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Sommario

In questa tesi vengono analizzati argomenti legati alla capacità di un drone

di poter navigare in maniera autonoma e rilevare un target in un ambiente

sconosciuto mentre se ne stima una mappa di occupazione. Queste operazioni

devono essere eseguite nel minor tempo possibile e in modo da poter mini-

mizzare l’errore nella detection del target e nella ricostruzione della mappa.

In seguito, l’analisi è stata estesa alla presenza di più droni e ad uno scenario

in cui sono presenti più target.

Si è quindi studiato un algoritmo per permettere la mappatura di am-

bienti interni e l’identificazione di dispositivi di interesse. In particolare, si

è utilizzato un approccio basato sull’apprendimento per rinforzo (reinforce-

ment learning), specificatamente un algoritmo di Q-learning.

Questa tesi ha l’obiettivo, inizialmente, di descrivere i droni e la sensoris-

tica a bordo necessaria per le operazioni di detection e mapping. Successiva-

mente il problema di navigazione è stato formulato seguendo la filosofia dei

processi di decisione Markoviana. Una possibile soluzione a questo tipo di

problema è utilizzare algoritmi di apprendimento rinforzato (reinforcement

learning) che sono stati descritti nel dettaglio e applicati al caso in esame.

Tramite simulazioni, si è verificata la capacità dell’algoritmo di risolvere

il problema in esame, inoltre, si è potuto prendere visione dell’accuratezza

nella stima dell’ambiente circostante e della capacità nell’identificazione delle

traiettorie migliori dal punto di vista della detection dei target.
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Abstract

This thesis analyzes topics related to the capacity of a drone to be able to

navigate autonomously, and detect a target in an unknown environment while

estimating an occupation map. These operations must be completed in the

shortest time as possible and in such a way as to minimize the error in the

detection of the target and in the reconstruction of the map. Subsequently,

the analysis has been extended to the presence of multiple drones and a

scenario in which there are multiple targets.

An algorithm is therefore studied to allow the mapping of an indoor

environments and the identification of devices of interest. We use an approach

based on a specific reinforcement learning algorithm, called Q-learning.

This thesis aims, initially, to describe the drones and the sensors on

board necessary for detection and mapping operations. Subsequently, the

navigation problem is formulated following the philosophy of the Markovian

decision-making processes. A possible solution to this type of problem is to

use reinforcement learning algorithms that are described in detail and applied

to the case in question.

Through simulations, the ability of the algorithm to solve the problem

under analysis is verified, and in addition, it is possible to view the accuracy

in estimating the surrounding environment and the ability to identify the

best trajectories, from the point of view of target detection.
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Chapter 1

Introduction

1.1 Unmanned Aerial Vehicle

An unmanned aerial vehicle (UAV), known as a drone, is an aircraft without

any human pilot, crew or passengers on board, in fact, aerial vehicles are not

guided but have the capability to guide themselves autonomously.

Most of the applications of UAVs require a network of UAVs that can

achieve determinate tasks. This is accomplished using cooperative UAVs.

The capacity of creating various shapes during navigation can help maxi-

mizing an information measure by having more informative measurements in

each time instant.

Drones have many advantages over terrestrial sensors. Thanks to the

continuous progress in the use of UAVs, they are becoming a very important

and useful tool for detection and mapping. UAVs can obtain much more

information in less time than terrestrial sensors. The technological systems

installed on drones are capable of realizing an highly accurate mapping.

UAVs have a very high precision and are easy and fast to deploy. UAVs

have also important disadvantages such as weather dependence, in fact, they

are vulnerable to weather conditions and another concern is safety and pri-

vacy.

One of the main tasks that an UAV can accomplish is the localization

of targets while mapping an unknown environment. This is helpful in many

fields, in fact, UAVs can be used for remote surveillance, logistics, emergency

situations and for many other functionalities. For example, UAVs are widely

5



used by the police and firefighters to investigate site of deadly explosions, to

inspect burned-out buildings, to penetrate dangerous environment, to detect

people that need to be rescued. Usually UAVs are used in post-disaster situ-

ations because in these situations is common that the terrestrial localization

systems have collapsed. Using UAVs, we can obtain a different point of view

of the environment and also have a biggest range of visibility that in danger-

ous situations is impossible to have from the human operators. UAVs can

be quickly deployed over disaster zones, operators are using them to produce

maps, track the victims, and to understand the seriousness of the situation.

To accomplish what we have described above, we have to take into con-

sideration the problem of localization and the problem of the radar sensor.

1.1.1 Localization Technologies

Starting from the invention of the telegraph to the next 6G cellular systems,

the technological development has always brought positive feedback in our

society. Thanks to all these improvements we brought a change in how we

see the world and in how we want it to be in the future. The world we want

to live in is a world that ensures security and connections and thanks to the

great minds that lived before us and with us, we have devices that assure

that. In fact, through these devices we can communicate with everyone all

around the world and help our lives to be more secure, starting from the

simplest thing such as reminding us of thing we need to do, to the most

important for us, such as monitoring our home when we are out, or monitor

our bank account. These devices offer services that depend on the needs of

the user. Many services require the use of the position both in outdoor and

indoor environment.

In outdoor environments, the users positions are usually retrieved thanks

to GPS, while, in indoors, it is difficult to access the GPS signals and, thus,

ad-hoc positioning systems should be used to infer users’ position. Because

of that, the need to dive into this interesting topic, that is indoor localization,

has arisen.

We have the possibility to use different technologies for indoor localiza-

tion. For localization, we could use communication technologies such as WI-
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FI. Using the WI-FI received signal strength we can estimate the smartphone

user’s location and movement [1].

An important indoor localization technology for accurate indoor mapping

is the ultra-wide bandwidth (UWB) technology.

The UWB technology permits to obtain a sub-meter localization accuracy.

This technology is used because of its many advantages [2] [3]: provides high

localization precision based on time-of-arrival estimation of the received sig-

nal, presents a good resistance to jamming, has an easier target information

recovery from reflected signals, is capable of working in harsh communication

channels with low SNRs and is a cheaper and simpler solution compared to

other technologies.

Another technology used in indoor localization is the received signal

strength (RSS) based fingerprinting method. The RSS fingerprinting based

localization systems are implemented to determine user location by measur-

ing electromagnetic radiations sent from different access points (APs) [4].

1.1.2 Enabling Radar Technologies for Target Detec-

tion and Indoor Mapping

Radar are detection systems that transmit electromagnetic wave signals that

objects reflect. By capturing the reflected signal, a radar system can deter-

mine various parameters such distance, velocity and angle of a target.

Low complexity radars can be installed in UAVs to increase accuracy.

This section illustrates the possible technologies that can be mounted

on UAVs and that can help the agent/UAV to accomplish the two tasks of

target detection and mapping. We review some radar technologies and then

we will focus on THz radars as they can achieve higher accuracies in map

reconstruction. Section 1.2.1 describes the idea of Cognitive Radar, section

1.2.2 illustrates the functioning of Frequency Modulated Continuous Wave

radar, while section 1.2.3 is dedicated to Millimeter wave radar and THz

radar.

Cognitive radar

Radars have established themselves as an indispensable tool for detection

and tracking of targets using radio waves. A cognitive radar is an intelligent,
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dynamic system that is aware of its outside world, exploits prior knowledge,

and learns through interaction with the environment. A cognitive system

can produce more information and it can be faster than a human operator

could [5].

A cognitive system uses the signal it receives to collect information about

the environment, combines these observations with prior knowledge and then

learn from it. A cognitive radar can adapt the radar sensors, in response to

a change of the environment, to meet the needs of the mission, taking into

consideration the goal of the operation.

Three concepts are basic to the constitution of cognitive radar: 1) intel-

ligent signal processing (learning through interactions of the radar with the

surrounding environment); 2) feedback from the receiver to the transmitter;

and 3) preservation of the information content of radar returns, which is

realized by the Bayesian approach to target detection through tracking [6].

A cognitive radar uses certain components to get information about the

environment. The components are: radar transmitter, radar receiver and

environmental sensors. The radar transmitter produces pulses of energy that

are radiated into space by the antenna to interrogate the environment, the

sensors perceive the echoes of the sent signals, so they give more information

about the surroundings and the radar receiver elaborates the data acquired

by the sensors.

SENSE LEARN ADAPT

ENVIRONMENT

Rx Tx
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Figure 1.1 represent the functioning of a cognitive radar. Cognitive radars

are systems that sense the environment, learn from it relevant information

about the target and the background, then adapt the radar sensor to opti-

mally satisfy the needs of their mission according to a desired goal.

The learning procedure best suited for cognitive radar is reinforcement

learning, because the CR needs a well-known environmental model due to

the fact that the cognitive radar moves in a fast-changing environment.

In a Cognitive radar network, the system is formed by several radars

working together in a cooperative manner with the goal of improving what

the radar components can achieve individually.

There are two types of cognitive radar networks:

1) Distributed cognition: all the radars are cognitive. This is the best

option, because the delay that is found in centralized cognition is avoided.

2) Centralized cognition: only the central base station is cognition based.

Along with artificial intelligence and machine learning cognitive radar is

a very active area of research. One example of study in the field of cognitive

radar is the investigation of ways to maximize the radar performances in

congested radio frequency environment. Wider bandwidth gives us better

range resolution and more spectrum to operate in, so that the environment

is better pictured and also, if the radar finds an interference can switch

quickly to another portion of the spectrum. This is called RF interference

avoidance.

Frequency Modulated Continuous Wave Radar

A continuous wave is an electromagnetic wave of constant amplitude and

frequency that is considered to be of infinite duration. Frequency modulation

is one of the transmission techniques used to transmit information using

the carrier’s frequency variations. Continuous wave radar devices without

frequency modulation cannot determine target range because they lack the

timing mark that is necessary to allow the system to time accurately the

transmission and reception and to convert this into range [7] [8].
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RX

TX

Target

Figure 1.1: Transmission and reception of a target source

The ability to measure both speed and range of the target is an important

theme. Continuous wave radars have some limitations: they can measure

only the speed of the target and they are not able to measure the distance

between radar and target. So, to avoid these problems, FMCW radars are

introduced. FMCW radar is a special type of radar that transmits continuous

wave signal whose transmitting frequency is modulated by a specific signal,

so it changes its operating frequency during measurements. FMCW radars

interrogate the environment with a signal linearly modulated in frequency.

The FMCW radar can measure the speed of the target as well as the

distance of the target from the radar. The distance measurement is found

by comparing the frequency of the received signal to the transmitted signal.

The distance is proportional to the frequency difference between the two.

An FMCW radar consists essentially of the transceiver and a control unit

with a microprocessor. The transceiver is a compact module, and usually

includes the patch antenna implemented as separate transmit and receive

antenna. The high frequency is generated by a voltage controlled oscilla-

tor which directly feeds the transmitting antenna. If using a single antenna

there is the need to separate the transmitting and receiving signal, and this

can be done using a duplexer. The duplexer is an electronic switch. Having

two separate antennas, one for transmission and one for reception, is much

cheaper. On a common substrate, the transmitting antenna array and the re-

ceiving antenna array, are placed directly above each other with polarization
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direction rotated by 180° against each other.

In general, we have that frequency modulation can be summarized and

represented as in Figure 1.2:

FREQUENCY 
MODULATOR

x(t)

Modulating
signal

xc(t)

Sinusoidal
carrier

s(t)

Modulated
signal

Figure 1.2: Frequency modulation

The information to be transmitted is x(t) and the sinusoidal carrier is

xc(t) = V0cos(2πf0t + φ0), where f0 is the carrier’s frequency, V0 is the

carrier’s amplitude and (2πf0t+ φ0) is the carrier’s phase.

The modulator combines the carrier wave with the modulating signal to

get the modulated signal. So the modulator perturbs the carrier’s parame-

ters, such as frequency and amplitude, based on the temporal evolution of

the modulating signal x(t).

An important parameter in frequency modulation is kf that is the modu-

lation sensitivity, that is fundamental in the modulation law ∆f(t) = kfx(t),

that identifies the fact that the instantaneous frequency deviation is propor-

tional to the modulating signal.

The signal’s swing increases when x(t) is greater than zero while when

x(t) is less than zero the signal’s swing decreases. So, in FMCW radar, a

signal is transmitted, which increases or decreases in frequency periodically.
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We can represent the modulated signal as:

s(t) = V0cos(φ(t))

where:

φ(t) = α(t) + 2πf0t+ φ0

α(t) = 2π

∫ t

0

∆f(τ)dτ

and

∆f(t) = kfx(t)

Substituting the equation representing α(t) in the equation representing

φ(t), we obtain:

φ(t) = 2π

∫ t

0

∆f(τ)dτ + 2πf0t+ φ0

so the resulting modulated signal is:

s(t) = V0cos

(
2πf0t+ φ0 + 2πkf

∫ t

−∞
x(τ)dτ

)
There are several possible modulation patterns which can be utilized.

One of the most used is the sawtooth modulation. If x(t) is represented by a

sawtooth signal, we have that a delay will shift the echo signal in time. This

results in a frequency difference between the original signal and the delayed

echo signal, that is a measure of the distance of the reflecting object. So, the

received waveform is simply a delayed copy of the transmitted waveform.

The distance R to the reflecting object can be determined by the following

relations:

R =
c0∆t

2
=
c0∆f

2S

where c0 is the speed of light, ∆t is the delay time, ∆f is the measured

frequency difference, R is the distance between antenna and the reflecting ob-

ject, S is the frequency shift per unit of time and fD is the Doppler frequency

caused by the speed.
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Figure 1.3: FMCW system with sawtooth chirp modulation

Millimeter wave radar and TeraHertz radars

Radar systems are used to provide an accurate image of the environment and

their performance depends on the frequency at which they operate.

The millimeter waves (mmW) band of frequencies extends from 30 GHz

to 300 GHz. Millimeter Wave radars transmit signals with a wavelength

that is in the millimeter range. Thanks to the short wavelength, the size of

system components can be miniaturized. The terahertz (THz) band extends

from 300 GHz to 30 THz [9]. Terahertz waves, which have higher frequencies

and shorter wavelengths than millimeter waves, allow the construction of

radar systems with a smaller footprint and higher resolution. THz waves

allows us to access environment that are visually inaccessible to us or with

camera systems, because some optical opaque materials are more transparent

to terahertz frequencies. Terahertz radiation can penetrate fabrics and plastic

materials, so this type of radiation can be used also for security purpose [10].

THz radiation and millimeter waves are used in many other fields such as

physics, archaeology, medicine and chemistry.

It is useful to describe also microwave radars. Microwave is a form of

electromagnetic radiation with frequencies between 300 MHz and 30 GHz re-

spectively. Microwave radar technology is used to image the terrain, ocean,

13



space and to find the presence and to identify object, in fact the short wave-

length of microwaves causes large reflections from objects the size of motor

vehicles, ships and aircraft.

1.2 Case of Study

The main purpose of this thesis is to illustrate how, using machine learning

algorithms, we can solve a UAV navigation problem to improve the mapping

of an indoor environment and the detection of a target of interest. In fact,

it will be described an algorithm that allows an unmanned aerial vehicle to

navigate an unknown indoor environment and minimize the error in detecting

a target.

The problem is formulated as a Markov decision process (MDP) where

UAVs run a reinforcement learning algorithm (RL), specifically a Q-learning

algorithm, and are equipped with a THz radar that can scan the environment.

A visual example of the problem that we are going to face and that is

going to be studied in the next chapter is:

0 1 2 3 4 5 6 7 8 9 10

x [m]

0

1

2

3

4

5

6

7

8

9

10

y 
[m

]

Reference Map

Figure 1.4: Representation of the environment studied
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Chapter 2

Estimation Techniques by UAV

Networks

The problem investigated is a scenario where a static target is present in the

environment and a UAV has to detect the target during its navigation. The

map of the environment is estimated using energy measurements collected

by the radar. The problem is formulated as a Markov decision process where

the UAV is equipped with a THz radar capable of scanning the environment

with high precision. This problem can be solved using RL.

In this thesis, we consider that UAVs are designed to accomplish two

main tasks that are: (1) tracking/detecting a target (2) mapping an un-

known indoor environment. If a network of UAVs is considered, information

sharing between UAVs is possible. In these networks, data are exchanged

with neighbors in order to improve the environmental awareness.

When in flight, a UAV measures its position thanks to GNSS/INS, sends it

to its neighbours and receives the positions of the other UAVs via multi-hops.

A network of UAVs interrogates the environment via radar signals and by the

output they can detect the presence of a target and understand important

parameters of the target such as position-related and velocity information.

Then, acquisitions are exchanged with the neighbours. Two important pa-

rameters coming from radar measurements are ranging and bearing, where

ranging represents the target’s distance from the radar, while bearing repre-

sents the horizontal angle.
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In our case of study, a static target is present in the environment. The

goal of the algorithm, is to estimate the target presence/absence in the envi-

ronment, thanks to the measurement acquired from a single drone in naviga-

tion. At each time instant, the first step is to obtain state-related information

from radar measurements and the second step is to infer the best action to be

taken in order to achieve the final goal. The agent can be depicted as a block

where two estimation processes take place. The first is the state estimator

that can be implemented using a Bayesian filtering approach and provides an

estimate of the state sk, the second step is the policy estimator which infers

the best action to be taken to maximize the expected return.

In section 2.1 will be described the Bayes estimation and as a subsection,

the Kalman filter, in section 2.2 will be described how to implement target

detection and mapping of an environment and in section 2.3 will be described

our case of study.

2.1 Bayesian Estimation

In Bayesian estimation, θ is a random variable that has an unknown dis-

tribution. Bayesian estimation uses both data and prior information. After

acquiring the data in the present time, we combine them with the prior prob-

ability density function to create the posterior distribution. Before defining

the posterior distribution we need to define the likelihood function.

Let θ be an unknown parameter and x1, ..., xn be a random sample from

the probability density function f(x|θ) where x1, ..., xn are independent and

identically distributed. The likelihood function is a function of the parameter

given the data that we have observed:

L(x1, ..., xn|θ) (2.1)

We hold constant the data from x1 to xn and we try different values

of θ to see which likelihood we find. The higher the likelihood, the more

likely that parameter value is, given the data that we have observed. So,

the likelihood function is the joint probability density function (PDF) of our

random samples conditioned on parameter theta:
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L(x1, ..., xn|θ) = f(x1, ...xn|θ) (2.2)

Since the samples are independent then we can split the PDF into the

product of marginals, i.e., univariate, that means the function depends on

only one random variable:

L(x1, ..., xn|θ) = f(x1|θ)...f(xn|θ) (2.3)

We can rewrite the equation above, and we obtain:

L(x1, ..., xn|θ) =
n∏
i=1

f(xi|θ) (2.4)

where f(xi|θ) represent the PDF given θ using different values of x.

To find the most likely value of θ, that is called the maximum likelihood

estimator because it maximizes the likelihood function, we take derivatives.

A very important likelihood function is the log-likelihood function:

l(x1, ..., xn|θ) = logL(x1, ..., xn|θ) (2.5)

We use the log-likelihood function because the logarithm is a monotone

function, so, if we want to maximize the log-likelihood is the same thing as

maximizing the likelihood function.

So, to find the posterior distribution of theta, i.e., the PDF of parameter

theta given the measurements x1, ..., xn, we need the prior PDF and the

likelihood function L(x1, ..., xn|θ) =
∏n

i=1 f(xi|θ).

The posterior distribution can be written as:

g(θ|x1, ..., xn) ∝ p(θ)L(x|θ) = p(θ)
n∏
i=1

f(xi|θ) (2.6)

The posterior distribution is proportional to the prior distribution multi-

plied by the likelihood function:

g(θ|x1, ..., xn) ∝ p(θ)
n∏
i=1

f(xi|θ) (2.7)
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Bayesian estimation is all about combining the prior information with the

obtained data to learn something about the unknown parameter.

A Bayes estimator is an estimator that minimizes the posterior expected

value of a loss function, equivalently, it maximizes the posterior expectation

of a utility function.

Let θ̂ be an estimator for θ based on some statistic, then the loss function

associated with θ̂ is L(θ̂, θ) where L(θ̂, θ) >= 0 and L(θ, θ) = 0.

Two common loss functions are:

L(θ̂, θ) = (θ̂ − θ)2 (2.8)

and

L(θ̂, θ) = |θ̂ − θ| (2.9)

If the loss function associated with θ̂ is |θ̂ − θ| then the Bayes estimator

is the median of the posterior distribution (commonly called maximum a

posteriori (MAP) estimator) while if the loss function associated with θ̂ is

(θ̂ − θ)2 then the Bayes estimator is the posterior mean (commonly called

minimum mean square error estimator - MMSE).

In the case where the purpose is to estimate a sequence of parameters

representing, for example, the time evolution of a single parameter (typically

referred to as ”state”), iterative approaches such as Bayesian filters can be

adopted. The Bayes filter is a technique for recursive state estimation. It is

used to find the current state of a system given current and past observations.

We take our belief at time instant k (i.e., the posterior distribution of the

state at time k), and we advance it to the next state k + 1, so we go from

time step k to time step k + 1 using the most recent observations, as well as

the knowledge acquired from the previous ones.

There are different realizations of the Bayes filter, for example the Kalman

filter and the extended Kalman filter [11]. These are realizations of a recursive

Bayes filter, so they follow the same equations and structure to perform the

state estimation.
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2.1.1 The Kalman Filter

The Kalman filter (KF) is a particular implementation of a Bayesian filter.

The Kalman filter is the optimal state estimator given some knowledge

about the types of disturbances and measurement noise. We assume that

both the disturbance and the noise are a Gaussian white noise process. In

fact, the Kalman filter assumes that all the PDFs involved in the filter are

Gaussian and all models are linear. If we are in a non-linear world, we cannot

use the Kalman filter, but we have to use the extended Kalman filter (EKF).

The extended Kalman filter is a variant of the Kalman filter that deals with

non linearities. It performs a local linearization and turns the non-linear

model into a linear model.

We adopt an extended Kalman filter to compute the Gaussian belief of

the state. This algorithm is a two-step process: the first step consist in

determining a prediction about the system’s state, so it takes into account

the steering information in order to predict the next point in time; instead

the second step is the correction step and uses the noise measurements and

the sensor observation to refine the system status estimate.

At each time instant, we perform a prediction step and a correction step

and then the new observation comes in. So, we have a recursive procedure

which always updates the previous belief and turns it into the next belief.

2.2 Target Detection and Mapping

The UAVs are equipped with a receiver able to receive and process the signal

coming from an active target that transmits at frequency ft, and with a radar

capable of interrogating the environment and operating at a frequency fr. At

each time instant k, the UAV performs a scan of the environment to acquire

as much information as possible.

Considering a maximum time to complete the mission, we want to mini-

mize the uncertainty in estimating the map of an unknown environment. We

consider a grid representation of the environment where there are Ncell and

these Ncell can have two states: occupied or free. In addiction, we consider

that the environment does not change with time.

The state sk describes the system and it consists of: the UAV position,
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sU,k, a parameter t indicating the presence or not of a target and the state

of the cell, m. So the state can be defined as:

sk = [sU,k, t,m1, ...,mNcell
] = [sU,k, t,m] (2.10)

where t indicates the presence or not of the target, m is the true map

and mi represents the state of the ith cell of the map.

2.2.1 Mapping using radar measurements

The mapping is performed by using energy measurements acquired by the

radar during the interrogation of the environment. The signal received by

the radar is given by:

r(t, θb) =

Np−1∑
n=0

x(t− nTf , θb) + n(t) (2.11)

where x(t, θb) is the signal acquired when pointing at direction θb, n(t)

is the addictive white Gaussian noise (AWGN) and Np are the transmitted

pulses sent from the pulse-based radar. A pulse-based radar is a radar system

that determines obstacle’s parameters using pulse-timing techniques [12].

The received signal is passed through a filter to eliminate the out of band

noise, so is generated a filtered version of the signal called y(t, θb).

The final energy value is given by:

ebs =

Np−1∑
n=0

∫ sTED

(s−1)TED

y2(t+ nTf , θb)dt (2.12)

where Tf is a time frame and is divided into Nbins. The temporal bin

index is indicated as s = 1, ..., Nbins.

The observation vector can be written as:

ek = [e(11,k), ..., e(NtotNbins,k)]
T ∼ N (µek ,Σek) (2.13)

The equation represents the energy measurements observed at time in-

stant k with b being the steering index and Ntot the number of steering

directions and s being the bin index. .
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The mean vector is µek and the covariance matrix is Σek . We can calculate

the variance and the expectation of ebs,k [12]:

E[ebs,k] = Np

∫ sTED

(s−1)TED

x̃2(t, θb)dt+ σ2NpTED = Ebs,k + En (2.14)

var(ebs,k) = σ2
bs,k = N0(2Ebs,k + En) (2.15)

where Ebs,k(m) is equal to:

Ebs,k(m) =
∑
l∈I(s)

∫
W

L0(f)ρl
d4ik

G2(θ̃l, f)df (2.16)

where x̃(t) is the filtered version of x(t), θ̃l = θl − θb is the difference

between the arrival and steering angles, I(s) is the set of cells located at the

same discrete distance s from the radar, L0(f) is the path-loss at the reference

distance of 1 meter, G(θ) is the gain and ρl is the radar cross section of the

lth cell, that is the equivalent area seen by the radar.

To infer the map of the environment, the UAV needs to search for the

maximum posterior probability:

m̂k = argmax
m

bk(m) = argmax
m

p(m|e1:k)) (2.17)

where bk(m) = p(m|e1:k) is the posterior probability distribution of the

map given the observations collected until the instant k. The mapping prob-

lem is described as a maximum posterior estimation problem. We operate

cell-by-cell as:

m̂i,k = argmax
mi

bk(mi) = argmax
mi

p(mi|e1:k)) (2.18)

= argmax
mi

p(ek|mi)bk−1(mi)

p(ek|ek−1)
(2.19)

mi can have two possible values: mi,1 = (mi = 1) indicate the event for

the ith cell of being occupied and mi,0 = (mi = 0) indicate the event for the

ith cell of being free.
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Figure 2.1: Block representation of the mapping process

2.2.2 Target detection

The target detection problem is analyzed taking into account a fixed max-

imum time to complete the mission. We want to minimize the error in

detecting a target so we need to minimize the mis-detection and false alarm.

After filtering, the received signal r(t), that is a signal referring to a

receiver that has the objective to sense signals emitted by a target, is sampled

at the Nyquist rate, obtaining the vector y = [y[1],..., y[N]] where N =

2TW is the number of samples, T is the observation time window and t̂k
denotes the target’s presence estimate.

The normalized energy test statistic can be written as:

2

N0v

∫ T

0

[r(t)]2dt =
1

σ2
v

N−1∑
n=0

|y[n]]2 (2.20)

where σ2
v = N0vW represent the noise power, N0v is the one-sided noise

power spectral density of the receiver of the detector module and W is the

bandwidth.

The related discrete time detection problem can be written as:

H0 : y[n] = v[n] (2.21)
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H1 : y[n] = x[n] + v[n] (2.22)

where H0 represents the absence of the target and H1 represents the

presence of the target while x[n] and v[n] are the nth samples of the signal

and noise component with v[n] ∼ N(0, σ2
v).

Receiver
(RX)

Energy 
Detector

Signal samples, 
yk tk

^

Received
Signal

Figure 2.2: Block representation of the detection process
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Chapter 3

Reinforcement Learning

Reinforcement Learning (RL) is an aspect of Machine Learning where an

agent learns how to behave in an environment, by performing certain actions

and observing the rewards that gets from those actions. The agent is the

learner in RL. The actions are the choices made by the agent, the states

are the positions of the agent and the basis for making the choices and the

rewards are the basis for evaluating the choices.

Reinforcement learning is about learning from interaction how to behave

to achieve a goal. The reinforcement learning agent and its environment

interact over a sequence of discrete time steps. In reinforcement learning, the

goal of the agent is defined by the reward, provided by the environment to the

agent. The agent’s goal is to maximize the total amount of reward it receives,

this means maximizing cumulative reward. In reinforcement learning we have

to explore and to exploit. We need to explore to find more information about

the environment, but we need also to exploit the already known information

to maximize the expected reward.

There are many approaches to Reinforcement Learning. The most im-

portant are:

- Policy based approach.

- Value based approach.

In policy-based reinforcement learning, we have a policy which we need

to optimize. A policy can be deterministic or stochastic. A deterministic

policy is a policy that at a given state s will always return the same action

a, while a stochastic policy gives a distribution of probability over different
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actions.

In value based reinforcement learning the goal of the agent is to optimize

the value function V (s) which is defined as a function that tells the maximum

expected future reward of the agent at each state.

In our case of study we used a policy based approach, in fact, the aim is

learning a control policy for maximizing a numerical reward signal. According

to this principle, an agent, determines which actions brings to the largest

expected return while taking into account the immediate reward and future

rewards. In this way, the agent is capable to learn a policy while achieving

its goal.

State Estimator Policy Estimator
sk
^

Environment

ok

ok

rk+1 (sk, ak)

sk

ak

ak

ak

AGENT

bk-1 (sk)

Figure 3.1: Representation of the interactions between agent and environ-

ment

In particular, the current observations are indicated with ek (ok in figure

3.1), rk+1(sk, ak) identifies the reward at time instant k + 1 and bk−1(sk) is

the previous posterior distribution.

The agent is seen as a block where two processes take place: the state

estimator (implemented by using a Bayesian filtering approach) that provides

an estimate ŝk of the state sk; the policy estimator which infers the best action

ak to be taken to maximize the expected return.
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In the following sections, three important reinforcement learning algo-

rithm will be described, that are: Temporal-difference Learning, SARSA

and Q-learning algorithm.

3.1 Temporal-difference Learning

Temporal-difference (TD) learning is a combination of Monte Carlo methods

and dynamic programming [13].

Dynamic programming wants to simplify a complicated problem by break-

ing it down into simpler sub-problems in a recursive manner. Monte Carlo

methods require only experience (states, actions and rewards). In Monte

Carlo methods the agent learns about the states and reward when it in-

teracts with the environment so any prior knowledge of the environment’s

dynamic is not required. Thanks to this method, the agent can find an esti-

mate of a state-value function or a action-value function. The Monte Carlo

update can be expressed as:

V (Sk) = V (Sk) + α[Gk − V (Sk)]

In the prediction step our goal is to learn a value function that estimates

the total sum of the reward (returns) starting from a certain state:

vπ(s) = Eπ[Gk|Sk = s]

where Gk = rk+1 + γrk+1.

Temporal difference learning combines experience with the Bellman equa-

tion. The Bellman equation defines that we can estimate the value of the

current state based on the values of the states that we reach after choosing

certain actions and moving into those states.

Temporal-difference methods use experience to predict what will come

next, in fact, given some experience in using a certain policy π, TD methods

update their estimate of the value function. At time k+1 temporal-difference

methods make an update using the observed reward Rk+1 and the estimate

V (Sk+1).
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The algorithm starts by initializing a table V (s), then we evaluate the

policy π and obtain a reward r and thanks to this we can update the value

function for the old state. This is represented as:

V (Sk) = V (Sk) + α[Rk+1 + γV (Sk+1)− V (Sk)]

The value Rk+1 + γV (sk+1) represent the target for the TD.

The TD error is given by:

Rk+1 + γV (Sk+1)− V (Sk)

3.2 On-policy/Off-policy

The goal of reinforcement learning is to learn an optimal policy. We can have

off-policy and on-policy reinforcement learning.

When a reinforcement learning agent is on a mission, it takes actions,

learn which actions are good or bad and updates the Q-values. The policy

that determines the action taken by the agent is called behaviour policy. This

policy describes how the agent will behave in a certain state. The policy that

allows the agent to learn from its actions and from the rewards it receives, is

called the target policy.

An off-policy learner learns independently of the agent’s actions. More

in depth, this means that the target policy and the behaviour policy are

different. Instead, in an on-policy learner the target policy and the behaviour

policy are the same.

3.3 SARSA algorithm

SARSA is an on-policy iterative algorithm that balances exploration and

exploitation with temporal difference learning. It is used in the reinforcement

learning area of machine learning. This algorithm, whose acronym stands

for “state-action-reward-state-action”, can be used for learning a Markov

Decision Process policy.
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We want to evaluate the Q-function q(s, a), because we are doing model-

free reinforcement learning, where we do not use the transition probability

distribution, so we do not know how states transition into next states. The

main function for updating the Q-value depends on the current state of the

agent Sk, the action the agent chooses Ak, the reward Rk the agent gets for

choosing this action, the next state after the action Sk+1 and the next action

that the agent choose Ak+1. The update rule is given by:

Q(Sk, Ak) = Q(Sk, Ak) + α[Rk+1 + γQ(Sk+1, Ak+1)−Q(Sk, Ak)]

A SARSA agent interacts with the environment and updates the policy

based on actions taken. The Q-value for a state-action is updated by an

error, adjusting by the learning rate α. Q-values represent the possible re-

ward received in the next time step for taking action a in state s, plus the

discounted future reward received from the next state-action observation.

A learning rate α of 0 will make the agent not learn anything while a

factor of 1 would make the agent consider only the most recent information.

The discount factor γ determines the importance of future rewards.

An extension of SARSA is the expected SARSA. The expected SARSA

turns the SARSA algorithm from an on-policy to an off-policy algorithm by

weighting the Q-value of each next state-action pair by the probability of

taking that action giving the next state. It can be represented as:

Q(Sk, Ak) = Q(Sk, Ak) + α[Rk+1 + γ
∑
a

π(a|Sk+1)Q(Sk+1, a)−Q(Sk, Ak)]

3.4 Q-learning

A very important reinforcement learning algorithm is Q-learning. Q-learning

is a value based and off-policy learning algorithm. Value-based algorithms

updates the value function based on an equation (Bellman Equation). The Q

in Q-learning stands for quality or in other words, how useful a given action

is in gaining future reward.
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In chapter 4 we will discuss in depth the Q-learning algorithm and its

fundamental aspects.
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Chapter 4

Markov Decision Process

A Markov decision process consists in learning from interaction to achieve a

goal and it is a representation of sequential decision making, where actions

influence immediate and future reward.

The decision maker is called the agent and it interacts with the environ-

ment. The agent selects an action while the environment responds to the

action. There are three important signals that are passed between the agent

and the environment: the first signal represents the actions, indicated with

Ak, that are the choices made by the agent; the second signal represents

the states, indicated with Sk, that define the information through which the

agent made the choices; the last signal represents the reward, indicated with

Rk, that is used to define the agent’s goal.

The action can be deterministic or stochastic. Deterministic actions mean

that for each state and action a new state is specified, while stochastic actions

mean that for each state and action a probability distribution over next states

is specified. In our case of study, the actions are chosen thanks to a policy

that is a probability distribution of selecting actions given the state the agent

is in.

The agent and the environment interact at discrete time steps, k =

0, 1, 2, 3, .... At each time step k, the agent receives a representation of the

environment and chooses an action. At the next time step, the agent receives

a reward Rk+1 and it will be in a next state Sk+1, in general different from

the previous one.
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Figure 4.1: Functioning of a Markov Decision Process

A Markov process is a sequence of states with the Markov property. The

Markov property means that the transition from state sk to sk+1 is entirely

independent of the past. This can be expressed as:

p[sk+1|sk] = p[sk+1|s1, ..., sk]. (4.1)

So, a MDP is defined by a tuple containing the state space S, the action

space A, the reward space R, and the probability of transitioning from one

state sk, at time instant k, to the state sk+1 at time k + 1, defined as:

p(Rk+1 = rk+1, Sk+1 = sk+1|Sk = sk, Ak = ak). (4.2)

The probability completely characterizes the environment’s dynamics. It

describes the possibility that the values s and r will occur at time instant

k + 1, knowing the value of the precedent action a and state s.

The actions are decided by the agent following a specific policy given by:

π(ak|sk) = p(Ak = ak|Sk = sk). (4.3)

A policy function is a mapping from state space to the action space. The

objective in a Markov decision process is finding a good policy, that means
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finding a function that defines the action that the agent will choose when

finds itself in state s.

The optimal policy is chosen by selecting actions that maximize the Q-

function (state-action value function), defined as:

Qπ(sk, ak) = Eπ

{
∞∑
l=0

γlrk+l+1|Sk = sk, Ak = ak

}
(4.4)

where γ is the discount rate or discount factor that has a value between

0 and 1.

The problem of finding an optimal policy can be stated as:

π∗(ak, sk) = argmaxakQπ(sk, ak). (4.5)

In the following, we will detail the definitions and derivations leading to

(4.4) and (4.5).

4.1 Rewards and returns

Rewards are numerical values that the agent receives from the environment

when performing an action. Rewards can be positive or negative based on

the actions chosen by the agent. They allow the agent to learn from the

environment and choose the best action to achieve the goal. The agent wants

to maximize not the instantaneous reward, but the cumulative reward. So,

if the agent needs to accomplish a certain action, we have to provide rewards

so that in maximizing them the agent will also complete its mission. The

sum of rewards the agent receives is called return.

Gk = rk+1 + rk+2 + rk+3 + ...+ rT (4.6)

where T is the final time step.

4.2 Episodic and continuous tasks

Episodic tasks are the tasks that have a finite duration, so there is an end.

They end in a special state called the terminal state, followed by a reset to
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an initial state. An example could be the game ”Pacman”. We start the

game and play till we win or we lose and then the game will restart. This is

called an episode and every episode is independent. While continuous tasks

are tasks that do not have an end, that go on without limit. In this case the

terminal state is infinite and not finite as in episodic tasks. In continuous

tasks we could have infinite return, so to help us in this situation we define

the discount factor.

4.3 Discount Factor

The Discount Factor helps us avoid infinity as a reward in continuous tasks.

It has a value between 0 and 1 and it is usually called γ. If the value is 0,

it means that the immediate reward has more importance so in this case we

only consider immediate reward, while, if the value is 1, it means that we

consider only future rewards. The equation for the discounted return G at

time step t is:

Gk = rk+1 + γrk+2 + γ2rk+3 + ... =
T∑
l=0

γlrk+l+1 (4.7)

We can rewrite the equation above in a recursive way:

Gk = rk+1 + γrk+2 + γ2rk+3 + ...+ γT rT (4.8)

= rk+1 + γ(rk+2 + γrk+3 + γ2rk+4 + ...+ γT−2rT ) (4.9)

= rk+1 + γ(Gk+1) (4.10)

4.4 Policies and value functions

Value functions are functions that estimate how good it is for the agent to be

in a given state. The definition of value function is linked to the definition

of policy. The value function of a state s under a policy π, denoted as vπ(s)

is expressed as:

vπ(s) = Eπ

[
∞∑
l=0

γlrk+l+1|Sk = s

]
(4.11)
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A policy π is a probability distribution of selecting actions given the state

we are in, so it defines what action to perform when we are in a certain state.

A policy π is better than or equal to a policy π’ if the expected return of π

is greater or equal to the expected return of π’ for all states. There is always

an optimal policy. There could be more than one optimal policy, but all

the optimal policies have the same state-value function, denoted as v∗ and

defined as:

v∗(s) = maxπvπ(s) (4.12)

4.5 Bellman Equation

The Bellman Equation helps us finding optimal policies and value functions.

The agent’s goal is to find a sequence of actions that will maximize the return,

that is the sum of rewards during an episode.

The v-function or the state-value function, measures the goodness of each

state. The value of vπ(s) is:

vπ(s) = Eπ[Gk|Sk = s] = Eπ

[
T∑
l=0

γlrk+l+1|Sk = s

]
(4.13)

that describes the expected value of the total return G, from state s at

time instant k.

Now we can define the state-action value function, also called Q-function,

as already mentioned. It defines the value of taking action a in state s

following a policy π. The state-action value function, called Qπ(s, a), is

equal to:

Qπ(s, a) = Eπ[Gk|Sk = s, Ak = a] = Eπ

[
T∑
l=0

γlrk+l+1|Sk = s, Ak = a

]
(4.14)

Knowing that π(a|s) is the probability that a policy π selects an action

a given a state s, we know that:
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∑
a

π(a|s) = 1 (4.15)

then we can write now the state-value function as:

vπ(s) =
∑
a

π(a|s)Qπ(s|a) (4.16)

The Bellman equation simplifies the computation of the value function

decomposing it into different parts.

Defining p as the probability of action a, in state s, arriving at state s′

with reward r, the Bellman equation for the state-value function is defined

as [14]:

vπ(s) =
∑
a

π(a|s)
∑
s′

pass′(r(s, a) + γvπ(s′)) (4.17)

where pss′ is the state transition probability.

The Bellman equation for the action-value function is:

Qπ(s, a) = r(s, a) + γmax
a′

Qπ(s′, a′) (4.18)

that can be written as:

Qπ(s, a) =
∑
s′

pass′(r(s, a) + γ
∑
a′

π(a′|s′)Qπ(s′, a′)) (4.19)

with an alternative form given by:

Qπ(s, a) =
∑
s′

pass′(r(s, a) + γvπ(s′)) (4.20)

The optimal state-value function can be expressed as:

v∗(s) = max
π

vπ(s) (4.21)

while optimal state-action value function can be written as:

Q∗(s, a) = max
π

Qπ(s, a) (4.22)
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4.6 Q-learning algorithm

Q-Learning is a value-based reinforcement learning algorithm which is used to

find the optimal action-selection policy using a Q-function. The Q-function

we refer to, is the function described in the previous section.

In Q-Learning we define a Q-Table that is a lookup table where we cal-

culate the maximum expected future rewards for action at each state. In the

Q-table, the columns are the actions and the rows are the states. This pro-

cess is an iterative process because we need to improve the Q-Table at each

iteration. The Q-function uses the Bellman equation and has two inputs: the

state s and the action a. The Bellman Equation divides the value function

into sub-problems, so it simplifies the computation of the value function. The

Q-learning equation is given by:

Q(Sk, Ak) = Q(Sk, Ak) + α[Rk+1 + γmax
a
Q(Sk+1, a)−Q(Sk, Ak)]

When we start, all the values in the Q-Table are zeros. There is an itera-

tive process of updating the values. As we start to explore the environment,

we obtain observations, so the Q-function gives us better approximations by

continuously updating the Q-values in the table.

The Q-learning algorithm process has 5 steps:

1) Initialize Q-Table: initialize the values of the Q-Table at zero.

2) Choose an action.

3) Perform action.

4) Measure reward.

5) Update Q-table.

In the first three steps, a strategy called the epsilon greedy strategy is

used. Epsilon greedy policy is a way of selecting random actions with uniform

distribution from a set of available actions. At the beginning, the epsilon

rates will be higher. The UAV will explore the environment and randomly

choose actions. As the agent explores the environment, the epsilon rate

decreases and the drone starts to exploit the environment. The actions are

taken from an actions space.

In the last two steps, we need to update the Function Q(s, a).
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Figure 4.2: Example of an updated Q-table

We will repeat this again and again until the learning is completed. In

this way the Q-table will be updated.

In conclusion, initially we explore the environment and update the Q-

table. When the Q-table is ready, the agent will start to exploit the environ-

ment and start taking better actions.
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Chapter 5

Simulation Results

5.1 Simulation Set-Up

In this chapter I will explain how the algorithm that we presented before has

been implemented to maximize the target detection and mapping accuracy

without exceeding the mission time and avoiding collisions. In addition, I

will also show how it behaves in different cases of simulation.

Taking into consideration the iterative nature of the algorithm, we have

chosen a maximum number N of interactions for each episode. The chapter

has been divided in three sections: 1) Tools; 2) Implementation; 3) Cases of

study.

In the first section will be discussed the computing environment chosen

for the implementation of the code, that is MATLAB. In the second section

will be described how the code has been implemented and the functions used

for obtaining the results. In the last section various scenarios of simulation

will be presented.

We consider a target detection and mapping problem performed by UAVs

which autonomously navigate an indoor environment. In our case of study

we consider multiple autonomous UAVs with radar capabilities. The scenario

investigated is a situation where the UAVs reveal the presence of targets in an

unknown environment. There are multiple targets that have to be detected.

Obstacles are present in the environment, and they should be avoided by

UAVs. The algorithm considers obstacle collision avoidance so that UAVs

can navigate in cluttered environments. The algorithm has met its goal when
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the UAVs have found the largest number of targets within the mission time.

In this scenario the UAVs have to rapidly decide where to explore the

environment while reconstructing a map of it and meanwhile detect the tar-

gets [12].

5.2 Tools

For the implementation of the algorithm, we used MATLAB R2020b.

MATLAB is a high-performance language for technical computing. It is

an easy-to-use environment where problems and solutions are expressed in

familiar mathematical notation. We utilized MATLAB because the libraries

are specifically optimized for scientific purposes.

MATLAB allows us to implement and develop our algorithm, process

images, create simulation videos easily and perform extensive data analysis

and visualization.

5.3 Implementation

To implement the code, initially, we define some important parameters which

are fundamental to define the initial conditions. We define the discount

factor, the learning rate, the number of episodes and the number of agents

respectively as:

discount = 0.99;

alphaRL = 0.9;

Nepisode = 20;

Nagents = 2;

To give the simulation a limit of time, that can be related to the battery-

life of the UAVs, we define a mission time in which the tasks must be com-

pleted:

TM = 100;

In the previous chapter two main reinforcement learning algorithm have

been analyzed, that are Q-learning and SARSA algorithms. To decide which

40



reinforcement learning algorithm we want to use in our implementation we

use a flag:

RLflag = 2;

The value of the RLflag represents the fact that, in our case of study,

we choose the Q-learning algorithm as the selected reinforcement learning

algorithm. This choice has been made by the fact that Q-learning is best

suited for training an optimal agent in simulation because it directly learns

the optimal policy, whilst SARSA learns a near-optimal policy during explo-

ration.

Important parameters defined in the code are the number of targets in the

environment and the number of agents that must navigate the surrounding

searching for the targets.

The agents, before the end of the mission time, need to navigate the

surrounding and search for the targets that are inside the indoor environment

that we built for this experiment. The action chosen in the next step is

decided based on which action will bring to the higher cumulative reward to

achieve the goal in the shortest time possible.

An agent can perform four different actions, it can go left, right, up, or

down. As said before, the algorithm chooses the actions that bring to the

higher reward.

The agents navigate in an indoor environment that we created for this

simulation. We generated a 20x20m map where each cell is 0.5x0.5m:

Delta = 0.5;

SizeX = 10;

SizeY = 10;

xgrid = 0 : Delta : SizeX;

ygrid = 0 : Delta : SizeY ;

The environment was created thanks to a function called “createMap”.

This function generates the walls, the obstacles in the surrounding and a

number of dots representing the targets (in red) and the agents (in blue).

Because we adopted Q-learning, we should first initialize the Q-table.

Initially, the Q-table, is a matrix where each element is zero-valued and
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then, after some interactions between the agents and the environment, the

Q-table will be filled with useful data that represent the future rewards.

To understand the energy accumulated by each agent, we plot a detection

map, that is generated taking into consideration the sum of the SNRs sensed

by each agent. The resulting plot presents a number of peaks equivalent to

the number of targets in the environment. These peaks are the point in the

map where we find the targets.

The SNR is calculated thanks to a function called “EvaluatePd” that

takes as inputs the targets and the coordinates of every point of the map and

then in output we have two parameters, the SNR (signal-to-noise ratio) and

the Pd (probability of detection).

Then we define a function called “RLSLAM”. In “RLSLAM” we define

the RL-based algorithm for trajectory optimization and environment map-

ping. We start by evaluating the policy for Q-learning and by calculating an

expectation of the reward thanks to the function “OFFPolicyEvaluation”.

The function “OFFPolicyEvaluation” follow three important steps:

a) The first step considers a greedy approach. We set ”epsilon” according

to the time instant. If good rewards are received, we will stop doing random

actions and the actions will be calculated in a way to maximize reward. If the

episode we find ourselves in is a number between 1 and Nepisode/2 then we

use a non-greedy, i.e. random, approach, instead, if the episode is a number

after Nepisode/2 then we go straight to the goal. The value that we obtain

in output using the greedy approach, is a value called ”epsgreedy”.

”Epsilon” is a small value. With a small probability of epsilon, we choose

to explore, not to exploit. In this case, the action is selected randomly,

independent of the action-value estimates.

b) The second step consist in using the function “getQtableStateIndex”.

The function “getQtableStateIndex” takes as input the current agent posi-

tion and in output we receive the row index of the Q table matrix.

c) The third step is updating the position of the agent.

So, initially, we define a variable “prob” that has a possible random value

from 0 to 1. If the value of “prob” is smaller than the value “epsgreedy”
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found before, we have that the next position will be calculated as the past

position considering a movement in a random action.

If “prob” is higher than the value “epsgreedy”, we calculate the maximum

value of the Q-table and the output will be the action to choose in the next

step. So, the next position will be calculated as the past position plus the

output received from the calculation of the maximum.

This function is used together with a function called “AvoidWalls”. This

last function checks the presence of walls (through agent proximity sensors)

according to the current agent’s position.

“AvoidWalls” returns a constant that defines if there is a wall near the

agent, or if there is an obstacle up, down, left, or right. If there is not a wall

near the agent, the output value of the flag “OP” is 0, instead if there is an

obstacle in the vicinity of the agent, the output value is 1. If the flag “OP”

is equal to 1 then this is translated as a reward of -1000 in the Q-table.

All the values in the Q-table that have a value of -1000 are seen as value

that cannot be changed, because are values that indicates the fact that we

are near an obstacle or a wall of limitation, while every single value that

has a different reward from -1000 is seen as a value to update. We use the

Q-learning updating equation to update the values of the Q-table.

While the agents explore the environment, the Q-function gives us much

better approximation through the continuous updating of the Q-table values.

The Q-table contains values that represent the future reward. These values

let us understand which is the best action to take in a certain moment in

time, being in a certain state in the environment.

The function “OFFPolicyEvaluation” calls “rewardReceive” that is a

function that calculates the reward for coverage, entropy and for the prob-

ability of detection. This function evaluates the expected reward, for each

possible trajectory. Each type of reward is multiplied by a factor that rep-

resent the reward weight. The sum of these three components gives us the

received reward.

The update of the Q-table utilizes another important information about

its values. If the target is detected, so the received energy is higher than

a certain value, the considered target must be switched off, because it has
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already been spotted. So, the algorithm stops the update of the Q-table for

the target already identified.

In this way the agent continues to search for new targets in the envi-

ronment instead of staying near the found target and not contribute to the

achievement of the objective, that is finding the largest number of targets in

the surrounding.

5.4 Case of study

In this section, five different scenarios will be described to understand how the

algorithm behaves in different situations. We will consider three situations

where we only change the number of targets and two situations where we

change the value of the discount factor and the value of the learning rate.

To understand how the behaviour has improved during interactions, we

will study the trajectories that have been followed in episode 1, that is the

first episode, and in episode 20, that is the last episode. We expect that in

the last episode, the UAVs have learnt the best trajectory to optimize their

tasks.

First, we are going to analyze the trajectories of the first agent, and then

the trajectories of the second agent. As the first agent we refer to the one at

the bottom of the map while the one at the top is the second agent.

5.4.1 Two agents and N targets

In this subsection, I will simulate the behaviour of two UAVs that are in

search of a certain number of targets that is different for each simulation.

We consider three simulations, one where there is only one target in the

environment and other two, where there are two and four targets respectively.

In the next, we will report a reference and SNR maps to virtually under-

stand where the targets and obstacles are.
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Figure 5.1: Case 1) Two agents and one target
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Figure 5.2: Case 2) Two agents and two targets
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Figure 5.3: Case 3) Two agents and four targets

Figure 5.4: Case 1) Detection Map for one target
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Figure 5.5: Case 2) Detection Map for two targets

Figure 5.6: Case 3) Detection Map for four targets
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Now, analyzing the first and last episode of the algorithm for each agent

and case of study, we have:
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Figure 5.7: Case 1) First agent - Episode One
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Figure 5.8: Case 1) First agent - Episode twenty
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Figure 5.9: Case 1) Second agent - Episode One
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Figure 5.10: Case 1) Second agent - Episode twenty

For the first agent, in episode one (Figure 5.7), we can see by the tra-

jectory, that the UAV navigates the environment in search of the target but

once we arrive at the end of the first episode, the agent has not found it. At
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episode twenty (Figure 5.8), after the exploration phase, the agent privileges

coverage compared to target detection. In each episode the UAV acquires

more information and once it has arrived at episode twenty it has learned

which are the actions that brings to the higher rewards. The second agent,

like the first one, navigates the environment to find the target. In the first

episode (Figure 5.9), we can see that the agent has not found the target but

continues to explore the environment to acquire the largest number of infor-

mation. Instead, in episode twenty (Figure 5.10), we can see that the UAV

started to exploit the collected information, in fact, the UAV has been capa-

ble of finding the target and also infer a good trajectory for the identification

of the target.

Now that we have described the first case of simulation, we can move on

to the second case, where the number of targets increments from one to two

targets in the environment.
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Figure 5.11: Case 2) First agent - Episode One

In episode one (Figure 5.11), the first UAV has mapped the environment

and during the navigation has found a target. This does not stop the agent to

search for the other target, so it continues to navigate until the episode ter-

minates. At episode 20 (Figure 5.12), we can see that the walls are estimated
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correctly and the trajectory of the agent is directed to the target:
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Figure 5.12: Case 2) First agent - Episode twenty

0 2 4 6 8 10

x

0

1

2

3

4

5

6

7

8

9

10

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.13: Case 2) Second agent - Episode One
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Figure 5.14: Case 2) Second agent - Episode twenty

The second agent, from episode 1 (Figure 5.13) to episode 20 (Figure

5.14), updates the trajectory to directly go to the target, because in this way

it receives a higher reward.

The last simulation, increments the number of targets to four targets in

the environment. The behaviour of the UAVs is the same as in the other

cases: navigate the environment for reconstructing a reliable copy of the

map and finding the highest number of targets in the surrounding without

exceeding the mission time.

In this case, we can see clearly, how the UAVs, from episode one (Figure

5.15) to episode twenty (Figure 5.16), use the information acquired during

the exploration phase to choose the actions that bring to the highest reward,

that are the actions that bring the agents closer to the target.

In fact, as in each case we have simulated, initially, we have that the

agent explores the environment and chooses random actions, but once the

exploration phase is terminated, the exploitation phase starts, where we use

the Q-table as a reference and the agent selects the action based in the
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maximum value of the Q-table.
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Figure 5.15: Case 3) First agent - Episode One
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Figure 5.16: Case 3) First agent - Episode twenty
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And for the second agent we obtain the same behaviour.
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Figure 5.17: Case 3) Second agent - Episode One
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Figure 5.18: Case 3) Second agent - Episode twenty
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Now we are going to study two simulations in which we consider two

agent and two target, and we are going to change two important learning

parameters that are the discount factor and the learning rate.

5.4.2 Two agents and two targets with low value of the

learning rate

In this case, we have two agents that navigate the environment in search for

two targets. The only thing that changes from the above cases is that here,

we consider a learning rate reduction.

The learning rate is basically the speed at which a machine learning model

learns. The learning rate is important for the update of the Q-values. In fact,

together with the discount factor, is one of the most important parameters

in the Q-learning updating equation. A value of 0 of the learning rate means

that the Q-values are never updated, so nothing is learned. A high value of

the learning rate instead, means that learning can occur quickly.

The value of the learning rate in the cases discussed above was set to 0.9.

In this case the learning rate has been set to 0.3.
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Figure 5.19: Case 4) First agent - Episode One
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Figure 5.20: Case 4) First agent - Episode twenty
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Figure 5.21: Case 4) Second agent - Episode One

When changing the learning rate, we see a slightly change from episode

1 (Figure 5.19 and Figure 5.21) to 20 (Figure 5.20 and Figure 5.22).
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Figure 5.22: Case 4) Second agent - Episode twenty

Reducing the learning rate, slow the update of the Q-table, because the

increase of the values is reduced. The learning rate is the value by which the

update component, that is the subtraction of the old information from the

new information, is multiplied. This is why the learning rate affects so much

the update of the Q-values.

5.4.3 Two agents and two targets with low value of the

discount factor

In this simulation, we have two agents and two targets but the change from

the cases above, is that we reduce the discount factor while leaving unchanged

every other parameter. The discount factor determines the importance of

future rewards. So, essentially, the discount factor determines how much the

reinforcement learning agents cares about rewards in the distant future.

Before we considered a discount factor of 0.99, while in this case we set

the value of the discount factor to 0. When the discount factor has a value of

0, the agent will only learn about actions that produce an immediate reward.
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Figure 5.23: Case 5) First agent - Episode One
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Figure 5.24: Case 5) First agent - Episode twenty
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Figure 5.25: Case 5) Second agent - Episode One
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Figure 5.26: Case 5) Second agent - Episode twenty
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Chapter 6

Conclusion

In this thesis aspects related to the implementation of a reinforcement learn-

ing algorithm for the autonomous navigation of UAVs and for the detection

of multiple targets in an unknown indoor environment have been analyzed. I

have first explained the concept of reinforcement learning and, more specifi-

cally of Q-learning. Then, I have described its implementation on MATLAB

and analyzed the obtained results. Thanks to this algorithm, we have ob-

tained useful and important results for the comprehension of the behaviour

of UAVs. In particular, we have drawn important configuration by changing

some key learning parameters, as the learning rate, the discount factor and

the number of targets in the environment.

The algorithm that we implemented is based on a specific reinforcement

learning algorithm, that is Q-learning. Q-learning is an off-policy reinforce-

ment learning algorithm that seeks to find the best action to take given the

current state. More specifically, Q-learning allows to learn a policy that

maximizes the total reward.

Through simulations we have seen that the algorithm that we imple-

mented completely follows the steps that characterize the Q-learning algo-

rithm and allow us to reconstruct a reliable copy of the map and find a good

trajectory to detect the targets present in the environment.

In addition, thanks to the underlying statistical models, we have under-

stood the importance of two parameters, that are the discount factor and the

learning rate. These two values, are fundamentals for an optimized update

of the Q-values.
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The simulation’s results are very useful since we can see that the agent

exhibits interesting capabilities in choosing the trajectory while achieving

reliable performance in terms of detection and mapping accuracy in a given

mission time.

A future development for this technology could be its implementation in

emergency situations, such as during fires or in destroyed indoor environment.

In such cases, the UAVs enter the environment without needing the presence

of human operators. Thanks to this technology we could reduce the risk

of severe injuries that could be caused if emergency operators would enter

the perimeter, and also, the environment could be mapped in a much more

effective way and faster by UAVs in comparison with human help. So, UAVs

can reconstruct a map of an unknown environment while minimizing the

error of detecting the presence of a target and this is a fundamental concept

in situations where people are in danger.
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