
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA
SEDE DI CESENA

SECONDA FACOLTÀ DI INGEGNERIA CON SEDE A CESENA
CORSO DI LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

THESIS TITLE

MOBILE TUCSON: THEORETICAL AND TECHNOLOGICAL 
REQUIREMENTS FOR TUCSONʼS PORTING OVER 

ANDROID MOBILE DEVICES

Thesis in
SISTEMI MULTI AGENTE LM

Supervisor! ! ! ! !                                Presented by
Prof. ANDREA OMICINI                                       !        ANTONIO PEDONE

Co-Supervisors
Prof. ENRICO DENTI
Dr. ELENA NARDINI

Session I
Academic Year 2010/2011









A Papà, Mamma, Angela, Lucia





Contents

Abstract 9

Introduction 11

PART I - Needed resources 15

1 TuCSoN infrastructure 17
1.1 Design and skills 17
1.2 Separation from ReSpecT 20
1.3 Toward a client release 23
1.4 Improving version 1.9.1 26

2 Mobile world: Android 29
2.1 O.S. architecture and innovations 29
2.2 Applications: structure and parts 33
2.3 Eclipse development: Android SDK 36

PART II - TuCSoNʼs porting over Android 39

3 Mobile TuCSoN 41
3.1 The reasons for porting 41
3.2 The requirements 44
3.3 Which TuCSoN for Android 45
3.4 Proposed architecture 46

3.4.1 Design architecture 46
3.4.2 Detailed architecture 48

7



3.5 Experimental results 50
3.6 Which benefits 52

4 Case studies 55
4.1 MOSS application 55
4.2 How does it work 57
4.3 Structure and GUI 59
4.4 Johannes Kepler University project 64

4.4.1 SAPERE context 64
4.4.2 Live sensor data 65
4.4.2 Collaborative results 66

Conclusions and future work 69

Appendix 71

References 75

8



Abstract

Communication and coordination are two key-aspects in open di-
stributed agent system, being both responsible for the systemʼs be-
haviour integrity. An infrastructure capable to handling these issues, 
like TuCSoN, should to be able to exploit modern technologies and 
tools provided by fast software engineering contexts. 

Thesis aims to demonstrate TuCSoN infrastructureʼs abilities to 
cope new possibilities, hardware and software, offered by  mobile 
technology. The scenarios are going to configure, are related to the 
distributed nature of multi-agent systems where an agent should be 
located and runned just on a mobile device.

We deal new  mobile technology  frontiers concerned with smart-
phones using Android operating system by Google.

Analysis and deployment of a distributed agent-based system so 
described go first to impact with quality  and quantity  considerations 
about available resources. Engineering issue at the base of our re-
search is to use TuCSoN against to reduced memory  and computing 
capability  of a smartphone, without the loss of functionality, efficiency 
and integrity for the infrastructure.

Thesis work is organized on two fronts simultaneously: the former 
is the rationalization process of the available hardware and software 
resources, the latter, totally  orthogonal, is the adaptation and optimi-
zation process about TuCSoN architecture for an ad-hoc client side 
release.

9



10



Introduction

Multi-agent systems (MAS) provide an appropriate level of ab-
straction for modelling and engineering modern systems in order to 
confront and dominate their growing complexity. The concepts of en-
vironment, openness, local control and interaction, are the principal 
features of modern complex software systems.

Computations and locality  influence each other since idea of envi-
ronment is explicit as well as the interactions with it; systems, desi-
gned to be always running, can be changeable in size and structure; 
systemʼs components are autonomous and pro-active within their lo-
cality  and they  interact on the local basis of spatial and temporal 
knowledge. 

On this background, weak agent definition [WJ95] fits and it is cha-
racterized by  the concepts of autonomy, pro-activity, spatial location, 
reactivity and sociality. 

Facing complexity in MAS modelling and engineering requires a 
shift from a reductionist vision of MAS to a systemic, holistic vision of 
MASs, explicitly  accounting for social issues [COZm00, FGM03]: we 
want to look to a MAS through a lens able to move our attention on 
social intelligence aspects rather than on an individual intelligence 
coming out from a single agent [ZJW01, PO02].

MAS aims to deal with: distribution problem over the time and spa-
ce; new nature of components and their interactions; already  cited 
complexity and unpredictability  of the environment. These goal leads 
to the definition of new abstractions, new meta-models, new metho-
dologies and technologies. Among latter, we study  TuCSoN (Tuple 
Centres Over the Network) infrastructure. It was conceived and desi-
gned at research laboratory APICe [API11]: the principal goal of this 
framework is to support agent communication and coordination provi-
ding tuple centres. In management of social intelligence, we reco-

11



gnize in the distribution over infrastructureʼs nodes the most important 
feature of TuCSoN: on these nodes take place tuple centres, which 
are shared and reactive information spaces.

More specifically, tuple centres are programmable tuple spaces, 
i.e. tuple spaces with a reactive behaviour which can be programmed 
dynamically  by  a specific language. We refer to the coordination logic 
language called ReSpecT (Reaction Specification Tuples): also desi-
gned at APICe laboratory, it is used to define and to express tuple 
centres behaviour and to manage the interactions, and then the wor-
king, of software agents. Agents communicate by  creating and retrie-
ving associatively  tuples whose existence, once created, is indepen-
dent with respect to agentsʼ one. This make it possible to obtain un-
coupling properties, temporal and spatial, which greatly  simplify  the 
engineering of the agent interaction space in systemsʼ development 
[ALab06].

Finally, we aim to stress that MAS are well designed for Internet 
context and its aspects. Open distributed multi-agent systems have 
gained sheer interest due to their suitability  to the Internet scenario: 
infact, their best property  is to cope well with the unpredictability  and 
the dynamics of the environment. The lack of a global state of the In-
ternet can be addressed by  exploiting the agent autonomy  and flexibi-
lity [COZc00].

This thesis aims to exploit the possibilities offered by  TuCSoN in-
frastructure through a mobile device, i.e. a smartphone, which per-
fectly  represents, even from a purely  practical and visual point of 
view, the idea of spatial distribution, decentralized control, autonomy 
and flexibility.

The starting point of our research is represented by TuCSoN, while 
operating system Android will be the target of our work toward an 
useʼs extension of the infrastructure.

TuCSoNʼs porting over a mobile device Android embedded is the 
endpoint of the thesis: thanks to a careful analysis of the architecture 
and capabilities of framework and of operating system, we have co-

12



me to a TuCSoN release for Android able to satisfy agentsʼ needs, 
without losing efficiency and integrity.

Thesis follows this organization: first part provides an exhaustive 
presentation and description of needed resources, TuCSoN and An-
droid, by  a discussion of their architecture, their operation and their 
main issues that we care to deal in order to achieve our ultimate goal; 
second part is composed by  two sections, the former concerns with 
reasons, analysis and design steps which lead to the porting and the 
latter presents a case study  designed to provide a comprehensive 
example of the work.

13



14



PART I 
Needed resources

15



16



1 TuCSoN infrastructure

1.1 Design and skills

TuCSoN is an infrastructure providing coordination services for 
agent-based systems which exploit the Internet scenario. These ser-
vices are embodied in tuple centres, that are coordination abstrac-
tions provided to agents by infrastructure in order to enable and go-
vern agent interaction [OZ99].

Tuple centres are characterized by  a reactive behaviour: the 
agents interact with them by  inserting, retrieving and reading informa-
tion in the form of tuple, ordered collections of heterogeneous infor-
mation chunks. More specifically, tuple centres are programmable 
tuple spaces, i.e. tuple spaces with a reactive behaviour which can be 
programmed dynamically  (by  humans as well as by agents). Agents 
access tuple centres associatively  by  writing, reading and consuming 
tuples via simple communication operations (out, rd, in, idp, rdp). 
While the tuple spaces behaviour in response to communication 
events is fixed and pre-defined by  the model, the behaviour of a tuple 
centre can be tailored to the application needs by defining a suitable 
set of specification tuples, which define how a tuple centre should re-
act to incoming/outgoing communication events [OR04]. The specifi-
cation tuples are expressed in the ReSpecT language.

The essential components of TuCSoN are:
• a coordination model based on multiple programmable tuple spa-

ces that mediates all communications among active entities;
• a distributed infrastructure, modelling a system, upon which tuple 

spaces are deployed;

PART I - TuCSoN

17



• the integration of mechanisms for the access control within the tu-
ple-based environment and their application to the hierarchical in-
frastructure. 
From topology  point of view, tuple centres are hosted in TuCSoN 

nodes, distributed over the network, defining the TuCSoN coordina-
tion space. It is possible to distinguish two kind of TuCSoN nodes: 
places  and gateways.

The former represents the nodes hosting tuple centres used for 
specific applications/systems need, from supporting coordination ac-
tivities to hosting information or simply  enabling agent communica-
tion: in a mobile agent framework, places are the nodes where mobile 
agents are meant to execute. The latter provides instead information 
for a limited set of places since a single and centralised repository  is 
unfeasible in complex and large environments.

Finally, a domain is the set of nodes composed by  the gateway 
and the places for which it provides information.

It is worth noting that the concepts of gateway  and place do not 
automatically  imply  the definition of a unique hierarchical structure: a 
place can be part of different domains and a gateway  can be a place 
in its turn. This is useful to model complex and dynamic network topo-
logies, as those deriving from virtual organisations [OR04].

This base model has been extended by the idea of ACC1, to sup-
port the definition and development of organizational structures and 
their conduct rules. An organisation, in terms of its social structures, 
rules and resources, is mapped onto a domain. The description of the 
organisation abstractions and concretions is stored and managed 
dynamically  in a specific tuple centre, called $ORG, which is hosted 
in the gateway  node of an organisation. The $ORG tuple centre hosts  
then (dynamic) information about societies, roles, agents and related 

PART I - TuCSoN

18

1 Agent Coordination Context.



Fig. 1.1. On the left the ACC negotiation, on the right the operating sta-
ges for accessing coordination artifacts inside the organisation.

relationships (agent-role2 e inter-role3) defined for the domain repre-
sented by the gateway and its places.

Then, in order to access to the tuple centres hosted by  a coordina-
tion node of a place, an agent must join the organisatoin by  entering 
into a suitable ACC negotiated with the gateway of the domain. 
Thanks to the basic services provided by  the infrastructure, an agent 
can negotiate the configuration, properties and quality  of services 
characterising the ACC. In the case of successful negotiation, an 
ACC with a specific configuration is created and entered by  the 
agent, which can then exploit its interface to access and use the tuple 
centres hosted by  the places of the domain [Fig. 1.1]; basically, this 
interface provides the basic primitives of the ReSpecT coordination 
language (in, out, inp, rdp, rd, set_spec, get_spec), and enables 
agent access to tuple centres according to the permissions and rules 
defined for the roles it is playing.

   

PART I - TuCSoN

19

2 Agent-role relationships: through these relationships it is possible to specify 
whether a specific agent is allowed (or forbidden) to assume ad the to acti-
vate a specific role inside the organisation. 

3  Inter-role relationships: these relationships make ot possible to specify 
structural dependencias among the roles, so as to further define constraints 
on dynamic agent-role activation. By means of these relationships, it is pos-
sible to explicitly specify, for instance, whether two roles are equivalent, 
whether a role excludes an othe one, or requires other roles to be played.



Fig. 1.2. Package diagram of TuCSoN infrastructure 1.9.1.

Also, an ACC provides the primitives to dynamically  activate and 
deactivate roles, and to quit the ACC itself, thus ending the agent 
working session inside the organisation.

1.2 Separation from ReSpecT

In this section we illustrate the first steps of our research work by 
focusing on TuCSoN version 1.9.1. Our first studies and attempts of 
TuCSoNʼs porting are concerned with the version 1.4.5, while it is the 
1.9.1 one which formed the real basis to talking about the separation 
from ReSpecT and, then, a client side release.

PART I - TuCSoN

20



Separation from logic language ReSpecT represents the first piece 
of the puzzle that will have, as a final result, an Android client release 
of TuCSoN.

In its previous version (1.4.5) the two technologies, TuCSoN and 
ReSpecT, formed an unique ensamble in which, the former was the 
management framework for tuple centres and provided adequate 
support to network distribution, the latter was the coordination lan-
guage used to characterize a tuple centre.

Version 1.9.1 leads to a redesign of TuCSoN that, on one hand, 
aims to keep as much as possible the same architectural elements 
and design properties and, on the other hand, introduces new ele-
ments to achieve the prefixes objectives: i.e. the resolution of the se-
paration of languages from the infrastructures issue [SO08].

The parallel phase of ReSpecT re-engineering leads to version 
2.2: itʼs aimed to make such stand-alone technology  for the realiza-
tion of not distribuited concurrent applications4 and to modify  and ex-
tend it according to the meta-model A&A5. This made it possible to 
join TuCSoN with this latest ReSpecT version.      

Infrastructure package diagram, shown in Fig. 1.2, clarifies how 
the two technologies are merged by  explicating, through dashed ar-
rows, the relationships among the various packages.

UML 2.0 import defines a relationship in which a package contains 
a copy of another packageʼs classifier; access refers to a relationship 
where all source packageʼs classifiers can access to the public clas-
sifier of the target package; finally, merge specifies a relationship 
where the contents of the target package are combined with the 
source ones through specialization and redefinition [NM09]. 

PART I - TuCSoN

21

4  Conceived to program the tuple centres through a specification reaction 
language (language level), the ReSpecT technology was subsequently 
equipped with the means useful to build not distributed concurrent applica-
tions, in which the tuple centre is the fundamental mean for coordination of 
different applicationʼs tasks (application level).

5 Agent and Artifact.



Separation of languages from the infrastructures, theoretical rea-
son for TuCSoN version 1.9.1, finds in this thesis a real kind of con-
creteness.

Indeed, the separation of ReSpecT language from infrastructure, 
finds now a good motivation to be put into practice. As we will see in 
second part of thesis, this separation aims to provide two points of 
view and use, of the infrastructure: on one hand, where a TuCSoN 
node is installed, we will need all the features and technologies built-
in, including ReSpecT, on the other hand, where there will be simply 
an agent eager to exploit the infrastructure, weʼll only  need some 
TuCSoN resources, excluding ReSpecT.

In this context, ReSpecT separation from TuCSoN is seen as  
structural and conceptual rationalization of the infrastructure, whose 
beneficiary  will be the end user (the agent). An agent, infact, needs 
only  those APIs useful to ensure ability  to exploit the infrastructure 
and interact with it: weʼre talking about those application program-
ming interface that make it possible to define and create, specifying 
an identifier, an agent and a tuple centre. To guarantee those APIʼs 
use and, at the same time, maintaining the infrastructureʼs integrity  on 
the node side, we decided to use the classic TuCSoNʼs API delega-
ting, node side, the bind with the logical language on use. This link 
between TuCSoN API and ReSpecT lnguage is made by  the Resolver 
in full version 1.9.1. 

This separation leads an agent to specify  the syntax of name for a 
tuple centre. Client release will send these information to the node 
side as a string: the node side will use these received information 
(along with the canonical other ones provided by  the infrastructureʼs 
protocol) to create a reference to the tuple centre requested, and then 
to establish the bind with the respective tuple centre specified by the 
ReSpecT language. 

A final consideration concerns absolute novelty  of version 1.9.1, 
compared to the previous one, to specify a particular language (for 
the infrastructure and for the agent). By  removing computational load 
of ReSpecT from agent side, we delegate language management to 

PART I - TuCSoN

22



the TuCSoN node and we released the agent from having to “declare” 
a logic language. This scenario reverses any  responsibility  on the no-
de side (except for the syntax check of used names).

Indeed, an agent should be aware only  about the valid syntax to 
specify  its own id and the particular tuple centre id with which wants 
to interact.

The benefits coming from this choice are indispensable for our 
goal: i.e. to use infrastructure with the least amount of resources and 
information to possess.

1.3 Toward a client release

After ReSpecT separation step, we focused on the actual possibili-
ty  of obtaining a light and effective TuCSoN release used only  client 
side, i.e. agent side.

We aim to change some infrastructure aspects in its general form 
in order to satisfy  the requirements coming from our goal. These 
aspects concerning with initial configuration phase by the tucson_ 
_conf.properties file, with the language and its management, with Re-
solverʼs operation and, finally, with external libraries use.

First at all, since configuration phase involves a TuCSoN node, we 
decide to exempt agent from consulting tucson_conf.properties file: 
infact, it is not an agent prerogative to know the name and locality 
(i.e. the path) of Resolver, Container and relative language (which are 
the information contained in the tucson_conf.properties file). 

Clearly, these information must be managed, and then learned, by 
the manager of knowledge which is available to infrastructure.

PART I - TuCSoN

23



Fig. 1.3. Package diagram of Tucson client release (1.9.2).

All these considerations are strictly  related with the available re-
sources: we donʼt want to install a TuCSoN node on a mobile device, 
we just want to use infrastructure in a holistic way.

 About language management, version 1.9.1 uses a LanguageMa-
nager: it is able to verify, with Resolver help, the correspondence 
between the logic language used by  agent and the logic language 
provided by  infrastructure. Once learned infrastructure knowledge 
(through the tucson_conf.properties file), the LanguageManager is 
capable to redirect requests coming from an agent on the correct 
package containing the corresponding language.

 Through reflection technique, the manager is able to dynamically 
build links with the methods, useful for agentʼs needs, that each lan-
guage should have. In our release, this management is simply  by-
passed, so agent does not declare any  language: all that it has to 

PART I - TuCSoN

24



know are the TuCsoN APIs and the well-formed syntax for the na-
mespace (for tuple centres and agent id).

On node side, however, infrastructure needs to know which are the 
available languages. This task is accomplished thanks to already 
mentioned routine based on Resolver and LanguageManager.

On client side, Resolver loses its skills and its central role due to 
separation from ReSpect package and from language manager. Re-
solver is designed to keep any  correspondence between a logical 
language and its users but in this new context it does not find place 
anymore. Although Resolver is one of the main novelties in version 
1.9.1, it is involved in set of routines that should be managed only  on 
node side. Infact, an agent exploiting TuCSoN infrastructure, it has no 
reason to know  which package contains the specific language and 
how it is called the relative Container.

 Fig. 1.3 summarizes these considerations by  showing package 
diagram, much more simpler than the one of whole infrastructure, but 
also much more functional (in respect to the requirements of a poten-
tial client).

About external libraries, our optimization operation concerns util.jar 
and tuprolog-1.4.jar6  [DOR01]. The former is conceived to add fre-
quent and common functionalities, the latter is conceived to ensure 
accuracy  of naming for both AgentId and TupleCentreId and for tuples 
(structured or not).

New version of library  util.jar ensures features designed to extra-
polate correctly, for example, the address at which is located a parti-
cular tuple centre. Library  tuprolog-1.4  (Appendix A) assures to build 
correctly, in terms of syntax, a tuple or the name of a tuple centre 
thanks to logical term and logical structure. The OperatorManager 
also provides syntax checking on the construction of an agent or a 
tuple centre id. 

PART I - TuCSoN

25

6 tuProlog is a light-weight Java-based system allowing cnfigurable and sca-
lable Prolog components to be biult and integrated into standard Internet 
applications according to a multiplicity of different interaction patterns, like 
JavaBeans, RMI, CORBA and TCP/IP.



As it happens to the following version of tuprolog (Appendix B), util 
library functionalities can be merged with tuprolog library.

The core of these discussions is represented by need to maintain 
the correspondence between information sent and received to and 
from the infrastructure. We try  to keep a constant overview of the in-
frastructure, without ever having to adapt TuCSoNʼs characteristics to 
potential agentʼs needs. 

The distinguishing feature of infrastructure is to enable communi-
cation and coordination among a very  heterogeneous population of 
agents. Client release, even characterized by an essential simplifica-
tion and by  purchasing a substantial “independence”, must be able to 
preserve this feature. We aim to define a client release able to inter-
face with TuCSoN just like any other node, in order to add dynamism 
and flexibility, while preserving the general lines of conduct.

1.4 Improving version 1.9.1

Before proceeding with further optimization of client release (al-
ready  schematized in Fig. 1.3), we summarize all of those studied 
and re-engineered aspects of TuCSoN version 1.9.1:
• initial configuration phase related with tucson_conf.properties file;
• management of the languages;
• Resolver;
• separation from ReSpecT;
• rationalization of the external libraries.

On the basis of aspects listed above, we further performed an 
analysis of infrastructureʼs components (packages): we aim to delete 
packages which lose any meaning when considered on client side.

First, tucson.service package loses meaning because it contains 
all the structures that offer the possibility  to access to infrastructureʼs 
services: WelcomeAgent and AgentContextSkeleton are some files of 
this package which, in a completely  symmetric way  with respect to 

PART I - TuCSoN

26



client release, they  bring forward the negotiation and the exchange 
(on node side) of information between TuCSoN and the agent.

Similarly, tucson.types package loses meaning because it contains 
interfaces which declare methods used by  Resolver in relation with 
agent id, tuple centre id and Container; failing Resolver, all these in-
formation becomes obviously unnecessary.

Since we have no intention to install a node on agent side, 
tucson.test and tucson.tools packages remain outside of client relea-
se (not already considered in the previous diagram).

Final rationalization concerns tuplecentre.core package: infact, we 
have eliminated all files related to the operation and administration of 
the state machine connected to a tuple centre.

PART I - TuCSoN

27



PART I - TuCSoN

28



2 Mobile world: Android

2.1 O.S. architecture and innovations

Operating system Android represents an important step in mobile 
area of software engineering world. It was conceived to capture the 
new requirements offered by  Internet: i.e. new  paradigms for applica-
tions development and then new technology  and architectural choi-
ces.

Information and applications before accessible and executable on 
any desktop are right now accessible through increasingly  powerful 
devices characterized by  mobility  and reduced dimensions. Actually 
so called mobile device are really  becoming a kind of notebook in 
which phone function is just one of the many available [Ca10].

Unlike many other operating systems (o.s. henceforth) for mobile 
terminals developed by  main competitors, the most relevant feature 
that distinguishes Google o.s. is being open. First of all, this means 
that it uses open technologies (like Linux kernel), that libraries and 
API used for its implementation are the same that we can use to 
create and/or to extend applications and, finally, that its code is open 
source: i.e. explorable by  anyone wants to improve it, document it or 
simply understand how does it work.

The license chosen by  Open HandsetAlliance [OHA11] is Open 
Source Apache License 2.0 which allows to different producers to 
avoid paying any royalties for Android adoption on their own devices.

Although the language used by  Android is Java, produced and re-
leased by  Sun Microsystems, Google has introduced an ad-hoc solu-
tion to not contradict the open nature of o.s. Infact, we know that de-

PART I - Android

29



vices adopting Sun Virtual Machine (VM), related to J2ME1  environ-
ment, have to pay  a royalty: this perspective would be strongly  in con-
trast with Apache license referred above.

Big news of o.s. Android is the capability  to use Java language 
without executing Java bytecode and then, without using a Java Vir-
tual Machine (JVM). Google has adopted an its own VM called Dalvik 
(Iceland localityʼs name) in order to optimize as good as possible the 
limited resources of mobile devices. VM executes code contained in 
files .dex (Dalvik EXecutable) [RiP10] which are obtained, in building 
phase, since files .class of Java bytecode.

 Android architecture includes all the stack tools to building mobile 
applications including an o.s, a set of native libraries for platformʼs 
core functionalities, an VMʼs implementation and a set of Java librari-
es [Ca10]. From a structural point of view, architecture is organized in 
levels where the lower ones offer services to the upper ones by  pro-
viding a higher abstractionʼs level.

Lowest level of architecture is version 2.6 of Linux kernel: this 
choice guarantees the presence of low-level tools for virtualization of 
background hardware through the definition of different drivers. In 
particular, as can be seen in Fig. 2.1, there are the drivers for the 
management of multimedia devices, display, Wi-Fi and power. Letʼs 
explore in detail the main Android architectureʼs components.

  Above Linux 2.6 kernel layer we find a layer containing a set of 
native libraries implemented in C and C++ which represents the real 
Android core. These libraries refer to a set of open source projects.

Surface Manager (SM) is a key  component because it manages 
the views composing the graphical interface. Infact, SMʼs task is to 
coordinate the various windows which applications need to display  on 
the screen. Each application is running in a different process and is 
designing its own interface at different times.

PART I - Android

30

1  Java Micro Edition is a Java platform designed for embedded systems 
(mobile devices are one kind of such systems).



Fig. 2.1. Android architecture [And11].

SM purpose is to manage the various windows in order to draw 
them on a buffer to be displayed through the technique of double buf-
fering2. So no overlapping windows will be displayed in an uncoordi-
nated way. We stress the importance of this component because  one 
of architectureʼs peculiarity  is based on ability  to create interactive 
interfaces.

Scalable Graphics Library (SGL) is a library  written in C++ and 
with OpenGL is the graphics engine of Android. While for the 3D 
graphic there is the support of OpenGL, for the 2D graphic itʼs used 
an optimized engine called SGL. It is a library  used mainly by  Window 
Manager and by Surface Manager within the process of rendering 
graphics.

PART I - Android

31

2 This technique uses an additional buffer to store a data block: in this way, a 
potential reader will have a complete dataʼs vision (though old) rather than a 
partial (but up to date) dataʼs vision created by a writer.



SQLite library implements a very compact direct transactional rela-
tional DBMS that doesnʼt need any  configuration. Being compact is 
thanks to be written fully  in C in order to use only few ANSI functions 
for management memory. The library doesnʼt use any separate pro-
cess to operate because lives in the same applicationʼs process that 
uses it.

Obviously  there is an integrated browser to cope the Web 2.0: it is 
the WebKit framework used by  browsers Safari and Chrome too. It is 
an open source browser engine based on HTML, CSS, JavaScript 
and DOM technologies. It is worth noting that WebKit is not exactly  a 
browser but a browser engine that needs to be integrated in different 
applications.

SSL library deals with the Secure Socket Layer management.
Libc is an implementation of standard C  library  optimized for Linux-

based embedded devices such as Android.
Core library consists of dex version of the runtime while at compile 

time it will need the jar (called android.jar) for the creation of the byte-
code Java. Infact there isnʼt Java code on the device because it 
couldnʼt be interpreted by  a JVM: we find just dex code executed by 
DVM. These libraries represent the description of wrapper compo-
nents to access functionality implemented in native way.

 Application Framework (AF) is a set of APIs and components use-
ful for the execution of very  important functionality  in each Android 
application. All libraries already  seen are used by  set of higher-level 
components which constituite the AF.

Activity Manager introduces the very  essential concept of “activity” 
for the applicationʼs development. We can imagine and conceptualize 
an activity to a screen view that provides the visualization and the col-
lection of information. Generically, activity  is the basic instrument 
through which the end user interacts with the application.

Package Manager manages the lifecycle of applications into devi-
ces exploiting information contained in XML configuration file (An-
droidManifest).

PART I - Android

32



Content Provider has the responsability  to manage the sharing in-
formation among various processes. It works just like a shared repo-
sitory  with which different applications can interact entering or reading 
information.

Finally, Resource Manager, thanks to a set of simple use API that 
makes available, is responsible to manage all the resources which an 
application needs, such as different types of files and images.

2.2 Applications: structure and parts

Activity, Services, Intent and Intent Filter, Broadcast Intent Recei-
ver and Content Provider are the main components of Android archi-
tecture. We use them in order to program and develop an application.

An activity  represents applicationʼs block interacting with the user 
through the display  and input devices available on the smartphone. 
Commonly  an activity uses User Interface (UI) components already 
present, like the ones of the android.widget package, but it is not ne-
cessarily the rule. 

Activities are probably the most popular model in Android exten-
ding the base class android.app.Activity. Since an activity  is a funda-
mental brick of an Android application, we explain its lifecycle [Fig. 
2.2]. First of all, itʼs important to emphasize the following aspect: 
smartphones, unlike desktop system, have limited resource and a 
small display and therefore itʼs not a good pratice to combine two or 
more windows of different applications so as itʼs not a good pratice to 
keep in life too many  programs simultaneously. For these reasons, 
Android activities have an exclusivity nature. 

Itʼs possible to have multiple tasks running simultaneously, but only 
one activity  at time can occupy  the display. Activity  on display is run-
ning and interacts directly  with user. The others, however, are hiber-
nated and kept hidden in background, so as to minimize the con-
sumption of computing resource. 

PART I - Android

33



Fig. 2.2. Activity lifecycle. The flow chart shows methods call which are 
possible to redefine to intercept the state changes [RiP10].

Naturally  user can restore an hibernated task and resume it to 
back it on top. Activity  from which it is moving away will be hibernated 
and turned in background instead of the restored one. The change of 

PART I - Android

34



activity  may also be due to an external event (i.e. due to an incoming 
call). 

Services are running in background without having any  direct inte-
raction with user. They  are usually  used to perform very  long tasks in 
background while user uses an activity  to do anything else. A service 
is realized extending android.app.Service class.

Intents are useful to reuse activities in order to perform the com-
mon operations in most applications. When an application needs to 
perform a particular operation it will create an intent requiring the use 
of some resource, or component, able to satisfy the need. It is also 
required a mechanism that allows an application, or to its compo-
nents, to declare the set of intent able to manage. This task is ac-
complished by intent filter.

Broadcast intent receivers are used to catch particular events 
through the whole system. For example, we use them when we want 
to perform an action while taking a picture, or when a message arri-
ved or when the battery  is going to exhaust. The class to extend is 
android.content.BroadcastReceiver.

Content providers are used to export data and information. They 
are a kind of communication channel among the different applications 
installed on the system. It is possible to create a content provider ex-
tending android.content.ContentProvider abstract class.

Applicationʼs architecture can be realized through components 
presented above paying attention to the following points :
• definition of Graphical User Interface (GUI);
• database design;
• backgroundʼs operations;
• userʼs notification.

Android incorporates “outsourcing” concept to achieve the resour-
ce management. This concept suggests to define information outside 
of the place in which they  are used. The advantage of this choice co-
ming from the possibility  to modify  a simple configuration file rather 
than to recompilate code. Resources can be described from XML file 
or also can be binary  files such as an image. Res folder (with its sub-

PART I - Android

35



directories drawable, layout, values, raw) represents the structure of 
the resources of a project.

A final observation concerns configuration file AndroidManifest. 
xml: this file is created to offer a mechanism to describe the applica-
tion to the device where it will run (not only  information about GUI). 
This file is automatically  generated in projectʼs building phase and 
contains all the applicationʼs fundamental information. It specifies, for 
example, Androidʼs version, main activity, needed resources and in 
which subfolder of res they  are, the intent filters (if they  are present), 
permissions that an application can exploit (such as the Internet ac-
cess) and services.

Android applications are distributed as .apk (Android PacKage) 
file. Inside Android package are collected the executable files in .dek 
format, eventually  associated resources and a set of descriptors 
which outline the packageʼs contents.

 

2.3 Eclipse development: Android SDK

Google provides a development kit to exploit Android and to deve-
lop  applications: it is called Android Software Development Kit (SDK) 
[AD11]. Although Android SDK has scripts to automate application 
istallation, to run the emulator and to debug code, we prefer to work 
within an IDE (Integrated Development Environment), namely Eclip-
se, in order to exploit all its facilities. This choice is supported by  An-
droid Development Tools (ADT): itʼs a plug-in released by Google to 
take advantage of one of the most widely  used IDE (with NetBeans) 
in the world of Java programming.

After installing this plug-in onto Eclipse and expliciting the link with 
Android SDK downloaded, we have created an Android keystore in 
order to sign all the applications and to avoid exporting them in an 
unsigned way.

PART I - Android

36



Fig. 2.3. Android emulator.

Last step before making an Android project concerns the mana-
gement of AVD.

Development kit includes an emulator [Fig. 2.3] that allows us to 
test our applications on desktop before to export and to install them 
onto a real mobile device Android embedded (we work with an HTC 
Desire A8181). First, we learn to interact with this emulator to build 
applications. The first move concerns Android Virtual Device (AVD): 
we can create and configure as many as virtual devices on desktop 
we want. Through the interface made available by  ADT in Eclipse we 
can configure our virtual smartphone defining name, target (i.e. An-
droid version to use), the presence or not of a SD card (virtual, of 
course) and finally the skin (i.e. information about deviceʼs display  
resolution).

  Now weʼre ready  to create an Android project through a wizard 
just like the usually one used to create, for example, a Java project.

PART I - Android

37



PART I - Android

38



PART II 
TuCSoN’s porting over Android

39



40



3 Mobile TuCSoN

3.1 The reasons for porting

In this second part we combine two strands of our work to give 
birth a new item at APICe laboratory. This two aspects are, on one 
hand, the study  and redesign of TuCSoN infrastructure for a client 
release and, on the other hand, the attention to new mobile 
technologies.

Mobile TuCSoN [Fig. 3.1] is the name of that particular release 
(version 1.9.2) of infrastructure leveraging o.s. Android resources; it 
offers to agent applications on a smartphone the opportunity  to 
cooperate and to interact with other distributed agents.

Porting operation aims to mark the features of TuCSoN 
infrastructure within the new distributed intelligent systems scenarios; 
we show how can be simple to exploit TuCSoNʼs facilities from a 
mobile device Android embedded. 

Other reasons are related to the desire of bringing agents 
paradigm onto the very  common mobile devices. The mobility  idea is 
concretely  inherent in a smartphone and thatʼs why it well adequate 
to host the distributed nature of modern multiagent systems.

The main feature of multiagent systems is to deal with a well-know 
management of the unpredictability  and of the dynamism of the 
environment: for this reason multiagent systems are perfect to get 
stuck into Internet scenarios. The lack of a proper global state in 
Internet is well addressed exploiting agentʼs flexibility and autonomy. 

   In the open distributed systems so defined, it is quite clear that 
the management of heterogeneous environments and of possible 
decentralized control forms is a key obstacle to be overcome  [We99]. 

PART II - Mobile TuCSoN

41



Fig. 3.1. Mobile TuCSoNʼs logo.

TuCSoN infrastructure deals with the decentralized control forms 
issue while, as regards to the distribution and openess aspect of 
multiagent systems, we study  how to exploit any means which could 
host a potential agent.

With “porting” we refer to those operations through which a 
application, originally  developed for a specific platform, itʼs modified 
so well as to be used on another platform. Usually  these operations 
are not trivial, especially  when they  occur among very  different 
platforms at an architectural level.

TuCSoNʼs porting over Android offers the possibility  of a totally 
new perspective to look at multiagent systems: no longer confined in 
a desktop, the agents will form the new MAS where the “freedom” to 
move with us, inside our jacket pocket, will become one of their best 
main feature.

The introduction of concepts, still very abstract and unfamiliar, like 
intelligent entity  and social intelligence within mobile devices which 
are, instead, quite familiar and well known thanks to their commercial 
deployment, it represents an interesting challange. Therefore, the 
union of a large circulation device like a smartphone with an 
innovative laboratory technology based on MAS is the final theoretical 

PART II - Mobile TuCSoN

42



Fig. 3.2 Mobile TuCSoN utilization.

reason of our work. We think this union may  have great significance 
conceptual and social too.

From a technical point of view, porting operation is based on the 
main assumption concerning the utilization of infrastructure: through a 
mobile device we just want to interact with the tuple centres 
discarding the possibility  to install a TuCSoN node on a smartphone. 
In the latter scenario, the necessary resources and the nature of a 

PART II - Mobile TuCSoN

43



TuCSoN node they  risk to contradict the innovative features 
characterizing a mobile device. Infact, a TuCSoN node must always 
be active during its activity  within a MAS, it must reside on a “known” 
node and it must have a certain computing capabilities to be remotely 
reachable; on the other hand, a mobile device can be into different 
networks depending on its physical position and therefore its 
“dynamic” IP address would become more difficult to manage. 
Moreover, taking count mobile device nature, it is not useful to 
allocate most of its computing resources for a background service 
(since, as we have seen, in Android only one task at time can interact 
with the user) designed to remote agents.

In short, we are going to use an Android embedded smartphone to 
host Mobile TuCSoN version without distorting the very essence of 
the device: we just want to exploit the computing power available to 
enhance the possible locations of an agent within a MAS.

3.2 The requirements

Our porting operations to release Mobile TuCSoN version have 
involved an infrastructure Java written and an o.s. that contains 
almost all the standard Java1 libraries.

 Although this aspect represents a good starting point, it was not 
enough to make porting immediately.

In the first part of thesis we focused on steps to reach a client 
release: really, these steps were made in parallel with the definition of 
a possible Android application able to interact with the infrastructure.

Aware that we can take advantage of the Java libraries available 
by  o.s., for our very  first importation of TuCSoN 1.9.1 on Android we 
had used the full version of the infrastructure; in this way, we first try 

PART II - Mobile TuCSoN

44

1 Except for Abstract Window Toolkit (AWT) and Swing libraries: infact, GUI 
definition is a key aspect in Android architecture and thatʼs why it is handled 
through ad-hoc libraries.



to understand which aspects to polish and which architecture to build 
upon knowledge basis of the two technologies.

We created an Android activity  containing all the TuCSoN 
packages, the external libraries (util and tuprolog-1.4) and, at a first 
time, the configuration file tucson_conf. properties too. To manage 
this external resource we used the subfolder raw of the projectʼs 
resource tree structure: within this folder, any  external resource is 
accesible through an inputstream. 

However, as the client release evolution provides the exclusion of 
management of the data contained in that file, in the same way  we 
abandoned this configurationʼs issue on Android.

To perform at any  time the updates of the client release onto 
Android device, we managed the different permits that a particular 
Android application may  have. For safety (and cost!) Google o.s. 
prohibits, on default, to an application to exploit Internet: however, 
through the file manifest.xml we have set manually this permit, in 
order to be sure that our application could have free access to the 
network.

 

 

3.3 Which TuCSoN for Android

First attempts of porting are concerning version 1.4.5, as 
mentioned in TuCSoN chapter.

This first step allowed us addressing all the issues mentioned in 
the previous paragraph, except for management file tucson_ 
conf.properties (itʼs absent in version 1.4.5); so we take familiarity 
with the construction of an Android activity  able to interact with 
infrastructure.

We review all the examples in the guide [ALab06] and we start to 
test the actual possibilities to use of infrastructure through a mobile 
device. Although version 1.4.5 is made up of the same essential parts 

PART II - Mobile TuCSoN

45



already  seen for 1.9.1 version, we elect this last version for porting 
operation. 

Essentially, this choise is based on an architectural aspect: the 
1.4.5 version is rigidly connected with ReSpecT technology.

Infact, we canʼt disengage TuCSoN 1.4.5 from the logical language 
used and this feature, within a scenario even more open and 
extensible offered by  use of mobile device, it could represent a 
serious obstacle as well as conceptual also implementative.

ReSpecT re-engineering and in addition TuCSoN redesign are the 
pratical causes of our choice: new scenarios, where we are going to, 
require a more dynamic TuCSoN version, such as the 1.9.1 one. 

Undoubtedly, the cornerstone of 1.9.1 version is represented by 
the solution offered to the problem of languages separation from 
infrastructure. Although TuCSoN and ReSpecT technologies, and 
their related tasks, they have been conceived separately since their 
first design, only  in 1.9.1 version this concept is realized in a more 
clearly and manageable way.

Version 1.9.1 has also maintained all other features which we 
wanted to exploit on client side: i.e. high degree of openness, precise 
definition of standard interfaces, interoperable nature, extensibility 
and scalability. 

 

3.4 Proposed architecture

3.4.1 Design architecture

Mobile TuCSoN aims to exploit a mobile device environment to 
interact with node side of TuCSoN infrastructure: a “mobile” agent is 
so capable to interact and to communicate through tuple centres with 
others distributed agents. Since Mobile TuCSoN is addressed to 
mobile device, it should be light-weight and efficient.

PART II - Mobile TuCSoN

46



Our proposed architecture is based on all already  discussed points 
which we want to summarize:
• separation from ReSpecT;
• consequently client release;
• improvements and rationalization of client release.

On one hand we adopt client release derived from TuCSoN 1.9.1, 
on the other hand we benefit of the possibility  to import java library  on 
an Android project. 

Architectural core of Mobile TuCSoN is the delegation of 
management of logic language on node side. So, agent side, we 
donʼt care about the “real” construction and definition of a tuple centre 
or an agent id. 

We delegate negotiation and construction of an agent id and of a 
tuple centre id to node side. Although we donʼt have an onthology 
specifying the identificator of a tuple centre or of an agent, we 
suppose that an agent should know how to explicit the correct id 
form. The correct syntax for an agent id deals with any  string, 
meanwhile for a tuple centre id the correct syntax deals with this 
template: “tuple_centre_name@ip_address”; if ip_address miss (and 
symbol “@” too) then infrastructure considers the localhost location 
for that tuple centre.

Delegation of management of logic language is so handled: an 
agent specifies its own id and the tuple centre id with which it want to 
interact; tuprolog-1.4 library offers the basic elements to manipulate 
and to create an id [Appendix A]; on agent side, tuprolog-1.4 library 
also verifies the correct syntax of each id through an exceptions 
management; the id so created is sent by  AgentContextStub in the 
form of Java Object; on node side, AgentContextSkeleton will receive 
all the elements to create the relative logic structures using ReSpect 
(i.e. the current logic language embedded). In this scenario agent 
doesnʼt know the actual logic language used on node side. 

This kind of delegation ensures separation between the require 
operations and the language to achieve them. 

PART II - Mobile TuCSoN

47



Separation from ReSpecT language (to reach a client side 
TuCSoN release) ensures much more flexibility  and openness to 
TuCSoN infrastructure. 

A possible extension and development of logic language will deal 
only  with node side infrastructure; clearly, it is necessary  to maintain 
the id syntax just seen to guarantee infrastructure integrity. This 
possibility  represents a great advantage, for example, in a very  large 
MAS: only  node side infrastructure will be modified while all client 
agents donʼt care about this infrastructureʼs upgrade.

3.4.2 Detailed architecture

All packages summarized in chapter I (Fig. 1.3) are involved into 
MobileTucson.jar: in only  66KB we bring with us the possibility  to 
enjoy TuCSoN infrastructure from a smartphone in a simple way.

Fig. 3.2 shows the structure of an Android project (it will be part of 
case study in the following chapter) in order to illustrate how it is 
composed an Android application exploiting Mobile TuCSoN. 

In src folder we create package mobile.moss containing Java file 
of our application: it encloses Java code of the application, i.e. the 
code about GUI and the code about interaction with TuCSoN 
infrastructure.

In order to achieve flexibility, openness and efficiency we 
recognize the usual section concerning with external libraries; these 
are libraries used by application, such as Android 2.2 (just like 
smartphone Android version used for porting experiments) and 
external libraries: MobileTucson.jar and tuprolog-1.4.jar. About the 
latter library we have already argued in first chapter.

Now, we discuss the meaning of each package of MobileTucson 
library in an Android project context in relation to requirements of 
proposed design architecture.

Correct syntax requirement is achieved by  prolog engine while all 
basic bricks to manage tuples are located in alice.logictuple package; 
it contains all the elements to form and to write a logic tuple under the 

PART II - Mobile TuCSoN

48



Fig. 3.1. Android project using Mobile TuCSoN.

prolog engine control; a mobile agent, infact, must be able to define, 
to insert or to retire (defining a tuple template) a logic tuple from/to a 
tuple centre. 

Although Mobile TuCSoN release is characterized by  lightness and 
by  resourceʼs rationalization, through alice.tucson.api package we 
ensure the real communication among infrastructure and agents. 
Infact, alice.tucson.api contains all the api useful to interact with 
TuCSoN infrastructure; among them we underline those api 
necessary  to define an agent id and a tuple centre id and the 
AgentContextStub which concretely  communicates with infrastructure 
adopting the delegation technique, above illustrated, which is the core 
of Mobile TuCSoN. In short, alice.tucson.api contains all 
indispensable operations which always an agent should to be aware.

Alice.tucson.api.exception contains all the exceptions useful to 
understand the wrong behaviours of the system in failure cases.

PART II - Mobile TuCSoN

49



Alice.tucson.common, still maintaining its function, contains all the 
structures and all the protocol information useful to allow 
communication between mobile agent and node side. Nevertheless 
delegationʼs introduction, alice.tucson.common information are still 
necessary  in order to guarantee uniformity  to communications among 
agents and infrastructure.

Alice.tuplecentre.api defines all the interfaces of the structures 
used to interact with a tuple centre.

Alice.tuplecentre.core defines all the interfaces of the operation 
and behaviours used to interact with a tuple centre.

Clearly, these interfaces packages maintain their function in Mobile 
TuCSoN release because they  represent the good basis for a well-
design infrastructure in order to understand and to manage its 
facilities.

Separation from ReSpect and realization of a client release lead to 
the same results obtained in chapter I. Just like happened in client 
releaseʼs steps, in an Android project using Mobile TuCSoN all 
packages concerning Resolver, ReSpecT and TuCSoN services 
disappear.

Then, gen folder contains auto-generated file describing features 
application; in res  folder we find all the resources related with the 
project (i.e. icons, strings); finally  there is AndroidManifest.xml file 
seen yet.

3.5 Experimental results

Porting work follows sequential steps just like the release 
operations to obtain client side TuCSoN release. 

We adopt a similar workflow for these two reasearch works: 
requirement and theoretic analysis, validation of a proposed solution, 
testing of such solution.

PART II - Mobile TuCSoN

50



Every  step of joint work of TuCSoN reengineering and porting 
operations is composed in three parts: first, we evaluate, on agent 
node, the theoretical meaning of a particular TuCSoN aspect, 
TuCSoN behaviour and TuCSoN package; then we try  to fix or to 
remove some characteristic which is expected only node side; finally, 
when an agent node version of that particular aspect is ready, we test 
the operation through an Android application. 

Through this steps and thanks to exceptions management, we are 
sure to control troubles coming from client version of TuCSoN or 
Android application. 

Infact, in a porting work like that, one of main issue is represented 
by  recognition of problemʼs nature. Android architecture enables us to 
import Java libraries and to manage them in a conventional way, just 
like an usual Java project within Eclipse environment. 

Android o.s. exceptions together with Java exceptions represent 
the key  aspect to face this issue. We experiment that joint 
management of these exception on Android mobile device is 
possible.

Moreover, development kit offered by  Google speeds these work 
flow thanks to a simulator (chapter II) able to exploit a tuple centre 
both on local (on the desktop  used for development) or on remote 
TuCSoN node. 

Every application tested by  simulator has worked fine on 
smartphone too. For this reason we avoid to export an Android 
project in a apk file whenever we wanted to test a particular 
application behaviour. 

We highlight simulatorʼs failure only  when we want to exploit 
Android system resources (like LocationManager) related to specific 
services; for example, a simulator is not able to provide a GPS or 
network service (these are aspects useful for case study  in next 
chapter). To test all possible Android servicesʼ  utilization, we must to 
export the project in a apk file and to test it on a real smartphone.

The possibility  to exploit TuCSoN infrastructure from an Android 
application of the order of 100KB well represents the result of our 

PART II - Mobile TuCSoN

51



work: i.e. to enjoy  TuCSoN infrastructure from a smartphone in a very 
simple way through a light-weight Android application.

Our experimental results confirm all theoretical considerations 
about the possibility  to have a client release, to enjoy  TuCSoN in a 
separate way  from ReSpecT and to interact with infrastructure only 
through basic operations.

No automatic test plan we adopt in porting operation; all tests we 
make are based on required functional skills of infrastructure. Testing 
phase is composed by  functional examinations of basic coordination 
and communication primitives.

Through porting work we prove our goal is achievable: TuCSoN 
functionalities are all exploitable from an Android application 
importing Mobile TuCSoN library.

3.6 Which benefits

A light-weight Android application together with the light-weight 
MobileTucson library enclose all possible scenarios coming from 
interaction with TuCSoN infrastructure.

The well-known advantages of TuCSoN are now all exploitable in 
many different kind of distributed systems. Similarly, all well-known 
agent features [Od02] are now  really  testable: for example, we focus 
on the social aspect of an agent. 

The idea to exploit an agent running on a smartphone widens 
distributed systems horizons. An agent-based Android application 
represents now a new component in a MAS society. We can defne a 
society  like an open group of agents glued by some social tasks, 
which they can achieve collectively  by  exploiting some shared 
coordination artifacts, tuple centre in this case, embedding 
coordination laws and social norms [ROD03].

PART II - Mobile TuCSoN

52



For these reasons we attribute a social significance at an agent 
running on a mobile device because it can compose a new kind of 
MAS in which agents are even more distributed.

It is rather clearly  that agentʼs role on a smartphone is well suited 
on the basis of all definitions already  seen. Ideas of pro-activeness, of 
sociality  and above all of mobility  are now exploitable and testable by 
a mobile agent on a smartphone.

TuCSoNʼs porting over Android carries with it all possibilities and 
all advantages offered by infrastructure.

PART II - Mobile TuCSoN

53



PART II - Mobile TuCSoN

54



4 Case studies

4.1 MOSS application

MOSS (Management Of Science Informer) application is first case 
study: its spirit is to show Mobile TuCSoN possibilities through a 
possible real scenario. 

This Android application is conceived to exploit TuCSoN 1.9.2 and 
to demonstrate how it can be simple to use TuCSoN infrastructure 
from a mobile device.

MOSS aims to manage both job activities of science informers and 
pharmaceutical manager. Infact, we provide two MOSS versions, 
MOSSis and MOSSmp [Fig. 4.1]: the former is designed for science 
informator, the latter for pharmaceutical manager. Differences 
between these two applications are related to real job need of an 
informer or a manager: their works determine a different way  to 
approach with TuCSoN infrastructure.

Science informer purpose is to know pharmaceutical stock 
availability  of a specific city  where he is going to work; he can consult 
a specific pharmaceutical type availability  (choosing among general 
medicine, pediatrics, surgery, orthopedics and for each of these 
medical categories, a specific type too) in order to organize his work 
plan in that particular city. Science informer is a pharmaceutical 
consumer because he pulls out from stock all medicines which he 
wants to propose.

On the other hand, a pharmaceutical manager is a kind of 
controller able to check pharmaceutical stock availability. Heʼs a 
pharmaceutical producer because heʼs able to supply  a specific stock 
devoid of some pharmaceutical. 

PARTE II - Case studies

55



              
Fig. 4.1. MOSSis (left) and MOSSmp (right) icon.

Every  stock, represented by  a tuple centre, is identified by  a name 
according to this template: mosscity_name. In this case study, we 
suppose to use one IP to host all tuple centres: so, location id ( in the 
form of “@ip_address”) will be the same for each tuple centre.

Shared information, among informers and managers, concerns 
about presence or not of a particular pharmaceutical in a specific city 
stock. Pharmaceutical information, in logic tuple form, follows this 
template: medical_cathegory(subtype).

Thanks to ReSpecT language, every  city  stock (i.e. tuple centre) is 
programmable according to a particular need. For example we can 
program that a specific tuple insertion will cause the deletion or 
insertion of another logic tuple related to the previous. Obviously, 
every behaviour is concerned with particular domain of a specific city 
stock: a commercial policy  of a city  can be different than a policy  of 
another city. ReSpecT is able to manage any  possible situations 
concerning with a certain domain or situation.

MOSS application guarantees coordination and communication 
among these participants by  exploiting TuCSoN tuple centres [Fig. 
4.2].  

Informers and managers coordinate their actions according to 
tuple centres content: every  informer/managerʼs operation depends 
on presence or not of a particular information (logic tuple) in a specific 
tuple centre. So, tuple centres provide the means for communication 
and coordination managing shared information.

PARTE II - Case studies

56



Fig. 4.2. MOSS application functionality.

4.2 How does it work

MOSS applicationʼs goal is to satisfy  all requirements listed above. 
In its “is” or “mp” version, this light-weight Android application works 
using MobileTucson and tuprolog-1.4 libraries.

Through an ad-hoc GUI, MOSS collects all useful information to 
interact with TuCSoN tuple centres. User (informer or manager) 
inserts in a set of TextView all required information.

First information is about informer/manager code: we suppose 
every worker has an identify  number; this code is used to build agent 
id interacting with infrastructure, in order to trace the person 
responsible for each action.

A TextView is used to collect information about city: user can write 
a city  name or can detect it thanks to a “Find city” button. This button 
uses Android LocationManager which exploits systems resources 

PARTE II - Case studies

57



city  name is used to choose the correct tuple centre with which user 
decides to interact.

Through two spinners user can select medical area (general 
medicine, pediatrics, surgery, orthopedics) and subtype for that 
particular area (generic, painkiller, antiinflammatory, antibiotic). This 
information deals with construction of logic tuples in order to check, 
through a rdp  operation (not blocking read), the presence or not of 
that particular tuple (i.e. that particular pharmaceutical) in specified 
tuple centre (i.e. city stock).

“Check” buttonʼs role is to verify  the presence or not of that 
particular tuple in specified tuple centre. When user press this button, 
application collects all information inserted and it builds agent id, 
tuple centre name, tuple and it sends an rdp request to TuCSoN node 
hosting that tuple centre.

A kind of semaphore shows us the results of rdp request: red light 
means that tuple centre doesn ʼt contain that particular 
pharmaceutical, while green light means that tuple centre contains 
wanted pharmaceutical.

All these applicationʼs parts work identically  both in MOSSis and in 
MOSSmp: now, depending on obtained results (coming from rdp 
request), MOSSis and MOSSmp act in different ways.

MOSSis aims to retrieve tuples from tuple centres: in red light 
case, application canʼt retrieve any tuple, while in green light case, 
user confirms to retrieve that particular pharmaceutical through 
“Request Confirmation” button. The button pression means that user 
uses that item and, in logical term, that particular tuple will be 
removed from tuple centre.

MOSSmpʼs goal is to insert tuples in tuple centres: in red light 
case, manager knows tupleʼs lack and he can decide to insert that 
particular tuple through “Insertion Confirmation” button; in green light 
case, manager knows tupleʼs presence and can both decide to insert 
or not another tuple of that kind (this decision is related to a possible 
marketing strategy in order to sponsor a particular pharmaceutical 
rather than another one).

PARTE II - Case studies

58



4.3 Structure and GUI

MOSS structure follows projectʼs view showed in Fig. 3.1. Both 
MOSSis and MOSSmp exploit MobileTucson.jar and tuprolog-1.4.jar 
libraries already discussed. 

MOSS application is based on an Android activity: method 
onCreate ensures correct definition and creation of GUI while some 
buttons ensure correct operation of application in order to 
communicate with TuCSoN infrastructure.

Fig. 4.3 (a) shows MOSSis GUI through Android emulator used for 
our experiments.

Fig. 4.3 (b) and Fig. 4.3 (c) show two MOSSis spinners useful to 
choose pharmaceutical type and pharmaceutical subtype 
respectively.

Fig. 4.4 shows a successful request for a particular pharmaceutical 
(pediatrics, painkiller).

Fig. 4.5 shows a MOSSmp failure request for a particular 
pharmaceutical (orthopedics, antiinflammatory).

Latest figures, Fig. 4.6 (a), (b) and (c), show related tuple centre 
(mossBologna) and its content. It is reached thanks to TuCSoN 
Inspector tool.

As we can see, tuple centre mossBologna contains pediatrics
(painkiller) but not contains orthopedics(antiinflammatory).

PARTE II - Case studies

59



Fig. 4.3 (a). MOSSis: GUI.

Fig. 4.3 (b). MOSSis: pharmaceutical type spinner.

PARTE II - Case studies

60



Fig. 4.3 (c). MOSSis: pharmaceutical subtype spinner.

Fig. 4.4. MOSSis: successful request for pediatrics(painkiller).

PARTE II - Case studies

61



Fig. 4.5. MOSSmp: failure request for orthopedics(antiinflammatory).

Fig. 4.6 (a). TuCSoN Inspector (I)

PARTE II - Case studies

62



Fig. 4.6 (b). TuCSoN Inspector (II)

Fig. 4.6 (c). TuCSoN Inspector (III): tuple set of mossBologna.

PARTE II - Case studies

63



4.4 Johannes Kepler University project

4.4.1 SAPERE context

Second case study is represented by a collaborative work with 
Johannes Kepler University  (JKU), Linz (Austria), in SAPERE1 project 
context.

SAPERE takes inspiration from natural ecosystems and starts 
from the consideration that the dynamics and decentralization of 
future pervasive networks will make it suitable to model the overall 
world of services, data and devices as a sort of distributed 
computational ecosystem [SAP11].

SAPERE considers modelling and architecting a pervasive service 
environment as a non-layered spatial substrate, laid above the actual 
network infrastructure.

Around SAPERE approach itʼs possible to distinguish studies 
related to:
• a model for components and the associated methodology  (WP1 

“Model and Methodology”);
• self-organization in a distributed network space (WP2 “Structure 

and Space”);
• knowledge management for situation identification and future-

awareness (WP3 “Knowledge and Time”);
• defining and implementing an innovative middleware architecture 

to support the model and algorithms (WP4 “Infrastructure”);
• testing and evluating on selected use cases in the area of 

pervasive services (WP5 “Applications”).
 

PARTE II - Case studies

64

1 Self-Aware Pervasive Service Ecosystems.



4.4.2 Live sensor data

JKUʼs people, Alois Ferscha, Bernhard Wally  and Sascha 
Maschek, are preparing a runtime kernel to emulate SAPERE 
functionality.  This project is located in WP4 study  area of SAPERE 
approach and its based on a live sensor data realization.

The infrastructure contains a tuple space implementation as 
coordination model to be easily  exchangeable with a later SAPERE 
space implementation.

LSA2-like data structure can be injected into those tuple spaces 
while a reasoning engine evaluates local LSAs and potentially  fires 
actions [Fe11].

Project architecture [Fig. 4.7] bases on tuple space, sensor and 
other services and a reasoning engine. Display  node is just like as 
OSGi3 container.

Tuple space management is entrusted to TuCSoN for data sharing 
and inter-process communication (IPC).

Demonstrator infrastructure is really  tested first thanks to virtual 
sensors, and then through real sensors (Broadcom BCM4751 and 
YAMAHA MS-3C). Hardware used is an Android smartphone with the 
appropiate built-in sensors: location sensor (GPS), orientation sensor 
(compass) and motion sensor (accelerometer). Software required is 
an Android app installed on smartphone, an Android Debug Bridge 
(ADB) and a client server architecture (smartphone like a client, 
computer like a server).

JKUʼs project purpose is making public dislays location-, 
orientation-, and motion-aware.

Hardware solution is so organized: laptops are used as public 
displays which are interconnected via Wi-Fi; smartphones attached to 
public displays providing live sensor data; user presence detection is 
so realized [Fig. 4.8].

PARTE II - Case studies

65

2 Live Semantic Annotations.

3 Open Services Gateway initiative.



Fig. 4.7. JKU project architecture [Fe11].

Fig. 4.8. Hardware solution [Fe11].

4.4.3 Collaborative work

Collaborative work is conceived to obtain a stable common 
TuCSoN release useful for both our and their research. Since live 
sensor data project uses smartphones Android embedded to interact 
with TuCSoN, we propose to introduce our Mobile TuCSoN release. 

PARTE II - Case studies

66



First steps of collaborative work is focused on some bugs 
resolution related to whole TuCSoN infrastructure. For example, 
different identifiers for tuple centres and remote port specification are 
two bugs which are needed to be resolved.

First bug is caused by  a wrong initialization of CLIAgent tool: this 
tool, through a command line, can interact with tuple centres. 
Creating every time a new context useful to interact with tuple centre, 
we can both use ʻlocalhostʼ or ʻIP addressʼ to specify a tuple centre.

Bug about remote port specification is solved by  a careful analysis 
of string manipulation in AgentContextStub file.

Itʼs pretty  clear that many  scenarios may  coming out from tests like 
that in order to achieve a complete bug fixed release. We consider 
very  important collaborative works like that because they represent a 
valid contribute to projects development. 

PARTE II - Case studies

67



PARTE II - Case studies

68



Conclusions 
and future work

Thesis shows how MAS can be really  open: agents distribution 
takes relevance in our work in order to exploit TuCSoN infrastructure 
from a smartphone. Distribution assumes a more marked relevance 
as well as TuCSoNʼs role becomes indispensable.

Separation of languages from infrastructures represents another 
important conceptual basis coming out our work. We analyze this 
aspect to achieve a client release. Furthermore TuCSoN re-enginee-
ring shows the importance to distinguish tasks and behaviours related 
to node side or client side. 

Client release (so called Mobile TuCSoN, version 1.9.2) gives us 
possibility  to appreciate the concrete TuCSoN abilities exploited by  an 
agent. Thesis focuses on agents on Android mobile devices because 
TuCSoNʼs porting over Android smartphone is our final goal. Client 
release offers the opportunity  to address new scenarios in which 
agents donʼt need to bring all whole TuCSoN infrastructure but just a 
functional release. Although our goal is Android oriented, is pretty 
clear that client release could be reuse to face new technologies.

That aspect represents an interesting starting point for future 
works releasing a new client version for other embedded smartphone.

Through TuCSoNʼs re-engineering and porting we deduce some 
theoretical and pratical considerations regarding architectural, struc-
tural and engineering aspects.

About architectural and engineering issues we underline the im-
portance of a well-designed project. Infact, we expect that an infra-
structure is modular and scalable, that allows to separate and to se-
lect only  interesting aspects for our needs. TuCSoN client release 
demonstrates this goal is reachable starting from a well-designed in-

69



frastructure. We consider a scenario in which a mobile agent simply 
would exploit TuCSoN infrastructure without installing a TuCSoN no-
de on a smartphone. 

The latter perspective represents an open point for future deve-
lopments: when computing skills of smartphones or different require-
ments will lead us to install a TuCSoN node on a mobile device. 

About structural aspects we remark o.s. Android organization and 
its characteristic to manage Java code. An open source project like 
Android, capable to import Java libraries, offers many possibilities in 
order to interact with devices embedding it. No doubt features of An-
droid application are a fundamental bridge towards thesis goal.

We suggest other two open points for future works: they are rela-
ted to new tuprolog libraries and to possibility  to define an onthology 
for agent id and tuple centre id.

We guess is very  important to import new  tuprolog libraries in futu-
re TuCSoNʼs release, expecially  tuprolog-2.4 [Appendix B]. Together 
with a new ReSpecT version, TuCSoN will be so able to exploit all 
news and all bug fixs characterizing tuprolog-2.4.

A well-know onthology  will be useful to client agent because it 
could interact with TuCSoN through well defined structures, still main-
taining no information about logical language used by  infrastructure. 
Onthology  will be about the definition of agent id and tuple centre id: 
so we ensure that every  agent knows the correct syntax to use TuC-
SoNʼs elements.

Finally, MOSS application and Live sensor data project represent 
two different utilization way  for Mobile TuCSoN: those scenarios lead 
us to consider the concrete value of our research in order to be a ba-
sis for future applications.

70



Appendix A

A.1 Mobile TuCSoN’s dependencies from   
tuprolog-1.4

alice.logictuple PACKAGE

Class Dependencies

LogicTuple alice.tuprolog.Term;

TupleArgument alice.tuprolog.Term;
 alice.tuprolog.Struct;

alice.tuprolog.Number;

Value extends TupleArgument

Var extends TupleArgument

alice.tucson.api PACKAGE

Class Dependencies

AgentContextStub Import alice.logictuple

TucsonAgentId alice.tuprolog.Term;
 alice.tuprolog.OperatorManager

TucsonOperation Import alice.logictuple

TucsonTupleCentreId alice.tuprolog.Term;
 alice.tuprolog.Struct

71



alice.tucson.common PACKAGE

Class Dependencies

TucsonMsgReply Import alice.logictuple

TucsonMsgRequest Import alice.logictuple

A.2 Tuprolog-1.4 library packages used

alice.tuprolog;
alice.tuprolog.lib;
alice.tuprologx.ide;
alice.tuprologx.runtime.tcp;

72



Appendix B

B.1 Future work and future dependencies 
about new tuprolog-2.4

In following tuprolog versions we find lots of novelties: since ver-
sion 2.0 to 2.4, there are so many  differences with version 1.4 here 
used. 

Tuprolog 1.4, on which ReSpecT 2.2 is based on, is still wrapped 
on some structures, come from java.util library, which required many 
casting operations to work fine. Anchored to prolog engine of the pre-
vious releases, tuprolog 1.4 does not consider a whole number of is-
sues which will be dealt in future.

Tuprolog 2.4 completes the bug fix process started in past ver-
sions (2.0, 2.2, 2.3). Also it copes the catching exceptions problem, 
the collection structures use, a fast indexing method, a new graphical 
suit, the merge with utilities functions of the util.jar library and finally  it 
provides a prolog plugin for Eclipse.

New prolog version, still maintaining the same packages and the 
same basic architecture, it introduces a lot of new methods able to 
manage new structures adopted and it requires much more computa-
tional resources in order to benefit indexing method.

For these reasons we leave tuprolog 2.4 adoption to future work: it 
could be a good basis for a new ReSpecT release. For example, in 
our infrastructure a fast indexed method to manage prolog terms it 
will be superflous: it would be really  useful only  under a particular ex-
treme situation, far away  from our scenarios which involved prologʼs 
terms.

A new ReSpecT language will be able to exploit all this new featu-
res offered by  tuprolog 2.4 and, consequently, future TuCSoN ver-
sions will have the possibility to enjoy that new logic language.

73



74



References 

[AD11] Android Developer web site. 2011. 
http://developer.android.com/sdk

[ALab06] APICe Lab: TuCSoN Guide. TuCSoN version: 1.4.5. 2006.

[And11] Android web site. 2011. http://www.android.com

[API11] APICe web site. 2011. http://alice.unibo.it

[Ca10] Carli, M.: Android. Guida per lo sviluppatore. Apogeo. 
2010.

[COZc00] Cremonini, M., Omicini, A., Zambonelli, F.: Coordination 
and Access Control in Open Distributed Agent Systems: 
The TuCSoN Approach. 2000.

[COZm00] Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent sy-
stem engineering: the coordination viewpoint. In Jennings, 
N.R., Lespèrance, Y., eds.: Intelligent Agents VI - Agent 
Theories, Architectures, and Languages. Volume 1767 of 
LNAI., Springer-Verlag, 2000.

[DOR01] Denti, E., Omicini, A., Ricci, A.: tuProlog: A Light-Weight 
Prolog for Internet Applications and Infrastructures. 2001.

[Fe11] Ferscha, A.: SAPERE. Consortium Meeting. University  of 
St. Andrews, Scotland. June 22, 2011.

[FGM03] Ferber, J., Gutknecht, O., Michel, F.: From agents to orga-
nisations: an organizational view  of multi-agent systems. 
In: 2nd International Joint Conference on Autonomous 
Agents and Multiagent Systems, Melbourne, Australia, 
ACM Press, 2003.

75



[NM09] Natali, A., Molesini, A.: Costruire sistemi software: dai mo-
delli al codice. Seconda edizione. Progetto Leonardo, Bo-
logna. 2009.

[Od02] Odell, J.: Objects and agents compared. Journal of Object 
Technologies. 2002.

[OHA11] Open Handset Alliance web site. 2011. 
http://www.openhandsetalliance.com

[OR04] Omicini, A., Ricci, A.: MAS Organization within a Coordina-
tion Infrastructure: Experiments in TuCSoN. 2004.

[OZ99] Omicini, A., Zambonelli, F.: Coordination for Internet appli-
cation development. Autonomous Agents and Multi-Agent 
Systems. 1999.

[PO02] Parunak, H.V.D., Odell., J.: Representing social structures 
in uml. In Wooldridge, M., Weiβ, G., Ciancarini, P., eds.: 
Agent-Oriented Software Engineering II, Second Interna-
tional Workshop, AOSE 2001, Montreal, Canada, May 29, 
2001, Revised Papers and Invited Contributions. Volume 
2222 of LNCS., Spronger-Verlag, 2002.

[RiP10] Redazione Io Programmo: (eBook) Android Programming. 
Edizioni Master. 2010.

[ROD03] Ricci, A., Omicini, A., Denti, E.: Activity  Theory  as a fra-
mework for MAS coordination. In Petta, P., Tolksdorf, R., 
Zambonelli, F., eds.: Engineering Societies in the Agent 
World III. Volume 2577 of LNCS. Springer-Verlag. 2003.

[SAP11] SAPERE web site. 2011. http://www.sapere-project.eu

[SO08] Semprini, L., Omicini, A.: Riprogettazione, separazione ed 
integrazione delle tecnologie TuCSoN e ReSpecT per Si-
stemi Distribuiti. 2008.

76



[ZJW01] Zambonelli, F., Jennings, N.R., Wooldridge, M.: Organisa-
tional rules as an abstraction for the analysis and design  
of multi-agent systems. International Journal of Software 
Engineering and Knowledge Engineering, 2001.

[We99] Weiss, G.: Multiagent Systems: A Modern Approach to Di-
stributed Artificial Intelligence. The MIT Press. 1999.

[WJ95] Wooldridge, M. And Jennings, N.R. Intelligent agents: !
Theory  and practice. Knowledge Engineering Review, !
1995.

77



78


