on h0...hn and q, the logits q0...qn are computed

and the softmax operation is performed to obtain a probability distribution over all the

actions, each corresponding to an xi.

Instead of learning the “repair” policy, Addanki et al. [1] and Sonnerat et al. [51]

propose to learn the “destroy” policy, and then to use an “off-the-shelf” MILP solver,

in their case SCIP, to optimally reconstruct the resulting sub-problem, where all the

variables except the removed ones are fixed, as it is explained in figure 3.3.

Source: Sonnerat et al. [51]

FIGURE 3.3: Starting from a feasible assignment of the variables of a
MILP problem, at each iteration, a neural selection policy destroys ηt of

them and an “off-the-shelf” solver repairs the resulting sub-problem.

The neighborhood selection is operated by a GCN on the bipartite graph represen-

tation of the MILP, where the nodes are the variables plus the constraints defining the

problem, while the edges only exist between a constraint node and the variables’ nodes

it involves. Their approach is evaluated on four different CO problems not including

any VRP variant.
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Chapter 4

Neural LNS for CVRP

Among the techniques for learning how to improve a solution, discussed in section 3.3,

we focus our attention on the LNS iterative procedure applied in the context of CVRP.

This problem, like many other CO ones, is highly structured and high-dimensional,

making ANN the most promising candidates to parameterize the heuristic policies in

charge of performing decisions either to destroy or to repair a solution.

The approach followed in this work falls into the third category presented by Bengio

et. at. [5], namely the use of machine learning alongside optimization algorithms. It

consists in repeatedly querying the same ML model to make decisions based on the

current state, which may or may not include the problem definition. The workflow of

this paradigm is depicted in figure 4.1.

Source: Bengio et al. [5]

FIGURE 4.1: Machine learning alongside optimization algorithms work-
flow.
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The structure of the chapter is designed as follows: section 4.1 presents the neural

components and the way they are used inside our LNS framework, while section 4.2

briefly describes the NeuRouting architecture and available tools.

4.1 A Hybrid Approach

Neural Large Neighborhood Search (NLNS) is an extension of the original LNS meta-

heuristic (see 2.1.3 for further details), where destroy and/or repair methods are guided

using DL-based algorithms. The purpose is to exploit the generalization capabilities of

DL with the search efficiency of LNS in order to obtain the best from both worlds.

4.1.1 Neural Destroy

GNNs represent one of the most promising research directions in NCO for routing prob-

lems, since they naturally operate on their intrinsic structure. The pipeline which is

usually followed resembles the one of figure 4.2:

Source: https://github.com/chaitjo/learning-tsp

FIGURE 4.2: Neural Combinatorial Optimization using GNNs pipeline.

(a) The combinatorial problem is formulated via a graph.

(b) Embeddings for each graph node are obtained using an encoder.

(c) Probabilities are assigned to each node for belonging to the solution set.

https://github.com/chaitjo/learning-tsp
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(d) The predicted probabilities are converted into discrete decisions.

(e) The entire model is trained via imitating an optimal solver (i.e., supervised learning)
or through minimizing a cost function (i.e., reinforcement learning).

We have designed our destroy method based on the work of Kool et. at. [34], where

a Residual Gated GCN [7] is used to predict a heatmap of the promising edges of an

instance. In particular, we apply the same network masking all the edges but the ones

in the current solution, obtaining a likelihood estimation of each of them as depicted in

figure 4.3. The generated heatmap guides the selection of the edges to remove, since

those presenting a low probability value are likely to improve the solution if replaced.

(A) Current solution (B) Generated heatmap

(C) After neural destroy

FIGURE 4.3: Destroy operation based on the edges likelihood heatmap.

In order to guarantee diversification during the process, the edges to remove are not

greedily selected taking the ones with lower likelihoods, otherwise every partial solution

of the neighborhood would contain the same configuration to repair. Conversely, they

are sampled considering the probability density function of the normalized values of

the heatmap: the more likely an edge belongs to the optimal solution according to the

model, the less likely it is removed.
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4.1.2 Neural Destroy & Repair

The neural model employed for the repair operation is adapted from the work of Hot-

tung & Tierney [27]. Given the incomplete solution from the destroy phase, the model

stochastically selects one of the unconnected nodes and outputs a probability distribu-

tion over all partial tours this customer can be linked to, meaning that an action consists

in joining the ends of two incomplete tours. This process is repeated until a feasible

solution (i.e., only containing complete routes) is reached. A visual representation of an

iteration of the process is provided in figure 4.4.

Source: Hottung & Tierney [27]

FIGURE 4.4: An example incomplete solution and the associated model
input in the neural repair model.

The policy learned by the model adapts to the specific method used for deteriorating

the current solution. The peculiar aspect of this work consists in performing a neural

hybridization between the DL-based approach proposed in section 4.1.1 and the just

described neural repair heuristic. This translates in parameterizing the architecture in

figure 3.2 on the decisions taken by the GNN during the destroy operation.

4.1.3 Adaptive Neural Large Neighborhood Search

Up to now, we have only taken into consideration the case in which the exploration of

the neighborhood of the current solution is led by a single pair of destroy and repair

operations, however, nothing prevents us from using multiple ones within the same

environment.

Each destroy/repair procedure involved has an associated weight, which determines

how often the method is called during the search, and is adjusted at run-time according
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to the observed effects, to favor the ones most suitable for the instance into considera-

tion. This procedure selection is performed using a “roulette wheel” principle: given wx

the weight associated to a destroy/repair couple, the corresponding probability of being

selected during the search process is px =
wx

∑
n
i=1 wi

. The weight adjustment, instead, is

calculated according to the following formula, where α = 0.2 is the exponential mov-

ing average factor, c(x) and c(xt) are respectively the cost of the current solution and

the cost of the candidate one, and τ is the time needed to perform the iteration:

wx = wx · (1−α)+
c(x)− c(xt)

τ
·α

This extension of the original LNS framework takes the name of Adaptive Large

Neighborhood Search (ALNS), and has the advantage of being more robust. Indeed,

while in pure LNS we have to select a destroy/repair procedure that is expected to work

well for a wide range of instances, in ALNS we can afford to include methods that only

are suitable in some cases, since the adaptive weight adjustment will ensure that these

heuristics will seldom be used on instances where they would be ineffective.

In particular, we are interested in an Adaptive Neural Large Neighborhood Search

(ANLNS), determining what are the effects of mixing traditional destroy methods, like

the ones suggested in section 2.3.2, with our GNN approach from section 4.1.1, match-

ing each destroy operation with the neural repair counterpart parameterized on its deci-

sions.

4.2 NeuRouting: A Hybridization Framework

While previously we have explained the details of the approaches we have adopted,

in this section we briefly present the main components characterizing the architecture

of NeuRouting, our framework built from scratch for comfortably making experiments

aimed at answering the open research questions at the intersection between DL, LNS,

and VRP.
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4.2.1 Instances & Solutions

The first and essential component of any CO tool is the class that represents the instance

of the problem of interest, in our case CVRP. Even though our research considers only

this formulation, it is easy to extend the current implementation by inheriting its cur-

rent properties, and placing additional constraints (e.g., time windows) to address other

vehicle routing variants (e.g., VRP-TW).

Beside specifying all the properties regarding an instance, there exist easier ways to

create it. The main modalities are two: generating the instance according to a specific

probability distribution, like explained in section 5.2.1, or loading a particular instance

from a textual file following the TSPLib format1. The former approach is particularly

useful when there is need to create a lot of instances with common characteristics (e.g.,

during training), while the latter when we want to consider problems taken from the

literature.

One of the critical design choices used in our framework concerns the clear decou-

pling between an instance and its feasible solutions. This is due to the fact that while a

solution is always related to a single instance, for the same instance there exist a huge

amount of solutions, each characterized by its own routes and the actual cost, which

determines its quality.

Furthermore, since we need to rely on a MILP solver in order to perform some spe-

cific operations (i.e., exact reparation of a partial solution), we also provide a conversion

tool for expressing the CVRP instance as an objective function subject to a set of con-

straints compatible with the SCIP free optimizer. This feature can be considered the

bridge between NeuRouting and the configurable approaches presented in section 3.2,

since it makes the former already prone to be extended with the latter.

4.2.2 Solvers & Environments

The component in charge of outputting a solution when given in input an instance of the

problem is called solver. It does not include any particular property because it represents

a general level of abstraction in which even the traditional approaches we use in section

5.4 can be identified with. From an implementation point-of-view, it is an interface

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/DOC.PS

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/DOC.PS
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whose methods to override are reset and solve. The former manipulates the input

instance to make it compatible with the actual solver adopted, the latter defines how the

solution search should be performed, optionally specifying a time and/or a maximum

number of iterations limit.

Inheriting the general structure of a solver, we can define more specific environ-

ments, embedding the algorithmic workflow of a heuristic approach inside the solve

method. In our case concerning LNS specifically, we delegate the construction of the

initial solution to the reset method, and we improve it following the iterative procedure

summarized in the pseudocode 1.

Algorithm 1: Large Neighborhood Search
Input: Instance χ , time limit τ , neighborhood size n, percentage p.
Output: The incumbent solution σ∗.
start = clock()
σ = σ∗ = reset(χ) # find initial solution
while clock()− start ≤ τ do

ψ = neighborhood(σ, n) # generate copies
ψ = destroy(ψ, p) # destroy phase
ψ = repair(ψ) # repair phase
if min(cost(ψ))< cost(σ∗) then

σ∗ = ψ[argmin(cost(ψ))] # update incumbent solution
end
if criteria(ψ, σ) then

σ = ψ[argmin(cost(ψ))] # update current solution
end

end

It is important to notice that the proposed algorithm is completely agnostic with re-

spect to the operations involved, indeed, both destroy and repair are components in-

dependent of the environment they are attached to. This design follows the famous strat-

egy pattern [20], which enables to encapsulate algorithms so that they can be swapped

each other to carry out a specific behavior.

The extensibility of this LNS environment is not limited to the ease it provides in

adding new destroy/repair methods, but is also rooted in the high configurability of its

specific aspects. For instance, the default criteria for updating the current solution is

the same used for updating the incumbent one, however, if we want to integrate aspects

peculiar to other metaheuristics (e.g., stochastically allowing worsening solutions as

contemplated in simulated annealing), we only need to override this single function.
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4.2.3 Destroy/Repair Operations

In the previous section we have emphasized the fact that any operation, being it for

destroying or repairing a solution, is conceptually detached from the LNS environment

where it is employed, so that it is possible to use it also as a stand-alone algorithm. Take

for instance the neural destroy heuristic of section 4.1.1, given a feasible solution and a

destruction percentage, it produces a partial assignment like the one in figure 4.3c.

However, using destroy without repair (or vice versa) does not provide any real ad-

vantage, since the benefits of using one can only be appreciated when the other is con-

trarily applied. This is especially evident in presence of neural-based methods, indeed

we load different weights for the repair policy depending on which destroy method-

ology and percentage has been used for the training procedure, otherwise it would be

ineffective.

In the face of these observations, we can motivate our design choice of injecting de-

stroy and repair components in an ALNS setting as pairs of complementary operations,

called LNS operators, rather than two distinct sets of independent algorithms.

4.2.4 Evaluator

We have presented all the tools needed to perform our investigation of the best LNS

operator or the best combination of them. The only missing component is the one

responsible for fairly evaluating the different solvers made available within NeuRouting.

This is represented by the evaluator, from which the method compare can be called

specifying a set of instances that all the solvers taken into consideration must face.

The main advantage of using the evaluator lies in the possibility of specifying, at the

same time for all the involved solvers, the identical temporal and algorithmic limitations.

Moreover, it enables to repeat the same experiments for multiple runs, in order to obtain

a more reliable estimation of the effectiveness of each approach with respect to the

considered set of instances.

Regarding the produced results, for each solver a different table is generated, in

which the rows correspond to the instances, and the columns to the statistics averaged

over the executed runs.
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Chapter 5

Experimental Study

In this chapter we want to evaluate the capabilities of our NLNS both on instances

of the same size of training used as a test set, and on larger ones to understand their

generalization capabilities. In addition to the different composable NLNS environments,

we perform the same benchmark also on some traditional VRP solvers in order to obtain

a comparison also with external tools.

Section 5.1 explains in detail how the experimental study is conducted, section 5.2

how NLNS environments are trained, section 5.3 investigates the performance of all

the composable NLNS environments, section 5.4 takes the most promising candidates

from the previous experiments to compare them with traditional solvers for VRP, and

in section 5.5 we test the best approaches on larger instances from the literature, with

100 < n < 300. Finally, section 5.6 provides a general discussion about the results

obtained.

5.1 Experimental Setup

Since the random method is the one producing the worse results according to the eval-

uation performance in figure 5.1, we have decided not to investigate it.

In order to fairly evaluate the different configurations, we always use the same set

consisting of 50 instances, independently generated considering the n = 50 and the n =

100 customers case, following the distribution described in section 5.2.1.

For each instance, the corresponding solution can be searched within a time limit,

set to 60 seconds, with the additional restriction of a maximum number of iterations,

set to 100 steps. This choice is motivated by the inner difficulty to compare run times;
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indeed, the programming language used for the implementation (e.g., Python vs C++),

but also the hardware where the algorithms are executed (e.g., CPU vs GPU) can make

a huge difference in terms of performance, without appropriately describing the real

effectiveness of the inspected approach.

All the trainings and the experiments are carried out on tone of the nodes of our

university cluster, running Debian 4.19 and equipped with an NVIDIA GeForce RTX

2080 Ti on the GPU side and with a quad-core 2.2Ghz KVM on the CPU side. In order

to obtain more reliable results, the statistics are averaged over 5 runs, and, while the

instances from the literature are individually analyzed, for the 50 generated ones we

compute the mean to provide a more immediate quality measure.

Among the many configurations that will be presented, the rows corresponding to

the ones of particular interest for answering the research questions motivating our work

are highlighted in light gray, while the best result in each group is shown in bold.

5.2 NLNS Training

Each neural operator we want to employ inside our NLNS setting, being it a destroy

or a repair method, requires a peculiar training process before being used, otherwise,

its performance would be nothing different from a trivial random exploration of the

solutions space.

NeuRouting provides a flexible solution to this need: during the implementation of

an algorithm requiring a DL model, we describe how a training step on a single batch

should be performed and, when launching the training, we must specify which opposite

operation (i.e., a destroy operation if the neural method is a repair and vice versa) should

be used.

5.2.1 Instance Generation

Whatever type of training we decide to opt for, the main ingredient to perform it is

always data. In the context of VRP, there is no commonly agreed dataset currently

available in literature beyond some benchmark collections1, which, however, comprise

1http://akira.ruc.dk/~keld/research/LKH-3/BENCHMARKS/

http://akira.ruc.dk/~keld/research/LKH-3/BENCHMARKS/
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only a maximum of few hundreds of instances. Therefore, the most adopted solution is

to generate the positions of the depot and the nodes, along with their demands, according

to some distribution so that it can be replicated in other works.

Our work follows this same mechanism on one of the most adopted data generation

algorithms, which was first proposed by Nazari et. al. [42]. Specifically, it consists in

uniformly sampling the x and y coordinates in the [0,1] interval, and the demands with

an integer value between 1 and 9 included. The vehicle capacity depends on the number

of customers to serve, in particular, to 10 clients corresponds 20, to 20 corresponds 30,

to 50 corresponds 40, and to 100 corresponds 50.

We have decided to focus our attention on the instances with at least 50 customers,

which, for their complexity, are the ones where the exploration of a large neighborhood

can be more beneficial with respect to the use of traditional methods.

As it is always good practice to proceed during a machine learning training, we

create two separate datasets, one for training the model, and one for evaluating its per-

formance across the epochs on never seen data. These datasets, containing respectively

100000 and 100 instances, are maintained across all the executed trainings, in order to

evaluate the different combinations of destroy and repair operations exactly in the same

conditions.

5.2.2 Training Setting

In order to be coherent with the works we base our neural methods on [27, 34], we have

decided to keep both the hyperparameters of the models and their training implementa-

tion as they are described in the original papers.

Neural Destroy

The Residual Gated GCN comprises 30 layers, has a hidden dimension for each node

and edge of 300, uses mean as the aggregation function, and the final classifier is a

Multi-Layer Perceptron with 3 layers (look at figure 2.6 for a visual reference). The

training is performed in a supervised manner as described in the original work of Joshi

et. al. [30], however, the traditional solver to imitate is not Concorde, peculiar to TSP,

but LKH, which addresses also more general routing problems like CVRP.
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Neural Repair

Differently from the neural destroy, which do not make use of the opposite operator

while learning, the neural repair model printed in figure 3.2 is trained using reinforce-

ment learning adapting its decisions to the specific method selected for destroying the

solution. In particular, the reward is measured as the difference between the total tour

length of the repaired solution and the partial tour length of the destroyed solution.

In order to stabilize the learning process, a critic model is trained, in alternation with

the actor model (i.e., the one who executes the policy), to minimize the mean squared

error between its prediction for the cost of repairing the partial solution and the actual

cost when using the most recently learned policy.

5.2.3 Performance

We focus our attention on the performance of the different destroy and repair combi-

nations during training to determine which ones are the most promising. Following the

approach of [27], we have tried both 15% and 25% as degrees of destruction when the

number of customers is 50, and 10% and 20% when it is 100. The number of epochs,

after an experimental observation of the progresses, has been set to 50, while the batch

size to 256 as reported in the reference papers.

The training time of each NLNS configuration is linked to the hyperparameters and

to the individual destroy/repair components it comprises. The evaluation step is exe-

cuted at the end of each epoch in an environment analogous to the one the destroy and

repair methods are supposed to operate in. Specifically, we run a LNS for an amount of

iterations equals to the number of customers, using as neighborhood dimension (i.e., the

number of solutions destroyed and repaired in parallel at each iteration) the batch size.

Table 5.1 highlights the most crucial aspects for estimating the training time. In par-

ticular, neural destroy is computationally heavier than the other non-neural alternatives,

requiring between 4 to 10 times more and presenting a higher sensitivity to the instance

size n. Conversely, a significant difference among the other methods can be noticed only

when the number of nodes n = 100 and the destroy percentage p = 0.2. Times required
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Destroy Repair Epochs Batch p n Time

random neural 50 256 15% 50 3h 23m

point neural 50 256 15% 50 2h 55m

tour neural 50 256 15% 50 2h 30m

neural neural 50 256 15% 50 12h 22m

random neural 50 256 25% 50 3h 55m

point neural 50 256 25% 50 3h 43m

tour neural 50 256 25% 50 3h 25m

neural neural 50 256 25% 50 12h 59m

random neural 50 256 10% 100 4h 28m

point neural 50 256 10% 100 3h 42m

tour neural 50 256 10% 100 3h 5m

neural neural 50 256 10% 100 1d 18h 7m

random neural 50 256 20% 100 6h 15m

point neural 50 256 20% 100 5h 48m

tour neural 50 256 20% 100 4h 52m

neural neural 50 256 20% 100 1d 19h 58m

TABLE 5.1: Training time of the different NLNS combinations when
varying the instance size and the destroy percentage.

for training must be read considering the need to only perform them once for each com-

bination, because then we can directly load the learned weights inside the corresponding

models and make inferences within few seconds.

The plots in figure 5.1a and 5.1b describe, respectively for n = 50 and n = 100, the

evolution of the mean cost of the validation instances as the repair policy is updated

during the training epochs.

As we could expect, when coupled with the random destroy, the neural repair op-

eration is limited in its learning capabilities probably due to the lack of recognizable

patterns in the partial solution. Conversely, when the destroy operation exhibits some

locality features, like in the point or the tour destroy, the model can more easily improve

its policy, especially when the percentage of solution destroyed is higher.

Mention apart goes to the less human interpretable conjunction between the neural
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(A) NLNS validation instances mean cost, n = 50

(B) NLNS validation instances mean cost, n = 100

FIGURE 5.1: Comparison of the efficiency of different destroy methods
with their respective neural repair policy across the training epochs, us-
ing as reference the mean cost of the validation instances. Same color
corresponds to the same destroy method, same line style to the same de-

struction percentage.

destroy and the neural repair procedures, which, while presenting slightly worsen results

than the others when n = 50, outperforms the competition when n = 100. In particular,

one of the most impressive outcomes is the huge gap between the neural destroy and its

alternatives considering the 10% destruction case.



5.3. NLNS Evaluation 47

5.3 NLNS Evaluation

Our first study consists in evaluating the potentialities of the different NLNS environ-

ments we can build combining the previously presented methods, namely: point and

tour, described in section 2.3.2, plus our neural option of section 4.1.1 as regards the

destroy; exact, relying on the optimal solution of the sub-problem, greedy, adopting a

heuristic approach, and neural, based on the work of [27], for the repair.

5.3.1 Neural Destroy

Since we have defined a neurally-guided destroy operation, we want to analyze the ben-

efits of using it rather than using one of the other available methods when the repair

operation is led by an exact solver, as proposed in [1, 51]. Our choice for the optimiza-

tion suite falls on SCIP 7.0.3.

Since the exploration phase is performed during the repair operation, where the

current partial assignment is solved until optimality, the size of the neighborhood of

partial solutions, generated from the incumbent one using the destroy method, consists

of only 4 candidates. We have not limited it to only one in order to introduce a little

diversification also in these environments, like it is present in the ones treated by the

sections 5.3.2 and 5.3.3.

The degree of destruction p is selected so that the resulting sub-problem is solv-

able by SCIP in a reasonable amount of time (i.e., less than 10 seconds out of the 60

available).

Destroy Repair Size p n Cost

point exact 4 15% 50 10.7953

tour exact 4 15% 50 10.8934

neural exact 4 15% 50 10.8387

point exact 4 10% 100 16.5232

tour exact 4 10% 100 16.5326

neural exact 4 10% 100 16.4245

TABLE 5.2: Comparison of the different destroy methods when using an
exact reparation. The statistics are computed averaging the results of all

the instances taken into consideration.
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Results in table 5.2 show that the number of customers in the instance makes a

huge difference in the effectivity of the neural destroy operation. Indeed, while in the

n = 50 case just exploring regions of space leads to better solutions, in a larger setting of

n = 100 customers, exploiting the weaknesses in the current routes has a greater impact.

5.3.2 Neural Destroy & Repair

In the last section, repairing using SCIP represents the actual bottleneck of execution

for the algorithm, because either the running time is too long for a single iteration, or

it is not likely to improve the incumbent solution if p is too small. For this reason, we

analyze the impact of a neural repair and of a greedy algorithm in place of it.

In this case, the exploration of the neighborhood is performed thanks to the de-

stroy method, in fact, given the same partial assignment, both the ANN and the classic

heuristic will (almost) always return the same repaired solution. This means we need

to provide the repair procedure different partial solutions, which consequently will be

reconstructed in different ways leading to distinct solutions. That is why all the destroy

operations include a stochastic component, as we detailed in sections 2.3.2 and 4.1.1.

The degree of destruction p, as usually done in ML for hyperparameters, is chosen

according to the validation performance in figure 5.1.

With regard to the neighborhood size, we have opted for 256, which is the nearest

power of two to the original choice amounting to 300 reported in the reference paper

[27]. This small change aims to favor the parallelism of the operations involving the

GPU, namely the neural ones, without affecting the others.

Statistics in table 5.3 show that neural reparation is always better than a traditional

greedy algorithm, irrespective of the number of nodes in the instance taken into consid-

eration but also of the destroy methodology. Considering these outcomes, from now on

we will only take this method of reconstruction into consideration.

While the situation where this gap is more pronounced is when the destroy method is

guided neurally, this is not the best companion for our neural repair operation. Indeed,

both in the n = 50 and in the n = 100 scenarios, point turns out to produce the best

solutions.
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Destroy Repair Size p n Cost

point greedy 256 25% 50 10.8570

point neural 256 25% 50 10.7602

tour greedy 256 25% 50 10.9276

tour neural 256 25% 50 10.8501

neural greedy 256 25% 50 10.8866

neural neural 256 25% 50 10.8227

point greedy 256 20% 100 16.0970

point neural 256 20% 100 15.9700

tour greedy 256 20% 100 16.2606

tour neural 256 20% 100 16.1122

neural greedy 256 20% 100 16.2375

neural neural 256 20% 100 16.0360

TABLE 5.3: Comparison of repairing using a greedy approach vs a neural
one, varying the destroy method. The statistics are computed averaging

the results of all the instances taken into consideration.

5.3.3 Adaptive Neural Large Neighborhood Search

Whenever different approaches aiming to accomplish the same task prove to be promis-

ing, the next obvious step is to try to merge them inside the same environment. In our

case, this means using an ALNS setting, where multiple destroy operators and their

respective neural repair counterparts collaborate in the neighborhood exploration, as

described in section 4.1.3.

Analyzing table 5.4, we can notice, especially in the n = 100 case, a general im-

provement of the solutions quality when pairing operators with respect to when using

them alone.

The contribution of the neural destroy operation, as reported in section 5.3.1, has

more benefits when the complexity of the instance (i.e., its number of customers) is

higher. Indeed, while paring point with tour gives worse results than only using point,

when neural is involved, either only with the former or in addition to both, solution

quality always improve.
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Destroy Repair Size p n Cost

point+tour neural 256 25% 50 10.7315

point+neural neural 256 25% 50 10.8471

tour+neural neural 256 25% 50 10.8188

point+tour+neural neural 256 25% 50 10.7801

point+tour neural 256 20% 100 16.0315

point+neural neural 256 20% 100 15.9338

tour+neural neural 256 20% 100 16.0523

point+tour+neural neural 256 20% 100 15.9369

TABLE 5.4: Comparison of the different combinations of destroy meth-
ods in an ALNS setting performing the repair operation neurally. The
statistics are computed averaging the results of all the instances taken

into consideration.

Even if the differences among the different approaches is not huge in terms of ab-

solute value, we should remember that the cost is computed on a unitary map, and,

therefore, in a real-world scenario it should be scaled on the size of the geographic area

taken into account.

5.4 Comparison to Traditional Solvers

Up to now, we have only compared the potentialities of our NLNS environments making

them compete with each other. In order to give a broader perspective, this section is

intended to challenge the solvers which are traditionally employed to solve VRP: the

SCIP optimizer identified with the name milp, Google OR-Tools dedicated framework

for VRP recognizable in or-tools, and LKH heuristic approach (lkh).

These traditional solutions can only be evaluated considering the time aspect, since

the solving procedures are too heterogeneous to be configured with coherent parameters,

therefore, we keep the 60 seconds time limit also for them. The gap in percentage

is computed with respect to the considered NLNS configuration both for n = 50 and

n = 100.

According to table 5.5, LKH confirms to be the best solver available for VRP ir-

respective of the number of nodes in the instance. Conversely, the performances of
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Solver n Cost Gap

point+tour → neural 50 10.7315 0.00%

milp 50 11.9540 11.39%

or-tools 50 10.7373 0.05%

lkh 50 10.6170 −1.07%

point+neural → neural 100 15.9338 0.00%

milp 100 25.8404 62.17%

or-tools 100 16.3595 2.67%

lkh 100 15.7762 −0.99%

TABLE 5.5: Best NLNS approach vs traditional VRP solvers. The statis-
tics are computed averaging the results of all the instances taken into

consideration.

OR-Tools dedicated routing solver, in line with our most promising approaches when

n = 50 customers, tend to deteriorate when n = 100, with a percentage gap between the

2% and the 3%. SCIP optimizer, as we could expect, cannot compete with the rivals,

especially when asked to solve instances containing 100 customers.

These observations seem to suggest that NLNS can give the highest benefits with

respect to traditional approaches when dealing with difficult instances. However, we

have not yet studied scenarios with which it is not comfortable with, namely when the

number of nodes in the problem to solve is different from the number nodes it has been

trained with.

5.5 Larger Instances

This last section of the experiments is intended to analyze the performance of the best

destroy/repair combinations for n = 50 and n = 100, on instances from the literature

tougher than the ones with which our operators are trained with. Our aim is to check

whether they are still effective or not, because, in the former case, this would mean we

can avoid the heavy training phase we have described in section 5.2.

Specifically, we have selected ten instances with a variable number of customers

100 < n < 300 from the work of Uchoa et al. [55]. The naming convention used to
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describe an instance consists in specifying the number of nodes (depot included) after

the letter n, and the optimal number of vehicles after the letter k.

Figure 5.5 compare the solution quality produced by NLNS with respect to LKH,

OR-Tools, and the known optimal cost. In line with the previous results, our approaches

are generally not as efficient as the state-of-the-art LKH solver, despite reaching results

pretty similar to it when n < 200, and they beat OR-Tools on 8 out of 10 instances.

FIGURE 5.2: Performance of the best traditional and NLNS based solvers
on instances, from the literature, with a number of nodes 100 < n < 300.

Notably, the NLNS n = 100 approach tends to perform better than NLNS n = 50 for

100 < n < 220, while the opposite occurs when the number of nodes goes toward 300.

This seems to suggest that the neural destroy method, which is employed only in the

former, is sensitive to the number of nodes and is less effective the more it departs from

the training one. This issue can be further investigated following a transfer learning

technique as suggested by Joshi et al. [29] for TSP.
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5.6 Discussion of Results

A broader view on the produced results can be obtained analyzing jointly tables 5.1, 5.2,

5.3, 5.4, and 5.5. Despite the small amount of instances (i.e., 50) and the limited reso-

lution time (i.e., 60 seconds) considered in order to try lots of different configurations,

we are able to provide some general observations.

The first consideration is about “when” it is meaningful to use NLNS, indeed, while

there are no major benefits with respect to traditional solvers when n = 50, the higher

complexity of the n ≥ 100 cases makes it interesting to employ them.

Another important aspect deals with the “where” leveraging ML algorithms is bene-

ficial. Their effectiveness is undisputed as regards the repair phase, nevertheless, in the

destroy one, improvements related to its usage only arises in an ALNS setting. This is

probably due to the fact that this is the environment where there is the better trade-off

between large neighborhood exploration and the exploitation of the weaknesses of the

current solution.

Eventually, there is no certain answer on “if“ it is worth to use NLNS approaches

for VRP. On the one hand, LKH remains the solver to beat in most of the cases, and

the training time needed to obtain a NLNS environment is high, especially in the com-

pletely neural configuration. However, on the other hand, results are promising, because

the negative gap with respect to the specialized LKH solver (≈ 1%) is small if compared

to the positive one achieved on OR-Tools and SCIP (respectively ≈ 3% and ≈ 62%);

moreover, the generalization capabilities are good even when the number of nodes trip-

licates, suggesting the heavy training procedure does not need to be retaken every slight

change of the number of nodes in an instance.

In any case, we believe the improvement capabilities of neural approaches are far

beyond the ones of traditional solvers, since the research is still in its early stages for the

former, while it has been consolidated through more than 60 years for the latter. This

work itself provides a lot of research directions that can be pursued starting from the

discussed attempts and thanks to which the gap with the current state-of-the-art can be

narrowed if not overcome.
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Chapter 6

Conclusions

We have finally reached the end of this work. It should probably be considered more like

a beginning, because in an attempt to answer the questions we started from, even more

risen to our attention. This is probably normal, because the ambitious goal of applying

ML to CO, born few years ago, is in its early stages yet. For this reason, while in section

6.1 we summarize all the relevant aspects of the study, in section 6.2 we suggest some

research directions to pursue based on it.

6.1 Summary of Contributions

Within the wide and complex world of CO, we have focused our attention on the CVRP,

analyzing the various ML techniques available in literature to face it. Among the oth-

ers, we have been interested in exploring more in-depth how to perform an integration

between ML and the LNS metaheuristic.

In particular, we have studied the outcomes of applying neural-based operations ei-

ther partially or totally during the main phases of LNS, showing benefits and limitations

of each kind of usage. While for the repair method we have relied on the same atten-

tion mechanism employed in [27], due to the lack of a destroying alternative peculiar

for CVRP, we have proposed our own taking inspiration from the GNN architecture

presented in [34].

Our results show that considering DL-enhanced approaches is more effective with

respect to using traditional solvers only when the number of nodes in the instance is at

least 100. However, at the same time, it tends to deteriorate, especially in the GNN case,

as this number moves away from the size used for training. In any case, this degradation
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of performance is not rapid, in fact we have been able to obtain good results up to 300

nodes.

VRP, besides their inherent difficulty, present a wide variety of facets, which make

them probably unsuitable to be solved using a single universal approach. To make a

comparison with a simpler problem, we can mention the most well known of computer

science: sorting. There exist a huge number of algorithms, each with its own efficiency

to solve it, however, standard libraries of the established programming languages (e.g.,

C++, Python) do not choose one in particular, rather, they implement a hybrid between

some of them, which switch to the most suitable depending on the amount of data and on

the progress of the algorithm. In our case, this hybridization is the ALNS environment,

while the single sorting routines it exploits are the heuristics (neural or not) used as

destroy or repair operations.

The state-of-the-art VRP solver, LKH, in almost all the experiments, turned out

to beat our NLNS, despite the low percentage gap with respect to it. Nevertheless,

there are also cases where the opposite occurred, in particular the first three instances

in section 5.5. The relevance of this specific observation has a broader meaning: even

if the proposed neural operators have demonstrated effective but generally not as good

as the most powerful traditional heuristics, this does not mean they are unbeatable, and,

for this reason, it is useful to adapt and explore other methods, relying on different

architectures, in place of the ones we have tested, in order to try overcoming them. Not

by chance, NeuRouting is designed to favor exactly this kind of contributions, providing

an easy-to-use and heuristic-agnostic framework.

6.2 Future Work

The end of the previous section might have already suggested the most straightforward

research direction to pursue: trying other DL-based operators in place of the current

available destroy or repair alternatives.

Another interesting aspect to analyze comes from the proverb “well begun is half

done”. In section 2.3.1 we have detailed how the initial solution – i.e., the one from

which the LNS starts –, is constructed. However, it is usually of poor quality and the

path to become nearly optimal can be way harder than if we have begun from a better
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one. The algorithms through which obtaining a good initial solution can be designed

following different procedures. For instance, we can use one of the constructive ap-

proaches in section 3.1. In any case, it is always important to pay attention at maintain-

ing a good trade-off between the time spent to determine this warm start and the one

dedicated to improve it, to which should probably be given the highest priority.

The metaheuristic we have focused upon is LNS, because we believe it is one of

the most promising techniques to face VRP. Notice that its adoption does not prevent it

to be enhanced with other metaheuristics, like Simulated Annealing and Tabu Search,

therefore this kind of integrations can be further explored.

Last but not least, we should remind that within the big VRP family presented in

section 2.2.1, our experiments address in particular the notorious case of CVRP. This

means any other variant is suitable to be investigated using the same approaches but

different models, and, according to the same principle, also completely different prob-

lems for which LNS already demonstrated effective, scheduling to mention one, can

take inspiration from this work.
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