
ALMA MATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE

AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Machine Learning for

Computer Vision

IMPROVEMENTS TO

KNOWLEDGE DISTILLATION

ON DEEP NEURAL

NETWORKS

 CANDIDATE SUPERVISOR:

Giacomo D’Amicantonio Prof. Samuele Salti

CO-SUPERVISOR:

 Prof. Lugi Di Stefano

Academic Year 2020/21

2nd Session

SUMMARY

INTRODUCTION .. 3

CHAPTER 1 – KNOWLEDGE DISTILLATION ... 5

1.1 - VANILLA KNOWELDGE DISTILLATION .. 5

1.1.1 - SUBSEQUENT WORKS ... 7

1.2 - TYPES OF KNOWLEDGE .. 7

1.2.1 – RESPONSE-BASED KNOWLEDGE.. 7

1.2.2 – FEATURE-BASED KNOWLEDGE ... 8

1.2.3 – RELATION-BASED KNOWLEDGE .. 11

1.3 - TYPES OF DISTILLATION .. 14

1.3.1 - OFFLINE DISTILLATION .. 14

1.3.2 - ONLINE DISTILLATION ... 16

1.3.3 - SELF DISTILLATION .. 21

CHAPTER 2 – PROPOSED IMPROVEMENTS ... 23

2.1 - EARTH MOVER DISTILLATION .. 23

2.2 - TWO TEMPERATURE DISTILLATION .. 24

2.3 - RELATIVE KNOWLEDGE DISTILLATION .. 25

2.3.1 - RELATIVE KNOWLEDGE DISTILLATION V1 .. 26

2.3.2 - RELATIVE KNOWLEDGE DISTILLATION V2 .. 29

2.3.3 - RELATIVE KNOWLEDGE DISTILLATION V3 .. 32

2.3.4 - RELATIVE KNOWLEDGE DISTILLATION V4 .. 34

CHAPTER 3 – EXPERIMENTAL RESULTS AND DISCUSSION .. 36

3.1 - EXPERIMENTAL SETUP ... 36

3.2 - EXPERIMENTS ... 37

3.2.1 - RESNET-152/RESNET-50 .. 37

3.2.2 - RESNET-34/RESNET-18 .. 38

3.2.3 - WIDERESNET-40-1/WIDERESNET-16-1 ... 40

3.2.4 - WIDERESNET-40-2/WIDERESNET-16-2 ... 42

CONCLUSIONS ... 45

TABLE OF CONTENTS .. 47

FIGURES ... 47

TABLES ... 47

BIBLIOGRAPHY ... 48

INTRODUCTION

One of the main problems in the field of Artificial Intelligence is the efficiency of neural

networks models. For a while, in the past few years, it seemed that most tasks involving such

models could simply be solved by designing larger, deeper models and training them on

larger datasets for longer time. This approach requires better performing and therefore

expensive and energy consuming hardware and will have an increasingly significant

environmental impact when those models are deployed at scale. Last year OpenAI developed

GPT-3, a Transformer-based model capable of performing multiple Natural Language

Processing tasks. Even though it is a surprisingly effective model, it has the big drawback of

having 175 billion parameters and training sets of about 570GB of data.

In the field of Computer Vision, we have the same kind of problems on a smaller scale. Even

if it is true that language models are often much bigger than the models used in Image

Classification or Object Detection, we still need heavy models which require expensive and

energy consuming hardware to obtain good results on some datasets or tasks. Ideally, we

would like to achieve the same level of performances by training smaller models in less time

and using only a fraction of the computational resources required by these cumbersome

models. Unfortunately, small models often lack the capability to learn complex relationships

and knowledge in the training data as shown by Caruana and its collaborators in Model

Compression1. Therefore, they show that we cannot avoid training cumbersome models for

certain tasks and applications, but we can then transfer the knowledge they extracted into

smaller models and deploy those. By doing so we can obtain small models with a reduced

gap in performance with respect to the cumbersome ones compared to the same models

trained in the standard way. Such models would also be much smaller than the cumbersome

ones, allowing us to deploy them in contexts that do not have enough computational power at

their disposal.

In 2015 G. Hinton, J. Dean and O. Vinyals presented Knowledge Distillation 2 (KD), a

technique that leveraged the logits produced by a big, cumbersome model to guide the

training of a smaller model. The two networks were called “Teacher” and “Student” given the

analogy between the big model with large knowledge and the small model which has yet to

learn everything. They proved that it is possible to extract useful knowledge from the teacher

logits and use it to obtain a better performing student when compared with the same model

that learned all by itself. In the past few years, a lot of contributions from different

researchers build on top of this basic framework, proposing new types of knowledge that can

be used and improving on the knowledge transferring. Such intense research is summarized

in a recent survey3.

This thesis provides an overview of the current state-of-the-art in the field of Knowledge

Distillation, analyses some of the most interesting approaches, and builds on them to exploit

very confident logits in a more effective way. Furthermore, it provides experimental evidence

on the importance of using also smaller logit entries and correcting mistaken predictions from

the teacher in the distillation process.

The structure of the thesis is as follows. In Chapter 1, we will review the current state-of-the-

art regarding Knowledge Distillation, explaining in detail the types of knowledge that can be

extracted from a teacher and how they can be transferred to the student. In Chapter 2, we will

present three new proposals to optimise and improve the transfer of Knowledge that, to the

best of our knowledge, have not been investigated. In the last Chapter we will present the

results of the experiments we ran to test the effectiveness of the above-mentioned proposals,

before concluding with a brief recap of our work.

CHAPTER 1 – KNOWLEDGE DISTILLATION

1.1 - VANILLA KNOWELDGE DISTILLATION

Knowledge Distillation leverages the knowledge learned by the teacher model to improve the

training of a student by transferring such knowledge to the student model. In the original

paper, the authors noted that a lot of what the model learns during its training about the

training data is lost in tasks such as image classification because it requires to condensate the

acquired knowledge to a single class to make a prediction. Therefore, they proposed to use

the logits produced by the teacher instead of the final output. The logits, or pseudolikelihood,

are the values that compose the distribution over the classes in the last layer of the teacher,

before the SoftMax function is applied.

Such a distribution is subject to the first of the two hyperparameters that Knowledge

Distillation employs, the Temperature. In fact, the logits distribution produced by a network

will have a higher peak in correspondence to the predicted class and smaller values for the

other classes. The Temperature is used to smoothen such a distribution and to highlight inter-

class relations that the model learned. This kind of knowledge was called “Dark Knowledge”

by Hinton et al.

Formally, this means that the SoftMax output becomes:

𝑝𝑖 =
exp⁡(

𝑧𝑖
𝑇
)

∑ exp⁡(
𝑧𝑗
𝑇)𝑗

(1)

This equation is equivalent to the standard SoftMax for 𝑇 = 1, while for higher values of 𝑇

the distribution becomes smoother, from which the name “soft targets”. The data labels, one-

hot encoded in a vector, are called “hard targets”.

Even though the soft targets embed significant knowledge, they are not enough to train a

network correctly on a labelled dataset by themselves. The authors proposed to mix the

proportion of the loss function dependent on soft and hard targets according to another

hyperparameter, Alpha.

The loss function therefore becomes:

 ⁡ℒ(𝑥,𝑊) = 𝛼 ∗ 𝐶𝐸(𝑦, 𝜎(𝑧𝑠, 𝑇 = 1)) + (1 − 𝛼) ∗ 𝐾𝐿𝐷(𝜎(𝑧𝑡 , 𝑇 = 𝜏)⁡, 𝜎(𝑧𝑠, 𝑇 = 𝜏)) ∗ 𝜏2

(2)

The first term of the sum is the Cross-Entropy loss between the hard targets (𝑦) and the labels

predicted by the student (𝜎(𝑧𝑠, 𝑇 = 1) is the SoftMax function applied to the logits of the

student 𝑧𝑠), while the second term is the Kullback-Leibler Divergence4, which is a measure of

how much information is lost if the student logits distribution, smoothened by 𝑇, is used to

approximate the smoothened teacher logits distribution.

It is also important to notice how the soft targets term is multiplied by the squared value of

the temperature. This is necessary since smoothing the distributions results in a smoothing of

the gradient produced by the soft targets of a factor
1

𝜏2⁡
, which needs to be corrected to avoid

an unbalanced contribution despite the alpha factor. The algorithm is summarized in

algorithm box 1.

Algorithm 1: Vanilla Distillation

Input: pre-trained teacher, student, x = data samples, y = hard targets, 𝜏⁡= temperature

and 𝛼

For each epoch:

 for 𝑥𝑖 in 𝑥:

 teacher logits = teacher(𝑥𝑖)

 student logits = student(𝑥𝑖)

 student pred = SoftMax(student logits)

 teacher logits = teacher logits / 𝜏

 student logits = student logits / 𝜏

 teacher pred = SoftMax(teacher logits)

 smoothen student pred = SoftMax(student logits)

 loss = 𝛼 ∗ 𝐾𝐿𝐷(teacher pred, smoothen student pred) + (1-𝛼)*CE(student pred, 𝑦𝑖)

In the same paper, the authors report how a student trained in this setting achieves two

relevant objectives:

• Its accuracy on the test sets improves sensibly compared to when the model is trained

only with hard targets in the standard way

• The model is capable of avoid overfitting, showing how soft targets also have a

regularizing effect on the training

1.1.1 - SUBSEQUENT WORKS

In the following years, multiple new research projects have been focused on this topic. As

mentioned earlier, it is undoubtedly very useful to get a small model to perform as well as a

cumbersome one. According to a recent survey, the field of Knowledge Distillation is

currently split in two main branches of techniques that focus on two different aspects of

Knowledge Distillation. The first branch focuses on what kind of knowledge can be distilled,

identified in three types of knowledge that can be extracted from a teacher. The second

branch focuses on how to distil such a knowledge.

In the following sections, I will describe them providing an overview of a few state-of-the-art

approaches for each one.

1.2 - TYPES OF KNOWLEDGE

1.2.1 – RESPONSE-BASED KNOWLEDGE

Response Based Distillation is the first branch of Knowledge Distillation approaches that

followed directly from the Vanilla Distillation. In this batch of approaches, the main idea is to

have the student imitate the logits of the last layer of the teacher. This general idea is formally

expressed as:

 ℒ𝑅𝑒𝑠𝐷(𝑧𝑡, 𝑧𝑠) = ⁡ℒ𝑅(𝑧𝑡, 𝑧𝑠)

(3)

Where ℒ𝑅𝑒𝑠𝐷 is the Response Based Distillation Loss and 𝑧𝑡 and 𝑧𝑠 are the logits of the

teacher and the student. ℒ𝑅(∙) is the divergence loss between logits. In general, such a

setting can be thought as Fig. 1

FIGURE 1 GENERAL FRAMEWORK FOR RESPONSE-BASED KNOWLEDGE DISTILLATION

As mentioned above, this setting has been proved to bring regularizing effects to the training

similarly to what is done by label smoothing and other regularizes. Various approaches have

been developed to exploit this effect of Knowledge Distillation. For example, in Transferring

Knowledge to Smaller Network With Class-Distance Loss5 they used an l2 norm as a training

objective for the student to minimize the distance between the feature vectors that are fed to

the last dense layer of the teacher and the student. The training of the teacher is also slightly

modified, adding an additional component to the Cross Entropy loss. Here, a multiplier is

used to enhance the l2 norm of the vector produced for the current class and the mean vector

of the other classes minus a minimal threshold finetuned for the current class.

Response Based approaches have been applied to a variety of tasks, from object detection to

semantic localization in Computer Vision. It has been proved however that it has one

significant drawback: it completely ignores the knowledge acquired by the teacher in its

earlier layers, as showed in Fitnets: Hints for thin deep nets6.

1.2.2 – FEATURE-BASED KNOWLEDGE

The methods that exploit the knowledge in those layers have been grouped in the Feature

Based group. Here, the focus is on the intermediate representations learned by a network in

its earlier layers. In Fitnets, the layers from which this knowledge is extracted have been

called “Hint Layers”, a pun on the verb “to hint” and the name of the main author of

Knowledge Distillation, Geoffrey Hinton. A similar layer is chosen in the student network

and is called “guided layer”. The choice of the layers can heavily influence the training given

the regularizing effect it has. Choosing deeper layers results in a loss of flexibility in how the

student will learn in shallower layers, while shallower layers may not have feature maps rich

enough in knowledge. For this reason, the layers are usually chosen in the middle of the

networks.

The outputs of these intermediate layers are called feature maps. Given that usually the

teacher network is bigger than the student, its feature maps will be bigger than the feature

maps produce by the guided layer. The original proposal used a regressor to make the guided

layer match the dimensions of the hint layer, while more recent approaches focused on more

sophisticated ways face the task.

In Paying more Attention to Attention7, the feature map of the hint layer is flattened to obtain

a 2D tensor defined over the spatial dimensions. The absolute values of the elements of that

tensor are used to compute an attention map across the channel dimension. The authors

proposed to do this with three different functions:

• Sum of absolute values: 𝐹𝑠𝑢𝑚(𝐴) = ⁡∑ |𝐴𝑖|
𝐶
𝑖=1

• Sum of absolute values raised to the power of p: 𝐹𝑠𝑢𝑚
𝑝 (𝐴) = ⁡∑ |𝐴𝑖|

𝐶
𝑖=1

• Max of absolute values raised to the power of p: 𝐹𝑚𝑎𝑥
𝑝 (𝐴) = ⁡𝑚𝑎𝑥𝑖=1,𝐶|𝐴𝑖|

𝑝

FIGURE 2 ACTIVATION ATTENTION MAPS FOR VARIOUS NETWORKS: NETWORK-IN-NETWORK, RESNET34, RESNET-101.

The following year it was proposed to use the so called “factors” to transport the knowledge

between networks using an interesting concept: features maps from the teacher are fed to a

small stack of convolutional layers called “paraphraser”, whose job is to simplify the feature

extracted from the teacher’s hint layer into a factor to make it comprehensible for the student,

which in turn uses a similar convolutional stack as a “translator” to fully understand the

factor. The paraphraser maintains the feature map’s spatial dimension but resizes the

channels by an hyperparameter k. It is trained in an unsupervised way:

 𝐿𝑟𝑒𝑐 = ‖𝑥 − 𝑃(𝑥)‖2

(4)

The translator is trained jointly with the student, so the student’s loss is the sum of the

classification task and the translator’s losses:

𝐿𝑠 = 𝐶𝐸(𝑦̂, 𝑦) + 𝛽 ‖

𝐹𝑇
‖𝐹𝑇‖2

−
𝐹𝑆

‖𝐹𝑆‖2
‖
1

(5)

One of the most recent approaches is called Semantic Calibration (SemCKD)8 and focused on

giving guidance to the student guided layers from multiple hint layers in a different capacity,

according to an attention allocation process. It first constructs similarity matrices for multiple

layers across student and teacher:

 𝐴𝑆𝑙
𝑆 = 𝑅(𝐹𝑆𝑙

𝑆) ∙ ⁡𝑅(𝐹𝑆𝑙
𝑆)

T
⁡⁡⁡⁡⁡⁡𝐴𝑇𝑙

𝑇 = 𝑅(𝐹𝑇𝑙
𝑇) ∙ ⁡𝑅(𝐹𝑇𝑙

𝑇)
T

(6)

Where 𝑅(∙) ∶ ⁡ℝ𝑏×𝑐×ℎ×𝑤 ↦⁡ℝ𝑏×𝑐ℎ𝑤 is a reshaping operation that makes 𝐴𝑆𝑙
𝑆 and 𝐴𝑇𝑙

𝑇 two

𝑏 × 𝑏 matrices.

It then uses a Multi-Layer Perceptron to create the queries and keys of an attention

mechanism:

 𝑄𝑆𝑙[𝑖] = 𝑀𝐿𝑃𝑄(𝐴𝑆𝑙
𝑆 [𝑖]) 𝐾𝑇𝑙[𝑖] = 𝑀𝐿𝑃𝐾(𝐴𝑇𝑙

𝑇 [𝑖])

(7)

From here, it computes the weight associated with each pair of hint-guided layers:

𝛼(𝑆𝑙,𝑇𝑙)
𝑖 =

𝑒𝑄𝑆𝑙[𝑖]
T𝐾𝑇𝑙[𝑖]

∑ 𝑒
𝑄𝑆𝑙 [𝑖]

T𝐾𝑇𝑗[𝑖]
𝑗

(8)

In the end, the teacher’s feature maps are projected into the same space of the student’s

feature maps to match the dimensions and guide the training for every pair of layers, such

that the loss term associated with SemCKD becomes:

ℒ𝑆𝑒𝑚𝐶𝐾 = 𝛽 ∑ ∑ ∑𝛼(𝑆𝑙,𝑇𝑙)
𝑖 𝑀𝑆𝐸(𝐹𝑇𝑙

𝑇 [𝑖], 𝑃𝑟𝑜𝑗(𝐹𝑆𝑙
𝑆 [𝑖], 𝑇𝑙)

𝑏

𝑖=1

𝑇𝐿

𝑇𝑙=1

𝑆𝐿

𝑆𝑙=1

)

(9)

ℒ𝑇𝑜𝑡𝑎𝑙 =∑ℒ𝐾𝐷𝑖

𝑏

𝑖=1

+ ℒ𝑆𝑒𝑚𝐶𝐾

(10)

However, the most effective method developed in this context is called “Rocket-Launching” 9

and consists in a simple idea: if the student is a smaller version of the same network as the

teacher (i.e., a ResNet18 and a ResNet34) we could unify their backbones, with small

adjustments to their dimensionalities, and train them at the same time.

FIGURE 3 ROCKET LAUNCHER FRAMEWORK, THE LIGHT NET IS THE STUDENT AND THE BOOSTER NET IS THE TEACHER

In particular, the loss function that updates the shared backbone will have three components:

the hard targets loss for the student, the hard-targets loss for the teacher and the distillation

loss. Formally:

ℒ𝑇𝑜𝑡𝑎𝑙 = 𝐶𝐸𝑇(𝑦, 𝑞(𝑥)) +⁡𝐶𝐸𝑆(𝑦, 𝑝(𝑥)) + ℒ𝑀𝑖𝑚𝑖𝑐(𝑙(𝑥), 𝑧(𝑥))

(11)

ℒ𝑀𝑖𝑚𝑖𝑐 is the SNN-MIMIC loss formulated to workaround the vanishing gradient problem

that can undermine other distances, like MSE. It is defined as:

ℒ𝑀𝑖𝑚𝑖𝑐 ⁡= ⁡
1

2𝑇
∑‖⁡𝜎(𝑧𝑠, 𝑇 = 1)⁡−⁡𝑧𝑠‖2

2

𝑖

(12)

Where 𝑙(𝑥) is the logits distribution that produces 𝑝(𝑥) through SoftMax, same for 𝑧(𝑥) and

𝑞(𝑥). N and T are respectively the number of samples and the temperature.

1.2.3 – RELATION-BASED KNOWLEDGE

While both Response-Based and Feature-Based models focused on the outputs of specific

layers in the model, the Relation-Based methods explore the relationships between data

samples or different layers and try to exploit those to improve the student’s training.

Generally, the framework of Relation-Based Distillation with feature maps is:

ℒ𝑅𝑒𝑙𝐷(𝑓𝑡 , 𝑓𝑠) = ℒ𝑅1 (𝜓𝑡(𝑓𝑡, 𝑓𝑡), 𝜓𝑠(𝑓𝑠, 𝑓𝑠)) (13)

While if we are considering the instances relations:

ℒ𝑅𝑒𝑙𝐷(𝑓𝑡 , 𝑓𝑠) = ℒ𝑅2 (𝜓𝑡(𝑡𝑖 , 𝑡𝑗), 𝜓𝑠(𝑠𝑖, 𝑠𝑗)) (14)

In A Gift from KD10 the authors showed how making a small network try to imitate the

output of a bigger network can be a hard constraint on its training since there are multiple

ways to obtain a specific output from an input. They proposed that student should learn the

method to obtain the solution instead of trying to imitate completely the feature maps

produced by the teacher. They proposed to consider two layers in both the teacher and the

student and to compute their Flow Solution Process (FSP) matrix as:

𝐺𝑖,𝑗(𝑥;𝑊) = ∑∑
𝐹𝑠,𝑡,𝑖
1 (𝑥;𝑊) × 𝐹𝑠,𝑡,𝑗

2 (𝑥;𝑊)

ℎ × 𝑤

𝑤

𝑡=1

ℎ

𝑠=1

(15)

Where 𝐹𝑠,𝑡,𝑖
1 and 𝐹𝑠,𝑡,𝑖

2 are the feature maps generated by the two layers in the teacher or the

student, 𝑥 is the input and 𝑊 are the weights of the layer. The loss function for the distillation

is then defined as:

𝐿𝐹𝑆𝑃(𝑊𝑡 , 𝑊𝑠) =
1

𝑁
∑∑𝜆𝑖 × ‖𝐺𝑖

𝑇(𝑥,𝑊𝑡) − 𝐺𝑖
𝑆(𝑥,𝑊𝑠)‖2

2
𝑛

𝑖=1𝑥

(16)

It is clear in the equation that each data sample has a different weight to counterbalance the

possibly unbalanced datasets.

The relationships between feature maps produced by different layers have been a very

interesting topic for a lot of researchers. One of the most effective and interesting techniques

developed for the task is called Graph-Based KD by Multi-Head Attention Network11. As the

authors mention in their work, their idea was inspired by the fact that Graph Neural Networks

can learn relation between vectors by embedding them in their own space and the Attention

Network is the most widespread GNN. The most glaring case of this behaviour is given by

the Attention Mechanism, in which a query vector and a key vector are embedded, through

several layers of Attention Heads, into a graph of their relations.

As in the FSP method, we choose two layers of each network from which we extract queries

(the shallower layer’s feature map, or Frontend Feature Vector set 𝑉𝐹), and keys (the deeper

layer’s feature map, or Backend Feature Vector set 𝑉𝐵):

𝑉𝐵 = {𝑣𝑖
𝐵|1 ≤ 𝑖 ≤ 𝑁}⁡⁡⁡⁡𝑉𝐹 = {𝑣𝑗

𝐹 |1 ≤ 𝑗 ≤ 𝑁} (17)

The two vector sets have different dimensions that need to be matched and then embedded in

a single set:

𝑆 = [𝜃(𝑣𝑖
𝐵) ∙ 𝜙(𝑣𝑗

𝐹)]1≤𝑖≤𝑁,1≤𝑗≤𝑁 (18)

Such an embedding is performed, in practice, with a simple Fully Connected-Batch

Normalization combination.

Attention 𝐺 is obtained by normalizing with SoftMax every set obtained:

𝐺 = [𝑁𝑚(𝑆𝑎)]1≤𝑎≤𝐴 where 𝑁𝑚(𝑆) = [
exp(𝑆𝑖,𝑗)

∑ exp(𝑆𝑖,𝑘)𝑘
]1≤𝑖≤𝑁,1≤𝑗≤𝑁

(19)

At this point, the estimator shown in fig. 4 tries to estimate 𝑉𝐵 from 𝑉𝐹 and 𝐺:

𝑉̅𝐵 = 𝑓2(𝐺 ∙ 𝑓1(𝑉
𝐹)) (20)

𝑓1(𝑉
𝐹) = max(0, 𝐵𝑁(𝑊1𝑉

𝐹))⁡⁡⁡⁡ and⁡⁡⁡⁡𝑓2(𝐺 ∙ 𝑓1(𝑉
𝐹)) =

𝑊2𝐺 ∙ 𝑓1(𝑉
𝐹) + 𝑏2

‖𝑊2𝐺 ∙ 𝑓1(𝑉𝐹) + 𝑏2‖2

(21)

Finally, the loss function for the training of the Attention Network is:

ℒ𝑀𝐻𝐴𝑁 = ∑
1

𝑁
𝑉𝑚
𝐵𝑉̅𝑚

𝐵

𝑀

𝑚=1

(22)

FIGURE 4 THE MULTI-HEAD GRAPH DISTILLATION (LEFT) AND THE DETAIL OF THE ATTENTION HEADS AND ESTIMATOR (RIGHT)

The Attention Mechanism pays attention to 𝑉𝐹 to estimate 𝑉𝐵 so in G we can find two kinds

of information:

1. Feature Transform, which is the relation representing the FSP.

2. Intra-Data Relation, because the Attention Mechanism works throughout the mini

batch, effectively embedding knowledge about the dataset in the graph

The knowledge is the transferred to the student by virtue of the Attention Networks shown in

fig. 4:

ℒ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝐾𝐿𝐷(𝐺𝑚,𝑖,𝑗,𝑎
𝑆 , 𝐺𝑚,𝑖,𝑗,𝑎

𝑇) ⁡= ∑ 𝐺𝑚,𝑖,𝑗,𝑎
𝑆 (log(𝐺𝑚,𝑖,𝑗,𝑎

𝑆) − log(𝐺𝑚,𝑖,𝑗,𝑎
𝑇))

𝑚,𝑖,𝑗,𝑎

(23)

1.3 - TYPES OF DISTILLATION

1.3.1 - OFFLINE DISTILLATION

The Offline Distillation scheme is the classical scheme outlined in the Vanilla Distillation by

Hinton. It consists in a pre-trained teacher that already contains all the knowledge we could

distil and a student that needs to be trained using one or more of the knowledges described

above. The training of the teacher is usually not discussed as part of the Knowledge

Distillation process, so the offline methods are developed using any kind of dataset and

architectures with no regard to what was used to train the teacher.

The main advantage of these methods is that they are very easy to implement, but it comes

with some drawbacks. The fact that the teacher is fixed and usually has a much larger

capacity than the student means that it still needs a lot of resources and time to be trained and

often represent a hard constraint on a small student that cannot match its cap.

One of the approaches developed for this kind of knowledge that inspired this work is called

Spherical Knowledge Distillation. When a teacher makes a prediction, it often has a high

confidence in it, resulting in a high logit for the predicted class and lower logits for the rest.

This confidence comes from the knowledge it acquired during the training phase, the same

knowledge we would like to transfer to the student.

In Spherical Knowledge Distillation, the authors noted how the confidence of the final

prediction is highly determined by the magnitude of logits. Thus, compared with logits,

normalized logits are less affected by the teacher’s confidence while retaining relevant

knowledge to transfer.

They decomposed the teachers and students’ logits as:

𝑓𝑇(𝑥) = ⁡‖𝑓𝑇(𝑥)‖
2

2
∗

𝑓𝑖
𝑇(𝑥)

‖𝑓𝑇(𝑥)‖
2

2
(24)

𝑓𝑆(𝑥) = ⁡‖𝑓𝑆(𝑥)‖
2

2
∗

𝑓𝑖
𝑆(𝑥)

‖𝑓𝑆(𝑥)‖
2

2
(25)

The experiments they conducted showed that using the norm of logits in Vanilla Knowledge

Distillation is detrimental to the final accuracy of the student, while using normalized logits

improves it.

From a gradient perspective, they noted that:

∂ℒKD⁡

∂⁡𝑓𝑖
𝑆(𝑥)

⁡= ⁡
∂‖𝑙𝑆(𝑥)𝑓𝑆(𝑥) − 𝑙𝑇(𝑥)𝑓𝑇(𝑥)‖

2

𝜕𝑓𝑖
𝑆(𝑥)

= ⁡2𝑙𝑆(𝑥)(𝑙𝑆(𝑥)𝑓𝑆(𝑥) − 𝑙𝑇(𝑥)𝑓𝑖
𝑇(𝑥))

(26)

During the distillation process, while the student tries to learn 𝑓𝑖
𝑇(𝑥), the student’s gradient of

𝑓𝑆(𝑥) changes all the time and therefore will difficulty converge to 𝑓𝑖
𝑇(𝑥), which is stable.

They avoid this problem by normalizing both logits by the average of the teacher’s l2 norms

before smoothening with the temperature. The distribution becomes more uniform, shrinking

the distance between the higher logits and the lower.

𝑝̂𝑖 =
exp⁡(𝑓𝑖(𝑥) ∗

𝑙𝑎𝑣𝑔
𝜏)

∑ exp⁡(𝑓𝑗(𝑥) ∗
𝑙𝑎𝑣𝑔
𝜏)𝑗

(27)

The distillation loss becomes:

ℒ = 𝛼∑𝑝̂𝑖
𝑇log⁡(𝑝̂𝑖

𝑆)

𝑖

+ (1 − 𝛼)∑𝑦⁡log⁡(𝑝̂𝑖
𝑆)

𝑖

(28)

This approach highlighted that there is the possibility to exploit the confidence of the teacher

to improve the distillation framework, which we will talk about in the chapter regarding

Relative Knowledge Distillation.

1.3.2 - ONLINE DISTILLATION

Often the need for a pre-trained teacher poses a relevant obstacle for some applications. To

avoid it, a variety of Online methods that train the student and the teacher at the same time

have been devised. The Rocket-Launcher method outlined earlier is one of such examples, in

which the logits predicted from the teacher at training time are included in the student’s loss

function.

FIGURE 5 UMBRELLA DISTILLATION

The main contributions to this topic fall under the umbrella of Deep Mutual Learning1312.

Here, two networks 𝜃1 and 𝜃2 are trained at the same time with similar loss functions:

Algorithm 2: Spherical Distillation

Input: pre-trained teacher, student, x = data samples, y = hard targets, 𝜏 = temperature

and 𝛼 = alpha

For each epoch:

 for 𝑥𝑖 in 𝑥:

 teacher logits = teacher(𝑥𝑖)

 student logits = student(𝑥𝑖)

 student pred = SoftMax(student logits)

 teacher pred = SoftMax(teacher logits ∗ ⁡
𝑙𝑎𝑣𝑔

𝜏
)

 smoothened student pred = SoftMax(student logits ∗⁡
𝑙𝑎𝑣𝑔

𝜏
)

 loss = 𝛼 ∗ 𝐾𝐿𝐷(teacher pred, smoothen student pred) + (1-𝛼) * CE(student pred, 𝑦𝑖)

ℒ𝜃1 = 𝐶𝐸𝜃1 + 𝐾𝐿𝐷(𝑝2||𝑝1) and ℒ𝜃2 = 𝐶𝐸𝜃2 + 𝐾𝐿𝐷(𝑝1||𝑝2)

(29)

The two CE components are the Cross Entropy loss on the hard targets and the KLD is the

Kullback-Leibler Divergence given by using the one network’s prediction to approximate the

others. This framework is easily extendable to situations in which there are more than two

networks:

ℒ𝜃𝑘 = 𝐶𝐸𝜃𝑘 +𝐾𝐿𝐷(𝑝𝑎𝑣𝑔||𝑝𝑘) where 𝑝𝑎𝑣𝑔 =
1

𝐾−1
∑ 𝑝𝑙
𝐾
𝑙=1,𝑙≠𝑘 (30)

The topic of n networks trained together is further explored in Knowledge Distillation for

Collaborative Learning (KDCL). Here, each network is fed the same image augmented in a

different way to improve the overall generalization capability of the networks on the datasets.

FIGURE 6 KNOWLEDGE DISTILLATION FOR COLLABORATIVE LEARNING

The loss function is:

ℒ = ∑𝐿𝐶𝐸
𝑖 + 𝜆𝐿𝐾𝐿𝐷

𝑖

𝑚

𝑖=1

(31)

One idea to select a teacher between all the networks could be to choose the one with the

lower loss with respect to the Cross-Entropy loss, so the KLD is calculated between each

student and the selected teacher. This selection could be more effectively treated as an

optimization problem in which all network’s logits represent a column of a matrix 𝑍 and it

boils down to solving the optimization problem:

𝑚𝑖𝑛𝛼∈ℛ𝑚𝐿𝐶𝐸(𝛼
𝑇𝑍, 𝑦) given that ∑ 𝛼𝑖 = 1, 𝛼𝑖 ≥ 0⁡𝑚

𝑖=1 (32)

Another idea is to test the performances of the networks on a validation subset after every

training step, in which case we will be much surer to select the teacher with the highest

generalization ability. To do so, the authors proposed to compute the generalization error on

an input of the ensemble of networks as:

𝐸 =∑∑𝜔𝑖𝜔𝑗𝐶𝑖𝑗

𝑚

𝑗=1

𝑚

𝑖=1

(33)

Where:

𝐶𝑖𝑗 = ⁡∫(𝑓𝑖(𝑥) − 𝑡)(𝑓𝑗(𝑥) − 𝑡)𝑝(𝑥)𝑑𝑥 ≈
1

𝑁
∑(𝑓𝑖(𝑥𝑘) − 𝑡

𝑁

𝑘=1

)(𝑓𝑗(𝑥𝑘) − 𝑡)
(34)

Each 𝜔𝑘 is a weight such as 𝜔𝑘 =
∑ 𝐶𝑘𝑗

−1𝑚
𝑗=1

∑ ∑ 𝐶𝑘𝑗
−1𝑚

𝑗=1
𝑚
𝑖=1

 and 𝑓𝑖(𝑥) is the probability distribution of the

i-th network.

Even more interesting was the use of multi-level distillation in Online Knowledge Distillation

with Diverse Peers (OKDDip)13. The soft targets are derived from the group of peers by

aggregating the predictions of all peers with different weights:

𝑡𝑎 = ∑ 𝛼𝑎𝑏 ∙

𝑚−1

𝑏=1

𝑞′𝑏

(35)

FIGURE 7 ONLINE KNOWLEDGE DISTILLATION WITH DIVERSE PEERS

The overall framework is trained by:

ℒ𝑂𝐾𝐷𝐷𝑖𝑝 = ∑ℒ𝑔𝑡(𝑎) + 𝑇2ℒ𝑑𝑖𝑠1(𝑡𝑎 , 𝑞
′
𝑎
) + 𝑇2ℒ𝑑𝑖𝑠2

𝑚

𝑎=1

(𝑡𝑚 , 𝑞
′
𝑚
)

(36)

ℒ𝑑𝑖𝑠1 is the usual KLD between a peer and the aggregated soft targets of the others while

ℒ𝑑𝑖𝑠2 is the KLD between each peer and a group leader.

The use of Attention-Based Targets allows each peer to better attend the others by calculating

the weights as an Embedded Gaussian distance with normalization:

𝛼𝑎𝑏 =
𝑒𝐿(ℎ𝑎)

𝑇𝐸(ℎ𝑏)

∑ 𝑒𝐿(ℎ𝑎)
𝑇𝐸(ℎ𝑓)𝑚−1

𝑓=1

(37)

𝐿(ℎ𝑎) = 𝑊𝐿
𝑇ℎ𝑎 𝑊(ℎ𝑎) = 𝑊𝐸

𝑇ℎ𝑎 (38)

ℎ𝑎 are the extracted features from a peer and 𝑊𝐸
𝑇 , 𝑊𝐿

𝑇 are learned projections matrices that

embed respectively the features extracted by all peers and by the current peer. The use of

both matrices allows the framework to keep two key properties:

• Asymmetry, which allows to suppress negative effect of having peers with different

level of optimization without stopping the positive guidance that comes from multiple

peers.

• Dynamicity, to give more flexibility to the ensemble by calibrating the use of peers

according to how optimized they have become at each training step.

Some of the most recent works in the context of Online Distillation fall under the Generative

Adversarial Distillation umbrella. Generative Adversarial Networks has had great success in

a lot of fields. It consists of two competing networks, a generator and a discriminator, whose

jobs are to generate a new data sample and to distinguish it from a real data sample. Such an

approach has been proposed for knowledge distillation too by different authors.

FIGURE 8 GENERAL FRAMEWORK FOR GENERATIVE ADVERSARIAL DISTILLATION

There are three main categories of adversarial distillation. In the first category’s methods, the

generator creates synthetic data that is then used as a training dataset or to augment the

existing dataset. For example, in Zero-shot Knowledge Transfer14, they propose to compute n

gradient steps on the generator and then produce a batch of synthetic data to maximize the

Kullback-Leibler Divergence between the teacher and the student. Only after that, they take

m gradient steps on the student to make it match the teacher’s distribution on the synthetic

samples. However, it is theoretically possible that the generator starts exploring a larger

portion of the data space in which the teacher has not been trained, producing unrealistic

images. This happens because there is no constraint on the kinds of images it can generate.

The experiments carried out to prove it did show that, if the number of classes is limited (i.e.,

Cifar10, MNIST) random noisy images are clustered in a single class.

The second category’s methods use the discriminator to distinguish the student’s logits or

feature from those produced by the teacher while the last category’s approaches use the

teacher and the student as a generator and trains them jointly, much like it would happen in

online distillation.

The main contribution for both these categories was given by Feature-map level Online

Adversarial Knowledge Distillation15

FIGURE 9 FEATURE-MAP LEVEL ONLINE ADVERSARIAL KNOWLEDGE DISTILLATION

As shown in Fig. 10, the two networks are not student and teacher because the distillation

here happens in an online setting. Each network has its own discriminator that considers the

other network’s feature map as the real feature map, performing a simple binary classification

to distinguish them. Each network can be decomposed in two parts:

• the feature extractor, which is roughly equivalent to a classical GAN generator, that

will have loss function:

ℒ𝐺𝑘 = [1 − 𝐷𝑘(𝐺𝑘(𝑥))]
2 (39)

• the discriminator is trained by itself, its loss does not influence the networks losses:

ℒ𝐷𝑘 = [1 − 𝐷𝑘(𝐺𝑛(𝑥))]
2 +𝐷𝑘(𝐺𝑘(𝑥))

2

(40)

The distillation then happens by computing the Kullback-Leibler Divergence between the

logits produced by the two network, the discriminator’s loss, and the Cross-Entropy loss:

ℒ1 = 𝐶𝐸 + 𝑇2 × ℒ𝐾𝐿𝐷 (
𝑧1
𝑇
,
𝑧2
𝑇
) + ℒ𝐺1

(41)

ℒ2 = 𝐶𝐸 + 𝑇2 × ℒ𝐾𝐿𝐷 (
𝑧2
𝑇
,
𝑧1
𝑇
) + ℒ𝐺2

(42)

1.3.3 - SELF DISTILLATION

Self-Distillation is a special case of Online-Distillation in which the same network is both the

student and the teacher. The basic implementation of this intuition came from Be Your Own

Teacher16, in which was proposed to use deeper layers of the network to directly train

shallower layers. An example of this concept can be easily imagined by thinking about a

ResNet architecture such as Fig. 5

FIGURE 10 THE GENERAL FRAMEWORK OF KNOWLEDGE DISTILLATION ACCORDING TO BE YOUR OWN TEACHER

Each residual block is part of the overall network, but at training time a classifier head

composed of a Residual Bottleneck layer and a Fully Connected layer with SoftMax

activation is added on top of it. With this addition, each block produces its own prediction

that can be used to distil knowledge from the deeper block, which will be more accurate and

richer in information given what the previous block had already learned about the data space.

ℒ =∑((1 − 𝛼) ∙ ℒ𝐶𝐸(𝑞
𝑖, 𝑦) + 𝛼 ∙ ℒ𝐾𝐿𝐷(

𝐶

𝑖

𝑞𝑖, 𝑞𝐶) + 𝜆 ∙ ‖𝐹𝑖 − 𝐹𝐶‖2
2)

(43)

For this work the authors did not use the logits produced by each classifier but the output of

the SoftMax 𝑞𝑖 and the feature maps 𝐹𝑖.

Almost at the same time, Snapshot Distillation17 was proposed. The authors noticed that even

if the accuracy improvements brought by Knowledge Distillation are significant, often the

process is computationally expensive.

They proposed to train the student with guidance provided by previous iterations of the same

student instead of using different networks or layers as a teacher. In other words, we consider

an intermediate state of the same model as teacher, store it, and use it to obtain a distillation

loss to add to the Cross Entropy at the last iteration of a minibatch.

So, if a training process using a minibatch 𝐵𝑙 consists of L epochs, the gradients are updated

using:

ℒ(ℬ𝑙 , 𝜃𝑙−1) = −
1

|𝐵𝑙|
∑ {𝜆𝑙

𝑆 ∙ 𝑦𝑛
𝑇 ln 𝑓(

(𝑥𝑛,𝑦𝑛)∈ℬ𝑙

𝑥𝑛, 𝜃𝑙−1) + 𝜆𝑙
𝑇 ∙ 𝐾𝐿[𝑓(𝑥𝑛 , 𝜃𝑐𝑙)||𝑓(𝑥𝑛, 𝜃𝑙−1)]}

(44)

𝜆𝑙
𝑆 and 𝜆𝑙

𝑇 are the weights that balance soft and hard targets. However, it is evident that being

the teacher the same architecture as the student just a few passes earlier, their prediction may

be very close, leading the second term of the loss to degenerate to zero.

It is worth noticing that in this approach the student did not use a temperature hyperparameter

to smoothen the distribution of logits. They explained that using the same model as both

teacher and student does not raise difficulties for what concerns the capacity of the student

with respect to the teacher, while in classical settings such a gap needs to be accounted for by

smoothening the logits distribution.

CHAPTER 2 – PROPOSED IMPROVEMENTS
In this chapter, we present some ways to improve the performance of Vanilla Knowledge

Distillation. The methods we propose can be categorized as Response-Based, Offline-

Distillation and focus on two different aspects of Knowledge Distillation that we found were

not investigated enough in literature.

The first aspect concerns what to do with incorrect predictions by the teacher. In general,

such predictions are not very useful, sometimes they may even be detrimental to the training

of a distilled student, because they pull the gradients in the wrong direction with respect to

the Cross-Entropy component of the loss, so the knowledge that the student would acquire

may be lost in the process.

The second aspect is based on the observation that a too confident teacher is not really that

useful. In fact, if the teacher predicts the correct class all the time with high confidence, then

the SoftMax outputs something very similar to a one-hot encoded vector, no matter the

temperature’s smoothing that was applied.

Starting from these considerations, we propose three new approaches to Knowledge

Distillation.

2.1 - EARTH MOVER DISTILLATION

The main idea behind Earth Mover Distillation is to obtain relevant knowledge from samples

that were incorrectly classified by the teacher. To do so, we used Earth Mover Distance on

the teacher’s SoftMax predictions.

 Earth Mover Distance, or Wasserstein metric, is a measure of the distance between two

probability distributions interpreted as the minimum cost of turning one distribution into the

other one. Informally, the name comes from the amount of dirt to move to turn one pile of

dirt into another one.

In practice, when the teacher’s prediction is wrong, we smoothen the logits using the

temperature hyperparameter as usual and apply the SoftMax. We then sum the smaller

probabilities of the incorrect classes to the correct class, giving the student more samples to

obtain knowledge from the teacher.

2.2 - TWO TEMPERATURE DISTILLATION

With “Two Temperature Distillation” we tried another way to improve the effectiveness of

Knowledge Distillation when the teacher’s predictions were wrong. Instead of correcting

them, which is an artificial way to alter the output produced by the teacher, the idea behind it

is that a higher temperature, and therefore a stronger smoothening of the logits distribution,

makes the SoftMax output on the correct class closer to the output of the predicted class.

When the teacher makes correct predictions we used a smaller temperature, to keep the

correct class prediction higher than the rest.

This method is identical to Vanilla Distillation with the exception that distinguishes the

predictions between correct and incorrect ones, giving each its own temperature.

Algorithm 3: Earth Mover Distillation

Input: pre-trained teacher, student, x = data samples, y = hard targets, 𝜏 = temperature

and 𝛼

For each epoch:

 for 𝑥𝑖 in 𝑥:

 if 𝑦𝑝𝑟𝑒𝑑 != 𝑦𝑖:

 teacher logits = teacher(𝑥𝑖)

 teacher predictions = SoftMax(teacher logits / 𝜏)

 sorted = sort(teacher predictions, by=ascending)

 for value in sorted:

 teacher predictions[𝑦𝑖] = teacher predictions[𝑦𝑖] + value

 if teacher predictions[𝑦𝑖] = = max(teacher predictions):

 break

 Vanilla Distillation(teacher logits, student logits, 𝜏, 𝛼)

2.3 - RELATIVE KNOWLEDGE DISTILLATION

As outlined in Spherical Distillation, the confidence of a teacher can diminish the amount of

knowledge we are able to transfer to the student. But a high confidence in a class also means

that most of the other classes will have very low logits. This would convey the information

that those classes have nothing in common with the correct class and, therefore, are not very

useful for the distillation process.

In case the prediction is incorrect it would not be useful to the distillation process because it

would steer the gradients in a different direction than the Cross Entropy loss, so we would

like to adjust it similarly to what is described in Earth Mover Distillation.

We propose four different implementations of “Relative Knowledge Distillation”, or RKD, to

verify if these two assumptions are valid.

Algorithm 4: Two Temperature Distillation

Input: pre-trained teacher, student, x = data samples, y = hard targets,

𝜏𝑟𝑖𝑔ℎ𝑡 = temperature for correct predictions, 𝜏𝑤𝑟𝑜𝑛𝑔 = temperature for incorrect

predictions and 𝛼

For each epoch:

 for 𝑥𝑖 in 𝑥:

 teacher logits = teacher(𝑥𝑖)

 student logits = student(𝑥𝑖)

 teacher pred = SoftMax(teacher logits)

 if max(teacher pred) == 𝑦𝑖:

 Vanilla Distillation(teacher logits, student logits, 𝜏𝑟𝑖𝑔ℎ𝑡, 𝛼)

 else:

 Vanilla Distillation(teacher logits, student logits, 𝜏𝑤𝑟𝑜𝑛𝑔, 𝛼)

2.3.1 - RELATIVE KNOWLEDGE DISTILLATION V1

There are two main ideas behind the formulation of Relative Knowledge Distillation. First,

one could think that a good teacher should be the most accurate possible on the task at hand.

This is however an incorrect assumption: a very accurate teacher often has a lot of confidence

in its predictions, resulting in the output of its last SoftMax layer being very similar to the

one-hot encoding of the targets. In the Vanilla Distillation framework, the loss function is

composed of two terms, the Cross Entropy loss between the student’s predictions and the

one-hot encoding of the labels, and the Kullback-Leibler Divergence between the teacher’s

and the student’s predictions.

ℒ = 𝛼 𝐶𝐸(𝑦, 𝑆) + (1 − 𝛼) 𝐾𝐿𝐷(𝑇, 𝑆) (45)

Where S and T are the SoftMax outputs of the student and the teacher, respectively. The KLD

is defined as the measure of how one probability distribution can be used to approximate

another one:

𝐾𝐿𝐷(𝑇|⁡|𝑆) = ⁡∑𝑇(𝑖)𝑙𝑜𝑔2(
𝑇(𝑖)

𝑆(𝑖)
)

𝑖

⁡
(46)

It is evident that it relates closely to Cross Entropy. In fact:

𝐾𝐿𝐷(𝑇|⁡|𝑆) = ⁡∑𝑇(𝑖)𝑙𝑜𝑔2 (
𝑇(𝑖)

𝑆(𝑖)
)

𝑖

=∑𝑇(𝑖)𝑙𝑜𝑔2(𝑇(𝑖))

𝑖

−⁡∑𝑇(𝑖)𝑙𝑜𝑔2(𝑆(𝑖))

𝑖

=⁡∑𝑇(𝑖)𝑙𝑜𝑔2(𝑇(𝑖))

𝑖

+ 𝐶𝐸(𝑇(𝑖), 𝑆(𝑖))

(47)

Therefore, the final loss for Vanilla Distillation becomes:

ℒ = 𝛼 𝐶𝐸(𝑦, 𝑆) + (1 − 𝛼) 𝐾𝐿𝐷(𝑇, 𝑆)

= 𝛼 𝐶𝐸(𝑦, 𝑆) + (1 − 𝛼) ∑𝑇(𝑖)𝑙𝑜𝑔2(𝑇(𝑖))

𝑖

+ 𝐶𝐸(𝑇(𝑖), 𝑆(𝑖))

= ⁡𝛼 𝐶𝐸(𝑦, 𝑆) + (1 − 𝛼) 𝐶𝐸(𝑇, 𝑆) ⁡+ (1 − 𝛼)∑𝑇(𝑖)𝑙𝑜𝑔2(𝑇(𝑖))

𝑖

(48)

If 𝑦 ≈ 𝑇, meaning if the teacher is very confident and its predictions resemble the one-hot

encoded vector of the targets, the two Cross Entropy terms are redundant. The other term is

the entropy of the distribution T:

(1 − 𝛼)∑𝑇(𝑖)𝑙𝑜𝑔2(𝑇(𝑖))

𝑖

The distribution T is simply the distribution that the teacher model learned to fit all data

points in the space of the training set, therefore it is constant given that the training set does

not change. The student will try to mimic the distribution of the teacher but their capacity

gap, meaning the difference in depth and/or number of parameters, does not allow for an

accurate mimicking, making the teacher an unreliable one for the distillation process.

The second idea comes from considering that not every class has something in common with

the others. From a human point of view, we instinctively know that a dog has nothing in

common with a house while it has a few things in common with a cat such as eyes, mouth,

ears etc. In Vanilla Knowledge Distillation any class is treated equally, smoothened with the

same temperature no matter the image that is being fed in input.

One could say that this approach overestimates the knowledge contained in the smallest

classes and that it would be much more valuable to highlight the difference between two

similar classes of images than the difference between very different classes.

In the first version of RKD, the absolute value of the lower, incorrect logits is subtracted from

the higher logit when the prediction is correct. This operation can also be thought of as a form

of penalty given to the teacher for not being totally confident that its decision was the correct

one.

When the prediction is incorrect, all its logits are set to zero. In this way, the SoftMax

prediction is uniform and therefore the predicted label is randomly chosen. Such an approach

to handle incorrect predictions may seem, and in fact is, extreme. With this version of RKD

we want to understand if we can extract useful knowledge even from the mistakes of the

teacher.

Lowering the confidence has the effect of bringing closer the first few classes that are

deemed more probable for the current data sample. When these adjusted logits are

smoothened by the temperature parameter, the resulting distribution presents peaks that are

much closer than they would be if the temperature was applied directly to the original logits.

FIGURE 11 VANILLA LOGITS AND RELATIVE KD V1 LOGITS OF A CORRECT PREDICTION.

 THE VALUE OF THE PREDICTED CLASS (8) IS LOWERED USING THE ABSOLUTE

VALUES OF THE SMALLER LOGITS AS A PENALTY BUT REMAINS THE HIGHEST ONE.

FIGURE 122 VANILLA LOGITS AND RELATIVE KD V1 LOGITS OF AN INCORRECT PREDICTION.

THE VALUE OF EVERY CLASS IS SET TO 0 SO THE OUTPUT OF THE SOFTMAX WILL BE RANDOMIC.

After adjusting the logits as described above, the classical Vanilla Distillation equation is

applied. The algorithm works as follows.

Algorithm 4: Relative Knowledge Distillation V1

Input: pre-trained teacher, student, x = data samples, y = hard targets, 𝜏 = temperature

and 𝛼

For each epoch:

 for 𝑥𝑖 in 𝑥:

 teacher logits = teacher(𝑥𝑖)

 student logits = student(𝑥𝑖)

 teacher pred = SoftMax(teacher logits)

 if max(teacher pred) == 𝑦𝑖:

 sorted logits = sort(teacher logits)

 for logit in sorted logits:

 teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] - |𝑙𝑜𝑔𝑖𝑡|

 if teacher logits[𝑦𝑖] < sorted logits[-2]:

 teacher logits[𝑦𝑖]= teacher logits[𝑦𝑖] + |𝑙𝑜𝑔𝑖𝑡|

 break

 else:

 teacher logits = [0, …, 0]

 Vanilla Distillation(teacher logits, student logits, 𝜏, 𝛼)

2.3.2 - RELATIVE KNOWLEDGE DISTILLATION V2

In the first version, the incorrect predictions were completely discharged and substituted with

a random prediction. The second version tries to improve on this aspect by using Earth Mover

distance to correct the logits distribution when the teacher is wrong. It follows from the

considerations expressed in the previous section on the confidence of the teacher that, if we

accept that a too confident teacher gives a redundant term to the distillation loss function, and

that most knowledge is embedded in the second highest logit produced, it is natural to assume

that the logits produced by an image capable of tricking the teacher into making a mistake

could contain a lot of interesting and useful knowledge.

The behaviour for correct predictions is the same as in RKD V1, meaning that the highest

logit is lowered but remains higher than the second highest logit.

FIGURE 133 VANILLA KD AND RELATIVE KD V2 LOGITS FOR INCORRECT PREDICTIONS.

CLASS 5 (INCORRECT PREDICTION) REMAINS THE SAME WHILE CLASS 0 (CORRECT CLASS)

BECOMES THE HIGHEST ONE BUT STAYS CLOSE TO CLASS 5

Algorithm 5: Relative Knowledge Distillation V2

Input: pre-trained teacher, student, x = data samples, y = hard targets, 𝜏 = temperature and

𝛼

For each epoch:

 for 𝑥𝑖 in 𝑥:

 teacher logits = teacher(𝑥𝑖)

 student logits = student(𝑥𝑖)

 teacher pred = SoftMax(teacher logits)

 if max(teacher pred) == 𝑦𝑖:

 sorted logits = sort(teacher logits, by = ascending)

 for logit⁡in sorted logits:

 teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] - |𝑙𝑜𝑔𝑖𝑡|

 if teacher logits[𝑦𝑖] < sorted logits[-2]:

 teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] + |𝑙𝑜𝑔𝑖𝑡|

 break

 else:

 sorted logits = sort(teacher logits)

 for 𝑙𝑜𝑔𝑖𝑡 in sorted logits:

 teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] + |𝑙𝑜𝑔𝑖𝑡|

 if teacher logits[𝑦𝑖] < sorted logits[-2]:

 teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] + |𝑙𝑜𝑔𝑖𝑡|

 break

 Vanilla Distillation(teacher logits, student logits, 𝜏, 𝛼)

2.3.3 - RELATIVE KNOWLEDGE DISTILLATION V3

Both methods described above try to extract the most knowledge possible from the higher

logits. We try to understand if and how much the smaller logits impact the distillation

process.

To do that, we developed RKD V3, which is the same as RKD V2 in every aspect except for

a detail: every time a smaller logit is added or subtracted to the higher ones, it is also set to

zero. Intuitively, one could argue that it is not a great idea to voluntarily lose part of the

knowledge that could be extracted. The final goal of this version, and the experiments we ran

for it, was to prove that there is knowledge there, but it is not as relevant or as impactful as

the rest of the logits.

FIGURE 14 VANILLA KD AND RELATIVE KD V3 LOGITS FOR CORRECT PREDICTIONS.

THE VALUES SUBTRACTED TO THE CORRECT CLASS ARE SET TO 0,

LEAVING ONLY THE FOUR HIGHER VALUES. THE SAME THING HAPPENS FOR INCORRECT PREDICTIONS.

Algorithm 6: Relative Knowledge Distillation V3

Input: pre-trained teacher, student, x = data samples, y = hard targets, 𝜏 = temperature

and 𝛼

For each epoch:

 for 𝑥𝑖 in 𝑥:

 teacher logits = teacher(𝑥𝑖)

 student logits = student(𝑥𝑖)

 teacher pred = SoftMax(teacher logits)

 sorted indexes logits = argsort(teacher logits, by = ascending)

 if max(teacher pred) == 𝑦𝑖:

 for idx in sorted indexes logits:

 teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] – |𝑡𝑒𝑎𝑐ℎ𝑒𝑟⁡𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥]|

 plc = teacher logits[idx]

 teacher logits[idx]= 0

 if teacher logits[𝑦𝑖] < sorted logits[-2]:

 teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] + |𝑡𝑒𝑎𝑐ℎ𝑒𝑟⁡𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥]|

 𝑡𝑒𝑎𝑐ℎ𝑒𝑟⁡𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥] = plc

 break

 else:

 for 𝑖𝑑𝑥 in sorted indexes logits:

 teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] + |𝑡𝑒𝑎𝑐ℎ𝑒𝑟⁡𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥]|

 plc = 𝑡𝑒𝑎𝑐ℎ𝑒𝑟⁡𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥]

 𝑡𝑒𝑎𝑐ℎ𝑒𝑟⁡𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥] = 0

 if teacher logits[𝑦𝑖] < sorted logits[-2]:

 teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] + |𝑡𝑒𝑎𝑐ℎ𝑒𝑟⁡𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥]|

 teacher logits[idx] = plc

 break

 Vanilla Distillation(teacher logits, student logits, 𝜏, 𝛼)

2.3.4 - RELATIVE KNOWLEDGE DISTILLATION V4

One could say that the two ideas behind RKD conflicts with each other. In fact, the first idea

at the roots of RKD says that an overconfident teacher is often a threat to an effective

distillation process. In other words, this simply means that the distance between the predicted

logit and the second highest logit should not be too large. This can be achieved by increasing

the latter or lowering the former. But closing the gap between the two higher logits by

increasing the correct one means that the distance between it and the other, smaller logits

increases as well. In every version of RKD we have seen, we always increased one logit and

therefore we increased such gap.

The second idea of RKD is to avoid a redundancy of the Cross Entropy term in the

distillation loss equation as showed in the previous sections, particularly in (48). If the

prediction is incorrect the Kullback-Leibler distance will steer the loss and the gradients in a

different direction than Cross Entropy, but that difference in direction could represent an

effective source of knowledge.

For these reasons, the last version of RKD we propose behaves as usual, lowering the

confidence of the teacher, but does not make any difference between correct and incorrect

predictions. When the teacher is mistaken, it is not corrected by increasing the logit

corresponding to the correct class. Instead, the higher logit predicted is always lowered to be

as close as possible to the second one. The algorithm is reported in the following page.

Algorithm 7: Relative Knowledge Distillation V4

Input: pre-trained teacher, student, x = data samples, y = hard targets, 𝜏 = temperature

and 𝛼

For each epoch:

 for 𝑥𝑖 in 𝑥:

 teacher logits = teacher(𝑥𝑖)

 student logits = student(𝑥𝑖)

 teacher pred = SoftMax(teacher logits)

 sorted indexes logits = argsort(teacher logits)

 for 𝑖𝑑𝑥 in sorted indexes logits:

 teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] – |𝑡𝑒𝑎𝑐ℎ𝑒𝑟⁡𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥]|

 if teacher logits[𝑦𝑖] < sorted logits[-2]:

 teacher logits[𝑦𝑖] = teacher logits[𝑦𝑖] + |𝑡𝑒𝑎𝑐ℎ𝑒𝑟⁡𝑙𝑜𝑔𝑖𝑡𝑠[𝑖𝑑𝑥]|

 break

 Vanilla Distillation(teacher logits, student logits, 𝜏, 𝛼)

CHAPTER 3 – EXPERIMENTAL RESULTS AND

DISCUSSION

3.1 - EXPERIMENTAL SETUP

We have carried out experiments for each method described above. Each model, except for

the ResNet152/ResNet5018 combination, has been implemented in PyTorch and trained in

Google Colab for 200 epochs with Stochastic Gradient Descent. The learning rate was set at

0.1, momentum at 0.9 and weight decay at 0.0005. The learning rate was multiplied by a

factor of 0.2 at epochs 60, 120 and 160. We used the CIFAR10 and CIFAR100 datasets,

which are formed by 32x32 images classified in 10 and 100 classes respectively, following

the classical 50k/10k training and testing split. The dataset has been augmented with random

crops and random horizonal flips.

TEACHER STUDENT

ResNet152 ResNet50

ResNet34 ResNet18

WideResNet 40-1 WideResNet 16-1

WideResNet 40-2 WideResNet 16-2

TABLE 1 COMBINATIONS OF ARCHITECTURES USED IN THE EXPERIMENTS

The ResNet152/ResNet50 combination has been trained with Stochastic Gradient Descent

with learning rate set at 0.1 and halved every time the validation accuracy does not improve

for two consecutive epochs. If there is no improvement for three epochs, the training is

stopped. This resulted in experiments running for 15/20 epoch, about 80 minutes in total,

which is much less than the PyTorch experiments. The CIFAR10 dataset was augmented as

described previously, with an additional upscaling added in the beginning of the networks to

bring the images at 224x224 resolution.

Given the presence of hyperparameters in every method, I ran the experiments with different

combinations of alpha and temperature. In the case of Two Temperatures Distillation, the

combinations include alpha, right temperature, and wrong temperature.

• Alpha = 0.1, 0.3 and 0.5

• Temperature = 2, 5, 10

• Right temperature = 2, 5

• Wrong temperature = 10, 20, 50

The initial tests to prove if there was any validity behind the idea of Relative Distillation were

run with a ResNet152 and a ResNet50 in Keras but have not been repeated in PyTorch with

the same setting as the others because the computational power needed to train such big

network was much higher than the runtime available on Colab. However, these initial tests

were very important for the subsequent work, and we will therefore briefly report and talk

about them.

We experimented with every method described in the previous Chapter and compared them

with the teacher’s and student’s baselines, meaning the two networks trained only with Cross

Entropy. In addition, to give a more comprehensive outlook on the improvements that these

methods bring to Knowledge Distillation, we compare the results obtained with the

performances of Vanilla Distillation and Spherical Distillation distilled from the same

teacher.

3.2 - EXPERIMENTS

3.2.1 - RESNET-152/RESNET-50

The classical Vanilla Distillation performed reasonably well, improving over the baseline

teacher of 2.04%. On the other hand, Spherical Distillation performed badly in this setting,

being detrimental to the training of the student.

Teacher Student Vanilla SKD RKD V1 RKD V2 Two Temp Earth Mover

94.35% 91.59% 93.63% 85.76% 94.86% 94.26% 94.08% 93.23%

TABLE 2 RESNET-152/RESNET-50 ON CIFAR10

FIGURE 145 RESNET-152/RESNET-50 EXPERIMENTS ON CIFAR10

Two Temperature Distillation improved on the student’s baseline by 2.49%, initially

suggesting that there was a good intuition behind the idea of treating the incorrect predictions

in a different way than the correct predictions. Earth Mover Distillation, even if it did not

improve on the Vanilla Distillation performances, at least improved on the student’s baseline

by 1.64%.

Relative Distillation V1 and V2 performed the best out of all the methods, improving by

3.27% and 2.67% respectively. It is worth pointing out that RKD V1 produced a student that

was even more accurate than its teacher. Even the worse performing combination of

hyperparameters had an accuracy of 94.01%, which is higher than the best combination of

every other method except Two Temperature.

Every method has a variance that depends on the specific combination of hyperparameters.

Both RKD V1 and V2 proved to be more stable than Vanilla Distillation or Two

Temperature. Earth Mover Distillation is the worst one from this point of view, oscillating by

as much as 7% in this setting and even more in others.

3.2.2 - RESNET-34/RESNET-18

In the ResNet-34/18 experiments some patterns start to be recognizable from the plot of the

different methods. For example, we can see how Relative Knowledge Distillation is always

performing a little worse than the others, showing that a little bit of knowledge can be learned

from the smaller logits. It is worth noting that RKD V1, V2, V4 and Vanilla perform

basically on par with each other. Given that the three RKD versions differ only by their

handling of incorrect predictions, and that Vanilla does not distinguish between correct and

incorrect predictions, it appears that when the teacher is wrong, it does not influence the

distillation process. If correcting the predictions could be useful to the distillation, RKD V2

should perform sensibly better than RKD V1 and V4. On the same note, another recurring

pattern are the Earth Mover’s performances. EM distillation is often the worst performing

method, actively worsening the student’s baseline performances.

Teacher Student Vanilla SKD RKD

V1

RKD

V2

RKD

V3

RKD

V4

Two

Temp

Earth

Mover

95.68 94.91 95.65 95.21 95.66 95.68 95.44 95.61 95.4 94.54

TABLE 3 RESNET-34/RESNET-18 ON CIFAR10

FIGURE 156 RESNET-34/RESNET-18 EXPERIMENTS ON CIFAR10

Two Temperature Distillation performs on par with RKD V3, improving on the student’s

baseline and RKD’s main competitor, SKD, but not on Vanilla Distillation.

We ran the same experiments on Cifar100, expecting similar results. We expected the

difference in the number of classes in the dataset to let RKD V3 perform much worse than

the others or to dilute the knowledge of the smaller logits so much that it would not make a

difference. As the graph and table below shows, the second interpretation seems to be true.

The best performing methods is still RKD V2, with V1 and V3 very close right after. It

improves on Vanilla distillation by 0.25% and more importantly SKD by 0.80%. Two Temp

stays almost on par with SKD while Earth Mover distillation is still detrimental to the

baseline student.

Teacher Student Vanilla SKD RKD

V1

RKD

V2

RKD

V3

RKD

V4

Two

Temp

Earth

Mover

78.04 77.83 79.47 78.92 79.63 79.72 79.62 79.61 78.79 76.07

TABLE 4 RESNET-34/RESNET-18 ON CIFAR100

FIGURE 17 RESNET-34/RESNET-18 EXPERIMENTS ON CIFAR100

3.2.3 - WIDERESNET-40-1/WIDERESNET-16-1

WideResNet19 is a version of ResNet modified to be shallower and therefore lighter, making

up for the loss of layers and capacity by virtue of the widening factor, which is set to 1 in

these experiments.

With this combination of architectures, Vanilla Distillation improves the baseline student by

1.05%. SKD performs very badly, with a loss of 0.80% in accuracy when even Earth Mover

Distillation can slightly improve on the baseline. As in the other architectures, the best

performing methods are RKD V1 and V2, improving 1.25% and 1.16% on baseline student.

It is however clear from the plot below that every method performs roughly the same in this

case except for SKD and RKD V4.

TABLE 5 WIDERESNET-40-1/WIDERESNET-16-1 ON CIFAR10

FIGURE 18 WIDERESNET-40-1/WIDERESNET-16-1 EXPERIMENTS ON CIFAR10

With Cifar100 the results are very different. There are two clear winners, RKD V1 and SKD,

performing at 1.70% and 1.88% better than the baseline student and even 0.48% and 0.64%

better than Vanilla. All the other versions of RKD performed on par or slightly worse than

the baseline student.

The worst performing method is by far Earth Mover Distillation. In this case, it achieves an

accuracy of 6.98%, showing that it clearly has big stability problems. We ran the experiments

multiple times for this method and got the same result with every hyperparameters

combinations.

WideResNet

40-1

WideResNet

16-1

Vanilla SKD RKD

V1

RKD

V2

RKD

V3

RKD

V4

Two

Temp

Earth

Mover

69.61 66.39 67.63 68.1 68.27 65.64 63.52 66.16 66.23 6.98

TABLE 6 WIDERESNET-40-1/WIDERESNET-16-1 ON CIFAR100

Teacher Student Vanilla SKD RKD

V1

RKD

V2

RKD

V3

RKD

V4

Two

Temp

Earth

Mover

93.78 91.10 92.16 90.29 92.36 92.27 90.77 91.14 92.1 92.05

FIGURE 19 WIDERESNET-40-1/WIDERESNET-16-1 EXPERIMENTS ON CIFAR100

3.2.4 - WIDERESNET-40-2/WIDERESNET-16-2

The last combination of architectures that we tested is WideResNet-40-2 and WideResNet-

16-2. For Cifar10, the results here are very similar to each other. RKD V4 and V2 are the

only one to surpass the 94% accuracy threshold, together with the teacher. As usual, Earth

Mover Distillation is detrimental to the student while all the other methods, including Vanilla

Distillation and SKD, score between 93.80% and 93.98%.

Getting definitive conclusions from such close scores is very difficult. It could seem that both

the smaller logits and the correction of incorrect predictions have a small influence on the

distillation process.

WideResNet

40-2

WideResNet

16-2

Vanilla SKD RKD

V1

RKD

V2

RKD

V3

RKD

V4

Two

Temp

Earth

Mover

94.69 93.4 93.85 93.95 93.98 94.02 93.81 94.0.7 93.86 91.93

TABLE 7 WIDERESNET-40-2/WIDERESNET-16-2 ON CIFAR10

FIGURE 20 WIDERESNET-40-2/WIDERESNET-16-2 EXPERIMENTS ON CIFAR10

For what concerns Cifar100, there is a clear outlier in the plot below. One of the

combinations of hyperparameters we tried for RKD V2 (alpha set at 0.5 and temperature at 2)

produced an interesting student that would converge much faster than any other method to the

final accuracy and surpass it by up to 4% 50 epochs before finishing training.

Here, Earth Mover Distillation is the worst performing method as usual and Two

Temperature Distillation worsened the student.

TABLE 8 WIDERESNET-40-2/WIDERESNET-16-2 ON CIFAR100

WideResNet

40-2

WideResNet

16-2

Vanilla SKD RKD

V1

RKD

V2

RKD

V3

RKD

V4

Two

Temp

Earth

Mover

75.92 71.7 74.06 74.18 73.73 74.63 73.06 73.47 71.55 55.83

FIGURE 161 WIDERESNET-40-2/WIDERESNET-16-2 EXPERIMENTS ON CIFAR100

CONCLUSIONS

In this thesis we set out to improve Knowledge Distillation to produce better students. To do

so, we proposed a few methods based on two main ideas: a) a too confident teacher generates

a logits distribution that produces a Kullback-Leibler Divergence term redundant with respect

to the Cross Entropy term of the loss function, b) the incorrect predictions pull the gradients

in the wrong direction, which can be detrimental to the student’s training.

We showed that reducing the confidence of the teacher in an Offline, Response Based

Distillation setting with Relative Knowledge Distillation improves the results obtained by

both Vanilla Distillation and Spherical Distillation. To do so, we proposed to reduce the

distance between the higher logits in the teacher’s distribution by considering the smaller

logits as a kind of penalty due to the teacher’s lack of confidence in its predictions. The

experiments on RKD V3, in which the smaller logits are set to 0 after they have been

subtracted or summed to the highest logit, showed that the smaller logits still convey a little

amount of knowledge which can be useful in the distillation process, but the larger part of the

knowledge distilled is embedded in the higher logits.

We also showed that correcting the mistaken predictions can convey a bit of knowledge

useful in the distillation process. There are two ways to do this: after the SoftMax, but the

distillation process becomes often detrimental to the student’s training and is heavily

dependent on the hyperparameters combinations, as it can be seen in the Earth Mover

Distillation experiments, or in the logits. In the latter case, we showed with RKD V2 that it

brings improvements to the distillation with respect to RKD V4, which is the same method

without adjusting the logits. In Two Temperature Distillation we experimented with using

two different temperature parameters to smoothen the logits when the teacher’s predictions

are correct or incorrect. The wrong prediction temperature was set to be much higher than the

correct one to produce a much smoother distribution. It did not bring consistently significant

improvements over Vanilla Distillation.

Finally, for what concerns the improvements on Knowledge Distillation, we showed that

RKD V1 improves on Vanilla and Spherical Distillation by 1.23% on the

ResNet152/ResNet50 combination, while in other cases does not bring any improvements.

Most notably, RKD V2 brings improvements on almost every combination of architectures,

up to 0.8% over Vanilla and Spherical Distillation. This proved to be the most consistent of

the methods we designed and experimented with.

RKD V3 and RKD V4 did not improve consistently the results of Vanilla and Spherical

Distillation. RKD V3 often worsened the other two method’s performances, most likely

because of the loss of the knowledge in the smaller logits. RKD V4 proved to be the best

method in just one case, in the other was often worse or on par with Vanilla Distillation.

In the future, it could be interesting to study how Relative Knowledge Distillation can be

used in Feature Based Distillation frameworks, for example by adding classifiers head on top

of feature maps and applying the RKD framework on each of them.

TABLE OF CONTENTS

FIGURES

Figure 1 General framework for Response-Based Knowledge Distillation .. 8

Figure 2 Activation attention maps for various networks: Network-In-Network, ResNet34, ResNet-

101. ... 9

Figure 3 Rocket Launcher framework, the Light Net is the student and the Booster Net is the teacher

.. 11

Figure 4 The Multi-Head Graph Distillation (left) and the detail of the attention heads and estimator

(right) .. 13

Figure 5 Umbrella distillation .. 16

Figure 6 Knowledge distillation for collaborative learning ... 17

Figure 7 Online knowledge distillation with diverse peers .. 18

Figure 8 The general framework of Knowledge Distillation according to Be Your Own Teacher...... 21

Figure 9 General framework for generative adversarial distillation ... 19

Figure 10 feature-map level online adversarial knowledge distillation .. 20

Figure 11 Vanilla Logits and Relative KD logits .. 28

Figure 12 Vanilla KD and Relative KD logits for incorrect predictions .. 30

Figure 13 Vanilla KD and Relative KD logits for correct predictions ... 32

Figure 14 ResNet-152/ResNet-50 experiments on Cifar10 ... 38

Figure 15 ResNet-34/ResNet-18 experiments on Cifar10 ... 39

Figure 16 ResNet-34/ResNet-18 experiments on Cifar100 ... 40

Figure 17 WideResNet-40-1/WideResNet-16-1 experiments on Cifar10 .. 41

Figure 18 WideResNet-40-1/WideResNet-16-1 experiments on Cifar100 .. 42

Figure 19 WideResNet-40-2/WideResNet-16-2 experiments on Cifar10 .. 43

Figure 20 WideResNet-40-2/WideResNet-16-2 experiments on Cifar100 .. 44

TABLES

Table 1 Combinations of architectures used in the experiments .. 36

Table 2 ResNet-152/ResNet-50 on Cifar10 Errore. Il segnalibro non è definito.

Table 3 ResNet-34/ResNet-18 on Cifar10 .. 39

Table 4 ResNet-34/ResNet-18 on Cifar100 .. 40

Table 5 WideResNet-40-1/WideResNet-16-1 on Cifar10 ... 41

Table 6 WideResNet-40-1/WideResNet-16-1 on Cifar100 ... 411

Table 7 WideResNet-40-2/WideResNet-16-2 on Cifar10 ... 432

Table 8 WideResNet-40-2/WideResNet-16-2 on Cifar100 ... 43

file:///C:/Users/damic/Desktop/IMPROVEMENTS%20TO%20KNOWLEDGE%20DISTILLATION%20OF%20DEEP%20NEURAL%20NETWORKS.docx%23_Toc82267072
file:///C:/Users/damic/Desktop/IMPROVEMENTS%20TO%20KNOWLEDGE%20DISTILLATION%20OF%20DEEP%20NEURAL%20NETWORKS.docx%23_Toc82267072
file:///C:/Users/damic/Desktop/IMPROVEMENTS%20TO%20KNOWLEDGE%20DISTILLATION%20OF%20DEEP%20NEURAL%20NETWORKS.docx%23_Toc82267072

BIBLIOGRAPHY

1 C. Buciluˇa, R. Caruana, and A. Niculescu-Mizil. Model compression. In Proceedings of the 12th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’06, pages 535–541, New

York, NY, USA, 2006. ACM

2 Hinton, Geoffrey; Vinyals, Oriol; Dean, Jeff (2015). Distilling the knowledge in a neural

network. arXiv:1503.02531

3 Jianping Gou, Baosheng Yu, Stephen John Maybank, Dacheng Tao (2021). Knowledge Distillation: A Survey.

arXiv:2006.05525

4 S. Kullback e R.A. Leibler, On Information and Sufficiency, in Annals of Mathematical Statistics, vol. 22, n. 1,

1951, pp. 79–86, DOI:10.1214/aoms/1177729694

5 Kim, S. W. & Kim, H. E. (2017). Transferring knowledge to smaller network with class-distance loss. In:

ICLRW

6 Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., & Bengio, Y. (2015). Fitnets: Hints for thin

deep nets. In: ICLR.

7 Zagoruyko, S. & Komodakis, N. (2017). Paying more attention to attention: Improving the performance of

convolutional neural networks via attention transfer. In: ICLR

8 Chen, D., Mei, J. P., Zhang, Y., Wang, C., Wang, Z., Feng, Y., & Chen, C. (2021). Cross-Layer Distillation

with Semantic Calibration. In: AAAI.

9 Zhou, G., Fan, Y., Cui, R., Bian, W., Zhu, X. & Gai, K. (2018). Rocket launching: A universal and efficient

framework for training well-performing light net. In: AAAI

10 Yim, J., Joo, D., Bae, J. & Kim, J. (2017). A gift from knowledge distillation: Fast optimization, network

minimization and transfer learning. In: CVPR.

11 Lee, S. & Song, B. (2019). Graph-based knowledge distillation by multi-head attention network. In: BMVC.

12 Zhang, Y., Xiang, T., Hospedales, T. M. & Lu, H. (2018b). Deep mutual learning. In: CVPR.

13 Chen, D., Mei, J. P., Wang, C., Feng, Y. & Chen, C. (2020a) Online knowledge distillation with diverse

peers. In: AAAI.

14 Micaelli, P. & Storkey, A. J. (2019). Zero-shot knowledge transfer via adversarial belief matching. In:

NeurIPS.

15 Chung, I., Park, S., Kim, J. & Kwak, N. (2020). Feature-map-level online adversarial knowledge distillation.

In: ICML.

16 Zhang, L., Song, J., Gao, A., Chen, J., Bao, C. & Ma, K. (2019b). Be your own teacher: Improve the

performance of convolutional neural networks via self distillation. In: ICCV

17 Yang, C., Xie, L., Su, C. & Yuille, A. L. (2019b). Snapshot distillation: Teacher-student optimization in one

generation. In: CVPR.

18 K. He, X. Zhang, S. Ren and J. Sun, Deep Residual Learning for Image Recognition, 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.

19 Zagoruyko, S., Komodakis, N., Wide Residual Networks. arXiv:1605.07146v4

https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2006.05525
https://it.wikipedia.org/w/index.php?title=Solomon_Kullback&action=edit&redlink=1
https://it.wikipedia.org/w/index.php?title=Richard_Leibler&action=edit&redlink=1
https://oadoi.org/10.1214/aoms/1177729694
https://it.wikipedia.org/w/index.php?title=Annals_of_Mathematical_Statistics&action=edit&redlink=1
https://it.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1214%2Faoms%2F1177729694
https://arxiv.org/abs/1605.07146v4

